xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 0e34b6a7bff4918432f0aa6b1dfaf73ac9df45b1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file contains all the routines used when modifying on-disk SPA state.
30  * This includes opening, importing, destroying, exporting a pool, and syncing a
31  * pool.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/zio_compress.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/zap.h>
43 #include <sys/zil.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/dmu_traverse.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dir.h>
53 #include <sys/dsl_prop.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/callb.h>
56 
57 static uint32_t spa_active_count;
58 
59 /*
60  * ==========================================================================
61  * SPA state manipulation (open/create/destroy/import/export)
62  * ==========================================================================
63  */
64 
65 static int
66 spa_error_entry_compare(const void *a, const void *b)
67 {
68 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
69 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
70 	int ret;
71 
72 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
73 	    sizeof (zbookmark_t));
74 
75 	if (ret < 0)
76 		return (-1);
77 	else if (ret > 0)
78 		return (1);
79 	else
80 		return (0);
81 }
82 
83 /*
84  * Utility function which retrieves copies of the current logs and
85  * re-initializes them in the process.
86  */
87 void
88 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
89 {
90 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
91 
92 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
93 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
94 
95 	avl_create(&spa->spa_errlist_scrub,
96 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
97 	    offsetof(spa_error_entry_t, se_avl));
98 	avl_create(&spa->spa_errlist_last,
99 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
100 	    offsetof(spa_error_entry_t, se_avl));
101 }
102 
103 /*
104  * Activate an uninitialized pool.
105  */
106 static void
107 spa_activate(spa_t *spa)
108 {
109 	int t;
110 
111 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
112 
113 	spa->spa_state = POOL_STATE_ACTIVE;
114 
115 	spa->spa_normal_class = metaslab_class_create();
116 
117 	for (t = 0; t < ZIO_TYPES; t++) {
118 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
119 		    8, maxclsyspri, 50, INT_MAX,
120 		    TASKQ_PREPOPULATE);
121 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
122 		    8, maxclsyspri, 50, INT_MAX,
123 		    TASKQ_PREPOPULATE);
124 	}
125 
126 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
127 
128 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
129 	    offsetof(vdev_t, vdev_dirty_node));
130 
131 	txg_list_create(&spa->spa_vdev_txg_list,
132 	    offsetof(struct vdev, vdev_txg_node));
133 
134 	avl_create(&spa->spa_errlist_scrub,
135 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
136 	    offsetof(spa_error_entry_t, se_avl));
137 	avl_create(&spa->spa_errlist_last,
138 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
139 	    offsetof(spa_error_entry_t, se_avl));
140 }
141 
142 /*
143  * Opposite of spa_activate().
144  */
145 static void
146 spa_deactivate(spa_t *spa)
147 {
148 	int t;
149 
150 	ASSERT(spa->spa_sync_on == B_FALSE);
151 	ASSERT(spa->spa_dsl_pool == NULL);
152 	ASSERT(spa->spa_root_vdev == NULL);
153 
154 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
155 
156 	txg_list_destroy(&spa->spa_vdev_txg_list);
157 
158 	list_destroy(&spa->spa_dirty_list);
159 
160 	rw_destroy(&spa->spa_traverse_lock);
161 
162 	for (t = 0; t < ZIO_TYPES; t++) {
163 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
164 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
165 		spa->spa_zio_issue_taskq[t] = NULL;
166 		spa->spa_zio_intr_taskq[t] = NULL;
167 	}
168 
169 	metaslab_class_destroy(spa->spa_normal_class);
170 	spa->spa_normal_class = NULL;
171 
172 	/*
173 	 * If this was part of an import or the open otherwise failed, we may
174 	 * still have errors left in the queues.  Empty them just in case.
175 	 */
176 	spa_errlog_drain(spa);
177 
178 	avl_destroy(&spa->spa_errlist_scrub);
179 	avl_destroy(&spa->spa_errlist_last);
180 
181 	spa->spa_state = POOL_STATE_UNINITIALIZED;
182 }
183 
184 /*
185  * Verify a pool configuration, and construct the vdev tree appropriately.  This
186  * will create all the necessary vdevs in the appropriate layout, with each vdev
187  * in the CLOSED state.  This will prep the pool before open/creation/import.
188  * All vdev validation is done by the vdev_alloc() routine.
189  */
190 static vdev_t *
191 spa_config_parse(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int atype)
192 {
193 	nvlist_t **child;
194 	uint_t c, children;
195 	vdev_t *vd;
196 
197 	if ((vd = vdev_alloc(spa, nv, parent, id, atype)) == NULL)
198 		return (NULL);
199 
200 	if (vd->vdev_ops->vdev_op_leaf)
201 		return (vd);
202 
203 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
204 	    &child, &children) != 0) {
205 		vdev_free(vd);
206 		return (NULL);
207 	}
208 
209 	for (c = 0; c < children; c++) {
210 		if (spa_config_parse(spa, child[c], vd, c, atype) == NULL) {
211 			vdev_free(vd);
212 			return (NULL);
213 		}
214 	}
215 
216 	return (vd);
217 }
218 
219 /*
220  * Opposite of spa_load().
221  */
222 static void
223 spa_unload(spa_t *spa)
224 {
225 	/*
226 	 * Stop async tasks.
227 	 */
228 	spa_async_suspend(spa);
229 
230 	/*
231 	 * Stop syncing.
232 	 */
233 	if (spa->spa_sync_on) {
234 		txg_sync_stop(spa->spa_dsl_pool);
235 		spa->spa_sync_on = B_FALSE;
236 	}
237 
238 	/*
239 	 * Wait for any outstanding prefetch I/O to complete.
240 	 */
241 	spa_config_enter(spa, RW_WRITER, FTAG);
242 	spa_config_exit(spa, FTAG);
243 
244 	/*
245 	 * Close the dsl pool.
246 	 */
247 	if (spa->spa_dsl_pool) {
248 		dsl_pool_close(spa->spa_dsl_pool);
249 		spa->spa_dsl_pool = NULL;
250 	}
251 
252 	/*
253 	 * Close all vdevs.
254 	 */
255 	if (spa->spa_root_vdev)
256 		vdev_free(spa->spa_root_vdev);
257 	ASSERT(spa->spa_root_vdev == NULL);
258 
259 	spa->spa_async_suspended = 0;
260 }
261 
262 /*
263  * Load an existing storage pool, using the pool's builtin spa_config as a
264  * source of configuration information.
265  */
266 static int
267 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
268 {
269 	int error = 0;
270 	uint64_t config_cache_txg = spa->spa_config_txg;
271 	nvlist_t *nvroot = NULL;
272 	vdev_t *rvd;
273 	uberblock_t *ub = &spa->spa_uberblock;
274 	uint64_t pool_guid;
275 	zio_t *zio;
276 
277 	spa->spa_load_state = state;
278 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
279 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
280 		error = EINVAL;
281 		goto out;
282 	}
283 
284 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
285 	    &spa->spa_config_txg);
286 
287 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
288 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
289 	    spa_guid_exists(pool_guid, 0)) {
290 		error = EEXIST;
291 		goto out;
292 	}
293 
294 	/*
295 	 * Parse the configuration into a vdev tree.
296 	 */
297 	spa_config_enter(spa, RW_WRITER, FTAG);
298 	rvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
299 	spa_config_exit(spa, FTAG);
300 
301 	if (rvd == NULL) {
302 		error = EINVAL;
303 		goto out;
304 	}
305 
306 	ASSERT(spa->spa_root_vdev == rvd);
307 	ASSERT(spa_guid(spa) == pool_guid);
308 
309 	/*
310 	 * Try to open all vdevs, loading each label in the process.
311 	 */
312 	if (vdev_open(rvd) != 0) {
313 		error = ENXIO;
314 		goto out;
315 	}
316 
317 	/*
318 	 * Find the best uberblock.
319 	 */
320 	bzero(ub, sizeof (uberblock_t));
321 
322 	zio = zio_root(spa, NULL, NULL,
323 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
324 	vdev_uberblock_load(zio, rvd, ub);
325 	error = zio_wait(zio);
326 
327 	/*
328 	 * If we weren't able to find a single valid uberblock, return failure.
329 	 */
330 	if (ub->ub_txg == 0) {
331 		error = ENXIO;
332 		goto out;
333 	}
334 
335 	/*
336 	 * If the pool is newer than the code, we can't open it.
337 	 */
338 	if (ub->ub_version > UBERBLOCK_VERSION) {
339 		error = ENOTSUP;
340 		goto out;
341 	}
342 
343 	/*
344 	 * If the vdev guid sum doesn't match the uberblock, we have an
345 	 * incomplete configuration.
346 	 */
347 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
348 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
349 		    VDEV_AUX_BAD_GUID_SUM);
350 		error = ENXIO;
351 		goto out;
352 	}
353 
354 	/*
355 	 * Initialize internal SPA structures.
356 	 */
357 	spa->spa_state = POOL_STATE_ACTIVE;
358 	spa->spa_ubsync = spa->spa_uberblock;
359 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
360 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
361 	if (error) {
362 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
363 		    VDEV_AUX_CORRUPT_DATA);
364 		goto out;
365 	}
366 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
367 
368 	if (zap_lookup(spa->spa_meta_objset,
369 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
370 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
371 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
372 		    VDEV_AUX_CORRUPT_DATA);
373 		error = EIO;
374 		goto out;
375 	}
376 
377 	if (!mosconfig) {
378 		dmu_buf_t *db;
379 		char *packed = NULL;
380 		size_t nvsize = 0;
381 		nvlist_t *newconfig = NULL;
382 
383 		VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset,
384 		    spa->spa_config_object, FTAG, &db));
385 		nvsize = *(uint64_t *)db->db_data;
386 		dmu_buf_rele(db, FTAG);
387 
388 		packed = kmem_alloc(nvsize, KM_SLEEP);
389 		error = dmu_read(spa->spa_meta_objset,
390 		    spa->spa_config_object, 0, nvsize, packed);
391 		if (error == 0)
392 			error = nvlist_unpack(packed, nvsize, &newconfig, 0);
393 		kmem_free(packed, nvsize);
394 
395 		if (error) {
396 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
397 			    VDEV_AUX_CORRUPT_DATA);
398 			error = EIO;
399 			goto out;
400 		}
401 
402 		spa_config_set(spa, newconfig);
403 
404 		spa_unload(spa);
405 		spa_deactivate(spa);
406 		spa_activate(spa);
407 
408 		return (spa_load(spa, newconfig, state, B_TRUE));
409 	}
410 
411 	if (zap_lookup(spa->spa_meta_objset,
412 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
413 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
414 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
415 		    VDEV_AUX_CORRUPT_DATA);
416 		error = EIO;
417 		goto out;
418 	}
419 
420 	/*
421 	 * Load the persistent error log.  If we have an older pool, this will
422 	 * not be present.
423 	 */
424 	error = zap_lookup(spa->spa_meta_objset,
425 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
426 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
427 	if (error != 0 &&error != ENOENT) {
428 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
429 		    VDEV_AUX_CORRUPT_DATA);
430 		error = EIO;
431 		goto out;
432 	}
433 
434 	error = zap_lookup(spa->spa_meta_objset,
435 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
436 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
437 	if (error != 0 && error != ENOENT) {
438 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
439 		    VDEV_AUX_CORRUPT_DATA);
440 		error = EIO;
441 		goto out;
442 	}
443 
444 	/*
445 	 * Load the vdev state for all top level vdevs.  We need to grab the
446 	 * config lock because all label I/O is done with the
447 	 * ZIO_FLAG_CONFIG_HELD flag.
448 	 */
449 	spa_config_enter(spa, RW_READER, FTAG);
450 	if ((error = vdev_load(rvd)) != 0) {
451 		spa_config_exit(spa, FTAG);
452 		goto out;
453 	}
454 	spa_config_exit(spa, FTAG);
455 
456 	/*
457 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
458 	 */
459 	spa_config_enter(spa, RW_WRITER, FTAG);
460 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
461 	spa_config_exit(spa, FTAG);
462 
463 	/*
464 	 * Check the state of the root vdev.  If it can't be opened, it
465 	 * indicates one or more toplevel vdevs are faulted.
466 	 */
467 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
468 		error = ENXIO;
469 		goto out;
470 	}
471 
472 	/*
473 	 * Claim log blocks that haven't been committed yet, and update all
474 	 * top-level vdevs to sync any config changes found in vdev_load().
475 	 * This must all happen in a single txg.
476 	 */
477 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
478 		int c;
479 		dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa),
480 		    spa_first_txg(spa));
481 		dmu_objset_find(spa->spa_name, zil_claim, tx, 0);
482 		vdev_config_dirty(rvd);
483 		dmu_tx_commit(tx);
484 
485 		spa->spa_sync_on = B_TRUE;
486 		txg_sync_start(spa->spa_dsl_pool);
487 
488 		/*
489 		 * Wait for all claims to sync.
490 		 */
491 		txg_wait_synced(spa->spa_dsl_pool, 0);
492 
493 		/*
494 		 * If the config cache is stale relative to the mosconfig,
495 		 * sync the config cache.
496 		 */
497 		if (config_cache_txg != spa->spa_config_txg)
498 			spa_config_sync();
499 
500 		/*
501 		 * If we have top-level vdevs that were added but have
502 		 * not yet been prepared for allocation, do that now.
503 		 * (It's safe now because the config cache is up to date,
504 		 * so it will be able to translate the new DVAs.)
505 		 * See comments in spa_vdev_add() for full details.
506 		 */
507 		for (c = 0; c < rvd->vdev_children; c++) {
508 			vdev_t *tvd = rvd->vdev_child[c];
509 			if (tvd->vdev_ms_array == 0) {
510 				uint64_t txg = spa_last_synced_txg(spa) + 1;
511 				ASSERT(tvd->vdev_ms_shift == 0);
512 				spa_config_enter(spa, RW_WRITER, FTAG);
513 				vdev_init(tvd, txg);
514 				vdev_config_dirty(tvd);
515 				spa_config_set(spa,
516 				    spa_config_generate(spa, rvd, txg, 0));
517 				spa_config_exit(spa, FTAG);
518 				txg_wait_synced(spa->spa_dsl_pool, txg);
519 				ASSERT(tvd->vdev_ms_shift != 0);
520 				ASSERT(tvd->vdev_ms_array != 0);
521 				spa_config_sync();
522 			}
523 		}
524 	}
525 
526 	error = 0;
527 out:
528 	if (error)
529 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
530 	spa->spa_load_state = SPA_LOAD_NONE;
531 	spa->spa_ena = 0;
532 
533 	return (error);
534 }
535 
536 /*
537  * Pool Open/Import
538  *
539  * The import case is identical to an open except that the configuration is sent
540  * down from userland, instead of grabbed from the configuration cache.  For the
541  * case of an open, the pool configuration will exist in the
542  * POOL_STATE_UNITIALIZED state.
543  *
544  * The stats information (gen/count/ustats) is used to gather vdev statistics at
545  * the same time open the pool, without having to keep around the spa_t in some
546  * ambiguous state.
547  */
548 static int
549 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
550 {
551 	spa_t *spa;
552 	int error;
553 	int loaded = B_FALSE;
554 	int locked = B_FALSE;
555 
556 	*spapp = NULL;
557 
558 	/*
559 	 * As disgusting as this is, we need to support recursive calls to this
560 	 * function because dsl_dir_open() is called during spa_load(), and ends
561 	 * up calling spa_open() again.  The real fix is to figure out how to
562 	 * avoid dsl_dir_open() calling this in the first place.
563 	 */
564 	if (mutex_owner(&spa_namespace_lock) != curthread) {
565 		mutex_enter(&spa_namespace_lock);
566 		locked = B_TRUE;
567 	}
568 
569 	if ((spa = spa_lookup(pool)) == NULL) {
570 		if (locked)
571 			mutex_exit(&spa_namespace_lock);
572 		return (ENOENT);
573 	}
574 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
575 
576 		spa_activate(spa);
577 
578 		error = spa_load(spa, spa->spa_config,
579 		    SPA_LOAD_OPEN, B_FALSE);
580 
581 		if (error == EBADF) {
582 			/*
583 			 * If vdev_load() returns EBADF, it indicates that one
584 			 * of the vdevs indicates that the pool has been
585 			 * exported or destroyed.  If this is the case, the
586 			 * config cache is out of sync and we should remove the
587 			 * pool from the namespace.
588 			 */
589 			spa_unload(spa);
590 			spa_deactivate(spa);
591 			spa_remove(spa);
592 			spa_config_sync();
593 			if (locked)
594 				mutex_exit(&spa_namespace_lock);
595 			return (ENOENT);
596 		}
597 
598 		if (error) {
599 			/*
600 			 * We can't open the pool, but we still have useful
601 			 * information: the state of each vdev after the
602 			 * attempted vdev_open().  Return this to the user.
603 			 */
604 			if (config != NULL && spa->spa_root_vdev != NULL)
605 				*config = spa_config_generate(spa, NULL, -1ULL,
606 				    B_TRUE);
607 			spa_unload(spa);
608 			spa_deactivate(spa);
609 			spa->spa_last_open_failed = B_TRUE;
610 			if (locked)
611 				mutex_exit(&spa_namespace_lock);
612 			*spapp = NULL;
613 			return (error);
614 		} else {
615 			zfs_post_ok(spa, NULL);
616 			spa->spa_last_open_failed = B_FALSE;
617 		}
618 
619 		loaded = B_TRUE;
620 	}
621 
622 	spa_open_ref(spa, tag);
623 	if (locked)
624 		mutex_exit(&spa_namespace_lock);
625 
626 	*spapp = spa;
627 
628 	if (config != NULL) {
629 		spa_config_enter(spa, RW_READER, FTAG);
630 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
631 		spa_config_exit(spa, FTAG);
632 	}
633 
634 	/*
635 	 * If we just loaded the pool, resilver anything that's out of date.
636 	 */
637 	if (loaded && (spa_mode & FWRITE))
638 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
639 
640 	return (0);
641 }
642 
643 int
644 spa_open(const char *name, spa_t **spapp, void *tag)
645 {
646 	return (spa_open_common(name, spapp, tag, NULL));
647 }
648 
649 /*
650  * Lookup the given spa_t, incrementing the inject count in the process,
651  * preventing it from being exported or destroyed.
652  */
653 spa_t *
654 spa_inject_addref(char *name)
655 {
656 	spa_t *spa;
657 
658 	mutex_enter(&spa_namespace_lock);
659 	if ((spa = spa_lookup(name)) == NULL) {
660 		mutex_exit(&spa_namespace_lock);
661 		return (NULL);
662 	}
663 	spa->spa_inject_ref++;
664 	mutex_exit(&spa_namespace_lock);
665 
666 	return (spa);
667 }
668 
669 void
670 spa_inject_delref(spa_t *spa)
671 {
672 	mutex_enter(&spa_namespace_lock);
673 	spa->spa_inject_ref--;
674 	mutex_exit(&spa_namespace_lock);
675 }
676 
677 int
678 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
679 {
680 	int error;
681 	spa_t *spa;
682 
683 	*config = NULL;
684 	error = spa_open_common(name, &spa, FTAG, config);
685 
686 	if (spa && *config != NULL)
687 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
688 		    spa_get_errlog_size(spa)) == 0);
689 
690 	/*
691 	 * We want to get the alternate root even for faulted pools, so we cheat
692 	 * and call spa_lookup() directly.
693 	 */
694 	if (altroot) {
695 		if (spa == NULL) {
696 			mutex_enter(&spa_namespace_lock);
697 			spa = spa_lookup(name);
698 			if (spa)
699 				spa_altroot(spa, altroot, buflen);
700 			else
701 				altroot[0] = '\0';
702 			spa = NULL;
703 			mutex_exit(&spa_namespace_lock);
704 		} else {
705 			spa_altroot(spa, altroot, buflen);
706 		}
707 	}
708 
709 	if (spa != NULL)
710 		spa_close(spa, FTAG);
711 
712 	return (error);
713 }
714 
715 /*
716  * Pool Creation
717  */
718 int
719 spa_create(const char *pool, nvlist_t *nvroot, char *altroot)
720 {
721 	spa_t *spa;
722 	dsl_pool_t *dp;
723 	dmu_tx_t *tx;
724 	int error;
725 	uint64_t txg = TXG_INITIAL;
726 
727 	/*
728 	 * If this pool already exists, return failure.
729 	 */
730 	mutex_enter(&spa_namespace_lock);
731 	if (spa_lookup(pool) != NULL) {
732 		mutex_exit(&spa_namespace_lock);
733 		return (EEXIST);
734 	}
735 	spa = spa_add(pool);
736 
737 	/*
738 	 * Allocate a new spa_t structure.
739 	 */
740 	spa_activate(spa);
741 
742 	spa->spa_uberblock.ub_txg = txg - 1;
743 	spa->spa_ubsync = spa->spa_uberblock;
744 
745 	error = spa_vdev_add(spa, nvroot);
746 
747 	if (error) {
748 		spa_unload(spa);
749 		spa_deactivate(spa);
750 		spa_remove(spa);
751 		mutex_exit(&spa_namespace_lock);
752 		return (error);
753 	}
754 
755 	if (altroot != NULL) {
756 		spa->spa_root = spa_strdup(altroot);
757 		atomic_add_32(&spa_active_count, 1);
758 	}
759 
760 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
761 	spa->spa_meta_objset = dp->dp_meta_objset;
762 
763 	tx = dmu_tx_create_assigned(dp, txg);
764 
765 	/*
766 	 * Create the pool config object.
767 	 */
768 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
769 	    DMU_OT_PACKED_NVLIST, 1 << 14,
770 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
771 
772 	if (zap_add(spa->spa_meta_objset,
773 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
774 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
775 		cmn_err(CE_PANIC, "failed to add pool config");
776 	}
777 
778 	/*
779 	 * Create the deferred-free bplist object.  Turn off compression
780 	 * because sync-to-convergence takes longer if the blocksize
781 	 * keeps changing.
782 	 */
783 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
784 	    1 << 14, tx);
785 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
786 	    ZIO_COMPRESS_OFF, tx);
787 
788 	if (zap_add(spa->spa_meta_objset,
789 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
790 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
791 		cmn_err(CE_PANIC, "failed to add bplist");
792 	}
793 
794 	dmu_tx_commit(tx);
795 
796 	spa->spa_sync_on = B_TRUE;
797 	txg_sync_start(spa->spa_dsl_pool);
798 
799 	/*
800 	 * We explicitly wait for the first transaction to complete so that our
801 	 * bean counters are appropriately updated.
802 	 */
803 	txg_wait_synced(spa->spa_dsl_pool, txg);
804 
805 	spa_config_sync();
806 
807 	mutex_exit(&spa_namespace_lock);
808 
809 	return (0);
810 }
811 
812 /*
813  * Import the given pool into the system.  We set up the necessary spa_t and
814  * then call spa_load() to do the dirty work.
815  */
816 int
817 spa_import(const char *pool, nvlist_t *config, char *altroot)
818 {
819 	spa_t *spa;
820 	int error;
821 
822 	if (!(spa_mode & FWRITE))
823 		return (EROFS);
824 
825 	/*
826 	 * If a pool with this name exists, return failure.
827 	 */
828 	mutex_enter(&spa_namespace_lock);
829 	if (spa_lookup(pool) != NULL) {
830 		mutex_exit(&spa_namespace_lock);
831 		return (EEXIST);
832 	}
833 
834 	/*
835 	 * Create an initialize the spa structure
836 	 */
837 	spa = spa_add(pool);
838 	spa_activate(spa);
839 
840 	/*
841 	 * Pass off the heavy lifting to spa_load().  We pass TRUE for mosconfig
842 	 * so that we don't try to open the pool if the config is damaged.
843 	 */
844 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
845 
846 	if (error) {
847 		spa_unload(spa);
848 		spa_deactivate(spa);
849 		spa_remove(spa);
850 		mutex_exit(&spa_namespace_lock);
851 		return (error);
852 	}
853 
854 	/*
855 	 * Set the alternate root, if there is one.
856 	 */
857 	if (altroot != NULL) {
858 		atomic_add_32(&spa_active_count, 1);
859 		spa->spa_root = spa_strdup(altroot);
860 	}
861 
862 	/*
863 	 * Initialize the config based on the in-core state.
864 	 */
865 	config = spa_config_generate(spa, NULL, spa_last_synced_txg(spa), 0);
866 
867 	spa_config_set(spa, config);
868 
869 	/*
870 	 * Sync the configuration cache.
871 	 */
872 	spa_config_sync();
873 
874 	mutex_exit(&spa_namespace_lock);
875 
876 	/*
877 	 * Resilver anything that's out of date.
878 	 */
879 	if (spa_mode & FWRITE)
880 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
881 
882 	return (0);
883 }
884 
885 /*
886  * This (illegal) pool name is used when temporarily importing a spa_t in order
887  * to get the vdev stats associated with the imported devices.
888  */
889 #define	TRYIMPORT_NAME	"$import"
890 
891 nvlist_t *
892 spa_tryimport(nvlist_t *tryconfig)
893 {
894 	nvlist_t *config = NULL;
895 	char *poolname;
896 	spa_t *spa;
897 	uint64_t state;
898 
899 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
900 		return (NULL);
901 
902 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
903 		return (NULL);
904 
905 	mutex_enter(&spa_namespace_lock);
906 	spa = spa_add(TRYIMPORT_NAME);
907 
908 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
909 
910 	/*
911 	 * Initialize the spa_t structure.
912 	 */
913 	spa_activate(spa);
914 
915 	/*
916 	 * Pass off the heavy lifting to spa_load().  We pass TRUE for mosconfig
917 	 * so we don't try to open the pool if the config is damaged.
918 	 */
919 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
920 
921 	/*
922 	 * If 'tryconfig' was at least parsable, return the current config.
923 	 */
924 	if (spa->spa_root_vdev != NULL) {
925 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
926 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
927 		    poolname) == 0);
928 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
929 		    state) == 0);
930 	}
931 
932 	spa_unload(spa);
933 	spa_deactivate(spa);
934 	spa_remove(spa);
935 	mutex_exit(&spa_namespace_lock);
936 
937 	return (config);
938 }
939 
940 /*
941  * Pool export/destroy
942  *
943  * The act of destroying or exporting a pool is very simple.  We make sure there
944  * is no more pending I/O and any references to the pool are gone.  Then, we
945  * update the pool state and sync all the labels to disk, removing the
946  * configuration from the cache afterwards.
947  */
948 static int
949 spa_export_common(char *pool, int new_state)
950 {
951 	spa_t *spa;
952 
953 	if (!(spa_mode & FWRITE))
954 		return (EROFS);
955 
956 	mutex_enter(&spa_namespace_lock);
957 	if ((spa = spa_lookup(pool)) == NULL) {
958 		mutex_exit(&spa_namespace_lock);
959 		return (ENOENT);
960 	}
961 
962 	/*
963 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
964 	 * reacquire the namespace lock, and see if we can export.
965 	 */
966 	spa_open_ref(spa, FTAG);
967 	mutex_exit(&spa_namespace_lock);
968 	spa_async_suspend(spa);
969 	mutex_enter(&spa_namespace_lock);
970 	spa_close(spa, FTAG);
971 
972 	/*
973 	 * The pool will be in core if it's openable,
974 	 * in which case we can modify its state.
975 	 */
976 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
977 		/*
978 		 * Objsets may be open only because they're dirty, so we
979 		 * have to force it to sync before checking spa_refcnt.
980 		 */
981 		spa_scrub_suspend(spa);
982 		txg_wait_synced(spa->spa_dsl_pool, 0);
983 
984 		/*
985 		 * A pool cannot be exported or destroyed if there are active
986 		 * references.  If we are resetting a pool, allow references by
987 		 * fault injection handlers.
988 		 */
989 		if (!spa_refcount_zero(spa) ||
990 		    (spa->spa_inject_ref != 0 &&
991 		    new_state != POOL_STATE_UNINITIALIZED)) {
992 			spa_scrub_resume(spa);
993 			spa_async_resume(spa);
994 			mutex_exit(&spa_namespace_lock);
995 			return (EBUSY);
996 		}
997 
998 		spa_scrub_resume(spa);
999 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1000 
1001 		if (spa->spa_root != NULL)
1002 			atomic_add_32(&spa_active_count, -1);
1003 
1004 		/*
1005 		 * We want this to be reflected on every label,
1006 		 * so mark them all dirty.  spa_unload() will do the
1007 		 * final sync that pushes these changes out.
1008 		 */
1009 		if (new_state != POOL_STATE_UNINITIALIZED) {
1010 			spa->spa_state = new_state;
1011 			vdev_config_dirty(spa->spa_root_vdev);
1012 		}
1013 	}
1014 
1015 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1016 		spa_unload(spa);
1017 		spa_deactivate(spa);
1018 	}
1019 
1020 	if (new_state != POOL_STATE_UNINITIALIZED) {
1021 		spa_remove(spa);
1022 		spa_config_sync();
1023 	}
1024 	mutex_exit(&spa_namespace_lock);
1025 
1026 	return (0);
1027 }
1028 
1029 /*
1030  * Destroy a storage pool.
1031  */
1032 int
1033 spa_destroy(char *pool)
1034 {
1035 	return (spa_export_common(pool, POOL_STATE_DESTROYED));
1036 }
1037 
1038 /*
1039  * Export a storage pool.
1040  */
1041 int
1042 spa_export(char *pool)
1043 {
1044 	return (spa_export_common(pool, POOL_STATE_EXPORTED));
1045 }
1046 
1047 /*
1048  * Similar to spa_export(), this unloads the spa_t without actually removing it
1049  * from the namespace in any way.
1050  */
1051 int
1052 spa_reset(char *pool)
1053 {
1054 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED));
1055 }
1056 
1057 
1058 /*
1059  * ==========================================================================
1060  * Device manipulation
1061  * ==========================================================================
1062  */
1063 
1064 /*
1065  * Add capacity to a storage pool.
1066  */
1067 int
1068 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1069 {
1070 	uint64_t txg;
1071 	int c, c0, children, error;
1072 	vdev_t *rvd = spa->spa_root_vdev;
1073 	vdev_t *vd, *tvd;
1074 
1075 	txg = spa_vdev_enter(spa);
1076 
1077 	vd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1078 
1079 	if (vd == NULL)
1080 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1081 
1082 	if (rvd == NULL) {			/* spa_create() */
1083 		rvd = vd;
1084 		c0 = 0;
1085 	} else {
1086 		c0 = rvd->vdev_children;
1087 	}
1088 
1089 	ASSERT(spa->spa_root_vdev == rvd);
1090 
1091 	if ((error = vdev_create(vd, txg)) != 0)
1092 		return (spa_vdev_exit(spa, vd, txg, error));
1093 
1094 	children = vd->vdev_children;
1095 
1096 	/*
1097 	 * Transfer each new top-level vdev from vd to rvd.
1098 	 */
1099 	for (c = 0; c < children; c++) {
1100 		tvd = vd->vdev_child[c];
1101 		if (vd != rvd) {
1102 			vdev_remove_child(vd, tvd);
1103 			tvd->vdev_id = c0 + c;
1104 			vdev_add_child(rvd, tvd);
1105 		}
1106 		vdev_config_dirty(tvd);
1107 	}
1108 
1109 	/*
1110 	 * We have to be careful when adding new vdevs to an existing pool.
1111 	 * If other threads start allocating from these vdevs before we
1112 	 * sync the config cache, and we lose power, then upon reboot we may
1113 	 * fail to open the pool because there are DVAs that the config cache
1114 	 * can't translate.  Therefore, we first add the vdevs without
1115 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1116 	 * initialize the metaslabs; and sync the config cache again.
1117 	 *
1118 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1119 	 * if we lose power at any point in this sequence, the remaining
1120 	 * steps will be completed the next time we load the pool.
1121 	 */
1122 	if (vd != rvd) {
1123 		(void) spa_vdev_exit(spa, vd, txg, 0);
1124 		txg = spa_vdev_enter(spa);
1125 		vd = NULL;
1126 	}
1127 
1128 	/*
1129 	 * Now that the config is safely on disk, we can use the new space.
1130 	 */
1131 	for (c = 0; c < children; c++) {
1132 		tvd = rvd->vdev_child[c0 + c];
1133 		ASSERT(tvd->vdev_ms_array == 0);
1134 		vdev_init(tvd, txg);
1135 		vdev_config_dirty(tvd);
1136 	}
1137 
1138 	return (spa_vdev_exit(spa, vd, txg, 0));
1139 }
1140 
1141 /*
1142  * Attach a device to a mirror.  The arguments are the path to any device
1143  * in the mirror, and the nvroot for the new device.  If the path specifies
1144  * a device that is not mirrored, we automatically insert the mirror vdev.
1145  *
1146  * If 'replacing' is specified, the new device is intended to replace the
1147  * existing device; in this case the two devices are made into their own
1148  * mirror using the 'replacing' vdev, which is functionally idendical to
1149  * the mirror vdev (it actually reuses all the same ops) but has a few
1150  * extra rules: you can't attach to it after it's been created, and upon
1151  * completion of resilvering, the first disk (the one being replaced)
1152  * is automatically detached.
1153  */
1154 int
1155 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1156 {
1157 	uint64_t txg, open_txg;
1158 	int error;
1159 	vdev_t *rvd = spa->spa_root_vdev;
1160 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1161 	vdev_ops_t *pvops = replacing ? &vdev_replacing_ops : &vdev_mirror_ops;
1162 
1163 	txg = spa_vdev_enter(spa);
1164 
1165 	oldvd = vdev_lookup_by_guid(rvd, guid);
1166 
1167 	if (oldvd == NULL)
1168 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1169 
1170 	if (!oldvd->vdev_ops->vdev_op_leaf)
1171 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1172 
1173 	pvd = oldvd->vdev_parent;
1174 
1175 	/*
1176 	 * The parent must be a mirror or the root, unless we're replacing;
1177 	 * in that case, the parent can be anything but another replacing vdev.
1178 	 */
1179 	if (pvd->vdev_ops != &vdev_mirror_ops &&
1180 	    pvd->vdev_ops != &vdev_root_ops &&
1181 	    (!replacing || pvd->vdev_ops == &vdev_replacing_ops))
1182 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1183 
1184 	newrootvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1185 
1186 	if (newrootvd == NULL || newrootvd->vdev_children != 1)
1187 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1188 
1189 	newvd = newrootvd->vdev_child[0];
1190 
1191 	if (!newvd->vdev_ops->vdev_op_leaf)
1192 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1193 
1194 	if ((error = vdev_create(newrootvd, txg)) != 0)
1195 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1196 
1197 	/*
1198 	 * Compare the new device size with the replaceable/attachable
1199 	 * device size.
1200 	 */
1201 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1202 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1203 
1204 	if (newvd->vdev_ashift != oldvd->vdev_ashift && oldvd->vdev_ashift != 0)
1205 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1206 
1207 	/*
1208 	 * If this is an in-place replacement, update oldvd's path and devid
1209 	 * to make it distinguishable from newvd, and unopenable from now on.
1210 	 */
1211 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1212 		spa_strfree(oldvd->vdev_path);
1213 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1214 		    KM_SLEEP);
1215 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1216 		    newvd->vdev_path, "old");
1217 		if (oldvd->vdev_devid != NULL) {
1218 			spa_strfree(oldvd->vdev_devid);
1219 			oldvd->vdev_devid = NULL;
1220 		}
1221 	}
1222 
1223 	/*
1224 	 * If the parent is not a mirror, or if we're replacing,
1225 	 * insert the new mirror/replacing vdev above oldvd.
1226 	 */
1227 	if (pvd->vdev_ops != pvops)
1228 		pvd = vdev_add_parent(oldvd, pvops);
1229 
1230 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1231 	ASSERT(pvd->vdev_ops == pvops);
1232 	ASSERT(oldvd->vdev_parent == pvd);
1233 
1234 	/*
1235 	 * Extract the new device from its root and add it to pvd.
1236 	 */
1237 	vdev_remove_child(newrootvd, newvd);
1238 	newvd->vdev_id = pvd->vdev_children;
1239 	vdev_add_child(pvd, newvd);
1240 
1241 	/*
1242 	 * If newvd is smaller than oldvd, but larger than its rsize,
1243 	 * the addition of newvd may have decreased our parent's asize.
1244 	 */
1245 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1246 
1247 	tvd = newvd->vdev_top;
1248 	ASSERT(pvd->vdev_top == tvd);
1249 	ASSERT(tvd->vdev_parent == rvd);
1250 
1251 	vdev_config_dirty(tvd);
1252 
1253 	/*
1254 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1255 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1256 	 */
1257 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1258 
1259 	mutex_enter(&newvd->vdev_dtl_lock);
1260 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1261 	    open_txg - TXG_INITIAL + 1);
1262 	mutex_exit(&newvd->vdev_dtl_lock);
1263 
1264 	dprintf("attached %s in txg %llu\n", newvd->vdev_path, txg);
1265 
1266 	/*
1267 	 * Mark newvd's DTL dirty in this txg.
1268 	 */
1269 	vdev_dirty(tvd, VDD_DTL, txg);
1270 	(void) txg_list_add(&tvd->vdev_dtl_list, newvd, txg);
1271 
1272 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1273 
1274 	/*
1275 	 * Kick off a resilver to update newvd.
1276 	 */
1277 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1278 
1279 	return (0);
1280 }
1281 
1282 /*
1283  * Detach a device from a mirror or replacing vdev.
1284  * If 'replace_done' is specified, only detach if the parent
1285  * is a replacing vdev.
1286  */
1287 int
1288 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1289 {
1290 	uint64_t txg;
1291 	int c, t, error;
1292 	vdev_t *rvd = spa->spa_root_vdev;
1293 	vdev_t *vd, *pvd, *cvd, *tvd;
1294 
1295 	txg = spa_vdev_enter(spa);
1296 
1297 	vd = vdev_lookup_by_guid(rvd, guid);
1298 
1299 	if (vd == NULL)
1300 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1301 
1302 	if (!vd->vdev_ops->vdev_op_leaf)
1303 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1304 
1305 	pvd = vd->vdev_parent;
1306 
1307 	/*
1308 	 * If replace_done is specified, only remove this device if it's
1309 	 * the first child of a replacing vdev.
1310 	 */
1311 	if (replace_done &&
1312 	    (vd->vdev_id != 0 || pvd->vdev_ops != &vdev_replacing_ops))
1313 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1314 
1315 	/*
1316 	 * Only mirror and replacing vdevs support detach.
1317 	 */
1318 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1319 	    pvd->vdev_ops != &vdev_mirror_ops)
1320 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1321 
1322 	/*
1323 	 * If there's only one replica, you can't detach it.
1324 	 */
1325 	if (pvd->vdev_children <= 1)
1326 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1327 
1328 	/*
1329 	 * If all siblings have non-empty DTLs, this device may have the only
1330 	 * valid copy of the data, which means we cannot safely detach it.
1331 	 *
1332 	 * XXX -- as in the vdev_offline() case, we really want a more
1333 	 * precise DTL check.
1334 	 */
1335 	for (c = 0; c < pvd->vdev_children; c++) {
1336 		uint64_t dirty;
1337 
1338 		cvd = pvd->vdev_child[c];
1339 		if (cvd == vd)
1340 			continue;
1341 		if (vdev_is_dead(cvd))
1342 			continue;
1343 		mutex_enter(&cvd->vdev_dtl_lock);
1344 		dirty = cvd->vdev_dtl_map.sm_space |
1345 		    cvd->vdev_dtl_scrub.sm_space;
1346 		mutex_exit(&cvd->vdev_dtl_lock);
1347 		if (!dirty)
1348 			break;
1349 	}
1350 	if (c == pvd->vdev_children)
1351 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1352 
1353 	/*
1354 	 * Erase the disk labels so the disk can be used for other things.
1355 	 * This must be done after all other error cases are handled,
1356 	 * but before we disembowel vd (so we can still do I/O to it).
1357 	 * But if we can't do it, don't treat the error as fatal --
1358 	 * it may be that the unwritability of the disk is the reason
1359 	 * it's being detached!
1360 	 */
1361 	error = vdev_label_init(vd, 0);
1362 	if (error)
1363 		dprintf("unable to erase labels on %s\n", vdev_description(vd));
1364 
1365 	/*
1366 	 * Remove vd from its parent and compact the parent's children.
1367 	 */
1368 	vdev_remove_child(pvd, vd);
1369 	vdev_compact_children(pvd);
1370 
1371 	/*
1372 	 * Remember one of the remaining children so we can get tvd below.
1373 	 */
1374 	cvd = pvd->vdev_child[0];
1375 
1376 	/*
1377 	 * If the parent mirror/replacing vdev only has one child,
1378 	 * the parent is no longer needed.  Remove it from the tree.
1379 	 */
1380 	if (pvd->vdev_children == 1)
1381 		vdev_remove_parent(cvd);
1382 
1383 	/*
1384 	 * We don't set tvd until now because the parent we just removed
1385 	 * may have been the previous top-level vdev.
1386 	 */
1387 	tvd = cvd->vdev_top;
1388 	ASSERT(tvd->vdev_parent == rvd);
1389 
1390 	/*
1391 	 * Reopen this top-level vdev to reassess health after detach.
1392 	 */
1393 	vdev_reopen(tvd);
1394 
1395 	/*
1396 	 * If the device we just detached was smaller than the others,
1397 	 * it may be possible to add metaslabs (i.e. grow the pool).  We ignore
1398 	 * the error here because the detach still succeeded - we just weren't
1399 	 * able to reinitialize the metaslabs.  This pool is in for a world of
1400 	 * hurt, in any case.
1401 	 */
1402 	(void) vdev_metaslab_init(tvd, txg);
1403 
1404 	vdev_config_dirty(tvd);
1405 
1406 	/*
1407 	 * Mark vd's DTL as dirty in this txg.
1408 	 * vdev_dtl_sync() will see that vd->vdev_detached is set
1409 	 * and free vd's DTL object in syncing context.
1410 	 * But first make sure we're not on any *other* txg's DTL list,
1411 	 * to prevent vd from being accessed after it's freed.
1412 	 */
1413 	vdev_dirty(tvd, VDD_DTL, txg);
1414 	vd->vdev_detached = B_TRUE;
1415 	for (t = 0; t < TXG_SIZE; t++)
1416 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
1417 	(void) txg_list_add(&tvd->vdev_dtl_list, vd, txg);
1418 
1419 	dprintf("detached %s in txg %llu\n", vd->vdev_path, txg);
1420 
1421 	return (spa_vdev_exit(spa, vd, txg, 0));
1422 }
1423 
1424 /*
1425  * Find any device that's done replacing, so we can detach it.
1426  */
1427 static vdev_t *
1428 spa_vdev_replace_done_hunt(vdev_t *vd)
1429 {
1430 	vdev_t *newvd, *oldvd;
1431 	int c;
1432 
1433 	for (c = 0; c < vd->vdev_children; c++) {
1434 		oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
1435 		if (oldvd != NULL)
1436 			return (oldvd);
1437 	}
1438 
1439 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
1440 		oldvd = vd->vdev_child[0];
1441 		newvd = vd->vdev_child[1];
1442 
1443 		mutex_enter(&newvd->vdev_dtl_lock);
1444 		if (newvd->vdev_dtl_map.sm_space == 0 &&
1445 		    newvd->vdev_dtl_scrub.sm_space == 0) {
1446 			mutex_exit(&newvd->vdev_dtl_lock);
1447 			return (oldvd);
1448 		}
1449 		mutex_exit(&newvd->vdev_dtl_lock);
1450 	}
1451 
1452 	return (NULL);
1453 }
1454 
1455 static void
1456 spa_vdev_replace_done(spa_t *spa)
1457 {
1458 	vdev_t *vd;
1459 	uint64_t guid;
1460 
1461 	spa_config_enter(spa, RW_READER, FTAG);
1462 
1463 	while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
1464 		guid = vd->vdev_guid;
1465 		spa_config_exit(spa, FTAG);
1466 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
1467 			return;
1468 		spa_config_enter(spa, RW_READER, FTAG);
1469 	}
1470 
1471 	spa_config_exit(spa, FTAG);
1472 }
1473 
1474 /*
1475  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
1476  * on spa_vdev_enter/exit() to synchronize the labels and cache.
1477  */
1478 int
1479 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
1480 {
1481 	vdev_t *rvd, *vd;
1482 	uint64_t txg;
1483 
1484 	rvd = spa->spa_root_vdev;
1485 
1486 	txg = spa_vdev_enter(spa);
1487 
1488 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1489 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
1490 
1491 	if (!vd->vdev_ops->vdev_op_leaf)
1492 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1493 
1494 	spa_strfree(vd->vdev_path);
1495 	vd->vdev_path = spa_strdup(newpath);
1496 
1497 	vdev_config_dirty(vd->vdev_top);
1498 
1499 	return (spa_vdev_exit(spa, NULL, txg, 0));
1500 }
1501 
1502 /*
1503  * ==========================================================================
1504  * SPA Scrubbing
1505  * ==========================================================================
1506  */
1507 
1508 void
1509 spa_scrub_throttle(spa_t *spa, int direction)
1510 {
1511 	mutex_enter(&spa->spa_scrub_lock);
1512 	spa->spa_scrub_throttled += direction;
1513 	ASSERT(spa->spa_scrub_throttled >= 0);
1514 	if (spa->spa_scrub_throttled == 0)
1515 		cv_broadcast(&spa->spa_scrub_io_cv);
1516 	mutex_exit(&spa->spa_scrub_lock);
1517 }
1518 
1519 static void
1520 spa_scrub_io_done(zio_t *zio)
1521 {
1522 	spa_t *spa = zio->io_spa;
1523 
1524 	zio_buf_free(zio->io_data, zio->io_size);
1525 
1526 	mutex_enter(&spa->spa_scrub_lock);
1527 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
1528 		vdev_t *vd = zio->io_vd;
1529 		spa->spa_scrub_errors++;
1530 		mutex_enter(&vd->vdev_stat_lock);
1531 		vd->vdev_stat.vs_scrub_errors++;
1532 		mutex_exit(&vd->vdev_stat_lock);
1533 	}
1534 	if (--spa->spa_scrub_inflight == 0) {
1535 		cv_broadcast(&spa->spa_scrub_io_cv);
1536 		ASSERT(spa->spa_scrub_throttled == 0);
1537 	}
1538 	mutex_exit(&spa->spa_scrub_lock);
1539 }
1540 
1541 static void
1542 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
1543     zbookmark_t *zb)
1544 {
1545 	size_t size = BP_GET_LSIZE(bp);
1546 	void *data = zio_buf_alloc(size);
1547 
1548 	mutex_enter(&spa->spa_scrub_lock);
1549 	spa->spa_scrub_inflight++;
1550 	mutex_exit(&spa->spa_scrub_lock);
1551 
1552 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
1553 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
1554 
1555 	flags |= ZIO_FLAG_CANFAIL;
1556 
1557 	zio_nowait(zio_read(NULL, spa, bp, data, size,
1558 	    spa_scrub_io_done, NULL, priority, flags, zb));
1559 }
1560 
1561 /* ARGSUSED */
1562 static int
1563 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
1564 {
1565 	blkptr_t *bp = &bc->bc_blkptr;
1566 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1567 
1568 	if (bc->bc_errno || vd == NULL) {
1569 		/*
1570 		 * We can't scrub this block, but we can continue to scrub
1571 		 * the rest of the pool.  Note the error and move along.
1572 		 */
1573 		mutex_enter(&spa->spa_scrub_lock);
1574 		spa->spa_scrub_errors++;
1575 		mutex_exit(&spa->spa_scrub_lock);
1576 
1577 		if (vd != NULL) {
1578 			mutex_enter(&vd->vdev_stat_lock);
1579 			vd->vdev_stat.vs_scrub_errors++;
1580 			mutex_exit(&vd->vdev_stat_lock);
1581 		}
1582 
1583 		return (ERESTART);
1584 	}
1585 
1586 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
1587 
1588 	/*
1589 	 * Keep track of how much data we've examined so that
1590 	 * zpool(1M) status can make useful progress reports.
1591 	 */
1592 	mutex_enter(&vd->vdev_stat_lock);
1593 	vd->vdev_stat.vs_scrub_examined += BP_GET_ASIZE(bp);
1594 	mutex_exit(&vd->vdev_stat_lock);
1595 
1596 	if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
1597 		if (DVA_GET_GANG(&bp->blk_dva[0])) {
1598 			/*
1599 			 * Gang members may be spread across multiple vdevs,
1600 			 * so the best we can do is look at the pool-wide DTL.
1601 			 * XXX -- it would be better to change our allocation
1602 			 * policy to ensure that this can't happen.
1603 			 */
1604 			vd = spa->spa_root_vdev;
1605 		}
1606 		if (vdev_dtl_contains(&vd->vdev_dtl_map, bp->blk_birth, 1)) {
1607 			spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
1608 			    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
1609 		}
1610 	} else {
1611 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
1612 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
1613 	}
1614 
1615 	return (0);
1616 }
1617 
1618 static void
1619 spa_scrub_thread(spa_t *spa)
1620 {
1621 	callb_cpr_t cprinfo;
1622 	traverse_handle_t *th = spa->spa_scrub_th;
1623 	vdev_t *rvd = spa->spa_root_vdev;
1624 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
1625 	int error = 0;
1626 	boolean_t complete;
1627 
1628 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
1629 
1630 	/*
1631 	 * If we're restarting due to a snapshot create/delete,
1632 	 * wait for that to complete.
1633 	 */
1634 	txg_wait_synced(spa_get_dsl(spa), 0);
1635 
1636 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
1637 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
1638 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
1639 
1640 	spa_config_enter(spa, RW_WRITER, FTAG);
1641 	vdev_reopen(rvd);		/* purge all vdev caches */
1642 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
1643 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
1644 	spa_config_exit(spa, FTAG);
1645 
1646 	mutex_enter(&spa->spa_scrub_lock);
1647 	spa->spa_scrub_errors = 0;
1648 	spa->spa_scrub_active = 1;
1649 	ASSERT(spa->spa_scrub_inflight == 0);
1650 	ASSERT(spa->spa_scrub_throttled == 0);
1651 
1652 	while (!spa->spa_scrub_stop) {
1653 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1654 		while (spa->spa_scrub_suspended) {
1655 			spa->spa_scrub_active = 0;
1656 			cv_broadcast(&spa->spa_scrub_cv);
1657 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1658 			spa->spa_scrub_active = 1;
1659 		}
1660 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
1661 
1662 		if (spa->spa_scrub_restart_txg != 0)
1663 			break;
1664 
1665 		mutex_exit(&spa->spa_scrub_lock);
1666 		error = traverse_more(th);
1667 		mutex_enter(&spa->spa_scrub_lock);
1668 		if (error != EAGAIN)
1669 			break;
1670 
1671 		while (spa->spa_scrub_throttled > 0)
1672 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1673 	}
1674 
1675 	while (spa->spa_scrub_inflight)
1676 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1677 
1678 	if (spa->spa_scrub_restart_txg != 0)
1679 		error = ERESTART;
1680 
1681 	if (spa->spa_scrub_stop)
1682 		error = EINTR;
1683 
1684 	spa->spa_scrub_active = 0;
1685 	cv_broadcast(&spa->spa_scrub_cv);
1686 
1687 	/*
1688 	 * Even if there were uncorrectable errors, we consider the scrub
1689 	 * completed.  The downside is that if there is a transient error during
1690 	 * a resilver, we won't resilver the data properly to the target.  But
1691 	 * if the damage is permanent (more likely) we will resilver forever,
1692 	 * which isn't really acceptable.  Since there is enough information for
1693 	 * the user to know what has failed and why, this seems like a more
1694 	 * tractable approach.
1695 	 */
1696 	complete = (error == 0);
1697 
1698 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
1699 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
1700 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
1701 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
1702 
1703 	mutex_exit(&spa->spa_scrub_lock);
1704 
1705 	/*
1706 	 * If the scrub/resilver completed, update all DTLs to reflect this.
1707 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
1708 	 */
1709 	spa_config_enter(spa, RW_WRITER, FTAG);
1710 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
1711 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
1712 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
1713 	spa_errlog_rotate(spa);
1714 	spa_config_exit(spa, FTAG);
1715 
1716 	mutex_enter(&spa->spa_scrub_lock);
1717 
1718 	/*
1719 	 * We may have finished replacing a device.
1720 	 * Let the async thread assess this and handle the detach.
1721 	 */
1722 	spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
1723 
1724 	/*
1725 	 * If we were told to restart, our final act is to start a new scrub.
1726 	 */
1727 	if (error == ERESTART)
1728 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
1729 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
1730 
1731 	spa->spa_scrub_type = POOL_SCRUB_NONE;
1732 	spa->spa_scrub_active = 0;
1733 	spa->spa_scrub_thread = NULL;
1734 	cv_broadcast(&spa->spa_scrub_cv);
1735 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
1736 	thread_exit();
1737 }
1738 
1739 void
1740 spa_scrub_suspend(spa_t *spa)
1741 {
1742 	mutex_enter(&spa->spa_scrub_lock);
1743 	spa->spa_scrub_suspended++;
1744 	while (spa->spa_scrub_active) {
1745 		cv_broadcast(&spa->spa_scrub_cv);
1746 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1747 	}
1748 	while (spa->spa_scrub_inflight)
1749 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1750 	mutex_exit(&spa->spa_scrub_lock);
1751 }
1752 
1753 void
1754 spa_scrub_resume(spa_t *spa)
1755 {
1756 	mutex_enter(&spa->spa_scrub_lock);
1757 	ASSERT(spa->spa_scrub_suspended != 0);
1758 	if (--spa->spa_scrub_suspended == 0)
1759 		cv_broadcast(&spa->spa_scrub_cv);
1760 	mutex_exit(&spa->spa_scrub_lock);
1761 }
1762 
1763 void
1764 spa_scrub_restart(spa_t *spa, uint64_t txg)
1765 {
1766 	/*
1767 	 * Something happened (e.g. snapshot create/delete) that means
1768 	 * we must restart any in-progress scrubs.  The itinerary will
1769 	 * fix this properly.
1770 	 */
1771 	mutex_enter(&spa->spa_scrub_lock);
1772 	spa->spa_scrub_restart_txg = txg;
1773 	mutex_exit(&spa->spa_scrub_lock);
1774 }
1775 
1776 int
1777 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
1778 {
1779 	space_seg_t *ss;
1780 	uint64_t mintxg, maxtxg;
1781 	vdev_t *rvd = spa->spa_root_vdev;
1782 	int advance = ADVANCE_PRE | ADVANCE_ZIL;
1783 
1784 	if ((uint_t)type >= POOL_SCRUB_TYPES)
1785 		return (ENOTSUP);
1786 
1787 	mutex_enter(&spa->spa_scrub_lock);
1788 
1789 	/*
1790 	 * If there's a scrub or resilver already in progress, stop it.
1791 	 */
1792 	while (spa->spa_scrub_thread != NULL) {
1793 		/*
1794 		 * Don't stop a resilver unless forced.
1795 		 */
1796 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
1797 			mutex_exit(&spa->spa_scrub_lock);
1798 			return (EBUSY);
1799 		}
1800 		spa->spa_scrub_stop = 1;
1801 		cv_broadcast(&spa->spa_scrub_cv);
1802 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1803 	}
1804 
1805 	/*
1806 	 * Terminate the previous traverse.
1807 	 */
1808 	if (spa->spa_scrub_th != NULL) {
1809 		traverse_fini(spa->spa_scrub_th);
1810 		spa->spa_scrub_th = NULL;
1811 	}
1812 
1813 	if (rvd == NULL) {
1814 		ASSERT(spa->spa_scrub_stop == 0);
1815 		ASSERT(spa->spa_scrub_type == type);
1816 		ASSERT(spa->spa_scrub_restart_txg == 0);
1817 		mutex_exit(&spa->spa_scrub_lock);
1818 		return (0);
1819 	}
1820 
1821 	mintxg = TXG_INITIAL - 1;
1822 	maxtxg = spa_last_synced_txg(spa) + 1;
1823 
1824 	mutex_enter(&rvd->vdev_dtl_lock);
1825 
1826 	if (rvd->vdev_dtl_map.sm_space == 0) {
1827 		/*
1828 		 * The pool-wide DTL is empty.
1829 		 * If this is a resilver, there's nothing to do.
1830 		 */
1831 		if (type == POOL_SCRUB_RESILVER)
1832 			type = POOL_SCRUB_NONE;
1833 	} else {
1834 		/*
1835 		 * The pool-wide DTL is non-empty.
1836 		 * If this is a normal scrub, upgrade to a resilver instead.
1837 		 */
1838 		if (type == POOL_SCRUB_EVERYTHING)
1839 			type = POOL_SCRUB_RESILVER;
1840 	}
1841 
1842 	if (type == POOL_SCRUB_RESILVER) {
1843 		/*
1844 		 * Determine the resilvering boundaries.
1845 		 *
1846 		 * Note: (mintxg, maxtxg) is an open interval,
1847 		 * i.e. mintxg and maxtxg themselves are not included.
1848 		 *
1849 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
1850 		 * so we don't claim to resilver a txg that's still changing.
1851 		 */
1852 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
1853 		mintxg = ss->ss_start - 1;
1854 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
1855 		maxtxg = MIN(ss->ss_end, maxtxg);
1856 
1857 		advance |= ADVANCE_PRUNE;
1858 	}
1859 
1860 	mutex_exit(&rvd->vdev_dtl_lock);
1861 
1862 	spa->spa_scrub_stop = 0;
1863 	spa->spa_scrub_type = type;
1864 	spa->spa_scrub_restart_txg = 0;
1865 
1866 	if (type != POOL_SCRUB_NONE) {
1867 		spa->spa_scrub_mintxg = mintxg;
1868 		spa->spa_scrub_maxtxg = maxtxg;
1869 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
1870 		    advance, ZIO_FLAG_CANFAIL);
1871 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
1872 		spa->spa_scrub_thread = thread_create(NULL, 0,
1873 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
1874 	}
1875 
1876 	mutex_exit(&spa->spa_scrub_lock);
1877 
1878 	return (0);
1879 }
1880 
1881 /*
1882  * ==========================================================================
1883  * SPA async task processing
1884  * ==========================================================================
1885  */
1886 
1887 static void
1888 spa_async_reopen(spa_t *spa)
1889 {
1890 	vdev_t *rvd = spa->spa_root_vdev;
1891 	vdev_t *tvd;
1892 	int c;
1893 
1894 	spa_config_enter(spa, RW_WRITER, FTAG);
1895 
1896 	for (c = 0; c < rvd->vdev_children; c++) {
1897 		tvd = rvd->vdev_child[c];
1898 		if (tvd->vdev_reopen_wanted) {
1899 			tvd->vdev_reopen_wanted = 0;
1900 			vdev_reopen(tvd);
1901 		}
1902 	}
1903 
1904 	spa_config_exit(spa, FTAG);
1905 }
1906 
1907 static void
1908 spa_async_thread(spa_t *spa)
1909 {
1910 	int tasks;
1911 
1912 	ASSERT(spa->spa_sync_on);
1913 
1914 	mutex_enter(&spa->spa_async_lock);
1915 	tasks = spa->spa_async_tasks;
1916 	spa->spa_async_tasks = 0;
1917 	mutex_exit(&spa->spa_async_lock);
1918 
1919 	/*
1920 	 * See if any devices need to be reopened.
1921 	 */
1922 	if (tasks & SPA_ASYNC_REOPEN)
1923 		spa_async_reopen(spa);
1924 
1925 	/*
1926 	 * If any devices are done replacing, detach them.
1927 	 */
1928 	if (tasks & SPA_ASYNC_REPLACE_DONE)
1929 		spa_vdev_replace_done(spa);
1930 
1931 	/*
1932 	 * Kick off a scrub.
1933 	 */
1934 	if (tasks & SPA_ASYNC_SCRUB)
1935 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
1936 
1937 	/*
1938 	 * Kick off a resilver.
1939 	 */
1940 	if (tasks & SPA_ASYNC_RESILVER)
1941 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1942 
1943 	/*
1944 	 * Let the world know that we're done.
1945 	 */
1946 	mutex_enter(&spa->spa_async_lock);
1947 	spa->spa_async_thread = NULL;
1948 	cv_broadcast(&spa->spa_async_cv);
1949 	mutex_exit(&spa->spa_async_lock);
1950 	thread_exit();
1951 }
1952 
1953 void
1954 spa_async_suspend(spa_t *spa)
1955 {
1956 	mutex_enter(&spa->spa_async_lock);
1957 	spa->spa_async_suspended++;
1958 	while (spa->spa_async_thread != NULL)
1959 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
1960 	mutex_exit(&spa->spa_async_lock);
1961 }
1962 
1963 void
1964 spa_async_resume(spa_t *spa)
1965 {
1966 	mutex_enter(&spa->spa_async_lock);
1967 	ASSERT(spa->spa_async_suspended != 0);
1968 	spa->spa_async_suspended--;
1969 	mutex_exit(&spa->spa_async_lock);
1970 }
1971 
1972 static void
1973 spa_async_dispatch(spa_t *spa)
1974 {
1975 	mutex_enter(&spa->spa_async_lock);
1976 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
1977 	    spa->spa_async_thread == NULL)
1978 		spa->spa_async_thread = thread_create(NULL, 0,
1979 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
1980 	mutex_exit(&spa->spa_async_lock);
1981 }
1982 
1983 void
1984 spa_async_request(spa_t *spa, int task)
1985 {
1986 	mutex_enter(&spa->spa_async_lock);
1987 	spa->spa_async_tasks |= task;
1988 	mutex_exit(&spa->spa_async_lock);
1989 }
1990 
1991 /*
1992  * ==========================================================================
1993  * SPA syncing routines
1994  * ==========================================================================
1995  */
1996 
1997 static void
1998 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
1999 {
2000 	bplist_t *bpl = &spa->spa_sync_bplist;
2001 	dmu_tx_t *tx;
2002 	blkptr_t blk;
2003 	uint64_t itor = 0;
2004 	zio_t *zio;
2005 	int error;
2006 	uint8_t c = 1;
2007 
2008 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2009 
2010 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2011 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2012 
2013 	error = zio_wait(zio);
2014 	ASSERT3U(error, ==, 0);
2015 
2016 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2017 	bplist_vacate(bpl, tx);
2018 
2019 	/*
2020 	 * Pre-dirty the first block so we sync to convergence faster.
2021 	 * (Usually only the first block is needed.)
2022 	 */
2023 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2024 	dmu_tx_commit(tx);
2025 }
2026 
2027 static void
2028 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2029 {
2030 	nvlist_t *config;
2031 	char *packed = NULL;
2032 	size_t nvsize = 0;
2033 	dmu_buf_t *db;
2034 
2035 	if (list_is_empty(&spa->spa_dirty_list))
2036 		return;
2037 
2038 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2039 
2040 	spa_config_set(spa, config);
2041 
2042 	VERIFY(nvlist_size(config, &nvsize, NV_ENCODE_XDR) == 0);
2043 
2044 	packed = kmem_alloc(nvsize, KM_SLEEP);
2045 
2046 	VERIFY(nvlist_pack(config, &packed, &nvsize, NV_ENCODE_XDR,
2047 	    KM_SLEEP) == 0);
2048 
2049 	dmu_write(spa->spa_meta_objset, spa->spa_config_object, 0, nvsize,
2050 	    packed, tx);
2051 
2052 	kmem_free(packed, nvsize);
2053 
2054 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset,
2055 	    spa->spa_config_object, FTAG, &db));
2056 	dmu_buf_will_dirty(db, tx);
2057 	*(uint64_t *)db->db_data = nvsize;
2058 	dmu_buf_rele(db, FTAG);
2059 }
2060 
2061 /*
2062  * Sync the specified transaction group.  New blocks may be dirtied as
2063  * part of the process, so we iterate until it converges.
2064  */
2065 void
2066 spa_sync(spa_t *spa, uint64_t txg)
2067 {
2068 	dsl_pool_t *dp = spa->spa_dsl_pool;
2069 	objset_t *mos = spa->spa_meta_objset;
2070 	bplist_t *bpl = &spa->spa_sync_bplist;
2071 	vdev_t *vd;
2072 	dmu_tx_t *tx;
2073 	int dirty_vdevs;
2074 
2075 	/*
2076 	 * Lock out configuration changes.
2077 	 */
2078 	spa_config_enter(spa, RW_READER, FTAG);
2079 
2080 	spa->spa_syncing_txg = txg;
2081 	spa->spa_sync_pass = 0;
2082 
2083 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
2084 
2085 	/*
2086 	 * If anything has changed in this txg, push the deferred frees
2087 	 * from the previous txg.  If not, leave them alone so that we
2088 	 * don't generate work on an otherwise idle system.
2089 	 */
2090 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
2091 	    !txg_list_empty(&dp->dp_dirty_dirs, txg))
2092 		spa_sync_deferred_frees(spa, txg);
2093 
2094 	/*
2095 	 * Iterate to convergence.
2096 	 */
2097 	do {
2098 		spa->spa_sync_pass++;
2099 
2100 		tx = dmu_tx_create_assigned(dp, txg);
2101 		spa_sync_config_object(spa, tx);
2102 		dmu_tx_commit(tx);
2103 
2104 		spa_errlog_sync(spa, txg);
2105 
2106 		dsl_pool_sync(dp, txg);
2107 
2108 		dirty_vdevs = 0;
2109 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
2110 			vdev_sync(vd, txg);
2111 			dirty_vdevs++;
2112 		}
2113 
2114 		tx = dmu_tx_create_assigned(dp, txg);
2115 		bplist_sync(bpl, tx);
2116 		dmu_tx_commit(tx);
2117 
2118 	} while (dirty_vdevs);
2119 
2120 	bplist_close(bpl);
2121 
2122 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
2123 
2124 	/*
2125 	 * Rewrite the vdev configuration (which includes the uberblock)
2126 	 * to commit the transaction group.
2127 	 */
2128 	VERIFY(0 == spa_sync_labels(spa, txg));
2129 
2130 	/*
2131 	 * Make a stable copy of the fully synced uberblock.
2132 	 * We use this as the root for pool traversals.
2133 	 */
2134 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
2135 
2136 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
2137 
2138 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
2139 	spa->spa_traverse_wanted = 0;
2140 	spa->spa_ubsync = spa->spa_uberblock;
2141 	rw_exit(&spa->spa_traverse_lock);
2142 
2143 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
2144 
2145 	/*
2146 	 * Clean up the ZIL records for the synced txg.
2147 	 */
2148 	dsl_pool_zil_clean(dp);
2149 
2150 	/*
2151 	 * Update usable space statistics.
2152 	 */
2153 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
2154 		vdev_sync_done(vd, txg);
2155 
2156 	/*
2157 	 * It had better be the case that we didn't dirty anything
2158 	 * since spa_sync_labels().
2159 	 */
2160 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
2161 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
2162 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
2163 	ASSERT(bpl->bpl_queue == NULL);
2164 
2165 	spa_config_exit(spa, FTAG);
2166 
2167 	/*
2168 	 * If any async tasks have been requested, kick them off.
2169 	 */
2170 	spa_async_dispatch(spa);
2171 }
2172 
2173 /*
2174  * Sync all pools.  We don't want to hold the namespace lock across these
2175  * operations, so we take a reference on the spa_t and drop the lock during the
2176  * sync.
2177  */
2178 void
2179 spa_sync_allpools(void)
2180 {
2181 	spa_t *spa = NULL;
2182 	mutex_enter(&spa_namespace_lock);
2183 	while ((spa = spa_next(spa)) != NULL) {
2184 		if (spa_state(spa) != POOL_STATE_ACTIVE)
2185 			continue;
2186 		spa_open_ref(spa, FTAG);
2187 		mutex_exit(&spa_namespace_lock);
2188 		txg_wait_synced(spa_get_dsl(spa), 0);
2189 		mutex_enter(&spa_namespace_lock);
2190 		spa_close(spa, FTAG);
2191 	}
2192 	mutex_exit(&spa_namespace_lock);
2193 }
2194 
2195 /*
2196  * ==========================================================================
2197  * Miscellaneous routines
2198  * ==========================================================================
2199  */
2200 
2201 int
2202 spa_busy(void)
2203 {
2204 	return (spa_active_count != 0);
2205 }
2206 
2207 /*
2208  * Remove all pools in the system.
2209  */
2210 void
2211 spa_evict_all(void)
2212 {
2213 	spa_t *spa;
2214 
2215 	/*
2216 	 * Remove all cached state.  All pools should be closed now,
2217 	 * so every spa in the AVL tree should be unreferenced.
2218 	 */
2219 	mutex_enter(&spa_namespace_lock);
2220 	while ((spa = spa_next(NULL)) != NULL) {
2221 		/*
2222 		 * Stop async tasks.  The async thread may need to detach
2223 		 * a device that's been replaced, which requires grabbing
2224 		 * spa_namespace_lock, so we must drop it here.
2225 		 */
2226 		spa_open_ref(spa, FTAG);
2227 		mutex_exit(&spa_namespace_lock);
2228 		spa_async_suspend(spa);
2229 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
2230 		mutex_enter(&spa_namespace_lock);
2231 		spa_close(spa, FTAG);
2232 
2233 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2234 			spa_unload(spa);
2235 			spa_deactivate(spa);
2236 		}
2237 		spa_remove(spa);
2238 	}
2239 	mutex_exit(&spa_namespace_lock);
2240 }
2241 
2242 vdev_t *
2243 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
2244 {
2245 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
2246 }
2247