xref: /illumos-gate/usr/src/uts/common/fs/zfs/metaslab.c (revision 80eb36f241abf8c076119fb4c49a55fd61ebc710)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/dmu.h>
28 #include <sys/dmu_tx.h>
29 #include <sys/space_map.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zio.h>
33 
34 uint64_t metaslab_aliquot = 512ULL << 10;
35 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1;	/* force gang blocks */
36 
37 /*
38  * Metaslab debugging: when set, keeps all space maps in core to verify frees.
39  */
40 static int metaslab_debug = 0;
41 
42 /*
43  * Minimum size which forces the dynamic allocator to change
44  * it's allocation strategy.  Once the space map cannot satisfy
45  * an allocation of this size then it switches to using more
46  * aggressive strategy (i.e search by size rather than offset).
47  */
48 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
49 
50 /*
51  * The minimum free space, in percent, which must be available
52  * in a space map to continue allocations in a first-fit fashion.
53  * Once the space_map's free space drops below this level we dynamically
54  * switch to using best-fit allocations.
55  */
56 int metaslab_df_free_pct = 4;
57 
58 /*
59  * A metaslab is considered "free" if it contains a contiguous
60  * segment which is greater than metaslab_min_alloc_size.
61  */
62 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
63 
64 /*
65  * Max number of space_maps to prefetch.
66  */
67 int metaslab_prefetch_limit = SPA_DVAS_PER_BP;
68 
69 /*
70  * Percentage bonus multiplier for metaslabs that are in the bonus area.
71  */
72 int metaslab_smo_bonus_pct = 150;
73 
74 /*
75  * ==========================================================================
76  * Metaslab classes
77  * ==========================================================================
78  */
79 metaslab_class_t *
80 metaslab_class_create(spa_t *spa, space_map_ops_t *ops)
81 {
82 	metaslab_class_t *mc;
83 
84 	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
85 
86 	mc->mc_spa = spa;
87 	mc->mc_rotor = NULL;
88 	mc->mc_ops = ops;
89 
90 	return (mc);
91 }
92 
93 void
94 metaslab_class_destroy(metaslab_class_t *mc)
95 {
96 	ASSERT(mc->mc_rotor == NULL);
97 	ASSERT(mc->mc_alloc == 0);
98 	ASSERT(mc->mc_deferred == 0);
99 	ASSERT(mc->mc_space == 0);
100 	ASSERT(mc->mc_dspace == 0);
101 
102 	kmem_free(mc, sizeof (metaslab_class_t));
103 }
104 
105 int
106 metaslab_class_validate(metaslab_class_t *mc)
107 {
108 	metaslab_group_t *mg;
109 	vdev_t *vd;
110 
111 	/*
112 	 * Must hold one of the spa_config locks.
113 	 */
114 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
115 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
116 
117 	if ((mg = mc->mc_rotor) == NULL)
118 		return (0);
119 
120 	do {
121 		vd = mg->mg_vd;
122 		ASSERT(vd->vdev_mg != NULL);
123 		ASSERT3P(vd->vdev_top, ==, vd);
124 		ASSERT3P(mg->mg_class, ==, mc);
125 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
126 	} while ((mg = mg->mg_next) != mc->mc_rotor);
127 
128 	return (0);
129 }
130 
131 void
132 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
133     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
134 {
135 	atomic_add_64(&mc->mc_alloc, alloc_delta);
136 	atomic_add_64(&mc->mc_deferred, defer_delta);
137 	atomic_add_64(&mc->mc_space, space_delta);
138 	atomic_add_64(&mc->mc_dspace, dspace_delta);
139 }
140 
141 uint64_t
142 metaslab_class_get_alloc(metaslab_class_t *mc)
143 {
144 	return (mc->mc_alloc);
145 }
146 
147 uint64_t
148 metaslab_class_get_deferred(metaslab_class_t *mc)
149 {
150 	return (mc->mc_deferred);
151 }
152 
153 uint64_t
154 metaslab_class_get_space(metaslab_class_t *mc)
155 {
156 	return (mc->mc_space);
157 }
158 
159 uint64_t
160 metaslab_class_get_dspace(metaslab_class_t *mc)
161 {
162 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
163 }
164 
165 /*
166  * ==========================================================================
167  * Metaslab groups
168  * ==========================================================================
169  */
170 static int
171 metaslab_compare(const void *x1, const void *x2)
172 {
173 	const metaslab_t *m1 = x1;
174 	const metaslab_t *m2 = x2;
175 
176 	if (m1->ms_weight < m2->ms_weight)
177 		return (1);
178 	if (m1->ms_weight > m2->ms_weight)
179 		return (-1);
180 
181 	/*
182 	 * If the weights are identical, use the offset to force uniqueness.
183 	 */
184 	if (m1->ms_map.sm_start < m2->ms_map.sm_start)
185 		return (-1);
186 	if (m1->ms_map.sm_start > m2->ms_map.sm_start)
187 		return (1);
188 
189 	ASSERT3P(m1, ==, m2);
190 
191 	return (0);
192 }
193 
194 metaslab_group_t *
195 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
196 {
197 	metaslab_group_t *mg;
198 
199 	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
200 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
201 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
202 	    sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
203 	mg->mg_vd = vd;
204 	mg->mg_class = mc;
205 	mg->mg_activation_count = 0;
206 
207 	return (mg);
208 }
209 
210 void
211 metaslab_group_destroy(metaslab_group_t *mg)
212 {
213 	ASSERT(mg->mg_prev == NULL);
214 	ASSERT(mg->mg_next == NULL);
215 	/*
216 	 * We may have gone below zero with the activation count
217 	 * either because we never activated in the first place or
218 	 * because we're done, and possibly removing the vdev.
219 	 */
220 	ASSERT(mg->mg_activation_count <= 0);
221 
222 	avl_destroy(&mg->mg_metaslab_tree);
223 	mutex_destroy(&mg->mg_lock);
224 	kmem_free(mg, sizeof (metaslab_group_t));
225 }
226 
227 void
228 metaslab_group_activate(metaslab_group_t *mg)
229 {
230 	metaslab_class_t *mc = mg->mg_class;
231 	metaslab_group_t *mgprev, *mgnext;
232 
233 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
234 
235 	ASSERT(mc->mc_rotor != mg);
236 	ASSERT(mg->mg_prev == NULL);
237 	ASSERT(mg->mg_next == NULL);
238 	ASSERT(mg->mg_activation_count <= 0);
239 
240 	if (++mg->mg_activation_count <= 0)
241 		return;
242 
243 	mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
244 
245 	if ((mgprev = mc->mc_rotor) == NULL) {
246 		mg->mg_prev = mg;
247 		mg->mg_next = mg;
248 	} else {
249 		mgnext = mgprev->mg_next;
250 		mg->mg_prev = mgprev;
251 		mg->mg_next = mgnext;
252 		mgprev->mg_next = mg;
253 		mgnext->mg_prev = mg;
254 	}
255 	mc->mc_rotor = mg;
256 }
257 
258 void
259 metaslab_group_passivate(metaslab_group_t *mg)
260 {
261 	metaslab_class_t *mc = mg->mg_class;
262 	metaslab_group_t *mgprev, *mgnext;
263 
264 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
265 
266 	if (--mg->mg_activation_count != 0) {
267 		ASSERT(mc->mc_rotor != mg);
268 		ASSERT(mg->mg_prev == NULL);
269 		ASSERT(mg->mg_next == NULL);
270 		ASSERT(mg->mg_activation_count < 0);
271 		return;
272 	}
273 
274 	mgprev = mg->mg_prev;
275 	mgnext = mg->mg_next;
276 
277 	if (mg == mgnext) {
278 		mc->mc_rotor = NULL;
279 	} else {
280 		mc->mc_rotor = mgnext;
281 		mgprev->mg_next = mgnext;
282 		mgnext->mg_prev = mgprev;
283 	}
284 
285 	mg->mg_prev = NULL;
286 	mg->mg_next = NULL;
287 }
288 
289 static void
290 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
291 {
292 	mutex_enter(&mg->mg_lock);
293 	ASSERT(msp->ms_group == NULL);
294 	msp->ms_group = mg;
295 	msp->ms_weight = 0;
296 	avl_add(&mg->mg_metaslab_tree, msp);
297 	mutex_exit(&mg->mg_lock);
298 }
299 
300 static void
301 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
302 {
303 	mutex_enter(&mg->mg_lock);
304 	ASSERT(msp->ms_group == mg);
305 	avl_remove(&mg->mg_metaslab_tree, msp);
306 	msp->ms_group = NULL;
307 	mutex_exit(&mg->mg_lock);
308 }
309 
310 static void
311 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
312 {
313 	/*
314 	 * Although in principle the weight can be any value, in
315 	 * practice we do not use values in the range [1, 510].
316 	 */
317 	ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
318 	ASSERT(MUTEX_HELD(&msp->ms_lock));
319 
320 	mutex_enter(&mg->mg_lock);
321 	ASSERT(msp->ms_group == mg);
322 	avl_remove(&mg->mg_metaslab_tree, msp);
323 	msp->ms_weight = weight;
324 	avl_add(&mg->mg_metaslab_tree, msp);
325 	mutex_exit(&mg->mg_lock);
326 }
327 
328 /*
329  * ==========================================================================
330  * Common allocator routines
331  * ==========================================================================
332  */
333 static int
334 metaslab_segsize_compare(const void *x1, const void *x2)
335 {
336 	const space_seg_t *s1 = x1;
337 	const space_seg_t *s2 = x2;
338 	uint64_t ss_size1 = s1->ss_end - s1->ss_start;
339 	uint64_t ss_size2 = s2->ss_end - s2->ss_start;
340 
341 	if (ss_size1 < ss_size2)
342 		return (-1);
343 	if (ss_size1 > ss_size2)
344 		return (1);
345 
346 	if (s1->ss_start < s2->ss_start)
347 		return (-1);
348 	if (s1->ss_start > s2->ss_start)
349 		return (1);
350 
351 	return (0);
352 }
353 
354 /*
355  * This is a helper function that can be used by the allocator to find
356  * a suitable block to allocate. This will search the specified AVL
357  * tree looking for a block that matches the specified criteria.
358  */
359 static uint64_t
360 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
361     uint64_t align)
362 {
363 	space_seg_t *ss, ssearch;
364 	avl_index_t where;
365 
366 	ssearch.ss_start = *cursor;
367 	ssearch.ss_end = *cursor + size;
368 
369 	ss = avl_find(t, &ssearch, &where);
370 	if (ss == NULL)
371 		ss = avl_nearest(t, where, AVL_AFTER);
372 
373 	while (ss != NULL) {
374 		uint64_t offset = P2ROUNDUP(ss->ss_start, align);
375 
376 		if (offset + size <= ss->ss_end) {
377 			*cursor = offset + size;
378 			return (offset);
379 		}
380 		ss = AVL_NEXT(t, ss);
381 	}
382 
383 	/*
384 	 * If we know we've searched the whole map (*cursor == 0), give up.
385 	 * Otherwise, reset the cursor to the beginning and try again.
386 	 */
387 	if (*cursor == 0)
388 		return (-1ULL);
389 
390 	*cursor = 0;
391 	return (metaslab_block_picker(t, cursor, size, align));
392 }
393 
394 static void
395 metaslab_pp_load(space_map_t *sm)
396 {
397 	space_seg_t *ss;
398 
399 	ASSERT(sm->sm_ppd == NULL);
400 	sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
401 
402 	sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
403 	avl_create(sm->sm_pp_root, metaslab_segsize_compare,
404 	    sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node));
405 
406 	for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
407 		avl_add(sm->sm_pp_root, ss);
408 }
409 
410 static void
411 metaslab_pp_unload(space_map_t *sm)
412 {
413 	void *cookie = NULL;
414 
415 	kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
416 	sm->sm_ppd = NULL;
417 
418 	while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) {
419 		/* tear down the tree */
420 	}
421 
422 	avl_destroy(sm->sm_pp_root);
423 	kmem_free(sm->sm_pp_root, sizeof (avl_tree_t));
424 	sm->sm_pp_root = NULL;
425 }
426 
427 /* ARGSUSED */
428 static void
429 metaslab_pp_claim(space_map_t *sm, uint64_t start, uint64_t size)
430 {
431 	/* No need to update cursor */
432 }
433 
434 /* ARGSUSED */
435 static void
436 metaslab_pp_free(space_map_t *sm, uint64_t start, uint64_t size)
437 {
438 	/* No need to update cursor */
439 }
440 
441 /*
442  * Return the maximum contiguous segment within the metaslab.
443  */
444 uint64_t
445 metaslab_pp_maxsize(space_map_t *sm)
446 {
447 	avl_tree_t *t = sm->sm_pp_root;
448 	space_seg_t *ss;
449 
450 	if (t == NULL || (ss = avl_last(t)) == NULL)
451 		return (0ULL);
452 
453 	return (ss->ss_end - ss->ss_start);
454 }
455 
456 /*
457  * ==========================================================================
458  * The first-fit block allocator
459  * ==========================================================================
460  */
461 static uint64_t
462 metaslab_ff_alloc(space_map_t *sm, uint64_t size)
463 {
464 	avl_tree_t *t = &sm->sm_root;
465 	uint64_t align = size & -size;
466 	uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
467 
468 	return (metaslab_block_picker(t, cursor, size, align));
469 }
470 
471 /* ARGSUSED */
472 boolean_t
473 metaslab_ff_fragmented(space_map_t *sm)
474 {
475 	return (B_TRUE);
476 }
477 
478 static space_map_ops_t metaslab_ff_ops = {
479 	metaslab_pp_load,
480 	metaslab_pp_unload,
481 	metaslab_ff_alloc,
482 	metaslab_pp_claim,
483 	metaslab_pp_free,
484 	metaslab_pp_maxsize,
485 	metaslab_ff_fragmented
486 };
487 
488 /*
489  * ==========================================================================
490  * Dynamic block allocator -
491  * Uses the first fit allocation scheme until space get low and then
492  * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
493  * and metaslab_df_free_pct to determine when to switch the allocation scheme.
494  * ==========================================================================
495  */
496 static uint64_t
497 metaslab_df_alloc(space_map_t *sm, uint64_t size)
498 {
499 	avl_tree_t *t = &sm->sm_root;
500 	uint64_t align = size & -size;
501 	uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
502 	uint64_t max_size = metaslab_pp_maxsize(sm);
503 	int free_pct = sm->sm_space * 100 / sm->sm_size;
504 
505 	ASSERT(MUTEX_HELD(sm->sm_lock));
506 	ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
507 
508 	if (max_size < size)
509 		return (-1ULL);
510 
511 	/*
512 	 * If we're running low on space switch to using the size
513 	 * sorted AVL tree (best-fit).
514 	 */
515 	if (max_size < metaslab_df_alloc_threshold ||
516 	    free_pct < metaslab_df_free_pct) {
517 		t = sm->sm_pp_root;
518 		*cursor = 0;
519 	}
520 
521 	return (metaslab_block_picker(t, cursor, size, 1ULL));
522 }
523 
524 static boolean_t
525 metaslab_df_fragmented(space_map_t *sm)
526 {
527 	uint64_t max_size = metaslab_pp_maxsize(sm);
528 	int free_pct = sm->sm_space * 100 / sm->sm_size;
529 
530 	if (max_size >= metaslab_df_alloc_threshold &&
531 	    free_pct >= metaslab_df_free_pct)
532 		return (B_FALSE);
533 
534 	return (B_TRUE);
535 }
536 
537 static space_map_ops_t metaslab_df_ops = {
538 	metaslab_pp_load,
539 	metaslab_pp_unload,
540 	metaslab_df_alloc,
541 	metaslab_pp_claim,
542 	metaslab_pp_free,
543 	metaslab_pp_maxsize,
544 	metaslab_df_fragmented
545 };
546 
547 /*
548  * ==========================================================================
549  * Other experimental allocators
550  * ==========================================================================
551  */
552 static uint64_t
553 metaslab_cdf_alloc(space_map_t *sm, uint64_t size)
554 {
555 	avl_tree_t *t = &sm->sm_root;
556 	uint64_t *cursor = (uint64_t *)sm->sm_ppd;
557 	uint64_t *extent_end = (uint64_t *)sm->sm_ppd + 1;
558 	uint64_t max_size = metaslab_pp_maxsize(sm);
559 	uint64_t rsize = size;
560 	uint64_t offset = 0;
561 
562 	ASSERT(MUTEX_HELD(sm->sm_lock));
563 	ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
564 
565 	if (max_size < size)
566 		return (-1ULL);
567 
568 	ASSERT3U(*extent_end, >=, *cursor);
569 
570 	/*
571 	 * If we're running low on space switch to using the size
572 	 * sorted AVL tree (best-fit).
573 	 */
574 	if ((*cursor + size) > *extent_end) {
575 
576 		t = sm->sm_pp_root;
577 		*cursor = *extent_end = 0;
578 
579 		if (max_size > 2 * SPA_MAXBLOCKSIZE)
580 			rsize = MIN(metaslab_min_alloc_size, max_size);
581 		offset = metaslab_block_picker(t, extent_end, rsize, 1ULL);
582 		if (offset != -1)
583 			*cursor = offset + size;
584 	} else {
585 		offset = metaslab_block_picker(t, cursor, rsize, 1ULL);
586 	}
587 	ASSERT3U(*cursor, <=, *extent_end);
588 	return (offset);
589 }
590 
591 static boolean_t
592 metaslab_cdf_fragmented(space_map_t *sm)
593 {
594 	uint64_t max_size = metaslab_pp_maxsize(sm);
595 
596 	if (max_size > (metaslab_min_alloc_size * 10))
597 		return (B_FALSE);
598 	return (B_TRUE);
599 }
600 
601 static space_map_ops_t metaslab_cdf_ops = {
602 	metaslab_pp_load,
603 	metaslab_pp_unload,
604 	metaslab_cdf_alloc,
605 	metaslab_pp_claim,
606 	metaslab_pp_free,
607 	metaslab_pp_maxsize,
608 	metaslab_cdf_fragmented
609 };
610 
611 static uint64_t
612 metaslab_ndf_alloc(space_map_t *sm, uint64_t size)
613 {
614 	avl_tree_t *t = &sm->sm_root;
615 	avl_index_t where;
616 	space_seg_t *ss, ssearch;
617 	uint64_t *cursor = (uint64_t *)sm->sm_ppd;
618 	uint64_t max_size = metaslab_pp_maxsize(sm);
619 
620 	ASSERT(MUTEX_HELD(sm->sm_lock));
621 	ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
622 
623 	if (max_size < size)
624 		return (-1ULL);
625 
626 	ssearch.ss_start = *cursor;
627 	ssearch.ss_end = *cursor + size;
628 
629 	ss = avl_find(t, &ssearch, &where);
630 	if (ss == NULL || (ss->ss_start + size > ss->ss_end)) {
631 		t = sm->sm_pp_root;
632 
633 		if (max_size > 2 * SPA_MAXBLOCKSIZE)
634 			size = MIN(metaslab_min_alloc_size, max_size);
635 
636 		ssearch.ss_start = 0;
637 		ssearch.ss_end = size;
638 		ss = avl_find(t, &ssearch, &where);
639 		if (ss == NULL)
640 			ss = avl_nearest(t, where, AVL_AFTER);
641 		ASSERT(ss != NULL);
642 	}
643 
644 	if (ss != NULL) {
645 		if (ss->ss_start + size <= ss->ss_end) {
646 			*cursor = ss->ss_start + size;
647 			return (ss->ss_start);
648 		}
649 	}
650 	return (-1ULL);
651 }
652 
653 static boolean_t
654 metaslab_ndf_fragmented(space_map_t *sm)
655 {
656 	uint64_t max_size = metaslab_pp_maxsize(sm);
657 
658 	if (max_size > (metaslab_min_alloc_size * 10))
659 		return (B_FALSE);
660 	return (B_TRUE);
661 }
662 
663 
664 static space_map_ops_t metaslab_ndf_ops = {
665 	metaslab_pp_load,
666 	metaslab_pp_unload,
667 	metaslab_ndf_alloc,
668 	metaslab_pp_claim,
669 	metaslab_pp_free,
670 	metaslab_pp_maxsize,
671 	metaslab_ndf_fragmented
672 };
673 
674 space_map_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
675 
676 /*
677  * ==========================================================================
678  * Metaslabs
679  * ==========================================================================
680  */
681 metaslab_t *
682 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
683 	uint64_t start, uint64_t size, uint64_t txg)
684 {
685 	vdev_t *vd = mg->mg_vd;
686 	metaslab_t *msp;
687 
688 	msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
689 	mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
690 
691 	msp->ms_smo_syncing = *smo;
692 
693 	/*
694 	 * We create the main space map here, but we don't create the
695 	 * allocmaps and freemaps until metaslab_sync_done().  This serves
696 	 * two purposes: it allows metaslab_sync_done() to detect the
697 	 * addition of new space; and for debugging, it ensures that we'd
698 	 * data fault on any attempt to use this metaslab before it's ready.
699 	 */
700 	space_map_create(&msp->ms_map, start, size,
701 	    vd->vdev_ashift, &msp->ms_lock);
702 
703 	metaslab_group_add(mg, msp);
704 
705 	if (metaslab_debug && smo->smo_object != 0) {
706 		mutex_enter(&msp->ms_lock);
707 		VERIFY(space_map_load(&msp->ms_map, mg->mg_class->mc_ops,
708 		    SM_FREE, smo, spa_meta_objset(vd->vdev_spa)) == 0);
709 		mutex_exit(&msp->ms_lock);
710 	}
711 
712 	/*
713 	 * If we're opening an existing pool (txg == 0) or creating
714 	 * a new one (txg == TXG_INITIAL), all space is available now.
715 	 * If we're adding space to an existing pool, the new space
716 	 * does not become available until after this txg has synced.
717 	 */
718 	if (txg <= TXG_INITIAL)
719 		metaslab_sync_done(msp, 0);
720 
721 	if (txg != 0) {
722 		vdev_dirty(vd, 0, NULL, txg);
723 		vdev_dirty(vd, VDD_METASLAB, msp, txg);
724 	}
725 
726 	return (msp);
727 }
728 
729 void
730 metaslab_fini(metaslab_t *msp)
731 {
732 	metaslab_group_t *mg = msp->ms_group;
733 
734 	vdev_space_update(mg->mg_vd,
735 	    -msp->ms_smo.smo_alloc, 0, -msp->ms_map.sm_size);
736 
737 	metaslab_group_remove(mg, msp);
738 
739 	mutex_enter(&msp->ms_lock);
740 
741 	space_map_unload(&msp->ms_map);
742 	space_map_destroy(&msp->ms_map);
743 
744 	for (int t = 0; t < TXG_SIZE; t++) {
745 		space_map_destroy(&msp->ms_allocmap[t]);
746 		space_map_destroy(&msp->ms_freemap[t]);
747 	}
748 
749 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
750 		space_map_destroy(&msp->ms_defermap[t]);
751 
752 	ASSERT3S(msp->ms_deferspace, ==, 0);
753 
754 	mutex_exit(&msp->ms_lock);
755 	mutex_destroy(&msp->ms_lock);
756 
757 	kmem_free(msp, sizeof (metaslab_t));
758 }
759 
760 #define	METASLAB_WEIGHT_PRIMARY		(1ULL << 63)
761 #define	METASLAB_WEIGHT_SECONDARY	(1ULL << 62)
762 #define	METASLAB_ACTIVE_MASK		\
763 	(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
764 
765 static uint64_t
766 metaslab_weight(metaslab_t *msp)
767 {
768 	metaslab_group_t *mg = msp->ms_group;
769 	space_map_t *sm = &msp->ms_map;
770 	space_map_obj_t *smo = &msp->ms_smo;
771 	vdev_t *vd = mg->mg_vd;
772 	uint64_t weight, space;
773 
774 	ASSERT(MUTEX_HELD(&msp->ms_lock));
775 
776 	/*
777 	 * The baseline weight is the metaslab's free space.
778 	 */
779 	space = sm->sm_size - smo->smo_alloc;
780 	weight = space;
781 
782 	/*
783 	 * Modern disks have uniform bit density and constant angular velocity.
784 	 * Therefore, the outer recording zones are faster (higher bandwidth)
785 	 * than the inner zones by the ratio of outer to inner track diameter,
786 	 * which is typically around 2:1.  We account for this by assigning
787 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
788 	 * In effect, this means that we'll select the metaslab with the most
789 	 * free bandwidth rather than simply the one with the most free space.
790 	 */
791 	weight = 2 * weight -
792 	    ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
793 	ASSERT(weight >= space && weight <= 2 * space);
794 
795 	/*
796 	 * For locality, assign higher weight to metaslabs which have
797 	 * a lower offset than what we've already activated.
798 	 */
799 	if (sm->sm_start <= mg->mg_bonus_area)
800 		weight *= (metaslab_smo_bonus_pct / 100);
801 	ASSERT(weight >= space &&
802 	    weight <= 2 * (metaslab_smo_bonus_pct / 100) * space);
803 
804 	if (sm->sm_loaded && !sm->sm_ops->smop_fragmented(sm)) {
805 		/*
806 		 * If this metaslab is one we're actively using, adjust its
807 		 * weight to make it preferable to any inactive metaslab so
808 		 * we'll polish it off.
809 		 */
810 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
811 	}
812 	return (weight);
813 }
814 
815 static void
816 metaslab_prefetch(metaslab_group_t *mg)
817 {
818 	spa_t *spa = mg->mg_vd->vdev_spa;
819 	metaslab_t *msp;
820 	avl_tree_t *t = &mg->mg_metaslab_tree;
821 	int m;
822 
823 	mutex_enter(&mg->mg_lock);
824 
825 	/*
826 	 * Prefetch the next potential metaslabs
827 	 */
828 	for (msp = avl_first(t), m = 0; msp; msp = AVL_NEXT(t, msp), m++) {
829 		space_map_t *sm = &msp->ms_map;
830 		space_map_obj_t *smo = &msp->ms_smo;
831 
832 		/* If we have reached our prefetch limit then we're done */
833 		if (m >= metaslab_prefetch_limit)
834 			break;
835 
836 		if (!sm->sm_loaded && smo->smo_object != 0) {
837 			mutex_exit(&mg->mg_lock);
838 			dmu_prefetch(spa_meta_objset(spa), smo->smo_object,
839 			    0ULL, smo->smo_objsize);
840 			mutex_enter(&mg->mg_lock);
841 		}
842 	}
843 	mutex_exit(&mg->mg_lock);
844 }
845 
846 static int
847 metaslab_activate(metaslab_t *msp, uint64_t activation_weight, uint64_t size)
848 {
849 	metaslab_group_t *mg = msp->ms_group;
850 	space_map_t *sm = &msp->ms_map;
851 	space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops;
852 
853 	ASSERT(MUTEX_HELD(&msp->ms_lock));
854 
855 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
856 		space_map_load_wait(sm);
857 		if (!sm->sm_loaded) {
858 			int error = space_map_load(sm, sm_ops, SM_FREE,
859 			    &msp->ms_smo,
860 			    spa_meta_objset(msp->ms_group->mg_vd->vdev_spa));
861 			if (error)  {
862 				metaslab_group_sort(msp->ms_group, msp, 0);
863 				return (error);
864 			}
865 			for (int t = 0; t < TXG_DEFER_SIZE; t++)
866 				space_map_walk(&msp->ms_defermap[t],
867 				    space_map_claim, sm);
868 
869 		}
870 
871 		/*
872 		 * Track the bonus area as we activate new metaslabs.
873 		 */
874 		if (sm->sm_start > mg->mg_bonus_area) {
875 			mutex_enter(&mg->mg_lock);
876 			mg->mg_bonus_area = sm->sm_start;
877 			mutex_exit(&mg->mg_lock);
878 		}
879 
880 		/*
881 		 * If we were able to load the map then make sure
882 		 * that this map is still able to satisfy our request.
883 		 */
884 		if (msp->ms_weight < size)
885 			return (ENOSPC);
886 
887 		metaslab_group_sort(msp->ms_group, msp,
888 		    msp->ms_weight | activation_weight);
889 	}
890 	ASSERT(sm->sm_loaded);
891 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
892 
893 	return (0);
894 }
895 
896 static void
897 metaslab_passivate(metaslab_t *msp, uint64_t size)
898 {
899 	/*
900 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
901 	 * this metaslab again.  In that case, it had better be empty,
902 	 * or we would be leaving space on the table.
903 	 */
904 	ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0);
905 	metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
906 	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
907 }
908 
909 /*
910  * Write a metaslab to disk in the context of the specified transaction group.
911  */
912 void
913 metaslab_sync(metaslab_t *msp, uint64_t txg)
914 {
915 	vdev_t *vd = msp->ms_group->mg_vd;
916 	spa_t *spa = vd->vdev_spa;
917 	objset_t *mos = spa_meta_objset(spa);
918 	space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK];
919 	space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK];
920 	space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
921 	space_map_t *sm = &msp->ms_map;
922 	space_map_obj_t *smo = &msp->ms_smo_syncing;
923 	dmu_buf_t *db;
924 	dmu_tx_t *tx;
925 
926 	ASSERT(!vd->vdev_ishole);
927 
928 	if (allocmap->sm_space == 0 && freemap->sm_space == 0)
929 		return;
930 
931 	/*
932 	 * The only state that can actually be changing concurrently with
933 	 * metaslab_sync() is the metaslab's ms_map.  No other thread can
934 	 * be modifying this txg's allocmap, freemap, freed_map, or smo.
935 	 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
936 	 * We drop it whenever we call into the DMU, because the DMU
937 	 * can call down to us (e.g. via zio_free()) at any time.
938 	 */
939 
940 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
941 
942 	if (smo->smo_object == 0) {
943 		ASSERT(smo->smo_objsize == 0);
944 		ASSERT(smo->smo_alloc == 0);
945 		smo->smo_object = dmu_object_alloc(mos,
946 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
947 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
948 		ASSERT(smo->smo_object != 0);
949 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
950 		    (sm->sm_start >> vd->vdev_ms_shift),
951 		    sizeof (uint64_t), &smo->smo_object, tx);
952 	}
953 
954 	mutex_enter(&msp->ms_lock);
955 
956 	space_map_walk(freemap, space_map_add, freed_map);
957 
958 	if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >=
959 	    2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) {
960 		/*
961 		 * The in-core space map representation is twice as compact
962 		 * as the on-disk one, so it's time to condense the latter
963 		 * by generating a pure allocmap from first principles.
964 		 *
965 		 * This metaslab is 100% allocated,
966 		 * minus the content of the in-core map (sm),
967 		 * minus what's been freed this txg (freed_map),
968 		 * minus deferred frees (ms_defermap[]),
969 		 * minus allocations from txgs in the future
970 		 * (because they haven't been committed yet).
971 		 */
972 		space_map_vacate(allocmap, NULL, NULL);
973 		space_map_vacate(freemap, NULL, NULL);
974 
975 		space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size);
976 
977 		space_map_walk(sm, space_map_remove, allocmap);
978 		space_map_walk(freed_map, space_map_remove, allocmap);
979 
980 		for (int t = 0; t < TXG_DEFER_SIZE; t++)
981 			space_map_walk(&msp->ms_defermap[t],
982 			    space_map_remove, allocmap);
983 
984 		for (int t = 1; t < TXG_CONCURRENT_STATES; t++)
985 			space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK],
986 			    space_map_remove, allocmap);
987 
988 		mutex_exit(&msp->ms_lock);
989 		space_map_truncate(smo, mos, tx);
990 		mutex_enter(&msp->ms_lock);
991 	}
992 
993 	space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
994 	space_map_sync(freemap, SM_FREE, smo, mos, tx);
995 
996 	mutex_exit(&msp->ms_lock);
997 
998 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
999 	dmu_buf_will_dirty(db, tx);
1000 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1001 	bcopy(smo, db->db_data, sizeof (*smo));
1002 	dmu_buf_rele(db, FTAG);
1003 
1004 	dmu_tx_commit(tx);
1005 }
1006 
1007 /*
1008  * Called after a transaction group has completely synced to mark
1009  * all of the metaslab's free space as usable.
1010  */
1011 void
1012 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1013 {
1014 	space_map_obj_t *smo = &msp->ms_smo;
1015 	space_map_obj_t *smosync = &msp->ms_smo_syncing;
1016 	space_map_t *sm = &msp->ms_map;
1017 	space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
1018 	space_map_t *defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE];
1019 	metaslab_group_t *mg = msp->ms_group;
1020 	vdev_t *vd = mg->mg_vd;
1021 	int64_t alloc_delta, defer_delta;
1022 
1023 	ASSERT(!vd->vdev_ishole);
1024 
1025 	mutex_enter(&msp->ms_lock);
1026 
1027 	/*
1028 	 * If this metaslab is just becoming available, initialize its
1029 	 * allocmaps and freemaps and add its capacity to the vdev.
1030 	 */
1031 	if (freed_map->sm_size == 0) {
1032 		for (int t = 0; t < TXG_SIZE; t++) {
1033 			space_map_create(&msp->ms_allocmap[t], sm->sm_start,
1034 			    sm->sm_size, sm->sm_shift, sm->sm_lock);
1035 			space_map_create(&msp->ms_freemap[t], sm->sm_start,
1036 			    sm->sm_size, sm->sm_shift, sm->sm_lock);
1037 		}
1038 
1039 		for (int t = 0; t < TXG_DEFER_SIZE; t++)
1040 			space_map_create(&msp->ms_defermap[t], sm->sm_start,
1041 			    sm->sm_size, sm->sm_shift, sm->sm_lock);
1042 
1043 		vdev_space_update(vd, 0, 0, sm->sm_size);
1044 	}
1045 
1046 	alloc_delta = smosync->smo_alloc - smo->smo_alloc;
1047 	defer_delta = freed_map->sm_space - defer_map->sm_space;
1048 
1049 	vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1050 
1051 	ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0);
1052 	ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0);
1053 
1054 	/*
1055 	 * If there's a space_map_load() in progress, wait for it to complete
1056 	 * so that we have a consistent view of the in-core space map.
1057 	 * Then, add defer_map (oldest deferred frees) to this map and
1058 	 * transfer freed_map (this txg's frees) to defer_map.
1059 	 */
1060 	space_map_load_wait(sm);
1061 	space_map_vacate(defer_map, sm->sm_loaded ? space_map_free : NULL, sm);
1062 	space_map_vacate(freed_map, space_map_add, defer_map);
1063 
1064 	*smo = *smosync;
1065 
1066 	msp->ms_deferspace += defer_delta;
1067 	ASSERT3S(msp->ms_deferspace, >=, 0);
1068 	ASSERT3S(msp->ms_deferspace, <=, sm->sm_size);
1069 	if (msp->ms_deferspace != 0) {
1070 		/*
1071 		 * Keep syncing this metaslab until all deferred frees
1072 		 * are back in circulation.
1073 		 */
1074 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1075 	}
1076 
1077 	/*
1078 	 * If the map is loaded but no longer active, evict it as soon as all
1079 	 * future allocations have synced.  (If we unloaded it now and then
1080 	 * loaded a moment later, the map wouldn't reflect those allocations.)
1081 	 */
1082 	if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1083 		int evictable = 1;
1084 
1085 		for (int t = 1; t < TXG_CONCURRENT_STATES; t++)
1086 			if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space)
1087 				evictable = 0;
1088 
1089 		if (evictable && !metaslab_debug)
1090 			space_map_unload(sm);
1091 	}
1092 
1093 	metaslab_group_sort(mg, msp, metaslab_weight(msp));
1094 
1095 	mutex_exit(&msp->ms_lock);
1096 }
1097 
1098 void
1099 metaslab_sync_reassess(metaslab_group_t *mg)
1100 {
1101 	vdev_t *vd = mg->mg_vd;
1102 
1103 	/*
1104 	 * Re-evaluate all metaslabs which have lower offsets than the
1105 	 * bonus area.
1106 	 */
1107 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1108 		metaslab_t *msp = vd->vdev_ms[m];
1109 
1110 		if (msp->ms_map.sm_start > mg->mg_bonus_area)
1111 			break;
1112 
1113 		mutex_enter(&msp->ms_lock);
1114 		metaslab_group_sort(mg, msp, metaslab_weight(msp));
1115 		mutex_exit(&msp->ms_lock);
1116 	}
1117 
1118 	/*
1119 	 * Prefetch the next potential metaslabs
1120 	 */
1121 	metaslab_prefetch(mg);
1122 }
1123 
1124 static uint64_t
1125 metaslab_distance(metaslab_t *msp, dva_t *dva)
1126 {
1127 	uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
1128 	uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
1129 	uint64_t start = msp->ms_map.sm_start >> ms_shift;
1130 
1131 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
1132 		return (1ULL << 63);
1133 
1134 	if (offset < start)
1135 		return ((start - offset) << ms_shift);
1136 	if (offset > start)
1137 		return ((offset - start) << ms_shift);
1138 	return (0);
1139 }
1140 
1141 static uint64_t
1142 metaslab_group_alloc(metaslab_group_t *mg, uint64_t size, uint64_t txg,
1143     uint64_t min_distance, dva_t *dva, int d)
1144 {
1145 	metaslab_t *msp = NULL;
1146 	uint64_t offset = -1ULL;
1147 	avl_tree_t *t = &mg->mg_metaslab_tree;
1148 	uint64_t activation_weight;
1149 	uint64_t target_distance;
1150 	int i;
1151 
1152 	activation_weight = METASLAB_WEIGHT_PRIMARY;
1153 	for (i = 0; i < d; i++) {
1154 		if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
1155 			activation_weight = METASLAB_WEIGHT_SECONDARY;
1156 			break;
1157 		}
1158 	}
1159 
1160 	for (;;) {
1161 		boolean_t was_active;
1162 
1163 		mutex_enter(&mg->mg_lock);
1164 		for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
1165 			if (msp->ms_weight < size) {
1166 				mutex_exit(&mg->mg_lock);
1167 				return (-1ULL);
1168 			}
1169 
1170 			was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1171 			if (activation_weight == METASLAB_WEIGHT_PRIMARY)
1172 				break;
1173 
1174 			target_distance = min_distance +
1175 			    (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);
1176 
1177 			for (i = 0; i < d; i++)
1178 				if (metaslab_distance(msp, &dva[i]) <
1179 				    target_distance)
1180 					break;
1181 			if (i == d)
1182 				break;
1183 		}
1184 		mutex_exit(&mg->mg_lock);
1185 		if (msp == NULL)
1186 			return (-1ULL);
1187 
1188 		mutex_enter(&msp->ms_lock);
1189 
1190 		/*
1191 		 * Ensure that the metaslab we have selected is still
1192 		 * capable of handling our request. It's possible that
1193 		 * another thread may have changed the weight while we
1194 		 * were blocked on the metaslab lock.
1195 		 */
1196 		if (msp->ms_weight < size || (was_active &&
1197 		    !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
1198 		    activation_weight == METASLAB_WEIGHT_PRIMARY)) {
1199 			mutex_exit(&msp->ms_lock);
1200 			continue;
1201 		}
1202 
1203 		if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
1204 		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
1205 			metaslab_passivate(msp,
1206 			    msp->ms_weight & ~METASLAB_ACTIVE_MASK);
1207 			mutex_exit(&msp->ms_lock);
1208 			continue;
1209 		}
1210 
1211 		if (metaslab_activate(msp, activation_weight, size) != 0) {
1212 			mutex_exit(&msp->ms_lock);
1213 			continue;
1214 		}
1215 
1216 		if ((offset = space_map_alloc(&msp->ms_map, size)) != -1ULL)
1217 			break;
1218 
1219 		metaslab_passivate(msp, space_map_maxsize(&msp->ms_map));
1220 
1221 		mutex_exit(&msp->ms_lock);
1222 	}
1223 
1224 	if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
1225 		vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
1226 
1227 	space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
1228 
1229 	mutex_exit(&msp->ms_lock);
1230 
1231 	return (offset);
1232 }
1233 
1234 /*
1235  * Allocate a block for the specified i/o.
1236  */
1237 static int
1238 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
1239     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
1240 {
1241 	metaslab_group_t *mg, *rotor;
1242 	vdev_t *vd;
1243 	int dshift = 3;
1244 	int all_zero;
1245 	int zio_lock = B_FALSE;
1246 	boolean_t allocatable;
1247 	uint64_t offset = -1ULL;
1248 	uint64_t asize;
1249 	uint64_t distance;
1250 
1251 	ASSERT(!DVA_IS_VALID(&dva[d]));
1252 
1253 	/*
1254 	 * For testing, make some blocks above a certain size be gang blocks.
1255 	 */
1256 	if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
1257 		return (ENOSPC);
1258 
1259 	/*
1260 	 * Start at the rotor and loop through all mgs until we find something.
1261 	 * Note that there's no locking on mc_rotor or mc_aliquot because
1262 	 * nothing actually breaks if we miss a few updates -- we just won't
1263 	 * allocate quite as evenly.  It all balances out over time.
1264 	 *
1265 	 * If we are doing ditto or log blocks, try to spread them across
1266 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
1267 	 * allocated all of our ditto blocks, then try and spread them out on
1268 	 * that vdev as much as possible.  If it turns out to not be possible,
1269 	 * gradually lower our standards until anything becomes acceptable.
1270 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
1271 	 * gives us hope of containing our fault domains to something we're
1272 	 * able to reason about.  Otherwise, any two top-level vdev failures
1273 	 * will guarantee the loss of data.  With consecutive allocation,
1274 	 * only two adjacent top-level vdev failures will result in data loss.
1275 	 *
1276 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
1277 	 * ourselves on the same vdev as our gang block header.  That
1278 	 * way, we can hope for locality in vdev_cache, plus it makes our
1279 	 * fault domains something tractable.
1280 	 */
1281 	if (hintdva) {
1282 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
1283 
1284 		/*
1285 		 * It's possible the vdev we're using as the hint no
1286 		 * longer exists (i.e. removed). Consult the rotor when
1287 		 * all else fails.
1288 		 */
1289 		if (vd != NULL) {
1290 			mg = vd->vdev_mg;
1291 
1292 			if (flags & METASLAB_HINTBP_AVOID &&
1293 			    mg->mg_next != NULL)
1294 				mg = mg->mg_next;
1295 		} else {
1296 			mg = mc->mc_rotor;
1297 		}
1298 	} else if (d != 0) {
1299 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
1300 		mg = vd->vdev_mg->mg_next;
1301 	} else {
1302 		mg = mc->mc_rotor;
1303 	}
1304 
1305 	/*
1306 	 * If the hint put us into the wrong metaslab class, or into a
1307 	 * metaslab group that has been passivated, just follow the rotor.
1308 	 */
1309 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
1310 		mg = mc->mc_rotor;
1311 
1312 	rotor = mg;
1313 top:
1314 	all_zero = B_TRUE;
1315 	do {
1316 		ASSERT(mg->mg_activation_count == 1);
1317 
1318 		vd = mg->mg_vd;
1319 
1320 		/*
1321 		 * Don't allocate from faulted devices.
1322 		 */
1323 		if (zio_lock) {
1324 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1325 			allocatable = vdev_allocatable(vd);
1326 			spa_config_exit(spa, SCL_ZIO, FTAG);
1327 		} else {
1328 			allocatable = vdev_allocatable(vd);
1329 		}
1330 		if (!allocatable)
1331 			goto next;
1332 
1333 		/*
1334 		 * Avoid writing single-copy data to a failing vdev
1335 		 */
1336 		if ((vd->vdev_stat.vs_write_errors > 0 ||
1337 		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
1338 		    d == 0 && dshift == 3) {
1339 			all_zero = B_FALSE;
1340 			goto next;
1341 		}
1342 
1343 		ASSERT(mg->mg_class == mc);
1344 
1345 		distance = vd->vdev_asize >> dshift;
1346 		if (distance <= (1ULL << vd->vdev_ms_shift))
1347 			distance = 0;
1348 		else
1349 			all_zero = B_FALSE;
1350 
1351 		asize = vdev_psize_to_asize(vd, psize);
1352 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
1353 
1354 		offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d);
1355 		if (offset != -1ULL) {
1356 			/*
1357 			 * If we've just selected this metaslab group,
1358 			 * figure out whether the corresponding vdev is
1359 			 * over- or under-used relative to the pool,
1360 			 * and set an allocation bias to even it out.
1361 			 */
1362 			if (mc->mc_aliquot == 0) {
1363 				vdev_stat_t *vs = &vd->vdev_stat;
1364 				int64_t vu, cu;
1365 
1366 				/*
1367 				 * Determine percent used in units of 0..1024.
1368 				 * (This is just to avoid floating point.)
1369 				 */
1370 				vu = (vs->vs_alloc << 10) / (vs->vs_space + 1);
1371 				cu = (mc->mc_alloc << 10) / (mc->mc_space + 1);
1372 
1373 				/*
1374 				 * Bias by at most +/- 25% of the aliquot.
1375 				 */
1376 				mg->mg_bias = ((cu - vu) *
1377 				    (int64_t)mg->mg_aliquot) / (1024 * 4);
1378 			}
1379 
1380 			if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
1381 			    mg->mg_aliquot + mg->mg_bias) {
1382 				mc->mc_rotor = mg->mg_next;
1383 				mc->mc_aliquot = 0;
1384 			}
1385 
1386 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
1387 			DVA_SET_OFFSET(&dva[d], offset);
1388 			DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
1389 			DVA_SET_ASIZE(&dva[d], asize);
1390 
1391 			return (0);
1392 		}
1393 next:
1394 		mc->mc_rotor = mg->mg_next;
1395 		mc->mc_aliquot = 0;
1396 	} while ((mg = mg->mg_next) != rotor);
1397 
1398 	if (!all_zero) {
1399 		dshift++;
1400 		ASSERT(dshift < 64);
1401 		goto top;
1402 	}
1403 
1404 	if (!allocatable && !zio_lock) {
1405 		dshift = 3;
1406 		zio_lock = B_TRUE;
1407 		goto top;
1408 	}
1409 
1410 	bzero(&dva[d], sizeof (dva_t));
1411 
1412 	return (ENOSPC);
1413 }
1414 
1415 /*
1416  * Free the block represented by DVA in the context of the specified
1417  * transaction group.
1418  */
1419 static void
1420 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
1421 {
1422 	uint64_t vdev = DVA_GET_VDEV(dva);
1423 	uint64_t offset = DVA_GET_OFFSET(dva);
1424 	uint64_t size = DVA_GET_ASIZE(dva);
1425 	vdev_t *vd;
1426 	metaslab_t *msp;
1427 
1428 	ASSERT(DVA_IS_VALID(dva));
1429 
1430 	if (txg > spa_freeze_txg(spa))
1431 		return;
1432 
1433 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1434 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
1435 		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
1436 		    (u_longlong_t)vdev, (u_longlong_t)offset);
1437 		ASSERT(0);
1438 		return;
1439 	}
1440 
1441 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1442 
1443 	if (DVA_GET_GANG(dva))
1444 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1445 
1446 	mutex_enter(&msp->ms_lock);
1447 
1448 	if (now) {
1449 		space_map_remove(&msp->ms_allocmap[txg & TXG_MASK],
1450 		    offset, size);
1451 		space_map_free(&msp->ms_map, offset, size);
1452 	} else {
1453 		if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0)
1454 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
1455 		space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size);
1456 	}
1457 
1458 	mutex_exit(&msp->ms_lock);
1459 }
1460 
1461 /*
1462  * Intent log support: upon opening the pool after a crash, notify the SPA
1463  * of blocks that the intent log has allocated for immediate write, but
1464  * which are still considered free by the SPA because the last transaction
1465  * group didn't commit yet.
1466  */
1467 static int
1468 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
1469 {
1470 	uint64_t vdev = DVA_GET_VDEV(dva);
1471 	uint64_t offset = DVA_GET_OFFSET(dva);
1472 	uint64_t size = DVA_GET_ASIZE(dva);
1473 	vdev_t *vd;
1474 	metaslab_t *msp;
1475 	int error = 0;
1476 
1477 	ASSERT(DVA_IS_VALID(dva));
1478 
1479 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1480 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
1481 		return (ENXIO);
1482 
1483 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1484 
1485 	if (DVA_GET_GANG(dva))
1486 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1487 
1488 	mutex_enter(&msp->ms_lock);
1489 
1490 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map.sm_loaded)
1491 		error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY, 0);
1492 
1493 	if (error == 0 && !space_map_contains(&msp->ms_map, offset, size))
1494 		error = ENOENT;
1495 
1496 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
1497 		mutex_exit(&msp->ms_lock);
1498 		return (error);
1499 	}
1500 
1501 	space_map_claim(&msp->ms_map, offset, size);
1502 
1503 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
1504 		if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
1505 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
1506 		space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
1507 	}
1508 
1509 	mutex_exit(&msp->ms_lock);
1510 
1511 	return (0);
1512 }
1513 
1514 int
1515 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
1516     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
1517 {
1518 	dva_t *dva = bp->blk_dva;
1519 	dva_t *hintdva = hintbp->blk_dva;
1520 	int error = 0;
1521 
1522 	ASSERT(bp->blk_birth == 0);
1523 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
1524 
1525 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1526 
1527 	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
1528 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1529 		return (ENOSPC);
1530 	}
1531 
1532 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
1533 	ASSERT(BP_GET_NDVAS(bp) == 0);
1534 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
1535 
1536 	for (int d = 0; d < ndvas; d++) {
1537 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
1538 		    txg, flags);
1539 		if (error) {
1540 			for (d--; d >= 0; d--) {
1541 				metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
1542 				bzero(&dva[d], sizeof (dva_t));
1543 			}
1544 			spa_config_exit(spa, SCL_ALLOC, FTAG);
1545 			return (error);
1546 		}
1547 	}
1548 	ASSERT(error == 0);
1549 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
1550 
1551 	spa_config_exit(spa, SCL_ALLOC, FTAG);
1552 
1553 	BP_SET_BIRTH(bp, txg, txg);
1554 
1555 	return (0);
1556 }
1557 
1558 void
1559 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
1560 {
1561 	const dva_t *dva = bp->blk_dva;
1562 	int ndvas = BP_GET_NDVAS(bp);
1563 
1564 	ASSERT(!BP_IS_HOLE(bp));
1565 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
1566 
1567 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
1568 
1569 	for (int d = 0; d < ndvas; d++)
1570 		metaslab_free_dva(spa, &dva[d], txg, now);
1571 
1572 	spa_config_exit(spa, SCL_FREE, FTAG);
1573 }
1574 
1575 int
1576 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
1577 {
1578 	const dva_t *dva = bp->blk_dva;
1579 	int ndvas = BP_GET_NDVAS(bp);
1580 	int error = 0;
1581 
1582 	ASSERT(!BP_IS_HOLE(bp));
1583 
1584 	if (txg != 0) {
1585 		/*
1586 		 * First do a dry run to make sure all DVAs are claimable,
1587 		 * so we don't have to unwind from partial failures below.
1588 		 */
1589 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
1590 			return (error);
1591 	}
1592 
1593 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1594 
1595 	for (int d = 0; d < ndvas; d++)
1596 		if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
1597 			break;
1598 
1599 	spa_config_exit(spa, SCL_ALLOC, FTAG);
1600 
1601 	ASSERT(error == 0 || txg == 0);
1602 
1603 	return (error);
1604 }
1605