xref: /illumos-gate/usr/src/uts/common/fs/zfs/metaslab.c (revision 7855d95b30fd903e3918bad5a29b777e765db821)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/space_map.h>
32 #include <sys/metaslab_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zfeature.h>
37 
38 #define	GANG_ALLOCATION(flags) \
39 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
40 
41 uint64_t metaslab_aliquot = 512ULL << 10;
42 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1;	/* force gang blocks */
43 
44 /*
45  * The in-core space map representation is more compact than its on-disk form.
46  * The zfs_condense_pct determines how much more compact the in-core
47  * space map representation must be before we compact it on-disk.
48  * Values should be greater than or equal to 100.
49  */
50 int zfs_condense_pct = 200;
51 
52 /*
53  * Condensing a metaslab is not guaranteed to actually reduce the amount of
54  * space used on disk. In particular, a space map uses data in increments of
55  * MAX(1 << ashift, space_map_blksize), so a metaslab might use the
56  * same number of blocks after condensing. Since the goal of condensing is to
57  * reduce the number of IOPs required to read the space map, we only want to
58  * condense when we can be sure we will reduce the number of blocks used by the
59  * space map. Unfortunately, we cannot precisely compute whether or not this is
60  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
61  * we apply the following heuristic: do not condense a spacemap unless the
62  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
63  * blocks.
64  */
65 int zfs_metaslab_condense_block_threshold = 4;
66 
67 /*
68  * The zfs_mg_noalloc_threshold defines which metaslab groups should
69  * be eligible for allocation. The value is defined as a percentage of
70  * free space. Metaslab groups that have more free space than
71  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
72  * a metaslab group's free space is less than or equal to the
73  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
74  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
75  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
76  * groups are allowed to accept allocations. Gang blocks are always
77  * eligible to allocate on any metaslab group. The default value of 0 means
78  * no metaslab group will be excluded based on this criterion.
79  */
80 int zfs_mg_noalloc_threshold = 0;
81 
82 /*
83  * Metaslab groups are considered eligible for allocations if their
84  * fragmenation metric (measured as a percentage) is less than or equal to
85  * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
86  * then it will be skipped unless all metaslab groups within the metaslab
87  * class have also crossed this threshold.
88  */
89 int zfs_mg_fragmentation_threshold = 85;
90 
91 /*
92  * Allow metaslabs to keep their active state as long as their fragmentation
93  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
94  * active metaslab that exceeds this threshold will no longer keep its active
95  * status allowing better metaslabs to be selected.
96  */
97 int zfs_metaslab_fragmentation_threshold = 70;
98 
99 /*
100  * When set will load all metaslabs when pool is first opened.
101  */
102 int metaslab_debug_load = 0;
103 
104 /*
105  * When set will prevent metaslabs from being unloaded.
106  */
107 int metaslab_debug_unload = 0;
108 
109 /*
110  * Minimum size which forces the dynamic allocator to change
111  * it's allocation strategy.  Once the space map cannot satisfy
112  * an allocation of this size then it switches to using more
113  * aggressive strategy (i.e search by size rather than offset).
114  */
115 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
116 
117 /*
118  * The minimum free space, in percent, which must be available
119  * in a space map to continue allocations in a first-fit fashion.
120  * Once the space map's free space drops below this level we dynamically
121  * switch to using best-fit allocations.
122  */
123 int metaslab_df_free_pct = 4;
124 
125 /*
126  * A metaslab is considered "free" if it contains a contiguous
127  * segment which is greater than metaslab_min_alloc_size.
128  */
129 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
130 
131 /*
132  * Percentage of all cpus that can be used by the metaslab taskq.
133  */
134 int metaslab_load_pct = 50;
135 
136 /*
137  * Determines how many txgs a metaslab may remain loaded without having any
138  * allocations from it. As long as a metaslab continues to be used we will
139  * keep it loaded.
140  */
141 int metaslab_unload_delay = TXG_SIZE * 2;
142 
143 /*
144  * Max number of metaslabs per group to preload.
145  */
146 int metaslab_preload_limit = SPA_DVAS_PER_BP;
147 
148 /*
149  * Enable/disable preloading of metaslab.
150  */
151 boolean_t metaslab_preload_enabled = B_TRUE;
152 
153 /*
154  * Enable/disable fragmentation weighting on metaslabs.
155  */
156 boolean_t metaslab_fragmentation_factor_enabled = B_TRUE;
157 
158 /*
159  * Enable/disable lba weighting (i.e. outer tracks are given preference).
160  */
161 boolean_t metaslab_lba_weighting_enabled = B_TRUE;
162 
163 /*
164  * Enable/disable metaslab group biasing.
165  */
166 boolean_t metaslab_bias_enabled = B_TRUE;
167 
168 /*
169  * Enable/disable segment-based metaslab selection.
170  */
171 boolean_t zfs_metaslab_segment_weight_enabled = B_TRUE;
172 
173 /*
174  * When using segment-based metaslab selection, we will continue
175  * allocating from the active metaslab until we have exhausted
176  * zfs_metaslab_switch_threshold of its buckets.
177  */
178 int zfs_metaslab_switch_threshold = 2;
179 
180 /*
181  * Internal switch to enable/disable the metaslab allocation tracing
182  * facility.
183  */
184 boolean_t metaslab_trace_enabled = B_TRUE;
185 
186 /*
187  * Maximum entries that the metaslab allocation tracing facility will keep
188  * in a given list when running in non-debug mode. We limit the number
189  * of entries in non-debug mode to prevent us from using up too much memory.
190  * The limit should be sufficiently large that we don't expect any allocation
191  * to every exceed this value. In debug mode, the system will panic if this
192  * limit is ever reached allowing for further investigation.
193  */
194 uint64_t metaslab_trace_max_entries = 5000;
195 
196 static uint64_t metaslab_weight(metaslab_t *);
197 static void metaslab_set_fragmentation(metaslab_t *);
198 
199 kmem_cache_t *metaslab_alloc_trace_cache;
200 
201 /*
202  * ==========================================================================
203  * Metaslab classes
204  * ==========================================================================
205  */
206 metaslab_class_t *
207 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
208 {
209 	metaslab_class_t *mc;
210 
211 	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
212 
213 	mc->mc_spa = spa;
214 	mc->mc_rotor = NULL;
215 	mc->mc_ops = ops;
216 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
217 	refcount_create_tracked(&mc->mc_alloc_slots);
218 
219 	return (mc);
220 }
221 
222 void
223 metaslab_class_destroy(metaslab_class_t *mc)
224 {
225 	ASSERT(mc->mc_rotor == NULL);
226 	ASSERT(mc->mc_alloc == 0);
227 	ASSERT(mc->mc_deferred == 0);
228 	ASSERT(mc->mc_space == 0);
229 	ASSERT(mc->mc_dspace == 0);
230 
231 	refcount_destroy(&mc->mc_alloc_slots);
232 	mutex_destroy(&mc->mc_lock);
233 	kmem_free(mc, sizeof (metaslab_class_t));
234 }
235 
236 int
237 metaslab_class_validate(metaslab_class_t *mc)
238 {
239 	metaslab_group_t *mg;
240 	vdev_t *vd;
241 
242 	/*
243 	 * Must hold one of the spa_config locks.
244 	 */
245 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
246 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
247 
248 	if ((mg = mc->mc_rotor) == NULL)
249 		return (0);
250 
251 	do {
252 		vd = mg->mg_vd;
253 		ASSERT(vd->vdev_mg != NULL);
254 		ASSERT3P(vd->vdev_top, ==, vd);
255 		ASSERT3P(mg->mg_class, ==, mc);
256 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
257 	} while ((mg = mg->mg_next) != mc->mc_rotor);
258 
259 	return (0);
260 }
261 
262 void
263 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
264     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
265 {
266 	atomic_add_64(&mc->mc_alloc, alloc_delta);
267 	atomic_add_64(&mc->mc_deferred, defer_delta);
268 	atomic_add_64(&mc->mc_space, space_delta);
269 	atomic_add_64(&mc->mc_dspace, dspace_delta);
270 }
271 
272 uint64_t
273 metaslab_class_get_alloc(metaslab_class_t *mc)
274 {
275 	return (mc->mc_alloc);
276 }
277 
278 uint64_t
279 metaslab_class_get_deferred(metaslab_class_t *mc)
280 {
281 	return (mc->mc_deferred);
282 }
283 
284 uint64_t
285 metaslab_class_get_space(metaslab_class_t *mc)
286 {
287 	return (mc->mc_space);
288 }
289 
290 uint64_t
291 metaslab_class_get_dspace(metaslab_class_t *mc)
292 {
293 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
294 }
295 
296 void
297 metaslab_class_histogram_verify(metaslab_class_t *mc)
298 {
299 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
300 	uint64_t *mc_hist;
301 	int i;
302 
303 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
304 		return;
305 
306 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
307 	    KM_SLEEP);
308 
309 	for (int c = 0; c < rvd->vdev_children; c++) {
310 		vdev_t *tvd = rvd->vdev_child[c];
311 		metaslab_group_t *mg = tvd->vdev_mg;
312 
313 		/*
314 		 * Skip any holes, uninitialized top-levels, or
315 		 * vdevs that are not in this metalab class.
316 		 */
317 		if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
318 		    mg->mg_class != mc) {
319 			continue;
320 		}
321 
322 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
323 			mc_hist[i] += mg->mg_histogram[i];
324 	}
325 
326 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
327 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
328 
329 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
330 }
331 
332 /*
333  * Calculate the metaslab class's fragmentation metric. The metric
334  * is weighted based on the space contribution of each metaslab group.
335  * The return value will be a number between 0 and 100 (inclusive), or
336  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
337  * zfs_frag_table for more information about the metric.
338  */
339 uint64_t
340 metaslab_class_fragmentation(metaslab_class_t *mc)
341 {
342 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
343 	uint64_t fragmentation = 0;
344 
345 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
346 
347 	for (int c = 0; c < rvd->vdev_children; c++) {
348 		vdev_t *tvd = rvd->vdev_child[c];
349 		metaslab_group_t *mg = tvd->vdev_mg;
350 
351 		/*
352 		 * Skip any holes, uninitialized top-levels, or
353 		 * vdevs that are not in this metalab class.
354 		 */
355 		if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
356 		    mg->mg_class != mc) {
357 			continue;
358 		}
359 
360 		/*
361 		 * If a metaslab group does not contain a fragmentation
362 		 * metric then just bail out.
363 		 */
364 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
365 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
366 			return (ZFS_FRAG_INVALID);
367 		}
368 
369 		/*
370 		 * Determine how much this metaslab_group is contributing
371 		 * to the overall pool fragmentation metric.
372 		 */
373 		fragmentation += mg->mg_fragmentation *
374 		    metaslab_group_get_space(mg);
375 	}
376 	fragmentation /= metaslab_class_get_space(mc);
377 
378 	ASSERT3U(fragmentation, <=, 100);
379 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
380 	return (fragmentation);
381 }
382 
383 /*
384  * Calculate the amount of expandable space that is available in
385  * this metaslab class. If a device is expanded then its expandable
386  * space will be the amount of allocatable space that is currently not
387  * part of this metaslab class.
388  */
389 uint64_t
390 metaslab_class_expandable_space(metaslab_class_t *mc)
391 {
392 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
393 	uint64_t space = 0;
394 
395 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
396 	for (int c = 0; c < rvd->vdev_children; c++) {
397 		uint64_t tspace;
398 		vdev_t *tvd = rvd->vdev_child[c];
399 		metaslab_group_t *mg = tvd->vdev_mg;
400 
401 		if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
402 		    mg->mg_class != mc) {
403 			continue;
404 		}
405 
406 		/*
407 		 * Calculate if we have enough space to add additional
408 		 * metaslabs. We report the expandable space in terms
409 		 * of the metaslab size since that's the unit of expansion.
410 		 * Adjust by efi system partition size.
411 		 */
412 		tspace = tvd->vdev_max_asize - tvd->vdev_asize;
413 		if (tspace > mc->mc_spa->spa_bootsize) {
414 			tspace -= mc->mc_spa->spa_bootsize;
415 		}
416 		space += P2ALIGN(tspace, 1ULL << tvd->vdev_ms_shift);
417 	}
418 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
419 	return (space);
420 }
421 
422 static int
423 metaslab_compare(const void *x1, const void *x2)
424 {
425 	const metaslab_t *m1 = x1;
426 	const metaslab_t *m2 = x2;
427 
428 	if (m1->ms_weight < m2->ms_weight)
429 		return (1);
430 	if (m1->ms_weight > m2->ms_weight)
431 		return (-1);
432 
433 	/*
434 	 * If the weights are identical, use the offset to force uniqueness.
435 	 */
436 	if (m1->ms_start < m2->ms_start)
437 		return (-1);
438 	if (m1->ms_start > m2->ms_start)
439 		return (1);
440 
441 	ASSERT3P(m1, ==, m2);
442 
443 	return (0);
444 }
445 
446 /*
447  * Verify that the space accounting on disk matches the in-core range_trees.
448  */
449 void
450 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
451 {
452 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
453 	uint64_t allocated = 0;
454 	uint64_t sm_free_space, msp_free_space;
455 
456 	ASSERT(MUTEX_HELD(&msp->ms_lock));
457 
458 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
459 		return;
460 
461 	/*
462 	 * We can only verify the metaslab space when we're called
463 	 * from syncing context with a loaded metaslab that has an allocated
464 	 * space map. Calling this in non-syncing context does not
465 	 * provide a consistent view of the metaslab since we're performing
466 	 * allocations in the future.
467 	 */
468 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
469 	    !msp->ms_loaded)
470 		return;
471 
472 	sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) -
473 	    space_map_alloc_delta(msp->ms_sm);
474 
475 	/*
476 	 * Account for future allocations since we would have already
477 	 * deducted that space from the ms_freetree.
478 	 */
479 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
480 		allocated +=
481 		    range_tree_space(msp->ms_alloctree[(txg + t) & TXG_MASK]);
482 	}
483 
484 	msp_free_space = range_tree_space(msp->ms_tree) + allocated +
485 	    msp->ms_deferspace + range_tree_space(msp->ms_freedtree);
486 
487 	VERIFY3U(sm_free_space, ==, msp_free_space);
488 }
489 
490 /*
491  * ==========================================================================
492  * Metaslab groups
493  * ==========================================================================
494  */
495 /*
496  * Update the allocatable flag and the metaslab group's capacity.
497  * The allocatable flag is set to true if the capacity is below
498  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
499  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
500  * transitions from allocatable to non-allocatable or vice versa then the
501  * metaslab group's class is updated to reflect the transition.
502  */
503 static void
504 metaslab_group_alloc_update(metaslab_group_t *mg)
505 {
506 	vdev_t *vd = mg->mg_vd;
507 	metaslab_class_t *mc = mg->mg_class;
508 	vdev_stat_t *vs = &vd->vdev_stat;
509 	boolean_t was_allocatable;
510 	boolean_t was_initialized;
511 
512 	ASSERT(vd == vd->vdev_top);
513 
514 	mutex_enter(&mg->mg_lock);
515 	was_allocatable = mg->mg_allocatable;
516 	was_initialized = mg->mg_initialized;
517 
518 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
519 	    (vs->vs_space + 1);
520 
521 	mutex_enter(&mc->mc_lock);
522 
523 	/*
524 	 * If the metaslab group was just added then it won't
525 	 * have any space until we finish syncing out this txg.
526 	 * At that point we will consider it initialized and available
527 	 * for allocations.  We also don't consider non-activated
528 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
529 	 * to be initialized, because they can't be used for allocation.
530 	 */
531 	mg->mg_initialized = metaslab_group_initialized(mg);
532 	if (!was_initialized && mg->mg_initialized) {
533 		mc->mc_groups++;
534 	} else if (was_initialized && !mg->mg_initialized) {
535 		ASSERT3U(mc->mc_groups, >, 0);
536 		mc->mc_groups--;
537 	}
538 	if (mg->mg_initialized)
539 		mg->mg_no_free_space = B_FALSE;
540 
541 	/*
542 	 * A metaslab group is considered allocatable if it has plenty
543 	 * of free space or is not heavily fragmented. We only take
544 	 * fragmentation into account if the metaslab group has a valid
545 	 * fragmentation metric (i.e. a value between 0 and 100).
546 	 */
547 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
548 	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
549 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
550 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
551 
552 	/*
553 	 * The mc_alloc_groups maintains a count of the number of
554 	 * groups in this metaslab class that are still above the
555 	 * zfs_mg_noalloc_threshold. This is used by the allocating
556 	 * threads to determine if they should avoid allocations to
557 	 * a given group. The allocator will avoid allocations to a group
558 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
559 	 * and there are still other groups that are above the threshold.
560 	 * When a group transitions from allocatable to non-allocatable or
561 	 * vice versa we update the metaslab class to reflect that change.
562 	 * When the mc_alloc_groups value drops to 0 that means that all
563 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
564 	 * eligible for allocations. This effectively means that all devices
565 	 * are balanced again.
566 	 */
567 	if (was_allocatable && !mg->mg_allocatable)
568 		mc->mc_alloc_groups--;
569 	else if (!was_allocatable && mg->mg_allocatable)
570 		mc->mc_alloc_groups++;
571 	mutex_exit(&mc->mc_lock);
572 
573 	mutex_exit(&mg->mg_lock);
574 }
575 
576 metaslab_group_t *
577 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
578 {
579 	metaslab_group_t *mg;
580 
581 	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
582 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
583 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
584 	    sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
585 	mg->mg_vd = vd;
586 	mg->mg_class = mc;
587 	mg->mg_activation_count = 0;
588 	mg->mg_initialized = B_FALSE;
589 	mg->mg_no_free_space = B_TRUE;
590 	refcount_create_tracked(&mg->mg_alloc_queue_depth);
591 
592 	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
593 	    minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
594 
595 	return (mg);
596 }
597 
598 void
599 metaslab_group_destroy(metaslab_group_t *mg)
600 {
601 	ASSERT(mg->mg_prev == NULL);
602 	ASSERT(mg->mg_next == NULL);
603 	/*
604 	 * We may have gone below zero with the activation count
605 	 * either because we never activated in the first place or
606 	 * because we're done, and possibly removing the vdev.
607 	 */
608 	ASSERT(mg->mg_activation_count <= 0);
609 
610 	taskq_destroy(mg->mg_taskq);
611 	avl_destroy(&mg->mg_metaslab_tree);
612 	mutex_destroy(&mg->mg_lock);
613 	refcount_destroy(&mg->mg_alloc_queue_depth);
614 	kmem_free(mg, sizeof (metaslab_group_t));
615 }
616 
617 void
618 metaslab_group_activate(metaslab_group_t *mg)
619 {
620 	metaslab_class_t *mc = mg->mg_class;
621 	metaslab_group_t *mgprev, *mgnext;
622 
623 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
624 
625 	ASSERT(mc->mc_rotor != mg);
626 	ASSERT(mg->mg_prev == NULL);
627 	ASSERT(mg->mg_next == NULL);
628 	ASSERT(mg->mg_activation_count <= 0);
629 
630 	if (++mg->mg_activation_count <= 0)
631 		return;
632 
633 	mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
634 	metaslab_group_alloc_update(mg);
635 
636 	if ((mgprev = mc->mc_rotor) == NULL) {
637 		mg->mg_prev = mg;
638 		mg->mg_next = mg;
639 	} else {
640 		mgnext = mgprev->mg_next;
641 		mg->mg_prev = mgprev;
642 		mg->mg_next = mgnext;
643 		mgprev->mg_next = mg;
644 		mgnext->mg_prev = mg;
645 	}
646 	mc->mc_rotor = mg;
647 }
648 
649 void
650 metaslab_group_passivate(metaslab_group_t *mg)
651 {
652 	metaslab_class_t *mc = mg->mg_class;
653 	metaslab_group_t *mgprev, *mgnext;
654 
655 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
656 
657 	if (--mg->mg_activation_count != 0) {
658 		ASSERT(mc->mc_rotor != mg);
659 		ASSERT(mg->mg_prev == NULL);
660 		ASSERT(mg->mg_next == NULL);
661 		ASSERT(mg->mg_activation_count < 0);
662 		return;
663 	}
664 
665 	taskq_wait(mg->mg_taskq);
666 	metaslab_group_alloc_update(mg);
667 
668 	mgprev = mg->mg_prev;
669 	mgnext = mg->mg_next;
670 
671 	if (mg == mgnext) {
672 		mc->mc_rotor = NULL;
673 	} else {
674 		mc->mc_rotor = mgnext;
675 		mgprev->mg_next = mgnext;
676 		mgnext->mg_prev = mgprev;
677 	}
678 
679 	mg->mg_prev = NULL;
680 	mg->mg_next = NULL;
681 }
682 
683 boolean_t
684 metaslab_group_initialized(metaslab_group_t *mg)
685 {
686 	vdev_t *vd = mg->mg_vd;
687 	vdev_stat_t *vs = &vd->vdev_stat;
688 
689 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
690 }
691 
692 uint64_t
693 metaslab_group_get_space(metaslab_group_t *mg)
694 {
695 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
696 }
697 
698 void
699 metaslab_group_histogram_verify(metaslab_group_t *mg)
700 {
701 	uint64_t *mg_hist;
702 	vdev_t *vd = mg->mg_vd;
703 	uint64_t ashift = vd->vdev_ashift;
704 	int i;
705 
706 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
707 		return;
708 
709 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
710 	    KM_SLEEP);
711 
712 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
713 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
714 
715 	for (int m = 0; m < vd->vdev_ms_count; m++) {
716 		metaslab_t *msp = vd->vdev_ms[m];
717 
718 		if (msp->ms_sm == NULL)
719 			continue;
720 
721 		for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
722 			mg_hist[i + ashift] +=
723 			    msp->ms_sm->sm_phys->smp_histogram[i];
724 	}
725 
726 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
727 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
728 
729 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
730 }
731 
732 static void
733 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
734 {
735 	metaslab_class_t *mc = mg->mg_class;
736 	uint64_t ashift = mg->mg_vd->vdev_ashift;
737 
738 	ASSERT(MUTEX_HELD(&msp->ms_lock));
739 	if (msp->ms_sm == NULL)
740 		return;
741 
742 	mutex_enter(&mg->mg_lock);
743 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
744 		mg->mg_histogram[i + ashift] +=
745 		    msp->ms_sm->sm_phys->smp_histogram[i];
746 		mc->mc_histogram[i + ashift] +=
747 		    msp->ms_sm->sm_phys->smp_histogram[i];
748 	}
749 	mutex_exit(&mg->mg_lock);
750 }
751 
752 void
753 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
754 {
755 	metaslab_class_t *mc = mg->mg_class;
756 	uint64_t ashift = mg->mg_vd->vdev_ashift;
757 
758 	ASSERT(MUTEX_HELD(&msp->ms_lock));
759 	if (msp->ms_sm == NULL)
760 		return;
761 
762 	mutex_enter(&mg->mg_lock);
763 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
764 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
765 		    msp->ms_sm->sm_phys->smp_histogram[i]);
766 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
767 		    msp->ms_sm->sm_phys->smp_histogram[i]);
768 
769 		mg->mg_histogram[i + ashift] -=
770 		    msp->ms_sm->sm_phys->smp_histogram[i];
771 		mc->mc_histogram[i + ashift] -=
772 		    msp->ms_sm->sm_phys->smp_histogram[i];
773 	}
774 	mutex_exit(&mg->mg_lock);
775 }
776 
777 static void
778 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
779 {
780 	ASSERT(msp->ms_group == NULL);
781 	mutex_enter(&mg->mg_lock);
782 	msp->ms_group = mg;
783 	msp->ms_weight = 0;
784 	avl_add(&mg->mg_metaslab_tree, msp);
785 	mutex_exit(&mg->mg_lock);
786 
787 	mutex_enter(&msp->ms_lock);
788 	metaslab_group_histogram_add(mg, msp);
789 	mutex_exit(&msp->ms_lock);
790 }
791 
792 static void
793 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
794 {
795 	mutex_enter(&msp->ms_lock);
796 	metaslab_group_histogram_remove(mg, msp);
797 	mutex_exit(&msp->ms_lock);
798 
799 	mutex_enter(&mg->mg_lock);
800 	ASSERT(msp->ms_group == mg);
801 	avl_remove(&mg->mg_metaslab_tree, msp);
802 	msp->ms_group = NULL;
803 	mutex_exit(&mg->mg_lock);
804 }
805 
806 static void
807 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
808 {
809 	/*
810 	 * Although in principle the weight can be any value, in
811 	 * practice we do not use values in the range [1, 511].
812 	 */
813 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
814 	ASSERT(MUTEX_HELD(&msp->ms_lock));
815 
816 	mutex_enter(&mg->mg_lock);
817 	ASSERT(msp->ms_group == mg);
818 	avl_remove(&mg->mg_metaslab_tree, msp);
819 	msp->ms_weight = weight;
820 	avl_add(&mg->mg_metaslab_tree, msp);
821 	mutex_exit(&mg->mg_lock);
822 }
823 
824 /*
825  * Calculate the fragmentation for a given metaslab group. We can use
826  * a simple average here since all metaslabs within the group must have
827  * the same size. The return value will be a value between 0 and 100
828  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
829  * group have a fragmentation metric.
830  */
831 uint64_t
832 metaslab_group_fragmentation(metaslab_group_t *mg)
833 {
834 	vdev_t *vd = mg->mg_vd;
835 	uint64_t fragmentation = 0;
836 	uint64_t valid_ms = 0;
837 
838 	for (int m = 0; m < vd->vdev_ms_count; m++) {
839 		metaslab_t *msp = vd->vdev_ms[m];
840 
841 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
842 			continue;
843 
844 		valid_ms++;
845 		fragmentation += msp->ms_fragmentation;
846 	}
847 
848 	if (valid_ms <= vd->vdev_ms_count / 2)
849 		return (ZFS_FRAG_INVALID);
850 
851 	fragmentation /= valid_ms;
852 	ASSERT3U(fragmentation, <=, 100);
853 	return (fragmentation);
854 }
855 
856 /*
857  * Determine if a given metaslab group should skip allocations. A metaslab
858  * group should avoid allocations if its free capacity is less than the
859  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
860  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
861  * that can still handle allocations. If the allocation throttle is enabled
862  * then we skip allocations to devices that have reached their maximum
863  * allocation queue depth unless the selected metaslab group is the only
864  * eligible group remaining.
865  */
866 static boolean_t
867 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
868     uint64_t psize)
869 {
870 	spa_t *spa = mg->mg_vd->vdev_spa;
871 	metaslab_class_t *mc = mg->mg_class;
872 
873 	/*
874 	 * We can only consider skipping this metaslab group if it's
875 	 * in the normal metaslab class and there are other metaslab
876 	 * groups to select from. Otherwise, we always consider it eligible
877 	 * for allocations.
878 	 */
879 	if (mc != spa_normal_class(spa) || mc->mc_groups <= 1)
880 		return (B_TRUE);
881 
882 	/*
883 	 * If the metaslab group's mg_allocatable flag is set (see comments
884 	 * in metaslab_group_alloc_update() for more information) and
885 	 * the allocation throttle is disabled then allow allocations to this
886 	 * device. However, if the allocation throttle is enabled then
887 	 * check if we have reached our allocation limit (mg_alloc_queue_depth)
888 	 * to determine if we should allow allocations to this metaslab group.
889 	 * If all metaslab groups are no longer considered allocatable
890 	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
891 	 * gang block size then we allow allocations on this metaslab group
892 	 * regardless of the mg_allocatable or throttle settings.
893 	 */
894 	if (mg->mg_allocatable) {
895 		metaslab_group_t *mgp;
896 		int64_t qdepth;
897 		uint64_t qmax = mg->mg_max_alloc_queue_depth;
898 
899 		if (!mc->mc_alloc_throttle_enabled)
900 			return (B_TRUE);
901 
902 		/*
903 		 * If this metaslab group does not have any free space, then
904 		 * there is no point in looking further.
905 		 */
906 		if (mg->mg_no_free_space)
907 			return (B_FALSE);
908 
909 		qdepth = refcount_count(&mg->mg_alloc_queue_depth);
910 
911 		/*
912 		 * If this metaslab group is below its qmax or it's
913 		 * the only allocatable metasable group, then attempt
914 		 * to allocate from it.
915 		 */
916 		if (qdepth < qmax || mc->mc_alloc_groups == 1)
917 			return (B_TRUE);
918 		ASSERT3U(mc->mc_alloc_groups, >, 1);
919 
920 		/*
921 		 * Since this metaslab group is at or over its qmax, we
922 		 * need to determine if there are metaslab groups after this
923 		 * one that might be able to handle this allocation. This is
924 		 * racy since we can't hold the locks for all metaslab
925 		 * groups at the same time when we make this check.
926 		 */
927 		for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
928 			qmax = mgp->mg_max_alloc_queue_depth;
929 
930 			qdepth = refcount_count(&mgp->mg_alloc_queue_depth);
931 
932 			/*
933 			 * If there is another metaslab group that
934 			 * might be able to handle the allocation, then
935 			 * we return false so that we skip this group.
936 			 */
937 			if (qdepth < qmax && !mgp->mg_no_free_space)
938 				return (B_FALSE);
939 		}
940 
941 		/*
942 		 * We didn't find another group to handle the allocation
943 		 * so we can't skip this metaslab group even though
944 		 * we are at or over our qmax.
945 		 */
946 		return (B_TRUE);
947 
948 	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
949 		return (B_TRUE);
950 	}
951 	return (B_FALSE);
952 }
953 
954 /*
955  * ==========================================================================
956  * Range tree callbacks
957  * ==========================================================================
958  */
959 
960 /*
961  * Comparison function for the private size-ordered tree. Tree is sorted
962  * by size, larger sizes at the end of the tree.
963  */
964 static int
965 metaslab_rangesize_compare(const void *x1, const void *x2)
966 {
967 	const range_seg_t *r1 = x1;
968 	const range_seg_t *r2 = x2;
969 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
970 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
971 
972 	if (rs_size1 < rs_size2)
973 		return (-1);
974 	if (rs_size1 > rs_size2)
975 		return (1);
976 
977 	if (r1->rs_start < r2->rs_start)
978 		return (-1);
979 
980 	if (r1->rs_start > r2->rs_start)
981 		return (1);
982 
983 	return (0);
984 }
985 
986 /*
987  * Create any block allocator specific components. The current allocators
988  * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
989  */
990 static void
991 metaslab_rt_create(range_tree_t *rt, void *arg)
992 {
993 	metaslab_t *msp = arg;
994 
995 	ASSERT3P(rt->rt_arg, ==, msp);
996 	ASSERT(msp->ms_tree == NULL);
997 
998 	avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
999 	    sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
1000 }
1001 
1002 /*
1003  * Destroy the block allocator specific components.
1004  */
1005 static void
1006 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1007 {
1008 	metaslab_t *msp = arg;
1009 
1010 	ASSERT3P(rt->rt_arg, ==, msp);
1011 	ASSERT3P(msp->ms_tree, ==, rt);
1012 	ASSERT0(avl_numnodes(&msp->ms_size_tree));
1013 
1014 	avl_destroy(&msp->ms_size_tree);
1015 }
1016 
1017 static void
1018 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1019 {
1020 	metaslab_t *msp = arg;
1021 
1022 	ASSERT3P(rt->rt_arg, ==, msp);
1023 	ASSERT3P(msp->ms_tree, ==, rt);
1024 	VERIFY(!msp->ms_condensing);
1025 	avl_add(&msp->ms_size_tree, rs);
1026 }
1027 
1028 static void
1029 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1030 {
1031 	metaslab_t *msp = arg;
1032 
1033 	ASSERT3P(rt->rt_arg, ==, msp);
1034 	ASSERT3P(msp->ms_tree, ==, rt);
1035 	VERIFY(!msp->ms_condensing);
1036 	avl_remove(&msp->ms_size_tree, rs);
1037 }
1038 
1039 static void
1040 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1041 {
1042 	metaslab_t *msp = arg;
1043 
1044 	ASSERT3P(rt->rt_arg, ==, msp);
1045 	ASSERT3P(msp->ms_tree, ==, rt);
1046 
1047 	/*
1048 	 * Normally one would walk the tree freeing nodes along the way.
1049 	 * Since the nodes are shared with the range trees we can avoid
1050 	 * walking all nodes and just reinitialize the avl tree. The nodes
1051 	 * will be freed by the range tree, so we don't want to free them here.
1052 	 */
1053 	avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
1054 	    sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
1055 }
1056 
1057 static range_tree_ops_t metaslab_rt_ops = {
1058 	metaslab_rt_create,
1059 	metaslab_rt_destroy,
1060 	metaslab_rt_add,
1061 	metaslab_rt_remove,
1062 	metaslab_rt_vacate
1063 };
1064 
1065 /*
1066  * ==========================================================================
1067  * Common allocator routines
1068  * ==========================================================================
1069  */
1070 
1071 /*
1072  * Return the maximum contiguous segment within the metaslab.
1073  */
1074 uint64_t
1075 metaslab_block_maxsize(metaslab_t *msp)
1076 {
1077 	avl_tree_t *t = &msp->ms_size_tree;
1078 	range_seg_t *rs;
1079 
1080 	if (t == NULL || (rs = avl_last(t)) == NULL)
1081 		return (0ULL);
1082 
1083 	return (rs->rs_end - rs->rs_start);
1084 }
1085 
1086 static range_seg_t *
1087 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
1088 {
1089 	range_seg_t *rs, rsearch;
1090 	avl_index_t where;
1091 
1092 	rsearch.rs_start = start;
1093 	rsearch.rs_end = start + size;
1094 
1095 	rs = avl_find(t, &rsearch, &where);
1096 	if (rs == NULL) {
1097 		rs = avl_nearest(t, where, AVL_AFTER);
1098 	}
1099 
1100 	return (rs);
1101 }
1102 
1103 /*
1104  * This is a helper function that can be used by the allocator to find
1105  * a suitable block to allocate. This will search the specified AVL
1106  * tree looking for a block that matches the specified criteria.
1107  */
1108 static uint64_t
1109 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1110     uint64_t align)
1111 {
1112 	range_seg_t *rs = metaslab_block_find(t, *cursor, size);
1113 
1114 	while (rs != NULL) {
1115 		uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1116 
1117 		if (offset + size <= rs->rs_end) {
1118 			*cursor = offset + size;
1119 			return (offset);
1120 		}
1121 		rs = AVL_NEXT(t, rs);
1122 	}
1123 
1124 	/*
1125 	 * If we know we've searched the whole map (*cursor == 0), give up.
1126 	 * Otherwise, reset the cursor to the beginning and try again.
1127 	 */
1128 	if (*cursor == 0)
1129 		return (-1ULL);
1130 
1131 	*cursor = 0;
1132 	return (metaslab_block_picker(t, cursor, size, align));
1133 }
1134 
1135 /*
1136  * ==========================================================================
1137  * The first-fit block allocator
1138  * ==========================================================================
1139  */
1140 static uint64_t
1141 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
1142 {
1143 	/*
1144 	 * Find the largest power of 2 block size that evenly divides the
1145 	 * requested size. This is used to try to allocate blocks with similar
1146 	 * alignment from the same area of the metaslab (i.e. same cursor
1147 	 * bucket) but it does not guarantee that other allocations sizes
1148 	 * may exist in the same region.
1149 	 */
1150 	uint64_t align = size & -size;
1151 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1152 	avl_tree_t *t = &msp->ms_tree->rt_root;
1153 
1154 	return (metaslab_block_picker(t, cursor, size, align));
1155 }
1156 
1157 static metaslab_ops_t metaslab_ff_ops = {
1158 	metaslab_ff_alloc
1159 };
1160 
1161 /*
1162  * ==========================================================================
1163  * Dynamic block allocator -
1164  * Uses the first fit allocation scheme until space get low and then
1165  * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1166  * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1167  * ==========================================================================
1168  */
1169 static uint64_t
1170 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1171 {
1172 	/*
1173 	 * Find the largest power of 2 block size that evenly divides the
1174 	 * requested size. This is used to try to allocate blocks with similar
1175 	 * alignment from the same area of the metaslab (i.e. same cursor
1176 	 * bucket) but it does not guarantee that other allocations sizes
1177 	 * may exist in the same region.
1178 	 */
1179 	uint64_t align = size & -size;
1180 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1181 	range_tree_t *rt = msp->ms_tree;
1182 	avl_tree_t *t = &rt->rt_root;
1183 	uint64_t max_size = metaslab_block_maxsize(msp);
1184 	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1185 
1186 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1187 	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1188 
1189 	if (max_size < size)
1190 		return (-1ULL);
1191 
1192 	/*
1193 	 * If we're running low on space switch to using the size
1194 	 * sorted AVL tree (best-fit).
1195 	 */
1196 	if (max_size < metaslab_df_alloc_threshold ||
1197 	    free_pct < metaslab_df_free_pct) {
1198 		t = &msp->ms_size_tree;
1199 		*cursor = 0;
1200 	}
1201 
1202 	return (metaslab_block_picker(t, cursor, size, 1ULL));
1203 }
1204 
1205 static metaslab_ops_t metaslab_df_ops = {
1206 	metaslab_df_alloc
1207 };
1208 
1209 /*
1210  * ==========================================================================
1211  * Cursor fit block allocator -
1212  * Select the largest region in the metaslab, set the cursor to the beginning
1213  * of the range and the cursor_end to the end of the range. As allocations
1214  * are made advance the cursor. Continue allocating from the cursor until
1215  * the range is exhausted and then find a new range.
1216  * ==========================================================================
1217  */
1218 static uint64_t
1219 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1220 {
1221 	range_tree_t *rt = msp->ms_tree;
1222 	avl_tree_t *t = &msp->ms_size_tree;
1223 	uint64_t *cursor = &msp->ms_lbas[0];
1224 	uint64_t *cursor_end = &msp->ms_lbas[1];
1225 	uint64_t offset = 0;
1226 
1227 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1228 	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1229 
1230 	ASSERT3U(*cursor_end, >=, *cursor);
1231 
1232 	if ((*cursor + size) > *cursor_end) {
1233 		range_seg_t *rs;
1234 
1235 		rs = avl_last(&msp->ms_size_tree);
1236 		if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1237 			return (-1ULL);
1238 
1239 		*cursor = rs->rs_start;
1240 		*cursor_end = rs->rs_end;
1241 	}
1242 
1243 	offset = *cursor;
1244 	*cursor += size;
1245 
1246 	return (offset);
1247 }
1248 
1249 static metaslab_ops_t metaslab_cf_ops = {
1250 	metaslab_cf_alloc
1251 };
1252 
1253 /*
1254  * ==========================================================================
1255  * New dynamic fit allocator -
1256  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1257  * contiguous blocks. If no region is found then just use the largest segment
1258  * that remains.
1259  * ==========================================================================
1260  */
1261 
1262 /*
1263  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1264  * to request from the allocator.
1265  */
1266 uint64_t metaslab_ndf_clump_shift = 4;
1267 
1268 static uint64_t
1269 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1270 {
1271 	avl_tree_t *t = &msp->ms_tree->rt_root;
1272 	avl_index_t where;
1273 	range_seg_t *rs, rsearch;
1274 	uint64_t hbit = highbit64(size);
1275 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1276 	uint64_t max_size = metaslab_block_maxsize(msp);
1277 
1278 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1279 	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1280 
1281 	if (max_size < size)
1282 		return (-1ULL);
1283 
1284 	rsearch.rs_start = *cursor;
1285 	rsearch.rs_end = *cursor + size;
1286 
1287 	rs = avl_find(t, &rsearch, &where);
1288 	if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1289 		t = &msp->ms_size_tree;
1290 
1291 		rsearch.rs_start = 0;
1292 		rsearch.rs_end = MIN(max_size,
1293 		    1ULL << (hbit + metaslab_ndf_clump_shift));
1294 		rs = avl_find(t, &rsearch, &where);
1295 		if (rs == NULL)
1296 			rs = avl_nearest(t, where, AVL_AFTER);
1297 		ASSERT(rs != NULL);
1298 	}
1299 
1300 	if ((rs->rs_end - rs->rs_start) >= size) {
1301 		*cursor = rs->rs_start + size;
1302 		return (rs->rs_start);
1303 	}
1304 	return (-1ULL);
1305 }
1306 
1307 static metaslab_ops_t metaslab_ndf_ops = {
1308 	metaslab_ndf_alloc
1309 };
1310 
1311 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1312 
1313 /*
1314  * ==========================================================================
1315  * Metaslabs
1316  * ==========================================================================
1317  */
1318 
1319 /*
1320  * Wait for any in-progress metaslab loads to complete.
1321  */
1322 void
1323 metaslab_load_wait(metaslab_t *msp)
1324 {
1325 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1326 
1327 	while (msp->ms_loading) {
1328 		ASSERT(!msp->ms_loaded);
1329 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1330 	}
1331 }
1332 
1333 int
1334 metaslab_load(metaslab_t *msp)
1335 {
1336 	int error = 0;
1337 	boolean_t success = B_FALSE;
1338 
1339 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1340 	ASSERT(!msp->ms_loaded);
1341 	ASSERT(!msp->ms_loading);
1342 
1343 	msp->ms_loading = B_TRUE;
1344 
1345 	/*
1346 	 * If the space map has not been allocated yet, then treat
1347 	 * all the space in the metaslab as free and add it to the
1348 	 * ms_tree.
1349 	 */
1350 	if (msp->ms_sm != NULL)
1351 		error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
1352 	else
1353 		range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
1354 
1355 	success = (error == 0);
1356 	msp->ms_loading = B_FALSE;
1357 
1358 	if (success) {
1359 		ASSERT3P(msp->ms_group, !=, NULL);
1360 		msp->ms_loaded = B_TRUE;
1361 
1362 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1363 			range_tree_walk(msp->ms_defertree[t],
1364 			    range_tree_remove, msp->ms_tree);
1365 		}
1366 		msp->ms_max_size = metaslab_block_maxsize(msp);
1367 	}
1368 	cv_broadcast(&msp->ms_load_cv);
1369 	return (error);
1370 }
1371 
1372 void
1373 metaslab_unload(metaslab_t *msp)
1374 {
1375 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1376 	range_tree_vacate(msp->ms_tree, NULL, NULL);
1377 	msp->ms_loaded = B_FALSE;
1378 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1379 	msp->ms_max_size = 0;
1380 }
1381 
1382 int
1383 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1384     metaslab_t **msp)
1385 {
1386 	vdev_t *vd = mg->mg_vd;
1387 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
1388 	metaslab_t *ms;
1389 	int error;
1390 
1391 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1392 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1393 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1394 	ms->ms_id = id;
1395 	ms->ms_start = id << vd->vdev_ms_shift;
1396 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
1397 
1398 	/*
1399 	 * We only open space map objects that already exist. All others
1400 	 * will be opened when we finally allocate an object for it.
1401 	 */
1402 	if (object != 0) {
1403 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1404 		    ms->ms_size, vd->vdev_ashift, &ms->ms_lock);
1405 
1406 		if (error != 0) {
1407 			kmem_free(ms, sizeof (metaslab_t));
1408 			return (error);
1409 		}
1410 
1411 		ASSERT(ms->ms_sm != NULL);
1412 	}
1413 
1414 	/*
1415 	 * We create the main range tree here, but we don't create the
1416 	 * other range trees until metaslab_sync_done().  This serves
1417 	 * two purposes: it allows metaslab_sync_done() to detect the
1418 	 * addition of new space; and for debugging, it ensures that we'd
1419 	 * data fault on any attempt to use this metaslab before it's ready.
1420 	 */
1421 	ms->ms_tree = range_tree_create(&metaslab_rt_ops, ms, &ms->ms_lock);
1422 	metaslab_group_add(mg, ms);
1423 
1424 	metaslab_set_fragmentation(ms);
1425 
1426 	/*
1427 	 * If we're opening an existing pool (txg == 0) or creating
1428 	 * a new one (txg == TXG_INITIAL), all space is available now.
1429 	 * If we're adding space to an existing pool, the new space
1430 	 * does not become available until after this txg has synced.
1431 	 * The metaslab's weight will also be initialized when we sync
1432 	 * out this txg. This ensures that we don't attempt to allocate
1433 	 * from it before we have initialized it completely.
1434 	 */
1435 	if (txg <= TXG_INITIAL)
1436 		metaslab_sync_done(ms, 0);
1437 
1438 	/*
1439 	 * If metaslab_debug_load is set and we're initializing a metaslab
1440 	 * that has an allocated space map object then load the its space
1441 	 * map so that can verify frees.
1442 	 */
1443 	if (metaslab_debug_load && ms->ms_sm != NULL) {
1444 		mutex_enter(&ms->ms_lock);
1445 		VERIFY0(metaslab_load(ms));
1446 		mutex_exit(&ms->ms_lock);
1447 	}
1448 
1449 	if (txg != 0) {
1450 		vdev_dirty(vd, 0, NULL, txg);
1451 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
1452 	}
1453 
1454 	*msp = ms;
1455 
1456 	return (0);
1457 }
1458 
1459 void
1460 metaslab_fini(metaslab_t *msp)
1461 {
1462 	metaslab_group_t *mg = msp->ms_group;
1463 
1464 	metaslab_group_remove(mg, msp);
1465 
1466 	mutex_enter(&msp->ms_lock);
1467 	VERIFY(msp->ms_group == NULL);
1468 	vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1469 	    0, -msp->ms_size);
1470 	space_map_close(msp->ms_sm);
1471 
1472 	metaslab_unload(msp);
1473 	range_tree_destroy(msp->ms_tree);
1474 	range_tree_destroy(msp->ms_freeingtree);
1475 	range_tree_destroy(msp->ms_freedtree);
1476 
1477 	for (int t = 0; t < TXG_SIZE; t++) {
1478 		range_tree_destroy(msp->ms_alloctree[t]);
1479 	}
1480 
1481 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1482 		range_tree_destroy(msp->ms_defertree[t]);
1483 	}
1484 
1485 	ASSERT0(msp->ms_deferspace);
1486 
1487 	mutex_exit(&msp->ms_lock);
1488 	cv_destroy(&msp->ms_load_cv);
1489 	mutex_destroy(&msp->ms_lock);
1490 
1491 	kmem_free(msp, sizeof (metaslab_t));
1492 }
1493 
1494 #define	FRAGMENTATION_TABLE_SIZE	17
1495 
1496 /*
1497  * This table defines a segment size based fragmentation metric that will
1498  * allow each metaslab to derive its own fragmentation value. This is done
1499  * by calculating the space in each bucket of the spacemap histogram and
1500  * multiplying that by the fragmetation metric in this table. Doing
1501  * this for all buckets and dividing it by the total amount of free
1502  * space in this metaslab (i.e. the total free space in all buckets) gives
1503  * us the fragmentation metric. This means that a high fragmentation metric
1504  * equates to most of the free space being comprised of small segments.
1505  * Conversely, if the metric is low, then most of the free space is in
1506  * large segments. A 10% change in fragmentation equates to approximately
1507  * double the number of segments.
1508  *
1509  * This table defines 0% fragmented space using 16MB segments. Testing has
1510  * shown that segments that are greater than or equal to 16MB do not suffer
1511  * from drastic performance problems. Using this value, we derive the rest
1512  * of the table. Since the fragmentation value is never stored on disk, it
1513  * is possible to change these calculations in the future.
1514  */
1515 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1516 	100,	/* 512B	*/
1517 	100,	/* 1K	*/
1518 	98,	/* 2K	*/
1519 	95,	/* 4K	*/
1520 	90,	/* 8K	*/
1521 	80,	/* 16K	*/
1522 	70,	/* 32K	*/
1523 	60,	/* 64K	*/
1524 	50,	/* 128K	*/
1525 	40,	/* 256K	*/
1526 	30,	/* 512K	*/
1527 	20,	/* 1M	*/
1528 	15,	/* 2M	*/
1529 	10,	/* 4M	*/
1530 	5,	/* 8M	*/
1531 	0	/* 16M	*/
1532 };
1533 
1534 /*
1535  * Calclate the metaslab's fragmentation metric. A return value
1536  * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1537  * not support this metric. Otherwise, the return value should be in the
1538  * range [0, 100].
1539  */
1540 static void
1541 metaslab_set_fragmentation(metaslab_t *msp)
1542 {
1543 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1544 	uint64_t fragmentation = 0;
1545 	uint64_t total = 0;
1546 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
1547 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
1548 
1549 	if (!feature_enabled) {
1550 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
1551 		return;
1552 	}
1553 
1554 	/*
1555 	 * A null space map means that the entire metaslab is free
1556 	 * and thus is not fragmented.
1557 	 */
1558 	if (msp->ms_sm == NULL) {
1559 		msp->ms_fragmentation = 0;
1560 		return;
1561 	}
1562 
1563 	/*
1564 	 * If this metaslab's space map has not been upgraded, flag it
1565 	 * so that we upgrade next time we encounter it.
1566 	 */
1567 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1568 		uint64_t txg = spa_syncing_txg(spa);
1569 		vdev_t *vd = msp->ms_group->mg_vd;
1570 
1571 		/*
1572 		 * If we've reached the final dirty txg, then we must
1573 		 * be shutting down the pool. We don't want to dirty
1574 		 * any data past this point so skip setting the condense
1575 		 * flag. We can retry this action the next time the pool
1576 		 * is imported.
1577 		 */
1578 		if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
1579 			msp->ms_condense_wanted = B_TRUE;
1580 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1581 			spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1582 			    "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
1583 			    vd->vdev_id);
1584 		}
1585 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
1586 		return;
1587 	}
1588 
1589 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1590 		uint64_t space = 0;
1591 		uint8_t shift = msp->ms_sm->sm_shift;
1592 
1593 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1594 		    FRAGMENTATION_TABLE_SIZE - 1);
1595 
1596 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1597 			continue;
1598 
1599 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1600 		total += space;
1601 
1602 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1603 		fragmentation += space * zfs_frag_table[idx];
1604 	}
1605 
1606 	if (total > 0)
1607 		fragmentation /= total;
1608 	ASSERT3U(fragmentation, <=, 100);
1609 
1610 	msp->ms_fragmentation = fragmentation;
1611 }
1612 
1613 /*
1614  * Compute a weight -- a selection preference value -- for the given metaslab.
1615  * This is based on the amount of free space, the level of fragmentation,
1616  * the LBA range, and whether the metaslab is loaded.
1617  */
1618 static uint64_t
1619 metaslab_space_weight(metaslab_t *msp)
1620 {
1621 	metaslab_group_t *mg = msp->ms_group;
1622 	vdev_t *vd = mg->mg_vd;
1623 	uint64_t weight, space;
1624 
1625 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1626 	ASSERT(!vd->vdev_removing);
1627 
1628 	/*
1629 	 * The baseline weight is the metaslab's free space.
1630 	 */
1631 	space = msp->ms_size - space_map_allocated(msp->ms_sm);
1632 
1633 	if (metaslab_fragmentation_factor_enabled &&
1634 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1635 		/*
1636 		 * Use the fragmentation information to inversely scale
1637 		 * down the baseline weight. We need to ensure that we
1638 		 * don't exclude this metaslab completely when it's 100%
1639 		 * fragmented. To avoid this we reduce the fragmented value
1640 		 * by 1.
1641 		 */
1642 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1643 
1644 		/*
1645 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1646 		 * this metaslab again. The fragmentation metric may have
1647 		 * decreased the space to something smaller than
1648 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1649 		 * so that we can consume any remaining space.
1650 		 */
1651 		if (space > 0 && space < SPA_MINBLOCKSIZE)
1652 			space = SPA_MINBLOCKSIZE;
1653 	}
1654 	weight = space;
1655 
1656 	/*
1657 	 * Modern disks have uniform bit density and constant angular velocity.
1658 	 * Therefore, the outer recording zones are faster (higher bandwidth)
1659 	 * than the inner zones by the ratio of outer to inner track diameter,
1660 	 * which is typically around 2:1.  We account for this by assigning
1661 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1662 	 * In effect, this means that we'll select the metaslab with the most
1663 	 * free bandwidth rather than simply the one with the most free space.
1664 	 */
1665 	if (metaslab_lba_weighting_enabled) {
1666 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1667 		ASSERT(weight >= space && weight <= 2 * space);
1668 	}
1669 
1670 	/*
1671 	 * If this metaslab is one we're actively using, adjust its
1672 	 * weight to make it preferable to any inactive metaslab so
1673 	 * we'll polish it off. If the fragmentation on this metaslab
1674 	 * has exceed our threshold, then don't mark it active.
1675 	 */
1676 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1677 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1678 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1679 	}
1680 
1681 	WEIGHT_SET_SPACEBASED(weight);
1682 	return (weight);
1683 }
1684 
1685 /*
1686  * Return the weight of the specified metaslab, according to the segment-based
1687  * weighting algorithm. The metaslab must be loaded. This function can
1688  * be called within a sync pass since it relies only on the metaslab's
1689  * range tree which is always accurate when the metaslab is loaded.
1690  */
1691 static uint64_t
1692 metaslab_weight_from_range_tree(metaslab_t *msp)
1693 {
1694 	uint64_t weight = 0;
1695 	uint32_t segments = 0;
1696 
1697 	ASSERT(msp->ms_loaded);
1698 
1699 	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
1700 	    i--) {
1701 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
1702 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1703 
1704 		segments <<= 1;
1705 		segments += msp->ms_tree->rt_histogram[i];
1706 
1707 		/*
1708 		 * The range tree provides more precision than the space map
1709 		 * and must be downgraded so that all values fit within the
1710 		 * space map's histogram. This allows us to compare loaded
1711 		 * vs. unloaded metaslabs to determine which metaslab is
1712 		 * considered "best".
1713 		 */
1714 		if (i > max_idx)
1715 			continue;
1716 
1717 		if (segments != 0) {
1718 			WEIGHT_SET_COUNT(weight, segments);
1719 			WEIGHT_SET_INDEX(weight, i);
1720 			WEIGHT_SET_ACTIVE(weight, 0);
1721 			break;
1722 		}
1723 	}
1724 	return (weight);
1725 }
1726 
1727 /*
1728  * Calculate the weight based on the on-disk histogram. This should only
1729  * be called after a sync pass has completely finished since the on-disk
1730  * information is updated in metaslab_sync().
1731  */
1732 static uint64_t
1733 metaslab_weight_from_spacemap(metaslab_t *msp)
1734 {
1735 	uint64_t weight = 0;
1736 
1737 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
1738 		if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) {
1739 			WEIGHT_SET_COUNT(weight,
1740 			    msp->ms_sm->sm_phys->smp_histogram[i]);
1741 			WEIGHT_SET_INDEX(weight, i +
1742 			    msp->ms_sm->sm_shift);
1743 			WEIGHT_SET_ACTIVE(weight, 0);
1744 			break;
1745 		}
1746 	}
1747 	return (weight);
1748 }
1749 
1750 /*
1751  * Compute a segment-based weight for the specified metaslab. The weight
1752  * is determined by highest bucket in the histogram. The information
1753  * for the highest bucket is encoded into the weight value.
1754  */
1755 static uint64_t
1756 metaslab_segment_weight(metaslab_t *msp)
1757 {
1758 	metaslab_group_t *mg = msp->ms_group;
1759 	uint64_t weight = 0;
1760 	uint8_t shift = mg->mg_vd->vdev_ashift;
1761 
1762 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1763 
1764 	/*
1765 	 * The metaslab is completely free.
1766 	 */
1767 	if (space_map_allocated(msp->ms_sm) == 0) {
1768 		int idx = highbit64(msp->ms_size) - 1;
1769 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1770 
1771 		if (idx < max_idx) {
1772 			WEIGHT_SET_COUNT(weight, 1ULL);
1773 			WEIGHT_SET_INDEX(weight, idx);
1774 		} else {
1775 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
1776 			WEIGHT_SET_INDEX(weight, max_idx);
1777 		}
1778 		WEIGHT_SET_ACTIVE(weight, 0);
1779 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
1780 
1781 		return (weight);
1782 	}
1783 
1784 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
1785 
1786 	/*
1787 	 * If the metaslab is fully allocated then just make the weight 0.
1788 	 */
1789 	if (space_map_allocated(msp->ms_sm) == msp->ms_size)
1790 		return (0);
1791 	/*
1792 	 * If the metaslab is already loaded, then use the range tree to
1793 	 * determine the weight. Otherwise, we rely on the space map information
1794 	 * to generate the weight.
1795 	 */
1796 	if (msp->ms_loaded) {
1797 		weight = metaslab_weight_from_range_tree(msp);
1798 	} else {
1799 		weight = metaslab_weight_from_spacemap(msp);
1800 	}
1801 
1802 	/*
1803 	 * If the metaslab was active the last time we calculated its weight
1804 	 * then keep it active. We want to consume the entire region that
1805 	 * is associated with this weight.
1806 	 */
1807 	if (msp->ms_activation_weight != 0 && weight != 0)
1808 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
1809 	return (weight);
1810 }
1811 
1812 /*
1813  * Determine if we should attempt to allocate from this metaslab. If the
1814  * metaslab has a maximum size then we can quickly determine if the desired
1815  * allocation size can be satisfied. Otherwise, if we're using segment-based
1816  * weighting then we can determine the maximum allocation that this metaslab
1817  * can accommodate based on the index encoded in the weight. If we're using
1818  * space-based weights then rely on the entire weight (excluding the weight
1819  * type bit).
1820  */
1821 boolean_t
1822 metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
1823 {
1824 	boolean_t should_allocate;
1825 
1826 	if (msp->ms_max_size != 0)
1827 		return (msp->ms_max_size >= asize);
1828 
1829 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
1830 		/*
1831 		 * The metaslab segment weight indicates segments in the
1832 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
1833 		 * Since the asize might be in the middle of the range, we
1834 		 * should attempt the allocation if asize < 2^(i+1).
1835 		 */
1836 		should_allocate = (asize <
1837 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
1838 	} else {
1839 		should_allocate = (asize <=
1840 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
1841 	}
1842 	return (should_allocate);
1843 }
1844 
1845 static uint64_t
1846 metaslab_weight(metaslab_t *msp)
1847 {
1848 	vdev_t *vd = msp->ms_group->mg_vd;
1849 	spa_t *spa = vd->vdev_spa;
1850 	uint64_t weight;
1851 
1852 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1853 
1854 	/*
1855 	 * This vdev is in the process of being removed so there is nothing
1856 	 * for us to do here.
1857 	 */
1858 	if (vd->vdev_removing) {
1859 		ASSERT0(space_map_allocated(msp->ms_sm));
1860 		ASSERT0(vd->vdev_ms_shift);
1861 		return (0);
1862 	}
1863 
1864 	metaslab_set_fragmentation(msp);
1865 
1866 	/*
1867 	 * Update the maximum size if the metaslab is loaded. This will
1868 	 * ensure that we get an accurate maximum size if newly freed space
1869 	 * has been added back into the free tree.
1870 	 */
1871 	if (msp->ms_loaded)
1872 		msp->ms_max_size = metaslab_block_maxsize(msp);
1873 
1874 	/*
1875 	 * Segment-based weighting requires space map histogram support.
1876 	 */
1877 	if (zfs_metaslab_segment_weight_enabled &&
1878 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
1879 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
1880 	    sizeof (space_map_phys_t))) {
1881 		weight = metaslab_segment_weight(msp);
1882 	} else {
1883 		weight = metaslab_space_weight(msp);
1884 	}
1885 	return (weight);
1886 }
1887 
1888 static int
1889 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1890 {
1891 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1892 
1893 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1894 		metaslab_load_wait(msp);
1895 		if (!msp->ms_loaded) {
1896 			int error = metaslab_load(msp);
1897 			if (error) {
1898 				metaslab_group_sort(msp->ms_group, msp, 0);
1899 				return (error);
1900 			}
1901 		}
1902 
1903 		msp->ms_activation_weight = msp->ms_weight;
1904 		metaslab_group_sort(msp->ms_group, msp,
1905 		    msp->ms_weight | activation_weight);
1906 	}
1907 	ASSERT(msp->ms_loaded);
1908 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1909 
1910 	return (0);
1911 }
1912 
1913 static void
1914 metaslab_passivate(metaslab_t *msp, uint64_t weight)
1915 {
1916 	uint64_t size = weight & ~METASLAB_WEIGHT_TYPE;
1917 
1918 	/*
1919 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1920 	 * this metaslab again.  In that case, it had better be empty,
1921 	 * or we would be leaving space on the table.
1922 	 */
1923 	ASSERT(size >= SPA_MINBLOCKSIZE ||
1924 	    range_tree_space(msp->ms_tree) == 0);
1925 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
1926 
1927 	msp->ms_activation_weight = 0;
1928 	metaslab_group_sort(msp->ms_group, msp, weight);
1929 	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1930 }
1931 
1932 /*
1933  * Segment-based metaslabs are activated once and remain active until
1934  * we either fail an allocation attempt (similar to space-based metaslabs)
1935  * or have exhausted the free space in zfs_metaslab_switch_threshold
1936  * buckets since the metaslab was activated. This function checks to see
1937  * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
1938  * metaslab and passivates it proactively. This will allow us to select a
1939  * metaslabs with larger contiguous region if any remaining within this
1940  * metaslab group. If we're in sync pass > 1, then we continue using this
1941  * metaslab so that we don't dirty more block and cause more sync passes.
1942  */
1943 void
1944 metaslab_segment_may_passivate(metaslab_t *msp)
1945 {
1946 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1947 
1948 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
1949 		return;
1950 
1951 	/*
1952 	 * Since we are in the middle of a sync pass, the most accurate
1953 	 * information that is accessible to us is the in-core range tree
1954 	 * histogram; calculate the new weight based on that information.
1955 	 */
1956 	uint64_t weight = metaslab_weight_from_range_tree(msp);
1957 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
1958 	int current_idx = WEIGHT_GET_INDEX(weight);
1959 
1960 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
1961 		metaslab_passivate(msp, weight);
1962 }
1963 
1964 static void
1965 metaslab_preload(void *arg)
1966 {
1967 	metaslab_t *msp = arg;
1968 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1969 
1970 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1971 
1972 	mutex_enter(&msp->ms_lock);
1973 	metaslab_load_wait(msp);
1974 	if (!msp->ms_loaded)
1975 		(void) metaslab_load(msp);
1976 	msp->ms_selected_txg = spa_syncing_txg(spa);
1977 	mutex_exit(&msp->ms_lock);
1978 }
1979 
1980 static void
1981 metaslab_group_preload(metaslab_group_t *mg)
1982 {
1983 	spa_t *spa = mg->mg_vd->vdev_spa;
1984 	metaslab_t *msp;
1985 	avl_tree_t *t = &mg->mg_metaslab_tree;
1986 	int m = 0;
1987 
1988 	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1989 		taskq_wait(mg->mg_taskq);
1990 		return;
1991 	}
1992 
1993 	mutex_enter(&mg->mg_lock);
1994 	/*
1995 	 * Load the next potential metaslabs
1996 	 */
1997 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
1998 		/*
1999 		 * We preload only the maximum number of metaslabs specified
2000 		 * by metaslab_preload_limit. If a metaslab is being forced
2001 		 * to condense then we preload it too. This will ensure
2002 		 * that force condensing happens in the next txg.
2003 		 */
2004 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
2005 			continue;
2006 		}
2007 
2008 		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
2009 		    msp, TQ_SLEEP) != NULL);
2010 	}
2011 	mutex_exit(&mg->mg_lock);
2012 }
2013 
2014 /*
2015  * Determine if the space map's on-disk footprint is past our tolerance
2016  * for inefficiency. We would like to use the following criteria to make
2017  * our decision:
2018  *
2019  * 1. The size of the space map object should not dramatically increase as a
2020  * result of writing out the free space range tree.
2021  *
2022  * 2. The minimal on-disk space map representation is zfs_condense_pct/100
2023  * times the size than the free space range tree representation
2024  * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
2025  *
2026  * 3. The on-disk size of the space map should actually decrease.
2027  *
2028  * Checking the first condition is tricky since we don't want to walk
2029  * the entire AVL tree calculating the estimated on-disk size. Instead we
2030  * use the size-ordered range tree in the metaslab and calculate the
2031  * size required to write out the largest segment in our free tree. If the
2032  * size required to represent that segment on disk is larger than the space
2033  * map object then we avoid condensing this map.
2034  *
2035  * To determine the second criterion we use a best-case estimate and assume
2036  * each segment can be represented on-disk as a single 64-bit entry. We refer
2037  * to this best-case estimate as the space map's minimal form.
2038  *
2039  * Unfortunately, we cannot compute the on-disk size of the space map in this
2040  * context because we cannot accurately compute the effects of compression, etc.
2041  * Instead, we apply the heuristic described in the block comment for
2042  * zfs_metaslab_condense_block_threshold - we only condense if the space used
2043  * is greater than a threshold number of blocks.
2044  */
2045 static boolean_t
2046 metaslab_should_condense(metaslab_t *msp)
2047 {
2048 	space_map_t *sm = msp->ms_sm;
2049 	range_seg_t *rs;
2050 	uint64_t size, entries, segsz, object_size, optimal_size, record_size;
2051 	dmu_object_info_t doi;
2052 	uint64_t vdev_blocksize = 1 << msp->ms_group->mg_vd->vdev_ashift;
2053 
2054 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2055 	ASSERT(msp->ms_loaded);
2056 
2057 	/*
2058 	 * Use the ms_size_tree range tree, which is ordered by size, to
2059 	 * obtain the largest segment in the free tree. We always condense
2060 	 * metaslabs that are empty and metaslabs for which a condense
2061 	 * request has been made.
2062 	 */
2063 	rs = avl_last(&msp->ms_size_tree);
2064 	if (rs == NULL || msp->ms_condense_wanted)
2065 		return (B_TRUE);
2066 
2067 	/*
2068 	 * Calculate the number of 64-bit entries this segment would
2069 	 * require when written to disk. If this single segment would be
2070 	 * larger on-disk than the entire current on-disk structure, then
2071 	 * clearly condensing will increase the on-disk structure size.
2072 	 */
2073 	size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
2074 	entries = size / (MIN(size, SM_RUN_MAX));
2075 	segsz = entries * sizeof (uint64_t);
2076 
2077 	optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
2078 	object_size = space_map_length(msp->ms_sm);
2079 
2080 	dmu_object_info_from_db(sm->sm_dbuf, &doi);
2081 	record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
2082 
2083 	return (segsz <= object_size &&
2084 	    object_size >= (optimal_size * zfs_condense_pct / 100) &&
2085 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
2086 }
2087 
2088 /*
2089  * Condense the on-disk space map representation to its minimized form.
2090  * The minimized form consists of a small number of allocations followed by
2091  * the entries of the free range tree.
2092  */
2093 static void
2094 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
2095 {
2096 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2097 	range_tree_t *condense_tree;
2098 	space_map_t *sm = msp->ms_sm;
2099 
2100 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2101 	ASSERT3U(spa_sync_pass(spa), ==, 1);
2102 	ASSERT(msp->ms_loaded);
2103 
2104 
2105 	spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
2106 	    "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2107 	    msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2108 	    msp->ms_group->mg_vd->vdev_spa->spa_name,
2109 	    space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root),
2110 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
2111 
2112 	msp->ms_condense_wanted = B_FALSE;
2113 
2114 	/*
2115 	 * Create an range tree that is 100% allocated. We remove segments
2116 	 * that have been freed in this txg, any deferred frees that exist,
2117 	 * and any allocation in the future. Removing segments should be
2118 	 * a relatively inexpensive operation since we expect these trees to
2119 	 * have a small number of nodes.
2120 	 */
2121 	condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
2122 	range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
2123 
2124 	/*
2125 	 * Remove what's been freed in this txg from the condense_tree.
2126 	 * Since we're in sync_pass 1, we know that all the frees from
2127 	 * this txg are in the freeingtree.
2128 	 */
2129 	range_tree_walk(msp->ms_freeingtree, range_tree_remove, condense_tree);
2130 
2131 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2132 		range_tree_walk(msp->ms_defertree[t],
2133 		    range_tree_remove, condense_tree);
2134 	}
2135 
2136 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2137 		range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
2138 		    range_tree_remove, condense_tree);
2139 	}
2140 
2141 	/*
2142 	 * We're about to drop the metaslab's lock thus allowing
2143 	 * other consumers to change it's content. Set the
2144 	 * metaslab's ms_condensing flag to ensure that
2145 	 * allocations on this metaslab do not occur while we're
2146 	 * in the middle of committing it to disk. This is only critical
2147 	 * for the ms_tree as all other range trees use per txg
2148 	 * views of their content.
2149 	 */
2150 	msp->ms_condensing = B_TRUE;
2151 
2152 	mutex_exit(&msp->ms_lock);
2153 	space_map_truncate(sm, tx);
2154 	mutex_enter(&msp->ms_lock);
2155 
2156 	/*
2157 	 * While we would ideally like to create a space map representation
2158 	 * that consists only of allocation records, doing so can be
2159 	 * prohibitively expensive because the in-core free tree can be
2160 	 * large, and therefore computationally expensive to subtract
2161 	 * from the condense_tree. Instead we sync out two trees, a cheap
2162 	 * allocation only tree followed by the in-core free tree. While not
2163 	 * optimal, this is typically close to optimal, and much cheaper to
2164 	 * compute.
2165 	 */
2166 	space_map_write(sm, condense_tree, SM_ALLOC, tx);
2167 	range_tree_vacate(condense_tree, NULL, NULL);
2168 	range_tree_destroy(condense_tree);
2169 
2170 	space_map_write(sm, msp->ms_tree, SM_FREE, tx);
2171 	msp->ms_condensing = B_FALSE;
2172 }
2173 
2174 /*
2175  * Write a metaslab to disk in the context of the specified transaction group.
2176  */
2177 void
2178 metaslab_sync(metaslab_t *msp, uint64_t txg)
2179 {
2180 	metaslab_group_t *mg = msp->ms_group;
2181 	vdev_t *vd = mg->mg_vd;
2182 	spa_t *spa = vd->vdev_spa;
2183 	objset_t *mos = spa_meta_objset(spa);
2184 	range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
2185 	dmu_tx_t *tx;
2186 	uint64_t object = space_map_object(msp->ms_sm);
2187 
2188 	ASSERT(!vd->vdev_ishole);
2189 
2190 	/*
2191 	 * This metaslab has just been added so there's no work to do now.
2192 	 */
2193 	if (msp->ms_freeingtree == NULL) {
2194 		ASSERT3P(alloctree, ==, NULL);
2195 		return;
2196 	}
2197 
2198 	ASSERT3P(alloctree, !=, NULL);
2199 	ASSERT3P(msp->ms_freeingtree, !=, NULL);
2200 	ASSERT3P(msp->ms_freedtree, !=, NULL);
2201 
2202 	/*
2203 	 * Normally, we don't want to process a metaslab if there
2204 	 * are no allocations or frees to perform. However, if the metaslab
2205 	 * is being forced to condense and it's loaded, we need to let it
2206 	 * through.
2207 	 */
2208 	if (range_tree_space(alloctree) == 0 &&
2209 	    range_tree_space(msp->ms_freeingtree) == 0 &&
2210 	    !(msp->ms_loaded && msp->ms_condense_wanted))
2211 		return;
2212 
2213 
2214 	VERIFY(txg <= spa_final_dirty_txg(spa));
2215 
2216 	/*
2217 	 * The only state that can actually be changing concurrently with
2218 	 * metaslab_sync() is the metaslab's ms_tree.  No other thread can
2219 	 * be modifying this txg's alloctree, freeingtree, freedtree, or
2220 	 * space_map_phys_t. Therefore, we only hold ms_lock to satify
2221 	 * space map ASSERTs. We drop it whenever we call into the DMU,
2222 	 * because the DMU can call down to us (e.g. via zio_free()) at
2223 	 * any time.
2224 	 */
2225 
2226 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2227 
2228 	if (msp->ms_sm == NULL) {
2229 		uint64_t new_object;
2230 
2231 		new_object = space_map_alloc(mos, tx);
2232 		VERIFY3U(new_object, !=, 0);
2233 
2234 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
2235 		    msp->ms_start, msp->ms_size, vd->vdev_ashift,
2236 		    &msp->ms_lock));
2237 		ASSERT(msp->ms_sm != NULL);
2238 	}
2239 
2240 	mutex_enter(&msp->ms_lock);
2241 
2242 	/*
2243 	 * Note: metaslab_condense() clears the space map's histogram.
2244 	 * Therefore we must verify and remove this histogram before
2245 	 * condensing.
2246 	 */
2247 	metaslab_group_histogram_verify(mg);
2248 	metaslab_class_histogram_verify(mg->mg_class);
2249 	metaslab_group_histogram_remove(mg, msp);
2250 
2251 	if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
2252 	    metaslab_should_condense(msp)) {
2253 		metaslab_condense(msp, txg, tx);
2254 	} else {
2255 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
2256 		space_map_write(msp->ms_sm, msp->ms_freeingtree, SM_FREE, tx);
2257 	}
2258 
2259 	if (msp->ms_loaded) {
2260 		/*
2261 		 * When the space map is loaded, we have an accruate
2262 		 * histogram in the range tree. This gives us an opportunity
2263 		 * to bring the space map's histogram up-to-date so we clear
2264 		 * it first before updating it.
2265 		 */
2266 		space_map_histogram_clear(msp->ms_sm);
2267 		space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
2268 
2269 		/*
2270 		 * Since we've cleared the histogram we need to add back
2271 		 * any free space that has already been processed, plus
2272 		 * any deferred space. This allows the on-disk histogram
2273 		 * to accurately reflect all free space even if some space
2274 		 * is not yet available for allocation (i.e. deferred).
2275 		 */
2276 		space_map_histogram_add(msp->ms_sm, msp->ms_freedtree, tx);
2277 
2278 		/*
2279 		 * Add back any deferred free space that has not been
2280 		 * added back into the in-core free tree yet. This will
2281 		 * ensure that we don't end up with a space map histogram
2282 		 * that is completely empty unless the metaslab is fully
2283 		 * allocated.
2284 		 */
2285 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2286 			space_map_histogram_add(msp->ms_sm,
2287 			    msp->ms_defertree[t], tx);
2288 		}
2289 	}
2290 
2291 	/*
2292 	 * Always add the free space from this sync pass to the space
2293 	 * map histogram. We want to make sure that the on-disk histogram
2294 	 * accounts for all free space. If the space map is not loaded,
2295 	 * then we will lose some accuracy but will correct it the next
2296 	 * time we load the space map.
2297 	 */
2298 	space_map_histogram_add(msp->ms_sm, msp->ms_freeingtree, tx);
2299 
2300 	metaslab_group_histogram_add(mg, msp);
2301 	metaslab_group_histogram_verify(mg);
2302 	metaslab_class_histogram_verify(mg->mg_class);
2303 
2304 	/*
2305 	 * For sync pass 1, we avoid traversing this txg's free range tree
2306 	 * and instead will just swap the pointers for freeingtree and
2307 	 * freedtree. We can safely do this since the freed_tree is
2308 	 * guaranteed to be empty on the initial pass.
2309 	 */
2310 	if (spa_sync_pass(spa) == 1) {
2311 		range_tree_swap(&msp->ms_freeingtree, &msp->ms_freedtree);
2312 	} else {
2313 		range_tree_vacate(msp->ms_freeingtree,
2314 		    range_tree_add, msp->ms_freedtree);
2315 	}
2316 	range_tree_vacate(alloctree, NULL, NULL);
2317 
2318 	ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
2319 	ASSERT0(range_tree_space(msp->ms_alloctree[TXG_CLEAN(txg) & TXG_MASK]));
2320 	ASSERT0(range_tree_space(msp->ms_freeingtree));
2321 
2322 	mutex_exit(&msp->ms_lock);
2323 
2324 	if (object != space_map_object(msp->ms_sm)) {
2325 		object = space_map_object(msp->ms_sm);
2326 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2327 		    msp->ms_id, sizeof (uint64_t), &object, tx);
2328 	}
2329 	dmu_tx_commit(tx);
2330 }
2331 
2332 /*
2333  * Called after a transaction group has completely synced to mark
2334  * all of the metaslab's free space as usable.
2335  */
2336 void
2337 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2338 {
2339 	metaslab_group_t *mg = msp->ms_group;
2340 	vdev_t *vd = mg->mg_vd;
2341 	spa_t *spa = vd->vdev_spa;
2342 	range_tree_t **defer_tree;
2343 	int64_t alloc_delta, defer_delta;
2344 	boolean_t defer_allowed = B_TRUE;
2345 
2346 	ASSERT(!vd->vdev_ishole);
2347 
2348 	mutex_enter(&msp->ms_lock);
2349 
2350 	/*
2351 	 * If this metaslab is just becoming available, initialize its
2352 	 * range trees and add its capacity to the vdev.
2353 	 */
2354 	if (msp->ms_freedtree == NULL) {
2355 		for (int t = 0; t < TXG_SIZE; t++) {
2356 			ASSERT(msp->ms_alloctree[t] == NULL);
2357 
2358 			msp->ms_alloctree[t] = range_tree_create(NULL, msp,
2359 			    &msp->ms_lock);
2360 		}
2361 
2362 		ASSERT3P(msp->ms_freeingtree, ==, NULL);
2363 		msp->ms_freeingtree = range_tree_create(NULL, msp,
2364 		    &msp->ms_lock);
2365 
2366 		ASSERT3P(msp->ms_freedtree, ==, NULL);
2367 		msp->ms_freedtree = range_tree_create(NULL, msp,
2368 		    &msp->ms_lock);
2369 
2370 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2371 			ASSERT(msp->ms_defertree[t] == NULL);
2372 
2373 			msp->ms_defertree[t] = range_tree_create(NULL, msp,
2374 			    &msp->ms_lock);
2375 		}
2376 
2377 		vdev_space_update(vd, 0, 0, msp->ms_size);
2378 	}
2379 
2380 	defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
2381 
2382 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
2383 	    metaslab_class_get_alloc(spa_normal_class(spa));
2384 	if (free_space <= spa_get_slop_space(spa)) {
2385 		defer_allowed = B_FALSE;
2386 	}
2387 
2388 	defer_delta = 0;
2389 	alloc_delta = space_map_alloc_delta(msp->ms_sm);
2390 	if (defer_allowed) {
2391 		defer_delta = range_tree_space(msp->ms_freedtree) -
2392 		    range_tree_space(*defer_tree);
2393 	} else {
2394 		defer_delta -= range_tree_space(*defer_tree);
2395 	}
2396 
2397 	vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
2398 
2399 	/*
2400 	 * If there's a metaslab_load() in progress, wait for it to complete
2401 	 * so that we have a consistent view of the in-core space map.
2402 	 */
2403 	metaslab_load_wait(msp);
2404 
2405 	/*
2406 	 * Move the frees from the defer_tree back to the free
2407 	 * range tree (if it's loaded). Swap the freed_tree and the
2408 	 * defer_tree -- this is safe to do because we've just emptied out
2409 	 * the defer_tree.
2410 	 */
2411 	range_tree_vacate(*defer_tree,
2412 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
2413 	if (defer_allowed) {
2414 		range_tree_swap(&msp->ms_freedtree, defer_tree);
2415 	} else {
2416 		range_tree_vacate(msp->ms_freedtree,
2417 		    msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
2418 	}
2419 
2420 	space_map_update(msp->ms_sm);
2421 
2422 	msp->ms_deferspace += defer_delta;
2423 	ASSERT3S(msp->ms_deferspace, >=, 0);
2424 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
2425 	if (msp->ms_deferspace != 0) {
2426 		/*
2427 		 * Keep syncing this metaslab until all deferred frees
2428 		 * are back in circulation.
2429 		 */
2430 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2431 	}
2432 
2433 	/*
2434 	 * Calculate the new weights before unloading any metaslabs.
2435 	 * This will give us the most accurate weighting.
2436 	 */
2437 	metaslab_group_sort(mg, msp, metaslab_weight(msp));
2438 
2439 	/*
2440 	 * If the metaslab is loaded and we've not tried to load or allocate
2441 	 * from it in 'metaslab_unload_delay' txgs, then unload it.
2442 	 */
2443 	if (msp->ms_loaded &&
2444 	    msp->ms_selected_txg + metaslab_unload_delay < txg) {
2445 		for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2446 			VERIFY0(range_tree_space(
2447 			    msp->ms_alloctree[(txg + t) & TXG_MASK]));
2448 		}
2449 
2450 		if (!metaslab_debug_unload)
2451 			metaslab_unload(msp);
2452 	}
2453 
2454 	mutex_exit(&msp->ms_lock);
2455 }
2456 
2457 void
2458 metaslab_sync_reassess(metaslab_group_t *mg)
2459 {
2460 	metaslab_group_alloc_update(mg);
2461 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2462 
2463 	/*
2464 	 * Preload the next potential metaslabs
2465 	 */
2466 	metaslab_group_preload(mg);
2467 }
2468 
2469 static uint64_t
2470 metaslab_distance(metaslab_t *msp, dva_t *dva)
2471 {
2472 	uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2473 	uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2474 	uint64_t start = msp->ms_id;
2475 
2476 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2477 		return (1ULL << 63);
2478 
2479 	if (offset < start)
2480 		return ((start - offset) << ms_shift);
2481 	if (offset > start)
2482 		return ((offset - start) << ms_shift);
2483 	return (0);
2484 }
2485 
2486 /*
2487  * ==========================================================================
2488  * Metaslab allocation tracing facility
2489  * ==========================================================================
2490  */
2491 kstat_t *metaslab_trace_ksp;
2492 kstat_named_t metaslab_trace_over_limit;
2493 
2494 void
2495 metaslab_alloc_trace_init(void)
2496 {
2497 	ASSERT(metaslab_alloc_trace_cache == NULL);
2498 	metaslab_alloc_trace_cache = kmem_cache_create(
2499 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
2500 	    0, NULL, NULL, NULL, NULL, NULL, 0);
2501 	metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
2502 	    "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
2503 	if (metaslab_trace_ksp != NULL) {
2504 		metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
2505 		kstat_named_init(&metaslab_trace_over_limit,
2506 		    "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
2507 		kstat_install(metaslab_trace_ksp);
2508 	}
2509 }
2510 
2511 void
2512 metaslab_alloc_trace_fini(void)
2513 {
2514 	if (metaslab_trace_ksp != NULL) {
2515 		kstat_delete(metaslab_trace_ksp);
2516 		metaslab_trace_ksp = NULL;
2517 	}
2518 	kmem_cache_destroy(metaslab_alloc_trace_cache);
2519 	metaslab_alloc_trace_cache = NULL;
2520 }
2521 
2522 /*
2523  * Add an allocation trace element to the allocation tracing list.
2524  */
2525 static void
2526 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
2527     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset)
2528 {
2529 	if (!metaslab_trace_enabled)
2530 		return;
2531 
2532 	/*
2533 	 * When the tracing list reaches its maximum we remove
2534 	 * the second element in the list before adding a new one.
2535 	 * By removing the second element we preserve the original
2536 	 * entry as a clue to what allocations steps have already been
2537 	 * performed.
2538 	 */
2539 	if (zal->zal_size == metaslab_trace_max_entries) {
2540 		metaslab_alloc_trace_t *mat_next;
2541 #ifdef DEBUG
2542 		panic("too many entries in allocation list");
2543 #endif
2544 		atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
2545 		zal->zal_size--;
2546 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
2547 		list_remove(&zal->zal_list, mat_next);
2548 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
2549 	}
2550 
2551 	metaslab_alloc_trace_t *mat =
2552 	    kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
2553 	list_link_init(&mat->mat_list_node);
2554 	mat->mat_mg = mg;
2555 	mat->mat_msp = msp;
2556 	mat->mat_size = psize;
2557 	mat->mat_dva_id = dva_id;
2558 	mat->mat_offset = offset;
2559 	mat->mat_weight = 0;
2560 
2561 	if (msp != NULL)
2562 		mat->mat_weight = msp->ms_weight;
2563 
2564 	/*
2565 	 * The list is part of the zio so locking is not required. Only
2566 	 * a single thread will perform allocations for a given zio.
2567 	 */
2568 	list_insert_tail(&zal->zal_list, mat);
2569 	zal->zal_size++;
2570 
2571 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
2572 }
2573 
2574 void
2575 metaslab_trace_init(zio_alloc_list_t *zal)
2576 {
2577 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
2578 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
2579 	zal->zal_size = 0;
2580 }
2581 
2582 void
2583 metaslab_trace_fini(zio_alloc_list_t *zal)
2584 {
2585 	metaslab_alloc_trace_t *mat;
2586 
2587 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
2588 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
2589 	list_destroy(&zal->zal_list);
2590 	zal->zal_size = 0;
2591 }
2592 
2593 /*
2594  * ==========================================================================
2595  * Metaslab block operations
2596  * ==========================================================================
2597  */
2598 
2599 static void
2600 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags)
2601 {
2602 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
2603 	    flags & METASLAB_DONT_THROTTLE)
2604 		return;
2605 
2606 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2607 	if (!mg->mg_class->mc_alloc_throttle_enabled)
2608 		return;
2609 
2610 	(void) refcount_add(&mg->mg_alloc_queue_depth, tag);
2611 }
2612 
2613 void
2614 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags)
2615 {
2616 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
2617 	    flags & METASLAB_DONT_THROTTLE)
2618 		return;
2619 
2620 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2621 	if (!mg->mg_class->mc_alloc_throttle_enabled)
2622 		return;
2623 
2624 	(void) refcount_remove(&mg->mg_alloc_queue_depth, tag);
2625 }
2626 
2627 void
2628 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag)
2629 {
2630 #ifdef ZFS_DEBUG
2631 	const dva_t *dva = bp->blk_dva;
2632 	int ndvas = BP_GET_NDVAS(bp);
2633 
2634 	for (int d = 0; d < ndvas; d++) {
2635 		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
2636 		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2637 		VERIFY(refcount_not_held(&mg->mg_alloc_queue_depth, tag));
2638 	}
2639 #endif
2640 }
2641 
2642 static uint64_t
2643 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
2644 {
2645 	uint64_t start;
2646 	range_tree_t *rt = msp->ms_tree;
2647 	metaslab_class_t *mc = msp->ms_group->mg_class;
2648 
2649 	VERIFY(!msp->ms_condensing);
2650 
2651 	start = mc->mc_ops->msop_alloc(msp, size);
2652 	if (start != -1ULL) {
2653 		metaslab_group_t *mg = msp->ms_group;
2654 		vdev_t *vd = mg->mg_vd;
2655 
2656 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
2657 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2658 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
2659 		range_tree_remove(rt, start, size);
2660 
2661 		if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2662 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2663 
2664 		range_tree_add(msp->ms_alloctree[txg & TXG_MASK], start, size);
2665 
2666 		/* Track the last successful allocation */
2667 		msp->ms_alloc_txg = txg;
2668 		metaslab_verify_space(msp, txg);
2669 	}
2670 
2671 	/*
2672 	 * Now that we've attempted the allocation we need to update the
2673 	 * metaslab's maximum block size since it may have changed.
2674 	 */
2675 	msp->ms_max_size = metaslab_block_maxsize(msp);
2676 	return (start);
2677 }
2678 
2679 static uint64_t
2680 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
2681     uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2682 {
2683 	metaslab_t *msp = NULL;
2684 	uint64_t offset = -1ULL;
2685 	uint64_t activation_weight;
2686 	uint64_t target_distance;
2687 	int i;
2688 
2689 	activation_weight = METASLAB_WEIGHT_PRIMARY;
2690 	for (i = 0; i < d; i++) {
2691 		if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
2692 			activation_weight = METASLAB_WEIGHT_SECONDARY;
2693 			break;
2694 		}
2695 	}
2696 
2697 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
2698 	search->ms_weight = UINT64_MAX;
2699 	search->ms_start = 0;
2700 	for (;;) {
2701 		boolean_t was_active;
2702 		avl_tree_t *t = &mg->mg_metaslab_tree;
2703 		avl_index_t idx;
2704 
2705 		mutex_enter(&mg->mg_lock);
2706 
2707 		/*
2708 		 * Find the metaslab with the highest weight that is less
2709 		 * than what we've already tried.  In the common case, this
2710 		 * means that we will examine each metaslab at most once.
2711 		 * Note that concurrent callers could reorder metaslabs
2712 		 * by activation/passivation once we have dropped the mg_lock.
2713 		 * If a metaslab is activated by another thread, and we fail
2714 		 * to allocate from the metaslab we have selected, we may
2715 		 * not try the newly-activated metaslab, and instead activate
2716 		 * another metaslab.  This is not optimal, but generally
2717 		 * does not cause any problems (a possible exception being
2718 		 * if every metaslab is completely full except for the
2719 		 * the newly-activated metaslab which we fail to examine).
2720 		 */
2721 		msp = avl_find(t, search, &idx);
2722 		if (msp == NULL)
2723 			msp = avl_nearest(t, idx, AVL_AFTER);
2724 		for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
2725 
2726 			if (!metaslab_should_allocate(msp, asize)) {
2727 				metaslab_trace_add(zal, mg, msp, asize, d,
2728 				    TRACE_TOO_SMALL);
2729 				continue;
2730 			}
2731 
2732 			/*
2733 			 * If the selected metaslab is condensing, skip it.
2734 			 */
2735 			if (msp->ms_condensing)
2736 				continue;
2737 
2738 			was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2739 			if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2740 				break;
2741 
2742 			target_distance = min_distance +
2743 			    (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2744 			    min_distance >> 1);
2745 
2746 			for (i = 0; i < d; i++) {
2747 				if (metaslab_distance(msp, &dva[i]) <
2748 				    target_distance)
2749 					break;
2750 			}
2751 			if (i == d)
2752 				break;
2753 		}
2754 		mutex_exit(&mg->mg_lock);
2755 		if (msp == NULL) {
2756 			kmem_free(search, sizeof (*search));
2757 			return (-1ULL);
2758 		}
2759 		search->ms_weight = msp->ms_weight;
2760 		search->ms_start = msp->ms_start + 1;
2761 
2762 		mutex_enter(&msp->ms_lock);
2763 
2764 		/*
2765 		 * Ensure that the metaslab we have selected is still
2766 		 * capable of handling our request. It's possible that
2767 		 * another thread may have changed the weight while we
2768 		 * were blocked on the metaslab lock. We check the
2769 		 * active status first to see if we need to reselect
2770 		 * a new metaslab.
2771 		 */
2772 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
2773 			mutex_exit(&msp->ms_lock);
2774 			continue;
2775 		}
2776 
2777 		if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2778 		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
2779 			metaslab_passivate(msp,
2780 			    msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2781 			mutex_exit(&msp->ms_lock);
2782 			continue;
2783 		}
2784 
2785 		if (metaslab_activate(msp, activation_weight) != 0) {
2786 			mutex_exit(&msp->ms_lock);
2787 			continue;
2788 		}
2789 		msp->ms_selected_txg = txg;
2790 
2791 		/*
2792 		 * Now that we have the lock, recheck to see if we should
2793 		 * continue to use this metaslab for this allocation. The
2794 		 * the metaslab is now loaded so metaslab_should_allocate() can
2795 		 * accurately determine if the allocation attempt should
2796 		 * proceed.
2797 		 */
2798 		if (!metaslab_should_allocate(msp, asize)) {
2799 			/* Passivate this metaslab and select a new one. */
2800 			metaslab_trace_add(zal, mg, msp, asize, d,
2801 			    TRACE_TOO_SMALL);
2802 			goto next;
2803 		}
2804 
2805 		/*
2806 		 * If this metaslab is currently condensing then pick again as
2807 		 * we can't manipulate this metaslab until it's committed
2808 		 * to disk.
2809 		 */
2810 		if (msp->ms_condensing) {
2811 			metaslab_trace_add(zal, mg, msp, asize, d,
2812 			    TRACE_CONDENSING);
2813 			mutex_exit(&msp->ms_lock);
2814 			continue;
2815 		}
2816 
2817 		offset = metaslab_block_alloc(msp, asize, txg);
2818 		metaslab_trace_add(zal, mg, msp, asize, d, offset);
2819 
2820 		if (offset != -1ULL) {
2821 			/* Proactively passivate the metaslab, if needed */
2822 			metaslab_segment_may_passivate(msp);
2823 			break;
2824 		}
2825 next:
2826 		ASSERT(msp->ms_loaded);
2827 
2828 		/*
2829 		 * We were unable to allocate from this metaslab so determine
2830 		 * a new weight for this metaslab. Now that we have loaded
2831 		 * the metaslab we can provide a better hint to the metaslab
2832 		 * selector.
2833 		 *
2834 		 * For space-based metaslabs, we use the maximum block size.
2835 		 * This information is only available when the metaslab
2836 		 * is loaded and is more accurate than the generic free
2837 		 * space weight that was calculated by metaslab_weight().
2838 		 * This information allows us to quickly compare the maximum
2839 		 * available allocation in the metaslab to the allocation
2840 		 * size being requested.
2841 		 *
2842 		 * For segment-based metaslabs, determine the new weight
2843 		 * based on the highest bucket in the range tree. We
2844 		 * explicitly use the loaded segment weight (i.e. the range
2845 		 * tree histogram) since it contains the space that is
2846 		 * currently available for allocation and is accurate
2847 		 * even within a sync pass.
2848 		 */
2849 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
2850 			uint64_t weight = metaslab_block_maxsize(msp);
2851 			WEIGHT_SET_SPACEBASED(weight);
2852 			metaslab_passivate(msp, weight);
2853 		} else {
2854 			metaslab_passivate(msp,
2855 			    metaslab_weight_from_range_tree(msp));
2856 		}
2857 
2858 		/*
2859 		 * We have just failed an allocation attempt, check
2860 		 * that metaslab_should_allocate() agrees. Otherwise,
2861 		 * we may end up in an infinite loop retrying the same
2862 		 * metaslab.
2863 		 */
2864 		ASSERT(!metaslab_should_allocate(msp, asize));
2865 		mutex_exit(&msp->ms_lock);
2866 	}
2867 	mutex_exit(&msp->ms_lock);
2868 	kmem_free(search, sizeof (*search));
2869 	return (offset);
2870 }
2871 
2872 static uint64_t
2873 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
2874     uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2875 {
2876 	uint64_t offset;
2877 	ASSERT(mg->mg_initialized);
2878 
2879 	offset = metaslab_group_alloc_normal(mg, zal, asize, txg,
2880 	    min_distance, dva, d);
2881 
2882 	mutex_enter(&mg->mg_lock);
2883 	if (offset == -1ULL) {
2884 		mg->mg_failed_allocations++;
2885 		metaslab_trace_add(zal, mg, NULL, asize, d,
2886 		    TRACE_GROUP_FAILURE);
2887 		if (asize == SPA_GANGBLOCKSIZE) {
2888 			/*
2889 			 * This metaslab group was unable to allocate
2890 			 * the minimum gang block size so it must be out of
2891 			 * space. We must notify the allocation throttle
2892 			 * to start skipping allocation attempts to this
2893 			 * metaslab group until more space becomes available.
2894 			 * Note: this failure cannot be caused by the
2895 			 * allocation throttle since the allocation throttle
2896 			 * is only responsible for skipping devices and
2897 			 * not failing block allocations.
2898 			 */
2899 			mg->mg_no_free_space = B_TRUE;
2900 		}
2901 	}
2902 	mg->mg_allocations++;
2903 	mutex_exit(&mg->mg_lock);
2904 	return (offset);
2905 }
2906 
2907 /*
2908  * If we have to write a ditto block (i.e. more than one DVA for a given BP)
2909  * on the same vdev as an existing DVA of this BP, then try to allocate it
2910  * at least (vdev_asize / (2 ^ ditto_same_vdev_distance_shift)) away from the
2911  * existing DVAs.
2912  */
2913 int ditto_same_vdev_distance_shift = 3;
2914 
2915 /*
2916  * Allocate a block for the specified i/o.
2917  */
2918 static int
2919 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
2920     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
2921     zio_alloc_list_t *zal)
2922 {
2923 	metaslab_group_t *mg, *rotor;
2924 	vdev_t *vd;
2925 	boolean_t try_hard = B_FALSE;
2926 
2927 	ASSERT(!DVA_IS_VALID(&dva[d]));
2928 
2929 	/*
2930 	 * For testing, make some blocks above a certain size be gang blocks.
2931 	 */
2932 	if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0) {
2933 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG);
2934 		return (SET_ERROR(ENOSPC));
2935 	}
2936 
2937 	/*
2938 	 * Start at the rotor and loop through all mgs until we find something.
2939 	 * Note that there's no locking on mc_rotor or mc_aliquot because
2940 	 * nothing actually breaks if we miss a few updates -- we just won't
2941 	 * allocate quite as evenly.  It all balances out over time.
2942 	 *
2943 	 * If we are doing ditto or log blocks, try to spread them across
2944 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
2945 	 * allocated all of our ditto blocks, then try and spread them out on
2946 	 * that vdev as much as possible.  If it turns out to not be possible,
2947 	 * gradually lower our standards until anything becomes acceptable.
2948 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
2949 	 * gives us hope of containing our fault domains to something we're
2950 	 * able to reason about.  Otherwise, any two top-level vdev failures
2951 	 * will guarantee the loss of data.  With consecutive allocation,
2952 	 * only two adjacent top-level vdev failures will result in data loss.
2953 	 *
2954 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
2955 	 * ourselves on the same vdev as our gang block header.  That
2956 	 * way, we can hope for locality in vdev_cache, plus it makes our
2957 	 * fault domains something tractable.
2958 	 */
2959 	if (hintdva) {
2960 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
2961 
2962 		/*
2963 		 * It's possible the vdev we're using as the hint no
2964 		 * longer exists (i.e. removed). Consult the rotor when
2965 		 * all else fails.
2966 		 */
2967 		if (vd != NULL) {
2968 			mg = vd->vdev_mg;
2969 
2970 			if (flags & METASLAB_HINTBP_AVOID &&
2971 			    mg->mg_next != NULL)
2972 				mg = mg->mg_next;
2973 		} else {
2974 			mg = mc->mc_rotor;
2975 		}
2976 	} else if (d != 0) {
2977 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
2978 		mg = vd->vdev_mg->mg_next;
2979 	} else {
2980 		mg = mc->mc_rotor;
2981 	}
2982 
2983 	/*
2984 	 * If the hint put us into the wrong metaslab class, or into a
2985 	 * metaslab group that has been passivated, just follow the rotor.
2986 	 */
2987 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
2988 		mg = mc->mc_rotor;
2989 
2990 	rotor = mg;
2991 top:
2992 	do {
2993 		boolean_t allocatable;
2994 
2995 		ASSERT(mg->mg_activation_count == 1);
2996 		vd = mg->mg_vd;
2997 
2998 		/*
2999 		 * Don't allocate from faulted devices.
3000 		 */
3001 		if (try_hard) {
3002 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
3003 			allocatable = vdev_allocatable(vd);
3004 			spa_config_exit(spa, SCL_ZIO, FTAG);
3005 		} else {
3006 			allocatable = vdev_allocatable(vd);
3007 		}
3008 
3009 		/*
3010 		 * Determine if the selected metaslab group is eligible
3011 		 * for allocations. If we're ganging then don't allow
3012 		 * this metaslab group to skip allocations since that would
3013 		 * inadvertently return ENOSPC and suspend the pool
3014 		 * even though space is still available.
3015 		 */
3016 		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3017 			allocatable = metaslab_group_allocatable(mg, rotor,
3018 			    psize);
3019 		}
3020 
3021 		if (!allocatable) {
3022 			metaslab_trace_add(zal, mg, NULL, psize, d,
3023 			    TRACE_NOT_ALLOCATABLE);
3024 			goto next;
3025 		}
3026 
3027 		ASSERT(mg->mg_initialized);
3028 
3029 		/*
3030 		 * Avoid writing single-copy data to a failing,
3031 		 * non-redundant vdev, unless we've already tried all
3032 		 * other vdevs.
3033 		 */
3034 		if ((vd->vdev_stat.vs_write_errors > 0 ||
3035 		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
3036 		    d == 0 && !try_hard && vd->vdev_children == 0) {
3037 			metaslab_trace_add(zal, mg, NULL, psize, d,
3038 			    TRACE_VDEV_ERROR);
3039 			goto next;
3040 		}
3041 
3042 		ASSERT(mg->mg_class == mc);
3043 
3044 		/*
3045 		 * If we don't need to try hard, then require that the
3046 		 * block be 1/8th of the device away from any other DVAs
3047 		 * in this BP.  If we are trying hard, allow any offset
3048 		 * to be used (distance=0).
3049 		 */
3050 		uint64_t distance = 0;
3051 		if (!try_hard) {
3052 			distance = vd->vdev_asize >>
3053 			    ditto_same_vdev_distance_shift;
3054 			if (distance <= (1ULL << vd->vdev_ms_shift))
3055 				distance = 0;
3056 		}
3057 
3058 		uint64_t asize = vdev_psize_to_asize(vd, psize);
3059 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
3060 
3061 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
3062 		    distance, dva, d);
3063 
3064 		if (offset != -1ULL) {
3065 			/*
3066 			 * If we've just selected this metaslab group,
3067 			 * figure out whether the corresponding vdev is
3068 			 * over- or under-used relative to the pool,
3069 			 * and set an allocation bias to even it out.
3070 			 */
3071 			if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
3072 				vdev_stat_t *vs = &vd->vdev_stat;
3073 				int64_t vu, cu;
3074 
3075 				vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
3076 				cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
3077 
3078 				/*
3079 				 * Calculate how much more or less we should
3080 				 * try to allocate from this device during
3081 				 * this iteration around the rotor.
3082 				 * For example, if a device is 80% full
3083 				 * and the pool is 20% full then we should
3084 				 * reduce allocations by 60% on this device.
3085 				 *
3086 				 * mg_bias = (20 - 80) * 512K / 100 = -307K
3087 				 *
3088 				 * This reduces allocations by 307K for this
3089 				 * iteration.
3090 				 */
3091 				mg->mg_bias = ((cu - vu) *
3092 				    (int64_t)mg->mg_aliquot) / 100;
3093 			} else if (!metaslab_bias_enabled) {
3094 				mg->mg_bias = 0;
3095 			}
3096 
3097 			if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
3098 			    mg->mg_aliquot + mg->mg_bias) {
3099 				mc->mc_rotor = mg->mg_next;
3100 				mc->mc_aliquot = 0;
3101 			}
3102 
3103 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
3104 			DVA_SET_OFFSET(&dva[d], offset);
3105 			DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
3106 			DVA_SET_ASIZE(&dva[d], asize);
3107 
3108 			return (0);
3109 		}
3110 next:
3111 		mc->mc_rotor = mg->mg_next;
3112 		mc->mc_aliquot = 0;
3113 	} while ((mg = mg->mg_next) != rotor);
3114 
3115 	/*
3116 	 * If we haven't tried hard, do so now.
3117 	 */
3118 	if (!try_hard) {
3119 		try_hard = B_TRUE;
3120 		goto top;
3121 	}
3122 
3123 	bzero(&dva[d], sizeof (dva_t));
3124 
3125 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC);
3126 	return (SET_ERROR(ENOSPC));
3127 }
3128 
3129 /*
3130  * Free the block represented by DVA in the context of the specified
3131  * transaction group.
3132  */
3133 static void
3134 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
3135 {
3136 	uint64_t vdev = DVA_GET_VDEV(dva);
3137 	uint64_t offset = DVA_GET_OFFSET(dva);
3138 	uint64_t size = DVA_GET_ASIZE(dva);
3139 	vdev_t *vd;
3140 	metaslab_t *msp;
3141 
3142 	ASSERT(DVA_IS_VALID(dva));
3143 
3144 	if (txg > spa_freeze_txg(spa))
3145 		return;
3146 
3147 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
3148 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
3149 		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
3150 		    (u_longlong_t)vdev, (u_longlong_t)offset);
3151 		ASSERT(0);
3152 		return;
3153 	}
3154 
3155 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3156 
3157 	if (DVA_GET_GANG(dva))
3158 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3159 
3160 	mutex_enter(&msp->ms_lock);
3161 
3162 	if (now) {
3163 		range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
3164 		    offset, size);
3165 
3166 		VERIFY(!msp->ms_condensing);
3167 		VERIFY3U(offset, >=, msp->ms_start);
3168 		VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
3169 		VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
3170 		    msp->ms_size);
3171 		VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3172 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3173 		range_tree_add(msp->ms_tree, offset, size);
3174 		msp->ms_max_size = metaslab_block_maxsize(msp);
3175 	} else {
3176 		VERIFY3U(txg, ==, spa->spa_syncing_txg);
3177 		if (range_tree_space(msp->ms_freeingtree) == 0)
3178 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
3179 		range_tree_add(msp->ms_freeingtree, offset, size);
3180 	}
3181 
3182 	mutex_exit(&msp->ms_lock);
3183 }
3184 
3185 /*
3186  * Intent log support: upon opening the pool after a crash, notify the SPA
3187  * of blocks that the intent log has allocated for immediate write, but
3188  * which are still considered free by the SPA because the last transaction
3189  * group didn't commit yet.
3190  */
3191 static int
3192 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3193 {
3194 	uint64_t vdev = DVA_GET_VDEV(dva);
3195 	uint64_t offset = DVA_GET_OFFSET(dva);
3196 	uint64_t size = DVA_GET_ASIZE(dva);
3197 	vdev_t *vd;
3198 	metaslab_t *msp;
3199 	int error = 0;
3200 
3201 	ASSERT(DVA_IS_VALID(dva));
3202 
3203 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
3204 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
3205 		return (SET_ERROR(ENXIO));
3206 
3207 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3208 
3209 	if (DVA_GET_GANG(dva))
3210 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3211 
3212 	mutex_enter(&msp->ms_lock);
3213 
3214 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
3215 		error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
3216 
3217 	if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
3218 		error = SET_ERROR(ENOENT);
3219 
3220 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
3221 		mutex_exit(&msp->ms_lock);
3222 		return (error);
3223 	}
3224 
3225 	VERIFY(!msp->ms_condensing);
3226 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3227 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3228 	VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
3229 	range_tree_remove(msp->ms_tree, offset, size);
3230 
3231 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
3232 		if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
3233 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
3234 		range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
3235 	}
3236 
3237 	mutex_exit(&msp->ms_lock);
3238 
3239 	return (0);
3240 }
3241 
3242 /*
3243  * Reserve some allocation slots. The reservation system must be called
3244  * before we call into the allocator. If there aren't any available slots
3245  * then the I/O will be throttled until an I/O completes and its slots are
3246  * freed up. The function returns true if it was successful in placing
3247  * the reservation.
3248  */
3249 boolean_t
3250 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, zio_t *zio,
3251     int flags)
3252 {
3253 	uint64_t available_slots = 0;
3254 	boolean_t slot_reserved = B_FALSE;
3255 
3256 	ASSERT(mc->mc_alloc_throttle_enabled);
3257 	mutex_enter(&mc->mc_lock);
3258 
3259 	uint64_t reserved_slots = refcount_count(&mc->mc_alloc_slots);
3260 	if (reserved_slots < mc->mc_alloc_max_slots)
3261 		available_slots = mc->mc_alloc_max_slots - reserved_slots;
3262 
3263 	if (slots <= available_slots || GANG_ALLOCATION(flags)) {
3264 		/*
3265 		 * We reserve the slots individually so that we can unreserve
3266 		 * them individually when an I/O completes.
3267 		 */
3268 		for (int d = 0; d < slots; d++) {
3269 			reserved_slots = refcount_add(&mc->mc_alloc_slots, zio);
3270 		}
3271 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
3272 		slot_reserved = B_TRUE;
3273 	}
3274 
3275 	mutex_exit(&mc->mc_lock);
3276 	return (slot_reserved);
3277 }
3278 
3279 void
3280 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, zio_t *zio)
3281 {
3282 	ASSERT(mc->mc_alloc_throttle_enabled);
3283 	mutex_enter(&mc->mc_lock);
3284 	for (int d = 0; d < slots; d++) {
3285 		(void) refcount_remove(&mc->mc_alloc_slots, zio);
3286 	}
3287 	mutex_exit(&mc->mc_lock);
3288 }
3289 
3290 int
3291 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
3292     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
3293     zio_alloc_list_t *zal, zio_t *zio)
3294 {
3295 	dva_t *dva = bp->blk_dva;
3296 	dva_t *hintdva = hintbp->blk_dva;
3297 	int error = 0;
3298 
3299 	ASSERT(bp->blk_birth == 0);
3300 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
3301 
3302 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
3303 
3304 	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
3305 		spa_config_exit(spa, SCL_ALLOC, FTAG);
3306 		return (SET_ERROR(ENOSPC));
3307 	}
3308 
3309 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
3310 	ASSERT(BP_GET_NDVAS(bp) == 0);
3311 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
3312 	ASSERT3P(zal, !=, NULL);
3313 
3314 	for (int d = 0; d < ndvas; d++) {
3315 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
3316 		    txg, flags, zal);
3317 		if (error != 0) {
3318 			for (d--; d >= 0; d--) {
3319 				metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
3320 				metaslab_group_alloc_decrement(spa,
3321 				    DVA_GET_VDEV(&dva[d]), zio, flags);
3322 				bzero(&dva[d], sizeof (dva_t));
3323 			}
3324 			spa_config_exit(spa, SCL_ALLOC, FTAG);
3325 			return (error);
3326 		} else {
3327 			/*
3328 			 * Update the metaslab group's queue depth
3329 			 * based on the newly allocated dva.
3330 			 */
3331 			metaslab_group_alloc_increment(spa,
3332 			    DVA_GET_VDEV(&dva[d]), zio, flags);
3333 		}
3334 
3335 	}
3336 	ASSERT(error == 0);
3337 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
3338 
3339 	spa_config_exit(spa, SCL_ALLOC, FTAG);
3340 
3341 	BP_SET_BIRTH(bp, txg, txg);
3342 
3343 	return (0);
3344 }
3345 
3346 void
3347 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
3348 {
3349 	const dva_t *dva = bp->blk_dva;
3350 	int ndvas = BP_GET_NDVAS(bp);
3351 
3352 	ASSERT(!BP_IS_HOLE(bp));
3353 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
3354 
3355 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
3356 
3357 	for (int d = 0; d < ndvas; d++)
3358 		metaslab_free_dva(spa, &dva[d], txg, now);
3359 
3360 	spa_config_exit(spa, SCL_FREE, FTAG);
3361 }
3362 
3363 int
3364 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
3365 {
3366 	const dva_t *dva = bp->blk_dva;
3367 	int ndvas = BP_GET_NDVAS(bp);
3368 	int error = 0;
3369 
3370 	ASSERT(!BP_IS_HOLE(bp));
3371 
3372 	if (txg != 0) {
3373 		/*
3374 		 * First do a dry run to make sure all DVAs are claimable,
3375 		 * so we don't have to unwind from partial failures below.
3376 		 */
3377 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
3378 			return (error);
3379 	}
3380 
3381 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
3382 
3383 	for (int d = 0; d < ndvas; d++)
3384 		if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
3385 			break;
3386 
3387 	spa_config_exit(spa, SCL_ALLOC, FTAG);
3388 
3389 	ASSERT(error == 0 || txg == 0);
3390 
3391 	return (error);
3392 }
3393 
3394 void
3395 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
3396 {
3397 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
3398 		return;
3399 
3400 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3401 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3402 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
3403 		vdev_t *vd = vdev_lookup_top(spa, vdev);
3404 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
3405 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
3406 		metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3407 
3408 		if (msp->ms_loaded)
3409 			range_tree_verify(msp->ms_tree, offset, size);
3410 
3411 		range_tree_verify(msp->ms_freeingtree, offset, size);
3412 		range_tree_verify(msp->ms_freedtree, offset, size);
3413 		for (int j = 0; j < TXG_DEFER_SIZE; j++)
3414 			range_tree_verify(msp->ms_defertree[j], offset, size);
3415 	}
3416 	spa_config_exit(spa, SCL_VDEV, FTAG);
3417 }
3418