xref: /illumos-gate/usr/src/uts/common/fs/zfs/dsl_scan.c (revision 0c06d385ea5bbe11d20ecea2e02cdc78733d5359)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright 2016 Gary Mills
25  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
26  * Copyright 2019 Joyent, Inc.
27  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
28  */
29 
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/zil_impl.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/ddt.h>
50 #include <sys/sa.h>
51 #include <sys/sa_impl.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/range_tree.h>
55 #ifdef _KERNEL
56 #include <sys/zfs_vfsops.h>
57 #endif
58 
59 /*
60  * Grand theory statement on scan queue sorting
61  *
62  * Scanning is implemented by recursively traversing all indirection levels
63  * in an object and reading all blocks referenced from said objects. This
64  * results in us approximately traversing the object from lowest logical
65  * offset to the highest. For best performance, we would want the logical
66  * blocks to be physically contiguous. However, this is frequently not the
67  * case with pools given the allocation patterns of copy-on-write filesystems.
68  * So instead, we put the I/Os into a reordering queue and issue them in a
69  * way that will most benefit physical disks (LBA-order).
70  *
71  * Queue management:
72  *
73  * Ideally, we would want to scan all metadata and queue up all block I/O
74  * prior to starting to issue it, because that allows us to do an optimal
75  * sorting job. This can however consume large amounts of memory. Therefore
76  * we continuously monitor the size of the queues and constrain them to 5%
77  * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
78  * limit, we clear out a few of the largest extents at the head of the queues
79  * to make room for more scanning. Hopefully, these extents will be fairly
80  * large and contiguous, allowing us to approach sequential I/O throughput
81  * even without a fully sorted tree.
82  *
83  * Metadata scanning takes place in dsl_scan_visit(), which is called from
84  * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
85  * metadata on the pool, or we need to make room in memory because our
86  * queues are too large, dsl_scan_visit() is postponed and
87  * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
88  * that metadata scanning and queued I/O issuing are mutually exclusive. This
89  * allows us to provide maximum sequential I/O throughput for the majority of
90  * I/O's issued since sequential I/O performance is significantly negatively
91  * impacted if it is interleaved with random I/O.
92  *
93  * Implementation Notes
94  *
95  * One side effect of the queued scanning algorithm is that the scanning code
96  * needs to be notified whenever a block is freed. This is needed to allow
97  * the scanning code to remove these I/Os from the issuing queue. Additionally,
98  * we do not attempt to queue gang blocks to be issued sequentially since this
99  * is very hard to do and would have an extremely limited performance benefit.
100  * Instead, we simply issue gang I/Os as soon as we find them using the legacy
101  * algorithm.
102  *
103  * Backwards compatibility
104  *
105  * This new algorithm is backwards compatible with the legacy on-disk data
106  * structures (and therefore does not require a new feature flag).
107  * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
108  * will stop scanning metadata (in logical order) and wait for all outstanding
109  * sorted I/O to complete. Once this is done, we write out a checkpoint
110  * bookmark, indicating that we have scanned everything logically before it.
111  * If the pool is imported on a machine without the new sorting algorithm,
112  * the scan simply resumes from the last checkpoint using the legacy algorithm.
113  */
114 
115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
116     const zbookmark_phys_t *);
117 
118 static scan_cb_t dsl_scan_scrub_cb;
119 
120 static int scan_ds_queue_compare(const void *a, const void *b);
121 static int scan_prefetch_queue_compare(const void *a, const void *b);
122 static void scan_ds_queue_clear(dsl_scan_t *scn);
123 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
124     uint64_t *txg);
125 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
126 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
127 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
128 
129 extern int zfs_vdev_async_write_active_min_dirty_percent;
130 
131 /*
132  * By default zfs will check to ensure it is not over the hard memory
133  * limit before each txg. If finer-grained control of this is needed
134  * this value can be set to 1 to enable checking before scanning each
135  * block.
136  */
137 int zfs_scan_strict_mem_lim = B_FALSE;
138 
139 /*
140  * Maximum number of parallelly executing I/Os per top-level vdev.
141  * Tune with care. Very high settings (hundreds) are known to trigger
142  * some firmware bugs and resets on certain SSDs.
143  */
144 int zfs_top_maxinflight = 32;		/* maximum I/Os per top-level */
145 unsigned int zfs_resilver_delay = 2;	/* number of ticks to delay resilver */
146 unsigned int zfs_scrub_delay = 4;	/* number of ticks to delay scrub */
147 unsigned int zfs_scan_idle = 50;	/* idle window in clock ticks */
148 
149 /*
150  * Maximum number of parallelly executed bytes per leaf vdev. We attempt
151  * to strike a balance here between keeping the vdev queues full of I/Os
152  * at all times and not overflowing the queues to cause long latency,
153  * which would cause long txg sync times. No matter what, we will not
154  * overload the drives with I/O, since that is protected by
155  * zfs_vdev_scrub_max_active.
156  */
157 unsigned long zfs_scan_vdev_limit = 4 << 20;
158 
159 int zfs_scan_issue_strategy = 0;
160 int zfs_scan_legacy = B_FALSE;	/* don't queue & sort zios, go direct */
161 uint64_t zfs_scan_max_ext_gap = 2 << 20;	/* in bytes */
162 
163 unsigned int zfs_scan_checkpoint_intval = 7200;	/* seconds */
164 #define	ZFS_SCAN_CHECKPOINT_INTVAL	SEC_TO_TICK(zfs_scan_checkpoint_intval)
165 
166 /*
167  * fill_weight is non-tunable at runtime, so we copy it at module init from
168  * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
169  * break queue sorting.
170  */
171 uint64_t zfs_scan_fill_weight = 3;
172 static uint64_t fill_weight;
173 
174 /* See dsl_scan_should_clear() for details on the memory limit tunables */
175 uint64_t zfs_scan_mem_lim_min = 16 << 20;	/* bytes */
176 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20;	/* bytes */
177 int zfs_scan_mem_lim_fact = 20;		/* fraction of physmem */
178 int zfs_scan_mem_lim_soft_fact = 20;	/* fraction of mem lim above */
179 
180 unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */
181 unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */
182 /* min millisecs to obsolete per txg */
183 unsigned int zfs_obsolete_min_time_ms = 500;
184 /* min millisecs to resilver per txg */
185 unsigned int zfs_resilver_min_time_ms = 3000;
186 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
187 boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
188 boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
189 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
190 /* max number of blocks to free in a single TXG */
191 uint64_t zfs_async_block_max_blocks = UINT64_MAX;
192 
193 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */
194 
195 /*
196  * We wait a few txgs after importing a pool to begin scanning so that
197  * the import / mounting code isn't held up by scrub / resilver IO.
198  * Unfortunately, it is a bit difficult to determine exactly how long
199  * this will take since userspace will trigger fs mounts asynchronously
200  * and the kernel will create zvol minors asynchronously. As a result,
201  * the value provided here is a bit arbitrary, but represents a
202  * reasonable estimate of how many txgs it will take to finish fully
203  * importing a pool
204  */
205 #define	SCAN_IMPORT_WAIT_TXGS		5
206 
207 
208 #define	DSL_SCAN_IS_SCRUB_RESILVER(scn) \
209 	((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
210 	(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
211 
212 extern int zfs_txg_timeout;
213 
214 /*
215  * Enable/disable the processing of the free_bpobj object.
216  */
217 boolean_t zfs_free_bpobj_enabled = B_TRUE;
218 
219 /* the order has to match pool_scan_type */
220 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
221 	NULL,
222 	dsl_scan_scrub_cb,	/* POOL_SCAN_SCRUB */
223 	dsl_scan_scrub_cb,	/* POOL_SCAN_RESILVER */
224 };
225 
226 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
227 typedef struct {
228 	uint64_t	sds_dsobj;
229 	uint64_t	sds_txg;
230 	avl_node_t	sds_node;
231 } scan_ds_t;
232 
233 /*
234  * This controls what conditions are placed on dsl_scan_sync_state():
235  * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0
236  * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0.
237  * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise
238  *	write out the scn_phys_cached version.
239  * See dsl_scan_sync_state for details.
240  */
241 typedef enum {
242 	SYNC_OPTIONAL,
243 	SYNC_MANDATORY,
244 	SYNC_CACHED
245 } state_sync_type_t;
246 
247 /*
248  * This struct represents the minimum information needed to reconstruct a
249  * zio for sequential scanning. This is useful because many of these will
250  * accumulate in the sequential IO queues before being issued, so saving
251  * memory matters here.
252  */
253 typedef struct scan_io {
254 	/* fields from blkptr_t */
255 	uint64_t		sio_blk_prop;
256 	uint64_t		sio_phys_birth;
257 	uint64_t		sio_birth;
258 	zio_cksum_t		sio_cksum;
259 	uint32_t		sio_nr_dvas;
260 
261 	/* fields from zio_t */
262 	uint32_t		sio_flags;
263 	zbookmark_phys_t	sio_zb;
264 
265 	/* members for queue sorting */
266 	union {
267 		avl_node_t	sio_addr_node; /* link into issuing queue */
268 		list_node_t	sio_list_node; /* link for issuing to disk */
269 	} sio_nodes;
270 
271 	/*
272 	 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
273 	 * depending on how many were in the original bp. Only the
274 	 * first DVA is really used for sorting and issuing purposes.
275 	 * The other DVAs (if provided) simply exist so that the zio
276 	 * layer can find additional copies to repair from in the
277 	 * event of an error. This array must go at the end of the
278 	 * struct to allow this for the variable number of elements.
279 	 */
280 	dva_t			sio_dva[0];
281 } scan_io_t;
282 
283 #define	SIO_SET_OFFSET(sio, x)		DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
284 #define	SIO_SET_ASIZE(sio, x)		DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
285 #define	SIO_GET_OFFSET(sio)		DVA_GET_OFFSET(&(sio)->sio_dva[0])
286 #define	SIO_GET_ASIZE(sio)		DVA_GET_ASIZE(&(sio)->sio_dva[0])
287 #define	SIO_GET_END_OFFSET(sio)		\
288 	(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
289 #define	SIO_GET_MUSED(sio)		\
290 	(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
291 
292 struct dsl_scan_io_queue {
293 	dsl_scan_t	*q_scn; /* associated dsl_scan_t */
294 	vdev_t		*q_vd; /* top-level vdev that this queue represents */
295 
296 	/* trees used for sorting I/Os and extents of I/Os */
297 	range_tree_t	*q_exts_by_addr;
298 	zfs_btree_t		q_exts_by_size;
299 	avl_tree_t	q_sios_by_addr;
300 	uint64_t	q_sio_memused;
301 
302 	/* members for zio rate limiting */
303 	uint64_t	q_maxinflight_bytes;
304 	uint64_t	q_inflight_bytes;
305 	kcondvar_t	q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
306 
307 	/* per txg statistics */
308 	uint64_t	q_total_seg_size_this_txg;
309 	uint64_t	q_segs_this_txg;
310 	uint64_t	q_total_zio_size_this_txg;
311 	uint64_t	q_zios_this_txg;
312 };
313 
314 /* private data for dsl_scan_prefetch_cb() */
315 typedef struct scan_prefetch_ctx {
316 	zfs_refcount_t spc_refcnt;	/* refcount for memory management */
317 	dsl_scan_t *spc_scn;		/* dsl_scan_t for the pool */
318 	boolean_t spc_root;		/* is this prefetch for an objset? */
319 	uint8_t spc_indblkshift;	/* dn_indblkshift of current dnode */
320 	uint16_t spc_datablkszsec;	/* dn_idatablkszsec of current dnode */
321 } scan_prefetch_ctx_t;
322 
323 /* private data for dsl_scan_prefetch() */
324 typedef struct scan_prefetch_issue_ctx {
325 	avl_node_t spic_avl_node;	/* link into scn->scn_prefetch_queue */
326 	scan_prefetch_ctx_t *spic_spc;	/* spc for the callback */
327 	blkptr_t spic_bp;		/* bp to prefetch */
328 	zbookmark_phys_t spic_zb;	/* bookmark to prefetch */
329 } scan_prefetch_issue_ctx_t;
330 
331 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
332     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
333 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
334     scan_io_t *sio);
335 
336 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
337 static void scan_io_queues_destroy(dsl_scan_t *scn);
338 
339 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
340 
341 /* sio->sio_nr_dvas must be set so we know which cache to free from */
342 static void
343 sio_free(scan_io_t *sio)
344 {
345 	ASSERT3U(sio->sio_nr_dvas, >, 0);
346 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
347 
348 	kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
349 }
350 
351 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
352 static scan_io_t *
353 sio_alloc(unsigned short nr_dvas)
354 {
355 	ASSERT3U(nr_dvas, >, 0);
356 	ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
357 
358 	return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
359 }
360 
361 void
362 scan_init(void)
363 {
364 	/*
365 	 * This is used in ext_size_compare() to weight segments
366 	 * based on how sparse they are. This cannot be changed
367 	 * mid-scan and the tree comparison functions don't currently
368 	 * have a mechansim for passing additional context to the
369 	 * compare functions. Thus we store this value globally and
370 	 * we only allow it to be set at module intiailization time
371 	 */
372 	fill_weight = zfs_scan_fill_weight;
373 
374 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
375 		char name[36];
376 
377 		(void) sprintf(name, "sio_cache_%d", i);
378 		sio_cache[i] = kmem_cache_create(name,
379 		    (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
380 		    0, NULL, NULL, NULL, NULL, NULL, 0);
381 	}
382 }
383 
384 void
385 scan_fini(void)
386 {
387 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
388 		kmem_cache_destroy(sio_cache[i]);
389 	}
390 }
391 
392 static inline boolean_t
393 dsl_scan_is_running(const dsl_scan_t *scn)
394 {
395 	return (scn->scn_phys.scn_state == DSS_SCANNING);
396 }
397 
398 boolean_t
399 dsl_scan_resilvering(dsl_pool_t *dp)
400 {
401 	return (dsl_scan_is_running(dp->dp_scan) &&
402 	    dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
403 }
404 
405 static inline void
406 sio2bp(const scan_io_t *sio, blkptr_t *bp)
407 {
408 	bzero(bp, sizeof (*bp));
409 	bp->blk_prop = sio->sio_blk_prop;
410 	bp->blk_phys_birth = sio->sio_phys_birth;
411 	bp->blk_birth = sio->sio_birth;
412 	bp->blk_fill = 1;	/* we always only work with data pointers */
413 	bp->blk_cksum = sio->sio_cksum;
414 
415 	ASSERT3U(sio->sio_nr_dvas, >, 0);
416 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
417 
418 	bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t));
419 }
420 
421 static inline void
422 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
423 {
424 	sio->sio_blk_prop = bp->blk_prop;
425 	sio->sio_phys_birth = bp->blk_phys_birth;
426 	sio->sio_birth = bp->blk_birth;
427 	sio->sio_cksum = bp->blk_cksum;
428 	sio->sio_nr_dvas = BP_GET_NDVAS(bp);
429 
430 	/*
431 	 * Copy the DVAs to the sio. We need all copies of the block so
432 	 * that the self healing code can use the alternate copies if the
433 	 * first is corrupted. We want the DVA at index dva_i to be first
434 	 * in the sio since this is the primary one that we want to issue.
435 	 */
436 	for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
437 		sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
438 	}
439 }
440 
441 int
442 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
443 {
444 	int err;
445 	dsl_scan_t *scn;
446 	spa_t *spa = dp->dp_spa;
447 	uint64_t f;
448 
449 	scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
450 	scn->scn_dp = dp;
451 
452 	/*
453 	 * It's possible that we're resuming a scan after a reboot so
454 	 * make sure that the scan_async_destroying flag is initialized
455 	 * appropriately.
456 	 */
457 	ASSERT(!scn->scn_async_destroying);
458 	scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
459 	    SPA_FEATURE_ASYNC_DESTROY);
460 
461 	avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
462 	    offsetof(scan_ds_t, sds_node));
463 	avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
464 	    sizeof (scan_prefetch_issue_ctx_t),
465 	    offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
466 
467 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
468 	    "scrub_func", sizeof (uint64_t), 1, &f);
469 	if (err == 0) {
470 		/*
471 		 * There was an old-style scrub in progress.  Restart a
472 		 * new-style scrub from the beginning.
473 		 */
474 		scn->scn_restart_txg = txg;
475 		zfs_dbgmsg("old-style scrub was in progress; "
476 		    "restarting new-style scrub in txg %llu",
477 		    (longlong_t)scn->scn_restart_txg);
478 
479 		/*
480 		 * Load the queue obj from the old location so that it
481 		 * can be freed by dsl_scan_done().
482 		 */
483 		(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
484 		    "scrub_queue", sizeof (uint64_t), 1,
485 		    &scn->scn_phys.scn_queue_obj);
486 	} else {
487 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
488 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
489 		    &scn->scn_phys);
490 
491 		/*
492 		 * Detect if the pool contains the signature of #2094.  If it
493 		 * does properly update the scn->scn_phys structure and notify
494 		 * the administrator by setting an errata for the pool.
495 		 */
496 		if (err == EOVERFLOW) {
497 			uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
498 			VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
499 			VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
500 			    (23 * sizeof (uint64_t)));
501 
502 			err = zap_lookup(dp->dp_meta_objset,
503 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
504 			    sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
505 			if (err == 0) {
506 				uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
507 
508 				if (overflow & ~DSF_VISIT_DS_AGAIN ||
509 				    scn->scn_async_destroying) {
510 					spa->spa_errata =
511 					    ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
512 					return (EOVERFLOW);
513 				}
514 
515 				bcopy(zaptmp, &scn->scn_phys,
516 				    SCAN_PHYS_NUMINTS * sizeof (uint64_t));
517 				scn->scn_phys.scn_flags = overflow;
518 
519 				/* Required scrub already in progress. */
520 				if (scn->scn_phys.scn_state == DSS_FINISHED ||
521 				    scn->scn_phys.scn_state == DSS_CANCELED)
522 					spa->spa_errata =
523 					    ZPOOL_ERRATA_ZOL_2094_SCRUB;
524 			}
525 		}
526 
527 		if (err == ENOENT)
528 			return (0);
529 		else if (err)
530 			return (err);
531 
532 		/*
533 		 * We might be restarting after a reboot, so jump the issued
534 		 * counter to how far we've scanned. We know we're consistent
535 		 * up to here.
536 		 */
537 		scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
538 
539 		if (dsl_scan_is_running(scn) &&
540 		    spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
541 			/*
542 			 * A new-type scrub was in progress on an old
543 			 * pool, and the pool was accessed by old
544 			 * software.  Restart from the beginning, since
545 			 * the old software may have changed the pool in
546 			 * the meantime.
547 			 */
548 			scn->scn_restart_txg = txg;
549 			zfs_dbgmsg("new-style scrub was modified "
550 			    "by old software; restarting in txg %llu",
551 			    (longlong_t)scn->scn_restart_txg);
552 		}
553 	}
554 
555 	bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
556 
557 	/* reload the queue into the in-core state */
558 	if (scn->scn_phys.scn_queue_obj != 0) {
559 		zap_cursor_t zc;
560 		zap_attribute_t za;
561 
562 		for (zap_cursor_init(&zc, dp->dp_meta_objset,
563 		    scn->scn_phys.scn_queue_obj);
564 		    zap_cursor_retrieve(&zc, &za) == 0;
565 		    (void) zap_cursor_advance(&zc)) {
566 			scan_ds_queue_insert(scn,
567 			    zfs_strtonum(za.za_name, NULL),
568 			    za.za_first_integer);
569 		}
570 		zap_cursor_fini(&zc);
571 	}
572 
573 	spa_scan_stat_init(spa);
574 	return (0);
575 }
576 
577 void
578 dsl_scan_fini(dsl_pool_t *dp)
579 {
580 	if (dp->dp_scan != NULL) {
581 		dsl_scan_t *scn = dp->dp_scan;
582 
583 		if (scn->scn_taskq != NULL)
584 			taskq_destroy(scn->scn_taskq);
585 		scan_ds_queue_clear(scn);
586 		avl_destroy(&scn->scn_queue);
587 		avl_destroy(&scn->scn_prefetch_queue);
588 
589 		kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
590 		dp->dp_scan = NULL;
591 	}
592 }
593 
594 static boolean_t
595 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
596 {
597 	return (scn->scn_restart_txg != 0 &&
598 	    scn->scn_restart_txg <= tx->tx_txg);
599 }
600 
601 boolean_t
602 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
603 {
604 	return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
605 	    (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
606 }
607 
608 boolean_t
609 dsl_scan_scrubbing(const dsl_pool_t *dp)
610 {
611 	dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
612 
613 	return (scn_phys->scn_state == DSS_SCANNING &&
614 	    scn_phys->scn_func == POOL_SCAN_SCRUB);
615 }
616 
617 boolean_t
618 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
619 {
620 	return (dsl_scan_scrubbing(scn->scn_dp) &&
621 	    scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
622 }
623 
624 /*
625  * Writes out a persistent dsl_scan_phys_t record to the pool directory.
626  * Because we can be running in the block sorting algorithm, we do not always
627  * want to write out the record, only when it is "safe" to do so. This safety
628  * condition is achieved by making sure that the sorting queues are empty
629  * (scn_bytes_pending == 0). When this condition is not true, the sync'd state
630  * is inconsistent with how much actual scanning progress has been made. The
631  * kind of sync to be performed is specified by the sync_type argument. If the
632  * sync is optional, we only sync if the queues are empty. If the sync is
633  * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
634  * third possible state is a "cached" sync. This is done in response to:
635  * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
636  *	destroyed, so we wouldn't be able to restart scanning from it.
637  * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
638  *	superseded by a newer snapshot.
639  * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
640  *	swapped with its clone.
641  * In all cases, a cached sync simply rewrites the last record we've written,
642  * just slightly modified. For the modifications that are performed to the
643  * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
644  * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
645  */
646 static void
647 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
648 {
649 	int i;
650 	spa_t *spa = scn->scn_dp->dp_spa;
651 
652 	ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0);
653 	if (scn->scn_bytes_pending == 0) {
654 		for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
655 			vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
656 			dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
657 
658 			if (q == NULL)
659 				continue;
660 
661 			mutex_enter(&vd->vdev_scan_io_queue_lock);
662 			ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
663 			ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
664 			    NULL);
665 			ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
666 			mutex_exit(&vd->vdev_scan_io_queue_lock);
667 		}
668 
669 		if (scn->scn_phys.scn_queue_obj != 0)
670 			scan_ds_queue_sync(scn, tx);
671 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
672 		    DMU_POOL_DIRECTORY_OBJECT,
673 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
674 		    &scn->scn_phys, tx));
675 		bcopy(&scn->scn_phys, &scn->scn_phys_cached,
676 		    sizeof (scn->scn_phys));
677 
678 		if (scn->scn_checkpointing)
679 			zfs_dbgmsg("finish scan checkpoint");
680 
681 		scn->scn_checkpointing = B_FALSE;
682 		scn->scn_last_checkpoint = ddi_get_lbolt();
683 	} else if (sync_type == SYNC_CACHED) {
684 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
685 		    DMU_POOL_DIRECTORY_OBJECT,
686 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
687 		    &scn->scn_phys_cached, tx));
688 	}
689 }
690 
691 /* ARGSUSED */
692 static int
693 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
694 {
695 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
696 
697 	if (dsl_scan_is_running(scn))
698 		return (SET_ERROR(EBUSY));
699 
700 	return (0);
701 }
702 
703 static void
704 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
705 {
706 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
707 	pool_scan_func_t *funcp = arg;
708 	dmu_object_type_t ot = 0;
709 	dsl_pool_t *dp = scn->scn_dp;
710 	spa_t *spa = dp->dp_spa;
711 
712 	ASSERT(!dsl_scan_is_running(scn));
713 	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
714 	bzero(&scn->scn_phys, sizeof (scn->scn_phys));
715 	scn->scn_phys.scn_func = *funcp;
716 	scn->scn_phys.scn_state = DSS_SCANNING;
717 	scn->scn_phys.scn_min_txg = 0;
718 	scn->scn_phys.scn_max_txg = tx->tx_txg;
719 	scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
720 	scn->scn_phys.scn_start_time = gethrestime_sec();
721 	scn->scn_phys.scn_errors = 0;
722 	scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
723 	scn->scn_issued_before_pass = 0;
724 	scn->scn_restart_txg = 0;
725 	scn->scn_done_txg = 0;
726 	scn->scn_last_checkpoint = 0;
727 	scn->scn_checkpointing = B_FALSE;
728 	spa_scan_stat_init(spa);
729 
730 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
731 		scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
732 
733 		/* rewrite all disk labels */
734 		vdev_config_dirty(spa->spa_root_vdev);
735 
736 		if (vdev_resilver_needed(spa->spa_root_vdev,
737 		    &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
738 			spa_event_notify(spa, NULL, NULL,
739 			    ESC_ZFS_RESILVER_START);
740 		} else {
741 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
742 		}
743 
744 		spa->spa_scrub_started = B_TRUE;
745 		/*
746 		 * If this is an incremental scrub, limit the DDT scrub phase
747 		 * to just the auto-ditto class (for correctness); the rest
748 		 * of the scrub should go faster using top-down pruning.
749 		 */
750 		if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
751 			scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
752 
753 	}
754 
755 	/* back to the generic stuff */
756 
757 	if (dp->dp_blkstats == NULL) {
758 		dp->dp_blkstats =
759 		    kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
760 		mutex_init(&dp->dp_blkstats->zab_lock, NULL,
761 		    MUTEX_DEFAULT, NULL);
762 	}
763 	bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type));
764 
765 	if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
766 		ot = DMU_OT_ZAP_OTHER;
767 
768 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
769 	    ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
770 
771 	bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
772 
773 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
774 
775 	spa_history_log_internal(spa, "scan setup", tx,
776 	    "func=%u mintxg=%llu maxtxg=%llu",
777 	    *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg);
778 }
779 
780 /*
781  * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
782  * Can also be called to resume a paused scrub.
783  */
784 int
785 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
786 {
787 	spa_t *spa = dp->dp_spa;
788 	dsl_scan_t *scn = dp->dp_scan;
789 
790 	/*
791 	 * Purge all vdev caches and probe all devices.  We do this here
792 	 * rather than in sync context because this requires a writer lock
793 	 * on the spa_config lock, which we can't do from sync context.  The
794 	 * spa_scrub_reopen flag indicates that vdev_open() should not
795 	 * attempt to start another scrub.
796 	 */
797 	spa_vdev_state_enter(spa, SCL_NONE);
798 	spa->spa_scrub_reopen = B_TRUE;
799 	vdev_reopen(spa->spa_root_vdev);
800 	spa->spa_scrub_reopen = B_FALSE;
801 	(void) spa_vdev_state_exit(spa, NULL, 0);
802 
803 	if (func == POOL_SCAN_RESILVER) {
804 		dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
805 		return (0);
806 	}
807 
808 	if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
809 		/* got scrub start cmd, resume paused scrub */
810 		int err = dsl_scrub_set_pause_resume(scn->scn_dp,
811 		    POOL_SCRUB_NORMAL);
812 		if (err == 0) {
813 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
814 			return (ECANCELED);
815 		}
816 		return (SET_ERROR(err));
817 	}
818 
819 	return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
820 	    dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
821 }
822 
823 /* ARGSUSED */
824 static void
825 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
826 {
827 	static const char *old_names[] = {
828 		"scrub_bookmark",
829 		"scrub_ddt_bookmark",
830 		"scrub_ddt_class_max",
831 		"scrub_queue",
832 		"scrub_min_txg",
833 		"scrub_max_txg",
834 		"scrub_func",
835 		"scrub_errors",
836 		NULL
837 	};
838 
839 	dsl_pool_t *dp = scn->scn_dp;
840 	spa_t *spa = dp->dp_spa;
841 	int i;
842 
843 	/* Remove any remnants of an old-style scrub. */
844 	for (i = 0; old_names[i]; i++) {
845 		(void) zap_remove(dp->dp_meta_objset,
846 		    DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
847 	}
848 
849 	if (scn->scn_phys.scn_queue_obj != 0) {
850 		VERIFY0(dmu_object_free(dp->dp_meta_objset,
851 		    scn->scn_phys.scn_queue_obj, tx));
852 		scn->scn_phys.scn_queue_obj = 0;
853 	}
854 	scan_ds_queue_clear(scn);
855 
856 	scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
857 
858 	/*
859 	 * If we were "restarted" from a stopped state, don't bother
860 	 * with anything else.
861 	 */
862 	if (!dsl_scan_is_running(scn)) {
863 		ASSERT(!scn->scn_is_sorted);
864 		return;
865 	}
866 
867 	if (scn->scn_is_sorted) {
868 		scan_io_queues_destroy(scn);
869 		scn->scn_is_sorted = B_FALSE;
870 
871 		if (scn->scn_taskq != NULL) {
872 			taskq_destroy(scn->scn_taskq);
873 			scn->scn_taskq = NULL;
874 		}
875 	}
876 
877 	scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
878 
879 	if (dsl_scan_restarting(scn, tx))
880 		spa_history_log_internal(spa, "scan aborted, restarting", tx,
881 		    "errors=%llu", spa_get_errlog_size(spa));
882 	else if (!complete)
883 		spa_history_log_internal(spa, "scan cancelled", tx,
884 		    "errors=%llu", spa_get_errlog_size(spa));
885 	else
886 		spa_history_log_internal(spa, "scan done", tx,
887 		    "errors=%llu", spa_get_errlog_size(spa));
888 
889 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
890 		spa->spa_scrub_started = B_FALSE;
891 		spa->spa_scrub_active = B_FALSE;
892 
893 		/*
894 		 * If the scrub/resilver completed, update all DTLs to
895 		 * reflect this.  Whether it succeeded or not, vacate
896 		 * all temporary scrub DTLs.
897 		 *
898 		 * As the scrub does not currently support traversing
899 		 * data that have been freed but are part of a checkpoint,
900 		 * we don't mark the scrub as done in the DTLs as faults
901 		 * may still exist in those vdevs.
902 		 */
903 		if (complete &&
904 		    !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
905 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
906 			    scn->scn_phys.scn_max_txg, B_TRUE);
907 
908 			spa_event_notify(spa, NULL, NULL,
909 			    scn->scn_phys.scn_min_txg ?
910 			    ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH);
911 		} else {
912 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
913 			    0, B_TRUE);
914 		}
915 		spa_errlog_rotate(spa);
916 
917 		/*
918 		 * We may have finished replacing a device.
919 		 * Let the async thread assess this and handle the detach.
920 		 */
921 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
922 
923 		/*
924 		 * Clear any resilver_deferred flags in the config.
925 		 * If there are drives that need resilvering, kick
926 		 * off an asynchronous request to start resilver.
927 		 * vdev_clear_resilver_deferred() may update the config
928 		 * before the resilver can restart. In the event of
929 		 * a crash during this period, the spa loading code
930 		 * will find the drives that need to be resilvered
931 		 * and start the resilver then.
932 		 */
933 		if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
934 		    vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
935 			spa_history_log_internal(spa,
936 			    "starting deferred resilver", tx, "errors=%llu",
937 			    (u_longlong_t)spa_get_errlog_size(spa));
938 			spa_async_request(spa, SPA_ASYNC_RESILVER);
939 		}
940 	}
941 
942 	scn->scn_phys.scn_end_time = gethrestime_sec();
943 
944 	ASSERT(!dsl_scan_is_running(scn));
945 }
946 
947 /* ARGSUSED */
948 static int
949 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
950 {
951 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
952 
953 	if (!dsl_scan_is_running(scn))
954 		return (SET_ERROR(ENOENT));
955 	return (0);
956 }
957 
958 /* ARGSUSED */
959 static void
960 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
961 {
962 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
963 
964 	dsl_scan_done(scn, B_FALSE, tx);
965 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
966 	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
967 }
968 
969 int
970 dsl_scan_cancel(dsl_pool_t *dp)
971 {
972 	return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
973 	    dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
974 }
975 
976 static int
977 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
978 {
979 	pool_scrub_cmd_t *cmd = arg;
980 	dsl_pool_t *dp = dmu_tx_pool(tx);
981 	dsl_scan_t *scn = dp->dp_scan;
982 
983 	if (*cmd == POOL_SCRUB_PAUSE) {
984 		/* can't pause a scrub when there is no in-progress scrub */
985 		if (!dsl_scan_scrubbing(dp))
986 			return (SET_ERROR(ENOENT));
987 
988 		/* can't pause a paused scrub */
989 		if (dsl_scan_is_paused_scrub(scn))
990 			return (SET_ERROR(EBUSY));
991 	} else if (*cmd != POOL_SCRUB_NORMAL) {
992 		return (SET_ERROR(ENOTSUP));
993 	}
994 
995 	return (0);
996 }
997 
998 static void
999 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1000 {
1001 	pool_scrub_cmd_t *cmd = arg;
1002 	dsl_pool_t *dp = dmu_tx_pool(tx);
1003 	spa_t *spa = dp->dp_spa;
1004 	dsl_scan_t *scn = dp->dp_scan;
1005 
1006 	if (*cmd == POOL_SCRUB_PAUSE) {
1007 		/* can't pause a scrub when there is no in-progress scrub */
1008 		spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1009 		scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1010 		scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1011 		dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1012 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1013 	} else {
1014 		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1015 		if (dsl_scan_is_paused_scrub(scn)) {
1016 			/*
1017 			 * We need to keep track of how much time we spend
1018 			 * paused per pass so that we can adjust the scrub rate
1019 			 * shown in the output of 'zpool status'
1020 			 */
1021 			spa->spa_scan_pass_scrub_spent_paused +=
1022 			    gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1023 			spa->spa_scan_pass_scrub_pause = 0;
1024 			scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1025 			scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1026 			dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1027 		}
1028 	}
1029 }
1030 
1031 /*
1032  * Set scrub pause/resume state if it makes sense to do so
1033  */
1034 int
1035 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1036 {
1037 	return (dsl_sync_task(spa_name(dp->dp_spa),
1038 	    dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1039 	    ZFS_SPACE_CHECK_RESERVED));
1040 }
1041 
1042 
1043 /* start a new scan, or restart an existing one. */
1044 void
1045 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1046 {
1047 	if (txg == 0) {
1048 		dmu_tx_t *tx;
1049 		tx = dmu_tx_create_dd(dp->dp_mos_dir);
1050 		VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1051 
1052 		txg = dmu_tx_get_txg(tx);
1053 		dp->dp_scan->scn_restart_txg = txg;
1054 		dmu_tx_commit(tx);
1055 	} else {
1056 		dp->dp_scan->scn_restart_txg = txg;
1057 	}
1058 	zfs_dbgmsg("restarting resilver txg=%llu", txg);
1059 }
1060 
1061 void
1062 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1063 {
1064 	zio_free(dp->dp_spa, txg, bp);
1065 }
1066 
1067 void
1068 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1069 {
1070 	ASSERT(dsl_pool_sync_context(dp));
1071 	zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1072 }
1073 
1074 static int
1075 scan_ds_queue_compare(const void *a, const void *b)
1076 {
1077 	const scan_ds_t *sds_a = a, *sds_b = b;
1078 
1079 	if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1080 		return (-1);
1081 	if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1082 		return (0);
1083 	return (1);
1084 }
1085 
1086 static void
1087 scan_ds_queue_clear(dsl_scan_t *scn)
1088 {
1089 	void *cookie = NULL;
1090 	scan_ds_t *sds;
1091 	while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1092 		kmem_free(sds, sizeof (*sds));
1093 	}
1094 }
1095 
1096 static boolean_t
1097 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1098 {
1099 	scan_ds_t srch, *sds;
1100 
1101 	srch.sds_dsobj = dsobj;
1102 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1103 	if (sds != NULL && txg != NULL)
1104 		*txg = sds->sds_txg;
1105 	return (sds != NULL);
1106 }
1107 
1108 static void
1109 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1110 {
1111 	scan_ds_t *sds;
1112 	avl_index_t where;
1113 
1114 	sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1115 	sds->sds_dsobj = dsobj;
1116 	sds->sds_txg = txg;
1117 
1118 	VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1119 	avl_insert(&scn->scn_queue, sds, where);
1120 }
1121 
1122 static void
1123 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1124 {
1125 	scan_ds_t srch, *sds;
1126 
1127 	srch.sds_dsobj = dsobj;
1128 
1129 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1130 	VERIFY(sds != NULL);
1131 	avl_remove(&scn->scn_queue, sds);
1132 	kmem_free(sds, sizeof (*sds));
1133 }
1134 
1135 static void
1136 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1137 {
1138 	dsl_pool_t *dp = scn->scn_dp;
1139 	spa_t *spa = dp->dp_spa;
1140 	dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1141 	    DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1142 
1143 	ASSERT0(scn->scn_bytes_pending);
1144 	ASSERT(scn->scn_phys.scn_queue_obj != 0);
1145 
1146 	VERIFY0(dmu_object_free(dp->dp_meta_objset,
1147 	    scn->scn_phys.scn_queue_obj, tx));
1148 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1149 	    DMU_OT_NONE, 0, tx);
1150 	for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1151 	    sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1152 		VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1153 		    scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1154 		    sds->sds_txg, tx));
1155 	}
1156 }
1157 
1158 /*
1159  * Computes the memory limit state that we're currently in. A sorted scan
1160  * needs quite a bit of memory to hold the sorting queue, so we need to
1161  * reasonably constrain the size so it doesn't impact overall system
1162  * performance. We compute two limits:
1163  * 1) Hard memory limit: if the amount of memory used by the sorting
1164  *	queues on a pool gets above this value, we stop the metadata
1165  *	scanning portion and start issuing the queued up and sorted
1166  *	I/Os to reduce memory usage.
1167  *	This limit is calculated as a fraction of physmem (by default 5%).
1168  *	We constrain the lower bound of the hard limit to an absolute
1169  *	minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1170  *	the upper bound to 5% of the total pool size - no chance we'll
1171  *	ever need that much memory, but just to keep the value in check.
1172  * 2) Soft memory limit: once we hit the hard memory limit, we start
1173  *	issuing I/O to reduce queue memory usage, but we don't want to
1174  *	completely empty out the queues, since we might be able to find I/Os
1175  *	that will fill in the gaps of our non-sequential IOs at some point
1176  *	in the future. So we stop the issuing of I/Os once the amount of
1177  *	memory used drops below the soft limit (at which point we stop issuing
1178  *	I/O and start scanning metadata again).
1179  *
1180  *	This limit is calculated by subtracting a fraction of the hard
1181  *	limit from the hard limit. By default this fraction is 5%, so
1182  *	the soft limit is 95% of the hard limit. We cap the size of the
1183  *	difference between the hard and soft limits at an absolute
1184  *	maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1185  *	sufficient to not cause too frequent switching between the
1186  *	metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1187  *	worth of queues is about 1.2 GiB of on-pool data, so scanning
1188  *	that should take at least a decent fraction of a second).
1189  */
1190 static boolean_t
1191 dsl_scan_should_clear(dsl_scan_t *scn)
1192 {
1193 	spa_t *spa = scn->scn_dp->dp_spa;
1194 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1195 	uint64_t alloc, mlim_hard, mlim_soft, mused;
1196 
1197 	alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1198 	alloc += metaslab_class_get_alloc(spa_special_class(spa));
1199 	alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1200 
1201 	mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1202 	    zfs_scan_mem_lim_min);
1203 	mlim_hard = MIN(mlim_hard, alloc / 20);
1204 	mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1205 	    zfs_scan_mem_lim_soft_max);
1206 	mused = 0;
1207 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1208 		vdev_t *tvd = rvd->vdev_child[i];
1209 		dsl_scan_io_queue_t *queue;
1210 
1211 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
1212 		queue = tvd->vdev_scan_io_queue;
1213 		if (queue != NULL) {
1214 			/* # extents in exts_by_size = # in exts_by_addr */
1215 			mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1216 			    sizeof (range_seg_gap_t) + queue->q_sio_memused;
1217 		}
1218 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
1219 	}
1220 
1221 	dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1222 
1223 	if (mused == 0)
1224 		ASSERT0(scn->scn_bytes_pending);
1225 
1226 	/*
1227 	 * If we are above our hard limit, we need to clear out memory.
1228 	 * If we are below our soft limit, we need to accumulate sequential IOs.
1229 	 * Otherwise, we should keep doing whatever we are currently doing.
1230 	 */
1231 	if (mused >= mlim_hard)
1232 		return (B_TRUE);
1233 	else if (mused < mlim_soft)
1234 		return (B_FALSE);
1235 	else
1236 		return (scn->scn_clearing);
1237 }
1238 
1239 static boolean_t
1240 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1241 {
1242 	/* we never skip user/group accounting objects */
1243 	if (zb && (int64_t)zb->zb_object < 0)
1244 		return (B_FALSE);
1245 
1246 	if (scn->scn_suspending)
1247 		return (B_TRUE); /* we're already suspending */
1248 
1249 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1250 		return (B_FALSE); /* we're resuming */
1251 
1252 	/* We only know how to resume from level-0 blocks. */
1253 	if (zb && zb->zb_level != 0)
1254 		return (B_FALSE);
1255 
1256 	/*
1257 	 * We suspend if:
1258 	 *  - we have scanned for at least the minimum time (default 1 sec
1259 	 *    for scrub, 3 sec for resilver), and either we have sufficient
1260 	 *    dirty data that we are starting to write more quickly
1261 	 *    (default 30%), or someone is explicitly waiting for this txg
1262 	 *    to complete.
1263 	 *  or
1264 	 *  - the spa is shutting down because this pool is being exported
1265 	 *    or the machine is rebooting.
1266 	 *  or
1267 	 *  - the scan queue has reached its memory use limit
1268 	 */
1269 	hrtime_t curr_time_ns = gethrtime();
1270 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1271 	uint64_t sync_time_ns = curr_time_ns -
1272 	    scn->scn_dp->dp_spa->spa_sync_starttime;
1273 
1274 	int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
1275 	int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1276 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1277 
1278 	if ((NSEC2MSEC(scan_time_ns) > mintime &&
1279 	    (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
1280 	    txg_sync_waiting(scn->scn_dp) ||
1281 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1282 	    spa_shutting_down(scn->scn_dp->dp_spa) ||
1283 	    (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1284 		if (zb) {
1285 			dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1286 			    (longlong_t)zb->zb_objset,
1287 			    (longlong_t)zb->zb_object,
1288 			    (longlong_t)zb->zb_level,
1289 			    (longlong_t)zb->zb_blkid);
1290 			scn->scn_phys.scn_bookmark = *zb;
1291 		} else {
1292 			dsl_scan_phys_t *scnp = &scn->scn_phys;
1293 
1294 			dprintf("suspending at DDT bookmark "
1295 			    "%llx/%llx/%llx/%llx\n",
1296 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1297 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1298 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1299 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1300 		}
1301 		scn->scn_suspending = B_TRUE;
1302 		return (B_TRUE);
1303 	}
1304 	return (B_FALSE);
1305 }
1306 
1307 typedef struct zil_scan_arg {
1308 	dsl_pool_t	*zsa_dp;
1309 	zil_header_t	*zsa_zh;
1310 } zil_scan_arg_t;
1311 
1312 /* ARGSUSED */
1313 static int
1314 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1315 {
1316 	zil_scan_arg_t *zsa = arg;
1317 	dsl_pool_t *dp = zsa->zsa_dp;
1318 	dsl_scan_t *scn = dp->dp_scan;
1319 	zil_header_t *zh = zsa->zsa_zh;
1320 	zbookmark_phys_t zb;
1321 
1322 	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1323 		return (0);
1324 
1325 	/*
1326 	 * One block ("stubby") can be allocated a long time ago; we
1327 	 * want to visit that one because it has been allocated
1328 	 * (on-disk) even if it hasn't been claimed (even though for
1329 	 * scrub there's nothing to do to it).
1330 	 */
1331 	if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1332 		return (0);
1333 
1334 	SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1335 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1336 
1337 	VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1338 	return (0);
1339 }
1340 
1341 /* ARGSUSED */
1342 static int
1343 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg)
1344 {
1345 	if (lrc->lrc_txtype == TX_WRITE) {
1346 		zil_scan_arg_t *zsa = arg;
1347 		dsl_pool_t *dp = zsa->zsa_dp;
1348 		dsl_scan_t *scn = dp->dp_scan;
1349 		zil_header_t *zh = zsa->zsa_zh;
1350 		lr_write_t *lr = (lr_write_t *)lrc;
1351 		blkptr_t *bp = &lr->lr_blkptr;
1352 		zbookmark_phys_t zb;
1353 
1354 		if (BP_IS_HOLE(bp) ||
1355 		    bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1356 			return (0);
1357 
1358 		/*
1359 		 * birth can be < claim_txg if this record's txg is
1360 		 * already txg sync'ed (but this log block contains
1361 		 * other records that are not synced)
1362 		 */
1363 		if (claim_txg == 0 || bp->blk_birth < claim_txg)
1364 			return (0);
1365 
1366 		SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1367 		    lr->lr_foid, ZB_ZIL_LEVEL,
1368 		    lr->lr_offset / BP_GET_LSIZE(bp));
1369 
1370 		VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1371 	}
1372 	return (0);
1373 }
1374 
1375 static void
1376 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1377 {
1378 	uint64_t claim_txg = zh->zh_claim_txg;
1379 	zil_scan_arg_t zsa = { dp, zh };
1380 	zilog_t *zilog;
1381 
1382 	ASSERT(spa_writeable(dp->dp_spa));
1383 
1384 	/*
1385 	 * We only want to visit blocks that have been claimed
1386 	 * but not yet replayed.
1387 	 */
1388 	if (claim_txg == 0)
1389 		return;
1390 
1391 	zilog = zil_alloc(dp->dp_meta_objset, zh);
1392 
1393 	(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1394 	    claim_txg, B_FALSE);
1395 
1396 	zil_free(zilog);
1397 }
1398 
1399 /*
1400  * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1401  * here is to sort the AVL tree by the order each block will be needed.
1402  */
1403 static int
1404 scan_prefetch_queue_compare(const void *a, const void *b)
1405 {
1406 	const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1407 	const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1408 	const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1409 
1410 	return (zbookmark_compare(spc_a->spc_datablkszsec,
1411 	    spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1412 	    spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1413 }
1414 
1415 static void
1416 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag)
1417 {
1418 	if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1419 		zfs_refcount_destroy(&spc->spc_refcnt);
1420 		kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1421 	}
1422 }
1423 
1424 static scan_prefetch_ctx_t *
1425 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag)
1426 {
1427 	scan_prefetch_ctx_t *spc;
1428 
1429 	spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1430 	zfs_refcount_create(&spc->spc_refcnt);
1431 	zfs_refcount_add(&spc->spc_refcnt, tag);
1432 	spc->spc_scn = scn;
1433 	if (dnp != NULL) {
1434 		spc->spc_datablkszsec = dnp->dn_datablkszsec;
1435 		spc->spc_indblkshift = dnp->dn_indblkshift;
1436 		spc->spc_root = B_FALSE;
1437 	} else {
1438 		spc->spc_datablkszsec = 0;
1439 		spc->spc_indblkshift = 0;
1440 		spc->spc_root = B_TRUE;
1441 	}
1442 
1443 	return (spc);
1444 }
1445 
1446 static void
1447 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag)
1448 {
1449 	zfs_refcount_add(&spc->spc_refcnt, tag);
1450 }
1451 
1452 static boolean_t
1453 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1454     const zbookmark_phys_t *zb)
1455 {
1456 	zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1457 	dnode_phys_t tmp_dnp;
1458 	dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1459 
1460 	if (zb->zb_objset != last_zb->zb_objset)
1461 		return (B_TRUE);
1462 	if ((int64_t)zb->zb_object < 0)
1463 		return (B_FALSE);
1464 
1465 	tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1466 	tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1467 
1468 	if (zbookmark_subtree_completed(dnp, zb, last_zb))
1469 		return (B_TRUE);
1470 
1471 	return (B_FALSE);
1472 }
1473 
1474 static void
1475 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1476 {
1477 	avl_index_t idx;
1478 	dsl_scan_t *scn = spc->spc_scn;
1479 	spa_t *spa = scn->scn_dp->dp_spa;
1480 	scan_prefetch_issue_ctx_t *spic;
1481 
1482 	if (zfs_no_scrub_prefetch)
1483 		return;
1484 
1485 	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1486 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1487 	    BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1488 		return;
1489 
1490 	if (dsl_scan_check_prefetch_resume(spc, zb))
1491 		return;
1492 
1493 	scan_prefetch_ctx_add_ref(spc, scn);
1494 	spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1495 	spic->spic_spc = spc;
1496 	spic->spic_bp = *bp;
1497 	spic->spic_zb = *zb;
1498 
1499 	/*
1500 	 * Add the IO to the queue of blocks to prefetch. This allows us to
1501 	 * prioritize blocks that we will need first for the main traversal
1502 	 * thread.
1503 	 */
1504 	mutex_enter(&spa->spa_scrub_lock);
1505 	if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1506 		/* this block is already queued for prefetch */
1507 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1508 		scan_prefetch_ctx_rele(spc, scn);
1509 		mutex_exit(&spa->spa_scrub_lock);
1510 		return;
1511 	}
1512 
1513 	avl_insert(&scn->scn_prefetch_queue, spic, idx);
1514 	cv_broadcast(&spa->spa_scrub_io_cv);
1515 	mutex_exit(&spa->spa_scrub_lock);
1516 }
1517 
1518 static void
1519 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1520     uint64_t objset, uint64_t object)
1521 {
1522 	int i;
1523 	zbookmark_phys_t zb;
1524 	scan_prefetch_ctx_t *spc;
1525 
1526 	if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1527 		return;
1528 
1529 	SET_BOOKMARK(&zb, objset, object, 0, 0);
1530 
1531 	spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1532 
1533 	for (i = 0; i < dnp->dn_nblkptr; i++) {
1534 		zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1535 		zb.zb_blkid = i;
1536 		dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1537 	}
1538 
1539 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1540 		zb.zb_level = 0;
1541 		zb.zb_blkid = DMU_SPILL_BLKID;
1542 		dsl_scan_prefetch(spc, &dnp->dn_spill, &zb);
1543 	}
1544 
1545 	scan_prefetch_ctx_rele(spc, FTAG);
1546 }
1547 
1548 void
1549 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1550     arc_buf_t *buf, void *private)
1551 {
1552 	scan_prefetch_ctx_t *spc = private;
1553 	dsl_scan_t *scn = spc->spc_scn;
1554 	spa_t *spa = scn->scn_dp->dp_spa;
1555 
1556 	/* broadcast that the IO has completed for rate limitting purposes */
1557 	mutex_enter(&spa->spa_scrub_lock);
1558 	ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1559 	spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1560 	cv_broadcast(&spa->spa_scrub_io_cv);
1561 	mutex_exit(&spa->spa_scrub_lock);
1562 
1563 	/* if there was an error or we are done prefetching, just cleanup */
1564 	if (buf == NULL || scn->scn_suspending)
1565 		goto out;
1566 
1567 	if (BP_GET_LEVEL(bp) > 0) {
1568 		int i;
1569 		blkptr_t *cbp;
1570 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1571 		zbookmark_phys_t czb;
1572 
1573 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1574 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1575 			    zb->zb_level - 1, zb->zb_blkid * epb + i);
1576 			dsl_scan_prefetch(spc, cbp, &czb);
1577 		}
1578 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1579 		dnode_phys_t *cdnp = buf->b_data;
1580 		int i;
1581 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1582 
1583 		for (i = 0, cdnp = buf->b_data; i < epb;
1584 		    i += cdnp->dn_extra_slots + 1,
1585 		    cdnp += cdnp->dn_extra_slots + 1) {
1586 			dsl_scan_prefetch_dnode(scn, cdnp,
1587 			    zb->zb_objset, zb->zb_blkid * epb + i);
1588 		}
1589 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1590 		objset_phys_t *osp = buf->b_data;
1591 
1592 		dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
1593 		    zb->zb_objset, DMU_META_DNODE_OBJECT);
1594 
1595 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
1596 			dsl_scan_prefetch_dnode(scn,
1597 			    &osp->os_groupused_dnode, zb->zb_objset,
1598 			    DMU_GROUPUSED_OBJECT);
1599 			dsl_scan_prefetch_dnode(scn,
1600 			    &osp->os_userused_dnode, zb->zb_objset,
1601 			    DMU_USERUSED_OBJECT);
1602 		}
1603 	}
1604 
1605 out:
1606 	if (buf != NULL)
1607 		arc_buf_destroy(buf, private);
1608 	scan_prefetch_ctx_rele(spc, scn);
1609 }
1610 
1611 /* ARGSUSED */
1612 static void
1613 dsl_scan_prefetch_thread(void *arg)
1614 {
1615 	dsl_scan_t *scn = arg;
1616 	spa_t *spa = scn->scn_dp->dp_spa;
1617 	vdev_t *rvd = spa->spa_root_vdev;
1618 	uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight;
1619 	scan_prefetch_issue_ctx_t *spic;
1620 
1621 	/* loop until we are told to stop */
1622 	while (!scn->scn_prefetch_stop) {
1623 		arc_flags_t flags = ARC_FLAG_NOWAIT |
1624 		    ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
1625 		int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1626 
1627 		mutex_enter(&spa->spa_scrub_lock);
1628 
1629 		/*
1630 		 * Wait until we have an IO to issue and are not above our
1631 		 * maximum in flight limit.
1632 		 */
1633 		while (!scn->scn_prefetch_stop &&
1634 		    (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
1635 		    spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
1636 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1637 		}
1638 
1639 		/* recheck if we should stop since we waited for the cv */
1640 		if (scn->scn_prefetch_stop) {
1641 			mutex_exit(&spa->spa_scrub_lock);
1642 			break;
1643 		}
1644 
1645 		/* remove the prefetch IO from the tree */
1646 		spic = avl_first(&scn->scn_prefetch_queue);
1647 		spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
1648 		avl_remove(&scn->scn_prefetch_queue, spic);
1649 
1650 		mutex_exit(&spa->spa_scrub_lock);
1651 
1652 		if (BP_IS_PROTECTED(&spic->spic_bp)) {
1653 			ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
1654 			    BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
1655 			ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
1656 			zio_flags |= ZIO_FLAG_RAW;
1657 		}
1658 
1659 		/* issue the prefetch asynchronously */
1660 		(void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
1661 		    &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
1662 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
1663 
1664 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1665 	}
1666 
1667 	ASSERT(scn->scn_prefetch_stop);
1668 
1669 	/* free any prefetches we didn't get to complete */
1670 	mutex_enter(&spa->spa_scrub_lock);
1671 	while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
1672 		avl_remove(&scn->scn_prefetch_queue, spic);
1673 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
1674 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1675 	}
1676 	ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
1677 	mutex_exit(&spa->spa_scrub_lock);
1678 }
1679 
1680 static boolean_t
1681 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
1682     const zbookmark_phys_t *zb)
1683 {
1684 	/*
1685 	 * We never skip over user/group accounting objects (obj<0)
1686 	 */
1687 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
1688 	    (int64_t)zb->zb_object >= 0) {
1689 		/*
1690 		 * If we already visited this bp & everything below (in
1691 		 * a prior txg sync), don't bother doing it again.
1692 		 */
1693 		if (zbookmark_subtree_completed(dnp, zb,
1694 		    &scn->scn_phys.scn_bookmark))
1695 			return (B_TRUE);
1696 
1697 		/*
1698 		 * If we found the block we're trying to resume from, or
1699 		 * we went past it to a different object, zero it out to
1700 		 * indicate that it's OK to start checking for suspending
1701 		 * again.
1702 		 */
1703 		if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 ||
1704 		    zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
1705 			dprintf("resuming at %llx/%llx/%llx/%llx\n",
1706 			    (longlong_t)zb->zb_objset,
1707 			    (longlong_t)zb->zb_object,
1708 			    (longlong_t)zb->zb_level,
1709 			    (longlong_t)zb->zb_blkid);
1710 			bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb));
1711 		}
1712 	}
1713 	return (B_FALSE);
1714 }
1715 
1716 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1717     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1718     dmu_objset_type_t ostype, dmu_tx_t *tx);
1719 static void dsl_scan_visitdnode(
1720     dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1721     dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
1722 
1723 /*
1724  * Return nonzero on i/o error.
1725  * Return new buf to write out in *bufp.
1726  */
1727 static int
1728 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1729     dnode_phys_t *dnp, const blkptr_t *bp,
1730     const zbookmark_phys_t *zb, dmu_tx_t *tx)
1731 {
1732 	dsl_pool_t *dp = scn->scn_dp;
1733 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1734 	int err;
1735 
1736 	if (BP_GET_LEVEL(bp) > 0) {
1737 		arc_flags_t flags = ARC_FLAG_WAIT;
1738 		int i;
1739 		blkptr_t *cbp;
1740 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1741 		arc_buf_t *buf;
1742 
1743 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1744 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1745 		if (err) {
1746 			scn->scn_phys.scn_errors++;
1747 			return (err);
1748 		}
1749 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1750 			zbookmark_phys_t czb;
1751 
1752 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1753 			    zb->zb_level - 1,
1754 			    zb->zb_blkid * epb + i);
1755 			dsl_scan_visitbp(cbp, &czb, dnp,
1756 			    ds, scn, ostype, tx);
1757 		}
1758 		arc_buf_destroy(buf, &buf);
1759 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1760 		arc_flags_t flags = ARC_FLAG_WAIT;
1761 		dnode_phys_t *cdnp;
1762 		int i;
1763 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1764 		arc_buf_t *buf;
1765 
1766 		if (BP_IS_PROTECTED(bp)) {
1767 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
1768 			zio_flags |= ZIO_FLAG_RAW;
1769 		}
1770 
1771 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1772 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1773 		if (err) {
1774 			scn->scn_phys.scn_errors++;
1775 			return (err);
1776 		}
1777 		for (i = 0, cdnp = buf->b_data; i < epb;
1778 		    i += cdnp->dn_extra_slots + 1,
1779 		    cdnp += cdnp->dn_extra_slots + 1) {
1780 			dsl_scan_visitdnode(scn, ds, ostype,
1781 			    cdnp, zb->zb_blkid * epb + i, tx);
1782 		}
1783 
1784 		arc_buf_destroy(buf, &buf);
1785 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1786 		arc_flags_t flags = ARC_FLAG_WAIT;
1787 		objset_phys_t *osp;
1788 		arc_buf_t *buf;
1789 
1790 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1791 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1792 		if (err) {
1793 			scn->scn_phys.scn_errors++;
1794 			return (err);
1795 		}
1796 
1797 		osp = buf->b_data;
1798 
1799 		dsl_scan_visitdnode(scn, ds, osp->os_type,
1800 		    &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
1801 
1802 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
1803 			/*
1804 			 * We also always visit user/group/project accounting
1805 			 * objects, and never skip them, even if we are
1806 			 * suspending.  This is necessary so that the space
1807 			 * deltas from this txg get integrated.
1808 			 */
1809 			if (OBJSET_BUF_HAS_PROJECTUSED(buf))
1810 				dsl_scan_visitdnode(scn, ds, osp->os_type,
1811 				    &osp->os_projectused_dnode,
1812 				    DMU_PROJECTUSED_OBJECT, tx);
1813 			dsl_scan_visitdnode(scn, ds, osp->os_type,
1814 			    &osp->os_groupused_dnode,
1815 			    DMU_GROUPUSED_OBJECT, tx);
1816 			dsl_scan_visitdnode(scn, ds, osp->os_type,
1817 			    &osp->os_userused_dnode,
1818 			    DMU_USERUSED_OBJECT, tx);
1819 		}
1820 		arc_buf_destroy(buf, &buf);
1821 	}
1822 
1823 	return (0);
1824 }
1825 
1826 static void
1827 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
1828     dmu_objset_type_t ostype, dnode_phys_t *dnp,
1829     uint64_t object, dmu_tx_t *tx)
1830 {
1831 	int j;
1832 
1833 	for (j = 0; j < dnp->dn_nblkptr; j++) {
1834 		zbookmark_phys_t czb;
1835 
1836 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1837 		    dnp->dn_nlevels - 1, j);
1838 		dsl_scan_visitbp(&dnp->dn_blkptr[j],
1839 		    &czb, dnp, ds, scn, ostype, tx);
1840 	}
1841 
1842 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1843 		zbookmark_phys_t czb;
1844 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1845 		    0, DMU_SPILL_BLKID);
1846 		dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
1847 		    &czb, dnp, ds, scn, ostype, tx);
1848 	}
1849 }
1850 
1851 /*
1852  * The arguments are in this order because mdb can only print the
1853  * first 5; we want them to be useful.
1854  */
1855 static void
1856 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1857     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1858     dmu_objset_type_t ostype, dmu_tx_t *tx)
1859 {
1860 	dsl_pool_t *dp = scn->scn_dp;
1861 	blkptr_t *bp_toread = NULL;
1862 
1863 	if (dsl_scan_check_suspend(scn, zb))
1864 		return;
1865 
1866 	if (dsl_scan_check_resume(scn, dnp, zb))
1867 		return;
1868 
1869 	scn->scn_visited_this_txg++;
1870 
1871 	/*
1872 	 * This debugging is commented out to conserve stack space.  This
1873 	 * function is called recursively and the debugging addes several
1874 	 * bytes to the stack for each call.  It can be commented back in
1875 	 * if required to debug an issue in dsl_scan_visitbp().
1876 	 *
1877 	 * dprintf_bp(bp,
1878 	 *	"visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p",
1879 	 *	ds, ds ? ds->ds_object : 0,
1880 	 *	zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1881 	 *	bp);
1882 	 */
1883 
1884 	if (BP_IS_HOLE(bp)) {
1885 		scn->scn_holes_this_txg++;
1886 		return;
1887 	}
1888 
1889 	if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
1890 		scn->scn_lt_min_this_txg++;
1891 		return;
1892 	}
1893 
1894 	bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
1895 	*bp_toread = *bp;
1896 
1897 	if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
1898 		goto out;
1899 
1900 	/*
1901 	 * If dsl_scan_ddt() has already visited this block, it will have
1902 	 * already done any translations or scrubbing, so don't call the
1903 	 * callback again.
1904 	 */
1905 	if (ddt_class_contains(dp->dp_spa,
1906 	    scn->scn_phys.scn_ddt_class_max, bp)) {
1907 		scn->scn_ddt_contained_this_txg++;
1908 		goto out;
1909 	}
1910 
1911 	/*
1912 	 * If this block is from the future (after cur_max_txg), then we
1913 	 * are doing this on behalf of a deleted snapshot, and we will
1914 	 * revisit the future block on the next pass of this dataset.
1915 	 * Don't scan it now unless we need to because something
1916 	 * under it was modified.
1917 	 */
1918 	if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
1919 		scn->scn_gt_max_this_txg++;
1920 		goto out;
1921 	}
1922 
1923 	scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
1924 
1925 out:
1926 	kmem_free(bp_toread, sizeof (blkptr_t));
1927 }
1928 
1929 static void
1930 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
1931     dmu_tx_t *tx)
1932 {
1933 	zbookmark_phys_t zb;
1934 	scan_prefetch_ctx_t *spc;
1935 
1936 	SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1937 	    ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
1938 
1939 	if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
1940 		SET_BOOKMARK(&scn->scn_prefetch_bookmark,
1941 		    zb.zb_objset, 0, 0, 0);
1942 	} else {
1943 		scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
1944 	}
1945 
1946 	scn->scn_objsets_visited_this_txg++;
1947 
1948 	spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
1949 	dsl_scan_prefetch(spc, bp, &zb);
1950 	scan_prefetch_ctx_rele(spc, FTAG);
1951 
1952 	dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
1953 
1954 	dprintf_ds(ds, "finished scan%s", "");
1955 }
1956 
1957 static void
1958 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
1959 {
1960 	if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
1961 		if (ds->ds_is_snapshot) {
1962 			/*
1963 			 * Note:
1964 			 *  - scn_cur_{min,max}_txg stays the same.
1965 			 *  - Setting the flag is not really necessary if
1966 			 *    scn_cur_max_txg == scn_max_txg, because there
1967 			 *    is nothing after this snapshot that we care
1968 			 *    about.  However, we set it anyway and then
1969 			 *    ignore it when we retraverse it in
1970 			 *    dsl_scan_visitds().
1971 			 */
1972 			scn_phys->scn_bookmark.zb_objset =
1973 			    dsl_dataset_phys(ds)->ds_next_snap_obj;
1974 			zfs_dbgmsg("destroying ds %llu; currently traversing; "
1975 			    "reset zb_objset to %llu",
1976 			    (u_longlong_t)ds->ds_object,
1977 			    (u_longlong_t)dsl_dataset_phys(ds)->
1978 			    ds_next_snap_obj);
1979 			scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
1980 		} else {
1981 			SET_BOOKMARK(&scn_phys->scn_bookmark,
1982 			    ZB_DESTROYED_OBJSET, 0, 0, 0);
1983 			zfs_dbgmsg("destroying ds %llu; currently traversing; "
1984 			    "reset bookmark to -1,0,0,0",
1985 			    (u_longlong_t)ds->ds_object);
1986 		}
1987 	}
1988 }
1989 
1990 /*
1991  * Invoked when a dataset is destroyed. We need to make sure that:
1992  *
1993  * 1) If it is the dataset that was currently being scanned, we write
1994  *	a new dsl_scan_phys_t and marking the objset reference in it
1995  *	as destroyed.
1996  * 2) Remove it from the work queue, if it was present.
1997  *
1998  * If the dataset was actually a snapshot, instead of marking the dataset
1999  * as destroyed, we instead substitute the next snapshot in line.
2000  */
2001 void
2002 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2003 {
2004 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2005 	dsl_scan_t *scn = dp->dp_scan;
2006 	uint64_t mintxg;
2007 
2008 	if (!dsl_scan_is_running(scn))
2009 		return;
2010 
2011 	ds_destroyed_scn_phys(ds, &scn->scn_phys);
2012 	ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2013 
2014 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2015 		scan_ds_queue_remove(scn, ds->ds_object);
2016 		if (ds->ds_is_snapshot)
2017 			scan_ds_queue_insert(scn,
2018 			    dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2019 	}
2020 
2021 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2022 	    ds->ds_object, &mintxg) == 0) {
2023 		ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2024 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2025 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2026 		if (ds->ds_is_snapshot) {
2027 			/*
2028 			 * We keep the same mintxg; it could be >
2029 			 * ds_creation_txg if the previous snapshot was
2030 			 * deleted too.
2031 			 */
2032 			VERIFY(zap_add_int_key(dp->dp_meta_objset,
2033 			    scn->scn_phys.scn_queue_obj,
2034 			    dsl_dataset_phys(ds)->ds_next_snap_obj,
2035 			    mintxg, tx) == 0);
2036 			zfs_dbgmsg("destroying ds %llu; in queue; "
2037 			    "replacing with %llu",
2038 			    (u_longlong_t)ds->ds_object,
2039 			    (u_longlong_t)dsl_dataset_phys(ds)->
2040 			    ds_next_snap_obj);
2041 		} else {
2042 			zfs_dbgmsg("destroying ds %llu; in queue; removing",
2043 			    (u_longlong_t)ds->ds_object);
2044 		}
2045 	}
2046 
2047 	/*
2048 	 * dsl_scan_sync() should be called after this, and should sync
2049 	 * out our changed state, but just to be safe, do it here.
2050 	 */
2051 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2052 }
2053 
2054 static void
2055 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2056 {
2057 	if (scn_bookmark->zb_objset == ds->ds_object) {
2058 		scn_bookmark->zb_objset =
2059 		    dsl_dataset_phys(ds)->ds_prev_snap_obj;
2060 		zfs_dbgmsg("snapshotting ds %llu; currently traversing; "
2061 		    "reset zb_objset to %llu",
2062 		    (u_longlong_t)ds->ds_object,
2063 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2064 	}
2065 }
2066 
2067 /*
2068  * Called when a dataset is snapshotted. If we were currently traversing
2069  * this snapshot, we reset our bookmark to point at the newly created
2070  * snapshot. We also modify our work queue to remove the old snapshot and
2071  * replace with the new one.
2072  */
2073 void
2074 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2075 {
2076 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2077 	dsl_scan_t *scn = dp->dp_scan;
2078 	uint64_t mintxg;
2079 
2080 	if (!dsl_scan_is_running(scn))
2081 		return;
2082 
2083 	ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2084 
2085 	ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2086 	ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2087 
2088 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2089 		scan_ds_queue_remove(scn, ds->ds_object);
2090 		scan_ds_queue_insert(scn,
2091 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2092 	}
2093 
2094 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2095 	    ds->ds_object, &mintxg) == 0) {
2096 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2097 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2098 		VERIFY(zap_add_int_key(dp->dp_meta_objset,
2099 		    scn->scn_phys.scn_queue_obj,
2100 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2101 		zfs_dbgmsg("snapshotting ds %llu; in queue; "
2102 		    "replacing with %llu",
2103 		    (u_longlong_t)ds->ds_object,
2104 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2105 	}
2106 
2107 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2108 }
2109 
2110 static void
2111 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2112     zbookmark_phys_t *scn_bookmark)
2113 {
2114 	if (scn_bookmark->zb_objset == ds1->ds_object) {
2115 		scn_bookmark->zb_objset = ds2->ds_object;
2116 		zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2117 		    "reset zb_objset to %llu",
2118 		    (u_longlong_t)ds1->ds_object,
2119 		    (u_longlong_t)ds2->ds_object);
2120 	} else if (scn_bookmark->zb_objset == ds2->ds_object) {
2121 		scn_bookmark->zb_objset = ds1->ds_object;
2122 		zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2123 		    "reset zb_objset to %llu",
2124 		    (u_longlong_t)ds2->ds_object,
2125 		    (u_longlong_t)ds1->ds_object);
2126 	}
2127 }
2128 
2129 /*
2130  * Called when a parent dataset and its clone are swapped. If we were
2131  * currently traversing the dataset, we need to switch to traversing the
2132  * newly promoted parent.
2133  */
2134 void
2135 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2136 {
2137 	dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2138 	dsl_scan_t *scn = dp->dp_scan;
2139 	uint64_t mintxg;
2140 
2141 	if (!dsl_scan_is_running(scn))
2142 		return;
2143 
2144 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2145 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2146 
2147 	if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) {
2148 		scan_ds_queue_remove(scn, ds1->ds_object);
2149 		scan_ds_queue_insert(scn, ds2->ds_object, mintxg);
2150 	}
2151 	if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) {
2152 		scan_ds_queue_remove(scn, ds2->ds_object);
2153 		scan_ds_queue_insert(scn, ds1->ds_object, mintxg);
2154 	}
2155 
2156 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2157 	    ds1->ds_object, &mintxg) == 0) {
2158 		int err;
2159 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2160 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2161 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2162 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2163 		err = zap_add_int_key(dp->dp_meta_objset,
2164 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx);
2165 		VERIFY(err == 0 || err == EEXIST);
2166 		if (err == EEXIST) {
2167 			/* Both were there to begin with */
2168 			VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2169 			    scn->scn_phys.scn_queue_obj,
2170 			    ds1->ds_object, mintxg, tx));
2171 		}
2172 		zfs_dbgmsg("clone_swap ds %llu; in queue; "
2173 		    "replacing with %llu",
2174 		    (u_longlong_t)ds1->ds_object,
2175 		    (u_longlong_t)ds2->ds_object);
2176 	}
2177 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2178 	    ds2->ds_object, &mintxg) == 0) {
2179 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2180 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2181 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2182 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2183 		VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2184 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx));
2185 		zfs_dbgmsg("clone_swap ds %llu; in queue; "
2186 		    "replacing with %llu",
2187 		    (u_longlong_t)ds2->ds_object,
2188 		    (u_longlong_t)ds1->ds_object);
2189 	}
2190 
2191 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2192 }
2193 
2194 /* ARGSUSED */
2195 static int
2196 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2197 {
2198 	uint64_t originobj = *(uint64_t *)arg;
2199 	dsl_dataset_t *ds;
2200 	int err;
2201 	dsl_scan_t *scn = dp->dp_scan;
2202 
2203 	if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2204 		return (0);
2205 
2206 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2207 	if (err)
2208 		return (err);
2209 
2210 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2211 		dsl_dataset_t *prev;
2212 		err = dsl_dataset_hold_obj(dp,
2213 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2214 
2215 		dsl_dataset_rele(ds, FTAG);
2216 		if (err)
2217 			return (err);
2218 		ds = prev;
2219 	}
2220 	scan_ds_queue_insert(scn, ds->ds_object,
2221 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2222 	dsl_dataset_rele(ds, FTAG);
2223 	return (0);
2224 }
2225 
2226 static void
2227 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2228 {
2229 	dsl_pool_t *dp = scn->scn_dp;
2230 	dsl_dataset_t *ds;
2231 
2232 	VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2233 
2234 	if (scn->scn_phys.scn_cur_min_txg >=
2235 	    scn->scn_phys.scn_max_txg) {
2236 		/*
2237 		 * This can happen if this snapshot was created after the
2238 		 * scan started, and we already completed a previous snapshot
2239 		 * that was created after the scan started.  This snapshot
2240 		 * only references blocks with:
2241 		 *
2242 		 *	birth < our ds_creation_txg
2243 		 *	cur_min_txg is no less than ds_creation_txg.
2244 		 *	We have already visited these blocks.
2245 		 * or
2246 		 *	birth > scn_max_txg
2247 		 *	The scan requested not to visit these blocks.
2248 		 *
2249 		 * Subsequent snapshots (and clones) can reference our
2250 		 * blocks, or blocks with even higher birth times.
2251 		 * Therefore we do not need to visit them either,
2252 		 * so we do not add them to the work queue.
2253 		 *
2254 		 * Note that checking for cur_min_txg >= cur_max_txg
2255 		 * is not sufficient, because in that case we may need to
2256 		 * visit subsequent snapshots.  This happens when min_txg > 0,
2257 		 * which raises cur_min_txg.  In this case we will visit
2258 		 * this dataset but skip all of its blocks, because the
2259 		 * rootbp's birth time is < cur_min_txg.  Then we will
2260 		 * add the next snapshots/clones to the work queue.
2261 		 */
2262 		char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
2263 		dsl_dataset_name(ds, dsname);
2264 		zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2265 		    "cur_min_txg (%llu) >= max_txg (%llu)",
2266 		    (longlong_t)dsobj, dsname,
2267 		    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2268 		    (longlong_t)scn->scn_phys.scn_max_txg);
2269 		kmem_free(dsname, MAXNAMELEN);
2270 
2271 		goto out;
2272 	}
2273 
2274 	/*
2275 	 * Only the ZIL in the head (non-snapshot) is valid. Even though
2276 	 * snapshots can have ZIL block pointers (which may be the same
2277 	 * BP as in the head), they must be ignored. In addition, $ORIGIN
2278 	 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2279 	 * need to look for a ZIL in it either. So we traverse the ZIL here,
2280 	 * rather than in scan_recurse(), because the regular snapshot
2281 	 * block-sharing rules don't apply to it.
2282 	 */
2283 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) &&
2284 	    (dp->dp_origin_snap == NULL ||
2285 	    ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2286 		objset_t *os;
2287 		if (dmu_objset_from_ds(ds, &os) != 0) {
2288 			goto out;
2289 		}
2290 		dsl_scan_zil(dp, &os->os_zil_header);
2291 	}
2292 
2293 	/*
2294 	 * Iterate over the bps in this ds.
2295 	 */
2296 	dmu_buf_will_dirty(ds->ds_dbuf, tx);
2297 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2298 	dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2299 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
2300 
2301 	char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2302 	dsl_dataset_name(ds, dsname);
2303 	zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2304 	    "suspending=%u",
2305 	    (longlong_t)dsobj, dsname,
2306 	    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2307 	    (longlong_t)scn->scn_phys.scn_cur_max_txg,
2308 	    (int)scn->scn_suspending);
2309 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2310 
2311 	if (scn->scn_suspending)
2312 		goto out;
2313 
2314 	/*
2315 	 * We've finished this pass over this dataset.
2316 	 */
2317 
2318 	/*
2319 	 * If we did not completely visit this dataset, do another pass.
2320 	 */
2321 	if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2322 		zfs_dbgmsg("incomplete pass; visiting again");
2323 		scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2324 		scan_ds_queue_insert(scn, ds->ds_object,
2325 		    scn->scn_phys.scn_cur_max_txg);
2326 		goto out;
2327 	}
2328 
2329 	/*
2330 	 * Add descendent datasets to work queue.
2331 	 */
2332 	if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2333 		scan_ds_queue_insert(scn,
2334 		    dsl_dataset_phys(ds)->ds_next_snap_obj,
2335 		    dsl_dataset_phys(ds)->ds_creation_txg);
2336 	}
2337 	if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2338 		boolean_t usenext = B_FALSE;
2339 		if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2340 			uint64_t count;
2341 			/*
2342 			 * A bug in a previous version of the code could
2343 			 * cause upgrade_clones_cb() to not set
2344 			 * ds_next_snap_obj when it should, leading to a
2345 			 * missing entry.  Therefore we can only use the
2346 			 * next_clones_obj when its count is correct.
2347 			 */
2348 			int err = zap_count(dp->dp_meta_objset,
2349 			    dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2350 			if (err == 0 &&
2351 			    count == dsl_dataset_phys(ds)->ds_num_children - 1)
2352 				usenext = B_TRUE;
2353 		}
2354 
2355 		if (usenext) {
2356 			zap_cursor_t zc;
2357 			zap_attribute_t za;
2358 			for (zap_cursor_init(&zc, dp->dp_meta_objset,
2359 			    dsl_dataset_phys(ds)->ds_next_clones_obj);
2360 			    zap_cursor_retrieve(&zc, &za) == 0;
2361 			    (void) zap_cursor_advance(&zc)) {
2362 				scan_ds_queue_insert(scn,
2363 				    zfs_strtonum(za.za_name, NULL),
2364 				    dsl_dataset_phys(ds)->ds_creation_txg);
2365 			}
2366 			zap_cursor_fini(&zc);
2367 		} else {
2368 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2369 			    enqueue_clones_cb, &ds->ds_object,
2370 			    DS_FIND_CHILDREN));
2371 		}
2372 	}
2373 
2374 out:
2375 	dsl_dataset_rele(ds, FTAG);
2376 }
2377 
2378 /* ARGSUSED */
2379 static int
2380 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2381 {
2382 	dsl_dataset_t *ds;
2383 	int err;
2384 	dsl_scan_t *scn = dp->dp_scan;
2385 
2386 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2387 	if (err)
2388 		return (err);
2389 
2390 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2391 		dsl_dataset_t *prev;
2392 		err = dsl_dataset_hold_obj(dp,
2393 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2394 		if (err) {
2395 			dsl_dataset_rele(ds, FTAG);
2396 			return (err);
2397 		}
2398 
2399 		/*
2400 		 * If this is a clone, we don't need to worry about it for now.
2401 		 */
2402 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2403 			dsl_dataset_rele(ds, FTAG);
2404 			dsl_dataset_rele(prev, FTAG);
2405 			return (0);
2406 		}
2407 		dsl_dataset_rele(ds, FTAG);
2408 		ds = prev;
2409 	}
2410 
2411 	scan_ds_queue_insert(scn, ds->ds_object,
2412 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2413 	dsl_dataset_rele(ds, FTAG);
2414 	return (0);
2415 }
2416 
2417 /* ARGSUSED */
2418 void
2419 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2420     ddt_entry_t *dde, dmu_tx_t *tx)
2421 {
2422 	const ddt_key_t *ddk = &dde->dde_key;
2423 	ddt_phys_t *ddp = dde->dde_phys;
2424 	blkptr_t bp;
2425 	zbookmark_phys_t zb = { 0 };
2426 	int p;
2427 
2428 	if (scn->scn_phys.scn_state != DSS_SCANNING)
2429 		return;
2430 
2431 	/*
2432 	 * This function is special because it is the only thing
2433 	 * that can add scan_io_t's to the vdev scan queues from
2434 	 * outside dsl_scan_sync(). For the most part this is ok
2435 	 * as long as it is called from within syncing context.
2436 	 * However, dsl_scan_sync() expects that no new sio's will
2437 	 * be added between when all the work for a scan is done
2438 	 * and the next txg when the scan is actually marked as
2439 	 * completed. This check ensures we do not issue new sio's
2440 	 * during this period.
2441 	 */
2442 	if (scn->scn_done_txg != 0)
2443 		return;
2444 
2445 	for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2446 		if (ddp->ddp_phys_birth == 0 ||
2447 		    ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2448 			continue;
2449 		ddt_bp_create(checksum, ddk, ddp, &bp);
2450 
2451 		scn->scn_visited_this_txg++;
2452 		scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2453 	}
2454 }
2455 
2456 /*
2457  * Scrub/dedup interaction.
2458  *
2459  * If there are N references to a deduped block, we don't want to scrub it
2460  * N times -- ideally, we should scrub it exactly once.
2461  *
2462  * We leverage the fact that the dde's replication class (enum ddt_class)
2463  * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2464  * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2465  *
2466  * To prevent excess scrubbing, the scrub begins by walking the DDT
2467  * to find all blocks with refcnt > 1, and scrubs each of these once.
2468  * Since there are two replication classes which contain blocks with
2469  * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2470  * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2471  *
2472  * There would be nothing more to say if a block's refcnt couldn't change
2473  * during a scrub, but of course it can so we must account for changes
2474  * in a block's replication class.
2475  *
2476  * Here's an example of what can occur:
2477  *
2478  * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2479  * when visited during the top-down scrub phase, it will be scrubbed twice.
2480  * This negates our scrub optimization, but is otherwise harmless.
2481  *
2482  * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2483  * on each visit during the top-down scrub phase, it will never be scrubbed.
2484  * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2485  * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2486  * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2487  * while a scrub is in progress, it scrubs the block right then.
2488  */
2489 static void
2490 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2491 {
2492 	ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2493 	ddt_entry_t dde = { 0 };
2494 	int error;
2495 	uint64_t n = 0;
2496 
2497 	while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
2498 		ddt_t *ddt;
2499 
2500 		if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
2501 			break;
2502 		dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
2503 		    (longlong_t)ddb->ddb_class,
2504 		    (longlong_t)ddb->ddb_type,
2505 		    (longlong_t)ddb->ddb_checksum,
2506 		    (longlong_t)ddb->ddb_cursor);
2507 
2508 		/* There should be no pending changes to the dedup table */
2509 		ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
2510 		ASSERT(avl_first(&ddt->ddt_tree) == NULL);
2511 
2512 		dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
2513 		n++;
2514 
2515 		if (dsl_scan_check_suspend(scn, NULL))
2516 			break;
2517 	}
2518 
2519 	zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; "
2520 	    "suspending=%u", (longlong_t)n,
2521 	    (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
2522 
2523 	ASSERT(error == 0 || error == ENOENT);
2524 	ASSERT(error != ENOENT ||
2525 	    ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
2526 }
2527 
2528 static uint64_t
2529 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
2530 {
2531 	uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
2532 	if (ds->ds_is_snapshot)
2533 		return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
2534 	return (smt);
2535 }
2536 
2537 static void
2538 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
2539 {
2540 	scan_ds_t *sds;
2541 	dsl_pool_t *dp = scn->scn_dp;
2542 
2543 	if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
2544 	    scn->scn_phys.scn_ddt_class_max) {
2545 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2546 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2547 		dsl_scan_ddt(scn, tx);
2548 		if (scn->scn_suspending)
2549 			return;
2550 	}
2551 
2552 	if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
2553 		/* First do the MOS & ORIGIN */
2554 
2555 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2556 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2557 		dsl_scan_visit_rootbp(scn, NULL,
2558 		    &dp->dp_meta_rootbp, tx);
2559 		spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
2560 		if (scn->scn_suspending)
2561 			return;
2562 
2563 		if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
2564 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2565 			    enqueue_cb, NULL, DS_FIND_CHILDREN));
2566 		} else {
2567 			dsl_scan_visitds(scn,
2568 			    dp->dp_origin_snap->ds_object, tx);
2569 		}
2570 		ASSERT(!scn->scn_suspending);
2571 	} else if (scn->scn_phys.scn_bookmark.zb_objset !=
2572 	    ZB_DESTROYED_OBJSET) {
2573 		uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
2574 		/*
2575 		 * If we were suspended, continue from here. Note if the
2576 		 * ds we were suspended on was deleted, the zb_objset may
2577 		 * be -1, so we will skip this and find a new objset
2578 		 * below.
2579 		 */
2580 		dsl_scan_visitds(scn, dsobj, tx);
2581 		if (scn->scn_suspending)
2582 			return;
2583 	}
2584 
2585 	/*
2586 	 * In case we suspended right at the end of the ds, zero the
2587 	 * bookmark so we don't think that we're still trying to resume.
2588 	 */
2589 	bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t));
2590 
2591 	/*
2592 	 * Keep pulling things out of the dataset avl queue. Updates to the
2593 	 * persistent zap-object-as-queue happen only at checkpoints.
2594 	 */
2595 	while ((sds = avl_first(&scn->scn_queue)) != NULL) {
2596 		dsl_dataset_t *ds;
2597 		uint64_t dsobj = sds->sds_dsobj;
2598 		uint64_t txg = sds->sds_txg;
2599 
2600 		/* dequeue and free the ds from the queue */
2601 		scan_ds_queue_remove(scn, dsobj);
2602 		sds = NULL;	/* must not be touched after removal */
2603 
2604 		/* Set up min / max txg */
2605 		VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2606 		if (txg != 0) {
2607 			scn->scn_phys.scn_cur_min_txg =
2608 			    MAX(scn->scn_phys.scn_min_txg, txg);
2609 		} else {
2610 			scn->scn_phys.scn_cur_min_txg =
2611 			    MAX(scn->scn_phys.scn_min_txg,
2612 			    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2613 		}
2614 		scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
2615 		dsl_dataset_rele(ds, FTAG);
2616 
2617 		dsl_scan_visitds(scn, dsobj, tx);
2618 		if (scn->scn_suspending)
2619 			return;
2620 	}
2621 	/* No more objsets to fetch, we're done */
2622 	scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
2623 	ASSERT0(scn->scn_suspending);
2624 }
2625 
2626 static uint64_t
2627 dsl_scan_count_leaves(vdev_t *vd)
2628 {
2629 	uint64_t i, leaves = 0;
2630 
2631 	/* we only count leaves that belong to the main pool and are readable */
2632 	if (vd->vdev_islog || vd->vdev_isspare ||
2633 	    vd->vdev_isl2cache || !vdev_readable(vd))
2634 		return (0);
2635 
2636 	if (vd->vdev_ops->vdev_op_leaf)
2637 		return (1);
2638 
2639 	for (i = 0; i < vd->vdev_children; i++) {
2640 		leaves += dsl_scan_count_leaves(vd->vdev_child[i]);
2641 	}
2642 
2643 	return (leaves);
2644 }
2645 
2646 
2647 static void
2648 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
2649 {
2650 	int i;
2651 	uint64_t cur_size = 0;
2652 
2653 	for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2654 		cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
2655 	}
2656 
2657 	q->q_total_zio_size_this_txg += cur_size;
2658 	q->q_zios_this_txg++;
2659 }
2660 
2661 static void
2662 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
2663     uint64_t end)
2664 {
2665 	q->q_total_seg_size_this_txg += end - start;
2666 	q->q_segs_this_txg++;
2667 }
2668 
2669 static boolean_t
2670 scan_io_queue_check_suspend(dsl_scan_t *scn)
2671 {
2672 	/* See comment in dsl_scan_check_suspend() */
2673 	uint64_t curr_time_ns = gethrtime();
2674 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
2675 	uint64_t sync_time_ns = curr_time_ns -
2676 	    scn->scn_dp->dp_spa->spa_sync_starttime;
2677 	int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
2678 	int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
2679 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
2680 
2681 	return ((NSEC2MSEC(scan_time_ns) > mintime &&
2682 	    (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
2683 	    txg_sync_waiting(scn->scn_dp) ||
2684 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
2685 	    spa_shutting_down(scn->scn_dp->dp_spa));
2686 }
2687 
2688 /*
2689  * Given a list of scan_io_t's in io_list, this issues the io's out to
2690  * disk. This consumes the io_list and frees the scan_io_t's. This is
2691  * called when emptying queues, either when we're up against the memory
2692  * limit or when we have finished scanning. Returns B_TRUE if we stopped
2693  * processing the list before we finished. Any zios that were not issued
2694  * will remain in the io_list.
2695  */
2696 static boolean_t
2697 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
2698 {
2699 	dsl_scan_t *scn = queue->q_scn;
2700 	scan_io_t *sio;
2701 	int64_t bytes_issued = 0;
2702 	boolean_t suspended = B_FALSE;
2703 
2704 	while ((sio = list_head(io_list)) != NULL) {
2705 		blkptr_t bp;
2706 
2707 		if (scan_io_queue_check_suspend(scn)) {
2708 			suspended = B_TRUE;
2709 			break;
2710 		}
2711 
2712 		sio2bp(sio, &bp);
2713 		bytes_issued += SIO_GET_ASIZE(sio);
2714 		scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
2715 		    &sio->sio_zb, queue);
2716 		(void) list_remove_head(io_list);
2717 		scan_io_queues_update_zio_stats(queue, &bp);
2718 		sio_free(sio);
2719 	}
2720 
2721 	atomic_add_64(&scn->scn_bytes_pending, -bytes_issued);
2722 
2723 	return (suspended);
2724 }
2725 
2726 /*
2727  * Given a range_seg_t (extent) and a list, this function passes over a
2728  * scan queue and gathers up the appropriate ios which fit into that
2729  * scan seg (starting from lowest LBA). At the end, we remove the segment
2730  * from the q_exts_by_addr range tree.
2731  */
2732 static boolean_t
2733 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
2734 {
2735 	scan_io_t *srch_sio, *sio, *next_sio;
2736 	avl_index_t idx;
2737 	uint_t num_sios = 0;
2738 	int64_t bytes_issued = 0;
2739 
2740 	ASSERT(rs != NULL);
2741 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2742 
2743 	srch_sio = sio_alloc(1);
2744 	srch_sio->sio_nr_dvas = 1;
2745 	SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
2746 
2747 	/*
2748 	 * The exact start of the extent might not contain any matching zios,
2749 	 * so if that's the case, examine the next one in the tree.
2750 	 */
2751 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
2752 	sio_free(srch_sio);
2753 
2754 	if (sio == NULL)
2755 		sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
2756 
2757 	while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2758 	    queue->q_exts_by_addr) && num_sios <= 32) {
2759 		ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
2760 		    queue->q_exts_by_addr));
2761 		ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
2762 		    queue->q_exts_by_addr));
2763 
2764 		next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
2765 		avl_remove(&queue->q_sios_by_addr, sio);
2766 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
2767 
2768 		bytes_issued += SIO_GET_ASIZE(sio);
2769 		num_sios++;
2770 		list_insert_tail(list, sio);
2771 		sio = next_sio;
2772 	}
2773 
2774 	/*
2775 	 * We limit the number of sios we process at once to 32 to avoid
2776 	 * biting off more than we can chew. If we didn't take everything
2777 	 * in the segment we update it to reflect the work we were able to
2778 	 * complete. Otherwise, we remove it from the range tree entirely.
2779 	 */
2780 	if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2781 	    queue->q_exts_by_addr)) {
2782 		range_tree_adjust_fill(queue->q_exts_by_addr, rs,
2783 		    -bytes_issued);
2784 		range_tree_resize_segment(queue->q_exts_by_addr, rs,
2785 		    SIO_GET_OFFSET(sio), rs_get_end(rs,
2786 		    queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
2787 
2788 		return (B_TRUE);
2789 	} else {
2790 		uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
2791 		uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
2792 		range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
2793 		return (B_FALSE);
2794 	}
2795 }
2796 
2797 
2798 /*
2799  * This is called from the queue emptying thread and selects the next
2800  * extent from which we are to issue io's. The behavior of this function
2801  * depends on the state of the scan, the current memory consumption and
2802  * whether or not we are performing a scan shutdown.
2803  * 1) We select extents in an elevator algorithm (LBA-order) if the scan
2804  *	needs to perform a checkpoint
2805  * 2) We select the largest available extent if we are up against the
2806  *	memory limit.
2807  * 3) Otherwise we don't select any extents.
2808  */
2809 static const range_seg_t *
2810 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
2811 {
2812 	dsl_scan_t *scn = queue->q_scn;
2813 	range_tree_t *rt = queue->q_exts_by_addr;
2814 
2815 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2816 	ASSERT(scn->scn_is_sorted);
2817 
2818 	/* handle tunable overrides */
2819 	if (scn->scn_checkpointing || scn->scn_clearing) {
2820 		if (zfs_scan_issue_strategy == 1) {
2821 			return (range_tree_first(rt));
2822 		} else if (zfs_scan_issue_strategy == 2) {
2823 			/*
2824 			 * We need to get the original entry in the by_addr
2825 			 * tree so we can modify it.
2826 			 */
2827 			range_seg_t *size_rs =
2828 			    zfs_btree_first(&queue->q_exts_by_size, NULL);
2829 			if (size_rs == NULL)
2830 				return (NULL);
2831 			uint64_t start = rs_get_start(size_rs, rt);
2832 			uint64_t size = rs_get_end(size_rs, rt) - start;
2833 			range_seg_t *addr_rs = range_tree_find(rt, start,
2834 			    size);
2835 			ASSERT3P(addr_rs, !=, NULL);
2836 			ASSERT3U(rs_get_start(size_rs, rt), ==,
2837 			    rs_get_start(addr_rs, rt));
2838 			ASSERT3U(rs_get_end(size_rs, rt), ==,
2839 			    rs_get_end(addr_rs, rt));
2840 			return (addr_rs);
2841 		}
2842 	}
2843 
2844 	/*
2845 	 * During normal clearing, we want to issue our largest segments
2846 	 * first, keeping IO as sequential as possible, and leaving the
2847 	 * smaller extents for later with the hope that they might eventually
2848 	 * grow to larger sequential segments. However, when the scan is
2849 	 * checkpointing, no new extents will be added to the sorting queue,
2850 	 * so the way we are sorted now is as good as it will ever get.
2851 	 * In this case, we instead switch to issuing extents in LBA order.
2852 	 */
2853 	if (scn->scn_checkpointing) {
2854 		return (range_tree_first(rt));
2855 	} else if (scn->scn_clearing) {
2856 		/*
2857 		 * We need to get the original entry in the by_addr
2858 		 * tree so we can modify it.
2859 		 */
2860 		range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size,
2861 		    NULL);
2862 		if (size_rs == NULL)
2863 			return (NULL);
2864 		uint64_t start = rs_get_start(size_rs, rt);
2865 		uint64_t size = rs_get_end(size_rs, rt) - start;
2866 		range_seg_t *addr_rs = range_tree_find(rt, start, size);
2867 		ASSERT3P(addr_rs, !=, NULL);
2868 		ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs,
2869 		    rt));
2870 		ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt));
2871 		return (addr_rs);
2872 	} else {
2873 		return (NULL);
2874 	}
2875 }
2876 
2877 static void
2878 scan_io_queues_run_one(void *arg)
2879 {
2880 	dsl_scan_io_queue_t *queue = arg;
2881 	kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
2882 	boolean_t suspended = B_FALSE;
2883 	range_seg_t *rs = NULL;
2884 	scan_io_t *sio = NULL;
2885 	list_t sio_list;
2886 	uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
2887 	uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd);
2888 
2889 	ASSERT(queue->q_scn->scn_is_sorted);
2890 
2891 	list_create(&sio_list, sizeof (scan_io_t),
2892 	    offsetof(scan_io_t, sio_nodes.sio_list_node));
2893 	mutex_enter(q_lock);
2894 
2895 	/* calculate maximum in-flight bytes for this txg (min 1MB) */
2896 	queue->q_maxinflight_bytes =
2897 	    MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
2898 
2899 	/* reset per-queue scan statistics for this txg */
2900 	queue->q_total_seg_size_this_txg = 0;
2901 	queue->q_segs_this_txg = 0;
2902 	queue->q_total_zio_size_this_txg = 0;
2903 	queue->q_zios_this_txg = 0;
2904 
2905 	/* loop until we have run out of time or sios */
2906 	while ((rs = (range_seg_t *)scan_io_queue_fetch_ext(queue)) != NULL) {
2907 		uint64_t seg_start = 0, seg_end = 0;
2908 		boolean_t more_left = B_TRUE;
2909 
2910 		ASSERT(list_is_empty(&sio_list));
2911 
2912 		/* loop while we still have sios left to process in this rs */
2913 		while (more_left) {
2914 			scan_io_t *first_sio, *last_sio;
2915 
2916 			/*
2917 			 * We have selected which extent needs to be
2918 			 * processed next. Gather up the corresponding sios.
2919 			 */
2920 			more_left = scan_io_queue_gather(queue, rs, &sio_list);
2921 			ASSERT(!list_is_empty(&sio_list));
2922 			first_sio = list_head(&sio_list);
2923 			last_sio = list_tail(&sio_list);
2924 
2925 			seg_end = SIO_GET_END_OFFSET(last_sio);
2926 			if (seg_start == 0)
2927 				seg_start = SIO_GET_OFFSET(first_sio);
2928 
2929 			/*
2930 			 * Issuing sios can take a long time so drop the
2931 			 * queue lock. The sio queue won't be updated by
2932 			 * other threads since we're in syncing context so
2933 			 * we can be sure that our trees will remain exactly
2934 			 * as we left them.
2935 			 */
2936 			mutex_exit(q_lock);
2937 			suspended = scan_io_queue_issue(queue, &sio_list);
2938 			mutex_enter(q_lock);
2939 
2940 			if (suspended)
2941 				break;
2942 		}
2943 		/* update statistics for debugging purposes */
2944 		scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
2945 
2946 		if (suspended)
2947 			break;
2948 	}
2949 
2950 
2951 	/*
2952 	 * If we were suspended in the middle of processing,
2953 	 * requeue any unfinished sios and exit.
2954 	 */
2955 	while ((sio = list_head(&sio_list)) != NULL) {
2956 		list_remove(&sio_list, sio);
2957 		scan_io_queue_insert_impl(queue, sio);
2958 	}
2959 
2960 	mutex_exit(q_lock);
2961 	list_destroy(&sio_list);
2962 }
2963 
2964 /*
2965  * Performs an emptying run on all scan queues in the pool. This just
2966  * punches out one thread per top-level vdev, each of which processes
2967  * only that vdev's scan queue. We can parallelize the I/O here because
2968  * we know that each queue's io's only affect its own top-level vdev.
2969  *
2970  * This function waits for the queue runs to complete, and must be
2971  * called from dsl_scan_sync (or in general, syncing context).
2972  */
2973 static void
2974 scan_io_queues_run(dsl_scan_t *scn)
2975 {
2976 	spa_t *spa = scn->scn_dp->dp_spa;
2977 
2978 	ASSERT(scn->scn_is_sorted);
2979 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2980 
2981 	if (scn->scn_bytes_pending == 0)
2982 		return;
2983 
2984 	if (scn->scn_taskq == NULL) {
2985 		char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16,
2986 		    KM_SLEEP);
2987 		int nthreads = spa->spa_root_vdev->vdev_children;
2988 
2989 		/*
2990 		 * We need to make this taskq *always* execute as many
2991 		 * threads in parallel as we have top-level vdevs and no
2992 		 * less, otherwise strange serialization of the calls to
2993 		 * scan_io_queues_run_one can occur during spa_sync runs
2994 		 * and that significantly impacts performance.
2995 		 */
2996 		(void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16,
2997 		    "dsl_scan_tq_%s", spa->spa_name);
2998 		scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri,
2999 		    nthreads, nthreads, TASKQ_PREPOPULATE);
3000 		kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16);
3001 	}
3002 
3003 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3004 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3005 
3006 		mutex_enter(&vd->vdev_scan_io_queue_lock);
3007 		if (vd->vdev_scan_io_queue != NULL) {
3008 			VERIFY(taskq_dispatch(scn->scn_taskq,
3009 			    scan_io_queues_run_one, vd->vdev_scan_io_queue,
3010 			    TQ_SLEEP) != TASKQID_INVALID);
3011 		}
3012 		mutex_exit(&vd->vdev_scan_io_queue_lock);
3013 	}
3014 
3015 	/*
3016 	 * Wait for the queues to finish issuing thir IOs for this run
3017 	 * before we return. There may still be IOs in flight at this
3018 	 * point.
3019 	 */
3020 	taskq_wait(scn->scn_taskq);
3021 }
3022 
3023 static boolean_t
3024 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3025 {
3026 	uint64_t elapsed_nanosecs;
3027 
3028 	if (zfs_recover)
3029 		return (B_FALSE);
3030 
3031 	if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks)
3032 		return (B_TRUE);
3033 
3034 	elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3035 	return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3036 	    (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3037 	    txg_sync_waiting(scn->scn_dp)) ||
3038 	    spa_shutting_down(scn->scn_dp->dp_spa));
3039 }
3040 
3041 static int
3042 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3043 {
3044 	dsl_scan_t *scn = arg;
3045 
3046 	if (!scn->scn_is_bptree ||
3047 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3048 		if (dsl_scan_async_block_should_pause(scn))
3049 			return (SET_ERROR(ERESTART));
3050 	}
3051 
3052 	zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3053 	    dmu_tx_get_txg(tx), bp, 0));
3054 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3055 	    -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3056 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3057 	scn->scn_visited_this_txg++;
3058 	return (0);
3059 }
3060 
3061 static void
3062 dsl_scan_update_stats(dsl_scan_t *scn)
3063 {
3064 	spa_t *spa = scn->scn_dp->dp_spa;
3065 	uint64_t i;
3066 	uint64_t seg_size_total = 0, zio_size_total = 0;
3067 	uint64_t seg_count_total = 0, zio_count_total = 0;
3068 
3069 	for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3070 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3071 		dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3072 
3073 		if (queue == NULL)
3074 			continue;
3075 
3076 		seg_size_total += queue->q_total_seg_size_this_txg;
3077 		zio_size_total += queue->q_total_zio_size_this_txg;
3078 		seg_count_total += queue->q_segs_this_txg;
3079 		zio_count_total += queue->q_zios_this_txg;
3080 	}
3081 
3082 	if (seg_count_total == 0 || zio_count_total == 0) {
3083 		scn->scn_avg_seg_size_this_txg = 0;
3084 		scn->scn_avg_zio_size_this_txg = 0;
3085 		scn->scn_segs_this_txg = 0;
3086 		scn->scn_zios_this_txg = 0;
3087 		return;
3088 	}
3089 
3090 	scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3091 	scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3092 	scn->scn_segs_this_txg = seg_count_total;
3093 	scn->scn_zios_this_txg = zio_count_total;
3094 }
3095 
3096 static int
3097 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3098 {
3099 	dsl_scan_t *scn = arg;
3100 	const dva_t *dva = &bp->blk_dva[0];
3101 
3102 	if (dsl_scan_async_block_should_pause(scn))
3103 		return (SET_ERROR(ERESTART));
3104 
3105 	spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3106 	    DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3107 	    DVA_GET_ASIZE(dva), tx);
3108 	scn->scn_visited_this_txg++;
3109 	return (0);
3110 }
3111 
3112 boolean_t
3113 dsl_scan_active(dsl_scan_t *scn)
3114 {
3115 	spa_t *spa = scn->scn_dp->dp_spa;
3116 	uint64_t used = 0, comp, uncomp;
3117 
3118 	if (spa->spa_load_state != SPA_LOAD_NONE)
3119 		return (B_FALSE);
3120 	if (spa_shutting_down(spa))
3121 		return (B_FALSE);
3122 	if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3123 	    (scn->scn_async_destroying && !scn->scn_async_stalled))
3124 		return (B_TRUE);
3125 
3126 	if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3127 		(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3128 		    &used, &comp, &uncomp);
3129 	}
3130 	return (used != 0);
3131 }
3132 
3133 static boolean_t
3134 dsl_scan_check_deferred(vdev_t *vd)
3135 {
3136 	boolean_t need_resilver = B_FALSE;
3137 
3138 	for (int c = 0; c < vd->vdev_children; c++) {
3139 		need_resilver |=
3140 		    dsl_scan_check_deferred(vd->vdev_child[c]);
3141 	}
3142 
3143 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3144 	    !vd->vdev_ops->vdev_op_leaf)
3145 		return (need_resilver);
3146 
3147 	if (!vd->vdev_resilver_deferred)
3148 		need_resilver = B_TRUE;
3149 
3150 	return (need_resilver);
3151 }
3152 
3153 static boolean_t
3154 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3155     uint64_t phys_birth)
3156 {
3157 	vdev_t *vd;
3158 
3159 	vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3160 
3161 	if (vd->vdev_ops == &vdev_indirect_ops) {
3162 		/*
3163 		 * The indirect vdev can point to multiple
3164 		 * vdevs.  For simplicity, always create
3165 		 * the resilver zio_t. zio_vdev_io_start()
3166 		 * will bypass the child resilver i/o's if
3167 		 * they are on vdevs that don't have DTL's.
3168 		 */
3169 		return (B_TRUE);
3170 	}
3171 
3172 	if (DVA_GET_GANG(dva)) {
3173 		/*
3174 		 * Gang members may be spread across multiple
3175 		 * vdevs, so the best estimate we have is the
3176 		 * scrub range, which has already been checked.
3177 		 * XXX -- it would be better to change our
3178 		 * allocation policy to ensure that all
3179 		 * gang members reside on the same vdev.
3180 		 */
3181 		return (B_TRUE);
3182 	}
3183 
3184 	/*
3185 	 * Check if the txg falls within the range which must be
3186 	 * resilvered.  DVAs outside this range can always be skipped.
3187 	 */
3188 	if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
3189 		return (B_FALSE);
3190 
3191 	/*
3192 	 * Check if the top-level vdev must resilver this offset.
3193 	 * When the offset does not intersect with a dirty leaf DTL
3194 	 * then it may be possible to skip the resilver IO.  The psize
3195 	 * is provided instead of asize to simplify the check for RAIDZ.
3196 	 */
3197 	if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize))
3198 		return (B_FALSE);
3199 
3200 	/*
3201 	 * Check that this top-level vdev has a device under it which
3202 	 * is resilvering and is not deferred.
3203 	 */
3204 	if (!dsl_scan_check_deferred(vd))
3205 		return (B_FALSE);
3206 
3207 	return (B_TRUE);
3208 }
3209 
3210 static int
3211 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3212 {
3213 	int err = 0;
3214 	dsl_scan_t *scn = dp->dp_scan;
3215 	spa_t *spa = dp->dp_spa;
3216 
3217 	if (spa_suspend_async_destroy(spa))
3218 		return (0);
3219 
3220 	if (zfs_free_bpobj_enabled &&
3221 	    spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3222 		scn->scn_is_bptree = B_FALSE;
3223 		scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3224 		scn->scn_zio_root = zio_root(spa, NULL,
3225 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3226 		err = bpobj_iterate(&dp->dp_free_bpobj,
3227 		    dsl_scan_free_block_cb, scn, tx);
3228 		VERIFY0(zio_wait(scn->scn_zio_root));
3229 		scn->scn_zio_root = NULL;
3230 
3231 		if (err != 0 && err != ERESTART)
3232 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3233 	}
3234 
3235 	if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3236 		ASSERT(scn->scn_async_destroying);
3237 		scn->scn_is_bptree = B_TRUE;
3238 		scn->scn_zio_root = zio_root(spa, NULL,
3239 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3240 		err = bptree_iterate(dp->dp_meta_objset,
3241 		    dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3242 		VERIFY0(zio_wait(scn->scn_zio_root));
3243 		scn->scn_zio_root = NULL;
3244 
3245 		if (err == EIO || err == ECKSUM) {
3246 			err = 0;
3247 		} else if (err != 0 && err != ERESTART) {
3248 			zfs_panic_recover("error %u from "
3249 			    "traverse_dataset_destroyed()", err);
3250 		}
3251 
3252 		if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3253 			/* finished; deactivate async destroy feature */
3254 			spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3255 			ASSERT(!spa_feature_is_active(spa,
3256 			    SPA_FEATURE_ASYNC_DESTROY));
3257 			VERIFY0(zap_remove(dp->dp_meta_objset,
3258 			    DMU_POOL_DIRECTORY_OBJECT,
3259 			    DMU_POOL_BPTREE_OBJ, tx));
3260 			VERIFY0(bptree_free(dp->dp_meta_objset,
3261 			    dp->dp_bptree_obj, tx));
3262 			dp->dp_bptree_obj = 0;
3263 			scn->scn_async_destroying = B_FALSE;
3264 			scn->scn_async_stalled = B_FALSE;
3265 		} else {
3266 			/*
3267 			 * If we didn't make progress, mark the async
3268 			 * destroy as stalled, so that we will not initiate
3269 			 * a spa_sync() on its behalf.  Note that we only
3270 			 * check this if we are not finished, because if the
3271 			 * bptree had no blocks for us to visit, we can
3272 			 * finish without "making progress".
3273 			 */
3274 			scn->scn_async_stalled =
3275 			    (scn->scn_visited_this_txg == 0);
3276 		}
3277 	}
3278 	if (scn->scn_visited_this_txg) {
3279 		zfs_dbgmsg("freed %llu blocks in %llums from "
3280 		    "free_bpobj/bptree txg %llu; err=%d",
3281 		    (longlong_t)scn->scn_visited_this_txg,
3282 		    (longlong_t)
3283 		    NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3284 		    (longlong_t)tx->tx_txg, err);
3285 		scn->scn_visited_this_txg = 0;
3286 
3287 		/*
3288 		 * Write out changes to the DDT that may be required as a
3289 		 * result of the blocks freed.  This ensures that the DDT
3290 		 * is clean when a scrub/resilver runs.
3291 		 */
3292 		ddt_sync(spa, tx->tx_txg);
3293 	}
3294 	if (err != 0)
3295 		return (err);
3296 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3297 	    zfs_free_leak_on_eio &&
3298 	    (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3299 	    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3300 	    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3301 		/*
3302 		 * We have finished background destroying, but there is still
3303 		 * some space left in the dp_free_dir. Transfer this leaked
3304 		 * space to the dp_leak_dir.
3305 		 */
3306 		if (dp->dp_leak_dir == NULL) {
3307 			rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3308 			(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3309 			    LEAK_DIR_NAME, tx);
3310 			VERIFY0(dsl_pool_open_special_dir(dp,
3311 			    LEAK_DIR_NAME, &dp->dp_leak_dir));
3312 			rrw_exit(&dp->dp_config_rwlock, FTAG);
3313 		}
3314 		dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3315 		    dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3316 		    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3317 		    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3318 		dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3319 		    -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3320 		    -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3321 		    -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3322 	}
3323 
3324 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) {
3325 		/* finished; verify that space accounting went to zero */
3326 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3327 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3328 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3329 	}
3330 
3331 	EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3332 	    0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3333 	    DMU_POOL_OBSOLETE_BPOBJ));
3334 	if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3335 		ASSERT(spa_feature_is_active(dp->dp_spa,
3336 		    SPA_FEATURE_OBSOLETE_COUNTS));
3337 
3338 		scn->scn_is_bptree = B_FALSE;
3339 		scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3340 		err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3341 		    dsl_scan_obsolete_block_cb, scn, tx);
3342 		if (err != 0 && err != ERESTART)
3343 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3344 
3345 		if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3346 			dsl_pool_destroy_obsolete_bpobj(dp, tx);
3347 	}
3348 
3349 	return (0);
3350 }
3351 
3352 /*
3353  * This is the primary entry point for scans that is called from syncing
3354  * context. Scans must happen entirely during syncing context so that we
3355  * cna guarantee that blocks we are currently scanning will not change out
3356  * from under us. While a scan is active, this funciton controls how quickly
3357  * transaction groups proceed, instead of the normal handling provided by
3358  * txg_sync_thread().
3359  */
3360 void
3361 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
3362 {
3363 	dsl_scan_t *scn = dp->dp_scan;
3364 	spa_t *spa = dp->dp_spa;
3365 	int err = 0;
3366 	state_sync_type_t sync_type = SYNC_OPTIONAL;
3367 
3368 	if (spa->spa_resilver_deferred &&
3369 	    !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
3370 		spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
3371 
3372 	/*
3373 	 * Check for scn_restart_txg before checking spa_load_state, so
3374 	 * that we can restart an old-style scan while the pool is being
3375 	 * imported (see dsl_scan_init). We also restart scans if there
3376 	 * is a deferred resilver and the user has manually disabled
3377 	 * deferred resilvers via the tunable.
3378 	 */
3379 	if (dsl_scan_restarting(scn, tx) ||
3380 	    (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
3381 		pool_scan_func_t func = POOL_SCAN_SCRUB;
3382 		dsl_scan_done(scn, B_FALSE, tx);
3383 		if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3384 			func = POOL_SCAN_RESILVER;
3385 		zfs_dbgmsg("restarting scan func=%u txg=%llu",
3386 		    func, (longlong_t)tx->tx_txg);
3387 		dsl_scan_setup_sync(&func, tx);
3388 	}
3389 
3390 	/*
3391 	 * Only process scans in sync pass 1.
3392 	 */
3393 	if (spa_sync_pass(dp->dp_spa) > 1)
3394 		return;
3395 
3396 	/*
3397 	 * If the spa is shutting down, then stop scanning. This will
3398 	 * ensure that the scan does not dirty any new data during the
3399 	 * shutdown phase.
3400 	 */
3401 	if (spa_shutting_down(spa))
3402 		return;
3403 
3404 	/*
3405 	 * If the scan is inactive due to a stalled async destroy, try again.
3406 	 */
3407 	if (!scn->scn_async_stalled && !dsl_scan_active(scn))
3408 		return;
3409 
3410 	/* reset scan statistics */
3411 	scn->scn_visited_this_txg = 0;
3412 	scn->scn_holes_this_txg = 0;
3413 	scn->scn_lt_min_this_txg = 0;
3414 	scn->scn_gt_max_this_txg = 0;
3415 	scn->scn_ddt_contained_this_txg = 0;
3416 	scn->scn_objsets_visited_this_txg = 0;
3417 	scn->scn_avg_seg_size_this_txg = 0;
3418 	scn->scn_segs_this_txg = 0;
3419 	scn->scn_avg_zio_size_this_txg = 0;
3420 	scn->scn_zios_this_txg = 0;
3421 	scn->scn_suspending = B_FALSE;
3422 	scn->scn_sync_start_time = gethrtime();
3423 	spa->spa_scrub_active = B_TRUE;
3424 
3425 	/*
3426 	 * First process the async destroys.  If we pause, don't do
3427 	 * any scrubbing or resilvering.  This ensures that there are no
3428 	 * async destroys while we are scanning, so the scan code doesn't
3429 	 * have to worry about traversing it.  It is also faster to free the
3430 	 * blocks than to scrub them.
3431 	 */
3432 	err = dsl_process_async_destroys(dp, tx);
3433 	if (err != 0)
3434 		return;
3435 
3436 	if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
3437 		return;
3438 
3439 	/*
3440 	 * Wait a few txgs after importing to begin scanning so that
3441 	 * we can get the pool imported quickly.
3442 	 */
3443 	if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
3444 		return;
3445 
3446 	/*
3447 	 * zfs_scan_suspend_progress can be set to disable scan progress.
3448 	 * We don't want to spin the txg_sync thread, so we add a delay
3449 	 * here to simulate the time spent doing a scan. This is mostly
3450 	 * useful for testing and debugging.
3451 	 */
3452 	if (zfs_scan_suspend_progress) {
3453 		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3454 		int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3455 		    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3456 
3457 		while (zfs_scan_suspend_progress &&
3458 		    !txg_sync_waiting(scn->scn_dp) &&
3459 		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
3460 		    NSEC2MSEC(scan_time_ns) < mintime) {
3461 			delay(hz);
3462 			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3463 		}
3464 		return;
3465 	}
3466 
3467 	/*
3468 	 * It is possible to switch from unsorted to sorted at any time,
3469 	 * but afterwards the scan will remain sorted unless reloaded from
3470 	 * a checkpoint after a reboot.
3471 	 */
3472 	if (!zfs_scan_legacy) {
3473 		scn->scn_is_sorted = B_TRUE;
3474 		if (scn->scn_last_checkpoint == 0)
3475 			scn->scn_last_checkpoint = ddi_get_lbolt();
3476 	}
3477 
3478 	/*
3479 	 * For sorted scans, determine what kind of work we will be doing
3480 	 * this txg based on our memory limitations and whether or not we
3481 	 * need to perform a checkpoint.
3482 	 */
3483 	if (scn->scn_is_sorted) {
3484 		/*
3485 		 * If we are over our checkpoint interval, set scn_clearing
3486 		 * so that we can begin checkpointing immediately. The
3487 		 * checkpoint allows us to save a consisent bookmark
3488 		 * representing how much data we have scrubbed so far.
3489 		 * Otherwise, use the memory limit to determine if we should
3490 		 * scan for metadata or start issue scrub IOs. We accumulate
3491 		 * metadata until we hit our hard memory limit at which point
3492 		 * we issue scrub IOs until we are at our soft memory limit.
3493 		 */
3494 		if (scn->scn_checkpointing ||
3495 		    ddi_get_lbolt() - scn->scn_last_checkpoint >
3496 		    SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
3497 			if (!scn->scn_checkpointing)
3498 				zfs_dbgmsg("begin scan checkpoint");
3499 
3500 			scn->scn_checkpointing = B_TRUE;
3501 			scn->scn_clearing = B_TRUE;
3502 		} else {
3503 			boolean_t should_clear = dsl_scan_should_clear(scn);
3504 			if (should_clear && !scn->scn_clearing) {
3505 				zfs_dbgmsg("begin scan clearing");
3506 				scn->scn_clearing = B_TRUE;
3507 			} else if (!should_clear && scn->scn_clearing) {
3508 				zfs_dbgmsg("finish scan clearing");
3509 				scn->scn_clearing = B_FALSE;
3510 			}
3511 		}
3512 	} else {
3513 		ASSERT0(scn->scn_checkpointing);
3514 		ASSERT0(scn->scn_clearing);
3515 	}
3516 
3517 	if (!scn->scn_clearing && scn->scn_done_txg == 0) {
3518 		/* Need to scan metadata for more blocks to scrub */
3519 		dsl_scan_phys_t *scnp = &scn->scn_phys;
3520 		taskqid_t prefetch_tqid;
3521 		uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
3522 		uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev);
3523 
3524 		/*
3525 		 * Calculate the max number of in-flight bytes for pool-wide
3526 		 * scanning operations (minimum 1MB). Limits for the issuing
3527 		 * phase are done per top-level vdev and are handled separately.
3528 		 */
3529 		scn->scn_maxinflight_bytes =
3530 		    MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
3531 
3532 		if (scnp->scn_ddt_bookmark.ddb_class <=
3533 		    scnp->scn_ddt_class_max) {
3534 			ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
3535 			zfs_dbgmsg("doing scan sync txg %llu; "
3536 			    "ddt bm=%llu/%llu/%llu/%llx",
3537 			    (longlong_t)tx->tx_txg,
3538 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
3539 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
3540 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
3541 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
3542 		} else {
3543 			zfs_dbgmsg("doing scan sync txg %llu; "
3544 			    "bm=%llu/%llu/%llu/%llu",
3545 			    (longlong_t)tx->tx_txg,
3546 			    (longlong_t)scnp->scn_bookmark.zb_objset,
3547 			    (longlong_t)scnp->scn_bookmark.zb_object,
3548 			    (longlong_t)scnp->scn_bookmark.zb_level,
3549 			    (longlong_t)scnp->scn_bookmark.zb_blkid);
3550 		}
3551 
3552 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3553 		    NULL, ZIO_FLAG_CANFAIL);
3554 
3555 		scn->scn_prefetch_stop = B_FALSE;
3556 		prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
3557 		    dsl_scan_prefetch_thread, scn, TQ_SLEEP);
3558 		ASSERT(prefetch_tqid != TASKQID_INVALID);
3559 
3560 		dsl_pool_config_enter(dp, FTAG);
3561 		dsl_scan_visit(scn, tx);
3562 		dsl_pool_config_exit(dp, FTAG);
3563 
3564 		mutex_enter(&dp->dp_spa->spa_scrub_lock);
3565 		scn->scn_prefetch_stop = B_TRUE;
3566 		cv_broadcast(&spa->spa_scrub_io_cv);
3567 		mutex_exit(&dp->dp_spa->spa_scrub_lock);
3568 
3569 		taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
3570 		(void) zio_wait(scn->scn_zio_root);
3571 		scn->scn_zio_root = NULL;
3572 
3573 		zfs_dbgmsg("scan visited %llu blocks in %llums "
3574 		    "(%llu os's, %llu holes, %llu < mintxg, "
3575 		    "%llu in ddt, %llu > maxtxg)",
3576 		    (longlong_t)scn->scn_visited_this_txg,
3577 		    (longlong_t)NSEC2MSEC(gethrtime() -
3578 		    scn->scn_sync_start_time),
3579 		    (longlong_t)scn->scn_objsets_visited_this_txg,
3580 		    (longlong_t)scn->scn_holes_this_txg,
3581 		    (longlong_t)scn->scn_lt_min_this_txg,
3582 		    (longlong_t)scn->scn_ddt_contained_this_txg,
3583 		    (longlong_t)scn->scn_gt_max_this_txg);
3584 
3585 		if (!scn->scn_suspending) {
3586 			ASSERT0(avl_numnodes(&scn->scn_queue));
3587 			scn->scn_done_txg = tx->tx_txg + 1;
3588 			if (scn->scn_is_sorted) {
3589 				scn->scn_checkpointing = B_TRUE;
3590 				scn->scn_clearing = B_TRUE;
3591 			}
3592 			zfs_dbgmsg("scan complete txg %llu",
3593 			    (longlong_t)tx->tx_txg);
3594 		}
3595 	} else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) {
3596 		ASSERT(scn->scn_clearing);
3597 
3598 		/* need to issue scrubbing IOs from per-vdev queues */
3599 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3600 		    NULL, ZIO_FLAG_CANFAIL);
3601 		scan_io_queues_run(scn);
3602 		(void) zio_wait(scn->scn_zio_root);
3603 		scn->scn_zio_root = NULL;
3604 
3605 		/* calculate and dprintf the current memory usage */
3606 		(void) dsl_scan_should_clear(scn);
3607 		dsl_scan_update_stats(scn);
3608 
3609 		zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums "
3610 		    "(avg_block_size = %llu, avg_seg_size = %llu)",
3611 		    (longlong_t)scn->scn_zios_this_txg,
3612 		    (longlong_t)scn->scn_segs_this_txg,
3613 		    (longlong_t)NSEC2MSEC(gethrtime() -
3614 		    scn->scn_sync_start_time),
3615 		    (longlong_t)scn->scn_avg_zio_size_this_txg,
3616 		    (longlong_t)scn->scn_avg_seg_size_this_txg);
3617 	} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
3618 		/* Finished with everything. Mark the scrub as complete */
3619 		zfs_dbgmsg("scan issuing complete txg %llu",
3620 		    (longlong_t)tx->tx_txg);
3621 		ASSERT3U(scn->scn_done_txg, !=, 0);
3622 		ASSERT0(spa->spa_scrub_inflight);
3623 		ASSERT0(scn->scn_bytes_pending);
3624 		dsl_scan_done(scn, B_TRUE, tx);
3625 		sync_type = SYNC_MANDATORY;
3626 	}
3627 
3628 	dsl_scan_sync_state(scn, tx, sync_type);
3629 }
3630 
3631 static void
3632 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp)
3633 {
3634 	int i;
3635 
3636 	/*
3637 	 * Don't count embedded bp's, since we already did the work of
3638 	 * scanning these when we scanned the containing block.
3639 	 */
3640 	if (BP_IS_EMBEDDED(bp))
3641 		return;
3642 
3643 	/*
3644 	 * Update the spa's stats on how many bytes we have issued.
3645 	 * Sequential scrubs create a zio for each DVA of the bp. Each
3646 	 * of these will include all DVAs for repair purposes, but the
3647 	 * zio code will only try the first one unless there is an issue.
3648 	 * Therefore, we should only count the first DVA for these IOs.
3649 	 */
3650 	if (scn->scn_is_sorted) {
3651 		atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued,
3652 		    DVA_GET_ASIZE(&bp->blk_dva[0]));
3653 	} else {
3654 		spa_t *spa = scn->scn_dp->dp_spa;
3655 
3656 		for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3657 			atomic_add_64(&spa->spa_scan_pass_issued,
3658 			    DVA_GET_ASIZE(&bp->blk_dva[i]));
3659 		}
3660 	}
3661 
3662 	/*
3663 	 * If we resume after a reboot, zab will be NULL; don't record
3664 	 * incomplete stats in that case.
3665 	 */
3666 	if (zab == NULL)
3667 		return;
3668 
3669 	mutex_enter(&zab->zab_lock);
3670 
3671 	for (i = 0; i < 4; i++) {
3672 		int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
3673 		int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
3674 		if (t & DMU_OT_NEWTYPE)
3675 			t = DMU_OT_OTHER;
3676 		zfs_blkstat_t *zb = &zab->zab_type[l][t];
3677 		int equal;
3678 
3679 		zb->zb_count++;
3680 		zb->zb_asize += BP_GET_ASIZE(bp);
3681 		zb->zb_lsize += BP_GET_LSIZE(bp);
3682 		zb->zb_psize += BP_GET_PSIZE(bp);
3683 		zb->zb_gangs += BP_COUNT_GANG(bp);
3684 
3685 		switch (BP_GET_NDVAS(bp)) {
3686 		case 2:
3687 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3688 			    DVA_GET_VDEV(&bp->blk_dva[1]))
3689 				zb->zb_ditto_2_of_2_samevdev++;
3690 			break;
3691 		case 3:
3692 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3693 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
3694 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3695 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
3696 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
3697 			    DVA_GET_VDEV(&bp->blk_dva[2]));
3698 			if (equal == 1)
3699 				zb->zb_ditto_2_of_3_samevdev++;
3700 			else if (equal == 3)
3701 				zb->zb_ditto_3_of_3_samevdev++;
3702 			break;
3703 		}
3704 	}
3705 
3706 	mutex_exit(&zab->zab_lock);
3707 }
3708 
3709 static void
3710 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
3711 {
3712 	avl_index_t idx;
3713 	int64_t asize = SIO_GET_ASIZE(sio);
3714 	dsl_scan_t *scn = queue->q_scn;
3715 
3716 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3717 
3718 	if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
3719 		/* block is already scheduled for reading */
3720 		atomic_add_64(&scn->scn_bytes_pending, -asize);
3721 		sio_free(sio);
3722 		return;
3723 	}
3724 	avl_insert(&queue->q_sios_by_addr, sio, idx);
3725 	queue->q_sio_memused += SIO_GET_MUSED(sio);
3726 	range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize);
3727 }
3728 
3729 /*
3730  * Given all the info we got from our metadata scanning process, we
3731  * construct a scan_io_t and insert it into the scan sorting queue. The
3732  * I/O must already be suitable for us to process. This is controlled
3733  * by dsl_scan_enqueue().
3734  */
3735 static void
3736 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
3737     int zio_flags, const zbookmark_phys_t *zb)
3738 {
3739 	dsl_scan_t *scn = queue->q_scn;
3740 	scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
3741 
3742 	ASSERT0(BP_IS_GANG(bp));
3743 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3744 
3745 	bp2sio(bp, sio, dva_i);
3746 	sio->sio_flags = zio_flags;
3747 	sio->sio_zb = *zb;
3748 
3749 	/*
3750 	 * Increment the bytes pending counter now so that we can't
3751 	 * get an integer underflow in case the worker processes the
3752 	 * zio before we get to incrementing this counter.
3753 	 */
3754 	atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio));
3755 
3756 	scan_io_queue_insert_impl(queue, sio);
3757 }
3758 
3759 /*
3760  * Given a set of I/O parameters as discovered by the metadata traversal
3761  * process, attempts to place the I/O into the sorted queues (if allowed),
3762  * or immediately executes the I/O.
3763  */
3764 static void
3765 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3766     const zbookmark_phys_t *zb)
3767 {
3768 	spa_t *spa = dp->dp_spa;
3769 
3770 	ASSERT(!BP_IS_EMBEDDED(bp));
3771 
3772 	/*
3773 	 * Gang blocks are hard to issue sequentially, so we just issue them
3774 	 * here immediately instead of queuing them.
3775 	 */
3776 	if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
3777 		scan_exec_io(dp, bp, zio_flags, zb, NULL);
3778 		return;
3779 	}
3780 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3781 		dva_t dva;
3782 		vdev_t *vdev;
3783 
3784 		dva = bp->blk_dva[i];
3785 		vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
3786 		ASSERT(vdev != NULL);
3787 
3788 		mutex_enter(&vdev->vdev_scan_io_queue_lock);
3789 		if (vdev->vdev_scan_io_queue == NULL)
3790 			vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
3791 		ASSERT(dp->dp_scan != NULL);
3792 		scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
3793 		    i, zio_flags, zb);
3794 		mutex_exit(&vdev->vdev_scan_io_queue_lock);
3795 	}
3796 }
3797 
3798 static int
3799 dsl_scan_scrub_cb(dsl_pool_t *dp,
3800     const blkptr_t *bp, const zbookmark_phys_t *zb)
3801 {
3802 	dsl_scan_t *scn = dp->dp_scan;
3803 	spa_t *spa = dp->dp_spa;
3804 	uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
3805 	size_t psize = BP_GET_PSIZE(bp);
3806 	boolean_t needs_io;
3807 	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
3808 	int d;
3809 
3810 	if (phys_birth <= scn->scn_phys.scn_min_txg ||
3811 	    phys_birth >= scn->scn_phys.scn_max_txg) {
3812 		count_block(scn, dp->dp_blkstats, bp);
3813 		return (0);
3814 	}
3815 
3816 	/* Embedded BP's have phys_birth==0, so we reject them above. */
3817 	ASSERT(!BP_IS_EMBEDDED(bp));
3818 
3819 	ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
3820 	if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
3821 		zio_flags |= ZIO_FLAG_SCRUB;
3822 		needs_io = B_TRUE;
3823 	} else {
3824 		ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
3825 		zio_flags |= ZIO_FLAG_RESILVER;
3826 		needs_io = B_FALSE;
3827 	}
3828 
3829 	/* If it's an intent log block, failure is expected. */
3830 	if (zb->zb_level == ZB_ZIL_LEVEL)
3831 		zio_flags |= ZIO_FLAG_SPECULATIVE;
3832 
3833 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
3834 		const dva_t *dva = &bp->blk_dva[d];
3835 
3836 		/*
3837 		 * Keep track of how much data we've examined so that
3838 		 * zpool(1M) status can make useful progress reports.
3839 		 */
3840 		scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva);
3841 		spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva);
3842 
3843 		/* if it's a resilver, this may not be in the target range */
3844 		if (!needs_io)
3845 			needs_io = dsl_scan_need_resilver(spa, dva, psize,
3846 			    phys_birth);
3847 	}
3848 
3849 	if (needs_io && !zfs_no_scrub_io) {
3850 		dsl_scan_enqueue(dp, bp, zio_flags, zb);
3851 	} else {
3852 		count_block(scn, dp->dp_blkstats, bp);
3853 	}
3854 
3855 	/* do not relocate this block */
3856 	return (0);
3857 }
3858 
3859 static void
3860 dsl_scan_scrub_done(zio_t *zio)
3861 {
3862 	spa_t *spa = zio->io_spa;
3863 	blkptr_t *bp = zio->io_bp;
3864 	dsl_scan_io_queue_t *queue = zio->io_private;
3865 
3866 	abd_free(zio->io_abd);
3867 
3868 	if (queue == NULL) {
3869 		mutex_enter(&spa->spa_scrub_lock);
3870 		ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
3871 		spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
3872 		cv_broadcast(&spa->spa_scrub_io_cv);
3873 		mutex_exit(&spa->spa_scrub_lock);
3874 	} else {
3875 		mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
3876 		ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
3877 		queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
3878 		cv_broadcast(&queue->q_zio_cv);
3879 		mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
3880 	}
3881 
3882 	if (zio->io_error && (zio->io_error != ECKSUM ||
3883 	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
3884 		atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
3885 	}
3886 }
3887 
3888 /*
3889  * Given a scanning zio's information, executes the zio. The zio need
3890  * not necessarily be only sortable, this function simply executes the
3891  * zio, no matter what it is. The optional queue argument allows the
3892  * caller to specify that they want per top level vdev IO rate limiting
3893  * instead of the legacy global limiting.
3894  */
3895 static void
3896 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3897     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
3898 {
3899 	spa_t *spa = dp->dp_spa;
3900 	dsl_scan_t *scn = dp->dp_scan;
3901 	size_t size = BP_GET_PSIZE(bp);
3902 	abd_t *data = abd_alloc_for_io(size, B_FALSE);
3903 
3904 	if (queue == NULL) {
3905 		mutex_enter(&spa->spa_scrub_lock);
3906 		while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
3907 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3908 		spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
3909 		mutex_exit(&spa->spa_scrub_lock);
3910 	} else {
3911 		kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3912 
3913 		mutex_enter(q_lock);
3914 		while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
3915 			cv_wait(&queue->q_zio_cv, q_lock);
3916 		queue->q_inflight_bytes += BP_GET_PSIZE(bp);
3917 		mutex_exit(q_lock);
3918 	}
3919 
3920 	count_block(dp->dp_scan, dp->dp_blkstats, bp);
3921 	zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size,
3922 	    dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
3923 }
3924 
3925 /*
3926  * This is the primary extent sorting algorithm. We balance two parameters:
3927  * 1) how many bytes of I/O are in an extent
3928  * 2) how well the extent is filled with I/O (as a fraction of its total size)
3929  * Since we allow extents to have gaps between their constituent I/Os, it's
3930  * possible to have a fairly large extent that contains the same amount of
3931  * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
3932  * The algorithm sorts based on a score calculated from the extent's size,
3933  * the relative fill volume (in %) and a "fill weight" parameter that controls
3934  * the split between whether we prefer larger extents or more well populated
3935  * extents:
3936  *
3937  * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
3938  *
3939  * Example:
3940  * 1) assume extsz = 64 MiB
3941  * 2) assume fill = 32 MiB (extent is half full)
3942  * 3) assume fill_weight = 3
3943  * 4)	SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
3944  *	SCORE = 32M + (50 * 3 * 32M) / 100
3945  *	SCORE = 32M + (4800M / 100)
3946  *	SCORE = 32M + 48M
3947  *		^	^
3948  *		|	+--- final total relative fill-based score
3949  *		+--------- final total fill-based score
3950  *	SCORE = 80M
3951  *
3952  * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
3953  * extents that are more completely filled (in a 3:2 ratio) vs just larger.
3954  * Note that as an optimization, we replace multiplication and division by
3955  * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128).
3956  */
3957 static int
3958 ext_size_compare(const void *x, const void *y)
3959 {
3960 	const range_seg_gap_t *rsa = x, *rsb = y;
3961 
3962 	uint64_t sa = rsa->rs_end - rsa->rs_start;
3963 	uint64_t sb = rsb->rs_end - rsb->rs_start;
3964 	uint64_t score_a, score_b;
3965 
3966 	score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) *
3967 	    fill_weight * rsa->rs_fill) >> 7);
3968 	score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) *
3969 	    fill_weight * rsb->rs_fill) >> 7);
3970 
3971 	if (score_a > score_b)
3972 		return (-1);
3973 	if (score_a == score_b) {
3974 		if (rsa->rs_start < rsb->rs_start)
3975 			return (-1);
3976 		if (rsa->rs_start == rsb->rs_start)
3977 			return (0);
3978 		return (1);
3979 	}
3980 	return (1);
3981 }
3982 
3983 /*
3984  * Comparator for the q_sios_by_addr tree. Sorting is simply performed
3985  * based on LBA-order (from lowest to highest).
3986  */
3987 static int
3988 sio_addr_compare(const void *x, const void *y)
3989 {
3990 	const scan_io_t *a = x, *b = y;
3991 
3992 	return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
3993 }
3994 
3995 /* IO queues are created on demand when they are needed. */
3996 static dsl_scan_io_queue_t *
3997 scan_io_queue_create(vdev_t *vd)
3998 {
3999 	dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4000 	dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4001 
4002 	q->q_scn = scn;
4003 	q->q_vd = vd;
4004 	q->q_sio_memused = 0;
4005 	cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
4006 	q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP,
4007 	    &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap);
4008 	avl_create(&q->q_sios_by_addr, sio_addr_compare,
4009 	    sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
4010 
4011 	return (q);
4012 }
4013 
4014 /*
4015  * Destroys a scan queue and all segments and scan_io_t's contained in it.
4016  * No further execution of I/O occurs, anything pending in the queue is
4017  * simply freed without being executed.
4018  */
4019 void
4020 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
4021 {
4022 	dsl_scan_t *scn = queue->q_scn;
4023 	scan_io_t *sio;
4024 	void *cookie = NULL;
4025 	int64_t bytes_dequeued = 0;
4026 
4027 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4028 
4029 	while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
4030 	    NULL) {
4031 		ASSERT(range_tree_contains(queue->q_exts_by_addr,
4032 		    SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
4033 		bytes_dequeued += SIO_GET_ASIZE(sio);
4034 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
4035 		sio_free(sio);
4036 	}
4037 
4038 	ASSERT0(queue->q_sio_memused);
4039 	atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued);
4040 	range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
4041 	range_tree_destroy(queue->q_exts_by_addr);
4042 	avl_destroy(&queue->q_sios_by_addr);
4043 	cv_destroy(&queue->q_zio_cv);
4044 
4045 	kmem_free(queue, sizeof (*queue));
4046 }
4047 
4048 /*
4049  * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
4050  * called on behalf of vdev_top_transfer when creating or destroying
4051  * a mirror vdev due to zpool attach/detach.
4052  */
4053 void
4054 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
4055 {
4056 	mutex_enter(&svd->vdev_scan_io_queue_lock);
4057 	mutex_enter(&tvd->vdev_scan_io_queue_lock);
4058 
4059 	VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
4060 	tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
4061 	svd->vdev_scan_io_queue = NULL;
4062 	if (tvd->vdev_scan_io_queue != NULL)
4063 		tvd->vdev_scan_io_queue->q_vd = tvd;
4064 
4065 	mutex_exit(&tvd->vdev_scan_io_queue_lock);
4066 	mutex_exit(&svd->vdev_scan_io_queue_lock);
4067 }
4068 
4069 static void
4070 scan_io_queues_destroy(dsl_scan_t *scn)
4071 {
4072 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
4073 
4074 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
4075 		vdev_t *tvd = rvd->vdev_child[i];
4076 
4077 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
4078 		if (tvd->vdev_scan_io_queue != NULL)
4079 			dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
4080 		tvd->vdev_scan_io_queue = NULL;
4081 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
4082 	}
4083 }
4084 
4085 static void
4086 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
4087 {
4088 	dsl_pool_t *dp = spa->spa_dsl_pool;
4089 	dsl_scan_t *scn = dp->dp_scan;
4090 	vdev_t *vdev;
4091 	kmutex_t *q_lock;
4092 	dsl_scan_io_queue_t *queue;
4093 	scan_io_t *srch_sio, *sio;
4094 	avl_index_t idx;
4095 	uint64_t start, size;
4096 
4097 	vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
4098 	ASSERT(vdev != NULL);
4099 	q_lock = &vdev->vdev_scan_io_queue_lock;
4100 	queue = vdev->vdev_scan_io_queue;
4101 
4102 	mutex_enter(q_lock);
4103 	if (queue == NULL) {
4104 		mutex_exit(q_lock);
4105 		return;
4106 	}
4107 
4108 	srch_sio = sio_alloc(BP_GET_NDVAS(bp));
4109 	bp2sio(bp, srch_sio, dva_i);
4110 	start = SIO_GET_OFFSET(srch_sio);
4111 	size = SIO_GET_ASIZE(srch_sio);
4112 
4113 	/*
4114 	 * We can find the zio in two states:
4115 	 * 1) Cold, just sitting in the queue of zio's to be issued at
4116 	 *	some point in the future. In this case, all we do is
4117 	 *	remove the zio from the q_sios_by_addr tree, decrement
4118 	 *	its data volume from the containing range_seg_t and
4119 	 *	resort the q_exts_by_size tree to reflect that the
4120 	 *	range_seg_t has lost some of its 'fill'. We don't shorten
4121 	 *	the range_seg_t - this is usually rare enough not to be
4122 	 *	worth the extra hassle of trying keep track of precise
4123 	 *	extent boundaries.
4124 	 * 2) Hot, where the zio is currently in-flight in
4125 	 *	dsl_scan_issue_ios. In this case, we can't simply
4126 	 *	reach in and stop the in-flight zio's, so we instead
4127 	 *	block the caller. Eventually, dsl_scan_issue_ios will
4128 	 *	be done with issuing the zio's it gathered and will
4129 	 *	signal us.
4130 	 */
4131 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
4132 	sio_free(srch_sio);
4133 
4134 	if (sio != NULL) {
4135 		int64_t asize = SIO_GET_ASIZE(sio);
4136 		blkptr_t tmpbp;
4137 
4138 		/* Got it while it was cold in the queue */
4139 		ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
4140 		ASSERT3U(size, ==, asize);
4141 		avl_remove(&queue->q_sios_by_addr, sio);
4142 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
4143 
4144 		ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
4145 		range_tree_remove_fill(queue->q_exts_by_addr, start, size);
4146 
4147 		/*
4148 		 * We only update scn_bytes_pending in the cold path,
4149 		 * otherwise it will already have been accounted for as
4150 		 * part of the zio's execution.
4151 		 */
4152 		atomic_add_64(&scn->scn_bytes_pending, -asize);
4153 
4154 		/* count the block as though we issued it */
4155 		sio2bp(sio, &tmpbp);
4156 		count_block(scn, dp->dp_blkstats, &tmpbp);
4157 
4158 		sio_free(sio);
4159 	}
4160 	mutex_exit(q_lock);
4161 }
4162 
4163 /*
4164  * Callback invoked when a zio_free() zio is executing. This needs to be
4165  * intercepted to prevent the zio from deallocating a particular portion
4166  * of disk space and it then getting reallocated and written to, while we
4167  * still have it queued up for processing.
4168  */
4169 void
4170 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
4171 {
4172 	dsl_pool_t *dp = spa->spa_dsl_pool;
4173 	dsl_scan_t *scn = dp->dp_scan;
4174 
4175 	ASSERT(!BP_IS_EMBEDDED(bp));
4176 	ASSERT(scn != NULL);
4177 	if (!dsl_scan_is_running(scn))
4178 		return;
4179 
4180 	for (int i = 0; i < BP_GET_NDVAS(bp); i++)
4181 		dsl_scan_freed_dva(spa, bp, i);
4182 }
4183 
4184 /*
4185  * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
4186  * not started, start it. Otherwise, only restart if max txg in DTL range is
4187  * greater than the max txg in the current scan. If the DTL max is less than
4188  * the scan max, then the vdev has not missed any new data since the resilver
4189  * started, so a restart is not needed.
4190  */
4191 void
4192 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
4193 {
4194 	uint64_t min, max;
4195 
4196 	if (!vdev_resilver_needed(vd, &min, &max))
4197 		return;
4198 
4199 	if (!dsl_scan_resilvering(dp)) {
4200 		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4201 		return;
4202 	}
4203 
4204 	if (max <= dp->dp_scan->scn_phys.scn_max_txg)
4205 		return;
4206 
4207 	/* restart is needed, check if it can be deferred */
4208 	if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
4209 		vdev_defer_resilver(vd);
4210 	else
4211 		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4212 }
4213