xref: /illumos-gate/usr/src/uts/common/fs/zfs/dsl_pool.c (revision 94c2d0eb22e9624151ee84a7edbf7178e1bf4087)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
28  */
29 
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/dsl_scan.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/dsl_deadlist.h>
47 #include <sys/bptree.h>
48 #include <sys/zfeature.h>
49 #include <sys/zil_impl.h>
50 #include <sys/dsl_userhold.h>
51 
52 /*
53  * ZFS Write Throttle
54  * ------------------
55  *
56  * ZFS must limit the rate of incoming writes to the rate at which it is able
57  * to sync data modifications to the backend storage. Throttling by too much
58  * creates an artificial limit; throttling by too little can only be sustained
59  * for short periods and would lead to highly lumpy performance. On a per-pool
60  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
61  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
62  * of dirty data decreases. When the amount of dirty data exceeds a
63  * predetermined threshold further modifications are blocked until the amount
64  * of dirty data decreases (as data is synced out).
65  *
66  * The limit on dirty data is tunable, and should be adjusted according to
67  * both the IO capacity and available memory of the system. The larger the
68  * window, the more ZFS is able to aggregate and amortize metadata (and data)
69  * changes. However, memory is a limited resource, and allowing for more dirty
70  * data comes at the cost of keeping other useful data in memory (for example
71  * ZFS data cached by the ARC).
72  *
73  * Implementation
74  *
75  * As buffers are modified dsl_pool_willuse_space() increments both the per-
76  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
77  * dirty space used; dsl_pool_dirty_space() decrements those values as data
78  * is synced out from dsl_pool_sync(). While only the poolwide value is
79  * relevant, the per-txg value is useful for debugging. The tunable
80  * zfs_dirty_data_max determines the dirty space limit. Once that value is
81  * exceeded, new writes are halted until space frees up.
82  *
83  * The zfs_dirty_data_sync tunable dictates the threshold at which we
84  * ensure that there is a txg syncing (see the comment in txg.c for a full
85  * description of transaction group stages).
86  *
87  * The IO scheduler uses both the dirty space limit and current amount of
88  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
89  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
90  *
91  * The delay is also calculated based on the amount of dirty data.  See the
92  * comment above dmu_tx_delay() for details.
93  */
94 
95 /*
96  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
97  * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
98  */
99 uint64_t zfs_dirty_data_max;
100 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
101 int zfs_dirty_data_max_percent = 10;
102 
103 /*
104  * If there is at least this much dirty data, push out a txg.
105  */
106 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
107 
108 /*
109  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
110  * and delay each transaction.
111  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
112  */
113 int zfs_delay_min_dirty_percent = 60;
114 
115 /*
116  * This controls how quickly the delay approaches infinity.
117  * Larger values cause it to delay more for a given amount of dirty data.
118  * Therefore larger values will cause there to be less dirty data for a
119  * given throughput.
120  *
121  * For the smoothest delay, this value should be about 1 billion divided
122  * by the maximum number of operations per second.  This will smoothly
123  * handle between 10x and 1/10th this number.
124  *
125  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
126  * multiply in dmu_tx_delay().
127  */
128 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
129 
130 /*
131  * This determines the number of threads used by the dp_sync_taskq.
132  */
133 int zfs_sync_taskq_batch_pct = 75;
134 
135 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
136 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
137 
138 int
139 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
140 {
141 	uint64_t obj;
142 	int err;
143 
144 	err = zap_lookup(dp->dp_meta_objset,
145 	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
146 	    name, sizeof (obj), 1, &obj);
147 	if (err)
148 		return (err);
149 
150 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
151 }
152 
153 static dsl_pool_t *
154 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
155 {
156 	dsl_pool_t *dp;
157 	blkptr_t *bp = spa_get_rootblkptr(spa);
158 
159 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
160 	dp->dp_spa = spa;
161 	dp->dp_meta_rootbp = *bp;
162 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
163 	txg_init(dp, txg);
164 
165 	txg_list_create(&dp->dp_dirty_datasets,
166 	    offsetof(dsl_dataset_t, ds_dirty_link));
167 	txg_list_create(&dp->dp_dirty_zilogs,
168 	    offsetof(zilog_t, zl_dirty_link));
169 	txg_list_create(&dp->dp_dirty_dirs,
170 	    offsetof(dsl_dir_t, dd_dirty_link));
171 	txg_list_create(&dp->dp_sync_tasks,
172 	    offsetof(dsl_sync_task_t, dst_node));
173 
174 	dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
175 	    zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
176 	    TASKQ_THREADS_CPU_PCT);
177 
178 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
179 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
180 
181 	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
182 	    1, 4, 0);
183 
184 	return (dp);
185 }
186 
187 int
188 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
189 {
190 	int err;
191 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
192 
193 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
194 	    &dp->dp_meta_objset);
195 	if (err != 0)
196 		dsl_pool_close(dp);
197 	else
198 		*dpp = dp;
199 
200 	return (err);
201 }
202 
203 int
204 dsl_pool_open(dsl_pool_t *dp)
205 {
206 	int err;
207 	dsl_dir_t *dd;
208 	dsl_dataset_t *ds;
209 	uint64_t obj;
210 
211 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
212 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
213 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
214 	    &dp->dp_root_dir_obj);
215 	if (err)
216 		goto out;
217 
218 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
219 	    NULL, dp, &dp->dp_root_dir);
220 	if (err)
221 		goto out;
222 
223 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
224 	if (err)
225 		goto out;
226 
227 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
228 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
229 		if (err)
230 			goto out;
231 		err = dsl_dataset_hold_obj(dp,
232 		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
233 		if (err == 0) {
234 			err = dsl_dataset_hold_obj(dp,
235 			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
236 			    &dp->dp_origin_snap);
237 			dsl_dataset_rele(ds, FTAG);
238 		}
239 		dsl_dir_rele(dd, dp);
240 		if (err)
241 			goto out;
242 	}
243 
244 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
245 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
246 		    &dp->dp_free_dir);
247 		if (err)
248 			goto out;
249 
250 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
251 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
252 		if (err)
253 			goto out;
254 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
255 		    dp->dp_meta_objset, obj));
256 	}
257 
258 	/*
259 	 * Note: errors ignored, because the leak dir will not exist if we
260 	 * have not encountered a leak yet.
261 	 */
262 	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
263 	    &dp->dp_leak_dir);
264 
265 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
266 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
267 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
268 		    &dp->dp_bptree_obj);
269 		if (err != 0)
270 			goto out;
271 	}
272 
273 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
274 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
275 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
276 		    &dp->dp_empty_bpobj);
277 		if (err != 0)
278 			goto out;
279 	}
280 
281 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
282 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
283 	    &dp->dp_tmp_userrefs_obj);
284 	if (err == ENOENT)
285 		err = 0;
286 	if (err)
287 		goto out;
288 
289 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
290 
291 out:
292 	rrw_exit(&dp->dp_config_rwlock, FTAG);
293 	return (err);
294 }
295 
296 void
297 dsl_pool_close(dsl_pool_t *dp)
298 {
299 	/*
300 	 * Drop our references from dsl_pool_open().
301 	 *
302 	 * Since we held the origin_snap from "syncing" context (which
303 	 * includes pool-opening context), it actually only got a "ref"
304 	 * and not a hold, so just drop that here.
305 	 */
306 	if (dp->dp_origin_snap)
307 		dsl_dataset_rele(dp->dp_origin_snap, dp);
308 	if (dp->dp_mos_dir)
309 		dsl_dir_rele(dp->dp_mos_dir, dp);
310 	if (dp->dp_free_dir)
311 		dsl_dir_rele(dp->dp_free_dir, dp);
312 	if (dp->dp_leak_dir)
313 		dsl_dir_rele(dp->dp_leak_dir, dp);
314 	if (dp->dp_root_dir)
315 		dsl_dir_rele(dp->dp_root_dir, dp);
316 
317 	bpobj_close(&dp->dp_free_bpobj);
318 
319 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
320 	if (dp->dp_meta_objset)
321 		dmu_objset_evict(dp->dp_meta_objset);
322 
323 	txg_list_destroy(&dp->dp_dirty_datasets);
324 	txg_list_destroy(&dp->dp_dirty_zilogs);
325 	txg_list_destroy(&dp->dp_sync_tasks);
326 	txg_list_destroy(&dp->dp_dirty_dirs);
327 
328 	taskq_destroy(dp->dp_sync_taskq);
329 
330 	/*
331 	 * We can't set retry to TRUE since we're explicitly specifying
332 	 * a spa to flush. This is good enough; any missed buffers for
333 	 * this spa won't cause trouble, and they'll eventually fall
334 	 * out of the ARC just like any other unused buffer.
335 	 */
336 	arc_flush(dp->dp_spa, FALSE);
337 
338 	txg_fini(dp);
339 	dsl_scan_fini(dp);
340 	dmu_buf_user_evict_wait();
341 
342 	rrw_destroy(&dp->dp_config_rwlock);
343 	mutex_destroy(&dp->dp_lock);
344 	taskq_destroy(dp->dp_vnrele_taskq);
345 	if (dp->dp_blkstats)
346 		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
347 	kmem_free(dp, sizeof (dsl_pool_t));
348 }
349 
350 dsl_pool_t *
351 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
352 {
353 	int err;
354 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
355 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
356 	objset_t *os;
357 	dsl_dataset_t *ds;
358 	uint64_t obj;
359 
360 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
361 
362 	/* create and open the MOS (meta-objset) */
363 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
364 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
365 
366 	/* create the pool directory */
367 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
368 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
369 	ASSERT0(err);
370 
371 	/* Initialize scan structures */
372 	VERIFY0(dsl_scan_init(dp, txg));
373 
374 	/* create and open the root dir */
375 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
376 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
377 	    NULL, dp, &dp->dp_root_dir));
378 
379 	/* create and open the meta-objset dir */
380 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
381 	VERIFY0(dsl_pool_open_special_dir(dp,
382 	    MOS_DIR_NAME, &dp->dp_mos_dir));
383 
384 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
385 		/* create and open the free dir */
386 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
387 		    FREE_DIR_NAME, tx);
388 		VERIFY0(dsl_pool_open_special_dir(dp,
389 		    FREE_DIR_NAME, &dp->dp_free_dir));
390 
391 		/* create and open the free_bplist */
392 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
393 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
394 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
395 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
396 		    dp->dp_meta_objset, obj));
397 	}
398 
399 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
400 		dsl_pool_create_origin(dp, tx);
401 
402 	/* create the root dataset */
403 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
404 
405 	/* create the root objset */
406 	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
407 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
408 	os = dmu_objset_create_impl(dp->dp_spa, ds,
409 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
410 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
411 #ifdef _KERNEL
412 	zfs_create_fs(os, kcred, zplprops, tx);
413 #endif
414 	dsl_dataset_rele(ds, FTAG);
415 
416 	dmu_tx_commit(tx);
417 
418 	rrw_exit(&dp->dp_config_rwlock, FTAG);
419 
420 	return (dp);
421 }
422 
423 /*
424  * Account for the meta-objset space in its placeholder dsl_dir.
425  */
426 void
427 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
428     int64_t used, int64_t comp, int64_t uncomp)
429 {
430 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
431 	mutex_enter(&dp->dp_lock);
432 	dp->dp_mos_used_delta += used;
433 	dp->dp_mos_compressed_delta += comp;
434 	dp->dp_mos_uncompressed_delta += uncomp;
435 	mutex_exit(&dp->dp_lock);
436 }
437 
438 static void
439 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
440 {
441 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
442 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
443 	VERIFY0(zio_wait(zio));
444 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
445 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
446 }
447 
448 static void
449 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
450 {
451 	ASSERT(MUTEX_HELD(&dp->dp_lock));
452 
453 	if (delta < 0)
454 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
455 
456 	dp->dp_dirty_total += delta;
457 
458 	/*
459 	 * Note: we signal even when increasing dp_dirty_total.
460 	 * This ensures forward progress -- each thread wakes the next waiter.
461 	 */
462 	if (dp->dp_dirty_total <= zfs_dirty_data_max)
463 		cv_signal(&dp->dp_spaceavail_cv);
464 }
465 
466 void
467 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
468 {
469 	zio_t *zio;
470 	dmu_tx_t *tx;
471 	dsl_dir_t *dd;
472 	dsl_dataset_t *ds;
473 	objset_t *mos = dp->dp_meta_objset;
474 	list_t synced_datasets;
475 
476 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
477 	    offsetof(dsl_dataset_t, ds_synced_link));
478 
479 	tx = dmu_tx_create_assigned(dp, txg);
480 
481 	/*
482 	 * Write out all dirty blocks of dirty datasets.
483 	 */
484 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
485 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
486 		/*
487 		 * We must not sync any non-MOS datasets twice, because
488 		 * we may have taken a snapshot of them.  However, we
489 		 * may sync newly-created datasets on pass 2.
490 		 */
491 		ASSERT(!list_link_active(&ds->ds_synced_link));
492 		list_insert_tail(&synced_datasets, ds);
493 		dsl_dataset_sync(ds, zio, tx);
494 	}
495 	VERIFY0(zio_wait(zio));
496 
497 	/*
498 	 * We have written all of the accounted dirty data, so our
499 	 * dp_space_towrite should now be zero.  However, some seldom-used
500 	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
501 	 * rounding error in dbuf_write_physdone).
502 	 * Shore up the accounting of any dirtied space now.
503 	 */
504 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
505 
506 	/*
507 	 * Update the long range free counter after
508 	 * we're done syncing user data
509 	 */
510 	mutex_enter(&dp->dp_lock);
511 	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
512 	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
513 	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
514 	mutex_exit(&dp->dp_lock);
515 
516 	/*
517 	 * After the data blocks have been written (ensured by the zio_wait()
518 	 * above), update the user/group space accounting.  This happens
519 	 * in tasks dispatched to dp_sync_taskq, so wait for them before
520 	 * continuing.
521 	 */
522 	for (ds = list_head(&synced_datasets); ds != NULL;
523 	    ds = list_next(&synced_datasets, ds)) {
524 		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
525 	}
526 	taskq_wait(dp->dp_sync_taskq);
527 
528 	/*
529 	 * Sync the datasets again to push out the changes due to
530 	 * userspace updates.  This must be done before we process the
531 	 * sync tasks, so that any snapshots will have the correct
532 	 * user accounting information (and we won't get confused
533 	 * about which blocks are part of the snapshot).
534 	 */
535 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
536 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
537 		ASSERT(list_link_active(&ds->ds_synced_link));
538 		dmu_buf_rele(ds->ds_dbuf, ds);
539 		dsl_dataset_sync(ds, zio, tx);
540 	}
541 	VERIFY0(zio_wait(zio));
542 
543 	/*
544 	 * Now that the datasets have been completely synced, we can
545 	 * clean up our in-memory structures accumulated while syncing:
546 	 *
547 	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
548 	 *  - release hold from dsl_dataset_dirty()
549 	 */
550 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
551 		dsl_dataset_sync_done(ds, tx);
552 	}
553 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
554 		dsl_dir_sync(dd, tx);
555 	}
556 
557 	/*
558 	 * The MOS's space is accounted for in the pool/$MOS
559 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
560 	 * it, so we remember the deltas and apply them here.
561 	 */
562 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
563 	    dp->dp_mos_uncompressed_delta != 0) {
564 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
565 		    dp->dp_mos_used_delta,
566 		    dp->dp_mos_compressed_delta,
567 		    dp->dp_mos_uncompressed_delta, tx);
568 		dp->dp_mos_used_delta = 0;
569 		dp->dp_mos_compressed_delta = 0;
570 		dp->dp_mos_uncompressed_delta = 0;
571 	}
572 
573 	if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
574 		dsl_pool_sync_mos(dp, tx);
575 	}
576 
577 	/*
578 	 * If we modify a dataset in the same txg that we want to destroy it,
579 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
580 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
581 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
582 	 * and clearing the hold on it) before we process the sync_tasks.
583 	 * The MOS data dirtied by the sync_tasks will be synced on the next
584 	 * pass.
585 	 */
586 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
587 		dsl_sync_task_t *dst;
588 		/*
589 		 * No more sync tasks should have been added while we
590 		 * were syncing.
591 		 */
592 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
593 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
594 			dsl_sync_task_sync(dst, tx);
595 	}
596 
597 	dmu_tx_commit(tx);
598 
599 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
600 }
601 
602 void
603 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
604 {
605 	zilog_t *zilog;
606 
607 	while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) {
608 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
609 		/*
610 		 * We don't remove the zilog from the dp_dirty_zilogs
611 		 * list until after we've cleaned it. This ensures that
612 		 * callers of zilog_is_dirty() receive an accurate
613 		 * answer when they are racing with the spa sync thread.
614 		 */
615 		zil_clean(zilog, txg);
616 		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
617 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
618 		dmu_buf_rele(ds->ds_dbuf, zilog);
619 	}
620 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
621 }
622 
623 /*
624  * TRUE if the current thread is the tx_sync_thread or if we
625  * are being called from SPA context during pool initialization.
626  */
627 int
628 dsl_pool_sync_context(dsl_pool_t *dp)
629 {
630 	return (curthread == dp->dp_tx.tx_sync_thread ||
631 	    spa_is_initializing(dp->dp_spa) ||
632 	    taskq_member(dp->dp_sync_taskq, curthread));
633 }
634 
635 uint64_t
636 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
637 {
638 	uint64_t space, resv;
639 
640 	/*
641 	 * If we're trying to assess whether it's OK to do a free,
642 	 * cut the reservation in half to allow forward progress
643 	 * (e.g. make it possible to rm(1) files from a full pool).
644 	 */
645 	space = spa_get_dspace(dp->dp_spa);
646 	resv = spa_get_slop_space(dp->dp_spa);
647 	if (netfree)
648 		resv >>= 1;
649 
650 	return (space - resv);
651 }
652 
653 boolean_t
654 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
655 {
656 	uint64_t delay_min_bytes =
657 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
658 	boolean_t rv;
659 
660 	mutex_enter(&dp->dp_lock);
661 	if (dp->dp_dirty_total > zfs_dirty_data_sync)
662 		txg_kick(dp);
663 	rv = (dp->dp_dirty_total > delay_min_bytes);
664 	mutex_exit(&dp->dp_lock);
665 	return (rv);
666 }
667 
668 void
669 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
670 {
671 	if (space > 0) {
672 		mutex_enter(&dp->dp_lock);
673 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
674 		dsl_pool_dirty_delta(dp, space);
675 		mutex_exit(&dp->dp_lock);
676 	}
677 }
678 
679 void
680 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
681 {
682 	ASSERT3S(space, >=, 0);
683 	if (space == 0)
684 		return;
685 	mutex_enter(&dp->dp_lock);
686 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
687 		/* XXX writing something we didn't dirty? */
688 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
689 	}
690 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
691 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
692 	ASSERT3U(dp->dp_dirty_total, >=, space);
693 	dsl_pool_dirty_delta(dp, -space);
694 	mutex_exit(&dp->dp_lock);
695 }
696 
697 /* ARGSUSED */
698 static int
699 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
700 {
701 	dmu_tx_t *tx = arg;
702 	dsl_dataset_t *ds, *prev = NULL;
703 	int err;
704 
705 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
706 	if (err)
707 		return (err);
708 
709 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
710 		err = dsl_dataset_hold_obj(dp,
711 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
712 		if (err) {
713 			dsl_dataset_rele(ds, FTAG);
714 			return (err);
715 		}
716 
717 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
718 			break;
719 		dsl_dataset_rele(ds, FTAG);
720 		ds = prev;
721 		prev = NULL;
722 	}
723 
724 	if (prev == NULL) {
725 		prev = dp->dp_origin_snap;
726 
727 		/*
728 		 * The $ORIGIN can't have any data, or the accounting
729 		 * will be wrong.
730 		 */
731 		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
732 		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
733 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
734 
735 		/* The origin doesn't get attached to itself */
736 		if (ds->ds_object == prev->ds_object) {
737 			dsl_dataset_rele(ds, FTAG);
738 			return (0);
739 		}
740 
741 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
742 		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
743 		dsl_dataset_phys(ds)->ds_prev_snap_txg =
744 		    dsl_dataset_phys(prev)->ds_creation_txg;
745 
746 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
747 		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
748 
749 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
750 		dsl_dataset_phys(prev)->ds_num_children++;
751 
752 		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
753 			ASSERT(ds->ds_prev == NULL);
754 			VERIFY0(dsl_dataset_hold_obj(dp,
755 			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
756 			    ds, &ds->ds_prev));
757 		}
758 	}
759 
760 	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
761 	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
762 
763 	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
764 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
765 		dsl_dataset_phys(prev)->ds_next_clones_obj =
766 		    zap_create(dp->dp_meta_objset,
767 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
768 	}
769 	VERIFY0(zap_add_int(dp->dp_meta_objset,
770 	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
771 
772 	dsl_dataset_rele(ds, FTAG);
773 	if (prev != dp->dp_origin_snap)
774 		dsl_dataset_rele(prev, FTAG);
775 	return (0);
776 }
777 
778 void
779 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
780 {
781 	ASSERT(dmu_tx_is_syncing(tx));
782 	ASSERT(dp->dp_origin_snap != NULL);
783 
784 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
785 	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
786 }
787 
788 /* ARGSUSED */
789 static int
790 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
791 {
792 	dmu_tx_t *tx = arg;
793 	objset_t *mos = dp->dp_meta_objset;
794 
795 	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
796 		dsl_dataset_t *origin;
797 
798 		VERIFY0(dsl_dataset_hold_obj(dp,
799 		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
800 
801 		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
802 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
803 			dsl_dir_phys(origin->ds_dir)->dd_clones =
804 			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
805 			    0, tx);
806 		}
807 
808 		VERIFY0(zap_add_int(dp->dp_meta_objset,
809 		    dsl_dir_phys(origin->ds_dir)->dd_clones,
810 		    ds->ds_object, tx));
811 
812 		dsl_dataset_rele(origin, FTAG);
813 	}
814 	return (0);
815 }
816 
817 void
818 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
819 {
820 	ASSERT(dmu_tx_is_syncing(tx));
821 	uint64_t obj;
822 
823 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
824 	VERIFY0(dsl_pool_open_special_dir(dp,
825 	    FREE_DIR_NAME, &dp->dp_free_dir));
826 
827 	/*
828 	 * We can't use bpobj_alloc(), because spa_version() still
829 	 * returns the old version, and we need a new-version bpobj with
830 	 * subobj support.  So call dmu_object_alloc() directly.
831 	 */
832 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
833 	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
834 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
835 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
836 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
837 
838 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
839 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
840 }
841 
842 void
843 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
844 {
845 	uint64_t dsobj;
846 	dsl_dataset_t *ds;
847 
848 	ASSERT(dmu_tx_is_syncing(tx));
849 	ASSERT(dp->dp_origin_snap == NULL);
850 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
851 
852 	/* create the origin dir, ds, & snap-ds */
853 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
854 	    NULL, 0, kcred, tx);
855 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
856 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
857 	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
858 	    dp, &dp->dp_origin_snap));
859 	dsl_dataset_rele(ds, FTAG);
860 }
861 
862 taskq_t *
863 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
864 {
865 	return (dp->dp_vnrele_taskq);
866 }
867 
868 /*
869  * Walk through the pool-wide zap object of temporary snapshot user holds
870  * and release them.
871  */
872 void
873 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
874 {
875 	zap_attribute_t za;
876 	zap_cursor_t zc;
877 	objset_t *mos = dp->dp_meta_objset;
878 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
879 	nvlist_t *holds;
880 
881 	if (zapobj == 0)
882 		return;
883 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
884 
885 	holds = fnvlist_alloc();
886 
887 	for (zap_cursor_init(&zc, mos, zapobj);
888 	    zap_cursor_retrieve(&zc, &za) == 0;
889 	    zap_cursor_advance(&zc)) {
890 		char *htag;
891 		nvlist_t *tags;
892 
893 		htag = strchr(za.za_name, '-');
894 		*htag = '\0';
895 		++htag;
896 		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
897 			tags = fnvlist_alloc();
898 			fnvlist_add_boolean(tags, htag);
899 			fnvlist_add_nvlist(holds, za.za_name, tags);
900 			fnvlist_free(tags);
901 		} else {
902 			fnvlist_add_boolean(tags, htag);
903 		}
904 	}
905 	dsl_dataset_user_release_tmp(dp, holds);
906 	fnvlist_free(holds);
907 	zap_cursor_fini(&zc);
908 }
909 
910 /*
911  * Create the pool-wide zap object for storing temporary snapshot holds.
912  */
913 void
914 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
915 {
916 	objset_t *mos = dp->dp_meta_objset;
917 
918 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
919 	ASSERT(dmu_tx_is_syncing(tx));
920 
921 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
922 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
923 }
924 
925 static int
926 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
927     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
928 {
929 	objset_t *mos = dp->dp_meta_objset;
930 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
931 	char *name;
932 	int error;
933 
934 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
935 	ASSERT(dmu_tx_is_syncing(tx));
936 
937 	/*
938 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
939 	 * zap object for temporary holds might not exist yet.
940 	 */
941 	if (zapobj == 0) {
942 		if (holding) {
943 			dsl_pool_user_hold_create_obj(dp, tx);
944 			zapobj = dp->dp_tmp_userrefs_obj;
945 		} else {
946 			return (SET_ERROR(ENOENT));
947 		}
948 	}
949 
950 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
951 	if (holding)
952 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
953 	else
954 		error = zap_remove(mos, zapobj, name, tx);
955 	strfree(name);
956 
957 	return (error);
958 }
959 
960 /*
961  * Add a temporary hold for the given dataset object and tag.
962  */
963 int
964 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
965     uint64_t now, dmu_tx_t *tx)
966 {
967 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
968 }
969 
970 /*
971  * Release a temporary hold for the given dataset object and tag.
972  */
973 int
974 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
975     dmu_tx_t *tx)
976 {
977 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
978 	    tx, B_FALSE));
979 }
980 
981 /*
982  * DSL Pool Configuration Lock
983  *
984  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
985  * creation / destruction / rename / property setting).  It must be held for
986  * read to hold a dataset or dsl_dir.  I.e. you must call
987  * dsl_pool_config_enter() or dsl_pool_hold() before calling
988  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
989  * must be held continuously until all datasets and dsl_dirs are released.
990  *
991  * The only exception to this rule is that if a "long hold" is placed on
992  * a dataset, then the dp_config_rwlock may be dropped while the dataset
993  * is still held.  The long hold will prevent the dataset from being
994  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
995  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
996  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
997  *
998  * Legitimate long-holders (including owners) should be long-running, cancelable
999  * tasks that should cause "zfs destroy" to fail.  This includes DMU
1000  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1001  * "zfs send", and "zfs diff".  There are several other long-holders whose
1002  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1003  *
1004  * The usual formula for long-holding would be:
1005  * dsl_pool_hold()
1006  * dsl_dataset_hold()
1007  * ... perform checks ...
1008  * dsl_dataset_long_hold()
1009  * dsl_pool_rele()
1010  * ... perform long-running task ...
1011  * dsl_dataset_long_rele()
1012  * dsl_dataset_rele()
1013  *
1014  * Note that when the long hold is released, the dataset is still held but
1015  * the pool is not held.  The dataset may change arbitrarily during this time
1016  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1017  * dataset except release it.
1018  *
1019  * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1020  * or modifying operations.
1021  *
1022  * Modifying operations should generally use dsl_sync_task().  The synctask
1023  * infrastructure enforces proper locking strategy with respect to the
1024  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1025  *
1026  * Read-only operations will manually hold the pool, then the dataset, obtain
1027  * information from the dataset, then release the pool and dataset.
1028  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1029  * hold/rele.
1030  */
1031 
1032 int
1033 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1034 {
1035 	spa_t *spa;
1036 	int error;
1037 
1038 	error = spa_open(name, &spa, tag);
1039 	if (error == 0) {
1040 		*dp = spa_get_dsl(spa);
1041 		dsl_pool_config_enter(*dp, tag);
1042 	}
1043 	return (error);
1044 }
1045 
1046 void
1047 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1048 {
1049 	dsl_pool_config_exit(dp, tag);
1050 	spa_close(dp->dp_spa, tag);
1051 }
1052 
1053 void
1054 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1055 {
1056 	/*
1057 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1058 	 *
1059 	 * The rrwlock can (with the track_all flag) track all reading threads,
1060 	 * which is very useful for debugging which code path failed to release
1061 	 * the lock, and for verifying that the *current* thread does hold
1062 	 * the lock.
1063 	 *
1064 	 * (Unlike a rwlock, which knows that N threads hold it for
1065 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1066 	 * if any thread holds it for read, even if this thread doesn't).
1067 	 */
1068 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1069 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1070 }
1071 
1072 void
1073 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1074 {
1075 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1076 	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1077 }
1078 
1079 void
1080 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1081 {
1082 	rrw_exit(&dp->dp_config_rwlock, tag);
1083 }
1084 
1085 boolean_t
1086 dsl_pool_config_held(dsl_pool_t *dp)
1087 {
1088 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1089 }
1090 
1091 boolean_t
1092 dsl_pool_config_held_writer(dsl_pool_t *dp)
1093 {
1094 	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1095 }
1096