xref: /illumos-gate/usr/src/uts/common/fs/zfs/dnode.c (revision 99a19144)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright 2017 RackTop Systems.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dbuf.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/spa.h>
39 #include <sys/zio.h>
40 #include <sys/dmu_zfetch.h>
41 #include <sys/range_tree.h>
42 
43 static kmem_cache_t *dnode_cache;
44 /*
45  * Define DNODE_STATS to turn on statistic gathering. By default, it is only
46  * turned on when DEBUG is also defined.
47  */
48 #ifdef	DEBUG
49 #define	DNODE_STATS
50 #endif	/* DEBUG */
51 
52 #ifdef	DNODE_STATS
53 #define	DNODE_STAT_ADD(stat)			((stat)++)
54 #else
55 #define	DNODE_STAT_ADD(stat)			/* nothing */
56 #endif	/* DNODE_STATS */
57 
58 static dnode_phys_t dnode_phys_zero;
59 
60 int zfs_default_bs = SPA_MINBLOCKSHIFT;
61 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
62 
63 #ifdef	_KERNEL
64 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
65 #endif	/* _KERNEL */
66 
67 static int
68 dbuf_compare(const void *x1, const void *x2)
69 {
70 	const dmu_buf_impl_t *d1 = x1;
71 	const dmu_buf_impl_t *d2 = x2;
72 
73 	if (d1->db_level < d2->db_level) {
74 		return (-1);
75 	}
76 	if (d1->db_level > d2->db_level) {
77 		return (1);
78 	}
79 
80 	if (d1->db_blkid < d2->db_blkid) {
81 		return (-1);
82 	}
83 	if (d1->db_blkid > d2->db_blkid) {
84 		return (1);
85 	}
86 
87 	if (d1->db_state == DB_SEARCH) {
88 		ASSERT3S(d2->db_state, !=, DB_SEARCH);
89 		return (-1);
90 	} else if (d2->db_state == DB_SEARCH) {
91 		ASSERT3S(d1->db_state, !=, DB_SEARCH);
92 		return (1);
93 	}
94 
95 	if ((uintptr_t)d1 < (uintptr_t)d2) {
96 		return (-1);
97 	}
98 	if ((uintptr_t)d1 > (uintptr_t)d2) {
99 		return (1);
100 	}
101 	return (0);
102 }
103 
104 /* ARGSUSED */
105 static int
106 dnode_cons(void *arg, void *unused, int kmflag)
107 {
108 	dnode_t *dn = arg;
109 	int i;
110 
111 	rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
112 	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
113 	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
114 	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
115 
116 	/*
117 	 * Every dbuf has a reference, and dropping a tracked reference is
118 	 * O(number of references), so don't track dn_holds.
119 	 */
120 	refcount_create_untracked(&dn->dn_holds);
121 	refcount_create(&dn->dn_tx_holds);
122 	list_link_init(&dn->dn_link);
123 
124 	bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
125 	bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
126 	bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
127 	bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
128 	bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
129 	bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
130 	bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
131 
132 	for (i = 0; i < TXG_SIZE; i++) {
133 		list_link_init(&dn->dn_dirty_link[i]);
134 		dn->dn_free_ranges[i] = NULL;
135 		list_create(&dn->dn_dirty_records[i],
136 		    sizeof (dbuf_dirty_record_t),
137 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
138 	}
139 
140 	dn->dn_allocated_txg = 0;
141 	dn->dn_free_txg = 0;
142 	dn->dn_assigned_txg = 0;
143 	dn->dn_dirtyctx = 0;
144 	dn->dn_dirtyctx_firstset = NULL;
145 	dn->dn_bonus = NULL;
146 	dn->dn_have_spill = B_FALSE;
147 	dn->dn_zio = NULL;
148 	dn->dn_oldused = 0;
149 	dn->dn_oldflags = 0;
150 	dn->dn_olduid = 0;
151 	dn->dn_oldgid = 0;
152 	dn->dn_newuid = 0;
153 	dn->dn_newgid = 0;
154 	dn->dn_id_flags = 0;
155 
156 	dn->dn_dbufs_count = 0;
157 	avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
158 	    offsetof(dmu_buf_impl_t, db_link));
159 
160 	dn->dn_moved = 0;
161 	return (0);
162 }
163 
164 /* ARGSUSED */
165 static void
166 dnode_dest(void *arg, void *unused)
167 {
168 	int i;
169 	dnode_t *dn = arg;
170 
171 	rw_destroy(&dn->dn_struct_rwlock);
172 	mutex_destroy(&dn->dn_mtx);
173 	mutex_destroy(&dn->dn_dbufs_mtx);
174 	cv_destroy(&dn->dn_notxholds);
175 	refcount_destroy(&dn->dn_holds);
176 	refcount_destroy(&dn->dn_tx_holds);
177 	ASSERT(!list_link_active(&dn->dn_link));
178 
179 	for (i = 0; i < TXG_SIZE; i++) {
180 		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
181 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
182 		list_destroy(&dn->dn_dirty_records[i]);
183 		ASSERT0(dn->dn_next_nblkptr[i]);
184 		ASSERT0(dn->dn_next_nlevels[i]);
185 		ASSERT0(dn->dn_next_indblkshift[i]);
186 		ASSERT0(dn->dn_next_bonustype[i]);
187 		ASSERT0(dn->dn_rm_spillblk[i]);
188 		ASSERT0(dn->dn_next_bonuslen[i]);
189 		ASSERT0(dn->dn_next_blksz[i]);
190 	}
191 
192 	ASSERT0(dn->dn_allocated_txg);
193 	ASSERT0(dn->dn_free_txg);
194 	ASSERT0(dn->dn_assigned_txg);
195 	ASSERT0(dn->dn_dirtyctx);
196 	ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
197 	ASSERT3P(dn->dn_bonus, ==, NULL);
198 	ASSERT(!dn->dn_have_spill);
199 	ASSERT3P(dn->dn_zio, ==, NULL);
200 	ASSERT0(dn->dn_oldused);
201 	ASSERT0(dn->dn_oldflags);
202 	ASSERT0(dn->dn_olduid);
203 	ASSERT0(dn->dn_oldgid);
204 	ASSERT0(dn->dn_newuid);
205 	ASSERT0(dn->dn_newgid);
206 	ASSERT0(dn->dn_id_flags);
207 
208 	ASSERT0(dn->dn_dbufs_count);
209 	avl_destroy(&dn->dn_dbufs);
210 }
211 
212 void
213 dnode_init(void)
214 {
215 	ASSERT(dnode_cache == NULL);
216 	dnode_cache = kmem_cache_create("dnode_t",
217 	    sizeof (dnode_t),
218 	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
219 #ifdef	_KERNEL
220 	kmem_cache_set_move(dnode_cache, dnode_move);
221 #endif	/* _KERNEL */
222 }
223 
224 void
225 dnode_fini(void)
226 {
227 	kmem_cache_destroy(dnode_cache);
228 	dnode_cache = NULL;
229 }
230 
231 
232 #ifdef ZFS_DEBUG
233 void
234 dnode_verify(dnode_t *dn)
235 {
236 	int drop_struct_lock = FALSE;
237 
238 	ASSERT(dn->dn_phys);
239 	ASSERT(dn->dn_objset);
240 	ASSERT(dn->dn_handle->dnh_dnode == dn);
241 
242 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
243 
244 	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
245 		return;
246 
247 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
248 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
249 		drop_struct_lock = TRUE;
250 	}
251 	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
252 		int i;
253 		ASSERT3U(dn->dn_indblkshift, >=, 0);
254 		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
255 		if (dn->dn_datablkshift) {
256 			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
257 			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
258 			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
259 		}
260 		ASSERT3U(dn->dn_nlevels, <=, 30);
261 		ASSERT(DMU_OT_IS_VALID(dn->dn_type));
262 		ASSERT3U(dn->dn_nblkptr, >=, 1);
263 		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
264 		ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
265 		ASSERT3U(dn->dn_datablksz, ==,
266 		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
267 		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
268 		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
269 		    dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
270 		for (i = 0; i < TXG_SIZE; i++) {
271 			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
272 		}
273 	}
274 	if (dn->dn_phys->dn_type != DMU_OT_NONE)
275 		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
276 	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
277 	if (dn->dn_dbuf != NULL) {
278 		ASSERT3P(dn->dn_phys, ==,
279 		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
280 		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
281 	}
282 	if (drop_struct_lock)
283 		rw_exit(&dn->dn_struct_rwlock);
284 }
285 #endif
286 
287 void
288 dnode_byteswap(dnode_phys_t *dnp)
289 {
290 	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
291 	int i;
292 
293 	if (dnp->dn_type == DMU_OT_NONE) {
294 		bzero(dnp, sizeof (dnode_phys_t));
295 		return;
296 	}
297 
298 	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
299 	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
300 	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
301 	dnp->dn_used = BSWAP_64(dnp->dn_used);
302 
303 	/*
304 	 * dn_nblkptr is only one byte, so it's OK to read it in either
305 	 * byte order.  We can't read dn_bouslen.
306 	 */
307 	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
308 	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
309 	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
310 		buf64[i] = BSWAP_64(buf64[i]);
311 
312 	/*
313 	 * OK to check dn_bonuslen for zero, because it won't matter if
314 	 * we have the wrong byte order.  This is necessary because the
315 	 * dnode dnode is smaller than a regular dnode.
316 	 */
317 	if (dnp->dn_bonuslen != 0) {
318 		/*
319 		 * Note that the bonus length calculated here may be
320 		 * longer than the actual bonus buffer.  This is because
321 		 * we always put the bonus buffer after the last block
322 		 * pointer (instead of packing it against the end of the
323 		 * dnode buffer).
324 		 */
325 		int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
326 		size_t len = DN_MAX_BONUSLEN - off;
327 		ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
328 		dmu_object_byteswap_t byteswap =
329 		    DMU_OT_BYTESWAP(dnp->dn_bonustype);
330 		dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
331 	}
332 
333 	/* Swap SPILL block if we have one */
334 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
335 		byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
336 
337 }
338 
339 void
340 dnode_buf_byteswap(void *vbuf, size_t size)
341 {
342 	dnode_phys_t *buf = vbuf;
343 	int i;
344 
345 	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
346 	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
347 
348 	size >>= DNODE_SHIFT;
349 	for (i = 0; i < size; i++) {
350 		dnode_byteswap(buf);
351 		buf++;
352 	}
353 }
354 
355 void
356 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
357 {
358 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
359 
360 	dnode_setdirty(dn, tx);
361 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
362 	ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
363 	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
364 	dn->dn_bonuslen = newsize;
365 	if (newsize == 0)
366 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
367 	else
368 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
369 	rw_exit(&dn->dn_struct_rwlock);
370 }
371 
372 void
373 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
374 {
375 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
376 	dnode_setdirty(dn, tx);
377 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
378 	dn->dn_bonustype = newtype;
379 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
380 	rw_exit(&dn->dn_struct_rwlock);
381 }
382 
383 void
384 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
385 {
386 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
387 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
388 	dnode_setdirty(dn, tx);
389 	dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
390 	dn->dn_have_spill = B_FALSE;
391 }
392 
393 static void
394 dnode_setdblksz(dnode_t *dn, int size)
395 {
396 	ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
397 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
398 	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
399 	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
400 	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
401 	dn->dn_datablksz = size;
402 	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
403 	dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
404 }
405 
406 static dnode_t *
407 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
408     uint64_t object, dnode_handle_t *dnh)
409 {
410 	dnode_t *dn;
411 
412 	dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
413 #ifdef _KERNEL
414 	ASSERT(!POINTER_IS_VALID(dn->dn_objset));
415 #endif /* _KERNEL */
416 	dn->dn_moved = 0;
417 
418 	/*
419 	 * Defer setting dn_objset until the dnode is ready to be a candidate
420 	 * for the dnode_move() callback.
421 	 */
422 	dn->dn_object = object;
423 	dn->dn_dbuf = db;
424 	dn->dn_handle = dnh;
425 	dn->dn_phys = dnp;
426 
427 	if (dnp->dn_datablkszsec) {
428 		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
429 	} else {
430 		dn->dn_datablksz = 0;
431 		dn->dn_datablkszsec = 0;
432 		dn->dn_datablkshift = 0;
433 	}
434 	dn->dn_indblkshift = dnp->dn_indblkshift;
435 	dn->dn_nlevels = dnp->dn_nlevels;
436 	dn->dn_type = dnp->dn_type;
437 	dn->dn_nblkptr = dnp->dn_nblkptr;
438 	dn->dn_checksum = dnp->dn_checksum;
439 	dn->dn_compress = dnp->dn_compress;
440 	dn->dn_bonustype = dnp->dn_bonustype;
441 	dn->dn_bonuslen = dnp->dn_bonuslen;
442 	dn->dn_maxblkid = dnp->dn_maxblkid;
443 	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
444 	dn->dn_id_flags = 0;
445 
446 	dmu_zfetch_init(&dn->dn_zfetch, dn);
447 
448 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
449 
450 	mutex_enter(&os->os_lock);
451 	if (dnh->dnh_dnode != NULL) {
452 		/* Lost the allocation race. */
453 		mutex_exit(&os->os_lock);
454 		kmem_cache_free(dnode_cache, dn);
455 		return (dnh->dnh_dnode);
456 	}
457 
458 	/*
459 	 * Exclude special dnodes from os_dnodes so an empty os_dnodes
460 	 * signifies that the special dnodes have no references from
461 	 * their children (the entries in os_dnodes).  This allows
462 	 * dnode_destroy() to easily determine if the last child has
463 	 * been removed and then complete eviction of the objset.
464 	 */
465 	if (!DMU_OBJECT_IS_SPECIAL(object))
466 		list_insert_head(&os->os_dnodes, dn);
467 	membar_producer();
468 
469 	/*
470 	 * Everything else must be valid before assigning dn_objset
471 	 * makes the dnode eligible for dnode_move().
472 	 */
473 	dn->dn_objset = os;
474 
475 	dnh->dnh_dnode = dn;
476 	mutex_exit(&os->os_lock);
477 
478 	arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
479 	return (dn);
480 }
481 
482 /*
483  * Caller must be holding the dnode handle, which is released upon return.
484  */
485 static void
486 dnode_destroy(dnode_t *dn)
487 {
488 	objset_t *os = dn->dn_objset;
489 	boolean_t complete_os_eviction = B_FALSE;
490 
491 	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
492 
493 	mutex_enter(&os->os_lock);
494 	POINTER_INVALIDATE(&dn->dn_objset);
495 	if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
496 		list_remove(&os->os_dnodes, dn);
497 		complete_os_eviction =
498 		    list_is_empty(&os->os_dnodes) &&
499 		    list_link_active(&os->os_evicting_node);
500 	}
501 	mutex_exit(&os->os_lock);
502 
503 	/* the dnode can no longer move, so we can release the handle */
504 	zrl_remove(&dn->dn_handle->dnh_zrlock);
505 
506 	dn->dn_allocated_txg = 0;
507 	dn->dn_free_txg = 0;
508 	dn->dn_assigned_txg = 0;
509 
510 	dn->dn_dirtyctx = 0;
511 	if (dn->dn_dirtyctx_firstset != NULL) {
512 		kmem_free(dn->dn_dirtyctx_firstset, 1);
513 		dn->dn_dirtyctx_firstset = NULL;
514 	}
515 	if (dn->dn_bonus != NULL) {
516 		mutex_enter(&dn->dn_bonus->db_mtx);
517 		dbuf_destroy(dn->dn_bonus);
518 		dn->dn_bonus = NULL;
519 	}
520 	dn->dn_zio = NULL;
521 
522 	dn->dn_have_spill = B_FALSE;
523 	dn->dn_oldused = 0;
524 	dn->dn_oldflags = 0;
525 	dn->dn_olduid = 0;
526 	dn->dn_oldgid = 0;
527 	dn->dn_newuid = 0;
528 	dn->dn_newgid = 0;
529 	dn->dn_id_flags = 0;
530 
531 	dmu_zfetch_fini(&dn->dn_zfetch);
532 	kmem_cache_free(dnode_cache, dn);
533 	arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
534 
535 	if (complete_os_eviction)
536 		dmu_objset_evict_done(os);
537 }
538 
539 void
540 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
541     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
542 {
543 	int i;
544 
545 	ASSERT3U(blocksize, <=,
546 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
547 	if (blocksize == 0)
548 		blocksize = 1 << zfs_default_bs;
549 	else
550 		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
551 
552 	if (ibs == 0)
553 		ibs = zfs_default_ibs;
554 
555 	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
556 
557 	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
558 	    dn->dn_object, tx->tx_txg, blocksize, ibs);
559 
560 	ASSERT(dn->dn_type == DMU_OT_NONE);
561 	ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
562 	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
563 	ASSERT(ot != DMU_OT_NONE);
564 	ASSERT(DMU_OT_IS_VALID(ot));
565 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
566 	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
567 	    (bonustype != DMU_OT_NONE && bonuslen != 0));
568 	ASSERT(DMU_OT_IS_VALID(bonustype));
569 	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
570 	ASSERT(dn->dn_type == DMU_OT_NONE);
571 	ASSERT0(dn->dn_maxblkid);
572 	ASSERT0(dn->dn_allocated_txg);
573 	ASSERT0(dn->dn_assigned_txg);
574 	ASSERT(refcount_is_zero(&dn->dn_tx_holds));
575 	ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
576 	ASSERT(avl_is_empty(&dn->dn_dbufs));
577 
578 	for (i = 0; i < TXG_SIZE; i++) {
579 		ASSERT0(dn->dn_next_nblkptr[i]);
580 		ASSERT0(dn->dn_next_nlevels[i]);
581 		ASSERT0(dn->dn_next_indblkshift[i]);
582 		ASSERT0(dn->dn_next_bonuslen[i]);
583 		ASSERT0(dn->dn_next_bonustype[i]);
584 		ASSERT0(dn->dn_rm_spillblk[i]);
585 		ASSERT0(dn->dn_next_blksz[i]);
586 		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
587 		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
588 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
589 	}
590 
591 	dn->dn_type = ot;
592 	dnode_setdblksz(dn, blocksize);
593 	dn->dn_indblkshift = ibs;
594 	dn->dn_nlevels = 1;
595 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
596 		dn->dn_nblkptr = 1;
597 	else
598 		dn->dn_nblkptr = 1 +
599 		    ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
600 	dn->dn_bonustype = bonustype;
601 	dn->dn_bonuslen = bonuslen;
602 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
603 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
604 	dn->dn_dirtyctx = 0;
605 
606 	dn->dn_free_txg = 0;
607 	if (dn->dn_dirtyctx_firstset) {
608 		kmem_free(dn->dn_dirtyctx_firstset, 1);
609 		dn->dn_dirtyctx_firstset = NULL;
610 	}
611 
612 	dn->dn_allocated_txg = tx->tx_txg;
613 	dn->dn_id_flags = 0;
614 
615 	dnode_setdirty(dn, tx);
616 	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
617 	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
618 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
619 	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
620 }
621 
622 void
623 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
624     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
625 {
626 	int nblkptr;
627 
628 	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
629 	ASSERT3U(blocksize, <=,
630 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
631 	ASSERT0(blocksize % SPA_MINBLOCKSIZE);
632 	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
633 	ASSERT(tx->tx_txg != 0);
634 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
635 	    (bonustype != DMU_OT_NONE && bonuslen != 0) ||
636 	    (bonustype == DMU_OT_SA && bonuslen == 0));
637 	ASSERT(DMU_OT_IS_VALID(bonustype));
638 	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
639 
640 	/* clean up any unreferenced dbufs */
641 	dnode_evict_dbufs(dn);
642 
643 	dn->dn_id_flags = 0;
644 
645 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
646 	dnode_setdirty(dn, tx);
647 	if (dn->dn_datablksz != blocksize) {
648 		/* change blocksize */
649 		ASSERT(dn->dn_maxblkid == 0 &&
650 		    (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
651 		    dnode_block_freed(dn, 0)));
652 		dnode_setdblksz(dn, blocksize);
653 		dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
654 	}
655 	if (dn->dn_bonuslen != bonuslen)
656 		dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
657 
658 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
659 		nblkptr = 1;
660 	else
661 		nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
662 	if (dn->dn_bonustype != bonustype)
663 		dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
664 	if (dn->dn_nblkptr != nblkptr)
665 		dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
666 	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
667 		dbuf_rm_spill(dn, tx);
668 		dnode_rm_spill(dn, tx);
669 	}
670 	rw_exit(&dn->dn_struct_rwlock);
671 
672 	/* change type */
673 	dn->dn_type = ot;
674 
675 	/* change bonus size and type */
676 	mutex_enter(&dn->dn_mtx);
677 	dn->dn_bonustype = bonustype;
678 	dn->dn_bonuslen = bonuslen;
679 	dn->dn_nblkptr = nblkptr;
680 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
681 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
682 	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
683 
684 	/* fix up the bonus db_size */
685 	if (dn->dn_bonus) {
686 		dn->dn_bonus->db.db_size =
687 		    DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
688 		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
689 	}
690 
691 	dn->dn_allocated_txg = tx->tx_txg;
692 	mutex_exit(&dn->dn_mtx);
693 }
694 
695 #ifdef	DNODE_STATS
696 static struct {
697 	uint64_t dms_dnode_invalid;
698 	uint64_t dms_dnode_recheck1;
699 	uint64_t dms_dnode_recheck2;
700 	uint64_t dms_dnode_special;
701 	uint64_t dms_dnode_handle;
702 	uint64_t dms_dnode_rwlock;
703 	uint64_t dms_dnode_active;
704 } dnode_move_stats;
705 #endif	/* DNODE_STATS */
706 
707 #ifdef	_KERNEL
708 static void
709 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
710 {
711 	int i;
712 
713 	ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
714 	ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
715 	ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
716 	ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
717 
718 	/* Copy fields. */
719 	ndn->dn_objset = odn->dn_objset;
720 	ndn->dn_object = odn->dn_object;
721 	ndn->dn_dbuf = odn->dn_dbuf;
722 	ndn->dn_handle = odn->dn_handle;
723 	ndn->dn_phys = odn->dn_phys;
724 	ndn->dn_type = odn->dn_type;
725 	ndn->dn_bonuslen = odn->dn_bonuslen;
726 	ndn->dn_bonustype = odn->dn_bonustype;
727 	ndn->dn_nblkptr = odn->dn_nblkptr;
728 	ndn->dn_checksum = odn->dn_checksum;
729 	ndn->dn_compress = odn->dn_compress;
730 	ndn->dn_nlevels = odn->dn_nlevels;
731 	ndn->dn_indblkshift = odn->dn_indblkshift;
732 	ndn->dn_datablkshift = odn->dn_datablkshift;
733 	ndn->dn_datablkszsec = odn->dn_datablkszsec;
734 	ndn->dn_datablksz = odn->dn_datablksz;
735 	ndn->dn_maxblkid = odn->dn_maxblkid;
736 	bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
737 	    sizeof (odn->dn_next_nblkptr));
738 	bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
739 	    sizeof (odn->dn_next_nlevels));
740 	bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
741 	    sizeof (odn->dn_next_indblkshift));
742 	bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
743 	    sizeof (odn->dn_next_bonustype));
744 	bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
745 	    sizeof (odn->dn_rm_spillblk));
746 	bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
747 	    sizeof (odn->dn_next_bonuslen));
748 	bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
749 	    sizeof (odn->dn_next_blksz));
750 	for (i = 0; i < TXG_SIZE; i++) {
751 		list_move_tail(&ndn->dn_dirty_records[i],
752 		    &odn->dn_dirty_records[i]);
753 	}
754 	bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
755 	    sizeof (odn->dn_free_ranges));
756 	ndn->dn_allocated_txg = odn->dn_allocated_txg;
757 	ndn->dn_free_txg = odn->dn_free_txg;
758 	ndn->dn_assigned_txg = odn->dn_assigned_txg;
759 	ndn->dn_dirtyctx = odn->dn_dirtyctx;
760 	ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
761 	ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
762 	refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
763 	ASSERT(avl_is_empty(&ndn->dn_dbufs));
764 	avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
765 	ndn->dn_dbufs_count = odn->dn_dbufs_count;
766 	ndn->dn_bonus = odn->dn_bonus;
767 	ndn->dn_have_spill = odn->dn_have_spill;
768 	ndn->dn_zio = odn->dn_zio;
769 	ndn->dn_oldused = odn->dn_oldused;
770 	ndn->dn_oldflags = odn->dn_oldflags;
771 	ndn->dn_olduid = odn->dn_olduid;
772 	ndn->dn_oldgid = odn->dn_oldgid;
773 	ndn->dn_newuid = odn->dn_newuid;
774 	ndn->dn_newgid = odn->dn_newgid;
775 	ndn->dn_id_flags = odn->dn_id_flags;
776 	dmu_zfetch_init(&ndn->dn_zfetch, NULL);
777 	list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
778 	ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
779 
780 	/*
781 	 * Update back pointers. Updating the handle fixes the back pointer of
782 	 * every descendant dbuf as well as the bonus dbuf.
783 	 */
784 	ASSERT(ndn->dn_handle->dnh_dnode == odn);
785 	ndn->dn_handle->dnh_dnode = ndn;
786 	if (ndn->dn_zfetch.zf_dnode == odn) {
787 		ndn->dn_zfetch.zf_dnode = ndn;
788 	}
789 
790 	/*
791 	 * Invalidate the original dnode by clearing all of its back pointers.
792 	 */
793 	odn->dn_dbuf = NULL;
794 	odn->dn_handle = NULL;
795 	avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
796 	    offsetof(dmu_buf_impl_t, db_link));
797 	odn->dn_dbufs_count = 0;
798 	odn->dn_bonus = NULL;
799 	odn->dn_zfetch.zf_dnode = NULL;
800 
801 	/*
802 	 * Set the low bit of the objset pointer to ensure that dnode_move()
803 	 * recognizes the dnode as invalid in any subsequent callback.
804 	 */
805 	POINTER_INVALIDATE(&odn->dn_objset);
806 
807 	/*
808 	 * Satisfy the destructor.
809 	 */
810 	for (i = 0; i < TXG_SIZE; i++) {
811 		list_create(&odn->dn_dirty_records[i],
812 		    sizeof (dbuf_dirty_record_t),
813 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
814 		odn->dn_free_ranges[i] = NULL;
815 		odn->dn_next_nlevels[i] = 0;
816 		odn->dn_next_indblkshift[i] = 0;
817 		odn->dn_next_bonustype[i] = 0;
818 		odn->dn_rm_spillblk[i] = 0;
819 		odn->dn_next_bonuslen[i] = 0;
820 		odn->dn_next_blksz[i] = 0;
821 	}
822 	odn->dn_allocated_txg = 0;
823 	odn->dn_free_txg = 0;
824 	odn->dn_assigned_txg = 0;
825 	odn->dn_dirtyctx = 0;
826 	odn->dn_dirtyctx_firstset = NULL;
827 	odn->dn_have_spill = B_FALSE;
828 	odn->dn_zio = NULL;
829 	odn->dn_oldused = 0;
830 	odn->dn_oldflags = 0;
831 	odn->dn_olduid = 0;
832 	odn->dn_oldgid = 0;
833 	odn->dn_newuid = 0;
834 	odn->dn_newgid = 0;
835 	odn->dn_id_flags = 0;
836 
837 	/*
838 	 * Mark the dnode.
839 	 */
840 	ndn->dn_moved = 1;
841 	odn->dn_moved = (uint8_t)-1;
842 }
843 
844 /*ARGSUSED*/
845 static kmem_cbrc_t
846 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
847 {
848 	dnode_t *odn = buf, *ndn = newbuf;
849 	objset_t *os;
850 	int64_t refcount;
851 	uint32_t dbufs;
852 
853 	/*
854 	 * The dnode is on the objset's list of known dnodes if the objset
855 	 * pointer is valid. We set the low bit of the objset pointer when
856 	 * freeing the dnode to invalidate it, and the memory patterns written
857 	 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
858 	 * A newly created dnode sets the objset pointer last of all to indicate
859 	 * that the dnode is known and in a valid state to be moved by this
860 	 * function.
861 	 */
862 	os = odn->dn_objset;
863 	if (!POINTER_IS_VALID(os)) {
864 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
865 		return (KMEM_CBRC_DONT_KNOW);
866 	}
867 
868 	/*
869 	 * Ensure that the objset does not go away during the move.
870 	 */
871 	rw_enter(&os_lock, RW_WRITER);
872 	if (os != odn->dn_objset) {
873 		rw_exit(&os_lock);
874 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
875 		return (KMEM_CBRC_DONT_KNOW);
876 	}
877 
878 	/*
879 	 * If the dnode is still valid, then so is the objset. We know that no
880 	 * valid objset can be freed while we hold os_lock, so we can safely
881 	 * ensure that the objset remains in use.
882 	 */
883 	mutex_enter(&os->os_lock);
884 
885 	/*
886 	 * Recheck the objset pointer in case the dnode was removed just before
887 	 * acquiring the lock.
888 	 */
889 	if (os != odn->dn_objset) {
890 		mutex_exit(&os->os_lock);
891 		rw_exit(&os_lock);
892 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
893 		return (KMEM_CBRC_DONT_KNOW);
894 	}
895 
896 	/*
897 	 * At this point we know that as long as we hold os->os_lock, the dnode
898 	 * cannot be freed and fields within the dnode can be safely accessed.
899 	 * The objset listing this dnode cannot go away as long as this dnode is
900 	 * on its list.
901 	 */
902 	rw_exit(&os_lock);
903 	if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
904 		mutex_exit(&os->os_lock);
905 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
906 		return (KMEM_CBRC_NO);
907 	}
908 	ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
909 
910 	/*
911 	 * Lock the dnode handle to prevent the dnode from obtaining any new
912 	 * holds. This also prevents the descendant dbufs and the bonus dbuf
913 	 * from accessing the dnode, so that we can discount their holds. The
914 	 * handle is safe to access because we know that while the dnode cannot
915 	 * go away, neither can its handle. Once we hold dnh_zrlock, we can
916 	 * safely move any dnode referenced only by dbufs.
917 	 */
918 	if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
919 		mutex_exit(&os->os_lock);
920 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
921 		return (KMEM_CBRC_LATER);
922 	}
923 
924 	/*
925 	 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
926 	 * We need to guarantee that there is a hold for every dbuf in order to
927 	 * determine whether the dnode is actively referenced. Falsely matching
928 	 * a dbuf to an active hold would lead to an unsafe move. It's possible
929 	 * that a thread already having an active dnode hold is about to add a
930 	 * dbuf, and we can't compare hold and dbuf counts while the add is in
931 	 * progress.
932 	 */
933 	if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
934 		zrl_exit(&odn->dn_handle->dnh_zrlock);
935 		mutex_exit(&os->os_lock);
936 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
937 		return (KMEM_CBRC_LATER);
938 	}
939 
940 	/*
941 	 * A dbuf may be removed (evicted) without an active dnode hold. In that
942 	 * case, the dbuf count is decremented under the handle lock before the
943 	 * dbuf's hold is released. This order ensures that if we count the hold
944 	 * after the dbuf is removed but before its hold is released, we will
945 	 * treat the unmatched hold as active and exit safely. If we count the
946 	 * hold before the dbuf is removed, the hold is discounted, and the
947 	 * removal is blocked until the move completes.
948 	 */
949 	refcount = refcount_count(&odn->dn_holds);
950 	ASSERT(refcount >= 0);
951 	dbufs = odn->dn_dbufs_count;
952 
953 	/* We can't have more dbufs than dnode holds. */
954 	ASSERT3U(dbufs, <=, refcount);
955 	DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
956 	    uint32_t, dbufs);
957 
958 	if (refcount > dbufs) {
959 		rw_exit(&odn->dn_struct_rwlock);
960 		zrl_exit(&odn->dn_handle->dnh_zrlock);
961 		mutex_exit(&os->os_lock);
962 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
963 		return (KMEM_CBRC_LATER);
964 	}
965 
966 	rw_exit(&odn->dn_struct_rwlock);
967 
968 	/*
969 	 * At this point we know that anyone with a hold on the dnode is not
970 	 * actively referencing it. The dnode is known and in a valid state to
971 	 * move. We're holding the locks needed to execute the critical section.
972 	 */
973 	dnode_move_impl(odn, ndn);
974 
975 	list_link_replace(&odn->dn_link, &ndn->dn_link);
976 	/* If the dnode was safe to move, the refcount cannot have changed. */
977 	ASSERT(refcount == refcount_count(&ndn->dn_holds));
978 	ASSERT(dbufs == ndn->dn_dbufs_count);
979 	zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
980 	mutex_exit(&os->os_lock);
981 
982 	return (KMEM_CBRC_YES);
983 }
984 #endif	/* _KERNEL */
985 
986 void
987 dnode_special_close(dnode_handle_t *dnh)
988 {
989 	dnode_t *dn = dnh->dnh_dnode;
990 
991 	/*
992 	 * Wait for final references to the dnode to clear.  This can
993 	 * only happen if the arc is asyncronously evicting state that
994 	 * has a hold on this dnode while we are trying to evict this
995 	 * dnode.
996 	 */
997 	while (refcount_count(&dn->dn_holds) > 0)
998 		delay(1);
999 	ASSERT(dn->dn_dbuf == NULL ||
1000 	    dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1001 	zrl_add(&dnh->dnh_zrlock);
1002 	dnode_destroy(dn); /* implicit zrl_remove() */
1003 	zrl_destroy(&dnh->dnh_zrlock);
1004 	dnh->dnh_dnode = NULL;
1005 }
1006 
1007 void
1008 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1009     dnode_handle_t *dnh)
1010 {
1011 	dnode_t *dn;
1012 
1013 	dn = dnode_create(os, dnp, NULL, object, dnh);
1014 	zrl_init(&dnh->dnh_zrlock);
1015 	DNODE_VERIFY(dn);
1016 }
1017 
1018 static void
1019 dnode_buf_evict_async(void *dbu)
1020 {
1021 	dnode_children_t *children_dnodes = dbu;
1022 	int i;
1023 
1024 	for (i = 0; i < children_dnodes->dnc_count; i++) {
1025 		dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
1026 		dnode_t *dn;
1027 
1028 		/*
1029 		 * The dnode handle lock guards against the dnode moving to
1030 		 * another valid address, so there is no need here to guard
1031 		 * against changes to or from NULL.
1032 		 */
1033 		if (dnh->dnh_dnode == NULL) {
1034 			zrl_destroy(&dnh->dnh_zrlock);
1035 			continue;
1036 		}
1037 
1038 		zrl_add(&dnh->dnh_zrlock);
1039 		dn = dnh->dnh_dnode;
1040 		/*
1041 		 * If there are holds on this dnode, then there should
1042 		 * be holds on the dnode's containing dbuf as well; thus
1043 		 * it wouldn't be eligible for eviction and this function
1044 		 * would not have been called.
1045 		 */
1046 		ASSERT(refcount_is_zero(&dn->dn_holds));
1047 		ASSERT(refcount_is_zero(&dn->dn_tx_holds));
1048 
1049 		dnode_destroy(dn); /* implicit zrl_remove() */
1050 		zrl_destroy(&dnh->dnh_zrlock);
1051 		dnh->dnh_dnode = NULL;
1052 	}
1053 	kmem_free(children_dnodes, sizeof (dnode_children_t) +
1054 	    children_dnodes->dnc_count * sizeof (dnode_handle_t));
1055 }
1056 
1057 /*
1058  * errors:
1059  * EINVAL - invalid object number.
1060  * EIO - i/o error.
1061  * succeeds even for free dnodes.
1062  */
1063 int
1064 dnode_hold_impl(objset_t *os, uint64_t object, int flag,
1065     void *tag, dnode_t **dnp)
1066 {
1067 	int epb, idx, err;
1068 	int drop_struct_lock = FALSE;
1069 	int type;
1070 	uint64_t blk;
1071 	dnode_t *mdn, *dn;
1072 	dmu_buf_impl_t *db;
1073 	dnode_children_t *children_dnodes;
1074 	dnode_handle_t *dnh;
1075 
1076 	/*
1077 	 * If you are holding the spa config lock as writer, you shouldn't
1078 	 * be asking the DMU to do *anything* unless it's the root pool
1079 	 * which may require us to read from the root filesystem while
1080 	 * holding some (not all) of the locks as writer.
1081 	 */
1082 	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1083 	    (spa_is_root(os->os_spa) &&
1084 	    spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1085 
1086 	ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE));
1087 
1088 	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1089 		dn = (object == DMU_USERUSED_OBJECT) ?
1090 		    DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1091 		if (dn == NULL)
1092 			return (SET_ERROR(ENOENT));
1093 		type = dn->dn_type;
1094 		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1095 			return (SET_ERROR(ENOENT));
1096 		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1097 			return (SET_ERROR(EEXIST));
1098 		DNODE_VERIFY(dn);
1099 		(void) refcount_add(&dn->dn_holds, tag);
1100 		*dnp = dn;
1101 		return (0);
1102 	}
1103 
1104 	if (object == 0 || object >= DN_MAX_OBJECT)
1105 		return (SET_ERROR(EINVAL));
1106 
1107 	mdn = DMU_META_DNODE(os);
1108 	ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1109 
1110 	DNODE_VERIFY(mdn);
1111 
1112 	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1113 		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1114 		drop_struct_lock = TRUE;
1115 	}
1116 
1117 	blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1118 
1119 	db = dbuf_hold(mdn, blk, FTAG);
1120 	if (drop_struct_lock)
1121 		rw_exit(&mdn->dn_struct_rwlock);
1122 	if (db == NULL)
1123 		return (SET_ERROR(EIO));
1124 	err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1125 	if (err) {
1126 		dbuf_rele(db, FTAG);
1127 		return (err);
1128 	}
1129 
1130 	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1131 	epb = db->db.db_size >> DNODE_SHIFT;
1132 
1133 	idx = object & (epb-1);
1134 
1135 	ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1136 	children_dnodes = dmu_buf_get_user(&db->db);
1137 	if (children_dnodes == NULL) {
1138 		int i;
1139 		dnode_children_t *winner;
1140 		children_dnodes = kmem_zalloc(sizeof (dnode_children_t) +
1141 		    epb * sizeof (dnode_handle_t), KM_SLEEP);
1142 		children_dnodes->dnc_count = epb;
1143 		dnh = &children_dnodes->dnc_children[0];
1144 		for (i = 0; i < epb; i++) {
1145 			zrl_init(&dnh[i].dnh_zrlock);
1146 		}
1147 		dmu_buf_init_user(&children_dnodes->dnc_dbu, NULL,
1148 		    dnode_buf_evict_async, NULL);
1149 		winner = dmu_buf_set_user(&db->db, &children_dnodes->dnc_dbu);
1150 		if (winner != NULL) {
1151 
1152 			for (i = 0; i < epb; i++) {
1153 				zrl_destroy(&dnh[i].dnh_zrlock);
1154 			}
1155 
1156 			kmem_free(children_dnodes, sizeof (dnode_children_t) +
1157 			    epb * sizeof (dnode_handle_t));
1158 			children_dnodes = winner;
1159 		}
1160 	}
1161 	ASSERT(children_dnodes->dnc_count == epb);
1162 
1163 	dnh = &children_dnodes->dnc_children[idx];
1164 	zrl_add(&dnh->dnh_zrlock);
1165 	dn = dnh->dnh_dnode;
1166 	if (dn == NULL) {
1167 		dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx;
1168 
1169 		dn = dnode_create(os, phys, db, object, dnh);
1170 	}
1171 
1172 	mutex_enter(&dn->dn_mtx);
1173 	type = dn->dn_type;
1174 	if (dn->dn_free_txg ||
1175 	    ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
1176 	    ((flag & DNODE_MUST_BE_FREE) &&
1177 	    (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
1178 		mutex_exit(&dn->dn_mtx);
1179 		zrl_remove(&dnh->dnh_zrlock);
1180 		dbuf_rele(db, FTAG);
1181 		return ((flag & DNODE_MUST_BE_ALLOCATED) ? ENOENT : EEXIST);
1182 	}
1183 	if (refcount_add(&dn->dn_holds, tag) == 1)
1184 		dbuf_add_ref(db, dnh);
1185 	mutex_exit(&dn->dn_mtx);
1186 
1187 	/* Now we can rely on the hold to prevent the dnode from moving. */
1188 	zrl_remove(&dnh->dnh_zrlock);
1189 
1190 	DNODE_VERIFY(dn);
1191 	ASSERT3P(dn->dn_dbuf, ==, db);
1192 	ASSERT3U(dn->dn_object, ==, object);
1193 	dbuf_rele(db, FTAG);
1194 
1195 	*dnp = dn;
1196 	return (0);
1197 }
1198 
1199 /*
1200  * Return held dnode if the object is allocated, NULL if not.
1201  */
1202 int
1203 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1204 {
1205 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
1206 }
1207 
1208 /*
1209  * Can only add a reference if there is already at least one
1210  * reference on the dnode.  Returns FALSE if unable to add a
1211  * new reference.
1212  */
1213 boolean_t
1214 dnode_add_ref(dnode_t *dn, void *tag)
1215 {
1216 	mutex_enter(&dn->dn_mtx);
1217 	if (refcount_is_zero(&dn->dn_holds)) {
1218 		mutex_exit(&dn->dn_mtx);
1219 		return (FALSE);
1220 	}
1221 	VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1222 	mutex_exit(&dn->dn_mtx);
1223 	return (TRUE);
1224 }
1225 
1226 void
1227 dnode_rele(dnode_t *dn, void *tag)
1228 {
1229 	mutex_enter(&dn->dn_mtx);
1230 	dnode_rele_and_unlock(dn, tag);
1231 }
1232 
1233 void
1234 dnode_rele_and_unlock(dnode_t *dn, void *tag)
1235 {
1236 	uint64_t refs;
1237 	/* Get while the hold prevents the dnode from moving. */
1238 	dmu_buf_impl_t *db = dn->dn_dbuf;
1239 	dnode_handle_t *dnh = dn->dn_handle;
1240 
1241 	refs = refcount_remove(&dn->dn_holds, tag);
1242 	mutex_exit(&dn->dn_mtx);
1243 
1244 	/*
1245 	 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1246 	 * indirectly by dbuf_rele() while relying on the dnode handle to
1247 	 * prevent the dnode from moving, since releasing the last hold could
1248 	 * result in the dnode's parent dbuf evicting its dnode handles. For
1249 	 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1250 	 * other direct or indirect hold on the dnode must first drop the dnode
1251 	 * handle.
1252 	 */
1253 	ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1254 
1255 	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1256 	if (refs == 0 && db != NULL) {
1257 		/*
1258 		 * Another thread could add a hold to the dnode handle in
1259 		 * dnode_hold_impl() while holding the parent dbuf. Since the
1260 		 * hold on the parent dbuf prevents the handle from being
1261 		 * destroyed, the hold on the handle is OK. We can't yet assert
1262 		 * that the handle has zero references, but that will be
1263 		 * asserted anyway when the handle gets destroyed.
1264 		 */
1265 		dbuf_rele(db, dnh);
1266 	}
1267 }
1268 
1269 void
1270 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1271 {
1272 	objset_t *os = dn->dn_objset;
1273 	uint64_t txg = tx->tx_txg;
1274 
1275 	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1276 		dsl_dataset_dirty(os->os_dsl_dataset, tx);
1277 		return;
1278 	}
1279 
1280 	DNODE_VERIFY(dn);
1281 
1282 #ifdef ZFS_DEBUG
1283 	mutex_enter(&dn->dn_mtx);
1284 	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1285 	ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1286 	mutex_exit(&dn->dn_mtx);
1287 #endif
1288 
1289 	/*
1290 	 * Determine old uid/gid when necessary
1291 	 */
1292 	dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1293 
1294 	multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK];
1295 	multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1296 
1297 	/*
1298 	 * If we are already marked dirty, we're done.
1299 	 */
1300 	if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1301 		multilist_sublist_unlock(mls);
1302 		return;
1303 	}
1304 
1305 	ASSERT(!refcount_is_zero(&dn->dn_holds) ||
1306 	    !avl_is_empty(&dn->dn_dbufs));
1307 	ASSERT(dn->dn_datablksz != 0);
1308 	ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1309 	ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1310 	ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1311 
1312 	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1313 	    dn->dn_object, txg);
1314 
1315 	multilist_sublist_insert_head(mls, dn);
1316 
1317 	multilist_sublist_unlock(mls);
1318 
1319 	/*
1320 	 * The dnode maintains a hold on its containing dbuf as
1321 	 * long as there are holds on it.  Each instantiated child
1322 	 * dbuf maintains a hold on the dnode.  When the last child
1323 	 * drops its hold, the dnode will drop its hold on the
1324 	 * containing dbuf. We add a "dirty hold" here so that the
1325 	 * dnode will hang around after we finish processing its
1326 	 * children.
1327 	 */
1328 	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1329 
1330 	(void) dbuf_dirty(dn->dn_dbuf, tx);
1331 
1332 	dsl_dataset_dirty(os->os_dsl_dataset, tx);
1333 }
1334 
1335 void
1336 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1337 {
1338 	mutex_enter(&dn->dn_mtx);
1339 	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1340 		mutex_exit(&dn->dn_mtx);
1341 		return;
1342 	}
1343 	dn->dn_free_txg = tx->tx_txg;
1344 	mutex_exit(&dn->dn_mtx);
1345 
1346 	dnode_setdirty(dn, tx);
1347 }
1348 
1349 /*
1350  * Try to change the block size for the indicated dnode.  This can only
1351  * succeed if there are no blocks allocated or dirty beyond first block
1352  */
1353 int
1354 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1355 {
1356 	dmu_buf_impl_t *db;
1357 	int err;
1358 
1359 	ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1360 	if (size == 0)
1361 		size = SPA_MINBLOCKSIZE;
1362 	else
1363 		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1364 
1365 	if (ibs == dn->dn_indblkshift)
1366 		ibs = 0;
1367 
1368 	if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1369 		return (0);
1370 
1371 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1372 
1373 	/* Check for any allocated blocks beyond the first */
1374 	if (dn->dn_maxblkid != 0)
1375 		goto fail;
1376 
1377 	mutex_enter(&dn->dn_dbufs_mtx);
1378 	for (db = avl_first(&dn->dn_dbufs); db != NULL;
1379 	    db = AVL_NEXT(&dn->dn_dbufs, db)) {
1380 		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1381 		    db->db_blkid != DMU_SPILL_BLKID) {
1382 			mutex_exit(&dn->dn_dbufs_mtx);
1383 			goto fail;
1384 		}
1385 	}
1386 	mutex_exit(&dn->dn_dbufs_mtx);
1387 
1388 	if (ibs && dn->dn_nlevels != 1)
1389 		goto fail;
1390 
1391 	/* resize the old block */
1392 	err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1393 	if (err == 0)
1394 		dbuf_new_size(db, size, tx);
1395 	else if (err != ENOENT)
1396 		goto fail;
1397 
1398 	dnode_setdblksz(dn, size);
1399 	dnode_setdirty(dn, tx);
1400 	dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1401 	if (ibs) {
1402 		dn->dn_indblkshift = ibs;
1403 		dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1404 	}
1405 	/* rele after we have fixed the blocksize in the dnode */
1406 	if (db)
1407 		dbuf_rele(db, FTAG);
1408 
1409 	rw_exit(&dn->dn_struct_rwlock);
1410 	return (0);
1411 
1412 fail:
1413 	rw_exit(&dn->dn_struct_rwlock);
1414 	return (SET_ERROR(ENOTSUP));
1415 }
1416 
1417 /* read-holding callers must not rely on the lock being continuously held */
1418 void
1419 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1420 {
1421 	uint64_t txgoff = tx->tx_txg & TXG_MASK;
1422 	int epbs, new_nlevels;
1423 	uint64_t sz;
1424 
1425 	ASSERT(blkid != DMU_BONUS_BLKID);
1426 
1427 	ASSERT(have_read ?
1428 	    RW_READ_HELD(&dn->dn_struct_rwlock) :
1429 	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
1430 
1431 	/*
1432 	 * if we have a read-lock, check to see if we need to do any work
1433 	 * before upgrading to a write-lock.
1434 	 */
1435 	if (have_read) {
1436 		if (blkid <= dn->dn_maxblkid)
1437 			return;
1438 
1439 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1440 			rw_exit(&dn->dn_struct_rwlock);
1441 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1442 		}
1443 	}
1444 
1445 	if (blkid <= dn->dn_maxblkid)
1446 		goto out;
1447 
1448 	dn->dn_maxblkid = blkid;
1449 
1450 	/*
1451 	 * Compute the number of levels necessary to support the new maxblkid.
1452 	 */
1453 	new_nlevels = 1;
1454 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1455 	for (sz = dn->dn_nblkptr;
1456 	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1457 		new_nlevels++;
1458 
1459 	if (new_nlevels > dn->dn_nlevels) {
1460 		int old_nlevels = dn->dn_nlevels;
1461 		dmu_buf_impl_t *db;
1462 		list_t *list;
1463 		dbuf_dirty_record_t *new, *dr, *dr_next;
1464 
1465 		dn->dn_nlevels = new_nlevels;
1466 
1467 		ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1468 		dn->dn_next_nlevels[txgoff] = new_nlevels;
1469 
1470 		/* dirty the left indirects */
1471 		db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1472 		ASSERT(db != NULL);
1473 		new = dbuf_dirty(db, tx);
1474 		dbuf_rele(db, FTAG);
1475 
1476 		/* transfer the dirty records to the new indirect */
1477 		mutex_enter(&dn->dn_mtx);
1478 		mutex_enter(&new->dt.di.dr_mtx);
1479 		list = &dn->dn_dirty_records[txgoff];
1480 		for (dr = list_head(list); dr; dr = dr_next) {
1481 			dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1482 			if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1483 			    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1484 			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1485 				ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1486 				list_remove(&dn->dn_dirty_records[txgoff], dr);
1487 				list_insert_tail(&new->dt.di.dr_children, dr);
1488 				dr->dr_parent = new;
1489 			}
1490 		}
1491 		mutex_exit(&new->dt.di.dr_mtx);
1492 		mutex_exit(&dn->dn_mtx);
1493 	}
1494 
1495 out:
1496 	if (have_read)
1497 		rw_downgrade(&dn->dn_struct_rwlock);
1498 }
1499 
1500 static void
1501 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1502 {
1503 	dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1504 	if (db != NULL) {
1505 		dmu_buf_will_dirty(&db->db, tx);
1506 		dbuf_rele(db, FTAG);
1507 	}
1508 }
1509 
1510 /*
1511  * Dirty all the in-core level-1 dbufs in the range specified by start_blkid
1512  * and end_blkid.
1513  */
1514 static void
1515 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1516     dmu_tx_t *tx)
1517 {
1518 	dmu_buf_impl_t db_search;
1519 	dmu_buf_impl_t *db;
1520 	avl_index_t where;
1521 
1522 	mutex_enter(&dn->dn_dbufs_mtx);
1523 
1524 	db_search.db_level = 1;
1525 	db_search.db_blkid = start_blkid + 1;
1526 	db_search.db_state = DB_SEARCH;
1527 	for (;;) {
1528 
1529 		db = avl_find(&dn->dn_dbufs, &db_search, &where);
1530 		if (db == NULL)
1531 			db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1532 
1533 		if (db == NULL || db->db_level != 1 ||
1534 		    db->db_blkid >= end_blkid) {
1535 			break;
1536 		}
1537 
1538 		/*
1539 		 * Setup the next blkid we want to search for.
1540 		 */
1541 		db_search.db_blkid = db->db_blkid + 1;
1542 		ASSERT3U(db->db_blkid, >=, start_blkid);
1543 
1544 		/*
1545 		 * If the dbuf transitions to DB_EVICTING while we're trying
1546 		 * to dirty it, then we will be unable to discover it in
1547 		 * the dbuf hash table. This will result in a call to
1548 		 * dbuf_create() which needs to acquire the dn_dbufs_mtx
1549 		 * lock. To avoid a deadlock, we drop the lock before
1550 		 * dirtying the level-1 dbuf.
1551 		 */
1552 		mutex_exit(&dn->dn_dbufs_mtx);
1553 		dnode_dirty_l1(dn, db->db_blkid, tx);
1554 		mutex_enter(&dn->dn_dbufs_mtx);
1555 	}
1556 
1557 #ifdef ZFS_DEBUG
1558 	/*
1559 	 * Walk all the in-core level-1 dbufs and verify they have been dirtied.
1560 	 */
1561 	db_search.db_level = 1;
1562 	db_search.db_blkid = start_blkid + 1;
1563 	db_search.db_state = DB_SEARCH;
1564 	db = avl_find(&dn->dn_dbufs, &db_search, &where);
1565 	if (db == NULL)
1566 		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1567 	for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) {
1568 		if (db->db_level != 1 || db->db_blkid >= end_blkid)
1569 			break;
1570 		ASSERT(db->db_dirtycnt > 0);
1571 	}
1572 #endif
1573 	mutex_exit(&dn->dn_dbufs_mtx);
1574 }
1575 
1576 void
1577 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1578 {
1579 	dmu_buf_impl_t *db;
1580 	uint64_t blkoff, blkid, nblks;
1581 	int blksz, blkshift, head, tail;
1582 	int trunc = FALSE;
1583 	int epbs;
1584 
1585 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1586 	blksz = dn->dn_datablksz;
1587 	blkshift = dn->dn_datablkshift;
1588 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1589 
1590 	if (len == DMU_OBJECT_END) {
1591 		len = UINT64_MAX - off;
1592 		trunc = TRUE;
1593 	}
1594 
1595 	/*
1596 	 * First, block align the region to free:
1597 	 */
1598 	if (ISP2(blksz)) {
1599 		head = P2NPHASE(off, blksz);
1600 		blkoff = P2PHASE(off, blksz);
1601 		if ((off >> blkshift) > dn->dn_maxblkid)
1602 			goto out;
1603 	} else {
1604 		ASSERT(dn->dn_maxblkid == 0);
1605 		if (off == 0 && len >= blksz) {
1606 			/*
1607 			 * Freeing the whole block; fast-track this request.
1608 			 */
1609 			blkid = 0;
1610 			nblks = 1;
1611 			if (dn->dn_nlevels > 1)
1612 				dnode_dirty_l1(dn, 0, tx);
1613 			goto done;
1614 		} else if (off >= blksz) {
1615 			/* Freeing past end-of-data */
1616 			goto out;
1617 		} else {
1618 			/* Freeing part of the block. */
1619 			head = blksz - off;
1620 			ASSERT3U(head, >, 0);
1621 		}
1622 		blkoff = off;
1623 	}
1624 	/* zero out any partial block data at the start of the range */
1625 	if (head) {
1626 		ASSERT3U(blkoff + head, ==, blksz);
1627 		if (len < head)
1628 			head = len;
1629 		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
1630 		    TRUE, FALSE, FTAG, &db) == 0) {
1631 			caddr_t data;
1632 
1633 			/* don't dirty if it isn't on disk and isn't dirty */
1634 			if (db->db_last_dirty ||
1635 			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1636 				rw_exit(&dn->dn_struct_rwlock);
1637 				dmu_buf_will_dirty(&db->db, tx);
1638 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1639 				data = db->db.db_data;
1640 				bzero(data + blkoff, head);
1641 			}
1642 			dbuf_rele(db, FTAG);
1643 		}
1644 		off += head;
1645 		len -= head;
1646 	}
1647 
1648 	/* If the range was less than one block, we're done */
1649 	if (len == 0)
1650 		goto out;
1651 
1652 	/* If the remaining range is past end of file, we're done */
1653 	if ((off >> blkshift) > dn->dn_maxblkid)
1654 		goto out;
1655 
1656 	ASSERT(ISP2(blksz));
1657 	if (trunc)
1658 		tail = 0;
1659 	else
1660 		tail = P2PHASE(len, blksz);
1661 
1662 	ASSERT0(P2PHASE(off, blksz));
1663 	/* zero out any partial block data at the end of the range */
1664 	if (tail) {
1665 		if (len < tail)
1666 			tail = len;
1667 		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
1668 		    TRUE, FALSE, FTAG, &db) == 0) {
1669 			/* don't dirty if not on disk and not dirty */
1670 			if (db->db_last_dirty ||
1671 			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1672 				rw_exit(&dn->dn_struct_rwlock);
1673 				dmu_buf_will_dirty(&db->db, tx);
1674 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1675 				bzero(db->db.db_data, tail);
1676 			}
1677 			dbuf_rele(db, FTAG);
1678 		}
1679 		len -= tail;
1680 	}
1681 
1682 	/* If the range did not include a full block, we are done */
1683 	if (len == 0)
1684 		goto out;
1685 
1686 	ASSERT(IS_P2ALIGNED(off, blksz));
1687 	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1688 	blkid = off >> blkshift;
1689 	nblks = len >> blkshift;
1690 	if (trunc)
1691 		nblks += 1;
1692 
1693 	/*
1694 	 * Dirty all the indirect blocks in this range.  Note that only
1695 	 * the first and last indirect blocks can actually be written
1696 	 * (if they were partially freed) -- they must be dirtied, even if
1697 	 * they do not exist on disk yet.  The interior blocks will
1698 	 * be freed by free_children(), so they will not actually be written.
1699 	 * Even though these interior blocks will not be written, we
1700 	 * dirty them for two reasons:
1701 	 *
1702 	 *  - It ensures that the indirect blocks remain in memory until
1703 	 *    syncing context.  (They have already been prefetched by
1704 	 *    dmu_tx_hold_free(), so we don't have to worry about reading
1705 	 *    them serially here.)
1706 	 *
1707 	 *  - The dirty space accounting will put pressure on the txg sync
1708 	 *    mechanism to begin syncing, and to delay transactions if there
1709 	 *    is a large amount of freeing.  Even though these indirect
1710 	 *    blocks will not be written, we could need to write the same
1711 	 *    amount of space if we copy the freed BPs into deadlists.
1712 	 */
1713 	if (dn->dn_nlevels > 1) {
1714 		uint64_t first, last;
1715 
1716 		first = blkid >> epbs;
1717 		dnode_dirty_l1(dn, first, tx);
1718 		if (trunc)
1719 			last = dn->dn_maxblkid >> epbs;
1720 		else
1721 			last = (blkid + nblks - 1) >> epbs;
1722 		if (last != first)
1723 			dnode_dirty_l1(dn, last, tx);
1724 
1725 		dnode_dirty_l1range(dn, first, last, tx);
1726 
1727 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
1728 		    SPA_BLKPTRSHIFT;
1729 		for (uint64_t i = first + 1; i < last; i++) {
1730 			/*
1731 			 * Set i to the blockid of the next non-hole
1732 			 * level-1 indirect block at or after i.  Note
1733 			 * that dnode_next_offset() operates in terms of
1734 			 * level-0-equivalent bytes.
1735 			 */
1736 			uint64_t ibyte = i << shift;
1737 			int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1738 			    &ibyte, 2, 1, 0);
1739 			i = ibyte >> shift;
1740 			if (i >= last)
1741 				break;
1742 
1743 			/*
1744 			 * Normally we should not see an error, either
1745 			 * from dnode_next_offset() or dbuf_hold_level()
1746 			 * (except for ESRCH from dnode_next_offset).
1747 			 * If there is an i/o error, then when we read
1748 			 * this block in syncing context, it will use
1749 			 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
1750 			 * to the "failmode" property.  dnode_next_offset()
1751 			 * doesn't have a flag to indicate MUSTSUCCEED.
1752 			 */
1753 			if (err != 0)
1754 				break;
1755 
1756 			dnode_dirty_l1(dn, i, tx);
1757 		}
1758 	}
1759 
1760 done:
1761 	/*
1762 	 * Add this range to the dnode range list.
1763 	 * We will finish up this free operation in the syncing phase.
1764 	 */
1765 	mutex_enter(&dn->dn_mtx);
1766 	int txgoff = tx->tx_txg & TXG_MASK;
1767 	if (dn->dn_free_ranges[txgoff] == NULL) {
1768 		dn->dn_free_ranges[txgoff] = range_tree_create(NULL, NULL);
1769 	}
1770 	range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
1771 	range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
1772 	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1773 	    blkid, nblks, tx->tx_txg);
1774 	mutex_exit(&dn->dn_mtx);
1775 
1776 	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1777 	dnode_setdirty(dn, tx);
1778 out:
1779 
1780 	rw_exit(&dn->dn_struct_rwlock);
1781 }
1782 
1783 static boolean_t
1784 dnode_spill_freed(dnode_t *dn)
1785 {
1786 	int i;
1787 
1788 	mutex_enter(&dn->dn_mtx);
1789 	for (i = 0; i < TXG_SIZE; i++) {
1790 		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1791 			break;
1792 	}
1793 	mutex_exit(&dn->dn_mtx);
1794 	return (i < TXG_SIZE);
1795 }
1796 
1797 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1798 uint64_t
1799 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1800 {
1801 	void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1802 	int i;
1803 
1804 	if (blkid == DMU_BONUS_BLKID)
1805 		return (FALSE);
1806 
1807 	/*
1808 	 * If we're in the process of opening the pool, dp will not be
1809 	 * set yet, but there shouldn't be anything dirty.
1810 	 */
1811 	if (dp == NULL)
1812 		return (FALSE);
1813 
1814 	if (dn->dn_free_txg)
1815 		return (TRUE);
1816 
1817 	if (blkid == DMU_SPILL_BLKID)
1818 		return (dnode_spill_freed(dn));
1819 
1820 	mutex_enter(&dn->dn_mtx);
1821 	for (i = 0; i < TXG_SIZE; i++) {
1822 		if (dn->dn_free_ranges[i] != NULL &&
1823 		    range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
1824 			break;
1825 	}
1826 	mutex_exit(&dn->dn_mtx);
1827 	return (i < TXG_SIZE);
1828 }
1829 
1830 /* call from syncing context when we actually write/free space for this dnode */
1831 void
1832 dnode_diduse_space(dnode_t *dn, int64_t delta)
1833 {
1834 	uint64_t space;
1835 	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1836 	    dn, dn->dn_phys,
1837 	    (u_longlong_t)dn->dn_phys->dn_used,
1838 	    (longlong_t)delta);
1839 
1840 	mutex_enter(&dn->dn_mtx);
1841 	space = DN_USED_BYTES(dn->dn_phys);
1842 	if (delta > 0) {
1843 		ASSERT3U(space + delta, >=, space); /* no overflow */
1844 	} else {
1845 		ASSERT3U(space, >=, -delta); /* no underflow */
1846 	}
1847 	space += delta;
1848 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1849 		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1850 		ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
1851 		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1852 	} else {
1853 		dn->dn_phys->dn_used = space;
1854 		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1855 	}
1856 	mutex_exit(&dn->dn_mtx);
1857 }
1858 
1859 /*
1860  * Scans a block at the indicated "level" looking for a hole or data,
1861  * depending on 'flags'.
1862  *
1863  * If level > 0, then we are scanning an indirect block looking at its
1864  * pointers.  If level == 0, then we are looking at a block of dnodes.
1865  *
1866  * If we don't find what we are looking for in the block, we return ESRCH.
1867  * Otherwise, return with *offset pointing to the beginning (if searching
1868  * forwards) or end (if searching backwards) of the range covered by the
1869  * block pointer we matched on (or dnode).
1870  *
1871  * The basic search algorithm used below by dnode_next_offset() is to
1872  * use this function to search up the block tree (widen the search) until
1873  * we find something (i.e., we don't return ESRCH) and then search back
1874  * down the tree (narrow the search) until we reach our original search
1875  * level.
1876  */
1877 static int
1878 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1879     int lvl, uint64_t blkfill, uint64_t txg)
1880 {
1881 	dmu_buf_impl_t *db = NULL;
1882 	void *data = NULL;
1883 	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1884 	uint64_t epb = 1ULL << epbs;
1885 	uint64_t minfill, maxfill;
1886 	boolean_t hole;
1887 	int i, inc, error, span;
1888 
1889 	dprintf("probing object %llu offset %llx level %d of %u\n",
1890 	    dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1891 
1892 	hole = ((flags & DNODE_FIND_HOLE) != 0);
1893 	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1894 	ASSERT(txg == 0 || !hole);
1895 
1896 	if (lvl == dn->dn_phys->dn_nlevels) {
1897 		error = 0;
1898 		epb = dn->dn_phys->dn_nblkptr;
1899 		data = dn->dn_phys->dn_blkptr;
1900 	} else {
1901 		uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
1902 		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
1903 		if (error) {
1904 			if (error != ENOENT)
1905 				return (error);
1906 			if (hole)
1907 				return (0);
1908 			/*
1909 			 * This can only happen when we are searching up
1910 			 * the block tree for data.  We don't really need to
1911 			 * adjust the offset, as we will just end up looking
1912 			 * at the pointer to this block in its parent, and its
1913 			 * going to be unallocated, so we will skip over it.
1914 			 */
1915 			return (SET_ERROR(ESRCH));
1916 		}
1917 		error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1918 		if (error) {
1919 			dbuf_rele(db, FTAG);
1920 			return (error);
1921 		}
1922 		data = db->db.db_data;
1923 	}
1924 
1925 
1926 	if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
1927 	    db->db_blkptr->blk_birth <= txg ||
1928 	    BP_IS_HOLE(db->db_blkptr))) {
1929 		/*
1930 		 * This can only happen when we are searching up the tree
1931 		 * and these conditions mean that we need to keep climbing.
1932 		 */
1933 		error = SET_ERROR(ESRCH);
1934 	} else if (lvl == 0) {
1935 		dnode_phys_t *dnp = data;
1936 		span = DNODE_SHIFT;
1937 		ASSERT(dn->dn_type == DMU_OT_DNODE);
1938 
1939 		for (i = (*offset >> span) & (blkfill - 1);
1940 		    i >= 0 && i < blkfill; i += inc) {
1941 			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1942 				break;
1943 			*offset += (1ULL << span) * inc;
1944 		}
1945 		if (i < 0 || i == blkfill)
1946 			error = SET_ERROR(ESRCH);
1947 	} else {
1948 		blkptr_t *bp = data;
1949 		uint64_t start = *offset;
1950 		span = (lvl - 1) * epbs + dn->dn_datablkshift;
1951 		minfill = 0;
1952 		maxfill = blkfill << ((lvl - 1) * epbs);
1953 
1954 		if (hole)
1955 			maxfill--;
1956 		else
1957 			minfill++;
1958 
1959 		*offset = *offset >> span;
1960 		for (i = BF64_GET(*offset, 0, epbs);
1961 		    i >= 0 && i < epb; i += inc) {
1962 			if (BP_GET_FILL(&bp[i]) >= minfill &&
1963 			    BP_GET_FILL(&bp[i]) <= maxfill &&
1964 			    (hole || bp[i].blk_birth > txg))
1965 				break;
1966 			if (inc > 0 || *offset > 0)
1967 				*offset += inc;
1968 		}
1969 		*offset = *offset << span;
1970 		if (inc < 0) {
1971 			/* traversing backwards; position offset at the end */
1972 			ASSERT3U(*offset, <=, start);
1973 			*offset = MIN(*offset + (1ULL << span) - 1, start);
1974 		} else if (*offset < start) {
1975 			*offset = start;
1976 		}
1977 		if (i < 0 || i >= epb)
1978 			error = SET_ERROR(ESRCH);
1979 	}
1980 
1981 	if (db)
1982 		dbuf_rele(db, FTAG);
1983 
1984 	return (error);
1985 }
1986 
1987 /*
1988  * Find the next hole, data, or sparse region at or after *offset.
1989  * The value 'blkfill' tells us how many items we expect to find
1990  * in an L0 data block; this value is 1 for normal objects,
1991  * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1992  * DNODES_PER_BLOCK when searching for sparse regions thereof.
1993  *
1994  * Examples:
1995  *
1996  * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1997  *	Finds the next/previous hole/data in a file.
1998  *	Used in dmu_offset_next().
1999  *
2000  * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2001  *	Finds the next free/allocated dnode an objset's meta-dnode.
2002  *	Only finds objects that have new contents since txg (ie.
2003  *	bonus buffer changes and content removal are ignored).
2004  *	Used in dmu_object_next().
2005  *
2006  * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2007  *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
2008  *	Used in dmu_object_alloc().
2009  */
2010 int
2011 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2012     int minlvl, uint64_t blkfill, uint64_t txg)
2013 {
2014 	uint64_t initial_offset = *offset;
2015 	int lvl, maxlvl;
2016 	int error = 0;
2017 
2018 	if (!(flags & DNODE_FIND_HAVELOCK))
2019 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2020 
2021 	if (dn->dn_phys->dn_nlevels == 0) {
2022 		error = SET_ERROR(ESRCH);
2023 		goto out;
2024 	}
2025 
2026 	if (dn->dn_datablkshift == 0) {
2027 		if (*offset < dn->dn_datablksz) {
2028 			if (flags & DNODE_FIND_HOLE)
2029 				*offset = dn->dn_datablksz;
2030 		} else {
2031 			error = SET_ERROR(ESRCH);
2032 		}
2033 		goto out;
2034 	}
2035 
2036 	maxlvl = dn->dn_phys->dn_nlevels;
2037 
2038 	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2039 		error = dnode_next_offset_level(dn,
2040 		    flags, offset, lvl, blkfill, txg);
2041 		if (error != ESRCH)
2042 			break;
2043 	}
2044 
2045 	while (error == 0 && --lvl >= minlvl) {
2046 		error = dnode_next_offset_level(dn,
2047 		    flags, offset, lvl, blkfill, txg);
2048 	}
2049 
2050 	/*
2051 	 * There's always a "virtual hole" at the end of the object, even
2052 	 * if all BP's which physically exist are non-holes.
2053 	 */
2054 	if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2055 	    minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2056 		error = 0;
2057 	}
2058 
2059 	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2060 	    initial_offset < *offset : initial_offset > *offset))
2061 		error = SET_ERROR(ESRCH);
2062 out:
2063 	if (!(flags & DNODE_FIND_HAVELOCK))
2064 		rw_exit(&dn->dn_struct_rwlock);
2065 
2066 	return (error);
2067 }
2068