xref: /illumos-gate/usr/src/uts/common/fs/zfs/dmu_tx.c (revision e14bb3258d05c1b1077e2db7cf77088924e56919)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/dmu.h>
27 #include <sys/dmu_impl.h>
28 #include <sys/dbuf.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/dmu_objset.h>
31 #include <sys/dsl_dataset.h> /* for dsl_dataset_block_freeable() */
32 #include <sys/dsl_dir.h> /* for dsl_dir_tempreserve_*() */
33 #include <sys/dsl_pool.h>
34 #include <sys/zap_impl.h> /* for fzap_default_block_shift */
35 #include <sys/spa.h>
36 #include <sys/zfs_context.h>
37 
38 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
39     uint64_t arg1, uint64_t arg2);
40 
41 
42 dmu_tx_t *
43 dmu_tx_create_dd(dsl_dir_t *dd)
44 {
45 	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
46 	tx->tx_dir = dd;
47 	if (dd)
48 		tx->tx_pool = dd->dd_pool;
49 	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
50 	    offsetof(dmu_tx_hold_t, txh_node));
51 #ifdef ZFS_DEBUG
52 	refcount_create(&tx->tx_space_written);
53 	refcount_create(&tx->tx_space_freed);
54 #endif
55 	return (tx);
56 }
57 
58 dmu_tx_t *
59 dmu_tx_create(objset_t *os)
60 {
61 	dmu_tx_t *tx = dmu_tx_create_dd(os->os->os_dsl_dataset->ds_dir);
62 	tx->tx_objset = os;
63 	tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os->os_dsl_dataset);
64 	return (tx);
65 }
66 
67 dmu_tx_t *
68 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
69 {
70 	dmu_tx_t *tx = dmu_tx_create_dd(NULL);
71 
72 	ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
73 	tx->tx_pool = dp;
74 	tx->tx_txg = txg;
75 	tx->tx_anyobj = TRUE;
76 
77 	return (tx);
78 }
79 
80 int
81 dmu_tx_is_syncing(dmu_tx_t *tx)
82 {
83 	return (tx->tx_anyobj);
84 }
85 
86 int
87 dmu_tx_private_ok(dmu_tx_t *tx)
88 {
89 	return (tx->tx_anyobj);
90 }
91 
92 static dmu_tx_hold_t *
93 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
94     enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
95 {
96 	dmu_tx_hold_t *txh;
97 	dnode_t *dn = NULL;
98 	int err;
99 
100 	if (object != DMU_NEW_OBJECT) {
101 		err = dnode_hold(os->os, object, tx, &dn);
102 		if (err) {
103 			tx->tx_err = err;
104 			return (NULL);
105 		}
106 
107 		if (err == 0 && tx->tx_txg != 0) {
108 			mutex_enter(&dn->dn_mtx);
109 			/*
110 			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
111 			 * problem, but there's no way for it to happen (for
112 			 * now, at least).
113 			 */
114 			ASSERT(dn->dn_assigned_txg == 0);
115 			dn->dn_assigned_txg = tx->tx_txg;
116 			(void) refcount_add(&dn->dn_tx_holds, tx);
117 			mutex_exit(&dn->dn_mtx);
118 		}
119 	}
120 
121 	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
122 	txh->txh_tx = tx;
123 	txh->txh_dnode = dn;
124 #ifdef ZFS_DEBUG
125 	txh->txh_type = type;
126 	txh->txh_arg1 = arg1;
127 	txh->txh_arg2 = arg2;
128 #endif
129 	list_insert_tail(&tx->tx_holds, txh);
130 
131 	return (txh);
132 }
133 
134 void
135 dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object)
136 {
137 	/*
138 	 * If we're syncing, they can manipulate any object anyhow, and
139 	 * the hold on the dnode_t can cause problems.
140 	 */
141 	if (!dmu_tx_is_syncing(tx)) {
142 		(void) dmu_tx_hold_object_impl(tx, os,
143 		    object, THT_NEWOBJECT, 0, 0);
144 	}
145 }
146 
147 static int
148 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
149 {
150 	int err;
151 	dmu_buf_impl_t *db;
152 
153 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
154 	db = dbuf_hold_level(dn, level, blkid, FTAG);
155 	rw_exit(&dn->dn_struct_rwlock);
156 	if (db == NULL)
157 		return (EIO);
158 	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
159 	dbuf_rele(db, FTAG);
160 	return (err);
161 }
162 
163 /* ARGSUSED */
164 static void
165 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
166 {
167 	dnode_t *dn = txh->txh_dnode;
168 	uint64_t start, end, i;
169 	int min_bs, max_bs, min_ibs, max_ibs, epbs, bits;
170 	int err = 0;
171 
172 	if (len == 0)
173 		return;
174 
175 	min_bs = SPA_MINBLOCKSHIFT;
176 	max_bs = SPA_MAXBLOCKSHIFT;
177 	min_ibs = DN_MIN_INDBLKSHIFT;
178 	max_ibs = DN_MAX_INDBLKSHIFT;
179 
180 
181 	/*
182 	 * For i/o error checking, read the first and last level-0
183 	 * blocks (if they are not aligned), and all the level-1 blocks.
184 	 */
185 
186 	if (dn) {
187 		if (dn->dn_maxblkid == 0) {
188 			err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
189 			if (err)
190 				goto out;
191 		} else {
192 			zio_t *zio = zio_root(dn->dn_objset->os_spa,
193 			    NULL, NULL, ZIO_FLAG_CANFAIL);
194 
195 			/* first level-0 block */
196 			start = off >> dn->dn_datablkshift;
197 			if (P2PHASE(off, dn->dn_datablksz) ||
198 			    len < dn->dn_datablksz) {
199 				err = dmu_tx_check_ioerr(zio, dn, 0, start);
200 				if (err)
201 					goto out;
202 			}
203 
204 			/* last level-0 block */
205 			end = (off+len-1) >> dn->dn_datablkshift;
206 			if (end != start &&
207 			    P2PHASE(off+len, dn->dn_datablksz)) {
208 				err = dmu_tx_check_ioerr(zio, dn, 0, end);
209 				if (err)
210 					goto out;
211 			}
212 
213 			/* level-1 blocks */
214 			if (dn->dn_nlevels > 1) {
215 				start >>= dn->dn_indblkshift - SPA_BLKPTRSHIFT;
216 				end >>= dn->dn_indblkshift - SPA_BLKPTRSHIFT;
217 				for (i = start+1; i < end; i++) {
218 					err = dmu_tx_check_ioerr(zio, dn, 1, i);
219 					if (err)
220 						goto out;
221 				}
222 			}
223 
224 			err = zio_wait(zio);
225 			if (err)
226 				goto out;
227 		}
228 	}
229 
230 	/*
231 	 * If there's more than one block, the blocksize can't change,
232 	 * so we can make a more precise estimate.  Alternatively,
233 	 * if the dnode's ibs is larger than max_ibs, always use that.
234 	 * This ensures that if we reduce DN_MAX_INDBLKSHIFT,
235 	 * the code will still work correctly on existing pools.
236 	 */
237 	if (dn && (dn->dn_maxblkid != 0 || dn->dn_indblkshift > max_ibs)) {
238 		min_ibs = max_ibs = dn->dn_indblkshift;
239 		if (dn->dn_datablkshift != 0)
240 			min_bs = max_bs = dn->dn_datablkshift;
241 	}
242 
243 	/*
244 	 * 'end' is the last thing we will access, not one past.
245 	 * This way we won't overflow when accessing the last byte.
246 	 */
247 	start = P2ALIGN(off, 1ULL << max_bs);
248 	end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1;
249 	txh->txh_space_towrite += end - start + 1;
250 
251 	start >>= min_bs;
252 	end >>= min_bs;
253 
254 	epbs = min_ibs - SPA_BLKPTRSHIFT;
255 
256 	/*
257 	 * The object contains at most 2^(64 - min_bs) blocks,
258 	 * and each indirect level maps 2^epbs.
259 	 */
260 	for (bits = 64 - min_bs; bits >= 0; bits -= epbs) {
261 		start >>= epbs;
262 		end >>= epbs;
263 		/*
264 		 * If we increase the number of levels of indirection,
265 		 * we'll need new blkid=0 indirect blocks.  If start == 0,
266 		 * we're already accounting for that blocks; and if end == 0,
267 		 * we can't increase the number of levels beyond that.
268 		 */
269 		if (start != 0 && end != 0)
270 			txh->txh_space_towrite += 1ULL << max_ibs;
271 		txh->txh_space_towrite += (end - start + 1) << max_ibs;
272 	}
273 
274 	ASSERT(txh->txh_space_towrite < 2 * DMU_MAX_ACCESS);
275 
276 out:
277 	if (err)
278 		txh->txh_tx->tx_err = err;
279 }
280 
281 static void
282 dmu_tx_count_dnode(dmu_tx_hold_t *txh)
283 {
284 	dnode_t *dn = txh->txh_dnode;
285 	dnode_t *mdn = txh->txh_tx->tx_objset->os->os_meta_dnode;
286 	uint64_t space = mdn->dn_datablksz +
287 	    ((mdn->dn_nlevels-1) << mdn->dn_indblkshift);
288 
289 	if (dn && dn->dn_dbuf->db_blkptr &&
290 	    dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
291 	    dn->dn_dbuf->db_blkptr->blk_birth)) {
292 		txh->txh_space_tooverwrite += space;
293 	} else {
294 		txh->txh_space_towrite += space;
295 		if (dn && dn->dn_dbuf->db_blkptr)
296 			txh->txh_space_tounref += space;
297 	}
298 }
299 
300 void
301 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
302 {
303 	dmu_tx_hold_t *txh;
304 
305 	ASSERT(tx->tx_txg == 0);
306 	ASSERT(len < DMU_MAX_ACCESS);
307 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
308 
309 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
310 	    object, THT_WRITE, off, len);
311 	if (txh == NULL)
312 		return;
313 
314 	dmu_tx_count_write(txh, off, len);
315 	dmu_tx_count_dnode(txh);
316 }
317 
318 static void
319 dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
320 {
321 	uint64_t blkid, nblks, lastblk;
322 	uint64_t space = 0, unref = 0, skipped = 0;
323 	dnode_t *dn = txh->txh_dnode;
324 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
325 	spa_t *spa = txh->txh_tx->tx_pool->dp_spa;
326 	int epbs;
327 
328 	if (dn->dn_nlevels == 0)
329 		return;
330 
331 	/*
332 	 * The struct_rwlock protects us against dn_nlevels
333 	 * changing, in case (against all odds) we manage to dirty &
334 	 * sync out the changes after we check for being dirty.
335 	 * Also, dbuf_hold_level() wants us to have the struct_rwlock.
336 	 */
337 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
338 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
339 	if (dn->dn_maxblkid == 0) {
340 		if (off == 0 && len >= dn->dn_datablksz) {
341 			blkid = 0;
342 			nblks = 1;
343 		} else {
344 			rw_exit(&dn->dn_struct_rwlock);
345 			return;
346 		}
347 	} else {
348 		blkid = off >> dn->dn_datablkshift;
349 		nblks = (len + dn->dn_datablksz - 1) >> dn->dn_datablkshift;
350 
351 		if (blkid >= dn->dn_maxblkid) {
352 			rw_exit(&dn->dn_struct_rwlock);
353 			return;
354 		}
355 		if (blkid + nblks > dn->dn_maxblkid)
356 			nblks = dn->dn_maxblkid - blkid;
357 
358 	}
359 	if (dn->dn_nlevels == 1) {
360 		int i;
361 		for (i = 0; i < nblks; i++) {
362 			blkptr_t *bp = dn->dn_phys->dn_blkptr;
363 			ASSERT3U(blkid + i, <, dn->dn_nblkptr);
364 			bp += blkid + i;
365 			if (dsl_dataset_block_freeable(ds, bp->blk_birth)) {
366 				dprintf_bp(bp, "can free old%s", "");
367 				space += bp_get_dasize(spa, bp);
368 			}
369 			unref += BP_GET_ASIZE(bp);
370 		}
371 		nblks = 0;
372 	}
373 
374 	/*
375 	 * Add in memory requirements of higher-level indirects.
376 	 * This assumes a worst-possible scenario for dn_nlevels.
377 	 */
378 	{
379 		uint64_t blkcnt = 1 + ((nblks >> epbs) >> epbs);
380 		int level = (dn->dn_nlevels > 1) ? 2 : 1;
381 
382 		while (level++ < DN_MAX_LEVELS) {
383 			txh->txh_memory_tohold += blkcnt << dn->dn_indblkshift;
384 			blkcnt = 1 + (blkcnt >> epbs);
385 		}
386 		ASSERT(blkcnt <= dn->dn_nblkptr);
387 	}
388 
389 	lastblk = blkid + nblks - 1;
390 	while (nblks) {
391 		dmu_buf_impl_t *dbuf;
392 		uint64_t ibyte, new_blkid;
393 		int epb = 1 << epbs;
394 		int err, i, blkoff, tochk;
395 		blkptr_t *bp;
396 
397 		ibyte = blkid << dn->dn_datablkshift;
398 		err = dnode_next_offset(dn,
399 		    DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0);
400 		new_blkid = ibyte >> dn->dn_datablkshift;
401 		if (err == ESRCH) {
402 			skipped += (lastblk >> epbs) - (blkid >> epbs) + 1;
403 			break;
404 		}
405 		if (err) {
406 			txh->txh_tx->tx_err = err;
407 			break;
408 		}
409 		if (new_blkid > lastblk) {
410 			skipped += (lastblk >> epbs) - (blkid >> epbs) + 1;
411 			break;
412 		}
413 
414 		if (new_blkid > blkid) {
415 			ASSERT((new_blkid >> epbs) > (blkid >> epbs));
416 			skipped += (new_blkid >> epbs) - (blkid >> epbs) - 1;
417 			nblks -= new_blkid - blkid;
418 			blkid = new_blkid;
419 		}
420 		blkoff = P2PHASE(blkid, epb);
421 		tochk = MIN(epb - blkoff, nblks);
422 
423 		dbuf = dbuf_hold_level(dn, 1, blkid >> epbs, FTAG);
424 
425 		txh->txh_memory_tohold += dbuf->db.db_size;
426 		if (txh->txh_memory_tohold > DMU_MAX_ACCESS) {
427 			txh->txh_tx->tx_err = E2BIG;
428 			dbuf_rele(dbuf, FTAG);
429 			break;
430 		}
431 		err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL);
432 		if (err != 0) {
433 			txh->txh_tx->tx_err = err;
434 			dbuf_rele(dbuf, FTAG);
435 			break;
436 		}
437 
438 		bp = dbuf->db.db_data;
439 		bp += blkoff;
440 
441 		for (i = 0; i < tochk; i++) {
442 			if (dsl_dataset_block_freeable(ds, bp[i].blk_birth)) {
443 				dprintf_bp(&bp[i], "can free old%s", "");
444 				space += bp_get_dasize(spa, &bp[i]);
445 			}
446 			unref += BP_GET_ASIZE(bp);
447 		}
448 		dbuf_rele(dbuf, FTAG);
449 
450 		blkid += tochk;
451 		nblks -= tochk;
452 	}
453 	rw_exit(&dn->dn_struct_rwlock);
454 
455 	/* account for new level 1 indirect blocks that might show up */
456 	if (skipped > 0) {
457 		txh->txh_fudge += skipped << dn->dn_indblkshift;
458 		skipped = MIN(skipped, DMU_MAX_DELETEBLKCNT >> epbs);
459 		txh->txh_memory_tohold += skipped << dn->dn_indblkshift;
460 	}
461 	txh->txh_space_tofree += space;
462 	txh->txh_space_tounref += unref;
463 }
464 
465 void
466 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
467 {
468 	dmu_tx_hold_t *txh;
469 	dnode_t *dn;
470 	uint64_t start, end, i;
471 	int err, shift;
472 	zio_t *zio;
473 
474 	ASSERT(tx->tx_txg == 0);
475 
476 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
477 	    object, THT_FREE, off, len);
478 	if (txh == NULL)
479 		return;
480 	dn = txh->txh_dnode;
481 
482 	/* first block */
483 	if (off != 0)
484 		dmu_tx_count_write(txh, off, 1);
485 	/* last block */
486 	if (len != DMU_OBJECT_END)
487 		dmu_tx_count_write(txh, off+len, 1);
488 
489 	if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz)
490 		return;
491 	if (len == DMU_OBJECT_END)
492 		len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off;
493 
494 	/*
495 	 * For i/o error checking, read the first and last level-0
496 	 * blocks, and all the level-1 blocks.  The above count_write's
497 	 * have already taken care of the level-0 blocks.
498 	 */
499 	if (dn->dn_nlevels > 1) {
500 		shift = dn->dn_datablkshift + dn->dn_indblkshift -
501 		    SPA_BLKPTRSHIFT;
502 		start = off >> shift;
503 		end = dn->dn_datablkshift ? ((off+len) >> shift) : 0;
504 
505 		zio = zio_root(tx->tx_pool->dp_spa,
506 		    NULL, NULL, ZIO_FLAG_CANFAIL);
507 		for (i = start; i <= end; i++) {
508 			uint64_t ibyte = i << shift;
509 			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
510 			i = ibyte >> shift;
511 			if (err == ESRCH)
512 				break;
513 			if (err) {
514 				tx->tx_err = err;
515 				return;
516 			}
517 
518 			err = dmu_tx_check_ioerr(zio, dn, 1, i);
519 			if (err) {
520 				tx->tx_err = err;
521 				return;
522 			}
523 		}
524 		err = zio_wait(zio);
525 		if (err) {
526 			tx->tx_err = err;
527 			return;
528 		}
529 	}
530 
531 	dmu_tx_count_dnode(txh);
532 	dmu_tx_count_free(txh, off, len);
533 }
534 
535 void
536 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, char *name)
537 {
538 	dmu_tx_hold_t *txh;
539 	dnode_t *dn;
540 	uint64_t nblocks;
541 	int epbs, err;
542 
543 	ASSERT(tx->tx_txg == 0);
544 
545 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
546 	    object, THT_ZAP, add, (uintptr_t)name);
547 	if (txh == NULL)
548 		return;
549 	dn = txh->txh_dnode;
550 
551 	dmu_tx_count_dnode(txh);
552 
553 	if (dn == NULL) {
554 		/*
555 		 * We will be able to fit a new object's entries into one leaf
556 		 * block.  So there will be at most 2 blocks total,
557 		 * including the header block.
558 		 */
559 		dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift);
560 		return;
561 	}
562 
563 	ASSERT3P(dmu_ot[dn->dn_type].ot_byteswap, ==, zap_byteswap);
564 
565 	if (dn->dn_maxblkid == 0 && !add) {
566 		/*
567 		 * If there is only one block  (i.e. this is a micro-zap)
568 		 * and we are not adding anything, the accounting is simple.
569 		 */
570 		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
571 		if (err) {
572 			tx->tx_err = err;
573 			return;
574 		}
575 
576 		/*
577 		 * Use max block size here, since we don't know how much
578 		 * the size will change between now and the dbuf dirty call.
579 		 */
580 		if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
581 		    dn->dn_phys->dn_blkptr[0].blk_birth)) {
582 			txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE;
583 		} else {
584 			txh->txh_space_towrite += SPA_MAXBLOCKSIZE;
585 			txh->txh_space_tounref +=
586 			    BP_GET_ASIZE(dn->dn_phys->dn_blkptr);
587 		}
588 		return;
589 	}
590 
591 	if (dn->dn_maxblkid > 0 && name) {
592 		/*
593 		 * access the name in this fat-zap so that we'll check
594 		 * for i/o errors to the leaf blocks, etc.
595 		 */
596 		err = zap_lookup(&dn->dn_objset->os, dn->dn_object, name,
597 		    8, 0, NULL);
598 		if (err == EIO) {
599 			tx->tx_err = err;
600 			return;
601 		}
602 	}
603 
604 	/*
605 	 * 3 blocks overwritten: target leaf, ptrtbl block, header block
606 	 * 3 new blocks written if adding: new split leaf, 2 grown ptrtbl blocks
607 	 */
608 	dmu_tx_count_write(txh, dn->dn_maxblkid * dn->dn_datablksz,
609 	    (3 + (add ? 3 : 0)) << dn->dn_datablkshift);
610 
611 	/*
612 	 * If the modified blocks are scattered to the four winds,
613 	 * we'll have to modify an indirect twig for each.
614 	 */
615 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
616 	for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs)
617 		txh->txh_space_towrite += 3 << dn->dn_indblkshift;
618 }
619 
620 void
621 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
622 {
623 	dmu_tx_hold_t *txh;
624 
625 	ASSERT(tx->tx_txg == 0);
626 
627 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
628 	    object, THT_BONUS, 0, 0);
629 	if (txh)
630 		dmu_tx_count_dnode(txh);
631 }
632 
633 void
634 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
635 {
636 	dmu_tx_hold_t *txh;
637 	ASSERT(tx->tx_txg == 0);
638 
639 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
640 	    DMU_NEW_OBJECT, THT_SPACE, space, 0);
641 
642 	txh->txh_space_towrite += space;
643 }
644 
645 int
646 dmu_tx_holds(dmu_tx_t *tx, uint64_t object)
647 {
648 	dmu_tx_hold_t *txh;
649 	int holds = 0;
650 
651 	/*
652 	 * By asserting that the tx is assigned, we're counting the
653 	 * number of dn_tx_holds, which is the same as the number of
654 	 * dn_holds.  Otherwise, we'd be counting dn_holds, but
655 	 * dn_tx_holds could be 0.
656 	 */
657 	ASSERT(tx->tx_txg != 0);
658 
659 	/* if (tx->tx_anyobj == TRUE) */
660 		/* return (0); */
661 
662 	for (txh = list_head(&tx->tx_holds); txh;
663 	    txh = list_next(&tx->tx_holds, txh)) {
664 		if (txh->txh_dnode && txh->txh_dnode->dn_object == object)
665 			holds++;
666 	}
667 
668 	return (holds);
669 }
670 
671 #ifdef ZFS_DEBUG
672 void
673 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
674 {
675 	dmu_tx_hold_t *txh;
676 	int match_object = FALSE, match_offset = FALSE;
677 	dnode_t *dn = db->db_dnode;
678 
679 	ASSERT(tx->tx_txg != 0);
680 	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset->os);
681 	ASSERT3U(dn->dn_object, ==, db->db.db_object);
682 
683 	if (tx->tx_anyobj)
684 		return;
685 
686 	/* XXX No checking on the meta dnode for now */
687 	if (db->db.db_object == DMU_META_DNODE_OBJECT)
688 		return;
689 
690 	for (txh = list_head(&tx->tx_holds); txh;
691 	    txh = list_next(&tx->tx_holds, txh)) {
692 		ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg);
693 		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
694 			match_object = TRUE;
695 		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
696 			int datablkshift = dn->dn_datablkshift ?
697 			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
698 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
699 			int shift = datablkshift + epbs * db->db_level;
700 			uint64_t beginblk = shift >= 64 ? 0 :
701 			    (txh->txh_arg1 >> shift);
702 			uint64_t endblk = shift >= 64 ? 0 :
703 			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
704 			uint64_t blkid = db->db_blkid;
705 
706 			/* XXX txh_arg2 better not be zero... */
707 
708 			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
709 			    txh->txh_type, beginblk, endblk);
710 
711 			switch (txh->txh_type) {
712 			case THT_WRITE:
713 				if (blkid >= beginblk && blkid <= endblk)
714 					match_offset = TRUE;
715 				/*
716 				 * We will let this hold work for the bonus
717 				 * buffer so that we don't need to hold it
718 				 * when creating a new object.
719 				 */
720 				if (blkid == DB_BONUS_BLKID)
721 					match_offset = TRUE;
722 				/*
723 				 * They might have to increase nlevels,
724 				 * thus dirtying the new TLIBs.  Or the
725 				 * might have to change the block size,
726 				 * thus dirying the new lvl=0 blk=0.
727 				 */
728 				if (blkid == 0)
729 					match_offset = TRUE;
730 				break;
731 			case THT_FREE:
732 				/*
733 				 * We will dirty all the level 1 blocks in
734 				 * the free range and perhaps the first and
735 				 * last level 0 block.
736 				 */
737 				if (blkid >= beginblk && (blkid <= endblk ||
738 				    txh->txh_arg2 == DMU_OBJECT_END))
739 					match_offset = TRUE;
740 				break;
741 			case THT_BONUS:
742 				if (blkid == DB_BONUS_BLKID)
743 					match_offset = TRUE;
744 				break;
745 			case THT_ZAP:
746 				match_offset = TRUE;
747 				break;
748 			case THT_NEWOBJECT:
749 				match_object = TRUE;
750 				break;
751 			default:
752 				ASSERT(!"bad txh_type");
753 			}
754 		}
755 		if (match_object && match_offset)
756 			return;
757 	}
758 	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
759 	    (u_longlong_t)db->db.db_object, db->db_level,
760 	    (u_longlong_t)db->db_blkid);
761 }
762 #endif
763 
764 static int
765 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)
766 {
767 	dmu_tx_hold_t *txh;
768 	spa_t *spa = tx->tx_pool->dp_spa;
769 	uint64_t memory, asize, fsize, usize;
770 	uint64_t towrite, tofree, tooverwrite, tounref, tohold, fudge;
771 
772 	ASSERT3U(tx->tx_txg, ==, 0);
773 
774 	if (tx->tx_err)
775 		return (tx->tx_err);
776 
777 	if (spa_suspended(spa)) {
778 		/*
779 		 * If the user has indicated a blocking failure mode
780 		 * then return ERESTART which will block in dmu_tx_wait().
781 		 * Otherwise, return EIO so that an error can get
782 		 * propagated back to the VOP calls.
783 		 *
784 		 * Note that we always honor the txg_how flag regardless
785 		 * of the failuremode setting.
786 		 */
787 		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
788 		    txg_how != TXG_WAIT)
789 			return (EIO);
790 
791 		return (ERESTART);
792 	}
793 
794 	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
795 	tx->tx_needassign_txh = NULL;
796 
797 	/*
798 	 * NB: No error returns are allowed after txg_hold_open, but
799 	 * before processing the dnode holds, due to the
800 	 * dmu_tx_unassign() logic.
801 	 */
802 
803 	towrite = tofree = tooverwrite = tounref = tohold = fudge = 0;
804 	for (txh = list_head(&tx->tx_holds); txh;
805 	    txh = list_next(&tx->tx_holds, txh)) {
806 		dnode_t *dn = txh->txh_dnode;
807 		if (dn != NULL) {
808 			mutex_enter(&dn->dn_mtx);
809 			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
810 				mutex_exit(&dn->dn_mtx);
811 				tx->tx_needassign_txh = txh;
812 				return (ERESTART);
813 			}
814 			if (dn->dn_assigned_txg == 0)
815 				dn->dn_assigned_txg = tx->tx_txg;
816 			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
817 			(void) refcount_add(&dn->dn_tx_holds, tx);
818 			mutex_exit(&dn->dn_mtx);
819 		}
820 		towrite += txh->txh_space_towrite;
821 		tofree += txh->txh_space_tofree;
822 		tooverwrite += txh->txh_space_tooverwrite;
823 		tounref += txh->txh_space_tounref;
824 		tohold += txh->txh_memory_tohold;
825 		fudge += txh->txh_fudge;
826 	}
827 
828 	/*
829 	 * NB: This check must be after we've held the dnodes, so that
830 	 * the dmu_tx_unassign() logic will work properly
831 	 */
832 	if (txg_how >= TXG_INITIAL && txg_how != tx->tx_txg)
833 		return (ERESTART);
834 
835 	/*
836 	 * If a snapshot has been taken since we made our estimates,
837 	 * assume that we won't be able to free or overwrite anything.
838 	 */
839 	if (tx->tx_objset &&
840 	    dsl_dataset_prev_snap_txg(tx->tx_objset->os->os_dsl_dataset) >
841 	    tx->tx_lastsnap_txg) {
842 		towrite += tooverwrite;
843 		tooverwrite = tofree = 0;
844 	}
845 
846 	/* needed allocation: worst-case estimate of write space */
847 	asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite);
848 	/* freed space estimate: worst-case overwrite + free estimate */
849 	fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree;
850 	/* convert unrefd space to worst-case estimate */
851 	usize = spa_get_asize(tx->tx_pool->dp_spa, tounref);
852 	/* calculate memory footprint estimate */
853 	memory = towrite + tooverwrite + tohold;
854 
855 #ifdef ZFS_DEBUG
856 	/*
857 	 * Add in 'tohold' to account for our dirty holds on this memory
858 	 * XXX - the "fudge" factor is to account for skipped blocks that
859 	 * we missed because dnode_next_offset() misses in-core-only blocks.
860 	 */
861 	tx->tx_space_towrite = asize +
862 	    spa_get_asize(tx->tx_pool->dp_spa, tohold + fudge);
863 	tx->tx_space_tofree = tofree;
864 	tx->tx_space_tooverwrite = tooverwrite;
865 	tx->tx_space_tounref = tounref;
866 #endif
867 
868 	if (tx->tx_dir && asize != 0) {
869 		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
870 		    asize, fsize, usize, &tx->tx_tempreserve_cookie, tx);
871 		if (err)
872 			return (err);
873 	}
874 
875 	return (0);
876 }
877 
878 static void
879 dmu_tx_unassign(dmu_tx_t *tx)
880 {
881 	dmu_tx_hold_t *txh;
882 
883 	if (tx->tx_txg == 0)
884 		return;
885 
886 	txg_rele_to_quiesce(&tx->tx_txgh);
887 
888 	for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh;
889 	    txh = list_next(&tx->tx_holds, txh)) {
890 		dnode_t *dn = txh->txh_dnode;
891 
892 		if (dn == NULL)
893 			continue;
894 		mutex_enter(&dn->dn_mtx);
895 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
896 
897 		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
898 			dn->dn_assigned_txg = 0;
899 			cv_broadcast(&dn->dn_notxholds);
900 		}
901 		mutex_exit(&dn->dn_mtx);
902 	}
903 
904 	txg_rele_to_sync(&tx->tx_txgh);
905 
906 	tx->tx_lasttried_txg = tx->tx_txg;
907 	tx->tx_txg = 0;
908 }
909 
910 /*
911  * Assign tx to a transaction group.  txg_how can be one of:
912  *
913  * (1)	TXG_WAIT.  If the current open txg is full, waits until there's
914  *	a new one.  This should be used when you're not holding locks.
915  *	If will only fail if we're truly out of space (or over quota).
916  *
917  * (2)	TXG_NOWAIT.  If we can't assign into the current open txg without
918  *	blocking, returns immediately with ERESTART.  This should be used
919  *	whenever you're holding locks.  On an ERESTART error, the caller
920  *	should drop locks, do a dmu_tx_wait(tx), and try again.
921  *
922  * (3)	A specific txg.  Use this if you need to ensure that multiple
923  *	transactions all sync in the same txg.  Like TXG_NOWAIT, it
924  *	returns ERESTART if it can't assign you into the requested txg.
925  */
926 int
927 dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how)
928 {
929 	int err;
930 
931 	ASSERT(tx->tx_txg == 0);
932 	ASSERT(txg_how != 0);
933 	ASSERT(!dsl_pool_sync_context(tx->tx_pool));
934 
935 	while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
936 		dmu_tx_unassign(tx);
937 
938 		if (err != ERESTART || txg_how != TXG_WAIT)
939 			return (err);
940 
941 		dmu_tx_wait(tx);
942 	}
943 
944 	txg_rele_to_quiesce(&tx->tx_txgh);
945 
946 	return (0);
947 }
948 
949 void
950 dmu_tx_wait(dmu_tx_t *tx)
951 {
952 	spa_t *spa = tx->tx_pool->dp_spa;
953 
954 	ASSERT(tx->tx_txg == 0);
955 
956 	/*
957 	 * It's possible that the pool has become active after this thread
958 	 * has tried to obtain a tx. If that's the case then his
959 	 * tx_lasttried_txg would not have been assigned.
960 	 */
961 	if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
962 		txg_wait_synced(tx->tx_pool, spa_last_synced_txg(spa) + 1);
963 	} else if (tx->tx_needassign_txh) {
964 		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
965 
966 		mutex_enter(&dn->dn_mtx);
967 		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
968 			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
969 		mutex_exit(&dn->dn_mtx);
970 		tx->tx_needassign_txh = NULL;
971 	} else {
972 		txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1);
973 	}
974 }
975 
976 void
977 dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta)
978 {
979 #ifdef ZFS_DEBUG
980 	if (tx->tx_dir == NULL || delta == 0)
981 		return;
982 
983 	if (delta > 0) {
984 		ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=,
985 		    tx->tx_space_towrite);
986 		(void) refcount_add_many(&tx->tx_space_written, delta, NULL);
987 	} else {
988 		(void) refcount_add_many(&tx->tx_space_freed, -delta, NULL);
989 	}
990 #endif
991 }
992 
993 void
994 dmu_tx_commit(dmu_tx_t *tx)
995 {
996 	dmu_tx_hold_t *txh;
997 
998 	ASSERT(tx->tx_txg != 0);
999 
1000 	while (txh = list_head(&tx->tx_holds)) {
1001 		dnode_t *dn = txh->txh_dnode;
1002 
1003 		list_remove(&tx->tx_holds, txh);
1004 		kmem_free(txh, sizeof (dmu_tx_hold_t));
1005 		if (dn == NULL)
1006 			continue;
1007 		mutex_enter(&dn->dn_mtx);
1008 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1009 
1010 		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1011 			dn->dn_assigned_txg = 0;
1012 			cv_broadcast(&dn->dn_notxholds);
1013 		}
1014 		mutex_exit(&dn->dn_mtx);
1015 		dnode_rele(dn, tx);
1016 	}
1017 
1018 	if (tx->tx_tempreserve_cookie)
1019 		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1020 
1021 	if (tx->tx_anyobj == FALSE)
1022 		txg_rele_to_sync(&tx->tx_txgh);
1023 	list_destroy(&tx->tx_holds);
1024 #ifdef ZFS_DEBUG
1025 	dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n",
1026 	    tx->tx_space_towrite, refcount_count(&tx->tx_space_written),
1027 	    tx->tx_space_tofree, refcount_count(&tx->tx_space_freed));
1028 	refcount_destroy_many(&tx->tx_space_written,
1029 	    refcount_count(&tx->tx_space_written));
1030 	refcount_destroy_many(&tx->tx_space_freed,
1031 	    refcount_count(&tx->tx_space_freed));
1032 #endif
1033 	kmem_free(tx, sizeof (dmu_tx_t));
1034 }
1035 
1036 void
1037 dmu_tx_abort(dmu_tx_t *tx)
1038 {
1039 	dmu_tx_hold_t *txh;
1040 
1041 	ASSERT(tx->tx_txg == 0);
1042 
1043 	while (txh = list_head(&tx->tx_holds)) {
1044 		dnode_t *dn = txh->txh_dnode;
1045 
1046 		list_remove(&tx->tx_holds, txh);
1047 		kmem_free(txh, sizeof (dmu_tx_hold_t));
1048 		if (dn != NULL)
1049 			dnode_rele(dn, tx);
1050 	}
1051 	list_destroy(&tx->tx_holds);
1052 #ifdef ZFS_DEBUG
1053 	refcount_destroy_many(&tx->tx_space_written,
1054 	    refcount_count(&tx->tx_space_written));
1055 	refcount_destroy_many(&tx->tx_space_freed,
1056 	    refcount_count(&tx->tx_space_freed));
1057 #endif
1058 	kmem_free(tx, sizeof (dmu_tx_t));
1059 }
1060 
1061 uint64_t
1062 dmu_tx_get_txg(dmu_tx_t *tx)
1063 {
1064 	ASSERT(tx->tx_txg != 0);
1065 	return (tx->tx_txg);
1066 }
1067