xref: /illumos-gate/usr/src/uts/common/fs/zfs/dmu.c (revision cb92f4130ce5b2c4ae1fa5fa6c776f4d4dc28ad9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24  */
25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27 /* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */
28 
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dbuf.h>
33 #include <sys/dnode.h>
34 #include <sys/zfs_context.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dmu_traverse.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/zfs_ioctl.h>
44 #include <sys/zap.h>
45 #include <sys/zio_checksum.h>
46 #include <sys/zio_compress.h>
47 #include <sys/sa.h>
48 #include <sys/zfeature.h>
49 #ifdef _KERNEL
50 #include <sys/vmsystm.h>
51 #include <sys/zfs_znode.h>
52 #endif
53 
54 /*
55  * Enable/disable nopwrite feature.
56  */
57 int zfs_nopwrite_enabled = 1;
58 
59 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
60 	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
61 	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
62 	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
63 	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
64 	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
65 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
66 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
67 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
68 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
69 	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
70 	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
71 	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
72 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
73 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
74 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
75 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
76 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
77 	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
78 	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
79 	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
80 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
81 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
82 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
83 	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
84 	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
85 	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
86 	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
87 	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
88 	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
89 	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
90 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
91 	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
92 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
93 	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
94 	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
95 	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
96 	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
97 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
98 	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
99 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
100 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
101 	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
102 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
103 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
104 	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
105 	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
106 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
107 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
108 	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
109 	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
110 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
111 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
112 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
113 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
114 };
115 
116 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
117 	{	byteswap_uint8_array,	"uint8"		},
118 	{	byteswap_uint16_array,	"uint16"	},
119 	{	byteswap_uint32_array,	"uint32"	},
120 	{	byteswap_uint64_array,	"uint64"	},
121 	{	zap_byteswap,		"zap"		},
122 	{	dnode_buf_byteswap,	"dnode"		},
123 	{	dmu_objset_byteswap,	"objset"	},
124 	{	zfs_znode_byteswap,	"znode"		},
125 	{	zfs_oldacl_byteswap,	"oldacl"	},
126 	{	zfs_acl_byteswap,	"acl"		}
127 };
128 
129 int
130 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
131     void *tag, dmu_buf_t **dbp)
132 {
133 	dnode_t *dn;
134 	uint64_t blkid;
135 	dmu_buf_impl_t *db;
136 	int err;
137 
138 	err = dnode_hold(os, object, FTAG, &dn);
139 	if (err)
140 		return (err);
141 	blkid = dbuf_whichblock(dn, 0, offset);
142 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
143 	db = dbuf_hold(dn, blkid, tag);
144 	rw_exit(&dn->dn_struct_rwlock);
145 	dnode_rele(dn, FTAG);
146 
147 	if (db == NULL) {
148 		*dbp = NULL;
149 		return (SET_ERROR(EIO));
150 	}
151 
152 	*dbp = &db->db;
153 	return (err);
154 }
155 
156 int
157 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
158     void *tag, dmu_buf_t **dbp, int flags)
159 {
160 	int err;
161 	int db_flags = DB_RF_CANFAIL;
162 
163 	if (flags & DMU_READ_NO_PREFETCH)
164 		db_flags |= DB_RF_NOPREFETCH;
165 
166 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
167 	if (err == 0) {
168 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
169 		err = dbuf_read(db, NULL, db_flags);
170 		if (err != 0) {
171 			dbuf_rele(db, tag);
172 			*dbp = NULL;
173 		}
174 	}
175 
176 	return (err);
177 }
178 
179 int
180 dmu_bonus_max(void)
181 {
182 	return (DN_MAX_BONUSLEN);
183 }
184 
185 int
186 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
187 {
188 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
189 	dnode_t *dn;
190 	int error;
191 
192 	DB_DNODE_ENTER(db);
193 	dn = DB_DNODE(db);
194 
195 	if (dn->dn_bonus != db) {
196 		error = SET_ERROR(EINVAL);
197 	} else if (newsize < 0 || newsize > db_fake->db_size) {
198 		error = SET_ERROR(EINVAL);
199 	} else {
200 		dnode_setbonuslen(dn, newsize, tx);
201 		error = 0;
202 	}
203 
204 	DB_DNODE_EXIT(db);
205 	return (error);
206 }
207 
208 int
209 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
210 {
211 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
212 	dnode_t *dn;
213 	int error;
214 
215 	DB_DNODE_ENTER(db);
216 	dn = DB_DNODE(db);
217 
218 	if (!DMU_OT_IS_VALID(type)) {
219 		error = SET_ERROR(EINVAL);
220 	} else if (dn->dn_bonus != db) {
221 		error = SET_ERROR(EINVAL);
222 	} else {
223 		dnode_setbonus_type(dn, type, tx);
224 		error = 0;
225 	}
226 
227 	DB_DNODE_EXIT(db);
228 	return (error);
229 }
230 
231 dmu_object_type_t
232 dmu_get_bonustype(dmu_buf_t *db_fake)
233 {
234 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
235 	dnode_t *dn;
236 	dmu_object_type_t type;
237 
238 	DB_DNODE_ENTER(db);
239 	dn = DB_DNODE(db);
240 	type = dn->dn_bonustype;
241 	DB_DNODE_EXIT(db);
242 
243 	return (type);
244 }
245 
246 int
247 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
248 {
249 	dnode_t *dn;
250 	int error;
251 
252 	error = dnode_hold(os, object, FTAG, &dn);
253 	dbuf_rm_spill(dn, tx);
254 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
255 	dnode_rm_spill(dn, tx);
256 	rw_exit(&dn->dn_struct_rwlock);
257 	dnode_rele(dn, FTAG);
258 	return (error);
259 }
260 
261 /*
262  * returns ENOENT, EIO, or 0.
263  */
264 int
265 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
266 {
267 	dnode_t *dn;
268 	dmu_buf_impl_t *db;
269 	int error;
270 
271 	error = dnode_hold(os, object, FTAG, &dn);
272 	if (error)
273 		return (error);
274 
275 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
276 	if (dn->dn_bonus == NULL) {
277 		rw_exit(&dn->dn_struct_rwlock);
278 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
279 		if (dn->dn_bonus == NULL)
280 			dbuf_create_bonus(dn);
281 	}
282 	db = dn->dn_bonus;
283 
284 	/* as long as the bonus buf is held, the dnode will be held */
285 	if (refcount_add(&db->db_holds, tag) == 1) {
286 		VERIFY(dnode_add_ref(dn, db));
287 		atomic_inc_32(&dn->dn_dbufs_count);
288 	}
289 
290 	/*
291 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
292 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
293 	 * a dnode hold for every dbuf.
294 	 */
295 	rw_exit(&dn->dn_struct_rwlock);
296 
297 	dnode_rele(dn, FTAG);
298 
299 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
300 
301 	*dbp = &db->db;
302 	return (0);
303 }
304 
305 /*
306  * returns ENOENT, EIO, or 0.
307  *
308  * This interface will allocate a blank spill dbuf when a spill blk
309  * doesn't already exist on the dnode.
310  *
311  * if you only want to find an already existing spill db, then
312  * dmu_spill_hold_existing() should be used.
313  */
314 int
315 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
316 {
317 	dmu_buf_impl_t *db = NULL;
318 	int err;
319 
320 	if ((flags & DB_RF_HAVESTRUCT) == 0)
321 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
322 
323 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
324 
325 	if ((flags & DB_RF_HAVESTRUCT) == 0)
326 		rw_exit(&dn->dn_struct_rwlock);
327 
328 	ASSERT(db != NULL);
329 	err = dbuf_read(db, NULL, flags);
330 	if (err == 0)
331 		*dbp = &db->db;
332 	else
333 		dbuf_rele(db, tag);
334 	return (err);
335 }
336 
337 int
338 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
339 {
340 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
341 	dnode_t *dn;
342 	int err;
343 
344 	DB_DNODE_ENTER(db);
345 	dn = DB_DNODE(db);
346 
347 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
348 		err = SET_ERROR(EINVAL);
349 	} else {
350 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
351 
352 		if (!dn->dn_have_spill) {
353 			err = SET_ERROR(ENOENT);
354 		} else {
355 			err = dmu_spill_hold_by_dnode(dn,
356 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
357 		}
358 
359 		rw_exit(&dn->dn_struct_rwlock);
360 	}
361 
362 	DB_DNODE_EXIT(db);
363 	return (err);
364 }
365 
366 int
367 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
368 {
369 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
370 	dnode_t *dn;
371 	int err;
372 
373 	DB_DNODE_ENTER(db);
374 	dn = DB_DNODE(db);
375 	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
376 	DB_DNODE_EXIT(db);
377 
378 	return (err);
379 }
380 
381 /*
382  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
383  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
384  * and can induce severe lock contention when writing to several files
385  * whose dnodes are in the same block.
386  */
387 static int
388 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
389     boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
390 {
391 	dmu_buf_t **dbp;
392 	uint64_t blkid, nblks, i;
393 	uint32_t dbuf_flags;
394 	int err;
395 	zio_t *zio;
396 
397 	ASSERT(length <= DMU_MAX_ACCESS);
398 
399 	/*
400 	 * Note: We directly notify the prefetch code of this read, so that
401 	 * we can tell it about the multi-block read.  dbuf_read() only knows
402 	 * about the one block it is accessing.
403 	 */
404 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
405 	    DB_RF_NOPREFETCH;
406 
407 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
408 	if (dn->dn_datablkshift) {
409 		int blkshift = dn->dn_datablkshift;
410 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
411 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
412 	} else {
413 		if (offset + length > dn->dn_datablksz) {
414 			zfs_panic_recover("zfs: accessing past end of object "
415 			    "%llx/%llx (size=%u access=%llu+%llu)",
416 			    (longlong_t)dn->dn_objset->
417 			    os_dsl_dataset->ds_object,
418 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
419 			    (longlong_t)offset, (longlong_t)length);
420 			rw_exit(&dn->dn_struct_rwlock);
421 			return (SET_ERROR(EIO));
422 		}
423 		nblks = 1;
424 	}
425 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
426 
427 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
428 	blkid = dbuf_whichblock(dn, 0, offset);
429 	for (i = 0; i < nblks; i++) {
430 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
431 		if (db == NULL) {
432 			rw_exit(&dn->dn_struct_rwlock);
433 			dmu_buf_rele_array(dbp, nblks, tag);
434 			zio_nowait(zio);
435 			return (SET_ERROR(EIO));
436 		}
437 
438 		/* initiate async i/o */
439 		if (read)
440 			(void) dbuf_read(db, zio, dbuf_flags);
441 		dbp[i] = &db->db;
442 	}
443 
444 	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
445 	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
446 		dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
447 		    read && DNODE_IS_CACHEABLE(dn));
448 	}
449 	rw_exit(&dn->dn_struct_rwlock);
450 
451 	/* wait for async i/o */
452 	err = zio_wait(zio);
453 	if (err) {
454 		dmu_buf_rele_array(dbp, nblks, tag);
455 		return (err);
456 	}
457 
458 	/* wait for other io to complete */
459 	if (read) {
460 		for (i = 0; i < nblks; i++) {
461 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
462 			mutex_enter(&db->db_mtx);
463 			while (db->db_state == DB_READ ||
464 			    db->db_state == DB_FILL)
465 				cv_wait(&db->db_changed, &db->db_mtx);
466 			if (db->db_state == DB_UNCACHED)
467 				err = SET_ERROR(EIO);
468 			mutex_exit(&db->db_mtx);
469 			if (err) {
470 				dmu_buf_rele_array(dbp, nblks, tag);
471 				return (err);
472 			}
473 		}
474 	}
475 
476 	*numbufsp = nblks;
477 	*dbpp = dbp;
478 	return (0);
479 }
480 
481 static int
482 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
483     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
484 {
485 	dnode_t *dn;
486 	int err;
487 
488 	err = dnode_hold(os, object, FTAG, &dn);
489 	if (err)
490 		return (err);
491 
492 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
493 	    numbufsp, dbpp, DMU_READ_PREFETCH);
494 
495 	dnode_rele(dn, FTAG);
496 
497 	return (err);
498 }
499 
500 int
501 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
502     uint64_t length, boolean_t read, void *tag, int *numbufsp,
503     dmu_buf_t ***dbpp)
504 {
505 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
506 	dnode_t *dn;
507 	int err;
508 
509 	DB_DNODE_ENTER(db);
510 	dn = DB_DNODE(db);
511 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
512 	    numbufsp, dbpp, DMU_READ_PREFETCH);
513 	DB_DNODE_EXIT(db);
514 
515 	return (err);
516 }
517 
518 void
519 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
520 {
521 	int i;
522 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
523 
524 	if (numbufs == 0)
525 		return;
526 
527 	for (i = 0; i < numbufs; i++) {
528 		if (dbp[i])
529 			dbuf_rele(dbp[i], tag);
530 	}
531 
532 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
533 }
534 
535 /*
536  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
537  * indirect blocks prefeteched will be those that point to the blocks containing
538  * the data starting at offset, and continuing to offset + len.
539  *
540  * Note that if the indirect blocks above the blocks being prefetched are not in
541  * cache, they will be asychronously read in.
542  */
543 void
544 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
545     uint64_t len, zio_priority_t pri)
546 {
547 	dnode_t *dn;
548 	uint64_t blkid;
549 	int nblks, err;
550 
551 	if (len == 0) {  /* they're interested in the bonus buffer */
552 		dn = DMU_META_DNODE(os);
553 
554 		if (object == 0 || object >= DN_MAX_OBJECT)
555 			return;
556 
557 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
558 		blkid = dbuf_whichblock(dn, level,
559 		    object * sizeof (dnode_phys_t));
560 		dbuf_prefetch(dn, level, blkid, pri, 0);
561 		rw_exit(&dn->dn_struct_rwlock);
562 		return;
563 	}
564 
565 	/*
566 	 * XXX - Note, if the dnode for the requested object is not
567 	 * already cached, we will do a *synchronous* read in the
568 	 * dnode_hold() call.  The same is true for any indirects.
569 	 */
570 	err = dnode_hold(os, object, FTAG, &dn);
571 	if (err != 0)
572 		return;
573 
574 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
575 	/*
576 	 * offset + len - 1 is the last byte we want to prefetch for, and offset
577 	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
578 	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
579 	 * offset)  is the first.  Then the number we need to prefetch is the
580 	 * last - first + 1.
581 	 */
582 	if (level > 0 || dn->dn_datablkshift != 0) {
583 		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
584 		    dbuf_whichblock(dn, level, offset) + 1;
585 	} else {
586 		nblks = (offset < dn->dn_datablksz);
587 	}
588 
589 	if (nblks != 0) {
590 		blkid = dbuf_whichblock(dn, level, offset);
591 		for (int i = 0; i < nblks; i++)
592 			dbuf_prefetch(dn, level, blkid + i, pri, 0);
593 	}
594 
595 	rw_exit(&dn->dn_struct_rwlock);
596 
597 	dnode_rele(dn, FTAG);
598 }
599 
600 /*
601  * Get the next "chunk" of file data to free.  We traverse the file from
602  * the end so that the file gets shorter over time (if we crashes in the
603  * middle, this will leave us in a better state).  We find allocated file
604  * data by simply searching the allocated level 1 indirects.
605  *
606  * On input, *start should be the first offset that does not need to be
607  * freed (e.g. "offset + length").  On return, *start will be the first
608  * offset that should be freed.
609  */
610 static int
611 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
612 {
613 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
614 	/* bytes of data covered by a level-1 indirect block */
615 	uint64_t iblkrange =
616 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
617 
618 	ASSERT3U(minimum, <=, *start);
619 
620 	if (*start - minimum <= iblkrange * maxblks) {
621 		*start = minimum;
622 		return (0);
623 	}
624 	ASSERT(ISP2(iblkrange));
625 
626 	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
627 		int err;
628 
629 		/*
630 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
631 		 * indirect block at or before the input offset.  We must
632 		 * decrement *start so that it is at the end of the region
633 		 * to search.
634 		 */
635 		(*start)--;
636 		err = dnode_next_offset(dn,
637 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
638 
639 		/* if there are no indirect blocks before start, we are done */
640 		if (err == ESRCH) {
641 			*start = minimum;
642 			break;
643 		} else if (err != 0) {
644 			return (err);
645 		}
646 
647 		/* set start to the beginning of this L1 indirect */
648 		*start = P2ALIGN(*start, iblkrange);
649 	}
650 	if (*start < minimum)
651 		*start = minimum;
652 	return (0);
653 }
654 
655 static int
656 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
657     uint64_t length)
658 {
659 	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
660 	int err;
661 
662 	if (offset >= object_size)
663 		return (0);
664 
665 	if (length == DMU_OBJECT_END || offset + length > object_size)
666 		length = object_size - offset;
667 
668 	while (length != 0) {
669 		uint64_t chunk_end, chunk_begin;
670 
671 		chunk_end = chunk_begin = offset + length;
672 
673 		/* move chunk_begin backwards to the beginning of this chunk */
674 		err = get_next_chunk(dn, &chunk_begin, offset);
675 		if (err)
676 			return (err);
677 		ASSERT3U(chunk_begin, >=, offset);
678 		ASSERT3U(chunk_begin, <=, chunk_end);
679 
680 		dmu_tx_t *tx = dmu_tx_create(os);
681 		dmu_tx_hold_free(tx, dn->dn_object,
682 		    chunk_begin, chunk_end - chunk_begin);
683 
684 		/*
685 		 * Mark this transaction as typically resulting in a net
686 		 * reduction in space used.
687 		 */
688 		dmu_tx_mark_netfree(tx);
689 		err = dmu_tx_assign(tx, TXG_WAIT);
690 		if (err) {
691 			dmu_tx_abort(tx);
692 			return (err);
693 		}
694 		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
695 		dmu_tx_commit(tx);
696 
697 		length -= chunk_end - chunk_begin;
698 	}
699 	return (0);
700 }
701 
702 int
703 dmu_free_long_range(objset_t *os, uint64_t object,
704     uint64_t offset, uint64_t length)
705 {
706 	dnode_t *dn;
707 	int err;
708 
709 	err = dnode_hold(os, object, FTAG, &dn);
710 	if (err != 0)
711 		return (err);
712 	err = dmu_free_long_range_impl(os, dn, offset, length);
713 
714 	/*
715 	 * It is important to zero out the maxblkid when freeing the entire
716 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
717 	 * will take the fast path, and (b) dnode_reallocate() can verify
718 	 * that the entire file has been freed.
719 	 */
720 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
721 		dn->dn_maxblkid = 0;
722 
723 	dnode_rele(dn, FTAG);
724 	return (err);
725 }
726 
727 int
728 dmu_free_long_object(objset_t *os, uint64_t object)
729 {
730 	dmu_tx_t *tx;
731 	int err;
732 
733 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
734 	if (err != 0)
735 		return (err);
736 
737 	tx = dmu_tx_create(os);
738 	dmu_tx_hold_bonus(tx, object);
739 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
740 	dmu_tx_mark_netfree(tx);
741 	err = dmu_tx_assign(tx, TXG_WAIT);
742 	if (err == 0) {
743 		err = dmu_object_free(os, object, tx);
744 		dmu_tx_commit(tx);
745 	} else {
746 		dmu_tx_abort(tx);
747 	}
748 
749 	return (err);
750 }
751 
752 int
753 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
754     uint64_t size, dmu_tx_t *tx)
755 {
756 	dnode_t *dn;
757 	int err = dnode_hold(os, object, FTAG, &dn);
758 	if (err)
759 		return (err);
760 	ASSERT(offset < UINT64_MAX);
761 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
762 	dnode_free_range(dn, offset, size, tx);
763 	dnode_rele(dn, FTAG);
764 	return (0);
765 }
766 
767 int
768 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
769     void *buf, uint32_t flags)
770 {
771 	dnode_t *dn;
772 	dmu_buf_t **dbp;
773 	int numbufs, err;
774 
775 	err = dnode_hold(os, object, FTAG, &dn);
776 	if (err)
777 		return (err);
778 
779 	/*
780 	 * Deal with odd block sizes, where there can't be data past the first
781 	 * block.  If we ever do the tail block optimization, we will need to
782 	 * handle that here as well.
783 	 */
784 	if (dn->dn_maxblkid == 0) {
785 		int newsz = offset > dn->dn_datablksz ? 0 :
786 		    MIN(size, dn->dn_datablksz - offset);
787 		bzero((char *)buf + newsz, size - newsz);
788 		size = newsz;
789 	}
790 
791 	while (size > 0) {
792 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
793 		int i;
794 
795 		/*
796 		 * NB: we could do this block-at-a-time, but it's nice
797 		 * to be reading in parallel.
798 		 */
799 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
800 		    TRUE, FTAG, &numbufs, &dbp, flags);
801 		if (err)
802 			break;
803 
804 		for (i = 0; i < numbufs; i++) {
805 			int tocpy;
806 			int bufoff;
807 			dmu_buf_t *db = dbp[i];
808 
809 			ASSERT(size > 0);
810 
811 			bufoff = offset - db->db_offset;
812 			tocpy = (int)MIN(db->db_size - bufoff, size);
813 
814 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
815 
816 			offset += tocpy;
817 			size -= tocpy;
818 			buf = (char *)buf + tocpy;
819 		}
820 		dmu_buf_rele_array(dbp, numbufs, FTAG);
821 	}
822 	dnode_rele(dn, FTAG);
823 	return (err);
824 }
825 
826 void
827 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
828     const void *buf, dmu_tx_t *tx)
829 {
830 	dmu_buf_t **dbp;
831 	int numbufs, i;
832 
833 	if (size == 0)
834 		return;
835 
836 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
837 	    FALSE, FTAG, &numbufs, &dbp));
838 
839 	for (i = 0; i < numbufs; i++) {
840 		int tocpy;
841 		int bufoff;
842 		dmu_buf_t *db = dbp[i];
843 
844 		ASSERT(size > 0);
845 
846 		bufoff = offset - db->db_offset;
847 		tocpy = (int)MIN(db->db_size - bufoff, size);
848 
849 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
850 
851 		if (tocpy == db->db_size)
852 			dmu_buf_will_fill(db, tx);
853 		else
854 			dmu_buf_will_dirty(db, tx);
855 
856 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
857 
858 		if (tocpy == db->db_size)
859 			dmu_buf_fill_done(db, tx);
860 
861 		offset += tocpy;
862 		size -= tocpy;
863 		buf = (char *)buf + tocpy;
864 	}
865 	dmu_buf_rele_array(dbp, numbufs, FTAG);
866 }
867 
868 void
869 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
870     dmu_tx_t *tx)
871 {
872 	dmu_buf_t **dbp;
873 	int numbufs, i;
874 
875 	if (size == 0)
876 		return;
877 
878 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
879 	    FALSE, FTAG, &numbufs, &dbp));
880 
881 	for (i = 0; i < numbufs; i++) {
882 		dmu_buf_t *db = dbp[i];
883 
884 		dmu_buf_will_not_fill(db, tx);
885 	}
886 	dmu_buf_rele_array(dbp, numbufs, FTAG);
887 }
888 
889 void
890 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
891     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
892     int compressed_size, int byteorder, dmu_tx_t *tx)
893 {
894 	dmu_buf_t *db;
895 
896 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
897 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
898 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
899 	    FTAG, &db));
900 
901 	dmu_buf_write_embedded(db,
902 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
903 	    uncompressed_size, compressed_size, byteorder, tx);
904 
905 	dmu_buf_rele(db, FTAG);
906 }
907 
908 /*
909  * DMU support for xuio
910  */
911 kstat_t *xuio_ksp = NULL;
912 
913 int
914 dmu_xuio_init(xuio_t *xuio, int nblk)
915 {
916 	dmu_xuio_t *priv;
917 	uio_t *uio = &xuio->xu_uio;
918 
919 	uio->uio_iovcnt = nblk;
920 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
921 
922 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
923 	priv->cnt = nblk;
924 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
925 	priv->iovp = uio->uio_iov;
926 	XUIO_XUZC_PRIV(xuio) = priv;
927 
928 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
929 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
930 	else
931 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
932 
933 	return (0);
934 }
935 
936 void
937 dmu_xuio_fini(xuio_t *xuio)
938 {
939 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
940 	int nblk = priv->cnt;
941 
942 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
943 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
944 	kmem_free(priv, sizeof (dmu_xuio_t));
945 
946 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
947 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
948 	else
949 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
950 }
951 
952 /*
953  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
954  * and increase priv->next by 1.
955  */
956 int
957 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
958 {
959 	struct iovec *iov;
960 	uio_t *uio = &xuio->xu_uio;
961 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
962 	int i = priv->next++;
963 
964 	ASSERT(i < priv->cnt);
965 	ASSERT(off + n <= arc_buf_size(abuf));
966 	iov = uio->uio_iov + i;
967 	iov->iov_base = (char *)abuf->b_data + off;
968 	iov->iov_len = n;
969 	priv->bufs[i] = abuf;
970 	return (0);
971 }
972 
973 int
974 dmu_xuio_cnt(xuio_t *xuio)
975 {
976 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
977 	return (priv->cnt);
978 }
979 
980 arc_buf_t *
981 dmu_xuio_arcbuf(xuio_t *xuio, int i)
982 {
983 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
984 
985 	ASSERT(i < priv->cnt);
986 	return (priv->bufs[i]);
987 }
988 
989 void
990 dmu_xuio_clear(xuio_t *xuio, int i)
991 {
992 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
993 
994 	ASSERT(i < priv->cnt);
995 	priv->bufs[i] = NULL;
996 }
997 
998 static void
999 xuio_stat_init(void)
1000 {
1001 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1002 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1003 	    KSTAT_FLAG_VIRTUAL);
1004 	if (xuio_ksp != NULL) {
1005 		xuio_ksp->ks_data = &xuio_stats;
1006 		kstat_install(xuio_ksp);
1007 	}
1008 }
1009 
1010 static void
1011 xuio_stat_fini(void)
1012 {
1013 	if (xuio_ksp != NULL) {
1014 		kstat_delete(xuio_ksp);
1015 		xuio_ksp = NULL;
1016 	}
1017 }
1018 
1019 void
1020 xuio_stat_wbuf_copied()
1021 {
1022 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1023 }
1024 
1025 void
1026 xuio_stat_wbuf_nocopy()
1027 {
1028 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1029 }
1030 
1031 #ifdef _KERNEL
1032 static int
1033 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1034 {
1035 	dmu_buf_t **dbp;
1036 	int numbufs, i, err;
1037 	xuio_t *xuio = NULL;
1038 
1039 	/*
1040 	 * NB: we could do this block-at-a-time, but it's nice
1041 	 * to be reading in parallel.
1042 	 */
1043 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1044 	    TRUE, FTAG, &numbufs, &dbp, 0);
1045 	if (err)
1046 		return (err);
1047 
1048 	if (uio->uio_extflg == UIO_XUIO)
1049 		xuio = (xuio_t *)uio;
1050 
1051 	for (i = 0; i < numbufs; i++) {
1052 		int tocpy;
1053 		int bufoff;
1054 		dmu_buf_t *db = dbp[i];
1055 
1056 		ASSERT(size > 0);
1057 
1058 		bufoff = uio->uio_loffset - db->db_offset;
1059 		tocpy = (int)MIN(db->db_size - bufoff, size);
1060 
1061 		if (xuio) {
1062 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1063 			arc_buf_t *dbuf_abuf = dbi->db_buf;
1064 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1065 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1066 			if (!err) {
1067 				uio->uio_resid -= tocpy;
1068 				uio->uio_loffset += tocpy;
1069 			}
1070 
1071 			if (abuf == dbuf_abuf)
1072 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1073 			else
1074 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1075 		} else {
1076 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1077 			    UIO_READ, uio);
1078 		}
1079 		if (err)
1080 			break;
1081 
1082 		size -= tocpy;
1083 	}
1084 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1085 
1086 	return (err);
1087 }
1088 
1089 /*
1090  * Read 'size' bytes into the uio buffer.
1091  * From object zdb->db_object.
1092  * Starting at offset uio->uio_loffset.
1093  *
1094  * If the caller already has a dbuf in the target object
1095  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1096  * because we don't have to find the dnode_t for the object.
1097  */
1098 int
1099 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1100 {
1101 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1102 	dnode_t *dn;
1103 	int err;
1104 
1105 	if (size == 0)
1106 		return (0);
1107 
1108 	DB_DNODE_ENTER(db);
1109 	dn = DB_DNODE(db);
1110 	err = dmu_read_uio_dnode(dn, uio, size);
1111 	DB_DNODE_EXIT(db);
1112 
1113 	return (err);
1114 }
1115 
1116 /*
1117  * Read 'size' bytes into the uio buffer.
1118  * From the specified object
1119  * Starting at offset uio->uio_loffset.
1120  */
1121 int
1122 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1123 {
1124 	dnode_t *dn;
1125 	int err;
1126 
1127 	if (size == 0)
1128 		return (0);
1129 
1130 	err = dnode_hold(os, object, FTAG, &dn);
1131 	if (err)
1132 		return (err);
1133 
1134 	err = dmu_read_uio_dnode(dn, uio, size);
1135 
1136 	dnode_rele(dn, FTAG);
1137 
1138 	return (err);
1139 }
1140 
1141 static int
1142 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1143 {
1144 	dmu_buf_t **dbp;
1145 	int numbufs;
1146 	int err = 0;
1147 	int i;
1148 
1149 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1150 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1151 	if (err)
1152 		return (err);
1153 
1154 	for (i = 0; i < numbufs; i++) {
1155 		int tocpy;
1156 		int bufoff;
1157 		dmu_buf_t *db = dbp[i];
1158 
1159 		ASSERT(size > 0);
1160 
1161 		bufoff = uio->uio_loffset - db->db_offset;
1162 		tocpy = (int)MIN(db->db_size - bufoff, size);
1163 
1164 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1165 
1166 		if (tocpy == db->db_size)
1167 			dmu_buf_will_fill(db, tx);
1168 		else
1169 			dmu_buf_will_dirty(db, tx);
1170 
1171 		/*
1172 		 * XXX uiomove could block forever (eg. nfs-backed
1173 		 * pages).  There needs to be a uiolockdown() function
1174 		 * to lock the pages in memory, so that uiomove won't
1175 		 * block.
1176 		 */
1177 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1178 		    UIO_WRITE, uio);
1179 
1180 		if (tocpy == db->db_size)
1181 			dmu_buf_fill_done(db, tx);
1182 
1183 		if (err)
1184 			break;
1185 
1186 		size -= tocpy;
1187 	}
1188 
1189 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1190 	return (err);
1191 }
1192 
1193 /*
1194  * Write 'size' bytes from the uio buffer.
1195  * To object zdb->db_object.
1196  * Starting at offset uio->uio_loffset.
1197  *
1198  * If the caller already has a dbuf in the target object
1199  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1200  * because we don't have to find the dnode_t for the object.
1201  */
1202 int
1203 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1204     dmu_tx_t *tx)
1205 {
1206 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1207 	dnode_t *dn;
1208 	int err;
1209 
1210 	if (size == 0)
1211 		return (0);
1212 
1213 	DB_DNODE_ENTER(db);
1214 	dn = DB_DNODE(db);
1215 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1216 	DB_DNODE_EXIT(db);
1217 
1218 	return (err);
1219 }
1220 
1221 /*
1222  * Write 'size' bytes from the uio buffer.
1223  * To the specified object.
1224  * Starting at offset uio->uio_loffset.
1225  */
1226 int
1227 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1228     dmu_tx_t *tx)
1229 {
1230 	dnode_t *dn;
1231 	int err;
1232 
1233 	if (size == 0)
1234 		return (0);
1235 
1236 	err = dnode_hold(os, object, FTAG, &dn);
1237 	if (err)
1238 		return (err);
1239 
1240 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1241 
1242 	dnode_rele(dn, FTAG);
1243 
1244 	return (err);
1245 }
1246 
1247 int
1248 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1249     page_t *pp, dmu_tx_t *tx)
1250 {
1251 	dmu_buf_t **dbp;
1252 	int numbufs, i;
1253 	int err;
1254 
1255 	if (size == 0)
1256 		return (0);
1257 
1258 	err = dmu_buf_hold_array(os, object, offset, size,
1259 	    FALSE, FTAG, &numbufs, &dbp);
1260 	if (err)
1261 		return (err);
1262 
1263 	for (i = 0; i < numbufs; i++) {
1264 		int tocpy, copied, thiscpy;
1265 		int bufoff;
1266 		dmu_buf_t *db = dbp[i];
1267 		caddr_t va;
1268 
1269 		ASSERT(size > 0);
1270 		ASSERT3U(db->db_size, >=, PAGESIZE);
1271 
1272 		bufoff = offset - db->db_offset;
1273 		tocpy = (int)MIN(db->db_size - bufoff, size);
1274 
1275 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1276 
1277 		if (tocpy == db->db_size)
1278 			dmu_buf_will_fill(db, tx);
1279 		else
1280 			dmu_buf_will_dirty(db, tx);
1281 
1282 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1283 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1284 			thiscpy = MIN(PAGESIZE, tocpy - copied);
1285 			va = zfs_map_page(pp, S_READ);
1286 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1287 			zfs_unmap_page(pp, va);
1288 			pp = pp->p_next;
1289 			bufoff += PAGESIZE;
1290 		}
1291 
1292 		if (tocpy == db->db_size)
1293 			dmu_buf_fill_done(db, tx);
1294 
1295 		offset += tocpy;
1296 		size -= tocpy;
1297 	}
1298 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1299 	return (err);
1300 }
1301 #endif
1302 
1303 /*
1304  * Allocate a loaned anonymous arc buffer.
1305  */
1306 arc_buf_t *
1307 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1308 {
1309 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1310 
1311 	return (arc_loan_buf(db->db_objset->os_spa, size));
1312 }
1313 
1314 /*
1315  * Free a loaned arc buffer.
1316  */
1317 void
1318 dmu_return_arcbuf(arc_buf_t *buf)
1319 {
1320 	arc_return_buf(buf, FTAG);
1321 	VERIFY(arc_buf_remove_ref(buf, FTAG));
1322 }
1323 
1324 /*
1325  * When possible directly assign passed loaned arc buffer to a dbuf.
1326  * If this is not possible copy the contents of passed arc buf via
1327  * dmu_write().
1328  */
1329 void
1330 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1331     dmu_tx_t *tx)
1332 {
1333 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1334 	dnode_t *dn;
1335 	dmu_buf_impl_t *db;
1336 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1337 	uint64_t blkid;
1338 
1339 	DB_DNODE_ENTER(dbuf);
1340 	dn = DB_DNODE(dbuf);
1341 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1342 	blkid = dbuf_whichblock(dn, 0, offset);
1343 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1344 	rw_exit(&dn->dn_struct_rwlock);
1345 	DB_DNODE_EXIT(dbuf);
1346 
1347 	/*
1348 	 * We can only assign if the offset is aligned, the arc buf is the
1349 	 * same size as the dbuf, and the dbuf is not metadata.  It
1350 	 * can't be metadata because the loaned arc buf comes from the
1351 	 * user-data kmem arena.
1352 	 */
1353 	if (offset == db->db.db_offset && blksz == db->db.db_size &&
1354 	    DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) {
1355 		dbuf_assign_arcbuf(db, buf, tx);
1356 		dbuf_rele(db, FTAG);
1357 	} else {
1358 		objset_t *os;
1359 		uint64_t object;
1360 
1361 		DB_DNODE_ENTER(dbuf);
1362 		dn = DB_DNODE(dbuf);
1363 		os = dn->dn_objset;
1364 		object = dn->dn_object;
1365 		DB_DNODE_EXIT(dbuf);
1366 
1367 		dbuf_rele(db, FTAG);
1368 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1369 		dmu_return_arcbuf(buf);
1370 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1371 	}
1372 }
1373 
1374 typedef struct {
1375 	dbuf_dirty_record_t	*dsa_dr;
1376 	dmu_sync_cb_t		*dsa_done;
1377 	zgd_t			*dsa_zgd;
1378 	dmu_tx_t		*dsa_tx;
1379 } dmu_sync_arg_t;
1380 
1381 /* ARGSUSED */
1382 static void
1383 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1384 {
1385 	dmu_sync_arg_t *dsa = varg;
1386 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1387 	blkptr_t *bp = zio->io_bp;
1388 
1389 	if (zio->io_error == 0) {
1390 		if (BP_IS_HOLE(bp)) {
1391 			/*
1392 			 * A block of zeros may compress to a hole, but the
1393 			 * block size still needs to be known for replay.
1394 			 */
1395 			BP_SET_LSIZE(bp, db->db_size);
1396 		} else if (!BP_IS_EMBEDDED(bp)) {
1397 			ASSERT(BP_GET_LEVEL(bp) == 0);
1398 			bp->blk_fill = 1;
1399 		}
1400 	}
1401 }
1402 
1403 static void
1404 dmu_sync_late_arrival_ready(zio_t *zio)
1405 {
1406 	dmu_sync_ready(zio, NULL, zio->io_private);
1407 }
1408 
1409 /* ARGSUSED */
1410 static void
1411 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1412 {
1413 	dmu_sync_arg_t *dsa = varg;
1414 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1415 	dmu_buf_impl_t *db = dr->dr_dbuf;
1416 
1417 	mutex_enter(&db->db_mtx);
1418 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1419 	if (zio->io_error == 0) {
1420 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1421 		if (dr->dt.dl.dr_nopwrite) {
1422 			blkptr_t *bp = zio->io_bp;
1423 			blkptr_t *bp_orig = &zio->io_bp_orig;
1424 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1425 
1426 			ASSERT(BP_EQUAL(bp, bp_orig));
1427 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1428 			ASSERT(zio_checksum_table[chksum].ci_flags &
1429 			    ZCHECKSUM_FLAG_NOPWRITE);
1430 		}
1431 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1432 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1433 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1434 
1435 		/*
1436 		 * Old style holes are filled with all zeros, whereas
1437 		 * new-style holes maintain their lsize, type, level,
1438 		 * and birth time (see zio_write_compress). While we
1439 		 * need to reset the BP_SET_LSIZE() call that happened
1440 		 * in dmu_sync_ready for old style holes, we do *not*
1441 		 * want to wipe out the information contained in new
1442 		 * style holes. Thus, only zero out the block pointer if
1443 		 * it's an old style hole.
1444 		 */
1445 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1446 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1447 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1448 	} else {
1449 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1450 	}
1451 	cv_broadcast(&db->db_changed);
1452 	mutex_exit(&db->db_mtx);
1453 
1454 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1455 
1456 	kmem_free(dsa, sizeof (*dsa));
1457 }
1458 
1459 static void
1460 dmu_sync_late_arrival_done(zio_t *zio)
1461 {
1462 	blkptr_t *bp = zio->io_bp;
1463 	dmu_sync_arg_t *dsa = zio->io_private;
1464 	blkptr_t *bp_orig = &zio->io_bp_orig;
1465 
1466 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1467 		/*
1468 		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1469 		 * then there is nothing to do here. Otherwise, free the
1470 		 * newly allocated block in this txg.
1471 		 */
1472 		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1473 			ASSERT(BP_EQUAL(bp, bp_orig));
1474 		} else {
1475 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1476 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1477 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1478 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1479 		}
1480 	}
1481 
1482 	dmu_tx_commit(dsa->dsa_tx);
1483 
1484 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1485 
1486 	kmem_free(dsa, sizeof (*dsa));
1487 }
1488 
1489 static int
1490 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1491     zio_prop_t *zp, zbookmark_phys_t *zb)
1492 {
1493 	dmu_sync_arg_t *dsa;
1494 	dmu_tx_t *tx;
1495 
1496 	tx = dmu_tx_create(os);
1497 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1498 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1499 		dmu_tx_abort(tx);
1500 		/* Make zl_get_data do txg_waited_synced() */
1501 		return (SET_ERROR(EIO));
1502 	}
1503 
1504 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1505 	dsa->dsa_dr = NULL;
1506 	dsa->dsa_done = done;
1507 	dsa->dsa_zgd = zgd;
1508 	dsa->dsa_tx = tx;
1509 
1510 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1511 	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1512 	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1513 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1514 
1515 	return (0);
1516 }
1517 
1518 /*
1519  * Intent log support: sync the block associated with db to disk.
1520  * N.B. and XXX: the caller is responsible for making sure that the
1521  * data isn't changing while dmu_sync() is writing it.
1522  *
1523  * Return values:
1524  *
1525  *	EEXIST: this txg has already been synced, so there's nothing to do.
1526  *		The caller should not log the write.
1527  *
1528  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1529  *		The caller should not log the write.
1530  *
1531  *	EALREADY: this block is already in the process of being synced.
1532  *		The caller should track its progress (somehow).
1533  *
1534  *	EIO: could not do the I/O.
1535  *		The caller should do a txg_wait_synced().
1536  *
1537  *	0: the I/O has been initiated.
1538  *		The caller should log this blkptr in the done callback.
1539  *		It is possible that the I/O will fail, in which case
1540  *		the error will be reported to the done callback and
1541  *		propagated to pio from zio_done().
1542  */
1543 int
1544 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1545 {
1546 	blkptr_t *bp = zgd->zgd_bp;
1547 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1548 	objset_t *os = db->db_objset;
1549 	dsl_dataset_t *ds = os->os_dsl_dataset;
1550 	dbuf_dirty_record_t *dr;
1551 	dmu_sync_arg_t *dsa;
1552 	zbookmark_phys_t zb;
1553 	zio_prop_t zp;
1554 	dnode_t *dn;
1555 
1556 	ASSERT(pio != NULL);
1557 	ASSERT(txg != 0);
1558 
1559 	SET_BOOKMARK(&zb, ds->ds_object,
1560 	    db->db.db_object, db->db_level, db->db_blkid);
1561 
1562 	DB_DNODE_ENTER(db);
1563 	dn = DB_DNODE(db);
1564 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1565 	DB_DNODE_EXIT(db);
1566 
1567 	/*
1568 	 * If we're frozen (running ziltest), we always need to generate a bp.
1569 	 */
1570 	if (txg > spa_freeze_txg(os->os_spa))
1571 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1572 
1573 	/*
1574 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1575 	 * and us.  If we determine that this txg is not yet syncing,
1576 	 * but it begins to sync a moment later, that's OK because the
1577 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1578 	 */
1579 	mutex_enter(&db->db_mtx);
1580 
1581 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1582 		/*
1583 		 * This txg has already synced.  There's nothing to do.
1584 		 */
1585 		mutex_exit(&db->db_mtx);
1586 		return (SET_ERROR(EEXIST));
1587 	}
1588 
1589 	if (txg <= spa_syncing_txg(os->os_spa)) {
1590 		/*
1591 		 * This txg is currently syncing, so we can't mess with
1592 		 * the dirty record anymore; just write a new log block.
1593 		 */
1594 		mutex_exit(&db->db_mtx);
1595 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1596 	}
1597 
1598 	dr = db->db_last_dirty;
1599 	while (dr && dr->dr_txg != txg)
1600 		dr = dr->dr_next;
1601 
1602 	if (dr == NULL) {
1603 		/*
1604 		 * There's no dr for this dbuf, so it must have been freed.
1605 		 * There's no need to log writes to freed blocks, so we're done.
1606 		 */
1607 		mutex_exit(&db->db_mtx);
1608 		return (SET_ERROR(ENOENT));
1609 	}
1610 
1611 	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1612 
1613 	/*
1614 	 * Assume the on-disk data is X, the current syncing data (in
1615 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1616 	 * in dmu_sync).
1617 	 *
1618 	 * We usually want to perform a nopwrite if X and Z are the
1619 	 * same.  However, if Y is different (i.e. the BP is going to
1620 	 * change before this write takes effect), then a nopwrite will
1621 	 * be incorrect - we would override with X, which could have
1622 	 * been freed when Y was written.
1623 	 *
1624 	 * (Note that this is not a concern when we are nop-writing from
1625 	 * syncing context, because X and Y must be identical, because
1626 	 * all previous txgs have been synced.)
1627 	 *
1628 	 * Therefore, we disable nopwrite if the current BP could change
1629 	 * before this TXG.  There are two ways it could change: by
1630 	 * being dirty (dr_next is non-NULL), or by being freed
1631 	 * (dnode_block_freed()).  This behavior is verified by
1632 	 * zio_done(), which VERIFYs that the override BP is identical
1633 	 * to the on-disk BP.
1634 	 */
1635 	DB_DNODE_ENTER(db);
1636 	dn = DB_DNODE(db);
1637 	if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1638 		zp.zp_nopwrite = B_FALSE;
1639 	DB_DNODE_EXIT(db);
1640 
1641 	ASSERT(dr->dr_txg == txg);
1642 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1643 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1644 		/*
1645 		 * We have already issued a sync write for this buffer,
1646 		 * or this buffer has already been synced.  It could not
1647 		 * have been dirtied since, or we would have cleared the state.
1648 		 */
1649 		mutex_exit(&db->db_mtx);
1650 		return (SET_ERROR(EALREADY));
1651 	}
1652 
1653 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1654 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1655 	mutex_exit(&db->db_mtx);
1656 
1657 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1658 	dsa->dsa_dr = dr;
1659 	dsa->dsa_done = done;
1660 	dsa->dsa_zgd = zgd;
1661 	dsa->dsa_tx = NULL;
1662 
1663 	zio_nowait(arc_write(pio, os->os_spa, txg,
1664 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1665 	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1666 	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1667 	    ZIO_FLAG_CANFAIL, &zb));
1668 
1669 	return (0);
1670 }
1671 
1672 int
1673 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1674     dmu_tx_t *tx)
1675 {
1676 	dnode_t *dn;
1677 	int err;
1678 
1679 	err = dnode_hold(os, object, FTAG, &dn);
1680 	if (err)
1681 		return (err);
1682 	err = dnode_set_blksz(dn, size, ibs, tx);
1683 	dnode_rele(dn, FTAG);
1684 	return (err);
1685 }
1686 
1687 void
1688 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1689     dmu_tx_t *tx)
1690 {
1691 	dnode_t *dn;
1692 
1693 	/*
1694 	 * Send streams include each object's checksum function.  This
1695 	 * check ensures that the receiving system can understand the
1696 	 * checksum function transmitted.
1697 	 */
1698 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1699 
1700 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1701 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1702 	dn->dn_checksum = checksum;
1703 	dnode_setdirty(dn, tx);
1704 	dnode_rele(dn, FTAG);
1705 }
1706 
1707 void
1708 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1709     dmu_tx_t *tx)
1710 {
1711 	dnode_t *dn;
1712 
1713 	/*
1714 	 * Send streams include each object's compression function.  This
1715 	 * check ensures that the receiving system can understand the
1716 	 * compression function transmitted.
1717 	 */
1718 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1719 
1720 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1721 	dn->dn_compress = compress;
1722 	dnode_setdirty(dn, tx);
1723 	dnode_rele(dn, FTAG);
1724 }
1725 
1726 int zfs_mdcomp_disable = 0;
1727 
1728 /*
1729  * When the "redundant_metadata" property is set to "most", only indirect
1730  * blocks of this level and higher will have an additional ditto block.
1731  */
1732 int zfs_redundant_metadata_most_ditto_level = 2;
1733 
1734 void
1735 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1736 {
1737 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1738 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1739 	    (wp & WP_SPILL));
1740 	enum zio_checksum checksum = os->os_checksum;
1741 	enum zio_compress compress = os->os_compress;
1742 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1743 	boolean_t dedup = B_FALSE;
1744 	boolean_t nopwrite = B_FALSE;
1745 	boolean_t dedup_verify = os->os_dedup_verify;
1746 	int copies = os->os_copies;
1747 
1748 	/*
1749 	 * We maintain different write policies for each of the following
1750 	 * types of data:
1751 	 *	 1. metadata
1752 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1753 	 *	 3. all other level 0 blocks
1754 	 */
1755 	if (ismd) {
1756 		if (zfs_mdcomp_disable) {
1757 			compress = ZIO_COMPRESS_EMPTY;
1758 		} else {
1759 			/*
1760 			 * XXX -- we should design a compression algorithm
1761 			 * that specializes in arrays of bps.
1762 			 */
1763 			compress = zio_compress_select(os->os_spa,
1764 			    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1765 		}
1766 
1767 		/*
1768 		 * Metadata always gets checksummed.  If the data
1769 		 * checksum is multi-bit correctable, and it's not a
1770 		 * ZBT-style checksum, then it's suitable for metadata
1771 		 * as well.  Otherwise, the metadata checksum defaults
1772 		 * to fletcher4.
1773 		 */
1774 		if (!(zio_checksum_table[checksum].ci_flags &
1775 		    ZCHECKSUM_FLAG_METADATA) ||
1776 		    (zio_checksum_table[checksum].ci_flags &
1777 		    ZCHECKSUM_FLAG_EMBEDDED))
1778 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1779 
1780 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1781 		    (os->os_redundant_metadata ==
1782 		    ZFS_REDUNDANT_METADATA_MOST &&
1783 		    (level >= zfs_redundant_metadata_most_ditto_level ||
1784 		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1785 			copies++;
1786 	} else if (wp & WP_NOFILL) {
1787 		ASSERT(level == 0);
1788 
1789 		/*
1790 		 * If we're writing preallocated blocks, we aren't actually
1791 		 * writing them so don't set any policy properties.  These
1792 		 * blocks are currently only used by an external subsystem
1793 		 * outside of zfs (i.e. dump) and not written by the zio
1794 		 * pipeline.
1795 		 */
1796 		compress = ZIO_COMPRESS_OFF;
1797 		checksum = ZIO_CHECKSUM_NOPARITY;
1798 	} else {
1799 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
1800 		    compress);
1801 
1802 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1803 		    zio_checksum_select(dn->dn_checksum, checksum) :
1804 		    dedup_checksum;
1805 
1806 		/*
1807 		 * Determine dedup setting.  If we are in dmu_sync(),
1808 		 * we won't actually dedup now because that's all
1809 		 * done in syncing context; but we do want to use the
1810 		 * dedup checkum.  If the checksum is not strong
1811 		 * enough to ensure unique signatures, force
1812 		 * dedup_verify.
1813 		 */
1814 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1815 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1816 			if (!(zio_checksum_table[checksum].ci_flags &
1817 			    ZCHECKSUM_FLAG_DEDUP))
1818 				dedup_verify = B_TRUE;
1819 		}
1820 
1821 		/*
1822 		 * Enable nopwrite if we have secure enough checksum
1823 		 * algorithm (see comment in zio_nop_write) and
1824 		 * compression is enabled.  We don't enable nopwrite if
1825 		 * dedup is enabled as the two features are mutually
1826 		 * exclusive.
1827 		 */
1828 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
1829 		    ZCHECKSUM_FLAG_NOPWRITE) &&
1830 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1831 	}
1832 
1833 	zp->zp_checksum = checksum;
1834 	zp->zp_compress = compress;
1835 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1836 	zp->zp_level = level;
1837 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1838 	zp->zp_dedup = dedup;
1839 	zp->zp_dedup_verify = dedup && dedup_verify;
1840 	zp->zp_nopwrite = nopwrite;
1841 }
1842 
1843 int
1844 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1845 {
1846 	dnode_t *dn;
1847 	int err;
1848 
1849 	/*
1850 	 * Sync any current changes before
1851 	 * we go trundling through the block pointers.
1852 	 */
1853 	err = dmu_object_wait_synced(os, object);
1854 	if (err) {
1855 		return (err);
1856 	}
1857 
1858 	err = dnode_hold(os, object, FTAG, &dn);
1859 	if (err) {
1860 		return (err);
1861 	}
1862 
1863 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1864 	dnode_rele(dn, FTAG);
1865 
1866 	return (err);
1867 }
1868 
1869 /*
1870  * Given the ZFS object, if it contains any dirty nodes
1871  * this function flushes all dirty blocks to disk. This
1872  * ensures the DMU object info is updated. A more efficient
1873  * future version might just find the TXG with the maximum
1874  * ID and wait for that to be synced.
1875  */
1876 int
1877 dmu_object_wait_synced(objset_t *os, uint64_t object)
1878 {
1879 	dnode_t *dn;
1880 	int error, i;
1881 
1882 	error = dnode_hold(os, object, FTAG, &dn);
1883 	if (error) {
1884 		return (error);
1885 	}
1886 
1887 	for (i = 0; i < TXG_SIZE; i++) {
1888 		if (list_link_active(&dn->dn_dirty_link[i])) {
1889 			break;
1890 		}
1891 	}
1892 	dnode_rele(dn, FTAG);
1893 	if (i != TXG_SIZE) {
1894 		txg_wait_synced(dmu_objset_pool(os), 0);
1895 	}
1896 
1897 	return (0);
1898 }
1899 
1900 void
1901 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1902 {
1903 	dnode_phys_t *dnp;
1904 
1905 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1906 	mutex_enter(&dn->dn_mtx);
1907 
1908 	dnp = dn->dn_phys;
1909 
1910 	doi->doi_data_block_size = dn->dn_datablksz;
1911 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1912 	    1ULL << dn->dn_indblkshift : 0;
1913 	doi->doi_type = dn->dn_type;
1914 	doi->doi_bonus_type = dn->dn_bonustype;
1915 	doi->doi_bonus_size = dn->dn_bonuslen;
1916 	doi->doi_indirection = dn->dn_nlevels;
1917 	doi->doi_checksum = dn->dn_checksum;
1918 	doi->doi_compress = dn->dn_compress;
1919 	doi->doi_nblkptr = dn->dn_nblkptr;
1920 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1921 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1922 	doi->doi_fill_count = 0;
1923 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1924 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
1925 
1926 	mutex_exit(&dn->dn_mtx);
1927 	rw_exit(&dn->dn_struct_rwlock);
1928 }
1929 
1930 /*
1931  * Get information on a DMU object.
1932  * If doi is NULL, just indicates whether the object exists.
1933  */
1934 int
1935 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1936 {
1937 	dnode_t *dn;
1938 	int err = dnode_hold(os, object, FTAG, &dn);
1939 
1940 	if (err)
1941 		return (err);
1942 
1943 	if (doi != NULL)
1944 		dmu_object_info_from_dnode(dn, doi);
1945 
1946 	dnode_rele(dn, FTAG);
1947 	return (0);
1948 }
1949 
1950 /*
1951  * As above, but faster; can be used when you have a held dbuf in hand.
1952  */
1953 void
1954 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1955 {
1956 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1957 
1958 	DB_DNODE_ENTER(db);
1959 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1960 	DB_DNODE_EXIT(db);
1961 }
1962 
1963 /*
1964  * Faster still when you only care about the size.
1965  * This is specifically optimized for zfs_getattr().
1966  */
1967 void
1968 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1969     u_longlong_t *nblk512)
1970 {
1971 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1972 	dnode_t *dn;
1973 
1974 	DB_DNODE_ENTER(db);
1975 	dn = DB_DNODE(db);
1976 
1977 	*blksize = dn->dn_datablksz;
1978 	/* add 1 for dnode space */
1979 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1980 	    SPA_MINBLOCKSHIFT) + 1;
1981 	DB_DNODE_EXIT(db);
1982 }
1983 
1984 void
1985 byteswap_uint64_array(void *vbuf, size_t size)
1986 {
1987 	uint64_t *buf = vbuf;
1988 	size_t count = size >> 3;
1989 	int i;
1990 
1991 	ASSERT((size & 7) == 0);
1992 
1993 	for (i = 0; i < count; i++)
1994 		buf[i] = BSWAP_64(buf[i]);
1995 }
1996 
1997 void
1998 byteswap_uint32_array(void *vbuf, size_t size)
1999 {
2000 	uint32_t *buf = vbuf;
2001 	size_t count = size >> 2;
2002 	int i;
2003 
2004 	ASSERT((size & 3) == 0);
2005 
2006 	for (i = 0; i < count; i++)
2007 		buf[i] = BSWAP_32(buf[i]);
2008 }
2009 
2010 void
2011 byteswap_uint16_array(void *vbuf, size_t size)
2012 {
2013 	uint16_t *buf = vbuf;
2014 	size_t count = size >> 1;
2015 	int i;
2016 
2017 	ASSERT((size & 1) == 0);
2018 
2019 	for (i = 0; i < count; i++)
2020 		buf[i] = BSWAP_16(buf[i]);
2021 }
2022 
2023 /* ARGSUSED */
2024 void
2025 byteswap_uint8_array(void *vbuf, size_t size)
2026 {
2027 }
2028 
2029 void
2030 dmu_init(void)
2031 {
2032 	zfs_dbgmsg_init();
2033 	sa_cache_init();
2034 	xuio_stat_init();
2035 	dmu_objset_init();
2036 	dnode_init();
2037 	dbuf_init();
2038 	zfetch_init();
2039 	l2arc_init();
2040 	arc_init();
2041 }
2042 
2043 void
2044 dmu_fini(void)
2045 {
2046 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2047 	l2arc_fini();
2048 	zfetch_fini();
2049 	dbuf_fini();
2050 	dnode_fini();
2051 	dmu_objset_fini();
2052 	xuio_stat_fini();
2053 	sa_cache_fini();
2054 	zfs_dbgmsg_fini();
2055 }
2056