xref: /illumos-gate/usr/src/uts/common/fs/zfs/dmu.c (revision b8289d24d866c1af02d7007348f7f057693c15d3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24  */
25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27 /* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */
28 
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dbuf.h>
33 #include <sys/dnode.h>
34 #include <sys/zfs_context.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dmu_traverse.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/zfs_ioctl.h>
44 #include <sys/zap.h>
45 #include <sys/zio_checksum.h>
46 #include <sys/zio_compress.h>
47 #include <sys/sa.h>
48 #include <sys/zfeature.h>
49 #ifdef _KERNEL
50 #include <sys/vmsystm.h>
51 #include <sys/zfs_znode.h>
52 #endif
53 
54 /*
55  * Enable/disable nopwrite feature.
56  */
57 int zfs_nopwrite_enabled = 1;
58 
59 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
60 	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
61 	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
62 	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
63 	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
64 	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
65 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
66 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
67 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
68 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
69 	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
70 	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
71 	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
72 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
73 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
74 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
75 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
76 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
77 	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
78 	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
79 	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
80 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
81 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
82 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
83 	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
84 	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
85 	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
86 	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
87 	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
88 	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
89 	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
90 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
91 	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
92 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
93 	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
94 	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
95 	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
96 	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
97 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
98 	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
99 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
100 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
101 	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
102 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
103 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
104 	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
105 	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
106 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
107 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
108 	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
109 	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
110 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
111 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
112 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
113 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
114 };
115 
116 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
117 	{	byteswap_uint8_array,	"uint8"		},
118 	{	byteswap_uint16_array,	"uint16"	},
119 	{	byteswap_uint32_array,	"uint32"	},
120 	{	byteswap_uint64_array,	"uint64"	},
121 	{	zap_byteswap,		"zap"		},
122 	{	dnode_buf_byteswap,	"dnode"		},
123 	{	dmu_objset_byteswap,	"objset"	},
124 	{	zfs_znode_byteswap,	"znode"		},
125 	{	zfs_oldacl_byteswap,	"oldacl"	},
126 	{	zfs_acl_byteswap,	"acl"		}
127 };
128 
129 int
130 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
131     void *tag, dmu_buf_t **dbp)
132 {
133 	dnode_t *dn;
134 	uint64_t blkid;
135 	dmu_buf_impl_t *db;
136 	int err;
137 
138 	err = dnode_hold(os, object, FTAG, &dn);
139 	if (err)
140 		return (err);
141 	blkid = dbuf_whichblock(dn, offset);
142 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
143 	db = dbuf_hold(dn, blkid, tag);
144 	rw_exit(&dn->dn_struct_rwlock);
145 	dnode_rele(dn, FTAG);
146 
147 	if (db == NULL) {
148 		*dbp = NULL;
149 		return (SET_ERROR(EIO));
150 	}
151 
152 	*dbp = &db->db;
153 	return (err);
154 }
155 
156 int
157 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
158     void *tag, dmu_buf_t **dbp, int flags)
159 {
160 	int err;
161 	int db_flags = DB_RF_CANFAIL;
162 
163 	if (flags & DMU_READ_NO_PREFETCH)
164 		db_flags |= DB_RF_NOPREFETCH;
165 
166 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
167 	if (err == 0) {
168 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
169 		err = dbuf_read(db, NULL, db_flags);
170 		if (err != 0) {
171 			dbuf_rele(db, tag);
172 			*dbp = NULL;
173 		}
174 	}
175 
176 	return (err);
177 }
178 
179 int
180 dmu_bonus_max(void)
181 {
182 	return (DN_MAX_BONUSLEN);
183 }
184 
185 int
186 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
187 {
188 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
189 	dnode_t *dn;
190 	int error;
191 
192 	DB_DNODE_ENTER(db);
193 	dn = DB_DNODE(db);
194 
195 	if (dn->dn_bonus != db) {
196 		error = SET_ERROR(EINVAL);
197 	} else if (newsize < 0 || newsize > db_fake->db_size) {
198 		error = SET_ERROR(EINVAL);
199 	} else {
200 		dnode_setbonuslen(dn, newsize, tx);
201 		error = 0;
202 	}
203 
204 	DB_DNODE_EXIT(db);
205 	return (error);
206 }
207 
208 int
209 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
210 {
211 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
212 	dnode_t *dn;
213 	int error;
214 
215 	DB_DNODE_ENTER(db);
216 	dn = DB_DNODE(db);
217 
218 	if (!DMU_OT_IS_VALID(type)) {
219 		error = SET_ERROR(EINVAL);
220 	} else if (dn->dn_bonus != db) {
221 		error = SET_ERROR(EINVAL);
222 	} else {
223 		dnode_setbonus_type(dn, type, tx);
224 		error = 0;
225 	}
226 
227 	DB_DNODE_EXIT(db);
228 	return (error);
229 }
230 
231 dmu_object_type_t
232 dmu_get_bonustype(dmu_buf_t *db_fake)
233 {
234 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
235 	dnode_t *dn;
236 	dmu_object_type_t type;
237 
238 	DB_DNODE_ENTER(db);
239 	dn = DB_DNODE(db);
240 	type = dn->dn_bonustype;
241 	DB_DNODE_EXIT(db);
242 
243 	return (type);
244 }
245 
246 int
247 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
248 {
249 	dnode_t *dn;
250 	int error;
251 
252 	error = dnode_hold(os, object, FTAG, &dn);
253 	dbuf_rm_spill(dn, tx);
254 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
255 	dnode_rm_spill(dn, tx);
256 	rw_exit(&dn->dn_struct_rwlock);
257 	dnode_rele(dn, FTAG);
258 	return (error);
259 }
260 
261 /*
262  * returns ENOENT, EIO, or 0.
263  */
264 int
265 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
266 {
267 	dnode_t *dn;
268 	dmu_buf_impl_t *db;
269 	int error;
270 
271 	error = dnode_hold(os, object, FTAG, &dn);
272 	if (error)
273 		return (error);
274 
275 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
276 	if (dn->dn_bonus == NULL) {
277 		rw_exit(&dn->dn_struct_rwlock);
278 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
279 		if (dn->dn_bonus == NULL)
280 			dbuf_create_bonus(dn);
281 	}
282 	db = dn->dn_bonus;
283 
284 	/* as long as the bonus buf is held, the dnode will be held */
285 	if (refcount_add(&db->db_holds, tag) == 1) {
286 		VERIFY(dnode_add_ref(dn, db));
287 		(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
288 	}
289 
290 	/*
291 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
292 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
293 	 * a dnode hold for every dbuf.
294 	 */
295 	rw_exit(&dn->dn_struct_rwlock);
296 
297 	dnode_rele(dn, FTAG);
298 
299 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
300 
301 	*dbp = &db->db;
302 	return (0);
303 }
304 
305 /*
306  * returns ENOENT, EIO, or 0.
307  *
308  * This interface will allocate a blank spill dbuf when a spill blk
309  * doesn't already exist on the dnode.
310  *
311  * if you only want to find an already existing spill db, then
312  * dmu_spill_hold_existing() should be used.
313  */
314 int
315 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
316 {
317 	dmu_buf_impl_t *db = NULL;
318 	int err;
319 
320 	if ((flags & DB_RF_HAVESTRUCT) == 0)
321 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
322 
323 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
324 
325 	if ((flags & DB_RF_HAVESTRUCT) == 0)
326 		rw_exit(&dn->dn_struct_rwlock);
327 
328 	ASSERT(db != NULL);
329 	err = dbuf_read(db, NULL, flags);
330 	if (err == 0)
331 		*dbp = &db->db;
332 	else
333 		dbuf_rele(db, tag);
334 	return (err);
335 }
336 
337 int
338 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
339 {
340 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
341 	dnode_t *dn;
342 	int err;
343 
344 	DB_DNODE_ENTER(db);
345 	dn = DB_DNODE(db);
346 
347 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
348 		err = SET_ERROR(EINVAL);
349 	} else {
350 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
351 
352 		if (!dn->dn_have_spill) {
353 			err = SET_ERROR(ENOENT);
354 		} else {
355 			err = dmu_spill_hold_by_dnode(dn,
356 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
357 		}
358 
359 		rw_exit(&dn->dn_struct_rwlock);
360 	}
361 
362 	DB_DNODE_EXIT(db);
363 	return (err);
364 }
365 
366 int
367 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
368 {
369 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
370 	dnode_t *dn;
371 	int err;
372 
373 	DB_DNODE_ENTER(db);
374 	dn = DB_DNODE(db);
375 	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
376 	DB_DNODE_EXIT(db);
377 
378 	return (err);
379 }
380 
381 /*
382  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
383  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
384  * and can induce severe lock contention when writing to several files
385  * whose dnodes are in the same block.
386  */
387 static int
388 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
389     int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
390 {
391 	dmu_buf_t **dbp;
392 	uint64_t blkid, nblks, i;
393 	uint32_t dbuf_flags;
394 	int err;
395 	zio_t *zio;
396 
397 	ASSERT(length <= DMU_MAX_ACCESS);
398 
399 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
400 	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
401 		dbuf_flags |= DB_RF_NOPREFETCH;
402 
403 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
404 	if (dn->dn_datablkshift) {
405 		int blkshift = dn->dn_datablkshift;
406 		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
407 		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
408 	} else {
409 		if (offset + length > dn->dn_datablksz) {
410 			zfs_panic_recover("zfs: accessing past end of object "
411 			    "%llx/%llx (size=%u access=%llu+%llu)",
412 			    (longlong_t)dn->dn_objset->
413 			    os_dsl_dataset->ds_object,
414 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
415 			    (longlong_t)offset, (longlong_t)length);
416 			rw_exit(&dn->dn_struct_rwlock);
417 			return (SET_ERROR(EIO));
418 		}
419 		nblks = 1;
420 	}
421 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
422 
423 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
424 	blkid = dbuf_whichblock(dn, offset);
425 	for (i = 0; i < nblks; i++) {
426 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
427 		if (db == NULL) {
428 			rw_exit(&dn->dn_struct_rwlock);
429 			dmu_buf_rele_array(dbp, nblks, tag);
430 			zio_nowait(zio);
431 			return (SET_ERROR(EIO));
432 		}
433 		/* initiate async i/o */
434 		if (read) {
435 			(void) dbuf_read(db, zio, dbuf_flags);
436 		}
437 		dbp[i] = &db->db;
438 	}
439 	rw_exit(&dn->dn_struct_rwlock);
440 
441 	/* wait for async i/o */
442 	err = zio_wait(zio);
443 	if (err) {
444 		dmu_buf_rele_array(dbp, nblks, tag);
445 		return (err);
446 	}
447 
448 	/* wait for other io to complete */
449 	if (read) {
450 		for (i = 0; i < nblks; i++) {
451 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
452 			mutex_enter(&db->db_mtx);
453 			while (db->db_state == DB_READ ||
454 			    db->db_state == DB_FILL)
455 				cv_wait(&db->db_changed, &db->db_mtx);
456 			if (db->db_state == DB_UNCACHED)
457 				err = SET_ERROR(EIO);
458 			mutex_exit(&db->db_mtx);
459 			if (err) {
460 				dmu_buf_rele_array(dbp, nblks, tag);
461 				return (err);
462 			}
463 		}
464 	}
465 
466 	*numbufsp = nblks;
467 	*dbpp = dbp;
468 	return (0);
469 }
470 
471 static int
472 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
473     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
474 {
475 	dnode_t *dn;
476 	int err;
477 
478 	err = dnode_hold(os, object, FTAG, &dn);
479 	if (err)
480 		return (err);
481 
482 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
483 	    numbufsp, dbpp, DMU_READ_PREFETCH);
484 
485 	dnode_rele(dn, FTAG);
486 
487 	return (err);
488 }
489 
490 int
491 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
492     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
493 {
494 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
495 	dnode_t *dn;
496 	int err;
497 
498 	DB_DNODE_ENTER(db);
499 	dn = DB_DNODE(db);
500 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
501 	    numbufsp, dbpp, DMU_READ_PREFETCH);
502 	DB_DNODE_EXIT(db);
503 
504 	return (err);
505 }
506 
507 void
508 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
509 {
510 	int i;
511 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
512 
513 	if (numbufs == 0)
514 		return;
515 
516 	for (i = 0; i < numbufs; i++) {
517 		if (dbp[i])
518 			dbuf_rele(dbp[i], tag);
519 	}
520 
521 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
522 }
523 
524 /*
525  * Issue prefetch i/os for the given blocks.
526  *
527  * Note: The assumption is that we *know* these blocks will be needed
528  * almost immediately.  Therefore, the prefetch i/os will be issued at
529  * ZIO_PRIORITY_SYNC_READ
530  *
531  * Note: indirect blocks and other metadata will be read synchronously,
532  * causing this function to block if they are not already cached.
533  */
534 void
535 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
536 {
537 	dnode_t *dn;
538 	uint64_t blkid;
539 	int nblks, err;
540 
541 	if (zfs_prefetch_disable)
542 		return;
543 
544 	if (len == 0) {  /* they're interested in the bonus buffer */
545 		dn = DMU_META_DNODE(os);
546 
547 		if (object == 0 || object >= DN_MAX_OBJECT)
548 			return;
549 
550 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
551 		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
552 		dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
553 		rw_exit(&dn->dn_struct_rwlock);
554 		return;
555 	}
556 
557 	/*
558 	 * XXX - Note, if the dnode for the requested object is not
559 	 * already cached, we will do a *synchronous* read in the
560 	 * dnode_hold() call.  The same is true for any indirects.
561 	 */
562 	err = dnode_hold(os, object, FTAG, &dn);
563 	if (err != 0)
564 		return;
565 
566 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
567 	if (dn->dn_datablkshift) {
568 		int blkshift = dn->dn_datablkshift;
569 		nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
570 		    P2ALIGN(offset, 1 << blkshift)) >> blkshift;
571 	} else {
572 		nblks = (offset < dn->dn_datablksz);
573 	}
574 
575 	if (nblks != 0) {
576 		blkid = dbuf_whichblock(dn, offset);
577 		for (int i = 0; i < nblks; i++)
578 			dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
579 	}
580 
581 	rw_exit(&dn->dn_struct_rwlock);
582 
583 	dnode_rele(dn, FTAG);
584 }
585 
586 /*
587  * Get the next "chunk" of file data to free.  We traverse the file from
588  * the end so that the file gets shorter over time (if we crashes in the
589  * middle, this will leave us in a better state).  We find allocated file
590  * data by simply searching the allocated level 1 indirects.
591  *
592  * On input, *start should be the first offset that does not need to be
593  * freed (e.g. "offset + length").  On return, *start will be the first
594  * offset that should be freed.
595  */
596 static int
597 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
598 {
599 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
600 	/* bytes of data covered by a level-1 indirect block */
601 	uint64_t iblkrange =
602 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
603 
604 	ASSERT3U(minimum, <=, *start);
605 
606 	if (*start - minimum <= iblkrange * maxblks) {
607 		*start = minimum;
608 		return (0);
609 	}
610 	ASSERT(ISP2(iblkrange));
611 
612 	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
613 		int err;
614 
615 		/*
616 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
617 		 * indirect block at or before the input offset.  We must
618 		 * decrement *start so that it is at the end of the region
619 		 * to search.
620 		 */
621 		(*start)--;
622 		err = dnode_next_offset(dn,
623 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
624 
625 		/* if there are no indirect blocks before start, we are done */
626 		if (err == ESRCH) {
627 			*start = minimum;
628 			break;
629 		} else if (err != 0) {
630 			return (err);
631 		}
632 
633 		/* set start to the beginning of this L1 indirect */
634 		*start = P2ALIGN(*start, iblkrange);
635 	}
636 	if (*start < minimum)
637 		*start = minimum;
638 	return (0);
639 }
640 
641 static int
642 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
643     uint64_t length)
644 {
645 	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
646 	int err;
647 
648 	if (offset >= object_size)
649 		return (0);
650 
651 	if (length == DMU_OBJECT_END || offset + length > object_size)
652 		length = object_size - offset;
653 
654 	while (length != 0) {
655 		uint64_t chunk_end, chunk_begin;
656 
657 		chunk_end = chunk_begin = offset + length;
658 
659 		/* move chunk_begin backwards to the beginning of this chunk */
660 		err = get_next_chunk(dn, &chunk_begin, offset);
661 		if (err)
662 			return (err);
663 		ASSERT3U(chunk_begin, >=, offset);
664 		ASSERT3U(chunk_begin, <=, chunk_end);
665 
666 		dmu_tx_t *tx = dmu_tx_create(os);
667 		dmu_tx_hold_free(tx, dn->dn_object,
668 		    chunk_begin, chunk_end - chunk_begin);
669 		err = dmu_tx_assign(tx, TXG_WAIT);
670 		if (err) {
671 			dmu_tx_abort(tx);
672 			return (err);
673 		}
674 		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
675 		dmu_tx_commit(tx);
676 
677 		length -= chunk_end - chunk_begin;
678 	}
679 	return (0);
680 }
681 
682 int
683 dmu_free_long_range(objset_t *os, uint64_t object,
684     uint64_t offset, uint64_t length)
685 {
686 	dnode_t *dn;
687 	int err;
688 
689 	err = dnode_hold(os, object, FTAG, &dn);
690 	if (err != 0)
691 		return (err);
692 	err = dmu_free_long_range_impl(os, dn, offset, length);
693 
694 	/*
695 	 * It is important to zero out the maxblkid when freeing the entire
696 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
697 	 * will take the fast path, and (b) dnode_reallocate() can verify
698 	 * that the entire file has been freed.
699 	 */
700 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
701 		dn->dn_maxblkid = 0;
702 
703 	dnode_rele(dn, FTAG);
704 	return (err);
705 }
706 
707 int
708 dmu_free_long_object(objset_t *os, uint64_t object)
709 {
710 	dmu_tx_t *tx;
711 	int err;
712 
713 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
714 	if (err != 0)
715 		return (err);
716 
717 	tx = dmu_tx_create(os);
718 	dmu_tx_hold_bonus(tx, object);
719 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
720 	err = dmu_tx_assign(tx, TXG_WAIT);
721 	if (err == 0) {
722 		err = dmu_object_free(os, object, tx);
723 		dmu_tx_commit(tx);
724 	} else {
725 		dmu_tx_abort(tx);
726 	}
727 
728 	return (err);
729 }
730 
731 int
732 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
733     uint64_t size, dmu_tx_t *tx)
734 {
735 	dnode_t *dn;
736 	int err = dnode_hold(os, object, FTAG, &dn);
737 	if (err)
738 		return (err);
739 	ASSERT(offset < UINT64_MAX);
740 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
741 	dnode_free_range(dn, offset, size, tx);
742 	dnode_rele(dn, FTAG);
743 	return (0);
744 }
745 
746 int
747 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
748     void *buf, uint32_t flags)
749 {
750 	dnode_t *dn;
751 	dmu_buf_t **dbp;
752 	int numbufs, err;
753 
754 	err = dnode_hold(os, object, FTAG, &dn);
755 	if (err)
756 		return (err);
757 
758 	/*
759 	 * Deal with odd block sizes, where there can't be data past the first
760 	 * block.  If we ever do the tail block optimization, we will need to
761 	 * handle that here as well.
762 	 */
763 	if (dn->dn_maxblkid == 0) {
764 		int newsz = offset > dn->dn_datablksz ? 0 :
765 		    MIN(size, dn->dn_datablksz - offset);
766 		bzero((char *)buf + newsz, size - newsz);
767 		size = newsz;
768 	}
769 
770 	while (size > 0) {
771 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
772 		int i;
773 
774 		/*
775 		 * NB: we could do this block-at-a-time, but it's nice
776 		 * to be reading in parallel.
777 		 */
778 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
779 		    TRUE, FTAG, &numbufs, &dbp, flags);
780 		if (err)
781 			break;
782 
783 		for (i = 0; i < numbufs; i++) {
784 			int tocpy;
785 			int bufoff;
786 			dmu_buf_t *db = dbp[i];
787 
788 			ASSERT(size > 0);
789 
790 			bufoff = offset - db->db_offset;
791 			tocpy = (int)MIN(db->db_size - bufoff, size);
792 
793 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
794 
795 			offset += tocpy;
796 			size -= tocpy;
797 			buf = (char *)buf + tocpy;
798 		}
799 		dmu_buf_rele_array(dbp, numbufs, FTAG);
800 	}
801 	dnode_rele(dn, FTAG);
802 	return (err);
803 }
804 
805 void
806 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
807     const void *buf, dmu_tx_t *tx)
808 {
809 	dmu_buf_t **dbp;
810 	int numbufs, i;
811 
812 	if (size == 0)
813 		return;
814 
815 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
816 	    FALSE, FTAG, &numbufs, &dbp));
817 
818 	for (i = 0; i < numbufs; i++) {
819 		int tocpy;
820 		int bufoff;
821 		dmu_buf_t *db = dbp[i];
822 
823 		ASSERT(size > 0);
824 
825 		bufoff = offset - db->db_offset;
826 		tocpy = (int)MIN(db->db_size - bufoff, size);
827 
828 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
829 
830 		if (tocpy == db->db_size)
831 			dmu_buf_will_fill(db, tx);
832 		else
833 			dmu_buf_will_dirty(db, tx);
834 
835 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
836 
837 		if (tocpy == db->db_size)
838 			dmu_buf_fill_done(db, tx);
839 
840 		offset += tocpy;
841 		size -= tocpy;
842 		buf = (char *)buf + tocpy;
843 	}
844 	dmu_buf_rele_array(dbp, numbufs, FTAG);
845 }
846 
847 void
848 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
849     dmu_tx_t *tx)
850 {
851 	dmu_buf_t **dbp;
852 	int numbufs, i;
853 
854 	if (size == 0)
855 		return;
856 
857 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
858 	    FALSE, FTAG, &numbufs, &dbp));
859 
860 	for (i = 0; i < numbufs; i++) {
861 		dmu_buf_t *db = dbp[i];
862 
863 		dmu_buf_will_not_fill(db, tx);
864 	}
865 	dmu_buf_rele_array(dbp, numbufs, FTAG);
866 }
867 
868 void
869 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
870     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
871     int compressed_size, int byteorder, dmu_tx_t *tx)
872 {
873 	dmu_buf_t *db;
874 
875 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
876 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
877 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
878 	    FTAG, &db));
879 
880 	dmu_buf_write_embedded(db,
881 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
882 	    uncompressed_size, compressed_size, byteorder, tx);
883 
884 	dmu_buf_rele(db, FTAG);
885 }
886 
887 /*
888  * DMU support for xuio
889  */
890 kstat_t *xuio_ksp = NULL;
891 
892 int
893 dmu_xuio_init(xuio_t *xuio, int nblk)
894 {
895 	dmu_xuio_t *priv;
896 	uio_t *uio = &xuio->xu_uio;
897 
898 	uio->uio_iovcnt = nblk;
899 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
900 
901 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
902 	priv->cnt = nblk;
903 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
904 	priv->iovp = uio->uio_iov;
905 	XUIO_XUZC_PRIV(xuio) = priv;
906 
907 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
908 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
909 	else
910 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
911 
912 	return (0);
913 }
914 
915 void
916 dmu_xuio_fini(xuio_t *xuio)
917 {
918 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
919 	int nblk = priv->cnt;
920 
921 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
922 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
923 	kmem_free(priv, sizeof (dmu_xuio_t));
924 
925 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
926 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
927 	else
928 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
929 }
930 
931 /*
932  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
933  * and increase priv->next by 1.
934  */
935 int
936 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
937 {
938 	struct iovec *iov;
939 	uio_t *uio = &xuio->xu_uio;
940 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
941 	int i = priv->next++;
942 
943 	ASSERT(i < priv->cnt);
944 	ASSERT(off + n <= arc_buf_size(abuf));
945 	iov = uio->uio_iov + i;
946 	iov->iov_base = (char *)abuf->b_data + off;
947 	iov->iov_len = n;
948 	priv->bufs[i] = abuf;
949 	return (0);
950 }
951 
952 int
953 dmu_xuio_cnt(xuio_t *xuio)
954 {
955 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
956 	return (priv->cnt);
957 }
958 
959 arc_buf_t *
960 dmu_xuio_arcbuf(xuio_t *xuio, int i)
961 {
962 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
963 
964 	ASSERT(i < priv->cnt);
965 	return (priv->bufs[i]);
966 }
967 
968 void
969 dmu_xuio_clear(xuio_t *xuio, int i)
970 {
971 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
972 
973 	ASSERT(i < priv->cnt);
974 	priv->bufs[i] = NULL;
975 }
976 
977 static void
978 xuio_stat_init(void)
979 {
980 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
981 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
982 	    KSTAT_FLAG_VIRTUAL);
983 	if (xuio_ksp != NULL) {
984 		xuio_ksp->ks_data = &xuio_stats;
985 		kstat_install(xuio_ksp);
986 	}
987 }
988 
989 static void
990 xuio_stat_fini(void)
991 {
992 	if (xuio_ksp != NULL) {
993 		kstat_delete(xuio_ksp);
994 		xuio_ksp = NULL;
995 	}
996 }
997 
998 void
999 xuio_stat_wbuf_copied()
1000 {
1001 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1002 }
1003 
1004 void
1005 xuio_stat_wbuf_nocopy()
1006 {
1007 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1008 }
1009 
1010 #ifdef _KERNEL
1011 int
1012 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1013 {
1014 	dmu_buf_t **dbp;
1015 	int numbufs, i, err;
1016 	xuio_t *xuio = NULL;
1017 
1018 	/*
1019 	 * NB: we could do this block-at-a-time, but it's nice
1020 	 * to be reading in parallel.
1021 	 */
1022 	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
1023 	    &numbufs, &dbp);
1024 	if (err)
1025 		return (err);
1026 
1027 	if (uio->uio_extflg == UIO_XUIO)
1028 		xuio = (xuio_t *)uio;
1029 
1030 	for (i = 0; i < numbufs; i++) {
1031 		int tocpy;
1032 		int bufoff;
1033 		dmu_buf_t *db = dbp[i];
1034 
1035 		ASSERT(size > 0);
1036 
1037 		bufoff = uio->uio_loffset - db->db_offset;
1038 		tocpy = (int)MIN(db->db_size - bufoff, size);
1039 
1040 		if (xuio) {
1041 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1042 			arc_buf_t *dbuf_abuf = dbi->db_buf;
1043 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1044 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1045 			if (!err) {
1046 				uio->uio_resid -= tocpy;
1047 				uio->uio_loffset += tocpy;
1048 			}
1049 
1050 			if (abuf == dbuf_abuf)
1051 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1052 			else
1053 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1054 		} else {
1055 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1056 			    UIO_READ, uio);
1057 		}
1058 		if (err)
1059 			break;
1060 
1061 		size -= tocpy;
1062 	}
1063 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1064 
1065 	return (err);
1066 }
1067 
1068 static int
1069 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1070 {
1071 	dmu_buf_t **dbp;
1072 	int numbufs;
1073 	int err = 0;
1074 	int i;
1075 
1076 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1077 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1078 	if (err)
1079 		return (err);
1080 
1081 	for (i = 0; i < numbufs; i++) {
1082 		int tocpy;
1083 		int bufoff;
1084 		dmu_buf_t *db = dbp[i];
1085 
1086 		ASSERT(size > 0);
1087 
1088 		bufoff = uio->uio_loffset - db->db_offset;
1089 		tocpy = (int)MIN(db->db_size - bufoff, size);
1090 
1091 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1092 
1093 		if (tocpy == db->db_size)
1094 			dmu_buf_will_fill(db, tx);
1095 		else
1096 			dmu_buf_will_dirty(db, tx);
1097 
1098 		/*
1099 		 * XXX uiomove could block forever (eg. nfs-backed
1100 		 * pages).  There needs to be a uiolockdown() function
1101 		 * to lock the pages in memory, so that uiomove won't
1102 		 * block.
1103 		 */
1104 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1105 		    UIO_WRITE, uio);
1106 
1107 		if (tocpy == db->db_size)
1108 			dmu_buf_fill_done(db, tx);
1109 
1110 		if (err)
1111 			break;
1112 
1113 		size -= tocpy;
1114 	}
1115 
1116 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1117 	return (err);
1118 }
1119 
1120 int
1121 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1122     dmu_tx_t *tx)
1123 {
1124 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1125 	dnode_t *dn;
1126 	int err;
1127 
1128 	if (size == 0)
1129 		return (0);
1130 
1131 	DB_DNODE_ENTER(db);
1132 	dn = DB_DNODE(db);
1133 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1134 	DB_DNODE_EXIT(db);
1135 
1136 	return (err);
1137 }
1138 
1139 int
1140 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1141     dmu_tx_t *tx)
1142 {
1143 	dnode_t *dn;
1144 	int err;
1145 
1146 	if (size == 0)
1147 		return (0);
1148 
1149 	err = dnode_hold(os, object, FTAG, &dn);
1150 	if (err)
1151 		return (err);
1152 
1153 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1154 
1155 	dnode_rele(dn, FTAG);
1156 
1157 	return (err);
1158 }
1159 
1160 int
1161 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1162     page_t *pp, dmu_tx_t *tx)
1163 {
1164 	dmu_buf_t **dbp;
1165 	int numbufs, i;
1166 	int err;
1167 
1168 	if (size == 0)
1169 		return (0);
1170 
1171 	err = dmu_buf_hold_array(os, object, offset, size,
1172 	    FALSE, FTAG, &numbufs, &dbp);
1173 	if (err)
1174 		return (err);
1175 
1176 	for (i = 0; i < numbufs; i++) {
1177 		int tocpy, copied, thiscpy;
1178 		int bufoff;
1179 		dmu_buf_t *db = dbp[i];
1180 		caddr_t va;
1181 
1182 		ASSERT(size > 0);
1183 		ASSERT3U(db->db_size, >=, PAGESIZE);
1184 
1185 		bufoff = offset - db->db_offset;
1186 		tocpy = (int)MIN(db->db_size - bufoff, size);
1187 
1188 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1189 
1190 		if (tocpy == db->db_size)
1191 			dmu_buf_will_fill(db, tx);
1192 		else
1193 			dmu_buf_will_dirty(db, tx);
1194 
1195 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1196 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1197 			thiscpy = MIN(PAGESIZE, tocpy - copied);
1198 			va = zfs_map_page(pp, S_READ);
1199 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1200 			zfs_unmap_page(pp, va);
1201 			pp = pp->p_next;
1202 			bufoff += PAGESIZE;
1203 		}
1204 
1205 		if (tocpy == db->db_size)
1206 			dmu_buf_fill_done(db, tx);
1207 
1208 		offset += tocpy;
1209 		size -= tocpy;
1210 	}
1211 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1212 	return (err);
1213 }
1214 #endif
1215 
1216 /*
1217  * Allocate a loaned anonymous arc buffer.
1218  */
1219 arc_buf_t *
1220 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1221 {
1222 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1223 
1224 	return (arc_loan_buf(db->db_objset->os_spa, size));
1225 }
1226 
1227 /*
1228  * Free a loaned arc buffer.
1229  */
1230 void
1231 dmu_return_arcbuf(arc_buf_t *buf)
1232 {
1233 	arc_return_buf(buf, FTAG);
1234 	VERIFY(arc_buf_remove_ref(buf, FTAG));
1235 }
1236 
1237 /*
1238  * When possible directly assign passed loaned arc buffer to a dbuf.
1239  * If this is not possible copy the contents of passed arc buf via
1240  * dmu_write().
1241  */
1242 void
1243 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1244     dmu_tx_t *tx)
1245 {
1246 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1247 	dnode_t *dn;
1248 	dmu_buf_impl_t *db;
1249 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1250 	uint64_t blkid;
1251 
1252 	DB_DNODE_ENTER(dbuf);
1253 	dn = DB_DNODE(dbuf);
1254 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1255 	blkid = dbuf_whichblock(dn, offset);
1256 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1257 	rw_exit(&dn->dn_struct_rwlock);
1258 	DB_DNODE_EXIT(dbuf);
1259 
1260 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1261 		dbuf_assign_arcbuf(db, buf, tx);
1262 		dbuf_rele(db, FTAG);
1263 	} else {
1264 		objset_t *os;
1265 		uint64_t object;
1266 
1267 		DB_DNODE_ENTER(dbuf);
1268 		dn = DB_DNODE(dbuf);
1269 		os = dn->dn_objset;
1270 		object = dn->dn_object;
1271 		DB_DNODE_EXIT(dbuf);
1272 
1273 		dbuf_rele(db, FTAG);
1274 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1275 		dmu_return_arcbuf(buf);
1276 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1277 	}
1278 }
1279 
1280 typedef struct {
1281 	dbuf_dirty_record_t	*dsa_dr;
1282 	dmu_sync_cb_t		*dsa_done;
1283 	zgd_t			*dsa_zgd;
1284 	dmu_tx_t		*dsa_tx;
1285 } dmu_sync_arg_t;
1286 
1287 /* ARGSUSED */
1288 static void
1289 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1290 {
1291 	dmu_sync_arg_t *dsa = varg;
1292 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1293 	blkptr_t *bp = zio->io_bp;
1294 
1295 	if (zio->io_error == 0) {
1296 		if (BP_IS_HOLE(bp)) {
1297 			/*
1298 			 * A block of zeros may compress to a hole, but the
1299 			 * block size still needs to be known for replay.
1300 			 */
1301 			BP_SET_LSIZE(bp, db->db_size);
1302 		} else if (!BP_IS_EMBEDDED(bp)) {
1303 			ASSERT(BP_GET_LEVEL(bp) == 0);
1304 			bp->blk_fill = 1;
1305 		}
1306 	}
1307 }
1308 
1309 static void
1310 dmu_sync_late_arrival_ready(zio_t *zio)
1311 {
1312 	dmu_sync_ready(zio, NULL, zio->io_private);
1313 }
1314 
1315 /* ARGSUSED */
1316 static void
1317 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1318 {
1319 	dmu_sync_arg_t *dsa = varg;
1320 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1321 	dmu_buf_impl_t *db = dr->dr_dbuf;
1322 
1323 	mutex_enter(&db->db_mtx);
1324 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1325 	if (zio->io_error == 0) {
1326 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1327 		if (dr->dt.dl.dr_nopwrite) {
1328 			blkptr_t *bp = zio->io_bp;
1329 			blkptr_t *bp_orig = &zio->io_bp_orig;
1330 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1331 
1332 			ASSERT(BP_EQUAL(bp, bp_orig));
1333 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1334 			ASSERT(zio_checksum_table[chksum].ci_dedup);
1335 		}
1336 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1337 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1338 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1339 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1340 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1341 	} else {
1342 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1343 	}
1344 	cv_broadcast(&db->db_changed);
1345 	mutex_exit(&db->db_mtx);
1346 
1347 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1348 
1349 	kmem_free(dsa, sizeof (*dsa));
1350 }
1351 
1352 static void
1353 dmu_sync_late_arrival_done(zio_t *zio)
1354 {
1355 	blkptr_t *bp = zio->io_bp;
1356 	dmu_sync_arg_t *dsa = zio->io_private;
1357 	blkptr_t *bp_orig = &zio->io_bp_orig;
1358 
1359 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1360 		/*
1361 		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1362 		 * then there is nothing to do here. Otherwise, free the
1363 		 * newly allocated block in this txg.
1364 		 */
1365 		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1366 			ASSERT(BP_EQUAL(bp, bp_orig));
1367 		} else {
1368 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1369 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1370 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1371 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1372 		}
1373 	}
1374 
1375 	dmu_tx_commit(dsa->dsa_tx);
1376 
1377 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1378 
1379 	kmem_free(dsa, sizeof (*dsa));
1380 }
1381 
1382 static int
1383 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1384     zio_prop_t *zp, zbookmark_phys_t *zb)
1385 {
1386 	dmu_sync_arg_t *dsa;
1387 	dmu_tx_t *tx;
1388 
1389 	tx = dmu_tx_create(os);
1390 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1391 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1392 		dmu_tx_abort(tx);
1393 		/* Make zl_get_data do txg_waited_synced() */
1394 		return (SET_ERROR(EIO));
1395 	}
1396 
1397 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1398 	dsa->dsa_dr = NULL;
1399 	dsa->dsa_done = done;
1400 	dsa->dsa_zgd = zgd;
1401 	dsa->dsa_tx = tx;
1402 
1403 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1404 	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1405 	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1406 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1407 
1408 	return (0);
1409 }
1410 
1411 /*
1412  * Intent log support: sync the block associated with db to disk.
1413  * N.B. and XXX: the caller is responsible for making sure that the
1414  * data isn't changing while dmu_sync() is writing it.
1415  *
1416  * Return values:
1417  *
1418  *	EEXIST: this txg has already been synced, so there's nothing to do.
1419  *		The caller should not log the write.
1420  *
1421  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1422  *		The caller should not log the write.
1423  *
1424  *	EALREADY: this block is already in the process of being synced.
1425  *		The caller should track its progress (somehow).
1426  *
1427  *	EIO: could not do the I/O.
1428  *		The caller should do a txg_wait_synced().
1429  *
1430  *	0: the I/O has been initiated.
1431  *		The caller should log this blkptr in the done callback.
1432  *		It is possible that the I/O will fail, in which case
1433  *		the error will be reported to the done callback and
1434  *		propagated to pio from zio_done().
1435  */
1436 int
1437 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1438 {
1439 	blkptr_t *bp = zgd->zgd_bp;
1440 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1441 	objset_t *os = db->db_objset;
1442 	dsl_dataset_t *ds = os->os_dsl_dataset;
1443 	dbuf_dirty_record_t *dr;
1444 	dmu_sync_arg_t *dsa;
1445 	zbookmark_phys_t zb;
1446 	zio_prop_t zp;
1447 	dnode_t *dn;
1448 
1449 	ASSERT(pio != NULL);
1450 	ASSERT(txg != 0);
1451 
1452 	SET_BOOKMARK(&zb, ds->ds_object,
1453 	    db->db.db_object, db->db_level, db->db_blkid);
1454 
1455 	DB_DNODE_ENTER(db);
1456 	dn = DB_DNODE(db);
1457 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1458 	DB_DNODE_EXIT(db);
1459 
1460 	/*
1461 	 * If we're frozen (running ziltest), we always need to generate a bp.
1462 	 */
1463 	if (txg > spa_freeze_txg(os->os_spa))
1464 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1465 
1466 	/*
1467 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1468 	 * and us.  If we determine that this txg is not yet syncing,
1469 	 * but it begins to sync a moment later, that's OK because the
1470 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1471 	 */
1472 	mutex_enter(&db->db_mtx);
1473 
1474 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1475 		/*
1476 		 * This txg has already synced.  There's nothing to do.
1477 		 */
1478 		mutex_exit(&db->db_mtx);
1479 		return (SET_ERROR(EEXIST));
1480 	}
1481 
1482 	if (txg <= spa_syncing_txg(os->os_spa)) {
1483 		/*
1484 		 * This txg is currently syncing, so we can't mess with
1485 		 * the dirty record anymore; just write a new log block.
1486 		 */
1487 		mutex_exit(&db->db_mtx);
1488 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1489 	}
1490 
1491 	dr = db->db_last_dirty;
1492 	while (dr && dr->dr_txg != txg)
1493 		dr = dr->dr_next;
1494 
1495 	if (dr == NULL) {
1496 		/*
1497 		 * There's no dr for this dbuf, so it must have been freed.
1498 		 * There's no need to log writes to freed blocks, so we're done.
1499 		 */
1500 		mutex_exit(&db->db_mtx);
1501 		return (SET_ERROR(ENOENT));
1502 	}
1503 
1504 	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1505 
1506 	/*
1507 	 * Assume the on-disk data is X, the current syncing data is Y,
1508 	 * and the current in-memory data is Z (currently in dmu_sync).
1509 	 * X and Z are identical but Y is has been modified. Normally,
1510 	 * when X and Z are the same we will perform a nopwrite but if Y
1511 	 * is different we must disable nopwrite since the resulting write
1512 	 * of Y to disk can free the block containing X. If we allowed a
1513 	 * nopwrite to occur the block pointing to Z would reference a freed
1514 	 * block. Since this is a rare case we simplify this by disabling
1515 	 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1516 	 * a previous transaction.
1517 	 */
1518 	if (dr->dr_next)
1519 		zp.zp_nopwrite = B_FALSE;
1520 
1521 	ASSERT(dr->dr_txg == txg);
1522 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1523 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1524 		/*
1525 		 * We have already issued a sync write for this buffer,
1526 		 * or this buffer has already been synced.  It could not
1527 		 * have been dirtied since, or we would have cleared the state.
1528 		 */
1529 		mutex_exit(&db->db_mtx);
1530 		return (SET_ERROR(EALREADY));
1531 	}
1532 
1533 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1534 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1535 	mutex_exit(&db->db_mtx);
1536 
1537 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1538 	dsa->dsa_dr = dr;
1539 	dsa->dsa_done = done;
1540 	dsa->dsa_zgd = zgd;
1541 	dsa->dsa_tx = NULL;
1542 
1543 	zio_nowait(arc_write(pio, os->os_spa, txg,
1544 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1545 	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1546 	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1547 	    ZIO_FLAG_CANFAIL, &zb));
1548 
1549 	return (0);
1550 }
1551 
1552 int
1553 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1554 	dmu_tx_t *tx)
1555 {
1556 	dnode_t *dn;
1557 	int err;
1558 
1559 	err = dnode_hold(os, object, FTAG, &dn);
1560 	if (err)
1561 		return (err);
1562 	err = dnode_set_blksz(dn, size, ibs, tx);
1563 	dnode_rele(dn, FTAG);
1564 	return (err);
1565 }
1566 
1567 void
1568 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1569 	dmu_tx_t *tx)
1570 {
1571 	dnode_t *dn;
1572 
1573 	/*
1574 	 * Send streams include each object's checksum function.  This
1575 	 * check ensures that the receiving system can understand the
1576 	 * checksum function transmitted.
1577 	 */
1578 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1579 
1580 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1581 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1582 	dn->dn_checksum = checksum;
1583 	dnode_setdirty(dn, tx);
1584 	dnode_rele(dn, FTAG);
1585 }
1586 
1587 void
1588 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1589 	dmu_tx_t *tx)
1590 {
1591 	dnode_t *dn;
1592 
1593 	/*
1594 	 * Send streams include each object's compression function.  This
1595 	 * check ensures that the receiving system can understand the
1596 	 * compression function transmitted.
1597 	 */
1598 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1599 
1600 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1601 	dn->dn_compress = compress;
1602 	dnode_setdirty(dn, tx);
1603 	dnode_rele(dn, FTAG);
1604 }
1605 
1606 int zfs_mdcomp_disable = 0;
1607 
1608 /*
1609  * When the "redundant_metadata" property is set to "most", only indirect
1610  * blocks of this level and higher will have an additional ditto block.
1611  */
1612 int zfs_redundant_metadata_most_ditto_level = 2;
1613 
1614 void
1615 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1616 {
1617 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1618 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1619 	    (wp & WP_SPILL));
1620 	enum zio_checksum checksum = os->os_checksum;
1621 	enum zio_compress compress = os->os_compress;
1622 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1623 	boolean_t dedup = B_FALSE;
1624 	boolean_t nopwrite = B_FALSE;
1625 	boolean_t dedup_verify = os->os_dedup_verify;
1626 	int copies = os->os_copies;
1627 
1628 	/*
1629 	 * We maintain different write policies for each of the following
1630 	 * types of data:
1631 	 *	 1. metadata
1632 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1633 	 *	 3. all other level 0 blocks
1634 	 */
1635 	if (ismd) {
1636 		/*
1637 		 * XXX -- we should design a compression algorithm
1638 		 * that specializes in arrays of bps.
1639 		 */
1640 		boolean_t lz4_ac = spa_feature_is_active(os->os_spa,
1641 		    SPA_FEATURE_LZ4_COMPRESS);
1642 
1643 		if (zfs_mdcomp_disable) {
1644 			compress = ZIO_COMPRESS_EMPTY;
1645 		} else if (lz4_ac) {
1646 			compress = ZIO_COMPRESS_LZ4;
1647 		} else {
1648 			compress = ZIO_COMPRESS_LZJB;
1649 		}
1650 
1651 		/*
1652 		 * Metadata always gets checksummed.  If the data
1653 		 * checksum is multi-bit correctable, and it's not a
1654 		 * ZBT-style checksum, then it's suitable for metadata
1655 		 * as well.  Otherwise, the metadata checksum defaults
1656 		 * to fletcher4.
1657 		 */
1658 		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1659 		    zio_checksum_table[checksum].ci_eck)
1660 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1661 
1662 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1663 		    (os->os_redundant_metadata ==
1664 		    ZFS_REDUNDANT_METADATA_MOST &&
1665 		    (level >= zfs_redundant_metadata_most_ditto_level ||
1666 		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1667 			copies++;
1668 	} else if (wp & WP_NOFILL) {
1669 		ASSERT(level == 0);
1670 
1671 		/*
1672 		 * If we're writing preallocated blocks, we aren't actually
1673 		 * writing them so don't set any policy properties.  These
1674 		 * blocks are currently only used by an external subsystem
1675 		 * outside of zfs (i.e. dump) and not written by the zio
1676 		 * pipeline.
1677 		 */
1678 		compress = ZIO_COMPRESS_OFF;
1679 		checksum = ZIO_CHECKSUM_NOPARITY;
1680 	} else {
1681 		compress = zio_compress_select(dn->dn_compress, compress);
1682 
1683 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1684 		    zio_checksum_select(dn->dn_checksum, checksum) :
1685 		    dedup_checksum;
1686 
1687 		/*
1688 		 * Determine dedup setting.  If we are in dmu_sync(),
1689 		 * we won't actually dedup now because that's all
1690 		 * done in syncing context; but we do want to use the
1691 		 * dedup checkum.  If the checksum is not strong
1692 		 * enough to ensure unique signatures, force
1693 		 * dedup_verify.
1694 		 */
1695 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1696 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1697 			if (!zio_checksum_table[checksum].ci_dedup)
1698 				dedup_verify = B_TRUE;
1699 		}
1700 
1701 		/*
1702 		 * Enable nopwrite if we have a cryptographically secure
1703 		 * checksum that has no known collisions (i.e. SHA-256)
1704 		 * and compression is enabled.  We don't enable nopwrite if
1705 		 * dedup is enabled as the two features are mutually exclusive.
1706 		 */
1707 		nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1708 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1709 	}
1710 
1711 	zp->zp_checksum = checksum;
1712 	zp->zp_compress = compress;
1713 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1714 	zp->zp_level = level;
1715 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1716 	zp->zp_dedup = dedup;
1717 	zp->zp_dedup_verify = dedup && dedup_verify;
1718 	zp->zp_nopwrite = nopwrite;
1719 }
1720 
1721 int
1722 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1723 {
1724 	dnode_t *dn;
1725 	int i, err;
1726 
1727 	err = dnode_hold(os, object, FTAG, &dn);
1728 	if (err)
1729 		return (err);
1730 	/*
1731 	 * Sync any current changes before
1732 	 * we go trundling through the block pointers.
1733 	 */
1734 	for (i = 0; i < TXG_SIZE; i++) {
1735 		if (list_link_active(&dn->dn_dirty_link[i]))
1736 			break;
1737 	}
1738 	if (i != TXG_SIZE) {
1739 		dnode_rele(dn, FTAG);
1740 		txg_wait_synced(dmu_objset_pool(os), 0);
1741 		err = dnode_hold(os, object, FTAG, &dn);
1742 		if (err)
1743 			return (err);
1744 	}
1745 
1746 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1747 	dnode_rele(dn, FTAG);
1748 
1749 	return (err);
1750 }
1751 
1752 void
1753 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1754 {
1755 	dnode_phys_t *dnp;
1756 
1757 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1758 	mutex_enter(&dn->dn_mtx);
1759 
1760 	dnp = dn->dn_phys;
1761 
1762 	doi->doi_data_block_size = dn->dn_datablksz;
1763 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1764 	    1ULL << dn->dn_indblkshift : 0;
1765 	doi->doi_type = dn->dn_type;
1766 	doi->doi_bonus_type = dn->dn_bonustype;
1767 	doi->doi_bonus_size = dn->dn_bonuslen;
1768 	doi->doi_indirection = dn->dn_nlevels;
1769 	doi->doi_checksum = dn->dn_checksum;
1770 	doi->doi_compress = dn->dn_compress;
1771 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1772 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1773 	doi->doi_fill_count = 0;
1774 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1775 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
1776 
1777 	mutex_exit(&dn->dn_mtx);
1778 	rw_exit(&dn->dn_struct_rwlock);
1779 }
1780 
1781 /*
1782  * Get information on a DMU object.
1783  * If doi is NULL, just indicates whether the object exists.
1784  */
1785 int
1786 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1787 {
1788 	dnode_t *dn;
1789 	int err = dnode_hold(os, object, FTAG, &dn);
1790 
1791 	if (err)
1792 		return (err);
1793 
1794 	if (doi != NULL)
1795 		dmu_object_info_from_dnode(dn, doi);
1796 
1797 	dnode_rele(dn, FTAG);
1798 	return (0);
1799 }
1800 
1801 /*
1802  * As above, but faster; can be used when you have a held dbuf in hand.
1803  */
1804 void
1805 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1806 {
1807 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1808 
1809 	DB_DNODE_ENTER(db);
1810 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1811 	DB_DNODE_EXIT(db);
1812 }
1813 
1814 /*
1815  * Faster still when you only care about the size.
1816  * This is specifically optimized for zfs_getattr().
1817  */
1818 void
1819 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1820     u_longlong_t *nblk512)
1821 {
1822 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1823 	dnode_t *dn;
1824 
1825 	DB_DNODE_ENTER(db);
1826 	dn = DB_DNODE(db);
1827 
1828 	*blksize = dn->dn_datablksz;
1829 	/* add 1 for dnode space */
1830 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1831 	    SPA_MINBLOCKSHIFT) + 1;
1832 	DB_DNODE_EXIT(db);
1833 }
1834 
1835 void
1836 byteswap_uint64_array(void *vbuf, size_t size)
1837 {
1838 	uint64_t *buf = vbuf;
1839 	size_t count = size >> 3;
1840 	int i;
1841 
1842 	ASSERT((size & 7) == 0);
1843 
1844 	for (i = 0; i < count; i++)
1845 		buf[i] = BSWAP_64(buf[i]);
1846 }
1847 
1848 void
1849 byteswap_uint32_array(void *vbuf, size_t size)
1850 {
1851 	uint32_t *buf = vbuf;
1852 	size_t count = size >> 2;
1853 	int i;
1854 
1855 	ASSERT((size & 3) == 0);
1856 
1857 	for (i = 0; i < count; i++)
1858 		buf[i] = BSWAP_32(buf[i]);
1859 }
1860 
1861 void
1862 byteswap_uint16_array(void *vbuf, size_t size)
1863 {
1864 	uint16_t *buf = vbuf;
1865 	size_t count = size >> 1;
1866 	int i;
1867 
1868 	ASSERT((size & 1) == 0);
1869 
1870 	for (i = 0; i < count; i++)
1871 		buf[i] = BSWAP_16(buf[i]);
1872 }
1873 
1874 /* ARGSUSED */
1875 void
1876 byteswap_uint8_array(void *vbuf, size_t size)
1877 {
1878 }
1879 
1880 void
1881 dmu_init(void)
1882 {
1883 	zfs_dbgmsg_init();
1884 	sa_cache_init();
1885 	xuio_stat_init();
1886 	dmu_objset_init();
1887 	dnode_init();
1888 	dbuf_init();
1889 	zfetch_init();
1890 	l2arc_init();
1891 	arc_init();
1892 }
1893 
1894 void
1895 dmu_fini(void)
1896 {
1897 	arc_fini(); /* arc depends on l2arc, so arc must go first */
1898 	l2arc_fini();
1899 	zfetch_fini();
1900 	dbuf_fini();
1901 	dnode_fini();
1902 	dmu_objset_fini();
1903 	xuio_stat_fini();
1904 	sa_cache_fini();
1905 	zfs_dbgmsg_fini();
1906 }
1907