xref: /illumos-gate/usr/src/uts/common/fs/zfs/dmu.c (revision 7540df39e407a55c887fa4ab85d85abc26cc0cf2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/dmu.h>
27 #include <sys/dmu_impl.h>
28 #include <sys/dmu_tx.h>
29 #include <sys/dbuf.h>
30 #include <sys/dnode.h>
31 #include <sys/zfs_context.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_traverse.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_pool.h>
37 #include <sys/dsl_synctask.h>
38 #include <sys/dsl_prop.h>
39 #include <sys/dmu_zfetch.h>
40 #include <sys/zfs_ioctl.h>
41 #include <sys/zap.h>
42 #include <sys/zio_checksum.h>
43 #include <sys/zio_compress.h>
44 #include <sys/sa.h>
45 #ifdef _KERNEL
46 #include <sys/vmsystm.h>
47 #include <sys/zfs_znode.h>
48 #endif
49 
50 /*
51  * Enable/disable nopwrite feature.
52  */
53 int zfs_nopwrite_enabled = 1;
54 
55 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
56 	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
57 	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
58 	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
59 	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
60 	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
61 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
62 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
63 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
64 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
65 	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
66 	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
67 	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
68 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
69 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
70 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
71 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
72 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
73 	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
74 	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
75 	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
76 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
77 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
78 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
79 	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
80 	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
81 	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
82 	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
83 	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
84 	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
85 	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
86 	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
87 	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
88 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
89 	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
90 	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
91 	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
92 	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
93 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
94 	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
95 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
96 	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
97 	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
98 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
99 	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
100 	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
101 	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
102 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
103 	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
104 	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
105 	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
106 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
107 	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
108 	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
109 	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
110 };
111 
112 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
113 	{	byteswap_uint8_array,	"uint8"		},
114 	{	byteswap_uint16_array,	"uint16"	},
115 	{	byteswap_uint32_array,	"uint32"	},
116 	{	byteswap_uint64_array,	"uint64"	},
117 	{	zap_byteswap,		"zap"		},
118 	{	dnode_buf_byteswap,	"dnode"		},
119 	{	dmu_objset_byteswap,	"objset"	},
120 	{	zfs_znode_byteswap,	"znode"		},
121 	{	zfs_oldacl_byteswap,	"oldacl"	},
122 	{	zfs_acl_byteswap,	"acl"		}
123 };
124 
125 int
126 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
127     void *tag, dmu_buf_t **dbp, int flags)
128 {
129 	dnode_t *dn;
130 	uint64_t blkid;
131 	dmu_buf_impl_t *db;
132 	int err;
133 	int db_flags = DB_RF_CANFAIL;
134 
135 	if (flags & DMU_READ_NO_PREFETCH)
136 		db_flags |= DB_RF_NOPREFETCH;
137 
138 	err = dnode_hold(os, object, FTAG, &dn);
139 	if (err)
140 		return (err);
141 	blkid = dbuf_whichblock(dn, offset);
142 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
143 	db = dbuf_hold(dn, blkid, tag);
144 	rw_exit(&dn->dn_struct_rwlock);
145 	if (db == NULL) {
146 		err = EIO;
147 	} else {
148 		err = dbuf_read(db, NULL, db_flags);
149 		if (err) {
150 			dbuf_rele(db, tag);
151 			db = NULL;
152 		}
153 	}
154 
155 	dnode_rele(dn, FTAG);
156 	*dbp = &db->db; /* NULL db plus first field offset is NULL */
157 	return (err);
158 }
159 
160 int
161 dmu_bonus_max(void)
162 {
163 	return (DN_MAX_BONUSLEN);
164 }
165 
166 int
167 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
168 {
169 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
170 	dnode_t *dn;
171 	int error;
172 
173 	DB_DNODE_ENTER(db);
174 	dn = DB_DNODE(db);
175 
176 	if (dn->dn_bonus != db) {
177 		error = EINVAL;
178 	} else if (newsize < 0 || newsize > db_fake->db_size) {
179 		error = EINVAL;
180 	} else {
181 		dnode_setbonuslen(dn, newsize, tx);
182 		error = 0;
183 	}
184 
185 	DB_DNODE_EXIT(db);
186 	return (error);
187 }
188 
189 int
190 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
191 {
192 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
193 	dnode_t *dn;
194 	int error;
195 
196 	DB_DNODE_ENTER(db);
197 	dn = DB_DNODE(db);
198 
199 	if (!DMU_OT_IS_VALID(type)) {
200 		error = EINVAL;
201 	} else if (dn->dn_bonus != db) {
202 		error = EINVAL;
203 	} else {
204 		dnode_setbonus_type(dn, type, tx);
205 		error = 0;
206 	}
207 
208 	DB_DNODE_EXIT(db);
209 	return (error);
210 }
211 
212 dmu_object_type_t
213 dmu_get_bonustype(dmu_buf_t *db_fake)
214 {
215 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
216 	dnode_t *dn;
217 	dmu_object_type_t type;
218 
219 	DB_DNODE_ENTER(db);
220 	dn = DB_DNODE(db);
221 	type = dn->dn_bonustype;
222 	DB_DNODE_EXIT(db);
223 
224 	return (type);
225 }
226 
227 int
228 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
229 {
230 	dnode_t *dn;
231 	int error;
232 
233 	error = dnode_hold(os, object, FTAG, &dn);
234 	dbuf_rm_spill(dn, tx);
235 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
236 	dnode_rm_spill(dn, tx);
237 	rw_exit(&dn->dn_struct_rwlock);
238 	dnode_rele(dn, FTAG);
239 	return (error);
240 }
241 
242 /*
243  * returns ENOENT, EIO, or 0.
244  */
245 int
246 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
247 {
248 	dnode_t *dn;
249 	dmu_buf_impl_t *db;
250 	int error;
251 
252 	error = dnode_hold(os, object, FTAG, &dn);
253 	if (error)
254 		return (error);
255 
256 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
257 	if (dn->dn_bonus == NULL) {
258 		rw_exit(&dn->dn_struct_rwlock);
259 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
260 		if (dn->dn_bonus == NULL)
261 			dbuf_create_bonus(dn);
262 	}
263 	db = dn->dn_bonus;
264 
265 	/* as long as the bonus buf is held, the dnode will be held */
266 	if (refcount_add(&db->db_holds, tag) == 1) {
267 		VERIFY(dnode_add_ref(dn, db));
268 		(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
269 	}
270 
271 	/*
272 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
273 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
274 	 * a dnode hold for every dbuf.
275 	 */
276 	rw_exit(&dn->dn_struct_rwlock);
277 
278 	dnode_rele(dn, FTAG);
279 
280 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
281 
282 	*dbp = &db->db;
283 	return (0);
284 }
285 
286 /*
287  * returns ENOENT, EIO, or 0.
288  *
289  * This interface will allocate a blank spill dbuf when a spill blk
290  * doesn't already exist on the dnode.
291  *
292  * if you only want to find an already existing spill db, then
293  * dmu_spill_hold_existing() should be used.
294  */
295 int
296 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
297 {
298 	dmu_buf_impl_t *db = NULL;
299 	int err;
300 
301 	if ((flags & DB_RF_HAVESTRUCT) == 0)
302 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
303 
304 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
305 
306 	if ((flags & DB_RF_HAVESTRUCT) == 0)
307 		rw_exit(&dn->dn_struct_rwlock);
308 
309 	ASSERT(db != NULL);
310 	err = dbuf_read(db, NULL, flags);
311 	if (err == 0)
312 		*dbp = &db->db;
313 	else
314 		dbuf_rele(db, tag);
315 	return (err);
316 }
317 
318 int
319 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
320 {
321 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
322 	dnode_t *dn;
323 	int err;
324 
325 	DB_DNODE_ENTER(db);
326 	dn = DB_DNODE(db);
327 
328 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
329 		err = EINVAL;
330 	} else {
331 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
332 
333 		if (!dn->dn_have_spill) {
334 			err = ENOENT;
335 		} else {
336 			err = dmu_spill_hold_by_dnode(dn,
337 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
338 		}
339 
340 		rw_exit(&dn->dn_struct_rwlock);
341 	}
342 
343 	DB_DNODE_EXIT(db);
344 	return (err);
345 }
346 
347 int
348 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
349 {
350 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
351 	dnode_t *dn;
352 	int err;
353 
354 	DB_DNODE_ENTER(db);
355 	dn = DB_DNODE(db);
356 	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
357 	DB_DNODE_EXIT(db);
358 
359 	return (err);
360 }
361 
362 /*
363  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
364  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
365  * and can induce severe lock contention when writing to several files
366  * whose dnodes are in the same block.
367  */
368 static int
369 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
370     int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
371 {
372 	dsl_pool_t *dp = NULL;
373 	dmu_buf_t **dbp;
374 	uint64_t blkid, nblks, i;
375 	uint32_t dbuf_flags;
376 	int err;
377 	zio_t *zio;
378 	hrtime_t start;
379 
380 	ASSERT(length <= DMU_MAX_ACCESS);
381 
382 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
383 	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
384 		dbuf_flags |= DB_RF_NOPREFETCH;
385 
386 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
387 	if (dn->dn_datablkshift) {
388 		int blkshift = dn->dn_datablkshift;
389 		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
390 		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
391 	} else {
392 		if (offset + length > dn->dn_datablksz) {
393 			zfs_panic_recover("zfs: accessing past end of object "
394 			    "%llx/%llx (size=%u access=%llu+%llu)",
395 			    (longlong_t)dn->dn_objset->
396 			    os_dsl_dataset->ds_object,
397 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
398 			    (longlong_t)offset, (longlong_t)length);
399 			rw_exit(&dn->dn_struct_rwlock);
400 			return (EIO);
401 		}
402 		nblks = 1;
403 	}
404 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
405 
406 	if (dn->dn_objset->os_dsl_dataset)
407 		dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool;
408 	if (dp && dsl_pool_sync_context(dp))
409 		start = gethrtime();
410 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
411 	blkid = dbuf_whichblock(dn, offset);
412 	for (i = 0; i < nblks; i++) {
413 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
414 		if (db == NULL) {
415 			rw_exit(&dn->dn_struct_rwlock);
416 			dmu_buf_rele_array(dbp, nblks, tag);
417 			zio_nowait(zio);
418 			return (EIO);
419 		}
420 		/* initiate async i/o */
421 		if (read) {
422 			(void) dbuf_read(db, zio, dbuf_flags);
423 		}
424 		dbp[i] = &db->db;
425 	}
426 	rw_exit(&dn->dn_struct_rwlock);
427 
428 	/* wait for async i/o */
429 	err = zio_wait(zio);
430 	/* track read overhead when we are in sync context */
431 	if (dp && dsl_pool_sync_context(dp))
432 		dp->dp_read_overhead += gethrtime() - start;
433 	if (err) {
434 		dmu_buf_rele_array(dbp, nblks, tag);
435 		return (err);
436 	}
437 
438 	/* wait for other io to complete */
439 	if (read) {
440 		for (i = 0; i < nblks; i++) {
441 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
442 			mutex_enter(&db->db_mtx);
443 			while (db->db_state == DB_READ ||
444 			    db->db_state == DB_FILL)
445 				cv_wait(&db->db_changed, &db->db_mtx);
446 			if (db->db_state == DB_UNCACHED)
447 				err = EIO;
448 			mutex_exit(&db->db_mtx);
449 			if (err) {
450 				dmu_buf_rele_array(dbp, nblks, tag);
451 				return (err);
452 			}
453 		}
454 	}
455 
456 	*numbufsp = nblks;
457 	*dbpp = dbp;
458 	return (0);
459 }
460 
461 static int
462 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
463     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
464 {
465 	dnode_t *dn;
466 	int err;
467 
468 	err = dnode_hold(os, object, FTAG, &dn);
469 	if (err)
470 		return (err);
471 
472 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
473 	    numbufsp, dbpp, DMU_READ_PREFETCH);
474 
475 	dnode_rele(dn, FTAG);
476 
477 	return (err);
478 }
479 
480 int
481 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
482     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
483 {
484 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
485 	dnode_t *dn;
486 	int err;
487 
488 	DB_DNODE_ENTER(db);
489 	dn = DB_DNODE(db);
490 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
491 	    numbufsp, dbpp, DMU_READ_PREFETCH);
492 	DB_DNODE_EXIT(db);
493 
494 	return (err);
495 }
496 
497 void
498 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
499 {
500 	int i;
501 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
502 
503 	if (numbufs == 0)
504 		return;
505 
506 	for (i = 0; i < numbufs; i++) {
507 		if (dbp[i])
508 			dbuf_rele(dbp[i], tag);
509 	}
510 
511 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
512 }
513 
514 void
515 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
516 {
517 	dnode_t *dn;
518 	uint64_t blkid;
519 	int nblks, i, err;
520 
521 	if (zfs_prefetch_disable)
522 		return;
523 
524 	if (len == 0) {  /* they're interested in the bonus buffer */
525 		dn = DMU_META_DNODE(os);
526 
527 		if (object == 0 || object >= DN_MAX_OBJECT)
528 			return;
529 
530 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
531 		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
532 		dbuf_prefetch(dn, blkid);
533 		rw_exit(&dn->dn_struct_rwlock);
534 		return;
535 	}
536 
537 	/*
538 	 * XXX - Note, if the dnode for the requested object is not
539 	 * already cached, we will do a *synchronous* read in the
540 	 * dnode_hold() call.  The same is true for any indirects.
541 	 */
542 	err = dnode_hold(os, object, FTAG, &dn);
543 	if (err != 0)
544 		return;
545 
546 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
547 	if (dn->dn_datablkshift) {
548 		int blkshift = dn->dn_datablkshift;
549 		nblks = (P2ROUNDUP(offset+len, 1<<blkshift) -
550 		    P2ALIGN(offset, 1<<blkshift)) >> blkshift;
551 	} else {
552 		nblks = (offset < dn->dn_datablksz);
553 	}
554 
555 	if (nblks != 0) {
556 		blkid = dbuf_whichblock(dn, offset);
557 		for (i = 0; i < nblks; i++)
558 			dbuf_prefetch(dn, blkid+i);
559 	}
560 
561 	rw_exit(&dn->dn_struct_rwlock);
562 
563 	dnode_rele(dn, FTAG);
564 }
565 
566 /*
567  * Get the next "chunk" of file data to free.  We traverse the file from
568  * the end so that the file gets shorter over time (if we crashes in the
569  * middle, this will leave us in a better state).  We find allocated file
570  * data by simply searching the allocated level 1 indirects.
571  */
572 static int
573 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit)
574 {
575 	uint64_t len = *start - limit;
576 	uint64_t blkcnt = 0;
577 	uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1));
578 	uint64_t iblkrange =
579 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
580 
581 	ASSERT(limit <= *start);
582 
583 	if (len <= iblkrange * maxblks) {
584 		*start = limit;
585 		return (0);
586 	}
587 	ASSERT(ISP2(iblkrange));
588 
589 	while (*start > limit && blkcnt < maxblks) {
590 		int err;
591 
592 		/* find next allocated L1 indirect */
593 		err = dnode_next_offset(dn,
594 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
595 
596 		/* if there are no more, then we are done */
597 		if (err == ESRCH) {
598 			*start = limit;
599 			return (0);
600 		} else if (err) {
601 			return (err);
602 		}
603 		blkcnt += 1;
604 
605 		/* reset offset to end of "next" block back */
606 		*start = P2ALIGN(*start, iblkrange);
607 		if (*start <= limit)
608 			*start = limit;
609 		else
610 			*start -= 1;
611 	}
612 	return (0);
613 }
614 
615 static int
616 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
617     uint64_t length, boolean_t free_dnode)
618 {
619 	dmu_tx_t *tx;
620 	uint64_t object_size, start, end, len;
621 	boolean_t trunc = (length == DMU_OBJECT_END);
622 	int align, err;
623 
624 	align = 1 << dn->dn_datablkshift;
625 	ASSERT(align > 0);
626 	object_size = align == 1 ? dn->dn_datablksz :
627 	    (dn->dn_maxblkid + 1) << dn->dn_datablkshift;
628 
629 	end = offset + length;
630 	if (trunc || end > object_size)
631 		end = object_size;
632 	if (end <= offset)
633 		return (0);
634 	length = end - offset;
635 
636 	while (length) {
637 		start = end;
638 		/* assert(offset <= start) */
639 		err = get_next_chunk(dn, &start, offset);
640 		if (err)
641 			return (err);
642 		len = trunc ? DMU_OBJECT_END : end - start;
643 
644 		tx = dmu_tx_create(os);
645 		dmu_tx_hold_free(tx, dn->dn_object, start, len);
646 		err = dmu_tx_assign(tx, TXG_WAIT);
647 		if (err) {
648 			dmu_tx_abort(tx);
649 			return (err);
650 		}
651 
652 		dnode_free_range(dn, start, trunc ? -1 : len, tx);
653 
654 		if (start == 0 && free_dnode) {
655 			ASSERT(trunc);
656 			dnode_free(dn, tx);
657 		}
658 
659 		length -= end - start;
660 
661 		dmu_tx_commit(tx);
662 		end = start;
663 	}
664 	return (0);
665 }
666 
667 int
668 dmu_free_long_range(objset_t *os, uint64_t object,
669     uint64_t offset, uint64_t length)
670 {
671 	dnode_t *dn;
672 	int err;
673 
674 	err = dnode_hold(os, object, FTAG, &dn);
675 	if (err != 0)
676 		return (err);
677 	err = dmu_free_long_range_impl(os, dn, offset, length, FALSE);
678 	dnode_rele(dn, FTAG);
679 	return (err);
680 }
681 
682 int
683 dmu_free_object(objset_t *os, uint64_t object)
684 {
685 	dnode_t *dn;
686 	dmu_tx_t *tx;
687 	int err;
688 
689 	err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED,
690 	    FTAG, &dn);
691 	if (err != 0)
692 		return (err);
693 	if (dn->dn_nlevels == 1) {
694 		tx = dmu_tx_create(os);
695 		dmu_tx_hold_bonus(tx, object);
696 		dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END);
697 		err = dmu_tx_assign(tx, TXG_WAIT);
698 		if (err == 0) {
699 			dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
700 			dnode_free(dn, tx);
701 			dmu_tx_commit(tx);
702 		} else {
703 			dmu_tx_abort(tx);
704 		}
705 	} else {
706 		err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE);
707 	}
708 	dnode_rele(dn, FTAG);
709 	return (err);
710 }
711 
712 int
713 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
714     uint64_t size, dmu_tx_t *tx)
715 {
716 	dnode_t *dn;
717 	int err = dnode_hold(os, object, FTAG, &dn);
718 	if (err)
719 		return (err);
720 	ASSERT(offset < UINT64_MAX);
721 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
722 	dnode_free_range(dn, offset, size, tx);
723 	dnode_rele(dn, FTAG);
724 	return (0);
725 }
726 
727 int
728 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
729     void *buf, uint32_t flags)
730 {
731 	dnode_t *dn;
732 	dmu_buf_t **dbp;
733 	int numbufs, err;
734 
735 	err = dnode_hold(os, object, FTAG, &dn);
736 	if (err)
737 		return (err);
738 
739 	/*
740 	 * Deal with odd block sizes, where there can't be data past the first
741 	 * block.  If we ever do the tail block optimization, we will need to
742 	 * handle that here as well.
743 	 */
744 	if (dn->dn_maxblkid == 0) {
745 		int newsz = offset > dn->dn_datablksz ? 0 :
746 		    MIN(size, dn->dn_datablksz - offset);
747 		bzero((char *)buf + newsz, size - newsz);
748 		size = newsz;
749 	}
750 
751 	while (size > 0) {
752 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
753 		int i;
754 
755 		/*
756 		 * NB: we could do this block-at-a-time, but it's nice
757 		 * to be reading in parallel.
758 		 */
759 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
760 		    TRUE, FTAG, &numbufs, &dbp, flags);
761 		if (err)
762 			break;
763 
764 		for (i = 0; i < numbufs; i++) {
765 			int tocpy;
766 			int bufoff;
767 			dmu_buf_t *db = dbp[i];
768 
769 			ASSERT(size > 0);
770 
771 			bufoff = offset - db->db_offset;
772 			tocpy = (int)MIN(db->db_size - bufoff, size);
773 
774 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
775 
776 			offset += tocpy;
777 			size -= tocpy;
778 			buf = (char *)buf + tocpy;
779 		}
780 		dmu_buf_rele_array(dbp, numbufs, FTAG);
781 	}
782 	dnode_rele(dn, FTAG);
783 	return (err);
784 }
785 
786 void
787 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
788     const void *buf, dmu_tx_t *tx)
789 {
790 	dmu_buf_t **dbp;
791 	int numbufs, i;
792 
793 	if (size == 0)
794 		return;
795 
796 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
797 	    FALSE, FTAG, &numbufs, &dbp));
798 
799 	for (i = 0; i < numbufs; i++) {
800 		int tocpy;
801 		int bufoff;
802 		dmu_buf_t *db = dbp[i];
803 
804 		ASSERT(size > 0);
805 
806 		bufoff = offset - db->db_offset;
807 		tocpy = (int)MIN(db->db_size - bufoff, size);
808 
809 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
810 
811 		if (tocpy == db->db_size)
812 			dmu_buf_will_fill(db, tx);
813 		else
814 			dmu_buf_will_dirty(db, tx);
815 
816 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
817 
818 		if (tocpy == db->db_size)
819 			dmu_buf_fill_done(db, tx);
820 
821 		offset += tocpy;
822 		size -= tocpy;
823 		buf = (char *)buf + tocpy;
824 	}
825 	dmu_buf_rele_array(dbp, numbufs, FTAG);
826 }
827 
828 void
829 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
830     dmu_tx_t *tx)
831 {
832 	dmu_buf_t **dbp;
833 	int numbufs, i;
834 
835 	if (size == 0)
836 		return;
837 
838 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
839 	    FALSE, FTAG, &numbufs, &dbp));
840 
841 	for (i = 0; i < numbufs; i++) {
842 		dmu_buf_t *db = dbp[i];
843 
844 		dmu_buf_will_not_fill(db, tx);
845 	}
846 	dmu_buf_rele_array(dbp, numbufs, FTAG);
847 }
848 
849 /*
850  * DMU support for xuio
851  */
852 kstat_t *xuio_ksp = NULL;
853 
854 int
855 dmu_xuio_init(xuio_t *xuio, int nblk)
856 {
857 	dmu_xuio_t *priv;
858 	uio_t *uio = &xuio->xu_uio;
859 
860 	uio->uio_iovcnt = nblk;
861 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
862 
863 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
864 	priv->cnt = nblk;
865 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
866 	priv->iovp = uio->uio_iov;
867 	XUIO_XUZC_PRIV(xuio) = priv;
868 
869 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
870 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
871 	else
872 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
873 
874 	return (0);
875 }
876 
877 void
878 dmu_xuio_fini(xuio_t *xuio)
879 {
880 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
881 	int nblk = priv->cnt;
882 
883 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
884 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
885 	kmem_free(priv, sizeof (dmu_xuio_t));
886 
887 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
888 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
889 	else
890 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
891 }
892 
893 /*
894  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
895  * and increase priv->next by 1.
896  */
897 int
898 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
899 {
900 	struct iovec *iov;
901 	uio_t *uio = &xuio->xu_uio;
902 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
903 	int i = priv->next++;
904 
905 	ASSERT(i < priv->cnt);
906 	ASSERT(off + n <= arc_buf_size(abuf));
907 	iov = uio->uio_iov + i;
908 	iov->iov_base = (char *)abuf->b_data + off;
909 	iov->iov_len = n;
910 	priv->bufs[i] = abuf;
911 	return (0);
912 }
913 
914 int
915 dmu_xuio_cnt(xuio_t *xuio)
916 {
917 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
918 	return (priv->cnt);
919 }
920 
921 arc_buf_t *
922 dmu_xuio_arcbuf(xuio_t *xuio, int i)
923 {
924 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
925 
926 	ASSERT(i < priv->cnt);
927 	return (priv->bufs[i]);
928 }
929 
930 void
931 dmu_xuio_clear(xuio_t *xuio, int i)
932 {
933 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
934 
935 	ASSERT(i < priv->cnt);
936 	priv->bufs[i] = NULL;
937 }
938 
939 static void
940 xuio_stat_init(void)
941 {
942 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
943 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
944 	    KSTAT_FLAG_VIRTUAL);
945 	if (xuio_ksp != NULL) {
946 		xuio_ksp->ks_data = &xuio_stats;
947 		kstat_install(xuio_ksp);
948 	}
949 }
950 
951 static void
952 xuio_stat_fini(void)
953 {
954 	if (xuio_ksp != NULL) {
955 		kstat_delete(xuio_ksp);
956 		xuio_ksp = NULL;
957 	}
958 }
959 
960 void
961 xuio_stat_wbuf_copied()
962 {
963 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
964 }
965 
966 void
967 xuio_stat_wbuf_nocopy()
968 {
969 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
970 }
971 
972 #ifdef _KERNEL
973 int
974 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
975 {
976 	dmu_buf_t **dbp;
977 	int numbufs, i, err;
978 	xuio_t *xuio = NULL;
979 
980 	/*
981 	 * NB: we could do this block-at-a-time, but it's nice
982 	 * to be reading in parallel.
983 	 */
984 	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
985 	    &numbufs, &dbp);
986 	if (err)
987 		return (err);
988 
989 	if (uio->uio_extflg == UIO_XUIO)
990 		xuio = (xuio_t *)uio;
991 
992 	for (i = 0; i < numbufs; i++) {
993 		int tocpy;
994 		int bufoff;
995 		dmu_buf_t *db = dbp[i];
996 
997 		ASSERT(size > 0);
998 
999 		bufoff = uio->uio_loffset - db->db_offset;
1000 		tocpy = (int)MIN(db->db_size - bufoff, size);
1001 
1002 		if (xuio) {
1003 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1004 			arc_buf_t *dbuf_abuf = dbi->db_buf;
1005 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1006 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1007 			if (!err) {
1008 				uio->uio_resid -= tocpy;
1009 				uio->uio_loffset += tocpy;
1010 			}
1011 
1012 			if (abuf == dbuf_abuf)
1013 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1014 			else
1015 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1016 		} else {
1017 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1018 			    UIO_READ, uio);
1019 		}
1020 		if (err)
1021 			break;
1022 
1023 		size -= tocpy;
1024 	}
1025 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1026 
1027 	return (err);
1028 }
1029 
1030 static int
1031 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1032 {
1033 	dmu_buf_t **dbp;
1034 	int numbufs;
1035 	int err = 0;
1036 	int i;
1037 
1038 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1039 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1040 	if (err)
1041 		return (err);
1042 
1043 	for (i = 0; i < numbufs; i++) {
1044 		int tocpy;
1045 		int bufoff;
1046 		dmu_buf_t *db = dbp[i];
1047 
1048 		ASSERT(size > 0);
1049 
1050 		bufoff = uio->uio_loffset - db->db_offset;
1051 		tocpy = (int)MIN(db->db_size - bufoff, size);
1052 
1053 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1054 
1055 		if (tocpy == db->db_size)
1056 			dmu_buf_will_fill(db, tx);
1057 		else
1058 			dmu_buf_will_dirty(db, tx);
1059 
1060 		/*
1061 		 * XXX uiomove could block forever (eg. nfs-backed
1062 		 * pages).  There needs to be a uiolockdown() function
1063 		 * to lock the pages in memory, so that uiomove won't
1064 		 * block.
1065 		 */
1066 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1067 		    UIO_WRITE, uio);
1068 
1069 		if (tocpy == db->db_size)
1070 			dmu_buf_fill_done(db, tx);
1071 
1072 		if (err)
1073 			break;
1074 
1075 		size -= tocpy;
1076 	}
1077 
1078 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1079 	return (err);
1080 }
1081 
1082 int
1083 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1084     dmu_tx_t *tx)
1085 {
1086 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1087 	dnode_t *dn;
1088 	int err;
1089 
1090 	if (size == 0)
1091 		return (0);
1092 
1093 	DB_DNODE_ENTER(db);
1094 	dn = DB_DNODE(db);
1095 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1096 	DB_DNODE_EXIT(db);
1097 
1098 	return (err);
1099 }
1100 
1101 int
1102 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1103     dmu_tx_t *tx)
1104 {
1105 	dnode_t *dn;
1106 	int err;
1107 
1108 	if (size == 0)
1109 		return (0);
1110 
1111 	err = dnode_hold(os, object, FTAG, &dn);
1112 	if (err)
1113 		return (err);
1114 
1115 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1116 
1117 	dnode_rele(dn, FTAG);
1118 
1119 	return (err);
1120 }
1121 
1122 int
1123 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1124     page_t *pp, dmu_tx_t *tx)
1125 {
1126 	dmu_buf_t **dbp;
1127 	int numbufs, i;
1128 	int err;
1129 
1130 	if (size == 0)
1131 		return (0);
1132 
1133 	err = dmu_buf_hold_array(os, object, offset, size,
1134 	    FALSE, FTAG, &numbufs, &dbp);
1135 	if (err)
1136 		return (err);
1137 
1138 	for (i = 0; i < numbufs; i++) {
1139 		int tocpy, copied, thiscpy;
1140 		int bufoff;
1141 		dmu_buf_t *db = dbp[i];
1142 		caddr_t va;
1143 
1144 		ASSERT(size > 0);
1145 		ASSERT3U(db->db_size, >=, PAGESIZE);
1146 
1147 		bufoff = offset - db->db_offset;
1148 		tocpy = (int)MIN(db->db_size - bufoff, size);
1149 
1150 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1151 
1152 		if (tocpy == db->db_size)
1153 			dmu_buf_will_fill(db, tx);
1154 		else
1155 			dmu_buf_will_dirty(db, tx);
1156 
1157 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1158 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1159 			thiscpy = MIN(PAGESIZE, tocpy - copied);
1160 			va = zfs_map_page(pp, S_READ);
1161 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1162 			zfs_unmap_page(pp, va);
1163 			pp = pp->p_next;
1164 			bufoff += PAGESIZE;
1165 		}
1166 
1167 		if (tocpy == db->db_size)
1168 			dmu_buf_fill_done(db, tx);
1169 
1170 		offset += tocpy;
1171 		size -= tocpy;
1172 	}
1173 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1174 	return (err);
1175 }
1176 #endif
1177 
1178 /*
1179  * Allocate a loaned anonymous arc buffer.
1180  */
1181 arc_buf_t *
1182 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1183 {
1184 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1185 	spa_t *spa;
1186 
1187 	DB_GET_SPA(&spa, db);
1188 	return (arc_loan_buf(spa, size));
1189 }
1190 
1191 /*
1192  * Free a loaned arc buffer.
1193  */
1194 void
1195 dmu_return_arcbuf(arc_buf_t *buf)
1196 {
1197 	arc_return_buf(buf, FTAG);
1198 	VERIFY(arc_buf_remove_ref(buf, FTAG) == 1);
1199 }
1200 
1201 /*
1202  * When possible directly assign passed loaned arc buffer to a dbuf.
1203  * If this is not possible copy the contents of passed arc buf via
1204  * dmu_write().
1205  */
1206 void
1207 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1208     dmu_tx_t *tx)
1209 {
1210 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1211 	dnode_t *dn;
1212 	dmu_buf_impl_t *db;
1213 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1214 	uint64_t blkid;
1215 
1216 	DB_DNODE_ENTER(dbuf);
1217 	dn = DB_DNODE(dbuf);
1218 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1219 	blkid = dbuf_whichblock(dn, offset);
1220 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1221 	rw_exit(&dn->dn_struct_rwlock);
1222 	DB_DNODE_EXIT(dbuf);
1223 
1224 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1225 		dbuf_assign_arcbuf(db, buf, tx);
1226 		dbuf_rele(db, FTAG);
1227 	} else {
1228 		objset_t *os;
1229 		uint64_t object;
1230 
1231 		DB_DNODE_ENTER(dbuf);
1232 		dn = DB_DNODE(dbuf);
1233 		os = dn->dn_objset;
1234 		object = dn->dn_object;
1235 		DB_DNODE_EXIT(dbuf);
1236 
1237 		dbuf_rele(db, FTAG);
1238 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1239 		dmu_return_arcbuf(buf);
1240 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1241 	}
1242 }
1243 
1244 typedef struct {
1245 	dbuf_dirty_record_t	*dsa_dr;
1246 	dmu_sync_cb_t		*dsa_done;
1247 	zgd_t			*dsa_zgd;
1248 	dmu_tx_t		*dsa_tx;
1249 } dmu_sync_arg_t;
1250 
1251 /* ARGSUSED */
1252 static void
1253 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1254 {
1255 	dmu_sync_arg_t *dsa = varg;
1256 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1257 	blkptr_t *bp = zio->io_bp;
1258 
1259 	if (zio->io_error == 0) {
1260 		if (BP_IS_HOLE(bp)) {
1261 			/*
1262 			 * A block of zeros may compress to a hole, but the
1263 			 * block size still needs to be known for replay.
1264 			 */
1265 			BP_SET_LSIZE(bp, db->db_size);
1266 		} else {
1267 			ASSERT(BP_GET_LEVEL(bp) == 0);
1268 			bp->blk_fill = 1;
1269 		}
1270 	}
1271 }
1272 
1273 static void
1274 dmu_sync_late_arrival_ready(zio_t *zio)
1275 {
1276 	dmu_sync_ready(zio, NULL, zio->io_private);
1277 }
1278 
1279 /* ARGSUSED */
1280 static void
1281 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1282 {
1283 	dmu_sync_arg_t *dsa = varg;
1284 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1285 	dmu_buf_impl_t *db = dr->dr_dbuf;
1286 
1287 	mutex_enter(&db->db_mtx);
1288 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1289 	if (zio->io_error == 0) {
1290 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1291 		if (dr->dt.dl.dr_nopwrite) {
1292 			blkptr_t *bp = zio->io_bp;
1293 			blkptr_t *bp_orig = &zio->io_bp_orig;
1294 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1295 
1296 			ASSERT(BP_EQUAL(bp, bp_orig));
1297 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1298 			ASSERT(zio_checksum_table[chksum].ci_dedup);
1299 		}
1300 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1301 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1302 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1303 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1304 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1305 	} else {
1306 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1307 	}
1308 	cv_broadcast(&db->db_changed);
1309 	mutex_exit(&db->db_mtx);
1310 
1311 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1312 
1313 	kmem_free(dsa, sizeof (*dsa));
1314 }
1315 
1316 static void
1317 dmu_sync_late_arrival_done(zio_t *zio)
1318 {
1319 	blkptr_t *bp = zio->io_bp;
1320 	dmu_sync_arg_t *dsa = zio->io_private;
1321 	blkptr_t *bp_orig = &zio->io_bp_orig;
1322 
1323 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1324 		/*
1325 		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1326 		 * then there is nothing to do here. Otherwise, free the
1327 		 * newly allocated block in this txg.
1328 		 */
1329 		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1330 			ASSERT(BP_EQUAL(bp, bp_orig));
1331 		} else {
1332 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1333 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1334 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1335 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1336 		}
1337 	}
1338 
1339 	dmu_tx_commit(dsa->dsa_tx);
1340 
1341 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1342 
1343 	kmem_free(dsa, sizeof (*dsa));
1344 }
1345 
1346 static int
1347 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1348     zio_prop_t *zp, zbookmark_t *zb)
1349 {
1350 	dmu_sync_arg_t *dsa;
1351 	dmu_tx_t *tx;
1352 
1353 	tx = dmu_tx_create(os);
1354 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1355 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1356 		dmu_tx_abort(tx);
1357 		return (EIO);	/* Make zl_get_data do txg_waited_synced() */
1358 	}
1359 
1360 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1361 	dsa->dsa_dr = NULL;
1362 	dsa->dsa_done = done;
1363 	dsa->dsa_zgd = zgd;
1364 	dsa->dsa_tx = tx;
1365 
1366 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1367 	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1368 	    dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa,
1369 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1370 
1371 	return (0);
1372 }
1373 
1374 /*
1375  * Intent log support: sync the block associated with db to disk.
1376  * N.B. and XXX: the caller is responsible for making sure that the
1377  * data isn't changing while dmu_sync() is writing it.
1378  *
1379  * Return values:
1380  *
1381  *	EEXIST: this txg has already been synced, so there's nothing to do.
1382  *		The caller should not log the write.
1383  *
1384  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1385  *		The caller should not log the write.
1386  *
1387  *	EALREADY: this block is already in the process of being synced.
1388  *		The caller should track its progress (somehow).
1389  *
1390  *	EIO: could not do the I/O.
1391  *		The caller should do a txg_wait_synced().
1392  *
1393  *	0: the I/O has been initiated.
1394  *		The caller should log this blkptr in the done callback.
1395  *		It is possible that the I/O will fail, in which case
1396  *		the error will be reported to the done callback and
1397  *		propagated to pio from zio_done().
1398  */
1399 int
1400 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1401 {
1402 	blkptr_t *bp = zgd->zgd_bp;
1403 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1404 	objset_t *os = db->db_objset;
1405 	dsl_dataset_t *ds = os->os_dsl_dataset;
1406 	dbuf_dirty_record_t *dr;
1407 	dmu_sync_arg_t *dsa;
1408 	zbookmark_t zb;
1409 	zio_prop_t zp;
1410 	dnode_t *dn;
1411 
1412 	ASSERT(pio != NULL);
1413 	ASSERT(txg != 0);
1414 
1415 	SET_BOOKMARK(&zb, ds->ds_object,
1416 	    db->db.db_object, db->db_level, db->db_blkid);
1417 
1418 	DB_DNODE_ENTER(db);
1419 	dn = DB_DNODE(db);
1420 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1421 	DB_DNODE_EXIT(db);
1422 
1423 	/*
1424 	 * If we're frozen (running ziltest), we always need to generate a bp.
1425 	 */
1426 	if (txg > spa_freeze_txg(os->os_spa))
1427 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1428 
1429 	/*
1430 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1431 	 * and us.  If we determine that this txg is not yet syncing,
1432 	 * but it begins to sync a moment later, that's OK because the
1433 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1434 	 */
1435 	mutex_enter(&db->db_mtx);
1436 
1437 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1438 		/*
1439 		 * This txg has already synced.  There's nothing to do.
1440 		 */
1441 		mutex_exit(&db->db_mtx);
1442 		return (EEXIST);
1443 	}
1444 
1445 	if (txg <= spa_syncing_txg(os->os_spa)) {
1446 		/*
1447 		 * This txg is currently syncing, so we can't mess with
1448 		 * the dirty record anymore; just write a new log block.
1449 		 */
1450 		mutex_exit(&db->db_mtx);
1451 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1452 	}
1453 
1454 	dr = db->db_last_dirty;
1455 	while (dr && dr->dr_txg != txg)
1456 		dr = dr->dr_next;
1457 
1458 	if (dr == NULL) {
1459 		/*
1460 		 * There's no dr for this dbuf, so it must have been freed.
1461 		 * There's no need to log writes to freed blocks, so we're done.
1462 		 */
1463 		mutex_exit(&db->db_mtx);
1464 		return (ENOENT);
1465 	}
1466 
1467 	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1468 
1469 	/*
1470 	 * Assume the on-disk data is X, the current syncing data is Y,
1471 	 * and the current in-memory data is Z (currently in dmu_sync).
1472 	 * X and Z are identical but Y is has been modified. Normally,
1473 	 * when X and Z are the same we will perform a nopwrite but if Y
1474 	 * is different we must disable nopwrite since the resulting write
1475 	 * of Y to disk can free the block containing X. If we allowed a
1476 	 * nopwrite to occur the block pointing to Z would reference a freed
1477 	 * block. Since this is a rare case we simplify this by disabling
1478 	 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1479 	 * a previous transaction.
1480 	 */
1481 	if (dr->dr_next)
1482 		zp.zp_nopwrite = B_FALSE;
1483 
1484 	ASSERT(dr->dr_txg == txg);
1485 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1486 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1487 		/*
1488 		 * We have already issued a sync write for this buffer,
1489 		 * or this buffer has already been synced.  It could not
1490 		 * have been dirtied since, or we would have cleared the state.
1491 		 */
1492 		mutex_exit(&db->db_mtx);
1493 		return (EALREADY);
1494 	}
1495 
1496 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1497 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1498 	mutex_exit(&db->db_mtx);
1499 
1500 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1501 	dsa->dsa_dr = dr;
1502 	dsa->dsa_done = done;
1503 	dsa->dsa_zgd = zgd;
1504 	dsa->dsa_tx = NULL;
1505 
1506 	zio_nowait(arc_write(pio, os->os_spa, txg,
1507 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp,
1508 	    dmu_sync_ready, dmu_sync_done, dsa,
1509 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1510 
1511 	return (0);
1512 }
1513 
1514 int
1515 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1516 	dmu_tx_t *tx)
1517 {
1518 	dnode_t *dn;
1519 	int err;
1520 
1521 	err = dnode_hold(os, object, FTAG, &dn);
1522 	if (err)
1523 		return (err);
1524 	err = dnode_set_blksz(dn, size, ibs, tx);
1525 	dnode_rele(dn, FTAG);
1526 	return (err);
1527 }
1528 
1529 void
1530 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1531 	dmu_tx_t *tx)
1532 {
1533 	dnode_t *dn;
1534 
1535 	/* XXX assumes dnode_hold will not get an i/o error */
1536 	(void) dnode_hold(os, object, FTAG, &dn);
1537 	ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1538 	dn->dn_checksum = checksum;
1539 	dnode_setdirty(dn, tx);
1540 	dnode_rele(dn, FTAG);
1541 }
1542 
1543 void
1544 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1545 	dmu_tx_t *tx)
1546 {
1547 	dnode_t *dn;
1548 
1549 	/* XXX assumes dnode_hold will not get an i/o error */
1550 	(void) dnode_hold(os, object, FTAG, &dn);
1551 	ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1552 	dn->dn_compress = compress;
1553 	dnode_setdirty(dn, tx);
1554 	dnode_rele(dn, FTAG);
1555 }
1556 
1557 int zfs_mdcomp_disable = 0;
1558 
1559 void
1560 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1561 {
1562 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1563 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1564 	    (wp & WP_SPILL));
1565 	enum zio_checksum checksum = os->os_checksum;
1566 	enum zio_compress compress = os->os_compress;
1567 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1568 	boolean_t dedup = B_FALSE;
1569 	boolean_t nopwrite = B_FALSE;
1570 	boolean_t dedup_verify = os->os_dedup_verify;
1571 	int copies = os->os_copies;
1572 
1573 	/*
1574 	 * We maintain different write policies for each of the following
1575 	 * types of data:
1576 	 *	 1. metadata
1577 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1578 	 *	 3. all other level 0 blocks
1579 	 */
1580 	if (ismd) {
1581 		/*
1582 		 * XXX -- we should design a compression algorithm
1583 		 * that specializes in arrays of bps.
1584 		 */
1585 		compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1586 		    ZIO_COMPRESS_LZJB;
1587 
1588 		/*
1589 		 * Metadata always gets checksummed.  If the data
1590 		 * checksum is multi-bit correctable, and it's not a
1591 		 * ZBT-style checksum, then it's suitable for metadata
1592 		 * as well.  Otherwise, the metadata checksum defaults
1593 		 * to fletcher4.
1594 		 */
1595 		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1596 		    zio_checksum_table[checksum].ci_eck)
1597 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1598 	} else if (wp & WP_NOFILL) {
1599 		ASSERT(level == 0);
1600 
1601 		/*
1602 		 * If we're writing preallocated blocks, we aren't actually
1603 		 * writing them so don't set any policy properties.  These
1604 		 * blocks are currently only used by an external subsystem
1605 		 * outside of zfs (i.e. dump) and not written by the zio
1606 		 * pipeline.
1607 		 */
1608 		compress = ZIO_COMPRESS_OFF;
1609 		checksum = ZIO_CHECKSUM_OFF;
1610 	} else {
1611 		compress = zio_compress_select(dn->dn_compress, compress);
1612 
1613 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1614 		    zio_checksum_select(dn->dn_checksum, checksum) :
1615 		    dedup_checksum;
1616 
1617 		/*
1618 		 * Determine dedup setting.  If we are in dmu_sync(),
1619 		 * we won't actually dedup now because that's all
1620 		 * done in syncing context; but we do want to use the
1621 		 * dedup checkum.  If the checksum is not strong
1622 		 * enough to ensure unique signatures, force
1623 		 * dedup_verify.
1624 		 */
1625 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1626 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1627 			if (!zio_checksum_table[checksum].ci_dedup)
1628 				dedup_verify = B_TRUE;
1629 		}
1630 
1631 		/*
1632 		 * Enable nopwrite if we have a cryptographically secure
1633 		 * checksum that has no known collisions (i.e. SHA-256)
1634 		 * and compression is enabled.  We don't enable nopwrite if
1635 		 * dedup is enabled as the two features are mutually exclusive.
1636 		 */
1637 		nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1638 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1639 	}
1640 
1641 	zp->zp_checksum = checksum;
1642 	zp->zp_compress = compress;
1643 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1644 	zp->zp_level = level;
1645 	zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
1646 	zp->zp_dedup = dedup;
1647 	zp->zp_dedup_verify = dedup && dedup_verify;
1648 	zp->zp_nopwrite = nopwrite;
1649 }
1650 
1651 int
1652 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1653 {
1654 	dnode_t *dn;
1655 	int i, err;
1656 
1657 	err = dnode_hold(os, object, FTAG, &dn);
1658 	if (err)
1659 		return (err);
1660 	/*
1661 	 * Sync any current changes before
1662 	 * we go trundling through the block pointers.
1663 	 */
1664 	for (i = 0; i < TXG_SIZE; i++) {
1665 		if (list_link_active(&dn->dn_dirty_link[i]))
1666 			break;
1667 	}
1668 	if (i != TXG_SIZE) {
1669 		dnode_rele(dn, FTAG);
1670 		txg_wait_synced(dmu_objset_pool(os), 0);
1671 		err = dnode_hold(os, object, FTAG, &dn);
1672 		if (err)
1673 			return (err);
1674 	}
1675 
1676 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1677 	dnode_rele(dn, FTAG);
1678 
1679 	return (err);
1680 }
1681 
1682 void
1683 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1684 {
1685 	dnode_phys_t *dnp;
1686 
1687 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1688 	mutex_enter(&dn->dn_mtx);
1689 
1690 	dnp = dn->dn_phys;
1691 
1692 	doi->doi_data_block_size = dn->dn_datablksz;
1693 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1694 	    1ULL << dn->dn_indblkshift : 0;
1695 	doi->doi_type = dn->dn_type;
1696 	doi->doi_bonus_type = dn->dn_bonustype;
1697 	doi->doi_bonus_size = dn->dn_bonuslen;
1698 	doi->doi_indirection = dn->dn_nlevels;
1699 	doi->doi_checksum = dn->dn_checksum;
1700 	doi->doi_compress = dn->dn_compress;
1701 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1702 	doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz;
1703 	doi->doi_fill_count = 0;
1704 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1705 		doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1706 
1707 	mutex_exit(&dn->dn_mtx);
1708 	rw_exit(&dn->dn_struct_rwlock);
1709 }
1710 
1711 /*
1712  * Get information on a DMU object.
1713  * If doi is NULL, just indicates whether the object exists.
1714  */
1715 int
1716 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1717 {
1718 	dnode_t *dn;
1719 	int err = dnode_hold(os, object, FTAG, &dn);
1720 
1721 	if (err)
1722 		return (err);
1723 
1724 	if (doi != NULL)
1725 		dmu_object_info_from_dnode(dn, doi);
1726 
1727 	dnode_rele(dn, FTAG);
1728 	return (0);
1729 }
1730 
1731 /*
1732  * As above, but faster; can be used when you have a held dbuf in hand.
1733  */
1734 void
1735 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1736 {
1737 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1738 
1739 	DB_DNODE_ENTER(db);
1740 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1741 	DB_DNODE_EXIT(db);
1742 }
1743 
1744 /*
1745  * Faster still when you only care about the size.
1746  * This is specifically optimized for zfs_getattr().
1747  */
1748 void
1749 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1750     u_longlong_t *nblk512)
1751 {
1752 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1753 	dnode_t *dn;
1754 
1755 	DB_DNODE_ENTER(db);
1756 	dn = DB_DNODE(db);
1757 
1758 	*blksize = dn->dn_datablksz;
1759 	/* add 1 for dnode space */
1760 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1761 	    SPA_MINBLOCKSHIFT) + 1;
1762 	DB_DNODE_EXIT(db);
1763 }
1764 
1765 void
1766 byteswap_uint64_array(void *vbuf, size_t size)
1767 {
1768 	uint64_t *buf = vbuf;
1769 	size_t count = size >> 3;
1770 	int i;
1771 
1772 	ASSERT((size & 7) == 0);
1773 
1774 	for (i = 0; i < count; i++)
1775 		buf[i] = BSWAP_64(buf[i]);
1776 }
1777 
1778 void
1779 byteswap_uint32_array(void *vbuf, size_t size)
1780 {
1781 	uint32_t *buf = vbuf;
1782 	size_t count = size >> 2;
1783 	int i;
1784 
1785 	ASSERT((size & 3) == 0);
1786 
1787 	for (i = 0; i < count; i++)
1788 		buf[i] = BSWAP_32(buf[i]);
1789 }
1790 
1791 void
1792 byteswap_uint16_array(void *vbuf, size_t size)
1793 {
1794 	uint16_t *buf = vbuf;
1795 	size_t count = size >> 1;
1796 	int i;
1797 
1798 	ASSERT((size & 1) == 0);
1799 
1800 	for (i = 0; i < count; i++)
1801 		buf[i] = BSWAP_16(buf[i]);
1802 }
1803 
1804 /* ARGSUSED */
1805 void
1806 byteswap_uint8_array(void *vbuf, size_t size)
1807 {
1808 }
1809 
1810 void
1811 dmu_init(void)
1812 {
1813 	zfs_dbgmsg_init();
1814 	sa_cache_init();
1815 	xuio_stat_init();
1816 	dmu_objset_init();
1817 	dnode_init();
1818 	dbuf_init();
1819 	zfetch_init();
1820 	l2arc_init();
1821 	arc_init();
1822 }
1823 
1824 void
1825 dmu_fini(void)
1826 {
1827 	arc_fini();
1828 	l2arc_fini();
1829 	zfetch_fini();
1830 	dbuf_fini();
1831 	dnode_fini();
1832 	dmu_objset_fini();
1833 	xuio_stat_fini();
1834 	sa_cache_fini();
1835 	zfs_dbgmsg_fini();
1836 }
1837