xref: /illumos-gate/usr/src/uts/common/fs/zfs/dbuf.c (revision c2919acbea007fa95c709b60d073db9a24526e01)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51 #include <sys/cityhash.h>
52 #include <sys/spa_impl.h>
53 
54 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
55 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
56 
57 #ifndef __lint
58 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
59     dmu_buf_evict_func_t *evict_func_sync,
60     dmu_buf_evict_func_t *evict_func_async,
61     dmu_buf_t **clear_on_evict_dbufp);
62 #endif /* ! __lint */
63 
64 /*
65  * Global data structures and functions for the dbuf cache.
66  */
67 static kmem_cache_t *dbuf_kmem_cache;
68 static taskq_t *dbu_evict_taskq;
69 
70 static kthread_t *dbuf_cache_evict_thread;
71 static kmutex_t dbuf_evict_lock;
72 static kcondvar_t dbuf_evict_cv;
73 static boolean_t dbuf_evict_thread_exit;
74 
75 /*
76  * There are two dbuf caches; each dbuf can only be in one of them at a time.
77  *
78  * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
79  *    from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
80  *    that represent the metadata that describes filesystems/snapshots/
81  *    bookmarks/properties/etc. We only evict from this cache when we export a
82  *    pool, to short-circuit as much I/O as possible for all administrative
83  *    commands that need the metadata. There is no eviction policy for this
84  *    cache, because we try to only include types in it which would occupy a
85  *    very small amount of space per object but create a large impact on the
86  *    performance of these commands. Instead, after it reaches a maximum size
87  *    (which should only happen on very small memory systems with a very large
88  *    number of filesystem objects), we stop taking new dbufs into the
89  *    metadata cache, instead putting them in the normal dbuf cache.
90  *
91  * 2. LRU cache of dbufs. The "dbuf cache" maintains a list of dbufs that
92  *    are not currently held but have been recently released. These dbufs
93  *    are not eligible for arc eviction until they are aged out of the cache.
94  *    Dbufs that are aged out of the cache will be immediately destroyed and
95  *    become eligible for arc eviction.
96  *
97  * Dbufs are added to these caches once the last hold is released. If a dbuf is
98  * later accessed and still exists in the dbuf cache, then it will be removed
99  * from the cache and later re-added to the head of the cache.
100  *
101  * If a given dbuf meets the requirements for the metadata cache, it will go
102  * there, otherwise it will be considered for the generic LRU dbuf cache. The
103  * caches and the refcounts tracking their sizes are stored in an array indexed
104  * by those caches' matching enum values (from dbuf_cached_state_t).
105  */
106 typedef struct dbuf_cache {
107 	multilist_t *cache;
108 	refcount_t size;
109 } dbuf_cache_t;
110 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
111 
112 /* Size limits for the caches */
113 uint64_t dbuf_cache_max_bytes = 0;
114 uint64_t dbuf_metadata_cache_max_bytes = 0;
115 /* Set the default sizes of the caches to log2 fraction of arc size */
116 int dbuf_cache_shift = 5;
117 int dbuf_metadata_cache_shift = 6;
118 
119 /*
120  * For diagnostic purposes, this is incremented whenever we can't add
121  * something to the metadata cache because it's full, and instead put
122  * the data in the regular dbuf cache.
123  */
124 uint64_t dbuf_metadata_cache_overflow;
125 
126 /*
127  * The LRU dbuf cache uses a three-stage eviction policy:
128  *	- A low water marker designates when the dbuf eviction thread
129  *	should stop evicting from the dbuf cache.
130  *	- When we reach the maximum size (aka mid water mark), we
131  *	signal the eviction thread to run.
132  *	- The high water mark indicates when the eviction thread
133  *	is unable to keep up with the incoming load and eviction must
134  *	happen in the context of the calling thread.
135  *
136  * The dbuf cache:
137  *                                                 (max size)
138  *                                      low water   mid water   hi water
139  * +----------------------------------------+----------+----------+
140  * |                                        |          |          |
141  * |                                        |          |          |
142  * |                                        |          |          |
143  * |                                        |          |          |
144  * +----------------------------------------+----------+----------+
145  *                                        stop        signal     evict
146  *                                      evicting     eviction   directly
147  *                                                    thread
148  *
149  * The high and low water marks indicate the operating range for the eviction
150  * thread. The low water mark is, by default, 90% of the total size of the
151  * cache and the high water mark is at 110% (both of these percentages can be
152  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
153  * respectively). The eviction thread will try to ensure that the cache remains
154  * within this range by waking up every second and checking if the cache is
155  * above the low water mark. The thread can also be woken up by callers adding
156  * elements into the cache if the cache is larger than the mid water (i.e max
157  * cache size). Once the eviction thread is woken up and eviction is required,
158  * it will continue evicting buffers until it's able to reduce the cache size
159  * to the low water mark. If the cache size continues to grow and hits the high
160  * water mark, then callers adding elments to the cache will begin to evict
161  * directly from the cache until the cache is no longer above the high water
162  * mark.
163  */
164 
165 /*
166  * The percentage above and below the maximum cache size.
167  */
168 uint_t dbuf_cache_hiwater_pct = 10;
169 uint_t dbuf_cache_lowater_pct = 10;
170 
171 /* ARGSUSED */
172 static int
173 dbuf_cons(void *vdb, void *unused, int kmflag)
174 {
175 	dmu_buf_impl_t *db = vdb;
176 	bzero(db, sizeof (dmu_buf_impl_t));
177 
178 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
179 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
180 	multilist_link_init(&db->db_cache_link);
181 	refcount_create(&db->db_holds);
182 
183 	return (0);
184 }
185 
186 /* ARGSUSED */
187 static void
188 dbuf_dest(void *vdb, void *unused)
189 {
190 	dmu_buf_impl_t *db = vdb;
191 	mutex_destroy(&db->db_mtx);
192 	cv_destroy(&db->db_changed);
193 	ASSERT(!multilist_link_active(&db->db_cache_link));
194 	refcount_destroy(&db->db_holds);
195 }
196 
197 /*
198  * dbuf hash table routines
199  */
200 static dbuf_hash_table_t dbuf_hash_table;
201 
202 static uint64_t dbuf_hash_count;
203 
204 /*
205  * We use Cityhash for this. It's fast, and has good hash properties without
206  * requiring any large static buffers.
207  */
208 static uint64_t
209 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
210 {
211 	return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
212 }
213 
214 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
215 	((dbuf)->db.db_object == (obj) &&		\
216 	(dbuf)->db_objset == (os) &&			\
217 	(dbuf)->db_level == (level) &&			\
218 	(dbuf)->db_blkid == (blkid))
219 
220 dmu_buf_impl_t *
221 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
222 {
223 	dbuf_hash_table_t *h = &dbuf_hash_table;
224 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
225 	uint64_t idx = hv & h->hash_table_mask;
226 	dmu_buf_impl_t *db;
227 
228 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
229 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
230 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
231 			mutex_enter(&db->db_mtx);
232 			if (db->db_state != DB_EVICTING) {
233 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
234 				return (db);
235 			}
236 			mutex_exit(&db->db_mtx);
237 		}
238 	}
239 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
240 	return (NULL);
241 }
242 
243 static dmu_buf_impl_t *
244 dbuf_find_bonus(objset_t *os, uint64_t object)
245 {
246 	dnode_t *dn;
247 	dmu_buf_impl_t *db = NULL;
248 
249 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
250 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
251 		if (dn->dn_bonus != NULL) {
252 			db = dn->dn_bonus;
253 			mutex_enter(&db->db_mtx);
254 		}
255 		rw_exit(&dn->dn_struct_rwlock);
256 		dnode_rele(dn, FTAG);
257 	}
258 	return (db);
259 }
260 
261 /*
262  * Insert an entry into the hash table.  If there is already an element
263  * equal to elem in the hash table, then the already existing element
264  * will be returned and the new element will not be inserted.
265  * Otherwise returns NULL.
266  */
267 static dmu_buf_impl_t *
268 dbuf_hash_insert(dmu_buf_impl_t *db)
269 {
270 	dbuf_hash_table_t *h = &dbuf_hash_table;
271 	objset_t *os = db->db_objset;
272 	uint64_t obj = db->db.db_object;
273 	int level = db->db_level;
274 	uint64_t blkid = db->db_blkid;
275 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
276 	uint64_t idx = hv & h->hash_table_mask;
277 	dmu_buf_impl_t *dbf;
278 
279 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
280 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
281 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
282 			mutex_enter(&dbf->db_mtx);
283 			if (dbf->db_state != DB_EVICTING) {
284 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
285 				return (dbf);
286 			}
287 			mutex_exit(&dbf->db_mtx);
288 		}
289 	}
290 
291 	mutex_enter(&db->db_mtx);
292 	db->db_hash_next = h->hash_table[idx];
293 	h->hash_table[idx] = db;
294 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
295 	atomic_inc_64(&dbuf_hash_count);
296 
297 	return (NULL);
298 }
299 
300 /*
301  * Remove an entry from the hash table.  It must be in the EVICTING state.
302  */
303 static void
304 dbuf_hash_remove(dmu_buf_impl_t *db)
305 {
306 	dbuf_hash_table_t *h = &dbuf_hash_table;
307 	uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
308 	    db->db_level, db->db_blkid);
309 	uint64_t idx = hv & h->hash_table_mask;
310 	dmu_buf_impl_t *dbf, **dbp;
311 
312 	/*
313 	 * We musn't hold db_mtx to maintain lock ordering:
314 	 * DBUF_HASH_MUTEX > db_mtx.
315 	 */
316 	ASSERT(refcount_is_zero(&db->db_holds));
317 	ASSERT(db->db_state == DB_EVICTING);
318 	ASSERT(!MUTEX_HELD(&db->db_mtx));
319 
320 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
321 	dbp = &h->hash_table[idx];
322 	while ((dbf = *dbp) != db) {
323 		dbp = &dbf->db_hash_next;
324 		ASSERT(dbf != NULL);
325 	}
326 	*dbp = db->db_hash_next;
327 	db->db_hash_next = NULL;
328 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
329 	atomic_dec_64(&dbuf_hash_count);
330 }
331 
332 typedef enum {
333 	DBVU_EVICTING,
334 	DBVU_NOT_EVICTING
335 } dbvu_verify_type_t;
336 
337 static void
338 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
339 {
340 #ifdef ZFS_DEBUG
341 	int64_t holds;
342 
343 	if (db->db_user == NULL)
344 		return;
345 
346 	/* Only data blocks support the attachment of user data. */
347 	ASSERT(db->db_level == 0);
348 
349 	/* Clients must resolve a dbuf before attaching user data. */
350 	ASSERT(db->db.db_data != NULL);
351 	ASSERT3U(db->db_state, ==, DB_CACHED);
352 
353 	holds = refcount_count(&db->db_holds);
354 	if (verify_type == DBVU_EVICTING) {
355 		/*
356 		 * Immediate eviction occurs when holds == dirtycnt.
357 		 * For normal eviction buffers, holds is zero on
358 		 * eviction, except when dbuf_fix_old_data() calls
359 		 * dbuf_clear_data().  However, the hold count can grow
360 		 * during eviction even though db_mtx is held (see
361 		 * dmu_bonus_hold() for an example), so we can only
362 		 * test the generic invariant that holds >= dirtycnt.
363 		 */
364 		ASSERT3U(holds, >=, db->db_dirtycnt);
365 	} else {
366 		if (db->db_user_immediate_evict == TRUE)
367 			ASSERT3U(holds, >=, db->db_dirtycnt);
368 		else
369 			ASSERT3U(holds, >, 0);
370 	}
371 #endif
372 }
373 
374 static void
375 dbuf_evict_user(dmu_buf_impl_t *db)
376 {
377 	dmu_buf_user_t *dbu = db->db_user;
378 
379 	ASSERT(MUTEX_HELD(&db->db_mtx));
380 
381 	if (dbu == NULL)
382 		return;
383 
384 	dbuf_verify_user(db, DBVU_EVICTING);
385 	db->db_user = NULL;
386 
387 #ifdef ZFS_DEBUG
388 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
389 		*dbu->dbu_clear_on_evict_dbufp = NULL;
390 #endif
391 
392 	/*
393 	 * There are two eviction callbacks - one that we call synchronously
394 	 * and one that we invoke via a taskq.  The async one is useful for
395 	 * avoiding lock order reversals and limiting stack depth.
396 	 *
397 	 * Note that if we have a sync callback but no async callback,
398 	 * it's likely that the sync callback will free the structure
399 	 * containing the dbu.  In that case we need to take care to not
400 	 * dereference dbu after calling the sync evict func.
401 	 */
402 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
403 
404 	if (dbu->dbu_evict_func_sync != NULL)
405 		dbu->dbu_evict_func_sync(dbu);
406 
407 	if (has_async) {
408 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
409 		    dbu, 0, &dbu->dbu_tqent);
410 	}
411 }
412 
413 boolean_t
414 dbuf_is_metadata(dmu_buf_impl_t *db)
415 {
416 	if (db->db_level > 0) {
417 		return (B_TRUE);
418 	} else {
419 		boolean_t is_metadata;
420 
421 		DB_DNODE_ENTER(db);
422 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
423 		DB_DNODE_EXIT(db);
424 
425 		return (is_metadata);
426 	}
427 }
428 
429 /*
430  * This returns whether this dbuf should be stored in the metadata cache, which
431  * is based on whether it's from one of the dnode types that store data related
432  * to traversing dataset hierarchies.
433  */
434 static boolean_t
435 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
436 {
437 	DB_DNODE_ENTER(db);
438 	dmu_object_type_t type = DB_DNODE(db)->dn_type;
439 	DB_DNODE_EXIT(db);
440 
441 	/* Check if this dbuf is one of the types we care about */
442 	if (DMU_OT_IS_METADATA_CACHED(type)) {
443 		/* If we hit this, then we set something up wrong in dmu_ot */
444 		ASSERT(DMU_OT_IS_METADATA(type));
445 
446 		/*
447 		 * Sanity check for small-memory systems: don't allocate too
448 		 * much memory for this purpose.
449 		 */
450 		if (refcount_count(&dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
451 		    dbuf_metadata_cache_max_bytes) {
452 			dbuf_metadata_cache_overflow++;
453 			DTRACE_PROBE1(dbuf__metadata__cache__overflow,
454 			    dmu_buf_impl_t *, db);
455 			return (B_FALSE);
456 		}
457 
458 		return (B_TRUE);
459 	}
460 
461 	return (B_FALSE);
462 }
463 
464 /*
465  * This function *must* return indices evenly distributed between all
466  * sublists of the multilist. This is needed due to how the dbuf eviction
467  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
468  * distributed between all sublists and uses this assumption when
469  * deciding which sublist to evict from and how much to evict from it.
470  */
471 unsigned int
472 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
473 {
474 	dmu_buf_impl_t *db = obj;
475 
476 	/*
477 	 * The assumption here, is the hash value for a given
478 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
479 	 * (i.e. it's objset, object, level and blkid fields don't change).
480 	 * Thus, we don't need to store the dbuf's sublist index
481 	 * on insertion, as this index can be recalculated on removal.
482 	 *
483 	 * Also, the low order bits of the hash value are thought to be
484 	 * distributed evenly. Otherwise, in the case that the multilist
485 	 * has a power of two number of sublists, each sublists' usage
486 	 * would not be evenly distributed.
487 	 */
488 	return (dbuf_hash(db->db_objset, db->db.db_object,
489 	    db->db_level, db->db_blkid) %
490 	    multilist_get_num_sublists(ml));
491 }
492 
493 static inline boolean_t
494 dbuf_cache_above_hiwater(void)
495 {
496 	uint64_t dbuf_cache_hiwater_bytes =
497 	    (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
498 
499 	return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
500 	    dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
501 }
502 
503 static inline boolean_t
504 dbuf_cache_above_lowater(void)
505 {
506 	uint64_t dbuf_cache_lowater_bytes =
507 	    (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
508 
509 	return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
510 	    dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
511 }
512 
513 /*
514  * Evict the oldest eligible dbuf from the dbuf cache.
515  */
516 static void
517 dbuf_evict_one(void)
518 {
519 	int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
520 	multilist_sublist_t *mls = multilist_sublist_lock(
521 	    dbuf_caches[DB_DBUF_CACHE].cache, idx);
522 
523 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
524 
525 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
526 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
527 		db = multilist_sublist_prev(mls, db);
528 	}
529 
530 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
531 	    multilist_sublist_t *, mls);
532 
533 	if (db != NULL) {
534 		multilist_sublist_remove(mls, db);
535 		multilist_sublist_unlock(mls);
536 		(void) refcount_remove_many(&dbuf_caches[DB_DBUF_CACHE].size,
537 		    db->db.db_size, db);
538 		ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
539 		db->db_caching_status = DB_NO_CACHE;
540 		dbuf_destroy(db);
541 	} else {
542 		multilist_sublist_unlock(mls);
543 	}
544 }
545 
546 /*
547  * The dbuf evict thread is responsible for aging out dbufs from the
548  * cache. Once the cache has reached it's maximum size, dbufs are removed
549  * and destroyed. The eviction thread will continue running until the size
550  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
551  * out of the cache it is destroyed and becomes eligible for arc eviction.
552  */
553 /* ARGSUSED */
554 static void
555 dbuf_evict_thread(void *unused)
556 {
557 	callb_cpr_t cpr;
558 
559 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
560 
561 	mutex_enter(&dbuf_evict_lock);
562 	while (!dbuf_evict_thread_exit) {
563 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
564 			CALLB_CPR_SAFE_BEGIN(&cpr);
565 			(void) cv_timedwait_hires(&dbuf_evict_cv,
566 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
567 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
568 		}
569 		mutex_exit(&dbuf_evict_lock);
570 
571 		/*
572 		 * Keep evicting as long as we're above the low water mark
573 		 * for the cache. We do this without holding the locks to
574 		 * minimize lock contention.
575 		 */
576 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
577 			dbuf_evict_one();
578 		}
579 
580 		mutex_enter(&dbuf_evict_lock);
581 	}
582 
583 	dbuf_evict_thread_exit = B_FALSE;
584 	cv_broadcast(&dbuf_evict_cv);
585 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
586 	thread_exit();
587 }
588 
589 /*
590  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
591  * If the dbuf cache is at its high water mark, then evict a dbuf from the
592  * dbuf cache using the callers context.
593  */
594 static void
595 dbuf_evict_notify(void)
596 {
597 	/*
598 	 * We check if we should evict without holding the dbuf_evict_lock,
599 	 * because it's OK to occasionally make the wrong decision here,
600 	 * and grabbing the lock results in massive lock contention.
601 	 */
602 	if (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
603 	    dbuf_cache_max_bytes) {
604 		if (dbuf_cache_above_hiwater())
605 			dbuf_evict_one();
606 		cv_signal(&dbuf_evict_cv);
607 	}
608 }
609 
610 void
611 dbuf_init(void)
612 {
613 	uint64_t hsize = 1ULL << 16;
614 	dbuf_hash_table_t *h = &dbuf_hash_table;
615 	int i;
616 
617 	/*
618 	 * The hash table is big enough to fill all of physical memory
619 	 * with an average 4K block size.  The table will take up
620 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
621 	 */
622 	while (hsize * 4096 < physmem * PAGESIZE)
623 		hsize <<= 1;
624 
625 retry:
626 	h->hash_table_mask = hsize - 1;
627 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
628 	if (h->hash_table == NULL) {
629 		/* XXX - we should really return an error instead of assert */
630 		ASSERT(hsize > (1ULL << 10));
631 		hsize >>= 1;
632 		goto retry;
633 	}
634 
635 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
636 	    sizeof (dmu_buf_impl_t),
637 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
638 
639 	for (i = 0; i < DBUF_MUTEXES; i++)
640 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
641 
642 	/*
643 	 * Setup the parameters for the dbuf caches. We set the sizes of the
644 	 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default)
645 	 * of the size of the ARC, respectively. If the values are set in
646 	 * /etc/system and they're not greater than the size of the ARC, then
647 	 * we honor that value.
648 	 */
649 	if (dbuf_cache_max_bytes == 0 ||
650 	    dbuf_cache_max_bytes >= arc_max_bytes())  {
651 		dbuf_cache_max_bytes = arc_max_bytes() >> dbuf_cache_shift;
652 	}
653 	if (dbuf_metadata_cache_max_bytes == 0 ||
654 	    dbuf_metadata_cache_max_bytes >= arc_max_bytes()) {
655 		dbuf_metadata_cache_max_bytes =
656 		    arc_max_bytes() >> dbuf_metadata_cache_shift;
657 	}
658 
659 	/*
660 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
661 	 * configuration is not required.
662 	 */
663 	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
664 
665 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
666 		dbuf_caches[dcs].cache =
667 		    multilist_create(sizeof (dmu_buf_impl_t),
668 		    offsetof(dmu_buf_impl_t, db_cache_link),
669 		    dbuf_cache_multilist_index_func);
670 		refcount_create(&dbuf_caches[dcs].size);
671 	}
672 
673 	dbuf_evict_thread_exit = B_FALSE;
674 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
675 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
676 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
677 	    NULL, 0, &p0, TS_RUN, minclsyspri);
678 }
679 
680 void
681 dbuf_fini(void)
682 {
683 	dbuf_hash_table_t *h = &dbuf_hash_table;
684 	int i;
685 
686 	for (i = 0; i < DBUF_MUTEXES; i++)
687 		mutex_destroy(&h->hash_mutexes[i]);
688 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
689 	kmem_cache_destroy(dbuf_kmem_cache);
690 	taskq_destroy(dbu_evict_taskq);
691 
692 	mutex_enter(&dbuf_evict_lock);
693 	dbuf_evict_thread_exit = B_TRUE;
694 	while (dbuf_evict_thread_exit) {
695 		cv_signal(&dbuf_evict_cv);
696 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
697 	}
698 	mutex_exit(&dbuf_evict_lock);
699 
700 	mutex_destroy(&dbuf_evict_lock);
701 	cv_destroy(&dbuf_evict_cv);
702 
703 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
704 		refcount_destroy(&dbuf_caches[dcs].size);
705 		multilist_destroy(dbuf_caches[dcs].cache);
706 	}
707 }
708 
709 /*
710  * Other stuff.
711  */
712 
713 #ifdef ZFS_DEBUG
714 static void
715 dbuf_verify(dmu_buf_impl_t *db)
716 {
717 	dnode_t *dn;
718 	dbuf_dirty_record_t *dr;
719 
720 	ASSERT(MUTEX_HELD(&db->db_mtx));
721 
722 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
723 		return;
724 
725 	ASSERT(db->db_objset != NULL);
726 	DB_DNODE_ENTER(db);
727 	dn = DB_DNODE(db);
728 	if (dn == NULL) {
729 		ASSERT(db->db_parent == NULL);
730 		ASSERT(db->db_blkptr == NULL);
731 	} else {
732 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
733 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
734 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
735 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
736 		    db->db_blkid == DMU_SPILL_BLKID ||
737 		    !avl_is_empty(&dn->dn_dbufs));
738 	}
739 	if (db->db_blkid == DMU_BONUS_BLKID) {
740 		ASSERT(dn != NULL);
741 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
742 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
743 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
744 		ASSERT(dn != NULL);
745 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
746 		ASSERT0(db->db.db_offset);
747 	} else {
748 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
749 	}
750 
751 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
752 		ASSERT(dr->dr_dbuf == db);
753 
754 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
755 		ASSERT(dr->dr_dbuf == db);
756 
757 	/*
758 	 * We can't assert that db_size matches dn_datablksz because it
759 	 * can be momentarily different when another thread is doing
760 	 * dnode_set_blksz().
761 	 */
762 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
763 		dr = db->db_data_pending;
764 		/*
765 		 * It should only be modified in syncing context, so
766 		 * make sure we only have one copy of the data.
767 		 */
768 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
769 	}
770 
771 	/* verify db->db_blkptr */
772 	if (db->db_blkptr) {
773 		if (db->db_parent == dn->dn_dbuf) {
774 			/* db is pointed to by the dnode */
775 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
776 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
777 				ASSERT(db->db_parent == NULL);
778 			else
779 				ASSERT(db->db_parent != NULL);
780 			if (db->db_blkid != DMU_SPILL_BLKID)
781 				ASSERT3P(db->db_blkptr, ==,
782 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
783 		} else {
784 			/* db is pointed to by an indirect block */
785 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
786 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
787 			ASSERT3U(db->db_parent->db.db_object, ==,
788 			    db->db.db_object);
789 			/*
790 			 * dnode_grow_indblksz() can make this fail if we don't
791 			 * have the struct_rwlock.  XXX indblksz no longer
792 			 * grows.  safe to do this now?
793 			 */
794 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
795 				ASSERT3P(db->db_blkptr, ==,
796 				    ((blkptr_t *)db->db_parent->db.db_data +
797 				    db->db_blkid % epb));
798 			}
799 		}
800 	}
801 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
802 	    (db->db_buf == NULL || db->db_buf->b_data) &&
803 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
804 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
805 		/*
806 		 * If the blkptr isn't set but they have nonzero data,
807 		 * it had better be dirty, otherwise we'll lose that
808 		 * data when we evict this buffer.
809 		 *
810 		 * There is an exception to this rule for indirect blocks; in
811 		 * this case, if the indirect block is a hole, we fill in a few
812 		 * fields on each of the child blocks (importantly, birth time)
813 		 * to prevent hole birth times from being lost when you
814 		 * partially fill in a hole.
815 		 */
816 		if (db->db_dirtycnt == 0) {
817 			if (db->db_level == 0) {
818 				uint64_t *buf = db->db.db_data;
819 				int i;
820 
821 				for (i = 0; i < db->db.db_size >> 3; i++) {
822 					ASSERT(buf[i] == 0);
823 				}
824 			} else {
825 				blkptr_t *bps = db->db.db_data;
826 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
827 				    db->db.db_size);
828 				/*
829 				 * We want to verify that all the blkptrs in the
830 				 * indirect block are holes, but we may have
831 				 * automatically set up a few fields for them.
832 				 * We iterate through each blkptr and verify
833 				 * they only have those fields set.
834 				 */
835 				for (int i = 0;
836 				    i < db->db.db_size / sizeof (blkptr_t);
837 				    i++) {
838 					blkptr_t *bp = &bps[i];
839 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
840 					    &bp->blk_cksum));
841 					ASSERT(
842 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
843 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
844 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
845 					ASSERT0(bp->blk_fill);
846 					ASSERT0(bp->blk_pad[0]);
847 					ASSERT0(bp->blk_pad[1]);
848 					ASSERT(!BP_IS_EMBEDDED(bp));
849 					ASSERT(BP_IS_HOLE(bp));
850 					ASSERT0(bp->blk_phys_birth);
851 				}
852 			}
853 		}
854 	}
855 	DB_DNODE_EXIT(db);
856 }
857 #endif
858 
859 static void
860 dbuf_clear_data(dmu_buf_impl_t *db)
861 {
862 	ASSERT(MUTEX_HELD(&db->db_mtx));
863 	dbuf_evict_user(db);
864 	ASSERT3P(db->db_buf, ==, NULL);
865 	db->db.db_data = NULL;
866 	if (db->db_state != DB_NOFILL)
867 		db->db_state = DB_UNCACHED;
868 }
869 
870 static void
871 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
872 {
873 	ASSERT(MUTEX_HELD(&db->db_mtx));
874 	ASSERT(buf != NULL);
875 
876 	db->db_buf = buf;
877 	ASSERT(buf->b_data != NULL);
878 	db->db.db_data = buf->b_data;
879 }
880 
881 /*
882  * Loan out an arc_buf for read.  Return the loaned arc_buf.
883  */
884 arc_buf_t *
885 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
886 {
887 	arc_buf_t *abuf;
888 
889 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
890 	mutex_enter(&db->db_mtx);
891 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
892 		int blksz = db->db.db_size;
893 		spa_t *spa = db->db_objset->os_spa;
894 
895 		mutex_exit(&db->db_mtx);
896 		abuf = arc_loan_buf(spa, B_FALSE, blksz);
897 		bcopy(db->db.db_data, abuf->b_data, blksz);
898 	} else {
899 		abuf = db->db_buf;
900 		arc_loan_inuse_buf(abuf, db);
901 		db->db_buf = NULL;
902 		dbuf_clear_data(db);
903 		mutex_exit(&db->db_mtx);
904 	}
905 	return (abuf);
906 }
907 
908 /*
909  * Calculate which level n block references the data at the level 0 offset
910  * provided.
911  */
912 uint64_t
913 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
914 {
915 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
916 		/*
917 		 * The level n blkid is equal to the level 0 blkid divided by
918 		 * the number of level 0s in a level n block.
919 		 *
920 		 * The level 0 blkid is offset >> datablkshift =
921 		 * offset / 2^datablkshift.
922 		 *
923 		 * The number of level 0s in a level n is the number of block
924 		 * pointers in an indirect block, raised to the power of level.
925 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
926 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
927 		 *
928 		 * Thus, the level n blkid is: offset /
929 		 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
930 		 * = offset / 2^(datablkshift + level *
931 		 *   (indblkshift - SPA_BLKPTRSHIFT))
932 		 * = offset >> (datablkshift + level *
933 		 *   (indblkshift - SPA_BLKPTRSHIFT))
934 		 */
935 		return (offset >> (dn->dn_datablkshift + level *
936 		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
937 	} else {
938 		ASSERT3U(offset, <, dn->dn_datablksz);
939 		return (0);
940 	}
941 }
942 
943 static void
944 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
945 {
946 	dmu_buf_impl_t *db = vdb;
947 
948 	mutex_enter(&db->db_mtx);
949 	ASSERT3U(db->db_state, ==, DB_READ);
950 	/*
951 	 * All reads are synchronous, so we must have a hold on the dbuf
952 	 */
953 	ASSERT(refcount_count(&db->db_holds) > 0);
954 	ASSERT(db->db_buf == NULL);
955 	ASSERT(db->db.db_data == NULL);
956 	if (buf == NULL) {
957 		/* i/o error */
958 		ASSERT(zio == NULL || zio->io_error != 0);
959 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
960 		ASSERT3P(db->db_buf, ==, NULL);
961 		db->db_state = DB_UNCACHED;
962 	} else if (db->db_level == 0 && db->db_freed_in_flight) {
963 		/* freed in flight */
964 		ASSERT(zio == NULL || zio->io_error == 0);
965 		arc_release(buf, db);
966 		bzero(buf->b_data, db->db.db_size);
967 		arc_buf_freeze(buf);
968 		db->db_freed_in_flight = FALSE;
969 		dbuf_set_data(db, buf);
970 		db->db_state = DB_CACHED;
971 	} else {
972 		/* success */
973 		ASSERT(zio == NULL || zio->io_error == 0);
974 		dbuf_set_data(db, buf);
975 		db->db_state = DB_CACHED;
976 	}
977 	cv_broadcast(&db->db_changed);
978 	dbuf_rele_and_unlock(db, NULL, B_FALSE);
979 }
980 
981 static void
982 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
983 {
984 	dnode_t *dn;
985 	zbookmark_phys_t zb;
986 	arc_flags_t aflags = ARC_FLAG_NOWAIT;
987 
988 	DB_DNODE_ENTER(db);
989 	dn = DB_DNODE(db);
990 	ASSERT(!refcount_is_zero(&db->db_holds));
991 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
992 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
993 	ASSERT(MUTEX_HELD(&db->db_mtx));
994 	ASSERT(db->db_state == DB_UNCACHED);
995 	ASSERT(db->db_buf == NULL);
996 
997 	if (db->db_blkid == DMU_BONUS_BLKID) {
998 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
999 
1000 		ASSERT3U(bonuslen, <=, db->db.db_size);
1001 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1002 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1003 		if (bonuslen < DN_MAX_BONUSLEN)
1004 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
1005 		if (bonuslen)
1006 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1007 		DB_DNODE_EXIT(db);
1008 		db->db_state = DB_CACHED;
1009 		mutex_exit(&db->db_mtx);
1010 		return;
1011 	}
1012 
1013 	/*
1014 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1015 	 * processes the delete record and clears the bp while we are waiting
1016 	 * for the dn_mtx (resulting in a "no" from block_freed).
1017 	 */
1018 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1019 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1020 	    BP_IS_HOLE(db->db_blkptr)))) {
1021 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1022 
1023 		dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1024 		    db->db.db_size));
1025 		bzero(db->db.db_data, db->db.db_size);
1026 
1027 		if (db->db_blkptr != NULL && db->db_level > 0 &&
1028 		    BP_IS_HOLE(db->db_blkptr) &&
1029 		    db->db_blkptr->blk_birth != 0) {
1030 			blkptr_t *bps = db->db.db_data;
1031 			for (int i = 0; i < ((1 <<
1032 			    DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1033 			    i++) {
1034 				blkptr_t *bp = &bps[i];
1035 				ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1036 				    1 << dn->dn_indblkshift);
1037 				BP_SET_LSIZE(bp,
1038 				    BP_GET_LEVEL(db->db_blkptr) == 1 ?
1039 				    dn->dn_datablksz :
1040 				    BP_GET_LSIZE(db->db_blkptr));
1041 				BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1042 				BP_SET_LEVEL(bp,
1043 				    BP_GET_LEVEL(db->db_blkptr) - 1);
1044 				BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1045 			}
1046 		}
1047 		DB_DNODE_EXIT(db);
1048 		db->db_state = DB_CACHED;
1049 		mutex_exit(&db->db_mtx);
1050 		return;
1051 	}
1052 
1053 	DB_DNODE_EXIT(db);
1054 
1055 	db->db_state = DB_READ;
1056 	mutex_exit(&db->db_mtx);
1057 
1058 	if (DBUF_IS_L2CACHEABLE(db))
1059 		aflags |= ARC_FLAG_L2CACHE;
1060 
1061 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1062 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1063 	    db->db.db_object, db->db_level, db->db_blkid);
1064 
1065 	dbuf_add_ref(db, NULL);
1066 
1067 	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1068 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1069 	    (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1070 	    &aflags, &zb);
1071 }
1072 
1073 /*
1074  * This is our just-in-time copy function.  It makes a copy of buffers that
1075  * have been modified in a previous transaction group before we access them in
1076  * the current active group.
1077  *
1078  * This function is used in three places: when we are dirtying a buffer for the
1079  * first time in a txg, when we are freeing a range in a dnode that includes
1080  * this buffer, and when we are accessing a buffer which was received compressed
1081  * and later referenced in a WRITE_BYREF record.
1082  *
1083  * Note that when we are called from dbuf_free_range() we do not put a hold on
1084  * the buffer, we just traverse the active dbuf list for the dnode.
1085  */
1086 static void
1087 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1088 {
1089 	dbuf_dirty_record_t *dr = db->db_last_dirty;
1090 
1091 	ASSERT(MUTEX_HELD(&db->db_mtx));
1092 	ASSERT(db->db.db_data != NULL);
1093 	ASSERT(db->db_level == 0);
1094 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1095 
1096 	if (dr == NULL ||
1097 	    (dr->dt.dl.dr_data !=
1098 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1099 		return;
1100 
1101 	/*
1102 	 * If the last dirty record for this dbuf has not yet synced
1103 	 * and its referencing the dbuf data, either:
1104 	 *	reset the reference to point to a new copy,
1105 	 * or (if there a no active holders)
1106 	 *	just null out the current db_data pointer.
1107 	 */
1108 	ASSERT(dr->dr_txg >= txg - 2);
1109 	if (db->db_blkid == DMU_BONUS_BLKID) {
1110 		/* Note that the data bufs here are zio_bufs */
1111 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1112 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1113 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
1114 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1115 		int size = arc_buf_size(db->db_buf);
1116 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1117 		spa_t *spa = db->db_objset->os_spa;
1118 		enum zio_compress compress_type =
1119 		    arc_get_compression(db->db_buf);
1120 
1121 		if (compress_type == ZIO_COMPRESS_OFF) {
1122 			dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1123 		} else {
1124 			ASSERT3U(type, ==, ARC_BUFC_DATA);
1125 			dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1126 			    size, arc_buf_lsize(db->db_buf), compress_type);
1127 		}
1128 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1129 	} else {
1130 		db->db_buf = NULL;
1131 		dbuf_clear_data(db);
1132 	}
1133 }
1134 
1135 int
1136 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1137 {
1138 	int err = 0;
1139 	boolean_t prefetch;
1140 	dnode_t *dn;
1141 
1142 	/*
1143 	 * We don't have to hold the mutex to check db_state because it
1144 	 * can't be freed while we have a hold on the buffer.
1145 	 */
1146 	ASSERT(!refcount_is_zero(&db->db_holds));
1147 
1148 	if (db->db_state == DB_NOFILL)
1149 		return (SET_ERROR(EIO));
1150 
1151 	DB_DNODE_ENTER(db);
1152 	dn = DB_DNODE(db);
1153 	if ((flags & DB_RF_HAVESTRUCT) == 0)
1154 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1155 
1156 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1157 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1158 	    DBUF_IS_CACHEABLE(db);
1159 
1160 	mutex_enter(&db->db_mtx);
1161 	if (db->db_state == DB_CACHED) {
1162 		/*
1163 		 * If the arc buf is compressed, we need to decompress it to
1164 		 * read the data. This could happen during the "zfs receive" of
1165 		 * a stream which is compressed and deduplicated.
1166 		 */
1167 		if (db->db_buf != NULL &&
1168 		    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) {
1169 			dbuf_fix_old_data(db,
1170 			    spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1171 			err = arc_decompress(db->db_buf);
1172 			dbuf_set_data(db, db->db_buf);
1173 		}
1174 		mutex_exit(&db->db_mtx);
1175 		if (prefetch)
1176 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1177 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1178 			rw_exit(&dn->dn_struct_rwlock);
1179 		DB_DNODE_EXIT(db);
1180 	} else if (db->db_state == DB_UNCACHED) {
1181 		spa_t *spa = dn->dn_objset->os_spa;
1182 		boolean_t need_wait = B_FALSE;
1183 
1184 		if (zio == NULL &&
1185 		    db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1186 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1187 			need_wait = B_TRUE;
1188 		}
1189 		dbuf_read_impl(db, zio, flags);
1190 
1191 		/* dbuf_read_impl has dropped db_mtx for us */
1192 
1193 		if (prefetch)
1194 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1195 
1196 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1197 			rw_exit(&dn->dn_struct_rwlock);
1198 		DB_DNODE_EXIT(db);
1199 
1200 		if (need_wait)
1201 			err = zio_wait(zio);
1202 	} else {
1203 		/*
1204 		 * Another reader came in while the dbuf was in flight
1205 		 * between UNCACHED and CACHED.  Either a writer will finish
1206 		 * writing the buffer (sending the dbuf to CACHED) or the
1207 		 * first reader's request will reach the read_done callback
1208 		 * and send the dbuf to CACHED.  Otherwise, a failure
1209 		 * occurred and the dbuf went to UNCACHED.
1210 		 */
1211 		mutex_exit(&db->db_mtx);
1212 		if (prefetch)
1213 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1214 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1215 			rw_exit(&dn->dn_struct_rwlock);
1216 		DB_DNODE_EXIT(db);
1217 
1218 		/* Skip the wait per the caller's request. */
1219 		mutex_enter(&db->db_mtx);
1220 		if ((flags & DB_RF_NEVERWAIT) == 0) {
1221 			while (db->db_state == DB_READ ||
1222 			    db->db_state == DB_FILL) {
1223 				ASSERT(db->db_state == DB_READ ||
1224 				    (flags & DB_RF_HAVESTRUCT) == 0);
1225 				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1226 				    db, zio_t *, zio);
1227 				cv_wait(&db->db_changed, &db->db_mtx);
1228 			}
1229 			if (db->db_state == DB_UNCACHED)
1230 				err = SET_ERROR(EIO);
1231 		}
1232 		mutex_exit(&db->db_mtx);
1233 	}
1234 
1235 	return (err);
1236 }
1237 
1238 static void
1239 dbuf_noread(dmu_buf_impl_t *db)
1240 {
1241 	ASSERT(!refcount_is_zero(&db->db_holds));
1242 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1243 	mutex_enter(&db->db_mtx);
1244 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1245 		cv_wait(&db->db_changed, &db->db_mtx);
1246 	if (db->db_state == DB_UNCACHED) {
1247 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1248 		spa_t *spa = db->db_objset->os_spa;
1249 
1250 		ASSERT(db->db_buf == NULL);
1251 		ASSERT(db->db.db_data == NULL);
1252 		dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1253 		db->db_state = DB_FILL;
1254 	} else if (db->db_state == DB_NOFILL) {
1255 		dbuf_clear_data(db);
1256 	} else {
1257 		ASSERT3U(db->db_state, ==, DB_CACHED);
1258 	}
1259 	mutex_exit(&db->db_mtx);
1260 }
1261 
1262 void
1263 dbuf_unoverride(dbuf_dirty_record_t *dr)
1264 {
1265 	dmu_buf_impl_t *db = dr->dr_dbuf;
1266 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1267 	uint64_t txg = dr->dr_txg;
1268 
1269 	ASSERT(MUTEX_HELD(&db->db_mtx));
1270 	/*
1271 	 * This assert is valid because dmu_sync() expects to be called by
1272 	 * a zilog's get_data while holding a range lock.  This call only
1273 	 * comes from dbuf_dirty() callers who must also hold a range lock.
1274 	 */
1275 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1276 	ASSERT(db->db_level == 0);
1277 
1278 	if (db->db_blkid == DMU_BONUS_BLKID ||
1279 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1280 		return;
1281 
1282 	ASSERT(db->db_data_pending != dr);
1283 
1284 	/* free this block */
1285 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1286 		zio_free(db->db_objset->os_spa, txg, bp);
1287 
1288 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1289 	dr->dt.dl.dr_nopwrite = B_FALSE;
1290 
1291 	/*
1292 	 * Release the already-written buffer, so we leave it in
1293 	 * a consistent dirty state.  Note that all callers are
1294 	 * modifying the buffer, so they will immediately do
1295 	 * another (redundant) arc_release().  Therefore, leave
1296 	 * the buf thawed to save the effort of freezing &
1297 	 * immediately re-thawing it.
1298 	 */
1299 	arc_release(dr->dt.dl.dr_data, db);
1300 }
1301 
1302 /*
1303  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1304  * data blocks in the free range, so that any future readers will find
1305  * empty blocks.
1306  */
1307 void
1308 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1309     dmu_tx_t *tx)
1310 {
1311 	dmu_buf_impl_t db_search;
1312 	dmu_buf_impl_t *db, *db_next;
1313 	uint64_t txg = tx->tx_txg;
1314 	avl_index_t where;
1315 
1316 	if (end_blkid > dn->dn_maxblkid &&
1317 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1318 		end_blkid = dn->dn_maxblkid;
1319 	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1320 
1321 	db_search.db_level = 0;
1322 	db_search.db_blkid = start_blkid;
1323 	db_search.db_state = DB_SEARCH;
1324 
1325 	mutex_enter(&dn->dn_dbufs_mtx);
1326 	db = avl_find(&dn->dn_dbufs, &db_search, &where);
1327 	ASSERT3P(db, ==, NULL);
1328 
1329 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1330 
1331 	for (; db != NULL; db = db_next) {
1332 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1333 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1334 
1335 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
1336 			break;
1337 		}
1338 		ASSERT3U(db->db_blkid, >=, start_blkid);
1339 
1340 		/* found a level 0 buffer in the range */
1341 		mutex_enter(&db->db_mtx);
1342 		if (dbuf_undirty(db, tx)) {
1343 			/* mutex has been dropped and dbuf destroyed */
1344 			continue;
1345 		}
1346 
1347 		if (db->db_state == DB_UNCACHED ||
1348 		    db->db_state == DB_NOFILL ||
1349 		    db->db_state == DB_EVICTING) {
1350 			ASSERT(db->db.db_data == NULL);
1351 			mutex_exit(&db->db_mtx);
1352 			continue;
1353 		}
1354 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1355 			/* will be handled in dbuf_read_done or dbuf_rele */
1356 			db->db_freed_in_flight = TRUE;
1357 			mutex_exit(&db->db_mtx);
1358 			continue;
1359 		}
1360 		if (refcount_count(&db->db_holds) == 0) {
1361 			ASSERT(db->db_buf);
1362 			dbuf_destroy(db);
1363 			continue;
1364 		}
1365 		/* The dbuf is referenced */
1366 
1367 		if (db->db_last_dirty != NULL) {
1368 			dbuf_dirty_record_t *dr = db->db_last_dirty;
1369 
1370 			if (dr->dr_txg == txg) {
1371 				/*
1372 				 * This buffer is "in-use", re-adjust the file
1373 				 * size to reflect that this buffer may
1374 				 * contain new data when we sync.
1375 				 */
1376 				if (db->db_blkid != DMU_SPILL_BLKID &&
1377 				    db->db_blkid > dn->dn_maxblkid)
1378 					dn->dn_maxblkid = db->db_blkid;
1379 				dbuf_unoverride(dr);
1380 			} else {
1381 				/*
1382 				 * This dbuf is not dirty in the open context.
1383 				 * Either uncache it (if its not referenced in
1384 				 * the open context) or reset its contents to
1385 				 * empty.
1386 				 */
1387 				dbuf_fix_old_data(db, txg);
1388 			}
1389 		}
1390 		/* clear the contents if its cached */
1391 		if (db->db_state == DB_CACHED) {
1392 			ASSERT(db->db.db_data != NULL);
1393 			arc_release(db->db_buf, db);
1394 			bzero(db->db.db_data, db->db.db_size);
1395 			arc_buf_freeze(db->db_buf);
1396 		}
1397 
1398 		mutex_exit(&db->db_mtx);
1399 	}
1400 	mutex_exit(&dn->dn_dbufs_mtx);
1401 }
1402 
1403 void
1404 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1405 {
1406 	arc_buf_t *buf, *obuf;
1407 	int osize = db->db.db_size;
1408 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1409 	dnode_t *dn;
1410 
1411 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1412 
1413 	DB_DNODE_ENTER(db);
1414 	dn = DB_DNODE(db);
1415 
1416 	/* XXX does *this* func really need the lock? */
1417 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1418 
1419 	/*
1420 	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1421 	 * is OK, because there can be no other references to the db
1422 	 * when we are changing its size, so no concurrent DB_FILL can
1423 	 * be happening.
1424 	 */
1425 	/*
1426 	 * XXX we should be doing a dbuf_read, checking the return
1427 	 * value and returning that up to our callers
1428 	 */
1429 	dmu_buf_will_dirty(&db->db, tx);
1430 
1431 	/* create the data buffer for the new block */
1432 	buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1433 
1434 	/* copy old block data to the new block */
1435 	obuf = db->db_buf;
1436 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1437 	/* zero the remainder */
1438 	if (size > osize)
1439 		bzero((uint8_t *)buf->b_data + osize, size - osize);
1440 
1441 	mutex_enter(&db->db_mtx);
1442 	dbuf_set_data(db, buf);
1443 	arc_buf_destroy(obuf, db);
1444 	db->db.db_size = size;
1445 
1446 	if (db->db_level == 0) {
1447 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1448 		db->db_last_dirty->dt.dl.dr_data = buf;
1449 	}
1450 	mutex_exit(&db->db_mtx);
1451 
1452 	dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1453 	DB_DNODE_EXIT(db);
1454 }
1455 
1456 void
1457 dbuf_release_bp(dmu_buf_impl_t *db)
1458 {
1459 	objset_t *os = db->db_objset;
1460 
1461 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1462 	ASSERT(arc_released(os->os_phys_buf) ||
1463 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1464 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1465 
1466 	(void) arc_release(db->db_buf, db);
1467 }
1468 
1469 /*
1470  * We already have a dirty record for this TXG, and we are being
1471  * dirtied again.
1472  */
1473 static void
1474 dbuf_redirty(dbuf_dirty_record_t *dr)
1475 {
1476 	dmu_buf_impl_t *db = dr->dr_dbuf;
1477 
1478 	ASSERT(MUTEX_HELD(&db->db_mtx));
1479 
1480 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1481 		/*
1482 		 * If this buffer has already been written out,
1483 		 * we now need to reset its state.
1484 		 */
1485 		dbuf_unoverride(dr);
1486 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1487 		    db->db_state != DB_NOFILL) {
1488 			/* Already released on initial dirty, so just thaw. */
1489 			ASSERT(arc_released(db->db_buf));
1490 			arc_buf_thaw(db->db_buf);
1491 		}
1492 	}
1493 }
1494 
1495 dbuf_dirty_record_t *
1496 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1497 {
1498 	dnode_t *dn;
1499 	objset_t *os;
1500 	dbuf_dirty_record_t **drp, *dr;
1501 	int drop_struct_lock = FALSE;
1502 	int txgoff = tx->tx_txg & TXG_MASK;
1503 
1504 	ASSERT(tx->tx_txg != 0);
1505 	ASSERT(!refcount_is_zero(&db->db_holds));
1506 	DMU_TX_DIRTY_BUF(tx, db);
1507 
1508 	DB_DNODE_ENTER(db);
1509 	dn = DB_DNODE(db);
1510 	/*
1511 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1512 	 * objects may be dirtied in syncing context, but only if they
1513 	 * were already pre-dirtied in open context.
1514 	 */
1515 #ifdef DEBUG
1516 	if (dn->dn_objset->os_dsl_dataset != NULL) {
1517 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1518 		    RW_READER, FTAG);
1519 	}
1520 	ASSERT(!dmu_tx_is_syncing(tx) ||
1521 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1522 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1523 	    dn->dn_objset->os_dsl_dataset == NULL);
1524 	if (dn->dn_objset->os_dsl_dataset != NULL)
1525 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1526 #endif
1527 	/*
1528 	 * We make this assert for private objects as well, but after we
1529 	 * check if we're already dirty.  They are allowed to re-dirty
1530 	 * in syncing context.
1531 	 */
1532 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1533 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1534 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1535 
1536 	mutex_enter(&db->db_mtx);
1537 	/*
1538 	 * XXX make this true for indirects too?  The problem is that
1539 	 * transactions created with dmu_tx_create_assigned() from
1540 	 * syncing context don't bother holding ahead.
1541 	 */
1542 	ASSERT(db->db_level != 0 ||
1543 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1544 	    db->db_state == DB_NOFILL);
1545 
1546 	mutex_enter(&dn->dn_mtx);
1547 	/*
1548 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1549 	 * initialize the objset.
1550 	 */
1551 	if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1552 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1553 			rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1554 			    RW_READER, FTAG);
1555 		}
1556 		if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1557 			dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1558 			    DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1559 			ASSERT(dn->dn_dirtyctx_firstset == NULL);
1560 			dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1561 		}
1562 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1563 			rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1564 			    FTAG);
1565 		}
1566 	}
1567 	mutex_exit(&dn->dn_mtx);
1568 
1569 	if (db->db_blkid == DMU_SPILL_BLKID)
1570 		dn->dn_have_spill = B_TRUE;
1571 
1572 	/*
1573 	 * If this buffer is already dirty, we're done.
1574 	 */
1575 	drp = &db->db_last_dirty;
1576 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1577 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1578 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1579 		drp = &dr->dr_next;
1580 	if (dr && dr->dr_txg == tx->tx_txg) {
1581 		DB_DNODE_EXIT(db);
1582 
1583 		dbuf_redirty(dr);
1584 		mutex_exit(&db->db_mtx);
1585 		return (dr);
1586 	}
1587 
1588 	/*
1589 	 * Only valid if not already dirty.
1590 	 */
1591 	ASSERT(dn->dn_object == 0 ||
1592 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1593 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1594 
1595 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1596 
1597 	/*
1598 	 * We should only be dirtying in syncing context if it's the
1599 	 * mos or we're initializing the os or it's a special object.
1600 	 * However, we are allowed to dirty in syncing context provided
1601 	 * we already dirtied it in open context.  Hence we must make
1602 	 * this assertion only if we're not already dirty.
1603 	 */
1604 	os = dn->dn_objset;
1605 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1606 #ifdef DEBUG
1607 	if (dn->dn_objset->os_dsl_dataset != NULL)
1608 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1609 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1610 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1611 	if (dn->dn_objset->os_dsl_dataset != NULL)
1612 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1613 #endif
1614 	ASSERT(db->db.db_size != 0);
1615 
1616 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1617 
1618 	if (db->db_blkid != DMU_BONUS_BLKID) {
1619 		dmu_objset_willuse_space(os, db->db.db_size, tx);
1620 	}
1621 
1622 	/*
1623 	 * If this buffer is dirty in an old transaction group we need
1624 	 * to make a copy of it so that the changes we make in this
1625 	 * transaction group won't leak out when we sync the older txg.
1626 	 */
1627 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1628 	if (db->db_level == 0) {
1629 		void *data_old = db->db_buf;
1630 
1631 		if (db->db_state != DB_NOFILL) {
1632 			if (db->db_blkid == DMU_BONUS_BLKID) {
1633 				dbuf_fix_old_data(db, tx->tx_txg);
1634 				data_old = db->db.db_data;
1635 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1636 				/*
1637 				 * Release the data buffer from the cache so
1638 				 * that we can modify it without impacting
1639 				 * possible other users of this cached data
1640 				 * block.  Note that indirect blocks and
1641 				 * private objects are not released until the
1642 				 * syncing state (since they are only modified
1643 				 * then).
1644 				 */
1645 				arc_release(db->db_buf, db);
1646 				dbuf_fix_old_data(db, tx->tx_txg);
1647 				data_old = db->db_buf;
1648 			}
1649 			ASSERT(data_old != NULL);
1650 		}
1651 		dr->dt.dl.dr_data = data_old;
1652 	} else {
1653 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1654 		list_create(&dr->dt.di.dr_children,
1655 		    sizeof (dbuf_dirty_record_t),
1656 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1657 	}
1658 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1659 		dr->dr_accounted = db->db.db_size;
1660 	dr->dr_dbuf = db;
1661 	dr->dr_txg = tx->tx_txg;
1662 	dr->dr_next = *drp;
1663 	*drp = dr;
1664 
1665 	/*
1666 	 * We could have been freed_in_flight between the dbuf_noread
1667 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1668 	 * happened after the free.
1669 	 */
1670 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1671 	    db->db_blkid != DMU_SPILL_BLKID) {
1672 		mutex_enter(&dn->dn_mtx);
1673 		if (dn->dn_free_ranges[txgoff] != NULL) {
1674 			range_tree_clear(dn->dn_free_ranges[txgoff],
1675 			    db->db_blkid, 1);
1676 		}
1677 		mutex_exit(&dn->dn_mtx);
1678 		db->db_freed_in_flight = FALSE;
1679 	}
1680 
1681 	/*
1682 	 * This buffer is now part of this txg
1683 	 */
1684 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1685 	db->db_dirtycnt += 1;
1686 	ASSERT3U(db->db_dirtycnt, <=, 3);
1687 
1688 	mutex_exit(&db->db_mtx);
1689 
1690 	if (db->db_blkid == DMU_BONUS_BLKID ||
1691 	    db->db_blkid == DMU_SPILL_BLKID) {
1692 		mutex_enter(&dn->dn_mtx);
1693 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1694 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1695 		mutex_exit(&dn->dn_mtx);
1696 		dnode_setdirty(dn, tx);
1697 		DB_DNODE_EXIT(db);
1698 		return (dr);
1699 	}
1700 
1701 	/*
1702 	 * The dn_struct_rwlock prevents db_blkptr from changing
1703 	 * due to a write from syncing context completing
1704 	 * while we are running, so we want to acquire it before
1705 	 * looking at db_blkptr.
1706 	 */
1707 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1708 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1709 		drop_struct_lock = TRUE;
1710 	}
1711 
1712 	/*
1713 	 * We need to hold the dn_struct_rwlock to make this assertion,
1714 	 * because it protects dn_phys / dn_next_nlevels from changing.
1715 	 */
1716 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1717 	    dn->dn_phys->dn_nlevels > db->db_level ||
1718 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1719 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1720 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1721 
1722 	/*
1723 	 * If we are overwriting a dedup BP, then unless it is snapshotted,
1724 	 * when we get to syncing context we will need to decrement its
1725 	 * refcount in the DDT.  Prefetch the relevant DDT block so that
1726 	 * syncing context won't have to wait for the i/o.
1727 	 */
1728 	ddt_prefetch(os->os_spa, db->db_blkptr);
1729 
1730 	if (db->db_level == 0) {
1731 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1732 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1733 	}
1734 
1735 	if (db->db_level+1 < dn->dn_nlevels) {
1736 		dmu_buf_impl_t *parent = db->db_parent;
1737 		dbuf_dirty_record_t *di;
1738 		int parent_held = FALSE;
1739 
1740 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1741 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1742 
1743 			parent = dbuf_hold_level(dn, db->db_level+1,
1744 			    db->db_blkid >> epbs, FTAG);
1745 			ASSERT(parent != NULL);
1746 			parent_held = TRUE;
1747 		}
1748 		if (drop_struct_lock)
1749 			rw_exit(&dn->dn_struct_rwlock);
1750 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1751 		di = dbuf_dirty(parent, tx);
1752 		if (parent_held)
1753 			dbuf_rele(parent, FTAG);
1754 
1755 		mutex_enter(&db->db_mtx);
1756 		/*
1757 		 * Since we've dropped the mutex, it's possible that
1758 		 * dbuf_undirty() might have changed this out from under us.
1759 		 */
1760 		if (db->db_last_dirty == dr ||
1761 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1762 			mutex_enter(&di->dt.di.dr_mtx);
1763 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1764 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1765 			list_insert_tail(&di->dt.di.dr_children, dr);
1766 			mutex_exit(&di->dt.di.dr_mtx);
1767 			dr->dr_parent = di;
1768 		}
1769 		mutex_exit(&db->db_mtx);
1770 	} else {
1771 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1772 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1773 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1774 		mutex_enter(&dn->dn_mtx);
1775 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1776 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1777 		mutex_exit(&dn->dn_mtx);
1778 		if (drop_struct_lock)
1779 			rw_exit(&dn->dn_struct_rwlock);
1780 	}
1781 
1782 	dnode_setdirty(dn, tx);
1783 	DB_DNODE_EXIT(db);
1784 	return (dr);
1785 }
1786 
1787 /*
1788  * Undirty a buffer in the transaction group referenced by the given
1789  * transaction.  Return whether this evicted the dbuf.
1790  */
1791 static boolean_t
1792 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1793 {
1794 	dnode_t *dn;
1795 	uint64_t txg = tx->tx_txg;
1796 	dbuf_dirty_record_t *dr, **drp;
1797 
1798 	ASSERT(txg != 0);
1799 
1800 	/*
1801 	 * Due to our use of dn_nlevels below, this can only be called
1802 	 * in open context, unless we are operating on the MOS.
1803 	 * From syncing context, dn_nlevels may be different from the
1804 	 * dn_nlevels used when dbuf was dirtied.
1805 	 */
1806 	ASSERT(db->db_objset ==
1807 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1808 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1809 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1810 	ASSERT0(db->db_level);
1811 	ASSERT(MUTEX_HELD(&db->db_mtx));
1812 
1813 	/*
1814 	 * If this buffer is not dirty, we're done.
1815 	 */
1816 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1817 		if (dr->dr_txg <= txg)
1818 			break;
1819 	if (dr == NULL || dr->dr_txg < txg)
1820 		return (B_FALSE);
1821 	ASSERT(dr->dr_txg == txg);
1822 	ASSERT(dr->dr_dbuf == db);
1823 
1824 	DB_DNODE_ENTER(db);
1825 	dn = DB_DNODE(db);
1826 
1827 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1828 
1829 	ASSERT(db->db.db_size != 0);
1830 
1831 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1832 	    dr->dr_accounted, txg);
1833 
1834 	*drp = dr->dr_next;
1835 
1836 	/*
1837 	 * Note that there are three places in dbuf_dirty()
1838 	 * where this dirty record may be put on a list.
1839 	 * Make sure to do a list_remove corresponding to
1840 	 * every one of those list_insert calls.
1841 	 */
1842 	if (dr->dr_parent) {
1843 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1844 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1845 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1846 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1847 	    db->db_level + 1 == dn->dn_nlevels) {
1848 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1849 		mutex_enter(&dn->dn_mtx);
1850 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1851 		mutex_exit(&dn->dn_mtx);
1852 	}
1853 	DB_DNODE_EXIT(db);
1854 
1855 	if (db->db_state != DB_NOFILL) {
1856 		dbuf_unoverride(dr);
1857 
1858 		ASSERT(db->db_buf != NULL);
1859 		ASSERT(dr->dt.dl.dr_data != NULL);
1860 		if (dr->dt.dl.dr_data != db->db_buf)
1861 			arc_buf_destroy(dr->dt.dl.dr_data, db);
1862 	}
1863 
1864 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1865 
1866 	ASSERT(db->db_dirtycnt > 0);
1867 	db->db_dirtycnt -= 1;
1868 
1869 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1870 		ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1871 		dbuf_destroy(db);
1872 		return (B_TRUE);
1873 	}
1874 
1875 	return (B_FALSE);
1876 }
1877 
1878 void
1879 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1880 {
1881 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1882 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1883 
1884 	ASSERT(tx->tx_txg != 0);
1885 	ASSERT(!refcount_is_zero(&db->db_holds));
1886 
1887 	/*
1888 	 * Quick check for dirtyness.  For already dirty blocks, this
1889 	 * reduces runtime of this function by >90%, and overall performance
1890 	 * by 50% for some workloads (e.g. file deletion with indirect blocks
1891 	 * cached).
1892 	 */
1893 	mutex_enter(&db->db_mtx);
1894 	dbuf_dirty_record_t *dr;
1895 	for (dr = db->db_last_dirty;
1896 	    dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1897 		/*
1898 		 * It's possible that it is already dirty but not cached,
1899 		 * because there are some calls to dbuf_dirty() that don't
1900 		 * go through dmu_buf_will_dirty().
1901 		 */
1902 		if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1903 			/* This dbuf is already dirty and cached. */
1904 			dbuf_redirty(dr);
1905 			mutex_exit(&db->db_mtx);
1906 			return;
1907 		}
1908 	}
1909 	mutex_exit(&db->db_mtx);
1910 
1911 	DB_DNODE_ENTER(db);
1912 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1913 		rf |= DB_RF_HAVESTRUCT;
1914 	DB_DNODE_EXIT(db);
1915 	(void) dbuf_read(db, NULL, rf);
1916 	(void) dbuf_dirty(db, tx);
1917 }
1918 
1919 void
1920 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1921 {
1922 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1923 
1924 	db->db_state = DB_NOFILL;
1925 
1926 	dmu_buf_will_fill(db_fake, tx);
1927 }
1928 
1929 void
1930 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1931 {
1932 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1933 
1934 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1935 	ASSERT(tx->tx_txg != 0);
1936 	ASSERT(db->db_level == 0);
1937 	ASSERT(!refcount_is_zero(&db->db_holds));
1938 
1939 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1940 	    dmu_tx_private_ok(tx));
1941 
1942 	dbuf_noread(db);
1943 	(void) dbuf_dirty(db, tx);
1944 }
1945 
1946 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1947 /* ARGSUSED */
1948 void
1949 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1950 {
1951 	mutex_enter(&db->db_mtx);
1952 	DBUF_VERIFY(db);
1953 
1954 	if (db->db_state == DB_FILL) {
1955 		if (db->db_level == 0 && db->db_freed_in_flight) {
1956 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1957 			/* we were freed while filling */
1958 			/* XXX dbuf_undirty? */
1959 			bzero(db->db.db_data, db->db.db_size);
1960 			db->db_freed_in_flight = FALSE;
1961 		}
1962 		db->db_state = DB_CACHED;
1963 		cv_broadcast(&db->db_changed);
1964 	}
1965 	mutex_exit(&db->db_mtx);
1966 }
1967 
1968 void
1969 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1970     bp_embedded_type_t etype, enum zio_compress comp,
1971     int uncompressed_size, int compressed_size, int byteorder,
1972     dmu_tx_t *tx)
1973 {
1974 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1975 	struct dirty_leaf *dl;
1976 	dmu_object_type_t type;
1977 
1978 	if (etype == BP_EMBEDDED_TYPE_DATA) {
1979 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1980 		    SPA_FEATURE_EMBEDDED_DATA));
1981 	}
1982 
1983 	DB_DNODE_ENTER(db);
1984 	type = DB_DNODE(db)->dn_type;
1985 	DB_DNODE_EXIT(db);
1986 
1987 	ASSERT0(db->db_level);
1988 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1989 
1990 	dmu_buf_will_not_fill(dbuf, tx);
1991 
1992 	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1993 	dl = &db->db_last_dirty->dt.dl;
1994 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1995 	    data, comp, uncompressed_size, compressed_size);
1996 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1997 	BP_SET_TYPE(&dl->dr_overridden_by, type);
1998 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1999 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2000 
2001 	dl->dr_override_state = DR_OVERRIDDEN;
2002 	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2003 }
2004 
2005 /*
2006  * Directly assign a provided arc buf to a given dbuf if it's not referenced
2007  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2008  */
2009 void
2010 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2011 {
2012 	ASSERT(!refcount_is_zero(&db->db_holds));
2013 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2014 	ASSERT(db->db_level == 0);
2015 	ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2016 	ASSERT(buf != NULL);
2017 	ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2018 	ASSERT(tx->tx_txg != 0);
2019 
2020 	arc_return_buf(buf, db);
2021 	ASSERT(arc_released(buf));
2022 
2023 	mutex_enter(&db->db_mtx);
2024 
2025 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
2026 		cv_wait(&db->db_changed, &db->db_mtx);
2027 
2028 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2029 
2030 	if (db->db_state == DB_CACHED &&
2031 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2032 		mutex_exit(&db->db_mtx);
2033 		(void) dbuf_dirty(db, tx);
2034 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2035 		arc_buf_destroy(buf, db);
2036 		xuio_stat_wbuf_copied();
2037 		return;
2038 	}
2039 
2040 	xuio_stat_wbuf_nocopy();
2041 	if (db->db_state == DB_CACHED) {
2042 		dbuf_dirty_record_t *dr = db->db_last_dirty;
2043 
2044 		ASSERT(db->db_buf != NULL);
2045 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2046 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
2047 			if (!arc_released(db->db_buf)) {
2048 				ASSERT(dr->dt.dl.dr_override_state ==
2049 				    DR_OVERRIDDEN);
2050 				arc_release(db->db_buf, db);
2051 			}
2052 			dr->dt.dl.dr_data = buf;
2053 			arc_buf_destroy(db->db_buf, db);
2054 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2055 			arc_release(db->db_buf, db);
2056 			arc_buf_destroy(db->db_buf, db);
2057 		}
2058 		db->db_buf = NULL;
2059 	}
2060 	ASSERT(db->db_buf == NULL);
2061 	dbuf_set_data(db, buf);
2062 	db->db_state = DB_FILL;
2063 	mutex_exit(&db->db_mtx);
2064 	(void) dbuf_dirty(db, tx);
2065 	dmu_buf_fill_done(&db->db, tx);
2066 }
2067 
2068 void
2069 dbuf_destroy(dmu_buf_impl_t *db)
2070 {
2071 	dnode_t *dn;
2072 	dmu_buf_impl_t *parent = db->db_parent;
2073 	dmu_buf_impl_t *dndb;
2074 
2075 	ASSERT(MUTEX_HELD(&db->db_mtx));
2076 	ASSERT(refcount_is_zero(&db->db_holds));
2077 
2078 	if (db->db_buf != NULL) {
2079 		arc_buf_destroy(db->db_buf, db);
2080 		db->db_buf = NULL;
2081 	}
2082 
2083 	if (db->db_blkid == DMU_BONUS_BLKID) {
2084 		ASSERT(db->db.db_data != NULL);
2085 		zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
2086 		arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2087 		db->db_state = DB_UNCACHED;
2088 	}
2089 
2090 	dbuf_clear_data(db);
2091 
2092 	if (multilist_link_active(&db->db_cache_link)) {
2093 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2094 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
2095 
2096 		multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2097 		(void) refcount_remove_many(
2098 		    &dbuf_caches[db->db_caching_status].size,
2099 		    db->db.db_size, db);
2100 
2101 		db->db_caching_status = DB_NO_CACHE;
2102 	}
2103 
2104 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2105 	ASSERT(db->db_data_pending == NULL);
2106 
2107 	db->db_state = DB_EVICTING;
2108 	db->db_blkptr = NULL;
2109 
2110 	/*
2111 	 * Now that db_state is DB_EVICTING, nobody else can find this via
2112 	 * the hash table.  We can now drop db_mtx, which allows us to
2113 	 * acquire the dn_dbufs_mtx.
2114 	 */
2115 	mutex_exit(&db->db_mtx);
2116 
2117 	DB_DNODE_ENTER(db);
2118 	dn = DB_DNODE(db);
2119 	dndb = dn->dn_dbuf;
2120 	if (db->db_blkid != DMU_BONUS_BLKID) {
2121 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2122 		if (needlock)
2123 			mutex_enter(&dn->dn_dbufs_mtx);
2124 		avl_remove(&dn->dn_dbufs, db);
2125 		atomic_dec_32(&dn->dn_dbufs_count);
2126 		membar_producer();
2127 		DB_DNODE_EXIT(db);
2128 		if (needlock)
2129 			mutex_exit(&dn->dn_dbufs_mtx);
2130 		/*
2131 		 * Decrementing the dbuf count means that the hold corresponding
2132 		 * to the removed dbuf is no longer discounted in dnode_move(),
2133 		 * so the dnode cannot be moved until after we release the hold.
2134 		 * The membar_producer() ensures visibility of the decremented
2135 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2136 		 * release any lock.
2137 		 */
2138 		mutex_enter(&dn->dn_mtx);
2139 		dnode_rele_and_unlock(dn, db, B_TRUE);
2140 		db->db_dnode_handle = NULL;
2141 
2142 		dbuf_hash_remove(db);
2143 	} else {
2144 		DB_DNODE_EXIT(db);
2145 	}
2146 
2147 	ASSERT(refcount_is_zero(&db->db_holds));
2148 
2149 	db->db_parent = NULL;
2150 
2151 	ASSERT(db->db_buf == NULL);
2152 	ASSERT(db->db.db_data == NULL);
2153 	ASSERT(db->db_hash_next == NULL);
2154 	ASSERT(db->db_blkptr == NULL);
2155 	ASSERT(db->db_data_pending == NULL);
2156 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2157 	ASSERT(!multilist_link_active(&db->db_cache_link));
2158 
2159 	kmem_cache_free(dbuf_kmem_cache, db);
2160 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2161 
2162 	/*
2163 	 * If this dbuf is referenced from an indirect dbuf,
2164 	 * decrement the ref count on the indirect dbuf.
2165 	 */
2166 	if (parent && parent != dndb) {
2167 		mutex_enter(&parent->db_mtx);
2168 		dbuf_rele_and_unlock(parent, db, B_TRUE);
2169 	}
2170 }
2171 
2172 /*
2173  * Note: While bpp will always be updated if the function returns success,
2174  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2175  * this happens when the dnode is the meta-dnode, or a userused or groupused
2176  * object.
2177  */
2178 static int
2179 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2180     dmu_buf_impl_t **parentp, blkptr_t **bpp)
2181 {
2182 	*parentp = NULL;
2183 	*bpp = NULL;
2184 
2185 	ASSERT(blkid != DMU_BONUS_BLKID);
2186 
2187 	if (blkid == DMU_SPILL_BLKID) {
2188 		mutex_enter(&dn->dn_mtx);
2189 		if (dn->dn_have_spill &&
2190 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2191 			*bpp = &dn->dn_phys->dn_spill;
2192 		else
2193 			*bpp = NULL;
2194 		dbuf_add_ref(dn->dn_dbuf, NULL);
2195 		*parentp = dn->dn_dbuf;
2196 		mutex_exit(&dn->dn_mtx);
2197 		return (0);
2198 	}
2199 
2200 	int nlevels =
2201 	    (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2202 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2203 
2204 	ASSERT3U(level * epbs, <, 64);
2205 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2206 	/*
2207 	 * This assertion shouldn't trip as long as the max indirect block size
2208 	 * is less than 1M.  The reason for this is that up to that point,
2209 	 * the number of levels required to address an entire object with blocks
2210 	 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.  In
2211 	 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2212 	 * (i.e. we can address the entire object), objects will all use at most
2213 	 * N-1 levels and the assertion won't overflow.  However, once epbs is
2214 	 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
2215 	 * enough to address an entire object, so objects will have 5 levels,
2216 	 * but then this assertion will overflow.
2217 	 *
2218 	 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2219 	 * need to redo this logic to handle overflows.
2220 	 */
2221 	ASSERT(level >= nlevels ||
2222 	    ((nlevels - level - 1) * epbs) +
2223 	    highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2224 	if (level >= nlevels ||
2225 	    blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2226 	    ((nlevels - level - 1) * epbs)) ||
2227 	    (fail_sparse &&
2228 	    blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2229 		/* the buffer has no parent yet */
2230 		return (SET_ERROR(ENOENT));
2231 	} else if (level < nlevels-1) {
2232 		/* this block is referenced from an indirect block */
2233 		int err = dbuf_hold_impl(dn, level+1,
2234 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2235 		if (err)
2236 			return (err);
2237 		err = dbuf_read(*parentp, NULL,
2238 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2239 		if (err) {
2240 			dbuf_rele(*parentp, NULL);
2241 			*parentp = NULL;
2242 			return (err);
2243 		}
2244 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2245 		    (blkid & ((1ULL << epbs) - 1));
2246 		if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2247 			ASSERT(BP_IS_HOLE(*bpp));
2248 		return (0);
2249 	} else {
2250 		/* the block is referenced from the dnode */
2251 		ASSERT3U(level, ==, nlevels-1);
2252 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2253 		    blkid < dn->dn_phys->dn_nblkptr);
2254 		if (dn->dn_dbuf) {
2255 			dbuf_add_ref(dn->dn_dbuf, NULL);
2256 			*parentp = dn->dn_dbuf;
2257 		}
2258 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
2259 		return (0);
2260 	}
2261 }
2262 
2263 static dmu_buf_impl_t *
2264 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2265     dmu_buf_impl_t *parent, blkptr_t *blkptr)
2266 {
2267 	objset_t *os = dn->dn_objset;
2268 	dmu_buf_impl_t *db, *odb;
2269 
2270 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2271 	ASSERT(dn->dn_type != DMU_OT_NONE);
2272 
2273 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2274 
2275 	db->db_objset = os;
2276 	db->db.db_object = dn->dn_object;
2277 	db->db_level = level;
2278 	db->db_blkid = blkid;
2279 	db->db_last_dirty = NULL;
2280 	db->db_dirtycnt = 0;
2281 	db->db_dnode_handle = dn->dn_handle;
2282 	db->db_parent = parent;
2283 	db->db_blkptr = blkptr;
2284 
2285 	db->db_user = NULL;
2286 	db->db_user_immediate_evict = FALSE;
2287 	db->db_freed_in_flight = FALSE;
2288 	db->db_pending_evict = FALSE;
2289 
2290 	if (blkid == DMU_BONUS_BLKID) {
2291 		ASSERT3P(parent, ==, dn->dn_dbuf);
2292 		db->db.db_size = DN_MAX_BONUSLEN -
2293 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2294 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2295 		db->db.db_offset = DMU_BONUS_BLKID;
2296 		db->db_state = DB_UNCACHED;
2297 		db->db_caching_status = DB_NO_CACHE;
2298 		/* the bonus dbuf is not placed in the hash table */
2299 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2300 		return (db);
2301 	} else if (blkid == DMU_SPILL_BLKID) {
2302 		db->db.db_size = (blkptr != NULL) ?
2303 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2304 		db->db.db_offset = 0;
2305 	} else {
2306 		int blocksize =
2307 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2308 		db->db.db_size = blocksize;
2309 		db->db.db_offset = db->db_blkid * blocksize;
2310 	}
2311 
2312 	/*
2313 	 * Hold the dn_dbufs_mtx while we get the new dbuf
2314 	 * in the hash table *and* added to the dbufs list.
2315 	 * This prevents a possible deadlock with someone
2316 	 * trying to look up this dbuf before its added to the
2317 	 * dn_dbufs list.
2318 	 */
2319 	mutex_enter(&dn->dn_dbufs_mtx);
2320 	db->db_state = DB_EVICTING;
2321 	if ((odb = dbuf_hash_insert(db)) != NULL) {
2322 		/* someone else inserted it first */
2323 		kmem_cache_free(dbuf_kmem_cache, db);
2324 		mutex_exit(&dn->dn_dbufs_mtx);
2325 		return (odb);
2326 	}
2327 	avl_add(&dn->dn_dbufs, db);
2328 
2329 	db->db_state = DB_UNCACHED;
2330 	db->db_caching_status = DB_NO_CACHE;
2331 	mutex_exit(&dn->dn_dbufs_mtx);
2332 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2333 
2334 	if (parent && parent != dn->dn_dbuf)
2335 		dbuf_add_ref(parent, db);
2336 
2337 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2338 	    refcount_count(&dn->dn_holds) > 0);
2339 	(void) refcount_add(&dn->dn_holds, db);
2340 	atomic_inc_32(&dn->dn_dbufs_count);
2341 
2342 	dprintf_dbuf(db, "db=%p\n", db);
2343 
2344 	return (db);
2345 }
2346 
2347 typedef struct dbuf_prefetch_arg {
2348 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
2349 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2350 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2351 	int dpa_curlevel; /* The current level that we're reading */
2352 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2353 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2354 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2355 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2356 } dbuf_prefetch_arg_t;
2357 
2358 /*
2359  * Actually issue the prefetch read for the block given.
2360  */
2361 static void
2362 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2363 {
2364 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2365 		return;
2366 
2367 	arc_flags_t aflags =
2368 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2369 
2370 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2371 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2372 	ASSERT(dpa->dpa_zio != NULL);
2373 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2374 	    dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2375 	    &aflags, &dpa->dpa_zb);
2376 }
2377 
2378 /*
2379  * Called when an indirect block above our prefetch target is read in.  This
2380  * will either read in the next indirect block down the tree or issue the actual
2381  * prefetch if the next block down is our target.
2382  */
2383 static void
2384 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2385 {
2386 	dbuf_prefetch_arg_t *dpa = private;
2387 
2388 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2389 	ASSERT3S(dpa->dpa_curlevel, >, 0);
2390 
2391 	if (abuf == NULL) {
2392 		ASSERT(zio == NULL || zio->io_error != 0);
2393 		kmem_free(dpa, sizeof (*dpa));
2394 		return;
2395 	}
2396 	ASSERT(zio == NULL || zio->io_error == 0);
2397 
2398 	/*
2399 	 * The dpa_dnode is only valid if we are called with a NULL
2400 	 * zio. This indicates that the arc_read() returned without
2401 	 * first calling zio_read() to issue a physical read. Once
2402 	 * a physical read is made the dpa_dnode must be invalidated
2403 	 * as the locks guarding it may have been dropped. If the
2404 	 * dpa_dnode is still valid, then we want to add it to the dbuf
2405 	 * cache. To do so, we must hold the dbuf associated with the block
2406 	 * we just prefetched, read its contents so that we associate it
2407 	 * with an arc_buf_t, and then release it.
2408 	 */
2409 	if (zio != NULL) {
2410 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2411 		if (zio->io_flags & ZIO_FLAG_RAW) {
2412 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2413 		} else {
2414 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2415 		}
2416 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2417 
2418 		dpa->dpa_dnode = NULL;
2419 	} else if (dpa->dpa_dnode != NULL) {
2420 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2421 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
2422 		    dpa->dpa_zb.zb_level));
2423 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2424 		    dpa->dpa_curlevel, curblkid, FTAG);
2425 		(void) dbuf_read(db, NULL,
2426 		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2427 		dbuf_rele(db, FTAG);
2428 	}
2429 
2430 	dpa->dpa_curlevel--;
2431 
2432 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2433 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2434 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2435 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2436 	if (BP_IS_HOLE(bp)) {
2437 		kmem_free(dpa, sizeof (*dpa));
2438 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2439 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2440 		dbuf_issue_final_prefetch(dpa, bp);
2441 		kmem_free(dpa, sizeof (*dpa));
2442 	} else {
2443 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2444 		zbookmark_phys_t zb;
2445 
2446 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
2447 		if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2448 			iter_aflags |= ARC_FLAG_L2CACHE;
2449 
2450 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2451 
2452 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2453 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2454 
2455 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2456 		    bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2457 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2458 		    &iter_aflags, &zb);
2459 	}
2460 
2461 	arc_buf_destroy(abuf, private);
2462 }
2463 
2464 /*
2465  * Issue prefetch reads for the given block on the given level.  If the indirect
2466  * blocks above that block are not in memory, we will read them in
2467  * asynchronously.  As a result, this call never blocks waiting for a read to
2468  * complete.
2469  */
2470 void
2471 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2472     arc_flags_t aflags)
2473 {
2474 	blkptr_t bp;
2475 	int epbs, nlevels, curlevel;
2476 	uint64_t curblkid;
2477 
2478 	ASSERT(blkid != DMU_BONUS_BLKID);
2479 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2480 
2481 	if (blkid > dn->dn_maxblkid)
2482 		return;
2483 
2484 	if (dnode_block_freed(dn, blkid))
2485 		return;
2486 
2487 	/*
2488 	 * This dnode hasn't been written to disk yet, so there's nothing to
2489 	 * prefetch.
2490 	 */
2491 	nlevels = dn->dn_phys->dn_nlevels;
2492 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2493 		return;
2494 
2495 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2496 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2497 		return;
2498 
2499 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2500 	    level, blkid);
2501 	if (db != NULL) {
2502 		mutex_exit(&db->db_mtx);
2503 		/*
2504 		 * This dbuf already exists.  It is either CACHED, or
2505 		 * (we assume) about to be read or filled.
2506 		 */
2507 		return;
2508 	}
2509 
2510 	/*
2511 	 * Find the closest ancestor (indirect block) of the target block
2512 	 * that is present in the cache.  In this indirect block, we will
2513 	 * find the bp that is at curlevel, curblkid.
2514 	 */
2515 	curlevel = level;
2516 	curblkid = blkid;
2517 	while (curlevel < nlevels - 1) {
2518 		int parent_level = curlevel + 1;
2519 		uint64_t parent_blkid = curblkid >> epbs;
2520 		dmu_buf_impl_t *db;
2521 
2522 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2523 		    FALSE, TRUE, FTAG, &db) == 0) {
2524 			blkptr_t *bpp = db->db_buf->b_data;
2525 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2526 			dbuf_rele(db, FTAG);
2527 			break;
2528 		}
2529 
2530 		curlevel = parent_level;
2531 		curblkid = parent_blkid;
2532 	}
2533 
2534 	if (curlevel == nlevels - 1) {
2535 		/* No cached indirect blocks found. */
2536 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2537 		bp = dn->dn_phys->dn_blkptr[curblkid];
2538 	}
2539 	if (BP_IS_HOLE(&bp))
2540 		return;
2541 
2542 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2543 
2544 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2545 	    ZIO_FLAG_CANFAIL);
2546 
2547 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2548 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2549 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2550 	    dn->dn_object, level, blkid);
2551 	dpa->dpa_curlevel = curlevel;
2552 	dpa->dpa_prio = prio;
2553 	dpa->dpa_aflags = aflags;
2554 	dpa->dpa_spa = dn->dn_objset->os_spa;
2555 	dpa->dpa_dnode = dn;
2556 	dpa->dpa_epbs = epbs;
2557 	dpa->dpa_zio = pio;
2558 
2559 	/* flag if L2ARC eligible, l2arc_noprefetch then decides */
2560 	if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2561 		dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2562 
2563 	/*
2564 	 * If we have the indirect just above us, no need to do the asynchronous
2565 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
2566 	 * a higher level, though, we want to issue the prefetches for all the
2567 	 * indirect blocks asynchronously, so we can go on with whatever we were
2568 	 * doing.
2569 	 */
2570 	if (curlevel == level) {
2571 		ASSERT3U(curblkid, ==, blkid);
2572 		dbuf_issue_final_prefetch(dpa, &bp);
2573 		kmem_free(dpa, sizeof (*dpa));
2574 	} else {
2575 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2576 		zbookmark_phys_t zb;
2577 
2578 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
2579 		if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2580 			iter_aflags |= ARC_FLAG_L2CACHE;
2581 
2582 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2583 		    dn->dn_object, curlevel, curblkid);
2584 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2585 		    &bp, dbuf_prefetch_indirect_done, dpa, prio,
2586 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2587 		    &iter_aflags, &zb);
2588 	}
2589 	/*
2590 	 * We use pio here instead of dpa_zio since it's possible that
2591 	 * dpa may have already been freed.
2592 	 */
2593 	zio_nowait(pio);
2594 }
2595 
2596 /*
2597  * Returns with db_holds incremented, and db_mtx not held.
2598  * Note: dn_struct_rwlock must be held.
2599  */
2600 int
2601 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2602     boolean_t fail_sparse, boolean_t fail_uncached,
2603     void *tag, dmu_buf_impl_t **dbp)
2604 {
2605 	dmu_buf_impl_t *db, *parent = NULL;
2606 
2607 	ASSERT(blkid != DMU_BONUS_BLKID);
2608 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2609 	ASSERT3U(dn->dn_nlevels, >, level);
2610 
2611 	*dbp = NULL;
2612 top:
2613 	/* dbuf_find() returns with db_mtx held */
2614 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2615 
2616 	if (db == NULL) {
2617 		blkptr_t *bp = NULL;
2618 		int err;
2619 
2620 		if (fail_uncached)
2621 			return (SET_ERROR(ENOENT));
2622 
2623 		ASSERT3P(parent, ==, NULL);
2624 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2625 		if (fail_sparse) {
2626 			if (err == 0 && bp && BP_IS_HOLE(bp))
2627 				err = SET_ERROR(ENOENT);
2628 			if (err) {
2629 				if (parent)
2630 					dbuf_rele(parent, NULL);
2631 				return (err);
2632 			}
2633 		}
2634 		if (err && err != ENOENT)
2635 			return (err);
2636 		db = dbuf_create(dn, level, blkid, parent, bp);
2637 	}
2638 
2639 	if (fail_uncached && db->db_state != DB_CACHED) {
2640 		mutex_exit(&db->db_mtx);
2641 		return (SET_ERROR(ENOENT));
2642 	}
2643 
2644 	if (db->db_buf != NULL)
2645 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2646 
2647 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2648 
2649 	/*
2650 	 * If this buffer is currently syncing out, and we are are
2651 	 * still referencing it from db_data, we need to make a copy
2652 	 * of it in case we decide we want to dirty it again in this txg.
2653 	 */
2654 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2655 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2656 	    db->db_state == DB_CACHED && db->db_data_pending) {
2657 		dbuf_dirty_record_t *dr = db->db_data_pending;
2658 
2659 		if (dr->dt.dl.dr_data == db->db_buf) {
2660 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2661 
2662 			dbuf_set_data(db,
2663 			    arc_alloc_buf(dn->dn_objset->os_spa, db, type,
2664 			    db->db.db_size));
2665 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2666 			    db->db.db_size);
2667 		}
2668 	}
2669 
2670 	if (multilist_link_active(&db->db_cache_link)) {
2671 		ASSERT(refcount_is_zero(&db->db_holds));
2672 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2673 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
2674 
2675 		multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2676 		(void) refcount_remove_many(
2677 		    &dbuf_caches[db->db_caching_status].size,
2678 		    db->db.db_size, db);
2679 
2680 		db->db_caching_status = DB_NO_CACHE;
2681 	}
2682 	(void) refcount_add(&db->db_holds, tag);
2683 	DBUF_VERIFY(db);
2684 	mutex_exit(&db->db_mtx);
2685 
2686 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
2687 	if (parent)
2688 		dbuf_rele(parent, NULL);
2689 
2690 	ASSERT3P(DB_DNODE(db), ==, dn);
2691 	ASSERT3U(db->db_blkid, ==, blkid);
2692 	ASSERT3U(db->db_level, ==, level);
2693 	*dbp = db;
2694 
2695 	return (0);
2696 }
2697 
2698 dmu_buf_impl_t *
2699 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2700 {
2701 	return (dbuf_hold_level(dn, 0, blkid, tag));
2702 }
2703 
2704 dmu_buf_impl_t *
2705 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2706 {
2707 	dmu_buf_impl_t *db;
2708 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2709 	return (err ? NULL : db);
2710 }
2711 
2712 void
2713 dbuf_create_bonus(dnode_t *dn)
2714 {
2715 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2716 
2717 	ASSERT(dn->dn_bonus == NULL);
2718 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2719 }
2720 
2721 int
2722 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2723 {
2724 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2725 	dnode_t *dn;
2726 
2727 	if (db->db_blkid != DMU_SPILL_BLKID)
2728 		return (SET_ERROR(ENOTSUP));
2729 	if (blksz == 0)
2730 		blksz = SPA_MINBLOCKSIZE;
2731 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2732 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2733 
2734 	DB_DNODE_ENTER(db);
2735 	dn = DB_DNODE(db);
2736 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2737 	dbuf_new_size(db, blksz, tx);
2738 	rw_exit(&dn->dn_struct_rwlock);
2739 	DB_DNODE_EXIT(db);
2740 
2741 	return (0);
2742 }
2743 
2744 void
2745 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2746 {
2747 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2748 }
2749 
2750 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2751 void
2752 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2753 {
2754 	int64_t holds = refcount_add(&db->db_holds, tag);
2755 	ASSERT3S(holds, >, 1);
2756 }
2757 
2758 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2759 boolean_t
2760 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2761     void *tag)
2762 {
2763 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2764 	dmu_buf_impl_t *found_db;
2765 	boolean_t result = B_FALSE;
2766 
2767 	if (db->db_blkid == DMU_BONUS_BLKID)
2768 		found_db = dbuf_find_bonus(os, obj);
2769 	else
2770 		found_db = dbuf_find(os, obj, 0, blkid);
2771 
2772 	if (found_db != NULL) {
2773 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2774 			(void) refcount_add(&db->db_holds, tag);
2775 			result = B_TRUE;
2776 		}
2777 		mutex_exit(&db->db_mtx);
2778 	}
2779 	return (result);
2780 }
2781 
2782 /*
2783  * If you call dbuf_rele() you had better not be referencing the dnode handle
2784  * unless you have some other direct or indirect hold on the dnode. (An indirect
2785  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2786  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2787  * dnode's parent dbuf evicting its dnode handles.
2788  */
2789 void
2790 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2791 {
2792 	mutex_enter(&db->db_mtx);
2793 	dbuf_rele_and_unlock(db, tag, B_FALSE);
2794 }
2795 
2796 void
2797 dmu_buf_rele(dmu_buf_t *db, void *tag)
2798 {
2799 	dbuf_rele((dmu_buf_impl_t *)db, tag);
2800 }
2801 
2802 /*
2803  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2804  * db_dirtycnt and db_holds to be updated atomically.  The 'evicting'
2805  * argument should be set if we are already in the dbuf-evicting code
2806  * path, in which case we don't want to recursively evict.  This allows us to
2807  * avoid deeply nested stacks that would have a call flow similar to this:
2808  *
2809  * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
2810  *	^						|
2811  *	|						|
2812  *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
2813  *
2814  */
2815 void
2816 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting)
2817 {
2818 	int64_t holds;
2819 
2820 	ASSERT(MUTEX_HELD(&db->db_mtx));
2821 	DBUF_VERIFY(db);
2822 
2823 	/*
2824 	 * Remove the reference to the dbuf before removing its hold on the
2825 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2826 	 * buffer has a corresponding dnode hold.
2827 	 */
2828 	holds = refcount_remove(&db->db_holds, tag);
2829 	ASSERT(holds >= 0);
2830 
2831 	/*
2832 	 * We can't freeze indirects if there is a possibility that they
2833 	 * may be modified in the current syncing context.
2834 	 */
2835 	if (db->db_buf != NULL &&
2836 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2837 		arc_buf_freeze(db->db_buf);
2838 	}
2839 
2840 	if (holds == db->db_dirtycnt &&
2841 	    db->db_level == 0 && db->db_user_immediate_evict)
2842 		dbuf_evict_user(db);
2843 
2844 	if (holds == 0) {
2845 		if (db->db_blkid == DMU_BONUS_BLKID) {
2846 			dnode_t *dn;
2847 			boolean_t evict_dbuf = db->db_pending_evict;
2848 
2849 			/*
2850 			 * If the dnode moves here, we cannot cross this
2851 			 * barrier until the move completes.
2852 			 */
2853 			DB_DNODE_ENTER(db);
2854 
2855 			dn = DB_DNODE(db);
2856 			atomic_dec_32(&dn->dn_dbufs_count);
2857 
2858 			/*
2859 			 * Decrementing the dbuf count means that the bonus
2860 			 * buffer's dnode hold is no longer discounted in
2861 			 * dnode_move(). The dnode cannot move until after
2862 			 * the dnode_rele() below.
2863 			 */
2864 			DB_DNODE_EXIT(db);
2865 
2866 			/*
2867 			 * Do not reference db after its lock is dropped.
2868 			 * Another thread may evict it.
2869 			 */
2870 			mutex_exit(&db->db_mtx);
2871 
2872 			if (evict_dbuf)
2873 				dnode_evict_bonus(dn);
2874 
2875 			dnode_rele(dn, db);
2876 		} else if (db->db_buf == NULL) {
2877 			/*
2878 			 * This is a special case: we never associated this
2879 			 * dbuf with any data allocated from the ARC.
2880 			 */
2881 			ASSERT(db->db_state == DB_UNCACHED ||
2882 			    db->db_state == DB_NOFILL);
2883 			dbuf_destroy(db);
2884 		} else if (arc_released(db->db_buf)) {
2885 			/*
2886 			 * This dbuf has anonymous data associated with it.
2887 			 */
2888 			dbuf_destroy(db);
2889 		} else {
2890 			boolean_t do_arc_evict = B_FALSE;
2891 			blkptr_t bp;
2892 			spa_t *spa = dmu_objset_spa(db->db_objset);
2893 
2894 			if (!DBUF_IS_CACHEABLE(db) &&
2895 			    db->db_blkptr != NULL &&
2896 			    !BP_IS_HOLE(db->db_blkptr) &&
2897 			    !BP_IS_EMBEDDED(db->db_blkptr)) {
2898 				do_arc_evict = B_TRUE;
2899 				bp = *db->db_blkptr;
2900 			}
2901 
2902 			if (!DBUF_IS_CACHEABLE(db) ||
2903 			    db->db_pending_evict) {
2904 				dbuf_destroy(db);
2905 			} else if (!multilist_link_active(&db->db_cache_link)) {
2906 				ASSERT3U(db->db_caching_status, ==,
2907 				    DB_NO_CACHE);
2908 
2909 				dbuf_cached_state_t dcs =
2910 				    dbuf_include_in_metadata_cache(db) ?
2911 				    DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
2912 				db->db_caching_status = dcs;
2913 
2914 				multilist_insert(dbuf_caches[dcs].cache, db);
2915 				(void) refcount_add_many(&dbuf_caches[dcs].size,
2916 				    db->db.db_size, db);
2917 				mutex_exit(&db->db_mtx);
2918 
2919 				if (db->db_caching_status == DB_DBUF_CACHE &&
2920 				    !evicting) {
2921 					dbuf_evict_notify();
2922 				}
2923 			}
2924 
2925 			if (do_arc_evict)
2926 				arc_freed(spa, &bp);
2927 		}
2928 	} else {
2929 		mutex_exit(&db->db_mtx);
2930 	}
2931 
2932 }
2933 
2934 #pragma weak dmu_buf_refcount = dbuf_refcount
2935 uint64_t
2936 dbuf_refcount(dmu_buf_impl_t *db)
2937 {
2938 	return (refcount_count(&db->db_holds));
2939 }
2940 
2941 void *
2942 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2943     dmu_buf_user_t *new_user)
2944 {
2945 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2946 
2947 	mutex_enter(&db->db_mtx);
2948 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2949 	if (db->db_user == old_user)
2950 		db->db_user = new_user;
2951 	else
2952 		old_user = db->db_user;
2953 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2954 	mutex_exit(&db->db_mtx);
2955 
2956 	return (old_user);
2957 }
2958 
2959 void *
2960 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2961 {
2962 	return (dmu_buf_replace_user(db_fake, NULL, user));
2963 }
2964 
2965 void *
2966 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2967 {
2968 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2969 
2970 	db->db_user_immediate_evict = TRUE;
2971 	return (dmu_buf_set_user(db_fake, user));
2972 }
2973 
2974 void *
2975 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2976 {
2977 	return (dmu_buf_replace_user(db_fake, user, NULL));
2978 }
2979 
2980 void *
2981 dmu_buf_get_user(dmu_buf_t *db_fake)
2982 {
2983 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2984 
2985 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2986 	return (db->db_user);
2987 }
2988 
2989 void
2990 dmu_buf_user_evict_wait()
2991 {
2992 	taskq_wait(dbu_evict_taskq);
2993 }
2994 
2995 blkptr_t *
2996 dmu_buf_get_blkptr(dmu_buf_t *db)
2997 {
2998 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2999 	return (dbi->db_blkptr);
3000 }
3001 
3002 objset_t *
3003 dmu_buf_get_objset(dmu_buf_t *db)
3004 {
3005 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3006 	return (dbi->db_objset);
3007 }
3008 
3009 dnode_t *
3010 dmu_buf_dnode_enter(dmu_buf_t *db)
3011 {
3012 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3013 	DB_DNODE_ENTER(dbi);
3014 	return (DB_DNODE(dbi));
3015 }
3016 
3017 void
3018 dmu_buf_dnode_exit(dmu_buf_t *db)
3019 {
3020 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3021 	DB_DNODE_EXIT(dbi);
3022 }
3023 
3024 static void
3025 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3026 {
3027 	/* ASSERT(dmu_tx_is_syncing(tx) */
3028 	ASSERT(MUTEX_HELD(&db->db_mtx));
3029 
3030 	if (db->db_blkptr != NULL)
3031 		return;
3032 
3033 	if (db->db_blkid == DMU_SPILL_BLKID) {
3034 		db->db_blkptr = &dn->dn_phys->dn_spill;
3035 		BP_ZERO(db->db_blkptr);
3036 		return;
3037 	}
3038 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3039 		/*
3040 		 * This buffer was allocated at a time when there was
3041 		 * no available blkptrs from the dnode, or it was
3042 		 * inappropriate to hook it in (i.e., nlevels mis-match).
3043 		 */
3044 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3045 		ASSERT(db->db_parent == NULL);
3046 		db->db_parent = dn->dn_dbuf;
3047 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3048 		DBUF_VERIFY(db);
3049 	} else {
3050 		dmu_buf_impl_t *parent = db->db_parent;
3051 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3052 
3053 		ASSERT(dn->dn_phys->dn_nlevels > 1);
3054 		if (parent == NULL) {
3055 			mutex_exit(&db->db_mtx);
3056 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
3057 			parent = dbuf_hold_level(dn, db->db_level + 1,
3058 			    db->db_blkid >> epbs, db);
3059 			rw_exit(&dn->dn_struct_rwlock);
3060 			mutex_enter(&db->db_mtx);
3061 			db->db_parent = parent;
3062 		}
3063 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
3064 		    (db->db_blkid & ((1ULL << epbs) - 1));
3065 		DBUF_VERIFY(db);
3066 	}
3067 }
3068 
3069 static void
3070 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3071 {
3072 	dmu_buf_impl_t *db = dr->dr_dbuf;
3073 	dnode_t *dn;
3074 	zio_t *zio;
3075 
3076 	ASSERT(dmu_tx_is_syncing(tx));
3077 
3078 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3079 
3080 	mutex_enter(&db->db_mtx);
3081 
3082 	ASSERT(db->db_level > 0);
3083 	DBUF_VERIFY(db);
3084 
3085 	/* Read the block if it hasn't been read yet. */
3086 	if (db->db_buf == NULL) {
3087 		mutex_exit(&db->db_mtx);
3088 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3089 		mutex_enter(&db->db_mtx);
3090 	}
3091 	ASSERT3U(db->db_state, ==, DB_CACHED);
3092 	ASSERT(db->db_buf != NULL);
3093 
3094 	DB_DNODE_ENTER(db);
3095 	dn = DB_DNODE(db);
3096 	/* Indirect block size must match what the dnode thinks it is. */
3097 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3098 	dbuf_check_blkptr(dn, db);
3099 	DB_DNODE_EXIT(db);
3100 
3101 	/* Provide the pending dirty record to child dbufs */
3102 	db->db_data_pending = dr;
3103 
3104 	mutex_exit(&db->db_mtx);
3105 
3106 	dbuf_write(dr, db->db_buf, tx);
3107 
3108 	zio = dr->dr_zio;
3109 	mutex_enter(&dr->dt.di.dr_mtx);
3110 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3111 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3112 	mutex_exit(&dr->dt.di.dr_mtx);
3113 	zio_nowait(zio);
3114 }
3115 
3116 static void
3117 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3118 {
3119 	arc_buf_t **datap = &dr->dt.dl.dr_data;
3120 	dmu_buf_impl_t *db = dr->dr_dbuf;
3121 	dnode_t *dn;
3122 	objset_t *os;
3123 	uint64_t txg = tx->tx_txg;
3124 
3125 	ASSERT(dmu_tx_is_syncing(tx));
3126 
3127 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3128 
3129 	mutex_enter(&db->db_mtx);
3130 	/*
3131 	 * To be synced, we must be dirtied.  But we
3132 	 * might have been freed after the dirty.
3133 	 */
3134 	if (db->db_state == DB_UNCACHED) {
3135 		/* This buffer has been freed since it was dirtied */
3136 		ASSERT(db->db.db_data == NULL);
3137 	} else if (db->db_state == DB_FILL) {
3138 		/* This buffer was freed and is now being re-filled */
3139 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3140 	} else {
3141 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3142 	}
3143 	DBUF_VERIFY(db);
3144 
3145 	DB_DNODE_ENTER(db);
3146 	dn = DB_DNODE(db);
3147 
3148 	if (db->db_blkid == DMU_SPILL_BLKID) {
3149 		mutex_enter(&dn->dn_mtx);
3150 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3151 		mutex_exit(&dn->dn_mtx);
3152 	}
3153 
3154 	/*
3155 	 * If this is a bonus buffer, simply copy the bonus data into the
3156 	 * dnode.  It will be written out when the dnode is synced (and it
3157 	 * will be synced, since it must have been dirty for dbuf_sync to
3158 	 * be called).
3159 	 */
3160 	if (db->db_blkid == DMU_BONUS_BLKID) {
3161 		dbuf_dirty_record_t **drp;
3162 
3163 		ASSERT(*datap != NULL);
3164 		ASSERT0(db->db_level);
3165 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
3166 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
3167 		DB_DNODE_EXIT(db);
3168 
3169 		if (*datap != db->db.db_data) {
3170 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
3171 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
3172 		}
3173 		db->db_data_pending = NULL;
3174 		drp = &db->db_last_dirty;
3175 		while (*drp != dr)
3176 			drp = &(*drp)->dr_next;
3177 		ASSERT(dr->dr_next == NULL);
3178 		ASSERT(dr->dr_dbuf == db);
3179 		*drp = dr->dr_next;
3180 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
3181 		ASSERT(db->db_dirtycnt > 0);
3182 		db->db_dirtycnt -= 1;
3183 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
3184 		return;
3185 	}
3186 
3187 	os = dn->dn_objset;
3188 
3189 	/*
3190 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
3191 	 * operation to sneak in. As a result, we need to ensure that we
3192 	 * don't check the dr_override_state until we have returned from
3193 	 * dbuf_check_blkptr.
3194 	 */
3195 	dbuf_check_blkptr(dn, db);
3196 
3197 	/*
3198 	 * If this buffer is in the middle of an immediate write,
3199 	 * wait for the synchronous IO to complete.
3200 	 */
3201 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3202 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3203 		cv_wait(&db->db_changed, &db->db_mtx);
3204 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3205 	}
3206 
3207 	if (db->db_state != DB_NOFILL &&
3208 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3209 	    refcount_count(&db->db_holds) > 1 &&
3210 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3211 	    *datap == db->db_buf) {
3212 		/*
3213 		 * If this buffer is currently "in use" (i.e., there
3214 		 * are active holds and db_data still references it),
3215 		 * then make a copy before we start the write so that
3216 		 * any modifications from the open txg will not leak
3217 		 * into this write.
3218 		 *
3219 		 * NOTE: this copy does not need to be made for
3220 		 * objects only modified in the syncing context (e.g.
3221 		 * DNONE_DNODE blocks).
3222 		 */
3223 		int psize = arc_buf_size(*datap);
3224 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3225 		enum zio_compress compress_type = arc_get_compression(*datap);
3226 
3227 		if (compress_type == ZIO_COMPRESS_OFF) {
3228 			*datap = arc_alloc_buf(os->os_spa, db, type, psize);
3229 		} else {
3230 			ASSERT3U(type, ==, ARC_BUFC_DATA);
3231 			int lsize = arc_buf_lsize(*datap);
3232 			*datap = arc_alloc_compressed_buf(os->os_spa, db,
3233 			    psize, lsize, compress_type);
3234 		}
3235 		bcopy(db->db.db_data, (*datap)->b_data, psize);
3236 	}
3237 	db->db_data_pending = dr;
3238 
3239 	mutex_exit(&db->db_mtx);
3240 
3241 	dbuf_write(dr, *datap, tx);
3242 
3243 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3244 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3245 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3246 		DB_DNODE_EXIT(db);
3247 	} else {
3248 		/*
3249 		 * Although zio_nowait() does not "wait for an IO", it does
3250 		 * initiate the IO. If this is an empty write it seems plausible
3251 		 * that the IO could actually be completed before the nowait
3252 		 * returns. We need to DB_DNODE_EXIT() first in case
3253 		 * zio_nowait() invalidates the dbuf.
3254 		 */
3255 		DB_DNODE_EXIT(db);
3256 		zio_nowait(dr->dr_zio);
3257 	}
3258 }
3259 
3260 void
3261 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3262 {
3263 	dbuf_dirty_record_t *dr;
3264 
3265 	while (dr = list_head(list)) {
3266 		if (dr->dr_zio != NULL) {
3267 			/*
3268 			 * If we find an already initialized zio then we
3269 			 * are processing the meta-dnode, and we have finished.
3270 			 * The dbufs for all dnodes are put back on the list
3271 			 * during processing, so that we can zio_wait()
3272 			 * these IOs after initiating all child IOs.
3273 			 */
3274 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3275 			    DMU_META_DNODE_OBJECT);
3276 			break;
3277 		}
3278 		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3279 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3280 			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3281 		}
3282 		list_remove(list, dr);
3283 		if (dr->dr_dbuf->db_level > 0)
3284 			dbuf_sync_indirect(dr, tx);
3285 		else
3286 			dbuf_sync_leaf(dr, tx);
3287 	}
3288 }
3289 
3290 /* ARGSUSED */
3291 static void
3292 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3293 {
3294 	dmu_buf_impl_t *db = vdb;
3295 	dnode_t *dn;
3296 	blkptr_t *bp = zio->io_bp;
3297 	blkptr_t *bp_orig = &zio->io_bp_orig;
3298 	spa_t *spa = zio->io_spa;
3299 	int64_t delta;
3300 	uint64_t fill = 0;
3301 	int i;
3302 
3303 	ASSERT3P(db->db_blkptr, !=, NULL);
3304 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3305 
3306 	DB_DNODE_ENTER(db);
3307 	dn = DB_DNODE(db);
3308 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3309 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3310 	zio->io_prev_space_delta = delta;
3311 
3312 	if (bp->blk_birth != 0) {
3313 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3314 		    BP_GET_TYPE(bp) == dn->dn_type) ||
3315 		    (db->db_blkid == DMU_SPILL_BLKID &&
3316 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3317 		    BP_IS_EMBEDDED(bp));
3318 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3319 	}
3320 
3321 	mutex_enter(&db->db_mtx);
3322 
3323 #ifdef ZFS_DEBUG
3324 	if (db->db_blkid == DMU_SPILL_BLKID) {
3325 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3326 		ASSERT(!(BP_IS_HOLE(bp)) &&
3327 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3328 	}
3329 #endif
3330 
3331 	if (db->db_level == 0) {
3332 		mutex_enter(&dn->dn_mtx);
3333 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3334 		    db->db_blkid != DMU_SPILL_BLKID)
3335 			dn->dn_phys->dn_maxblkid = db->db_blkid;
3336 		mutex_exit(&dn->dn_mtx);
3337 
3338 		if (dn->dn_type == DMU_OT_DNODE) {
3339 			dnode_phys_t *dnp = db->db.db_data;
3340 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
3341 			    i--, dnp++) {
3342 				if (dnp->dn_type != DMU_OT_NONE)
3343 					fill++;
3344 			}
3345 		} else {
3346 			if (BP_IS_HOLE(bp)) {
3347 				fill = 0;
3348 			} else {
3349 				fill = 1;
3350 			}
3351 		}
3352 	} else {
3353 		blkptr_t *ibp = db->db.db_data;
3354 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3355 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3356 			if (BP_IS_HOLE(ibp))
3357 				continue;
3358 			fill += BP_GET_FILL(ibp);
3359 		}
3360 	}
3361 	DB_DNODE_EXIT(db);
3362 
3363 	if (!BP_IS_EMBEDDED(bp))
3364 		bp->blk_fill = fill;
3365 
3366 	mutex_exit(&db->db_mtx);
3367 
3368 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3369 	*db->db_blkptr = *bp;
3370 	rw_exit(&dn->dn_struct_rwlock);
3371 }
3372 
3373 /* ARGSUSED */
3374 /*
3375  * This function gets called just prior to running through the compression
3376  * stage of the zio pipeline. If we're an indirect block comprised of only
3377  * holes, then we want this indirect to be compressed away to a hole. In
3378  * order to do that we must zero out any information about the holes that
3379  * this indirect points to prior to before we try to compress it.
3380  */
3381 static void
3382 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3383 {
3384 	dmu_buf_impl_t *db = vdb;
3385 	dnode_t *dn;
3386 	blkptr_t *bp;
3387 	unsigned int epbs, i;
3388 
3389 	ASSERT3U(db->db_level, >, 0);
3390 	DB_DNODE_ENTER(db);
3391 	dn = DB_DNODE(db);
3392 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3393 	ASSERT3U(epbs, <, 31);
3394 
3395 	/* Determine if all our children are holes */
3396 	for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3397 		if (!BP_IS_HOLE(bp))
3398 			break;
3399 	}
3400 
3401 	/*
3402 	 * If all the children are holes, then zero them all out so that
3403 	 * we may get compressed away.
3404 	 */
3405 	if (i == 1 << epbs) {
3406 		/*
3407 		 * We only found holes. Grab the rwlock to prevent
3408 		 * anybody from reading the blocks we're about to
3409 		 * zero out.
3410 		 */
3411 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3412 		bzero(db->db.db_data, db->db.db_size);
3413 		rw_exit(&dn->dn_struct_rwlock);
3414 	}
3415 	DB_DNODE_EXIT(db);
3416 }
3417 
3418 /*
3419  * The SPA will call this callback several times for each zio - once
3420  * for every physical child i/o (zio->io_phys_children times).  This
3421  * allows the DMU to monitor the progress of each logical i/o.  For example,
3422  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3423  * block.  There may be a long delay before all copies/fragments are completed,
3424  * so this callback allows us to retire dirty space gradually, as the physical
3425  * i/os complete.
3426  */
3427 /* ARGSUSED */
3428 static void
3429 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3430 {
3431 	dmu_buf_impl_t *db = arg;
3432 	objset_t *os = db->db_objset;
3433 	dsl_pool_t *dp = dmu_objset_pool(os);
3434 	dbuf_dirty_record_t *dr;
3435 	int delta = 0;
3436 
3437 	dr = db->db_data_pending;
3438 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3439 
3440 	/*
3441 	 * The callback will be called io_phys_children times.  Retire one
3442 	 * portion of our dirty space each time we are called.  Any rounding
3443 	 * error will be cleaned up by dsl_pool_sync()'s call to
3444 	 * dsl_pool_undirty_space().
3445 	 */
3446 	delta = dr->dr_accounted / zio->io_phys_children;
3447 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
3448 }
3449 
3450 /* ARGSUSED */
3451 static void
3452 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3453 {
3454 	dmu_buf_impl_t *db = vdb;
3455 	blkptr_t *bp_orig = &zio->io_bp_orig;
3456 	blkptr_t *bp = db->db_blkptr;
3457 	objset_t *os = db->db_objset;
3458 	dmu_tx_t *tx = os->os_synctx;
3459 	dbuf_dirty_record_t **drp, *dr;
3460 
3461 	ASSERT0(zio->io_error);
3462 	ASSERT(db->db_blkptr == bp);
3463 
3464 	/*
3465 	 * For nopwrites and rewrites we ensure that the bp matches our
3466 	 * original and bypass all the accounting.
3467 	 */
3468 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3469 		ASSERT(BP_EQUAL(bp, bp_orig));
3470 	} else {
3471 		dsl_dataset_t *ds = os->os_dsl_dataset;
3472 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3473 		dsl_dataset_block_born(ds, bp, tx);
3474 	}
3475 
3476 	mutex_enter(&db->db_mtx);
3477 
3478 	DBUF_VERIFY(db);
3479 
3480 	drp = &db->db_last_dirty;
3481 	while ((dr = *drp) != db->db_data_pending)
3482 		drp = &dr->dr_next;
3483 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3484 	ASSERT(dr->dr_dbuf == db);
3485 	ASSERT(dr->dr_next == NULL);
3486 	*drp = dr->dr_next;
3487 
3488 #ifdef ZFS_DEBUG
3489 	if (db->db_blkid == DMU_SPILL_BLKID) {
3490 		dnode_t *dn;
3491 
3492 		DB_DNODE_ENTER(db);
3493 		dn = DB_DNODE(db);
3494 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3495 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3496 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3497 		DB_DNODE_EXIT(db);
3498 	}
3499 #endif
3500 
3501 	if (db->db_level == 0) {
3502 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3503 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3504 		if (db->db_state != DB_NOFILL) {
3505 			if (dr->dt.dl.dr_data != db->db_buf)
3506 				arc_buf_destroy(dr->dt.dl.dr_data, db);
3507 		}
3508 	} else {
3509 		dnode_t *dn;
3510 
3511 		DB_DNODE_ENTER(db);
3512 		dn = DB_DNODE(db);
3513 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3514 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3515 		if (!BP_IS_HOLE(db->db_blkptr)) {
3516 			int epbs =
3517 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3518 			ASSERT3U(db->db_blkid, <=,
3519 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3520 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3521 			    db->db.db_size);
3522 		}
3523 		DB_DNODE_EXIT(db);
3524 		mutex_destroy(&dr->dt.di.dr_mtx);
3525 		list_destroy(&dr->dt.di.dr_children);
3526 	}
3527 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
3528 
3529 	cv_broadcast(&db->db_changed);
3530 	ASSERT(db->db_dirtycnt > 0);
3531 	db->db_dirtycnt -= 1;
3532 	db->db_data_pending = NULL;
3533 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
3534 }
3535 
3536 static void
3537 dbuf_write_nofill_ready(zio_t *zio)
3538 {
3539 	dbuf_write_ready(zio, NULL, zio->io_private);
3540 }
3541 
3542 static void
3543 dbuf_write_nofill_done(zio_t *zio)
3544 {
3545 	dbuf_write_done(zio, NULL, zio->io_private);
3546 }
3547 
3548 static void
3549 dbuf_write_override_ready(zio_t *zio)
3550 {
3551 	dbuf_dirty_record_t *dr = zio->io_private;
3552 	dmu_buf_impl_t *db = dr->dr_dbuf;
3553 
3554 	dbuf_write_ready(zio, NULL, db);
3555 }
3556 
3557 static void
3558 dbuf_write_override_done(zio_t *zio)
3559 {
3560 	dbuf_dirty_record_t *dr = zio->io_private;
3561 	dmu_buf_impl_t *db = dr->dr_dbuf;
3562 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3563 
3564 	mutex_enter(&db->db_mtx);
3565 	if (!BP_EQUAL(zio->io_bp, obp)) {
3566 		if (!BP_IS_HOLE(obp))
3567 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3568 		arc_release(dr->dt.dl.dr_data, db);
3569 	}
3570 	mutex_exit(&db->db_mtx);
3571 	dbuf_write_done(zio, NULL, db);
3572 
3573 	if (zio->io_abd != NULL)
3574 		abd_put(zio->io_abd);
3575 }
3576 
3577 typedef struct dbuf_remap_impl_callback_arg {
3578 	objset_t	*drica_os;
3579 	uint64_t	drica_blk_birth;
3580 	dmu_tx_t	*drica_tx;
3581 } dbuf_remap_impl_callback_arg_t;
3582 
3583 static void
3584 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
3585     void *arg)
3586 {
3587 	dbuf_remap_impl_callback_arg_t *drica = arg;
3588 	objset_t *os = drica->drica_os;
3589 	spa_t *spa = dmu_objset_spa(os);
3590 	dmu_tx_t *tx = drica->drica_tx;
3591 
3592 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
3593 
3594 	if (os == spa_meta_objset(spa)) {
3595 		spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
3596 	} else {
3597 		dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
3598 		    size, drica->drica_blk_birth, tx);
3599 	}
3600 }
3601 
3602 static void
3603 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
3604 {
3605 	blkptr_t bp_copy = *bp;
3606 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
3607 	dbuf_remap_impl_callback_arg_t drica;
3608 
3609 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
3610 
3611 	drica.drica_os = dn->dn_objset;
3612 	drica.drica_blk_birth = bp->blk_birth;
3613 	drica.drica_tx = tx;
3614 	if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
3615 	    &drica)) {
3616 		/*
3617 		 * The struct_rwlock prevents dbuf_read_impl() from
3618 		 * dereferencing the BP while we are changing it.  To
3619 		 * avoid lock contention, only grab it when we are actually
3620 		 * changing the BP.
3621 		 */
3622 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3623 		*bp = bp_copy;
3624 		rw_exit(&dn->dn_struct_rwlock);
3625 	}
3626 }
3627 
3628 /*
3629  * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
3630  * to remap a copy of every bp in the dbuf.
3631  */
3632 boolean_t
3633 dbuf_can_remap(const dmu_buf_impl_t *db)
3634 {
3635 	spa_t *spa = dmu_objset_spa(db->db_objset);
3636 	blkptr_t *bp = db->db.db_data;
3637 	boolean_t ret = B_FALSE;
3638 
3639 	ASSERT3U(db->db_level, >, 0);
3640 	ASSERT3S(db->db_state, ==, DB_CACHED);
3641 
3642 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
3643 
3644 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3645 	for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
3646 		blkptr_t bp_copy = bp[i];
3647 		if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
3648 			ret = B_TRUE;
3649 			break;
3650 		}
3651 	}
3652 	spa_config_exit(spa, SCL_VDEV, FTAG);
3653 
3654 	return (ret);
3655 }
3656 
3657 boolean_t
3658 dnode_needs_remap(const dnode_t *dn)
3659 {
3660 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
3661 	boolean_t ret = B_FALSE;
3662 
3663 	if (dn->dn_phys->dn_nlevels == 0) {
3664 		return (B_FALSE);
3665 	}
3666 
3667 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
3668 
3669 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3670 	for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
3671 		blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
3672 		if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
3673 			ret = B_TRUE;
3674 			break;
3675 		}
3676 	}
3677 	spa_config_exit(spa, SCL_VDEV, FTAG);
3678 
3679 	return (ret);
3680 }
3681 
3682 /*
3683  * Remap any existing BP's to concrete vdevs, if possible.
3684  */
3685 static void
3686 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
3687 {
3688 	spa_t *spa = dmu_objset_spa(db->db_objset);
3689 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
3690 
3691 	if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
3692 		return;
3693 
3694 	if (db->db_level > 0) {
3695 		blkptr_t *bp = db->db.db_data;
3696 		for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
3697 			dbuf_remap_impl(dn, &bp[i], tx);
3698 		}
3699 	} else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
3700 		dnode_phys_t *dnp = db->db.db_data;
3701 		ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
3702 		    DMU_OT_DNODE);
3703 		for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; i++) {
3704 			for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
3705 				dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
3706 			}
3707 		}
3708 	}
3709 }
3710 
3711 
3712 /* Issue I/O to commit a dirty buffer to disk. */
3713 static void
3714 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3715 {
3716 	dmu_buf_impl_t *db = dr->dr_dbuf;
3717 	dnode_t *dn;
3718 	objset_t *os;
3719 	dmu_buf_impl_t *parent = db->db_parent;
3720 	uint64_t txg = tx->tx_txg;
3721 	zbookmark_phys_t zb;
3722 	zio_prop_t zp;
3723 	zio_t *zio;
3724 	int wp_flag = 0;
3725 
3726 	ASSERT(dmu_tx_is_syncing(tx));
3727 
3728 	DB_DNODE_ENTER(db);
3729 	dn = DB_DNODE(db);
3730 	os = dn->dn_objset;
3731 
3732 	if (db->db_state != DB_NOFILL) {
3733 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3734 			/*
3735 			 * Private object buffers are released here rather
3736 			 * than in dbuf_dirty() since they are only modified
3737 			 * in the syncing context and we don't want the
3738 			 * overhead of making multiple copies of the data.
3739 			 */
3740 			if (BP_IS_HOLE(db->db_blkptr)) {
3741 				arc_buf_thaw(data);
3742 			} else {
3743 				dbuf_release_bp(db);
3744 			}
3745 			dbuf_remap(dn, db, tx);
3746 		}
3747 	}
3748 
3749 	if (parent != dn->dn_dbuf) {
3750 		/* Our parent is an indirect block. */
3751 		/* We have a dirty parent that has been scheduled for write. */
3752 		ASSERT(parent && parent->db_data_pending);
3753 		/* Our parent's buffer is one level closer to the dnode. */
3754 		ASSERT(db->db_level == parent->db_level-1);
3755 		/*
3756 		 * We're about to modify our parent's db_data by modifying
3757 		 * our block pointer, so the parent must be released.
3758 		 */
3759 		ASSERT(arc_released(parent->db_buf));
3760 		zio = parent->db_data_pending->dr_zio;
3761 	} else {
3762 		/* Our parent is the dnode itself. */
3763 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3764 		    db->db_blkid != DMU_SPILL_BLKID) ||
3765 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3766 		if (db->db_blkid != DMU_SPILL_BLKID)
3767 			ASSERT3P(db->db_blkptr, ==,
3768 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
3769 		zio = dn->dn_zio;
3770 	}
3771 
3772 	ASSERT(db->db_level == 0 || data == db->db_buf);
3773 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3774 	ASSERT(zio);
3775 
3776 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3777 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3778 	    db->db.db_object, db->db_level, db->db_blkid);
3779 
3780 	if (db->db_blkid == DMU_SPILL_BLKID)
3781 		wp_flag = WP_SPILL;
3782 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3783 
3784 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3785 	DB_DNODE_EXIT(db);
3786 
3787 	/*
3788 	 * We copy the blkptr now (rather than when we instantiate the dirty
3789 	 * record), because its value can change between open context and
3790 	 * syncing context. We do not need to hold dn_struct_rwlock to read
3791 	 * db_blkptr because we are in syncing context.
3792 	 */
3793 	dr->dr_bp_copy = *db->db_blkptr;
3794 
3795 	if (db->db_level == 0 &&
3796 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3797 		/*
3798 		 * The BP for this block has been provided by open context
3799 		 * (by dmu_sync() or dmu_buf_write_embedded()).
3800 		 */
3801 		abd_t *contents = (data != NULL) ?
3802 		    abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
3803 
3804 		dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy,
3805 		    contents, db->db.db_size, db->db.db_size, &zp,
3806 		    dbuf_write_override_ready, NULL, NULL,
3807 		    dbuf_write_override_done,
3808 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3809 		mutex_enter(&db->db_mtx);
3810 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3811 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3812 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3813 		mutex_exit(&db->db_mtx);
3814 	} else if (db->db_state == DB_NOFILL) {
3815 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3816 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3817 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3818 		    &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
3819 		    dbuf_write_nofill_ready, NULL, NULL,
3820 		    dbuf_write_nofill_done, db,
3821 		    ZIO_PRIORITY_ASYNC_WRITE,
3822 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3823 	} else {
3824 		ASSERT(arc_released(data));
3825 
3826 		/*
3827 		 * For indirect blocks, we want to setup the children
3828 		 * ready callback so that we can properly handle an indirect
3829 		 * block that only contains holes.
3830 		 */
3831 		arc_done_func_t *children_ready_cb = NULL;
3832 		if (db->db_level != 0)
3833 			children_ready_cb = dbuf_write_children_ready;
3834 
3835 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
3836 		    &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3837 		    &zp, dbuf_write_ready, children_ready_cb,
3838 		    dbuf_write_physdone, dbuf_write_done, db,
3839 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3840 	}
3841 }
3842