xref: /illumos-gate/usr/src/uts/common/fs/zfs/dbuf.c (revision adb52d9262f45a04318fc6e188fe2b7f59d989a5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51 #include <sys/cityhash.h>
52 #include <sys/spa_impl.h>
53 
54 uint_t zfs_dbuf_evict_key;
55 
56 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
57 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
58 
59 #ifndef __lint
60 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
61     dmu_buf_evict_func_t *evict_func_sync,
62     dmu_buf_evict_func_t *evict_func_async,
63     dmu_buf_t **clear_on_evict_dbufp);
64 #endif /* ! __lint */
65 
66 /*
67  * Global data structures and functions for the dbuf cache.
68  */
69 static kmem_cache_t *dbuf_kmem_cache;
70 static taskq_t *dbu_evict_taskq;
71 
72 static kthread_t *dbuf_cache_evict_thread;
73 static kmutex_t dbuf_evict_lock;
74 static kcondvar_t dbuf_evict_cv;
75 static boolean_t dbuf_evict_thread_exit;
76 
77 /*
78  * There are two dbuf caches; each dbuf can only be in one of them at a time.
79  *
80  * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
81  *    from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
82  *    that represent the metadata that describes filesystems/snapshots/
83  *    bookmarks/properties/etc. We only evict from this cache when we export a
84  *    pool, to short-circuit as much I/O as possible for all administrative
85  *    commands that need the metadata. There is no eviction policy for this
86  *    cache, because we try to only include types in it which would occupy a
87  *    very small amount of space per object but create a large impact on the
88  *    performance of these commands. Instead, after it reaches a maximum size
89  *    (which should only happen on very small memory systems with a very large
90  *    number of filesystem objects), we stop taking new dbufs into the
91  *    metadata cache, instead putting them in the normal dbuf cache.
92  *
93  * 2. LRU cache of dbufs. The "dbuf cache" maintains a list of dbufs that
94  *    are not currently held but have been recently released. These dbufs
95  *    are not eligible for arc eviction until they are aged out of the cache.
96  *    Dbufs that are aged out of the cache will be immediately destroyed and
97  *    become eligible for arc eviction.
98  *
99  * Dbufs are added to these caches once the last hold is released. If a dbuf is
100  * later accessed and still exists in the dbuf cache, then it will be removed
101  * from the cache and later re-added to the head of the cache.
102  *
103  * If a given dbuf meets the requirements for the metadata cache, it will go
104  * there, otherwise it will be considered for the generic LRU dbuf cache. The
105  * caches and the refcounts tracking their sizes are stored in an array indexed
106  * by those caches' matching enum values (from dbuf_cached_state_t).
107  */
108 typedef struct dbuf_cache {
109 	multilist_t *cache;
110 	refcount_t size;
111 } dbuf_cache_t;
112 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
113 
114 /* Size limits for the caches */
115 uint64_t dbuf_cache_max_bytes = 0;
116 uint64_t dbuf_metadata_cache_max_bytes = 0;
117 /* Set the default sizes of the caches to log2 fraction of arc size */
118 int dbuf_cache_shift = 5;
119 int dbuf_metadata_cache_shift = 6;
120 
121 /*
122  * For diagnostic purposes, this is incremented whenever we can't add
123  * something to the metadata cache because it's full, and instead put
124  * the data in the regular dbuf cache.
125  */
126 uint64_t dbuf_metadata_cache_overflow;
127 
128 /*
129  * The LRU dbuf cache uses a three-stage eviction policy:
130  *	- A low water marker designates when the dbuf eviction thread
131  *	should stop evicting from the dbuf cache.
132  *	- When we reach the maximum size (aka mid water mark), we
133  *	signal the eviction thread to run.
134  *	- The high water mark indicates when the eviction thread
135  *	is unable to keep up with the incoming load and eviction must
136  *	happen in the context of the calling thread.
137  *
138  * The dbuf cache:
139  *                                                 (max size)
140  *                                      low water   mid water   hi water
141  * +----------------------------------------+----------+----------+
142  * |                                        |          |          |
143  * |                                        |          |          |
144  * |                                        |          |          |
145  * |                                        |          |          |
146  * +----------------------------------------+----------+----------+
147  *                                        stop        signal     evict
148  *                                      evicting     eviction   directly
149  *                                                    thread
150  *
151  * The high and low water marks indicate the operating range for the eviction
152  * thread. The low water mark is, by default, 90% of the total size of the
153  * cache and the high water mark is at 110% (both of these percentages can be
154  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
155  * respectively). The eviction thread will try to ensure that the cache remains
156  * within this range by waking up every second and checking if the cache is
157  * above the low water mark. The thread can also be woken up by callers adding
158  * elements into the cache if the cache is larger than the mid water (i.e max
159  * cache size). Once the eviction thread is woken up and eviction is required,
160  * it will continue evicting buffers until it's able to reduce the cache size
161  * to the low water mark. If the cache size continues to grow and hits the high
162  * water mark, then callers adding elments to the cache will begin to evict
163  * directly from the cache until the cache is no longer above the high water
164  * mark.
165  */
166 
167 /*
168  * The percentage above and below the maximum cache size.
169  */
170 uint_t dbuf_cache_hiwater_pct = 10;
171 uint_t dbuf_cache_lowater_pct = 10;
172 
173 /* ARGSUSED */
174 static int
175 dbuf_cons(void *vdb, void *unused, int kmflag)
176 {
177 	dmu_buf_impl_t *db = vdb;
178 	bzero(db, sizeof (dmu_buf_impl_t));
179 
180 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
181 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
182 	multilist_link_init(&db->db_cache_link);
183 	refcount_create(&db->db_holds);
184 
185 	return (0);
186 }
187 
188 /* ARGSUSED */
189 static void
190 dbuf_dest(void *vdb, void *unused)
191 {
192 	dmu_buf_impl_t *db = vdb;
193 	mutex_destroy(&db->db_mtx);
194 	cv_destroy(&db->db_changed);
195 	ASSERT(!multilist_link_active(&db->db_cache_link));
196 	refcount_destroy(&db->db_holds);
197 }
198 
199 /*
200  * dbuf hash table routines
201  */
202 static dbuf_hash_table_t dbuf_hash_table;
203 
204 static uint64_t dbuf_hash_count;
205 
206 /*
207  * We use Cityhash for this. It's fast, and has good hash properties without
208  * requiring any large static buffers.
209  */
210 static uint64_t
211 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
212 {
213 	return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
214 }
215 
216 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
217 	((dbuf)->db.db_object == (obj) &&		\
218 	(dbuf)->db_objset == (os) &&			\
219 	(dbuf)->db_level == (level) &&			\
220 	(dbuf)->db_blkid == (blkid))
221 
222 dmu_buf_impl_t *
223 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
224 {
225 	dbuf_hash_table_t *h = &dbuf_hash_table;
226 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
227 	uint64_t idx = hv & h->hash_table_mask;
228 	dmu_buf_impl_t *db;
229 
230 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
231 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
232 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
233 			mutex_enter(&db->db_mtx);
234 			if (db->db_state != DB_EVICTING) {
235 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
236 				return (db);
237 			}
238 			mutex_exit(&db->db_mtx);
239 		}
240 	}
241 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
242 	return (NULL);
243 }
244 
245 static dmu_buf_impl_t *
246 dbuf_find_bonus(objset_t *os, uint64_t object)
247 {
248 	dnode_t *dn;
249 	dmu_buf_impl_t *db = NULL;
250 
251 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
252 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
253 		if (dn->dn_bonus != NULL) {
254 			db = dn->dn_bonus;
255 			mutex_enter(&db->db_mtx);
256 		}
257 		rw_exit(&dn->dn_struct_rwlock);
258 		dnode_rele(dn, FTAG);
259 	}
260 	return (db);
261 }
262 
263 /*
264  * Insert an entry into the hash table.  If there is already an element
265  * equal to elem in the hash table, then the already existing element
266  * will be returned and the new element will not be inserted.
267  * Otherwise returns NULL.
268  */
269 static dmu_buf_impl_t *
270 dbuf_hash_insert(dmu_buf_impl_t *db)
271 {
272 	dbuf_hash_table_t *h = &dbuf_hash_table;
273 	objset_t *os = db->db_objset;
274 	uint64_t obj = db->db.db_object;
275 	int level = db->db_level;
276 	uint64_t blkid = db->db_blkid;
277 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
278 	uint64_t idx = hv & h->hash_table_mask;
279 	dmu_buf_impl_t *dbf;
280 
281 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
282 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
283 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
284 			mutex_enter(&dbf->db_mtx);
285 			if (dbf->db_state != DB_EVICTING) {
286 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
287 				return (dbf);
288 			}
289 			mutex_exit(&dbf->db_mtx);
290 		}
291 	}
292 
293 	mutex_enter(&db->db_mtx);
294 	db->db_hash_next = h->hash_table[idx];
295 	h->hash_table[idx] = db;
296 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
297 	atomic_inc_64(&dbuf_hash_count);
298 
299 	return (NULL);
300 }
301 
302 /*
303  * Remove an entry from the hash table.  It must be in the EVICTING state.
304  */
305 static void
306 dbuf_hash_remove(dmu_buf_impl_t *db)
307 {
308 	dbuf_hash_table_t *h = &dbuf_hash_table;
309 	uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
310 	    db->db_level, db->db_blkid);
311 	uint64_t idx = hv & h->hash_table_mask;
312 	dmu_buf_impl_t *dbf, **dbp;
313 
314 	/*
315 	 * We musn't hold db_mtx to maintain lock ordering:
316 	 * DBUF_HASH_MUTEX > db_mtx.
317 	 */
318 	ASSERT(refcount_is_zero(&db->db_holds));
319 	ASSERT(db->db_state == DB_EVICTING);
320 	ASSERT(!MUTEX_HELD(&db->db_mtx));
321 
322 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
323 	dbp = &h->hash_table[idx];
324 	while ((dbf = *dbp) != db) {
325 		dbp = &dbf->db_hash_next;
326 		ASSERT(dbf != NULL);
327 	}
328 	*dbp = db->db_hash_next;
329 	db->db_hash_next = NULL;
330 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
331 	atomic_dec_64(&dbuf_hash_count);
332 }
333 
334 typedef enum {
335 	DBVU_EVICTING,
336 	DBVU_NOT_EVICTING
337 } dbvu_verify_type_t;
338 
339 static void
340 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
341 {
342 #ifdef ZFS_DEBUG
343 	int64_t holds;
344 
345 	if (db->db_user == NULL)
346 		return;
347 
348 	/* Only data blocks support the attachment of user data. */
349 	ASSERT(db->db_level == 0);
350 
351 	/* Clients must resolve a dbuf before attaching user data. */
352 	ASSERT(db->db.db_data != NULL);
353 	ASSERT3U(db->db_state, ==, DB_CACHED);
354 
355 	holds = refcount_count(&db->db_holds);
356 	if (verify_type == DBVU_EVICTING) {
357 		/*
358 		 * Immediate eviction occurs when holds == dirtycnt.
359 		 * For normal eviction buffers, holds is zero on
360 		 * eviction, except when dbuf_fix_old_data() calls
361 		 * dbuf_clear_data().  However, the hold count can grow
362 		 * during eviction even though db_mtx is held (see
363 		 * dmu_bonus_hold() for an example), so we can only
364 		 * test the generic invariant that holds >= dirtycnt.
365 		 */
366 		ASSERT3U(holds, >=, db->db_dirtycnt);
367 	} else {
368 		if (db->db_user_immediate_evict == TRUE)
369 			ASSERT3U(holds, >=, db->db_dirtycnt);
370 		else
371 			ASSERT3U(holds, >, 0);
372 	}
373 #endif
374 }
375 
376 static void
377 dbuf_evict_user(dmu_buf_impl_t *db)
378 {
379 	dmu_buf_user_t *dbu = db->db_user;
380 
381 	ASSERT(MUTEX_HELD(&db->db_mtx));
382 
383 	if (dbu == NULL)
384 		return;
385 
386 	dbuf_verify_user(db, DBVU_EVICTING);
387 	db->db_user = NULL;
388 
389 #ifdef ZFS_DEBUG
390 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
391 		*dbu->dbu_clear_on_evict_dbufp = NULL;
392 #endif
393 
394 	/*
395 	 * There are two eviction callbacks - one that we call synchronously
396 	 * and one that we invoke via a taskq.  The async one is useful for
397 	 * avoiding lock order reversals and limiting stack depth.
398 	 *
399 	 * Note that if we have a sync callback but no async callback,
400 	 * it's likely that the sync callback will free the structure
401 	 * containing the dbu.  In that case we need to take care to not
402 	 * dereference dbu after calling the sync evict func.
403 	 */
404 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
405 
406 	if (dbu->dbu_evict_func_sync != NULL)
407 		dbu->dbu_evict_func_sync(dbu);
408 
409 	if (has_async) {
410 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
411 		    dbu, 0, &dbu->dbu_tqent);
412 	}
413 }
414 
415 boolean_t
416 dbuf_is_metadata(dmu_buf_impl_t *db)
417 {
418 	if (db->db_level > 0) {
419 		return (B_TRUE);
420 	} else {
421 		boolean_t is_metadata;
422 
423 		DB_DNODE_ENTER(db);
424 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
425 		DB_DNODE_EXIT(db);
426 
427 		return (is_metadata);
428 	}
429 }
430 
431 /*
432  * This returns whether this dbuf should be stored in the metadata cache, which
433  * is based on whether it's from one of the dnode types that store data related
434  * to traversing dataset hierarchies.
435  */
436 static boolean_t
437 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
438 {
439 	DB_DNODE_ENTER(db);
440 	dmu_object_type_t type = DB_DNODE(db)->dn_type;
441 	DB_DNODE_EXIT(db);
442 
443 	/* Check if this dbuf is one of the types we care about */
444 	if (DMU_OT_IS_METADATA_CACHED(type)) {
445 		/* If we hit this, then we set something up wrong in dmu_ot */
446 		ASSERT(DMU_OT_IS_METADATA(type));
447 
448 		/*
449 		 * Sanity check for small-memory systems: don't allocate too
450 		 * much memory for this purpose.
451 		 */
452 		if (refcount_count(&dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
453 		    dbuf_metadata_cache_max_bytes) {
454 			dbuf_metadata_cache_overflow++;
455 			DTRACE_PROBE1(dbuf__metadata__cache__overflow,
456 			    dmu_buf_impl_t *, db);
457 			return (B_FALSE);
458 		}
459 
460 		return (B_TRUE);
461 	}
462 
463 	return (B_FALSE);
464 }
465 
466 /*
467  * This function *must* return indices evenly distributed between all
468  * sublists of the multilist. This is needed due to how the dbuf eviction
469  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
470  * distributed between all sublists and uses this assumption when
471  * deciding which sublist to evict from and how much to evict from it.
472  */
473 unsigned int
474 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
475 {
476 	dmu_buf_impl_t *db = obj;
477 
478 	/*
479 	 * The assumption here, is the hash value for a given
480 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
481 	 * (i.e. it's objset, object, level and blkid fields don't change).
482 	 * Thus, we don't need to store the dbuf's sublist index
483 	 * on insertion, as this index can be recalculated on removal.
484 	 *
485 	 * Also, the low order bits of the hash value are thought to be
486 	 * distributed evenly. Otherwise, in the case that the multilist
487 	 * has a power of two number of sublists, each sublists' usage
488 	 * would not be evenly distributed.
489 	 */
490 	return (dbuf_hash(db->db_objset, db->db.db_object,
491 	    db->db_level, db->db_blkid) %
492 	    multilist_get_num_sublists(ml));
493 }
494 
495 static inline boolean_t
496 dbuf_cache_above_hiwater(void)
497 {
498 	uint64_t dbuf_cache_hiwater_bytes =
499 	    (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
500 
501 	return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
502 	    dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
503 }
504 
505 static inline boolean_t
506 dbuf_cache_above_lowater(void)
507 {
508 	uint64_t dbuf_cache_lowater_bytes =
509 	    (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
510 
511 	return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
512 	    dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
513 }
514 
515 /*
516  * Evict the oldest eligible dbuf from the dbuf cache.
517  */
518 static void
519 dbuf_evict_one(void)
520 {
521 	int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
522 	multilist_sublist_t *mls = multilist_sublist_lock(
523 	    dbuf_caches[DB_DBUF_CACHE].cache, idx);
524 
525 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
526 
527 	/*
528 	 * Set the thread's tsd to indicate that it's processing evictions.
529 	 * Once a thread stops evicting from the dbuf cache it will
530 	 * reset its tsd to NULL.
531 	 */
532 	ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
533 	(void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
534 
535 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
536 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
537 		db = multilist_sublist_prev(mls, db);
538 	}
539 
540 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
541 	    multilist_sublist_t *, mls);
542 
543 	if (db != NULL) {
544 		multilist_sublist_remove(mls, db);
545 		multilist_sublist_unlock(mls);
546 		(void) refcount_remove_many(&dbuf_caches[DB_DBUF_CACHE].size,
547 		    db->db.db_size, db);
548 		ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
549 		db->db_caching_status = DB_NO_CACHE;
550 		dbuf_destroy(db);
551 	} else {
552 		multilist_sublist_unlock(mls);
553 	}
554 	(void) tsd_set(zfs_dbuf_evict_key, NULL);
555 }
556 
557 /*
558  * The dbuf evict thread is responsible for aging out dbufs from the
559  * cache. Once the cache has reached it's maximum size, dbufs are removed
560  * and destroyed. The eviction thread will continue running until the size
561  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
562  * out of the cache it is destroyed and becomes eligible for arc eviction.
563  */
564 /* ARGSUSED */
565 static void
566 dbuf_evict_thread(void *unused)
567 {
568 	callb_cpr_t cpr;
569 
570 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
571 
572 	mutex_enter(&dbuf_evict_lock);
573 	while (!dbuf_evict_thread_exit) {
574 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
575 			CALLB_CPR_SAFE_BEGIN(&cpr);
576 			(void) cv_timedwait_hires(&dbuf_evict_cv,
577 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
578 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
579 		}
580 		mutex_exit(&dbuf_evict_lock);
581 
582 		/*
583 		 * Keep evicting as long as we're above the low water mark
584 		 * for the cache. We do this without holding the locks to
585 		 * minimize lock contention.
586 		 */
587 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
588 			dbuf_evict_one();
589 		}
590 
591 		mutex_enter(&dbuf_evict_lock);
592 	}
593 
594 	dbuf_evict_thread_exit = B_FALSE;
595 	cv_broadcast(&dbuf_evict_cv);
596 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
597 	thread_exit();
598 }
599 
600 /*
601  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
602  * If the dbuf cache is at its high water mark, then evict a dbuf from the
603  * dbuf cache using the callers context.
604  */
605 static void
606 dbuf_evict_notify(void)
607 {
608 
609 	/*
610 	 * We use thread specific data to track when a thread has
611 	 * started processing evictions. This allows us to avoid deeply
612 	 * nested stacks that would have a call flow similar to this:
613 	 *
614 	 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
615 	 *	^						|
616 	 *	|						|
617 	 *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
618 	 *
619 	 * The dbuf_eviction_thread will always have its tsd set until
620 	 * that thread exits. All other threads will only set their tsd
621 	 * if they are participating in the eviction process. This only
622 	 * happens if the eviction thread is unable to process evictions
623 	 * fast enough. To keep the dbuf cache size in check, other threads
624 	 * can evict from the dbuf cache directly. Those threads will set
625 	 * their tsd values so that we ensure that they only evict one dbuf
626 	 * from the dbuf cache.
627 	 */
628 	if (tsd_get(zfs_dbuf_evict_key) != NULL)
629 		return;
630 
631 	/*
632 	 * We check if we should evict without holding the dbuf_evict_lock,
633 	 * because it's OK to occasionally make the wrong decision here,
634 	 * and grabbing the lock results in massive lock contention.
635 	 */
636 	if (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
637 	    dbuf_cache_max_bytes) {
638 		if (dbuf_cache_above_hiwater())
639 			dbuf_evict_one();
640 		cv_signal(&dbuf_evict_cv);
641 	}
642 }
643 
644 void
645 dbuf_init(void)
646 {
647 	uint64_t hsize = 1ULL << 16;
648 	dbuf_hash_table_t *h = &dbuf_hash_table;
649 	int i;
650 
651 	/*
652 	 * The hash table is big enough to fill all of physical memory
653 	 * with an average 4K block size.  The table will take up
654 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
655 	 */
656 	while (hsize * 4096 < physmem * PAGESIZE)
657 		hsize <<= 1;
658 
659 retry:
660 	h->hash_table_mask = hsize - 1;
661 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
662 	if (h->hash_table == NULL) {
663 		/* XXX - we should really return an error instead of assert */
664 		ASSERT(hsize > (1ULL << 10));
665 		hsize >>= 1;
666 		goto retry;
667 	}
668 
669 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
670 	    sizeof (dmu_buf_impl_t),
671 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
672 
673 	for (i = 0; i < DBUF_MUTEXES; i++)
674 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
675 
676 	/*
677 	 * Setup the parameters for the dbuf caches. We set the sizes of the
678 	 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default)
679 	 * of the size of the ARC, respectively. If the values are set in
680 	 * /etc/system and they're not greater than the size of the ARC, then
681 	 * we honor that value.
682 	 */
683 	if (dbuf_cache_max_bytes == 0 ||
684 	    dbuf_cache_max_bytes >= arc_max_bytes())  {
685 		dbuf_cache_max_bytes = arc_max_bytes() >> dbuf_cache_shift;
686 	}
687 	if (dbuf_metadata_cache_max_bytes == 0 ||
688 	    dbuf_metadata_cache_max_bytes >= arc_max_bytes()) {
689 		dbuf_metadata_cache_max_bytes =
690 		    arc_max_bytes() >> dbuf_metadata_cache_shift;
691 	}
692 
693 	/*
694 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
695 	 * configuration is not required.
696 	 */
697 	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
698 
699 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
700 		dbuf_caches[dcs].cache =
701 		    multilist_create(sizeof (dmu_buf_impl_t),
702 		    offsetof(dmu_buf_impl_t, db_cache_link),
703 		    dbuf_cache_multilist_index_func);
704 		refcount_create(&dbuf_caches[dcs].size);
705 	}
706 
707 	tsd_create(&zfs_dbuf_evict_key, NULL);
708 	dbuf_evict_thread_exit = B_FALSE;
709 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
710 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
711 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
712 	    NULL, 0, &p0, TS_RUN, minclsyspri);
713 }
714 
715 void
716 dbuf_fini(void)
717 {
718 	dbuf_hash_table_t *h = &dbuf_hash_table;
719 	int i;
720 
721 	for (i = 0; i < DBUF_MUTEXES; i++)
722 		mutex_destroy(&h->hash_mutexes[i]);
723 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
724 	kmem_cache_destroy(dbuf_kmem_cache);
725 	taskq_destroy(dbu_evict_taskq);
726 
727 	mutex_enter(&dbuf_evict_lock);
728 	dbuf_evict_thread_exit = B_TRUE;
729 	while (dbuf_evict_thread_exit) {
730 		cv_signal(&dbuf_evict_cv);
731 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
732 	}
733 	mutex_exit(&dbuf_evict_lock);
734 	tsd_destroy(&zfs_dbuf_evict_key);
735 
736 	mutex_destroy(&dbuf_evict_lock);
737 	cv_destroy(&dbuf_evict_cv);
738 
739 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
740 		refcount_destroy(&dbuf_caches[dcs].size);
741 		multilist_destroy(dbuf_caches[dcs].cache);
742 	}
743 }
744 
745 /*
746  * Other stuff.
747  */
748 
749 #ifdef ZFS_DEBUG
750 static void
751 dbuf_verify(dmu_buf_impl_t *db)
752 {
753 	dnode_t *dn;
754 	dbuf_dirty_record_t *dr;
755 
756 	ASSERT(MUTEX_HELD(&db->db_mtx));
757 
758 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
759 		return;
760 
761 	ASSERT(db->db_objset != NULL);
762 	DB_DNODE_ENTER(db);
763 	dn = DB_DNODE(db);
764 	if (dn == NULL) {
765 		ASSERT(db->db_parent == NULL);
766 		ASSERT(db->db_blkptr == NULL);
767 	} else {
768 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
769 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
770 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
771 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
772 		    db->db_blkid == DMU_SPILL_BLKID ||
773 		    !avl_is_empty(&dn->dn_dbufs));
774 	}
775 	if (db->db_blkid == DMU_BONUS_BLKID) {
776 		ASSERT(dn != NULL);
777 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
778 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
779 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
780 		ASSERT(dn != NULL);
781 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
782 		ASSERT0(db->db.db_offset);
783 	} else {
784 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
785 	}
786 
787 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
788 		ASSERT(dr->dr_dbuf == db);
789 
790 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
791 		ASSERT(dr->dr_dbuf == db);
792 
793 	/*
794 	 * We can't assert that db_size matches dn_datablksz because it
795 	 * can be momentarily different when another thread is doing
796 	 * dnode_set_blksz().
797 	 */
798 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
799 		dr = db->db_data_pending;
800 		/*
801 		 * It should only be modified in syncing context, so
802 		 * make sure we only have one copy of the data.
803 		 */
804 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
805 	}
806 
807 	/* verify db->db_blkptr */
808 	if (db->db_blkptr) {
809 		if (db->db_parent == dn->dn_dbuf) {
810 			/* db is pointed to by the dnode */
811 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
812 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
813 				ASSERT(db->db_parent == NULL);
814 			else
815 				ASSERT(db->db_parent != NULL);
816 			if (db->db_blkid != DMU_SPILL_BLKID)
817 				ASSERT3P(db->db_blkptr, ==,
818 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
819 		} else {
820 			/* db is pointed to by an indirect block */
821 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
822 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
823 			ASSERT3U(db->db_parent->db.db_object, ==,
824 			    db->db.db_object);
825 			/*
826 			 * dnode_grow_indblksz() can make this fail if we don't
827 			 * have the struct_rwlock.  XXX indblksz no longer
828 			 * grows.  safe to do this now?
829 			 */
830 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
831 				ASSERT3P(db->db_blkptr, ==,
832 				    ((blkptr_t *)db->db_parent->db.db_data +
833 				    db->db_blkid % epb));
834 			}
835 		}
836 	}
837 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
838 	    (db->db_buf == NULL || db->db_buf->b_data) &&
839 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
840 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
841 		/*
842 		 * If the blkptr isn't set but they have nonzero data,
843 		 * it had better be dirty, otherwise we'll lose that
844 		 * data when we evict this buffer.
845 		 *
846 		 * There is an exception to this rule for indirect blocks; in
847 		 * this case, if the indirect block is a hole, we fill in a few
848 		 * fields on each of the child blocks (importantly, birth time)
849 		 * to prevent hole birth times from being lost when you
850 		 * partially fill in a hole.
851 		 */
852 		if (db->db_dirtycnt == 0) {
853 			if (db->db_level == 0) {
854 				uint64_t *buf = db->db.db_data;
855 				int i;
856 
857 				for (i = 0; i < db->db.db_size >> 3; i++) {
858 					ASSERT(buf[i] == 0);
859 				}
860 			} else {
861 				blkptr_t *bps = db->db.db_data;
862 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
863 				    db->db.db_size);
864 				/*
865 				 * We want to verify that all the blkptrs in the
866 				 * indirect block are holes, but we may have
867 				 * automatically set up a few fields for them.
868 				 * We iterate through each blkptr and verify
869 				 * they only have those fields set.
870 				 */
871 				for (int i = 0;
872 				    i < db->db.db_size / sizeof (blkptr_t);
873 				    i++) {
874 					blkptr_t *bp = &bps[i];
875 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
876 					    &bp->blk_cksum));
877 					ASSERT(
878 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
879 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
880 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
881 					ASSERT0(bp->blk_fill);
882 					ASSERT0(bp->blk_pad[0]);
883 					ASSERT0(bp->blk_pad[1]);
884 					ASSERT(!BP_IS_EMBEDDED(bp));
885 					ASSERT(BP_IS_HOLE(bp));
886 					ASSERT0(bp->blk_phys_birth);
887 				}
888 			}
889 		}
890 	}
891 	DB_DNODE_EXIT(db);
892 }
893 #endif
894 
895 static void
896 dbuf_clear_data(dmu_buf_impl_t *db)
897 {
898 	ASSERT(MUTEX_HELD(&db->db_mtx));
899 	dbuf_evict_user(db);
900 	ASSERT3P(db->db_buf, ==, NULL);
901 	db->db.db_data = NULL;
902 	if (db->db_state != DB_NOFILL)
903 		db->db_state = DB_UNCACHED;
904 }
905 
906 static void
907 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
908 {
909 	ASSERT(MUTEX_HELD(&db->db_mtx));
910 	ASSERT(buf != NULL);
911 
912 	db->db_buf = buf;
913 	ASSERT(buf->b_data != NULL);
914 	db->db.db_data = buf->b_data;
915 }
916 
917 /*
918  * Loan out an arc_buf for read.  Return the loaned arc_buf.
919  */
920 arc_buf_t *
921 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
922 {
923 	arc_buf_t *abuf;
924 
925 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
926 	mutex_enter(&db->db_mtx);
927 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
928 		int blksz = db->db.db_size;
929 		spa_t *spa = db->db_objset->os_spa;
930 
931 		mutex_exit(&db->db_mtx);
932 		abuf = arc_loan_buf(spa, B_FALSE, blksz);
933 		bcopy(db->db.db_data, abuf->b_data, blksz);
934 	} else {
935 		abuf = db->db_buf;
936 		arc_loan_inuse_buf(abuf, db);
937 		db->db_buf = NULL;
938 		dbuf_clear_data(db);
939 		mutex_exit(&db->db_mtx);
940 	}
941 	return (abuf);
942 }
943 
944 /*
945  * Calculate which level n block references the data at the level 0 offset
946  * provided.
947  */
948 uint64_t
949 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
950 {
951 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
952 		/*
953 		 * The level n blkid is equal to the level 0 blkid divided by
954 		 * the number of level 0s in a level n block.
955 		 *
956 		 * The level 0 blkid is offset >> datablkshift =
957 		 * offset / 2^datablkshift.
958 		 *
959 		 * The number of level 0s in a level n is the number of block
960 		 * pointers in an indirect block, raised to the power of level.
961 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
962 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
963 		 *
964 		 * Thus, the level n blkid is: offset /
965 		 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
966 		 * = offset / 2^(datablkshift + level *
967 		 *   (indblkshift - SPA_BLKPTRSHIFT))
968 		 * = offset >> (datablkshift + level *
969 		 *   (indblkshift - SPA_BLKPTRSHIFT))
970 		 */
971 		return (offset >> (dn->dn_datablkshift + level *
972 		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
973 	} else {
974 		ASSERT3U(offset, <, dn->dn_datablksz);
975 		return (0);
976 	}
977 }
978 
979 static void
980 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
981 {
982 	dmu_buf_impl_t *db = vdb;
983 
984 	mutex_enter(&db->db_mtx);
985 	ASSERT3U(db->db_state, ==, DB_READ);
986 	/*
987 	 * All reads are synchronous, so we must have a hold on the dbuf
988 	 */
989 	ASSERT(refcount_count(&db->db_holds) > 0);
990 	ASSERT(db->db_buf == NULL);
991 	ASSERT(db->db.db_data == NULL);
992 	if (db->db_level == 0 && db->db_freed_in_flight) {
993 		/* we were freed in flight; disregard any error */
994 		arc_release(buf, db);
995 		bzero(buf->b_data, db->db.db_size);
996 		arc_buf_freeze(buf);
997 		db->db_freed_in_flight = FALSE;
998 		dbuf_set_data(db, buf);
999 		db->db_state = DB_CACHED;
1000 	} else if (zio == NULL || zio->io_error == 0) {
1001 		dbuf_set_data(db, buf);
1002 		db->db_state = DB_CACHED;
1003 	} else {
1004 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1005 		ASSERT3P(db->db_buf, ==, NULL);
1006 		arc_buf_destroy(buf, db);
1007 		db->db_state = DB_UNCACHED;
1008 	}
1009 	cv_broadcast(&db->db_changed);
1010 	dbuf_rele_and_unlock(db, NULL);
1011 }
1012 
1013 static void
1014 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1015 {
1016 	dnode_t *dn;
1017 	zbookmark_phys_t zb;
1018 	arc_flags_t aflags = ARC_FLAG_NOWAIT;
1019 
1020 	DB_DNODE_ENTER(db);
1021 	dn = DB_DNODE(db);
1022 	ASSERT(!refcount_is_zero(&db->db_holds));
1023 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
1024 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1025 	ASSERT(MUTEX_HELD(&db->db_mtx));
1026 	ASSERT(db->db_state == DB_UNCACHED);
1027 	ASSERT(db->db_buf == NULL);
1028 
1029 	if (db->db_blkid == DMU_BONUS_BLKID) {
1030 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1031 
1032 		ASSERT3U(bonuslen, <=, db->db.db_size);
1033 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1034 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1035 		if (bonuslen < DN_MAX_BONUSLEN)
1036 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
1037 		if (bonuslen)
1038 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1039 		DB_DNODE_EXIT(db);
1040 		db->db_state = DB_CACHED;
1041 		mutex_exit(&db->db_mtx);
1042 		return;
1043 	}
1044 
1045 	/*
1046 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1047 	 * processes the delete record and clears the bp while we are waiting
1048 	 * for the dn_mtx (resulting in a "no" from block_freed).
1049 	 */
1050 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1051 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1052 	    BP_IS_HOLE(db->db_blkptr)))) {
1053 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1054 
1055 		dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1056 		    db->db.db_size));
1057 		bzero(db->db.db_data, db->db.db_size);
1058 
1059 		if (db->db_blkptr != NULL && db->db_level > 0 &&
1060 		    BP_IS_HOLE(db->db_blkptr) &&
1061 		    db->db_blkptr->blk_birth != 0) {
1062 			blkptr_t *bps = db->db.db_data;
1063 			for (int i = 0; i < ((1 <<
1064 			    DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1065 			    i++) {
1066 				blkptr_t *bp = &bps[i];
1067 				ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1068 				    1 << dn->dn_indblkshift);
1069 				BP_SET_LSIZE(bp,
1070 				    BP_GET_LEVEL(db->db_blkptr) == 1 ?
1071 				    dn->dn_datablksz :
1072 				    BP_GET_LSIZE(db->db_blkptr));
1073 				BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1074 				BP_SET_LEVEL(bp,
1075 				    BP_GET_LEVEL(db->db_blkptr) - 1);
1076 				BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1077 			}
1078 		}
1079 		DB_DNODE_EXIT(db);
1080 		db->db_state = DB_CACHED;
1081 		mutex_exit(&db->db_mtx);
1082 		return;
1083 	}
1084 
1085 	DB_DNODE_EXIT(db);
1086 
1087 	db->db_state = DB_READ;
1088 	mutex_exit(&db->db_mtx);
1089 
1090 	if (DBUF_IS_L2CACHEABLE(db))
1091 		aflags |= ARC_FLAG_L2CACHE;
1092 
1093 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1094 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1095 	    db->db.db_object, db->db_level, db->db_blkid);
1096 
1097 	dbuf_add_ref(db, NULL);
1098 
1099 	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1100 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1101 	    (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1102 	    &aflags, &zb);
1103 }
1104 
1105 /*
1106  * This is our just-in-time copy function.  It makes a copy of buffers that
1107  * have been modified in a previous transaction group before we access them in
1108  * the current active group.
1109  *
1110  * This function is used in three places: when we are dirtying a buffer for the
1111  * first time in a txg, when we are freeing a range in a dnode that includes
1112  * this buffer, and when we are accessing a buffer which was received compressed
1113  * and later referenced in a WRITE_BYREF record.
1114  *
1115  * Note that when we are called from dbuf_free_range() we do not put a hold on
1116  * the buffer, we just traverse the active dbuf list for the dnode.
1117  */
1118 static void
1119 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1120 {
1121 	dbuf_dirty_record_t *dr = db->db_last_dirty;
1122 
1123 	ASSERT(MUTEX_HELD(&db->db_mtx));
1124 	ASSERT(db->db.db_data != NULL);
1125 	ASSERT(db->db_level == 0);
1126 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1127 
1128 	if (dr == NULL ||
1129 	    (dr->dt.dl.dr_data !=
1130 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1131 		return;
1132 
1133 	/*
1134 	 * If the last dirty record for this dbuf has not yet synced
1135 	 * and its referencing the dbuf data, either:
1136 	 *	reset the reference to point to a new copy,
1137 	 * or (if there a no active holders)
1138 	 *	just null out the current db_data pointer.
1139 	 */
1140 	ASSERT(dr->dr_txg >= txg - 2);
1141 	if (db->db_blkid == DMU_BONUS_BLKID) {
1142 		/* Note that the data bufs here are zio_bufs */
1143 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1144 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1145 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
1146 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1147 		int size = arc_buf_size(db->db_buf);
1148 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1149 		spa_t *spa = db->db_objset->os_spa;
1150 		enum zio_compress compress_type =
1151 		    arc_get_compression(db->db_buf);
1152 
1153 		if (compress_type == ZIO_COMPRESS_OFF) {
1154 			dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1155 		} else {
1156 			ASSERT3U(type, ==, ARC_BUFC_DATA);
1157 			dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1158 			    size, arc_buf_lsize(db->db_buf), compress_type);
1159 		}
1160 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1161 	} else {
1162 		db->db_buf = NULL;
1163 		dbuf_clear_data(db);
1164 	}
1165 }
1166 
1167 int
1168 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1169 {
1170 	int err = 0;
1171 	boolean_t prefetch;
1172 	dnode_t *dn;
1173 
1174 	/*
1175 	 * We don't have to hold the mutex to check db_state because it
1176 	 * can't be freed while we have a hold on the buffer.
1177 	 */
1178 	ASSERT(!refcount_is_zero(&db->db_holds));
1179 
1180 	if (db->db_state == DB_NOFILL)
1181 		return (SET_ERROR(EIO));
1182 
1183 	DB_DNODE_ENTER(db);
1184 	dn = DB_DNODE(db);
1185 	if ((flags & DB_RF_HAVESTRUCT) == 0)
1186 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1187 
1188 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1189 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1190 	    DBUF_IS_CACHEABLE(db);
1191 
1192 	mutex_enter(&db->db_mtx);
1193 	if (db->db_state == DB_CACHED) {
1194 		/*
1195 		 * If the arc buf is compressed, we need to decompress it to
1196 		 * read the data. This could happen during the "zfs receive" of
1197 		 * a stream which is compressed and deduplicated.
1198 		 */
1199 		if (db->db_buf != NULL &&
1200 		    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) {
1201 			dbuf_fix_old_data(db,
1202 			    spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1203 			err = arc_decompress(db->db_buf);
1204 			dbuf_set_data(db, db->db_buf);
1205 		}
1206 		mutex_exit(&db->db_mtx);
1207 		if (prefetch)
1208 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1209 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1210 			rw_exit(&dn->dn_struct_rwlock);
1211 		DB_DNODE_EXIT(db);
1212 	} else if (db->db_state == DB_UNCACHED) {
1213 		spa_t *spa = dn->dn_objset->os_spa;
1214 		boolean_t need_wait = B_FALSE;
1215 
1216 		if (zio == NULL &&
1217 		    db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1218 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1219 			need_wait = B_TRUE;
1220 		}
1221 		dbuf_read_impl(db, zio, flags);
1222 
1223 		/* dbuf_read_impl has dropped db_mtx for us */
1224 
1225 		if (prefetch)
1226 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1227 
1228 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1229 			rw_exit(&dn->dn_struct_rwlock);
1230 		DB_DNODE_EXIT(db);
1231 
1232 		if (need_wait)
1233 			err = zio_wait(zio);
1234 	} else {
1235 		/*
1236 		 * Another reader came in while the dbuf was in flight
1237 		 * between UNCACHED and CACHED.  Either a writer will finish
1238 		 * writing the buffer (sending the dbuf to CACHED) or the
1239 		 * first reader's request will reach the read_done callback
1240 		 * and send the dbuf to CACHED.  Otherwise, a failure
1241 		 * occurred and the dbuf went to UNCACHED.
1242 		 */
1243 		mutex_exit(&db->db_mtx);
1244 		if (prefetch)
1245 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1246 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1247 			rw_exit(&dn->dn_struct_rwlock);
1248 		DB_DNODE_EXIT(db);
1249 
1250 		/* Skip the wait per the caller's request. */
1251 		mutex_enter(&db->db_mtx);
1252 		if ((flags & DB_RF_NEVERWAIT) == 0) {
1253 			while (db->db_state == DB_READ ||
1254 			    db->db_state == DB_FILL) {
1255 				ASSERT(db->db_state == DB_READ ||
1256 				    (flags & DB_RF_HAVESTRUCT) == 0);
1257 				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1258 				    db, zio_t *, zio);
1259 				cv_wait(&db->db_changed, &db->db_mtx);
1260 			}
1261 			if (db->db_state == DB_UNCACHED)
1262 				err = SET_ERROR(EIO);
1263 		}
1264 		mutex_exit(&db->db_mtx);
1265 	}
1266 
1267 	return (err);
1268 }
1269 
1270 static void
1271 dbuf_noread(dmu_buf_impl_t *db)
1272 {
1273 	ASSERT(!refcount_is_zero(&db->db_holds));
1274 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1275 	mutex_enter(&db->db_mtx);
1276 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1277 		cv_wait(&db->db_changed, &db->db_mtx);
1278 	if (db->db_state == DB_UNCACHED) {
1279 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1280 		spa_t *spa = db->db_objset->os_spa;
1281 
1282 		ASSERT(db->db_buf == NULL);
1283 		ASSERT(db->db.db_data == NULL);
1284 		dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1285 		db->db_state = DB_FILL;
1286 	} else if (db->db_state == DB_NOFILL) {
1287 		dbuf_clear_data(db);
1288 	} else {
1289 		ASSERT3U(db->db_state, ==, DB_CACHED);
1290 	}
1291 	mutex_exit(&db->db_mtx);
1292 }
1293 
1294 void
1295 dbuf_unoverride(dbuf_dirty_record_t *dr)
1296 {
1297 	dmu_buf_impl_t *db = dr->dr_dbuf;
1298 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1299 	uint64_t txg = dr->dr_txg;
1300 
1301 	ASSERT(MUTEX_HELD(&db->db_mtx));
1302 	/*
1303 	 * This assert is valid because dmu_sync() expects to be called by
1304 	 * a zilog's get_data while holding a range lock.  This call only
1305 	 * comes from dbuf_dirty() callers who must also hold a range lock.
1306 	 */
1307 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1308 	ASSERT(db->db_level == 0);
1309 
1310 	if (db->db_blkid == DMU_BONUS_BLKID ||
1311 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1312 		return;
1313 
1314 	ASSERT(db->db_data_pending != dr);
1315 
1316 	/* free this block */
1317 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1318 		zio_free(db->db_objset->os_spa, txg, bp);
1319 
1320 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1321 	dr->dt.dl.dr_nopwrite = B_FALSE;
1322 
1323 	/*
1324 	 * Release the already-written buffer, so we leave it in
1325 	 * a consistent dirty state.  Note that all callers are
1326 	 * modifying the buffer, so they will immediately do
1327 	 * another (redundant) arc_release().  Therefore, leave
1328 	 * the buf thawed to save the effort of freezing &
1329 	 * immediately re-thawing it.
1330 	 */
1331 	arc_release(dr->dt.dl.dr_data, db);
1332 }
1333 
1334 /*
1335  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1336  * data blocks in the free range, so that any future readers will find
1337  * empty blocks.
1338  */
1339 void
1340 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1341     dmu_tx_t *tx)
1342 {
1343 	dmu_buf_impl_t db_search;
1344 	dmu_buf_impl_t *db, *db_next;
1345 	uint64_t txg = tx->tx_txg;
1346 	avl_index_t where;
1347 
1348 	if (end_blkid > dn->dn_maxblkid &&
1349 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1350 		end_blkid = dn->dn_maxblkid;
1351 	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1352 
1353 	db_search.db_level = 0;
1354 	db_search.db_blkid = start_blkid;
1355 	db_search.db_state = DB_SEARCH;
1356 
1357 	mutex_enter(&dn->dn_dbufs_mtx);
1358 	db = avl_find(&dn->dn_dbufs, &db_search, &where);
1359 	ASSERT3P(db, ==, NULL);
1360 
1361 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1362 
1363 	for (; db != NULL; db = db_next) {
1364 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1365 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1366 
1367 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
1368 			break;
1369 		}
1370 		ASSERT3U(db->db_blkid, >=, start_blkid);
1371 
1372 		/* found a level 0 buffer in the range */
1373 		mutex_enter(&db->db_mtx);
1374 		if (dbuf_undirty(db, tx)) {
1375 			/* mutex has been dropped and dbuf destroyed */
1376 			continue;
1377 		}
1378 
1379 		if (db->db_state == DB_UNCACHED ||
1380 		    db->db_state == DB_NOFILL ||
1381 		    db->db_state == DB_EVICTING) {
1382 			ASSERT(db->db.db_data == NULL);
1383 			mutex_exit(&db->db_mtx);
1384 			continue;
1385 		}
1386 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1387 			/* will be handled in dbuf_read_done or dbuf_rele */
1388 			db->db_freed_in_flight = TRUE;
1389 			mutex_exit(&db->db_mtx);
1390 			continue;
1391 		}
1392 		if (refcount_count(&db->db_holds) == 0) {
1393 			ASSERT(db->db_buf);
1394 			dbuf_destroy(db);
1395 			continue;
1396 		}
1397 		/* The dbuf is referenced */
1398 
1399 		if (db->db_last_dirty != NULL) {
1400 			dbuf_dirty_record_t *dr = db->db_last_dirty;
1401 
1402 			if (dr->dr_txg == txg) {
1403 				/*
1404 				 * This buffer is "in-use", re-adjust the file
1405 				 * size to reflect that this buffer may
1406 				 * contain new data when we sync.
1407 				 */
1408 				if (db->db_blkid != DMU_SPILL_BLKID &&
1409 				    db->db_blkid > dn->dn_maxblkid)
1410 					dn->dn_maxblkid = db->db_blkid;
1411 				dbuf_unoverride(dr);
1412 			} else {
1413 				/*
1414 				 * This dbuf is not dirty in the open context.
1415 				 * Either uncache it (if its not referenced in
1416 				 * the open context) or reset its contents to
1417 				 * empty.
1418 				 */
1419 				dbuf_fix_old_data(db, txg);
1420 			}
1421 		}
1422 		/* clear the contents if its cached */
1423 		if (db->db_state == DB_CACHED) {
1424 			ASSERT(db->db.db_data != NULL);
1425 			arc_release(db->db_buf, db);
1426 			bzero(db->db.db_data, db->db.db_size);
1427 			arc_buf_freeze(db->db_buf);
1428 		}
1429 
1430 		mutex_exit(&db->db_mtx);
1431 	}
1432 	mutex_exit(&dn->dn_dbufs_mtx);
1433 }
1434 
1435 void
1436 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1437 {
1438 	arc_buf_t *buf, *obuf;
1439 	int osize = db->db.db_size;
1440 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1441 	dnode_t *dn;
1442 
1443 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1444 
1445 	DB_DNODE_ENTER(db);
1446 	dn = DB_DNODE(db);
1447 
1448 	/* XXX does *this* func really need the lock? */
1449 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1450 
1451 	/*
1452 	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1453 	 * is OK, because there can be no other references to the db
1454 	 * when we are changing its size, so no concurrent DB_FILL can
1455 	 * be happening.
1456 	 */
1457 	/*
1458 	 * XXX we should be doing a dbuf_read, checking the return
1459 	 * value and returning that up to our callers
1460 	 */
1461 	dmu_buf_will_dirty(&db->db, tx);
1462 
1463 	/* create the data buffer for the new block */
1464 	buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1465 
1466 	/* copy old block data to the new block */
1467 	obuf = db->db_buf;
1468 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1469 	/* zero the remainder */
1470 	if (size > osize)
1471 		bzero((uint8_t *)buf->b_data + osize, size - osize);
1472 
1473 	mutex_enter(&db->db_mtx);
1474 	dbuf_set_data(db, buf);
1475 	arc_buf_destroy(obuf, db);
1476 	db->db.db_size = size;
1477 
1478 	if (db->db_level == 0) {
1479 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1480 		db->db_last_dirty->dt.dl.dr_data = buf;
1481 	}
1482 	mutex_exit(&db->db_mtx);
1483 
1484 	dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1485 	DB_DNODE_EXIT(db);
1486 }
1487 
1488 void
1489 dbuf_release_bp(dmu_buf_impl_t *db)
1490 {
1491 	objset_t *os = db->db_objset;
1492 
1493 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1494 	ASSERT(arc_released(os->os_phys_buf) ||
1495 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1496 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1497 
1498 	(void) arc_release(db->db_buf, db);
1499 }
1500 
1501 /*
1502  * We already have a dirty record for this TXG, and we are being
1503  * dirtied again.
1504  */
1505 static void
1506 dbuf_redirty(dbuf_dirty_record_t *dr)
1507 {
1508 	dmu_buf_impl_t *db = dr->dr_dbuf;
1509 
1510 	ASSERT(MUTEX_HELD(&db->db_mtx));
1511 
1512 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1513 		/*
1514 		 * If this buffer has already been written out,
1515 		 * we now need to reset its state.
1516 		 */
1517 		dbuf_unoverride(dr);
1518 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1519 		    db->db_state != DB_NOFILL) {
1520 			/* Already released on initial dirty, so just thaw. */
1521 			ASSERT(arc_released(db->db_buf));
1522 			arc_buf_thaw(db->db_buf);
1523 		}
1524 	}
1525 }
1526 
1527 dbuf_dirty_record_t *
1528 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1529 {
1530 	dnode_t *dn;
1531 	objset_t *os;
1532 	dbuf_dirty_record_t **drp, *dr;
1533 	int drop_struct_lock = FALSE;
1534 	int txgoff = tx->tx_txg & TXG_MASK;
1535 
1536 	ASSERT(tx->tx_txg != 0);
1537 	ASSERT(!refcount_is_zero(&db->db_holds));
1538 	DMU_TX_DIRTY_BUF(tx, db);
1539 
1540 	DB_DNODE_ENTER(db);
1541 	dn = DB_DNODE(db);
1542 	/*
1543 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1544 	 * objects may be dirtied in syncing context, but only if they
1545 	 * were already pre-dirtied in open context.
1546 	 */
1547 #ifdef DEBUG
1548 	if (dn->dn_objset->os_dsl_dataset != NULL) {
1549 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1550 		    RW_READER, FTAG);
1551 	}
1552 	ASSERT(!dmu_tx_is_syncing(tx) ||
1553 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1554 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1555 	    dn->dn_objset->os_dsl_dataset == NULL);
1556 	if (dn->dn_objset->os_dsl_dataset != NULL)
1557 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1558 #endif
1559 	/*
1560 	 * We make this assert for private objects as well, but after we
1561 	 * check if we're already dirty.  They are allowed to re-dirty
1562 	 * in syncing context.
1563 	 */
1564 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1565 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1566 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1567 
1568 	mutex_enter(&db->db_mtx);
1569 	/*
1570 	 * XXX make this true for indirects too?  The problem is that
1571 	 * transactions created with dmu_tx_create_assigned() from
1572 	 * syncing context don't bother holding ahead.
1573 	 */
1574 	ASSERT(db->db_level != 0 ||
1575 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1576 	    db->db_state == DB_NOFILL);
1577 
1578 	mutex_enter(&dn->dn_mtx);
1579 	/*
1580 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1581 	 * initialize the objset.
1582 	 */
1583 	if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1584 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1585 			rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1586 			    RW_READER, FTAG);
1587 		}
1588 		if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1589 			dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1590 			    DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1591 			ASSERT(dn->dn_dirtyctx_firstset == NULL);
1592 			dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1593 		}
1594 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1595 			rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1596 			    FTAG);
1597 		}
1598 	}
1599 	mutex_exit(&dn->dn_mtx);
1600 
1601 	if (db->db_blkid == DMU_SPILL_BLKID)
1602 		dn->dn_have_spill = B_TRUE;
1603 
1604 	/*
1605 	 * If this buffer is already dirty, we're done.
1606 	 */
1607 	drp = &db->db_last_dirty;
1608 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1609 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1610 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1611 		drp = &dr->dr_next;
1612 	if (dr && dr->dr_txg == tx->tx_txg) {
1613 		DB_DNODE_EXIT(db);
1614 
1615 		dbuf_redirty(dr);
1616 		mutex_exit(&db->db_mtx);
1617 		return (dr);
1618 	}
1619 
1620 	/*
1621 	 * Only valid if not already dirty.
1622 	 */
1623 	ASSERT(dn->dn_object == 0 ||
1624 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1625 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1626 
1627 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1628 
1629 	/*
1630 	 * We should only be dirtying in syncing context if it's the
1631 	 * mos or we're initializing the os or it's a special object.
1632 	 * However, we are allowed to dirty in syncing context provided
1633 	 * we already dirtied it in open context.  Hence we must make
1634 	 * this assertion only if we're not already dirty.
1635 	 */
1636 	os = dn->dn_objset;
1637 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1638 #ifdef DEBUG
1639 	if (dn->dn_objset->os_dsl_dataset != NULL)
1640 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1641 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1642 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1643 	if (dn->dn_objset->os_dsl_dataset != NULL)
1644 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1645 #endif
1646 	ASSERT(db->db.db_size != 0);
1647 
1648 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1649 
1650 	if (db->db_blkid != DMU_BONUS_BLKID) {
1651 		dmu_objset_willuse_space(os, db->db.db_size, tx);
1652 	}
1653 
1654 	/*
1655 	 * If this buffer is dirty in an old transaction group we need
1656 	 * to make a copy of it so that the changes we make in this
1657 	 * transaction group won't leak out when we sync the older txg.
1658 	 */
1659 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1660 	if (db->db_level == 0) {
1661 		void *data_old = db->db_buf;
1662 
1663 		if (db->db_state != DB_NOFILL) {
1664 			if (db->db_blkid == DMU_BONUS_BLKID) {
1665 				dbuf_fix_old_data(db, tx->tx_txg);
1666 				data_old = db->db.db_data;
1667 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1668 				/*
1669 				 * Release the data buffer from the cache so
1670 				 * that we can modify it without impacting
1671 				 * possible other users of this cached data
1672 				 * block.  Note that indirect blocks and
1673 				 * private objects are not released until the
1674 				 * syncing state (since they are only modified
1675 				 * then).
1676 				 */
1677 				arc_release(db->db_buf, db);
1678 				dbuf_fix_old_data(db, tx->tx_txg);
1679 				data_old = db->db_buf;
1680 			}
1681 			ASSERT(data_old != NULL);
1682 		}
1683 		dr->dt.dl.dr_data = data_old;
1684 	} else {
1685 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1686 		list_create(&dr->dt.di.dr_children,
1687 		    sizeof (dbuf_dirty_record_t),
1688 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1689 	}
1690 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1691 		dr->dr_accounted = db->db.db_size;
1692 	dr->dr_dbuf = db;
1693 	dr->dr_txg = tx->tx_txg;
1694 	dr->dr_next = *drp;
1695 	*drp = dr;
1696 
1697 	/*
1698 	 * We could have been freed_in_flight between the dbuf_noread
1699 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1700 	 * happened after the free.
1701 	 */
1702 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1703 	    db->db_blkid != DMU_SPILL_BLKID) {
1704 		mutex_enter(&dn->dn_mtx);
1705 		if (dn->dn_free_ranges[txgoff] != NULL) {
1706 			range_tree_clear(dn->dn_free_ranges[txgoff],
1707 			    db->db_blkid, 1);
1708 		}
1709 		mutex_exit(&dn->dn_mtx);
1710 		db->db_freed_in_flight = FALSE;
1711 	}
1712 
1713 	/*
1714 	 * This buffer is now part of this txg
1715 	 */
1716 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1717 	db->db_dirtycnt += 1;
1718 	ASSERT3U(db->db_dirtycnt, <=, 3);
1719 
1720 	mutex_exit(&db->db_mtx);
1721 
1722 	if (db->db_blkid == DMU_BONUS_BLKID ||
1723 	    db->db_blkid == DMU_SPILL_BLKID) {
1724 		mutex_enter(&dn->dn_mtx);
1725 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1726 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1727 		mutex_exit(&dn->dn_mtx);
1728 		dnode_setdirty(dn, tx);
1729 		DB_DNODE_EXIT(db);
1730 		return (dr);
1731 	}
1732 
1733 	/*
1734 	 * The dn_struct_rwlock prevents db_blkptr from changing
1735 	 * due to a write from syncing context completing
1736 	 * while we are running, so we want to acquire it before
1737 	 * looking at db_blkptr.
1738 	 */
1739 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1740 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1741 		drop_struct_lock = TRUE;
1742 	}
1743 
1744 	/*
1745 	 * We need to hold the dn_struct_rwlock to make this assertion,
1746 	 * because it protects dn_phys / dn_next_nlevels from changing.
1747 	 */
1748 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1749 	    dn->dn_phys->dn_nlevels > db->db_level ||
1750 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1751 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1752 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1753 
1754 	/*
1755 	 * If we are overwriting a dedup BP, then unless it is snapshotted,
1756 	 * when we get to syncing context we will need to decrement its
1757 	 * refcount in the DDT.  Prefetch the relevant DDT block so that
1758 	 * syncing context won't have to wait for the i/o.
1759 	 */
1760 	ddt_prefetch(os->os_spa, db->db_blkptr);
1761 
1762 	if (db->db_level == 0) {
1763 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1764 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1765 	}
1766 
1767 	if (db->db_level+1 < dn->dn_nlevels) {
1768 		dmu_buf_impl_t *parent = db->db_parent;
1769 		dbuf_dirty_record_t *di;
1770 		int parent_held = FALSE;
1771 
1772 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1773 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1774 
1775 			parent = dbuf_hold_level(dn, db->db_level+1,
1776 			    db->db_blkid >> epbs, FTAG);
1777 			ASSERT(parent != NULL);
1778 			parent_held = TRUE;
1779 		}
1780 		if (drop_struct_lock)
1781 			rw_exit(&dn->dn_struct_rwlock);
1782 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1783 		di = dbuf_dirty(parent, tx);
1784 		if (parent_held)
1785 			dbuf_rele(parent, FTAG);
1786 
1787 		mutex_enter(&db->db_mtx);
1788 		/*
1789 		 * Since we've dropped the mutex, it's possible that
1790 		 * dbuf_undirty() might have changed this out from under us.
1791 		 */
1792 		if (db->db_last_dirty == dr ||
1793 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1794 			mutex_enter(&di->dt.di.dr_mtx);
1795 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1796 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1797 			list_insert_tail(&di->dt.di.dr_children, dr);
1798 			mutex_exit(&di->dt.di.dr_mtx);
1799 			dr->dr_parent = di;
1800 		}
1801 		mutex_exit(&db->db_mtx);
1802 	} else {
1803 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1804 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1805 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1806 		mutex_enter(&dn->dn_mtx);
1807 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1808 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1809 		mutex_exit(&dn->dn_mtx);
1810 		if (drop_struct_lock)
1811 			rw_exit(&dn->dn_struct_rwlock);
1812 	}
1813 
1814 	dnode_setdirty(dn, tx);
1815 	DB_DNODE_EXIT(db);
1816 	return (dr);
1817 }
1818 
1819 /*
1820  * Undirty a buffer in the transaction group referenced by the given
1821  * transaction.  Return whether this evicted the dbuf.
1822  */
1823 static boolean_t
1824 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1825 {
1826 	dnode_t *dn;
1827 	uint64_t txg = tx->tx_txg;
1828 	dbuf_dirty_record_t *dr, **drp;
1829 
1830 	ASSERT(txg != 0);
1831 
1832 	/*
1833 	 * Due to our use of dn_nlevels below, this can only be called
1834 	 * in open context, unless we are operating on the MOS.
1835 	 * From syncing context, dn_nlevels may be different from the
1836 	 * dn_nlevels used when dbuf was dirtied.
1837 	 */
1838 	ASSERT(db->db_objset ==
1839 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1840 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1841 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1842 	ASSERT0(db->db_level);
1843 	ASSERT(MUTEX_HELD(&db->db_mtx));
1844 
1845 	/*
1846 	 * If this buffer is not dirty, we're done.
1847 	 */
1848 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1849 		if (dr->dr_txg <= txg)
1850 			break;
1851 	if (dr == NULL || dr->dr_txg < txg)
1852 		return (B_FALSE);
1853 	ASSERT(dr->dr_txg == txg);
1854 	ASSERT(dr->dr_dbuf == db);
1855 
1856 	DB_DNODE_ENTER(db);
1857 	dn = DB_DNODE(db);
1858 
1859 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1860 
1861 	ASSERT(db->db.db_size != 0);
1862 
1863 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1864 	    dr->dr_accounted, txg);
1865 
1866 	*drp = dr->dr_next;
1867 
1868 	/*
1869 	 * Note that there are three places in dbuf_dirty()
1870 	 * where this dirty record may be put on a list.
1871 	 * Make sure to do a list_remove corresponding to
1872 	 * every one of those list_insert calls.
1873 	 */
1874 	if (dr->dr_parent) {
1875 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1876 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1877 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1878 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1879 	    db->db_level + 1 == dn->dn_nlevels) {
1880 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1881 		mutex_enter(&dn->dn_mtx);
1882 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1883 		mutex_exit(&dn->dn_mtx);
1884 	}
1885 	DB_DNODE_EXIT(db);
1886 
1887 	if (db->db_state != DB_NOFILL) {
1888 		dbuf_unoverride(dr);
1889 
1890 		ASSERT(db->db_buf != NULL);
1891 		ASSERT(dr->dt.dl.dr_data != NULL);
1892 		if (dr->dt.dl.dr_data != db->db_buf)
1893 			arc_buf_destroy(dr->dt.dl.dr_data, db);
1894 	}
1895 
1896 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1897 
1898 	ASSERT(db->db_dirtycnt > 0);
1899 	db->db_dirtycnt -= 1;
1900 
1901 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1902 		ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1903 		dbuf_destroy(db);
1904 		return (B_TRUE);
1905 	}
1906 
1907 	return (B_FALSE);
1908 }
1909 
1910 void
1911 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1912 {
1913 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1914 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1915 
1916 	ASSERT(tx->tx_txg != 0);
1917 	ASSERT(!refcount_is_zero(&db->db_holds));
1918 
1919 	/*
1920 	 * Quick check for dirtyness.  For already dirty blocks, this
1921 	 * reduces runtime of this function by >90%, and overall performance
1922 	 * by 50% for some workloads (e.g. file deletion with indirect blocks
1923 	 * cached).
1924 	 */
1925 	mutex_enter(&db->db_mtx);
1926 	dbuf_dirty_record_t *dr;
1927 	for (dr = db->db_last_dirty;
1928 	    dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1929 		/*
1930 		 * It's possible that it is already dirty but not cached,
1931 		 * because there are some calls to dbuf_dirty() that don't
1932 		 * go through dmu_buf_will_dirty().
1933 		 */
1934 		if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1935 			/* This dbuf is already dirty and cached. */
1936 			dbuf_redirty(dr);
1937 			mutex_exit(&db->db_mtx);
1938 			return;
1939 		}
1940 	}
1941 	mutex_exit(&db->db_mtx);
1942 
1943 	DB_DNODE_ENTER(db);
1944 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1945 		rf |= DB_RF_HAVESTRUCT;
1946 	DB_DNODE_EXIT(db);
1947 	(void) dbuf_read(db, NULL, rf);
1948 	(void) dbuf_dirty(db, tx);
1949 }
1950 
1951 void
1952 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1953 {
1954 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1955 
1956 	db->db_state = DB_NOFILL;
1957 
1958 	dmu_buf_will_fill(db_fake, tx);
1959 }
1960 
1961 void
1962 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1963 {
1964 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1965 
1966 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1967 	ASSERT(tx->tx_txg != 0);
1968 	ASSERT(db->db_level == 0);
1969 	ASSERT(!refcount_is_zero(&db->db_holds));
1970 
1971 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1972 	    dmu_tx_private_ok(tx));
1973 
1974 	dbuf_noread(db);
1975 	(void) dbuf_dirty(db, tx);
1976 }
1977 
1978 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1979 /* ARGSUSED */
1980 void
1981 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1982 {
1983 	mutex_enter(&db->db_mtx);
1984 	DBUF_VERIFY(db);
1985 
1986 	if (db->db_state == DB_FILL) {
1987 		if (db->db_level == 0 && db->db_freed_in_flight) {
1988 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1989 			/* we were freed while filling */
1990 			/* XXX dbuf_undirty? */
1991 			bzero(db->db.db_data, db->db.db_size);
1992 			db->db_freed_in_flight = FALSE;
1993 		}
1994 		db->db_state = DB_CACHED;
1995 		cv_broadcast(&db->db_changed);
1996 	}
1997 	mutex_exit(&db->db_mtx);
1998 }
1999 
2000 void
2001 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2002     bp_embedded_type_t etype, enum zio_compress comp,
2003     int uncompressed_size, int compressed_size, int byteorder,
2004     dmu_tx_t *tx)
2005 {
2006 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2007 	struct dirty_leaf *dl;
2008 	dmu_object_type_t type;
2009 
2010 	if (etype == BP_EMBEDDED_TYPE_DATA) {
2011 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2012 		    SPA_FEATURE_EMBEDDED_DATA));
2013 	}
2014 
2015 	DB_DNODE_ENTER(db);
2016 	type = DB_DNODE(db)->dn_type;
2017 	DB_DNODE_EXIT(db);
2018 
2019 	ASSERT0(db->db_level);
2020 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2021 
2022 	dmu_buf_will_not_fill(dbuf, tx);
2023 
2024 	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2025 	dl = &db->db_last_dirty->dt.dl;
2026 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
2027 	    data, comp, uncompressed_size, compressed_size);
2028 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2029 	BP_SET_TYPE(&dl->dr_overridden_by, type);
2030 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2031 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2032 
2033 	dl->dr_override_state = DR_OVERRIDDEN;
2034 	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2035 }
2036 
2037 /*
2038  * Directly assign a provided arc buf to a given dbuf if it's not referenced
2039  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2040  */
2041 void
2042 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2043 {
2044 	ASSERT(!refcount_is_zero(&db->db_holds));
2045 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2046 	ASSERT(db->db_level == 0);
2047 	ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2048 	ASSERT(buf != NULL);
2049 	ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2050 	ASSERT(tx->tx_txg != 0);
2051 
2052 	arc_return_buf(buf, db);
2053 	ASSERT(arc_released(buf));
2054 
2055 	mutex_enter(&db->db_mtx);
2056 
2057 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
2058 		cv_wait(&db->db_changed, &db->db_mtx);
2059 
2060 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2061 
2062 	if (db->db_state == DB_CACHED &&
2063 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2064 		mutex_exit(&db->db_mtx);
2065 		(void) dbuf_dirty(db, tx);
2066 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2067 		arc_buf_destroy(buf, db);
2068 		xuio_stat_wbuf_copied();
2069 		return;
2070 	}
2071 
2072 	xuio_stat_wbuf_nocopy();
2073 	if (db->db_state == DB_CACHED) {
2074 		dbuf_dirty_record_t *dr = db->db_last_dirty;
2075 
2076 		ASSERT(db->db_buf != NULL);
2077 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2078 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
2079 			if (!arc_released(db->db_buf)) {
2080 				ASSERT(dr->dt.dl.dr_override_state ==
2081 				    DR_OVERRIDDEN);
2082 				arc_release(db->db_buf, db);
2083 			}
2084 			dr->dt.dl.dr_data = buf;
2085 			arc_buf_destroy(db->db_buf, db);
2086 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2087 			arc_release(db->db_buf, db);
2088 			arc_buf_destroy(db->db_buf, db);
2089 		}
2090 		db->db_buf = NULL;
2091 	}
2092 	ASSERT(db->db_buf == NULL);
2093 	dbuf_set_data(db, buf);
2094 	db->db_state = DB_FILL;
2095 	mutex_exit(&db->db_mtx);
2096 	(void) dbuf_dirty(db, tx);
2097 	dmu_buf_fill_done(&db->db, tx);
2098 }
2099 
2100 void
2101 dbuf_destroy(dmu_buf_impl_t *db)
2102 {
2103 	dnode_t *dn;
2104 	dmu_buf_impl_t *parent = db->db_parent;
2105 	dmu_buf_impl_t *dndb;
2106 
2107 	ASSERT(MUTEX_HELD(&db->db_mtx));
2108 	ASSERT(refcount_is_zero(&db->db_holds));
2109 
2110 	if (db->db_buf != NULL) {
2111 		arc_buf_destroy(db->db_buf, db);
2112 		db->db_buf = NULL;
2113 	}
2114 
2115 	if (db->db_blkid == DMU_BONUS_BLKID) {
2116 		ASSERT(db->db.db_data != NULL);
2117 		zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
2118 		arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2119 		db->db_state = DB_UNCACHED;
2120 	}
2121 
2122 	dbuf_clear_data(db);
2123 
2124 	if (multilist_link_active(&db->db_cache_link)) {
2125 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2126 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
2127 
2128 		multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2129 		(void) refcount_remove_many(
2130 		    &dbuf_caches[db->db_caching_status].size,
2131 		    db->db.db_size, db);
2132 
2133 		db->db_caching_status = DB_NO_CACHE;
2134 	}
2135 
2136 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2137 	ASSERT(db->db_data_pending == NULL);
2138 
2139 	db->db_state = DB_EVICTING;
2140 	db->db_blkptr = NULL;
2141 
2142 	/*
2143 	 * Now that db_state is DB_EVICTING, nobody else can find this via
2144 	 * the hash table.  We can now drop db_mtx, which allows us to
2145 	 * acquire the dn_dbufs_mtx.
2146 	 */
2147 	mutex_exit(&db->db_mtx);
2148 
2149 	DB_DNODE_ENTER(db);
2150 	dn = DB_DNODE(db);
2151 	dndb = dn->dn_dbuf;
2152 	if (db->db_blkid != DMU_BONUS_BLKID) {
2153 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2154 		if (needlock)
2155 			mutex_enter(&dn->dn_dbufs_mtx);
2156 		avl_remove(&dn->dn_dbufs, db);
2157 		atomic_dec_32(&dn->dn_dbufs_count);
2158 		membar_producer();
2159 		DB_DNODE_EXIT(db);
2160 		if (needlock)
2161 			mutex_exit(&dn->dn_dbufs_mtx);
2162 		/*
2163 		 * Decrementing the dbuf count means that the hold corresponding
2164 		 * to the removed dbuf is no longer discounted in dnode_move(),
2165 		 * so the dnode cannot be moved until after we release the hold.
2166 		 * The membar_producer() ensures visibility of the decremented
2167 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2168 		 * release any lock.
2169 		 */
2170 		dnode_rele(dn, db);
2171 		db->db_dnode_handle = NULL;
2172 
2173 		dbuf_hash_remove(db);
2174 	} else {
2175 		DB_DNODE_EXIT(db);
2176 	}
2177 
2178 	ASSERT(refcount_is_zero(&db->db_holds));
2179 
2180 	db->db_parent = NULL;
2181 
2182 	ASSERT(db->db_buf == NULL);
2183 	ASSERT(db->db.db_data == NULL);
2184 	ASSERT(db->db_hash_next == NULL);
2185 	ASSERT(db->db_blkptr == NULL);
2186 	ASSERT(db->db_data_pending == NULL);
2187 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2188 	ASSERT(!multilist_link_active(&db->db_cache_link));
2189 
2190 	kmem_cache_free(dbuf_kmem_cache, db);
2191 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2192 
2193 	/*
2194 	 * If this dbuf is referenced from an indirect dbuf,
2195 	 * decrement the ref count on the indirect dbuf.
2196 	 */
2197 	if (parent && parent != dndb)
2198 		dbuf_rele(parent, db);
2199 }
2200 
2201 /*
2202  * Note: While bpp will always be updated if the function returns success,
2203  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2204  * this happens when the dnode is the meta-dnode, or a userused or groupused
2205  * object.
2206  */
2207 static int
2208 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2209     dmu_buf_impl_t **parentp, blkptr_t **bpp)
2210 {
2211 	*parentp = NULL;
2212 	*bpp = NULL;
2213 
2214 	ASSERT(blkid != DMU_BONUS_BLKID);
2215 
2216 	if (blkid == DMU_SPILL_BLKID) {
2217 		mutex_enter(&dn->dn_mtx);
2218 		if (dn->dn_have_spill &&
2219 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2220 			*bpp = &dn->dn_phys->dn_spill;
2221 		else
2222 			*bpp = NULL;
2223 		dbuf_add_ref(dn->dn_dbuf, NULL);
2224 		*parentp = dn->dn_dbuf;
2225 		mutex_exit(&dn->dn_mtx);
2226 		return (0);
2227 	}
2228 
2229 	int nlevels =
2230 	    (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2231 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2232 
2233 	ASSERT3U(level * epbs, <, 64);
2234 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2235 	/*
2236 	 * This assertion shouldn't trip as long as the max indirect block size
2237 	 * is less than 1M.  The reason for this is that up to that point,
2238 	 * the number of levels required to address an entire object with blocks
2239 	 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.  In
2240 	 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2241 	 * (i.e. we can address the entire object), objects will all use at most
2242 	 * N-1 levels and the assertion won't overflow.  However, once epbs is
2243 	 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
2244 	 * enough to address an entire object, so objects will have 5 levels,
2245 	 * but then this assertion will overflow.
2246 	 *
2247 	 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2248 	 * need to redo this logic to handle overflows.
2249 	 */
2250 	ASSERT(level >= nlevels ||
2251 	    ((nlevels - level - 1) * epbs) +
2252 	    highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2253 	if (level >= nlevels ||
2254 	    blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2255 	    ((nlevels - level - 1) * epbs)) ||
2256 	    (fail_sparse &&
2257 	    blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2258 		/* the buffer has no parent yet */
2259 		return (SET_ERROR(ENOENT));
2260 	} else if (level < nlevels-1) {
2261 		/* this block is referenced from an indirect block */
2262 		int err = dbuf_hold_impl(dn, level+1,
2263 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2264 		if (err)
2265 			return (err);
2266 		err = dbuf_read(*parentp, NULL,
2267 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2268 		if (err) {
2269 			dbuf_rele(*parentp, NULL);
2270 			*parentp = NULL;
2271 			return (err);
2272 		}
2273 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2274 		    (blkid & ((1ULL << epbs) - 1));
2275 		if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2276 			ASSERT(BP_IS_HOLE(*bpp));
2277 		return (0);
2278 	} else {
2279 		/* the block is referenced from the dnode */
2280 		ASSERT3U(level, ==, nlevels-1);
2281 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2282 		    blkid < dn->dn_phys->dn_nblkptr);
2283 		if (dn->dn_dbuf) {
2284 			dbuf_add_ref(dn->dn_dbuf, NULL);
2285 			*parentp = dn->dn_dbuf;
2286 		}
2287 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
2288 		return (0);
2289 	}
2290 }
2291 
2292 static dmu_buf_impl_t *
2293 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2294     dmu_buf_impl_t *parent, blkptr_t *blkptr)
2295 {
2296 	objset_t *os = dn->dn_objset;
2297 	dmu_buf_impl_t *db, *odb;
2298 
2299 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2300 	ASSERT(dn->dn_type != DMU_OT_NONE);
2301 
2302 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2303 
2304 	db->db_objset = os;
2305 	db->db.db_object = dn->dn_object;
2306 	db->db_level = level;
2307 	db->db_blkid = blkid;
2308 	db->db_last_dirty = NULL;
2309 	db->db_dirtycnt = 0;
2310 	db->db_dnode_handle = dn->dn_handle;
2311 	db->db_parent = parent;
2312 	db->db_blkptr = blkptr;
2313 
2314 	db->db_user = NULL;
2315 	db->db_user_immediate_evict = FALSE;
2316 	db->db_freed_in_flight = FALSE;
2317 	db->db_pending_evict = FALSE;
2318 
2319 	if (blkid == DMU_BONUS_BLKID) {
2320 		ASSERT3P(parent, ==, dn->dn_dbuf);
2321 		db->db.db_size = DN_MAX_BONUSLEN -
2322 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2323 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2324 		db->db.db_offset = DMU_BONUS_BLKID;
2325 		db->db_state = DB_UNCACHED;
2326 		db->db_caching_status = DB_NO_CACHE;
2327 		/* the bonus dbuf is not placed in the hash table */
2328 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2329 		return (db);
2330 	} else if (blkid == DMU_SPILL_BLKID) {
2331 		db->db.db_size = (blkptr != NULL) ?
2332 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2333 		db->db.db_offset = 0;
2334 	} else {
2335 		int blocksize =
2336 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2337 		db->db.db_size = blocksize;
2338 		db->db.db_offset = db->db_blkid * blocksize;
2339 	}
2340 
2341 	/*
2342 	 * Hold the dn_dbufs_mtx while we get the new dbuf
2343 	 * in the hash table *and* added to the dbufs list.
2344 	 * This prevents a possible deadlock with someone
2345 	 * trying to look up this dbuf before its added to the
2346 	 * dn_dbufs list.
2347 	 */
2348 	mutex_enter(&dn->dn_dbufs_mtx);
2349 	db->db_state = DB_EVICTING;
2350 	if ((odb = dbuf_hash_insert(db)) != NULL) {
2351 		/* someone else inserted it first */
2352 		kmem_cache_free(dbuf_kmem_cache, db);
2353 		mutex_exit(&dn->dn_dbufs_mtx);
2354 		return (odb);
2355 	}
2356 	avl_add(&dn->dn_dbufs, db);
2357 
2358 	db->db_state = DB_UNCACHED;
2359 	db->db_caching_status = DB_NO_CACHE;
2360 	mutex_exit(&dn->dn_dbufs_mtx);
2361 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2362 
2363 	if (parent && parent != dn->dn_dbuf)
2364 		dbuf_add_ref(parent, db);
2365 
2366 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2367 	    refcount_count(&dn->dn_holds) > 0);
2368 	(void) refcount_add(&dn->dn_holds, db);
2369 	atomic_inc_32(&dn->dn_dbufs_count);
2370 
2371 	dprintf_dbuf(db, "db=%p\n", db);
2372 
2373 	return (db);
2374 }
2375 
2376 typedef struct dbuf_prefetch_arg {
2377 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
2378 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2379 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2380 	int dpa_curlevel; /* The current level that we're reading */
2381 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2382 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2383 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2384 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2385 } dbuf_prefetch_arg_t;
2386 
2387 /*
2388  * Actually issue the prefetch read for the block given.
2389  */
2390 static void
2391 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2392 {
2393 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2394 		return;
2395 
2396 	arc_flags_t aflags =
2397 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2398 
2399 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2400 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2401 	ASSERT(dpa->dpa_zio != NULL);
2402 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2403 	    dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2404 	    &aflags, &dpa->dpa_zb);
2405 }
2406 
2407 /*
2408  * Called when an indirect block above our prefetch target is read in.  This
2409  * will either read in the next indirect block down the tree or issue the actual
2410  * prefetch if the next block down is our target.
2411  */
2412 static void
2413 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2414 {
2415 	dbuf_prefetch_arg_t *dpa = private;
2416 
2417 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2418 	ASSERT3S(dpa->dpa_curlevel, >, 0);
2419 
2420 	/*
2421 	 * The dpa_dnode is only valid if we are called with a NULL
2422 	 * zio. This indicates that the arc_read() returned without
2423 	 * first calling zio_read() to issue a physical read. Once
2424 	 * a physical read is made the dpa_dnode must be invalidated
2425 	 * as the locks guarding it may have been dropped. If the
2426 	 * dpa_dnode is still valid, then we want to add it to the dbuf
2427 	 * cache. To do so, we must hold the dbuf associated with the block
2428 	 * we just prefetched, read its contents so that we associate it
2429 	 * with an arc_buf_t, and then release it.
2430 	 */
2431 	if (zio != NULL) {
2432 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2433 		if (zio->io_flags & ZIO_FLAG_RAW) {
2434 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2435 		} else {
2436 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2437 		}
2438 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2439 
2440 		dpa->dpa_dnode = NULL;
2441 	} else if (dpa->dpa_dnode != NULL) {
2442 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2443 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
2444 		    dpa->dpa_zb.zb_level));
2445 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2446 		    dpa->dpa_curlevel, curblkid, FTAG);
2447 		(void) dbuf_read(db, NULL,
2448 		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2449 		dbuf_rele(db, FTAG);
2450 	}
2451 
2452 	dpa->dpa_curlevel--;
2453 
2454 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2455 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2456 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2457 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2458 	if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2459 		kmem_free(dpa, sizeof (*dpa));
2460 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2461 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2462 		dbuf_issue_final_prefetch(dpa, bp);
2463 		kmem_free(dpa, sizeof (*dpa));
2464 	} else {
2465 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2466 		zbookmark_phys_t zb;
2467 
2468 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
2469 		if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2470 			iter_aflags |= ARC_FLAG_L2CACHE;
2471 
2472 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2473 
2474 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2475 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2476 
2477 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2478 		    bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2479 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2480 		    &iter_aflags, &zb);
2481 	}
2482 
2483 	arc_buf_destroy(abuf, private);
2484 }
2485 
2486 /*
2487  * Issue prefetch reads for the given block on the given level.  If the indirect
2488  * blocks above that block are not in memory, we will read them in
2489  * asynchronously.  As a result, this call never blocks waiting for a read to
2490  * complete.
2491  */
2492 void
2493 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2494     arc_flags_t aflags)
2495 {
2496 	blkptr_t bp;
2497 	int epbs, nlevels, curlevel;
2498 	uint64_t curblkid;
2499 
2500 	ASSERT(blkid != DMU_BONUS_BLKID);
2501 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2502 
2503 	if (blkid > dn->dn_maxblkid)
2504 		return;
2505 
2506 	if (dnode_block_freed(dn, blkid))
2507 		return;
2508 
2509 	/*
2510 	 * This dnode hasn't been written to disk yet, so there's nothing to
2511 	 * prefetch.
2512 	 */
2513 	nlevels = dn->dn_phys->dn_nlevels;
2514 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2515 		return;
2516 
2517 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2518 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2519 		return;
2520 
2521 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2522 	    level, blkid);
2523 	if (db != NULL) {
2524 		mutex_exit(&db->db_mtx);
2525 		/*
2526 		 * This dbuf already exists.  It is either CACHED, or
2527 		 * (we assume) about to be read or filled.
2528 		 */
2529 		return;
2530 	}
2531 
2532 	/*
2533 	 * Find the closest ancestor (indirect block) of the target block
2534 	 * that is present in the cache.  In this indirect block, we will
2535 	 * find the bp that is at curlevel, curblkid.
2536 	 */
2537 	curlevel = level;
2538 	curblkid = blkid;
2539 	while (curlevel < nlevels - 1) {
2540 		int parent_level = curlevel + 1;
2541 		uint64_t parent_blkid = curblkid >> epbs;
2542 		dmu_buf_impl_t *db;
2543 
2544 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2545 		    FALSE, TRUE, FTAG, &db) == 0) {
2546 			blkptr_t *bpp = db->db_buf->b_data;
2547 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2548 			dbuf_rele(db, FTAG);
2549 			break;
2550 		}
2551 
2552 		curlevel = parent_level;
2553 		curblkid = parent_blkid;
2554 	}
2555 
2556 	if (curlevel == nlevels - 1) {
2557 		/* No cached indirect blocks found. */
2558 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2559 		bp = dn->dn_phys->dn_blkptr[curblkid];
2560 	}
2561 	if (BP_IS_HOLE(&bp))
2562 		return;
2563 
2564 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2565 
2566 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2567 	    ZIO_FLAG_CANFAIL);
2568 
2569 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2570 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2571 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2572 	    dn->dn_object, level, blkid);
2573 	dpa->dpa_curlevel = curlevel;
2574 	dpa->dpa_prio = prio;
2575 	dpa->dpa_aflags = aflags;
2576 	dpa->dpa_spa = dn->dn_objset->os_spa;
2577 	dpa->dpa_dnode = dn;
2578 	dpa->dpa_epbs = epbs;
2579 	dpa->dpa_zio = pio;
2580 
2581 	/* flag if L2ARC eligible, l2arc_noprefetch then decides */
2582 	if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2583 		dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2584 
2585 	/*
2586 	 * If we have the indirect just above us, no need to do the asynchronous
2587 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
2588 	 * a higher level, though, we want to issue the prefetches for all the
2589 	 * indirect blocks asynchronously, so we can go on with whatever we were
2590 	 * doing.
2591 	 */
2592 	if (curlevel == level) {
2593 		ASSERT3U(curblkid, ==, blkid);
2594 		dbuf_issue_final_prefetch(dpa, &bp);
2595 		kmem_free(dpa, sizeof (*dpa));
2596 	} else {
2597 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2598 		zbookmark_phys_t zb;
2599 
2600 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
2601 		if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2602 			iter_aflags |= ARC_FLAG_L2CACHE;
2603 
2604 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2605 		    dn->dn_object, curlevel, curblkid);
2606 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2607 		    &bp, dbuf_prefetch_indirect_done, dpa, prio,
2608 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2609 		    &iter_aflags, &zb);
2610 	}
2611 	/*
2612 	 * We use pio here instead of dpa_zio since it's possible that
2613 	 * dpa may have already been freed.
2614 	 */
2615 	zio_nowait(pio);
2616 }
2617 
2618 /*
2619  * Returns with db_holds incremented, and db_mtx not held.
2620  * Note: dn_struct_rwlock must be held.
2621  */
2622 int
2623 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2624     boolean_t fail_sparse, boolean_t fail_uncached,
2625     void *tag, dmu_buf_impl_t **dbp)
2626 {
2627 	dmu_buf_impl_t *db, *parent = NULL;
2628 
2629 	ASSERT(blkid != DMU_BONUS_BLKID);
2630 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2631 	ASSERT3U(dn->dn_nlevels, >, level);
2632 
2633 	*dbp = NULL;
2634 top:
2635 	/* dbuf_find() returns with db_mtx held */
2636 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2637 
2638 	if (db == NULL) {
2639 		blkptr_t *bp = NULL;
2640 		int err;
2641 
2642 		if (fail_uncached)
2643 			return (SET_ERROR(ENOENT));
2644 
2645 		ASSERT3P(parent, ==, NULL);
2646 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2647 		if (fail_sparse) {
2648 			if (err == 0 && bp && BP_IS_HOLE(bp))
2649 				err = SET_ERROR(ENOENT);
2650 			if (err) {
2651 				if (parent)
2652 					dbuf_rele(parent, NULL);
2653 				return (err);
2654 			}
2655 		}
2656 		if (err && err != ENOENT)
2657 			return (err);
2658 		db = dbuf_create(dn, level, blkid, parent, bp);
2659 	}
2660 
2661 	if (fail_uncached && db->db_state != DB_CACHED) {
2662 		mutex_exit(&db->db_mtx);
2663 		return (SET_ERROR(ENOENT));
2664 	}
2665 
2666 	if (db->db_buf != NULL)
2667 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2668 
2669 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2670 
2671 	/*
2672 	 * If this buffer is currently syncing out, and we are are
2673 	 * still referencing it from db_data, we need to make a copy
2674 	 * of it in case we decide we want to dirty it again in this txg.
2675 	 */
2676 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2677 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2678 	    db->db_state == DB_CACHED && db->db_data_pending) {
2679 		dbuf_dirty_record_t *dr = db->db_data_pending;
2680 
2681 		if (dr->dt.dl.dr_data == db->db_buf) {
2682 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2683 
2684 			dbuf_set_data(db,
2685 			    arc_alloc_buf(dn->dn_objset->os_spa, db, type,
2686 			    db->db.db_size));
2687 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2688 			    db->db.db_size);
2689 		}
2690 	}
2691 
2692 	if (multilist_link_active(&db->db_cache_link)) {
2693 		ASSERT(refcount_is_zero(&db->db_holds));
2694 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2695 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
2696 
2697 		multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2698 		(void) refcount_remove_many(
2699 		    &dbuf_caches[db->db_caching_status].size,
2700 		    db->db.db_size, db);
2701 
2702 		db->db_caching_status = DB_NO_CACHE;
2703 	}
2704 	(void) refcount_add(&db->db_holds, tag);
2705 	DBUF_VERIFY(db);
2706 	mutex_exit(&db->db_mtx);
2707 
2708 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
2709 	if (parent)
2710 		dbuf_rele(parent, NULL);
2711 
2712 	ASSERT3P(DB_DNODE(db), ==, dn);
2713 	ASSERT3U(db->db_blkid, ==, blkid);
2714 	ASSERT3U(db->db_level, ==, level);
2715 	*dbp = db;
2716 
2717 	return (0);
2718 }
2719 
2720 dmu_buf_impl_t *
2721 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2722 {
2723 	return (dbuf_hold_level(dn, 0, blkid, tag));
2724 }
2725 
2726 dmu_buf_impl_t *
2727 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2728 {
2729 	dmu_buf_impl_t *db;
2730 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2731 	return (err ? NULL : db);
2732 }
2733 
2734 void
2735 dbuf_create_bonus(dnode_t *dn)
2736 {
2737 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2738 
2739 	ASSERT(dn->dn_bonus == NULL);
2740 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2741 }
2742 
2743 int
2744 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2745 {
2746 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2747 	dnode_t *dn;
2748 
2749 	if (db->db_blkid != DMU_SPILL_BLKID)
2750 		return (SET_ERROR(ENOTSUP));
2751 	if (blksz == 0)
2752 		blksz = SPA_MINBLOCKSIZE;
2753 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2754 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2755 
2756 	DB_DNODE_ENTER(db);
2757 	dn = DB_DNODE(db);
2758 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2759 	dbuf_new_size(db, blksz, tx);
2760 	rw_exit(&dn->dn_struct_rwlock);
2761 	DB_DNODE_EXIT(db);
2762 
2763 	return (0);
2764 }
2765 
2766 void
2767 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2768 {
2769 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2770 }
2771 
2772 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2773 void
2774 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2775 {
2776 	int64_t holds = refcount_add(&db->db_holds, tag);
2777 	ASSERT3S(holds, >, 1);
2778 }
2779 
2780 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2781 boolean_t
2782 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2783     void *tag)
2784 {
2785 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2786 	dmu_buf_impl_t *found_db;
2787 	boolean_t result = B_FALSE;
2788 
2789 	if (db->db_blkid == DMU_BONUS_BLKID)
2790 		found_db = dbuf_find_bonus(os, obj);
2791 	else
2792 		found_db = dbuf_find(os, obj, 0, blkid);
2793 
2794 	if (found_db != NULL) {
2795 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2796 			(void) refcount_add(&db->db_holds, tag);
2797 			result = B_TRUE;
2798 		}
2799 		mutex_exit(&db->db_mtx);
2800 	}
2801 	return (result);
2802 }
2803 
2804 /*
2805  * If you call dbuf_rele() you had better not be referencing the dnode handle
2806  * unless you have some other direct or indirect hold on the dnode. (An indirect
2807  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2808  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2809  * dnode's parent dbuf evicting its dnode handles.
2810  */
2811 void
2812 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2813 {
2814 	mutex_enter(&db->db_mtx);
2815 	dbuf_rele_and_unlock(db, tag);
2816 }
2817 
2818 void
2819 dmu_buf_rele(dmu_buf_t *db, void *tag)
2820 {
2821 	dbuf_rele((dmu_buf_impl_t *)db, tag);
2822 }
2823 
2824 /*
2825  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2826  * db_dirtycnt and db_holds to be updated atomically.
2827  */
2828 void
2829 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2830 {
2831 	int64_t holds;
2832 
2833 	ASSERT(MUTEX_HELD(&db->db_mtx));
2834 	DBUF_VERIFY(db);
2835 
2836 	/*
2837 	 * Remove the reference to the dbuf before removing its hold on the
2838 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2839 	 * buffer has a corresponding dnode hold.
2840 	 */
2841 	holds = refcount_remove(&db->db_holds, tag);
2842 	ASSERT(holds >= 0);
2843 
2844 	/*
2845 	 * We can't freeze indirects if there is a possibility that they
2846 	 * may be modified in the current syncing context.
2847 	 */
2848 	if (db->db_buf != NULL &&
2849 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2850 		arc_buf_freeze(db->db_buf);
2851 	}
2852 
2853 	if (holds == db->db_dirtycnt &&
2854 	    db->db_level == 0 && db->db_user_immediate_evict)
2855 		dbuf_evict_user(db);
2856 
2857 	if (holds == 0) {
2858 		if (db->db_blkid == DMU_BONUS_BLKID) {
2859 			dnode_t *dn;
2860 			boolean_t evict_dbuf = db->db_pending_evict;
2861 
2862 			/*
2863 			 * If the dnode moves here, we cannot cross this
2864 			 * barrier until the move completes.
2865 			 */
2866 			DB_DNODE_ENTER(db);
2867 
2868 			dn = DB_DNODE(db);
2869 			atomic_dec_32(&dn->dn_dbufs_count);
2870 
2871 			/*
2872 			 * Decrementing the dbuf count means that the bonus
2873 			 * buffer's dnode hold is no longer discounted in
2874 			 * dnode_move(). The dnode cannot move until after
2875 			 * the dnode_rele() below.
2876 			 */
2877 			DB_DNODE_EXIT(db);
2878 
2879 			/*
2880 			 * Do not reference db after its lock is dropped.
2881 			 * Another thread may evict it.
2882 			 */
2883 			mutex_exit(&db->db_mtx);
2884 
2885 			if (evict_dbuf)
2886 				dnode_evict_bonus(dn);
2887 
2888 			dnode_rele(dn, db);
2889 		} else if (db->db_buf == NULL) {
2890 			/*
2891 			 * This is a special case: we never associated this
2892 			 * dbuf with any data allocated from the ARC.
2893 			 */
2894 			ASSERT(db->db_state == DB_UNCACHED ||
2895 			    db->db_state == DB_NOFILL);
2896 			dbuf_destroy(db);
2897 		} else if (arc_released(db->db_buf)) {
2898 			/*
2899 			 * This dbuf has anonymous data associated with it.
2900 			 */
2901 			dbuf_destroy(db);
2902 		} else {
2903 			boolean_t do_arc_evict = B_FALSE;
2904 			blkptr_t bp;
2905 			spa_t *spa = dmu_objset_spa(db->db_objset);
2906 
2907 			if (!DBUF_IS_CACHEABLE(db) &&
2908 			    db->db_blkptr != NULL &&
2909 			    !BP_IS_HOLE(db->db_blkptr) &&
2910 			    !BP_IS_EMBEDDED(db->db_blkptr)) {
2911 				do_arc_evict = B_TRUE;
2912 				bp = *db->db_blkptr;
2913 			}
2914 
2915 			if (!DBUF_IS_CACHEABLE(db) ||
2916 			    db->db_pending_evict) {
2917 				dbuf_destroy(db);
2918 			} else if (!multilist_link_active(&db->db_cache_link)) {
2919 				ASSERT3U(db->db_caching_status, ==,
2920 				    DB_NO_CACHE);
2921 
2922 				dbuf_cached_state_t dcs =
2923 				    dbuf_include_in_metadata_cache(db) ?
2924 				    DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
2925 				db->db_caching_status = dcs;
2926 
2927 				multilist_insert(dbuf_caches[dcs].cache, db);
2928 				(void) refcount_add_many(&dbuf_caches[dcs].size,
2929 				    db->db.db_size, db);
2930 				mutex_exit(&db->db_mtx);
2931 
2932 				if (db->db_caching_status == DB_DBUF_CACHE) {
2933 					dbuf_evict_notify();
2934 				}
2935 			}
2936 
2937 			if (do_arc_evict)
2938 				arc_freed(spa, &bp);
2939 		}
2940 	} else {
2941 		mutex_exit(&db->db_mtx);
2942 	}
2943 
2944 }
2945 
2946 #pragma weak dmu_buf_refcount = dbuf_refcount
2947 uint64_t
2948 dbuf_refcount(dmu_buf_impl_t *db)
2949 {
2950 	return (refcount_count(&db->db_holds));
2951 }
2952 
2953 void *
2954 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2955     dmu_buf_user_t *new_user)
2956 {
2957 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2958 
2959 	mutex_enter(&db->db_mtx);
2960 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2961 	if (db->db_user == old_user)
2962 		db->db_user = new_user;
2963 	else
2964 		old_user = db->db_user;
2965 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2966 	mutex_exit(&db->db_mtx);
2967 
2968 	return (old_user);
2969 }
2970 
2971 void *
2972 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2973 {
2974 	return (dmu_buf_replace_user(db_fake, NULL, user));
2975 }
2976 
2977 void *
2978 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2979 {
2980 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2981 
2982 	db->db_user_immediate_evict = TRUE;
2983 	return (dmu_buf_set_user(db_fake, user));
2984 }
2985 
2986 void *
2987 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2988 {
2989 	return (dmu_buf_replace_user(db_fake, user, NULL));
2990 }
2991 
2992 void *
2993 dmu_buf_get_user(dmu_buf_t *db_fake)
2994 {
2995 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2996 
2997 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2998 	return (db->db_user);
2999 }
3000 
3001 void
3002 dmu_buf_user_evict_wait()
3003 {
3004 	taskq_wait(dbu_evict_taskq);
3005 }
3006 
3007 blkptr_t *
3008 dmu_buf_get_blkptr(dmu_buf_t *db)
3009 {
3010 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3011 	return (dbi->db_blkptr);
3012 }
3013 
3014 objset_t *
3015 dmu_buf_get_objset(dmu_buf_t *db)
3016 {
3017 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3018 	return (dbi->db_objset);
3019 }
3020 
3021 dnode_t *
3022 dmu_buf_dnode_enter(dmu_buf_t *db)
3023 {
3024 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3025 	DB_DNODE_ENTER(dbi);
3026 	return (DB_DNODE(dbi));
3027 }
3028 
3029 void
3030 dmu_buf_dnode_exit(dmu_buf_t *db)
3031 {
3032 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3033 	DB_DNODE_EXIT(dbi);
3034 }
3035 
3036 static void
3037 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3038 {
3039 	/* ASSERT(dmu_tx_is_syncing(tx) */
3040 	ASSERT(MUTEX_HELD(&db->db_mtx));
3041 
3042 	if (db->db_blkptr != NULL)
3043 		return;
3044 
3045 	if (db->db_blkid == DMU_SPILL_BLKID) {
3046 		db->db_blkptr = &dn->dn_phys->dn_spill;
3047 		BP_ZERO(db->db_blkptr);
3048 		return;
3049 	}
3050 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3051 		/*
3052 		 * This buffer was allocated at a time when there was
3053 		 * no available blkptrs from the dnode, or it was
3054 		 * inappropriate to hook it in (i.e., nlevels mis-match).
3055 		 */
3056 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3057 		ASSERT(db->db_parent == NULL);
3058 		db->db_parent = dn->dn_dbuf;
3059 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3060 		DBUF_VERIFY(db);
3061 	} else {
3062 		dmu_buf_impl_t *parent = db->db_parent;
3063 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3064 
3065 		ASSERT(dn->dn_phys->dn_nlevels > 1);
3066 		if (parent == NULL) {
3067 			mutex_exit(&db->db_mtx);
3068 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
3069 			parent = dbuf_hold_level(dn, db->db_level + 1,
3070 			    db->db_blkid >> epbs, db);
3071 			rw_exit(&dn->dn_struct_rwlock);
3072 			mutex_enter(&db->db_mtx);
3073 			db->db_parent = parent;
3074 		}
3075 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
3076 		    (db->db_blkid & ((1ULL << epbs) - 1));
3077 		DBUF_VERIFY(db);
3078 	}
3079 }
3080 
3081 static void
3082 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3083 {
3084 	dmu_buf_impl_t *db = dr->dr_dbuf;
3085 	dnode_t *dn;
3086 	zio_t *zio;
3087 
3088 	ASSERT(dmu_tx_is_syncing(tx));
3089 
3090 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3091 
3092 	mutex_enter(&db->db_mtx);
3093 
3094 	ASSERT(db->db_level > 0);
3095 	DBUF_VERIFY(db);
3096 
3097 	/* Read the block if it hasn't been read yet. */
3098 	if (db->db_buf == NULL) {
3099 		mutex_exit(&db->db_mtx);
3100 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3101 		mutex_enter(&db->db_mtx);
3102 	}
3103 	ASSERT3U(db->db_state, ==, DB_CACHED);
3104 	ASSERT(db->db_buf != NULL);
3105 
3106 	DB_DNODE_ENTER(db);
3107 	dn = DB_DNODE(db);
3108 	/* Indirect block size must match what the dnode thinks it is. */
3109 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3110 	dbuf_check_blkptr(dn, db);
3111 	DB_DNODE_EXIT(db);
3112 
3113 	/* Provide the pending dirty record to child dbufs */
3114 	db->db_data_pending = dr;
3115 
3116 	mutex_exit(&db->db_mtx);
3117 
3118 	dbuf_write(dr, db->db_buf, tx);
3119 
3120 	zio = dr->dr_zio;
3121 	mutex_enter(&dr->dt.di.dr_mtx);
3122 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3123 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3124 	mutex_exit(&dr->dt.di.dr_mtx);
3125 	zio_nowait(zio);
3126 }
3127 
3128 static void
3129 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3130 {
3131 	arc_buf_t **datap = &dr->dt.dl.dr_data;
3132 	dmu_buf_impl_t *db = dr->dr_dbuf;
3133 	dnode_t *dn;
3134 	objset_t *os;
3135 	uint64_t txg = tx->tx_txg;
3136 
3137 	ASSERT(dmu_tx_is_syncing(tx));
3138 
3139 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3140 
3141 	mutex_enter(&db->db_mtx);
3142 	/*
3143 	 * To be synced, we must be dirtied.  But we
3144 	 * might have been freed after the dirty.
3145 	 */
3146 	if (db->db_state == DB_UNCACHED) {
3147 		/* This buffer has been freed since it was dirtied */
3148 		ASSERT(db->db.db_data == NULL);
3149 	} else if (db->db_state == DB_FILL) {
3150 		/* This buffer was freed and is now being re-filled */
3151 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3152 	} else {
3153 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3154 	}
3155 	DBUF_VERIFY(db);
3156 
3157 	DB_DNODE_ENTER(db);
3158 	dn = DB_DNODE(db);
3159 
3160 	if (db->db_blkid == DMU_SPILL_BLKID) {
3161 		mutex_enter(&dn->dn_mtx);
3162 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3163 		mutex_exit(&dn->dn_mtx);
3164 	}
3165 
3166 	/*
3167 	 * If this is a bonus buffer, simply copy the bonus data into the
3168 	 * dnode.  It will be written out when the dnode is synced (and it
3169 	 * will be synced, since it must have been dirty for dbuf_sync to
3170 	 * be called).
3171 	 */
3172 	if (db->db_blkid == DMU_BONUS_BLKID) {
3173 		dbuf_dirty_record_t **drp;
3174 
3175 		ASSERT(*datap != NULL);
3176 		ASSERT0(db->db_level);
3177 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
3178 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
3179 		DB_DNODE_EXIT(db);
3180 
3181 		if (*datap != db->db.db_data) {
3182 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
3183 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
3184 		}
3185 		db->db_data_pending = NULL;
3186 		drp = &db->db_last_dirty;
3187 		while (*drp != dr)
3188 			drp = &(*drp)->dr_next;
3189 		ASSERT(dr->dr_next == NULL);
3190 		ASSERT(dr->dr_dbuf == db);
3191 		*drp = dr->dr_next;
3192 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
3193 		ASSERT(db->db_dirtycnt > 0);
3194 		db->db_dirtycnt -= 1;
3195 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3196 		return;
3197 	}
3198 
3199 	os = dn->dn_objset;
3200 
3201 	/*
3202 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
3203 	 * operation to sneak in. As a result, we need to ensure that we
3204 	 * don't check the dr_override_state until we have returned from
3205 	 * dbuf_check_blkptr.
3206 	 */
3207 	dbuf_check_blkptr(dn, db);
3208 
3209 	/*
3210 	 * If this buffer is in the middle of an immediate write,
3211 	 * wait for the synchronous IO to complete.
3212 	 */
3213 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3214 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3215 		cv_wait(&db->db_changed, &db->db_mtx);
3216 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3217 	}
3218 
3219 	if (db->db_state != DB_NOFILL &&
3220 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3221 	    refcount_count(&db->db_holds) > 1 &&
3222 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3223 	    *datap == db->db_buf) {
3224 		/*
3225 		 * If this buffer is currently "in use" (i.e., there
3226 		 * are active holds and db_data still references it),
3227 		 * then make a copy before we start the write so that
3228 		 * any modifications from the open txg will not leak
3229 		 * into this write.
3230 		 *
3231 		 * NOTE: this copy does not need to be made for
3232 		 * objects only modified in the syncing context (e.g.
3233 		 * DNONE_DNODE blocks).
3234 		 */
3235 		int psize = arc_buf_size(*datap);
3236 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3237 		enum zio_compress compress_type = arc_get_compression(*datap);
3238 
3239 		if (compress_type == ZIO_COMPRESS_OFF) {
3240 			*datap = arc_alloc_buf(os->os_spa, db, type, psize);
3241 		} else {
3242 			ASSERT3U(type, ==, ARC_BUFC_DATA);
3243 			int lsize = arc_buf_lsize(*datap);
3244 			*datap = arc_alloc_compressed_buf(os->os_spa, db,
3245 			    psize, lsize, compress_type);
3246 		}
3247 		bcopy(db->db.db_data, (*datap)->b_data, psize);
3248 	}
3249 	db->db_data_pending = dr;
3250 
3251 	mutex_exit(&db->db_mtx);
3252 
3253 	dbuf_write(dr, *datap, tx);
3254 
3255 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3256 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3257 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3258 		DB_DNODE_EXIT(db);
3259 	} else {
3260 		/*
3261 		 * Although zio_nowait() does not "wait for an IO", it does
3262 		 * initiate the IO. If this is an empty write it seems plausible
3263 		 * that the IO could actually be completed before the nowait
3264 		 * returns. We need to DB_DNODE_EXIT() first in case
3265 		 * zio_nowait() invalidates the dbuf.
3266 		 */
3267 		DB_DNODE_EXIT(db);
3268 		zio_nowait(dr->dr_zio);
3269 	}
3270 }
3271 
3272 void
3273 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3274 {
3275 	dbuf_dirty_record_t *dr;
3276 
3277 	while (dr = list_head(list)) {
3278 		if (dr->dr_zio != NULL) {
3279 			/*
3280 			 * If we find an already initialized zio then we
3281 			 * are processing the meta-dnode, and we have finished.
3282 			 * The dbufs for all dnodes are put back on the list
3283 			 * during processing, so that we can zio_wait()
3284 			 * these IOs after initiating all child IOs.
3285 			 */
3286 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3287 			    DMU_META_DNODE_OBJECT);
3288 			break;
3289 		}
3290 		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3291 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3292 			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3293 		}
3294 		list_remove(list, dr);
3295 		if (dr->dr_dbuf->db_level > 0)
3296 			dbuf_sync_indirect(dr, tx);
3297 		else
3298 			dbuf_sync_leaf(dr, tx);
3299 	}
3300 }
3301 
3302 /* ARGSUSED */
3303 static void
3304 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3305 {
3306 	dmu_buf_impl_t *db = vdb;
3307 	dnode_t *dn;
3308 	blkptr_t *bp = zio->io_bp;
3309 	blkptr_t *bp_orig = &zio->io_bp_orig;
3310 	spa_t *spa = zio->io_spa;
3311 	int64_t delta;
3312 	uint64_t fill = 0;
3313 	int i;
3314 
3315 	ASSERT3P(db->db_blkptr, !=, NULL);
3316 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3317 
3318 	DB_DNODE_ENTER(db);
3319 	dn = DB_DNODE(db);
3320 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3321 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3322 	zio->io_prev_space_delta = delta;
3323 
3324 	if (bp->blk_birth != 0) {
3325 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3326 		    BP_GET_TYPE(bp) == dn->dn_type) ||
3327 		    (db->db_blkid == DMU_SPILL_BLKID &&
3328 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3329 		    BP_IS_EMBEDDED(bp));
3330 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3331 	}
3332 
3333 	mutex_enter(&db->db_mtx);
3334 
3335 #ifdef ZFS_DEBUG
3336 	if (db->db_blkid == DMU_SPILL_BLKID) {
3337 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3338 		ASSERT(!(BP_IS_HOLE(bp)) &&
3339 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3340 	}
3341 #endif
3342 
3343 	if (db->db_level == 0) {
3344 		mutex_enter(&dn->dn_mtx);
3345 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3346 		    db->db_blkid != DMU_SPILL_BLKID)
3347 			dn->dn_phys->dn_maxblkid = db->db_blkid;
3348 		mutex_exit(&dn->dn_mtx);
3349 
3350 		if (dn->dn_type == DMU_OT_DNODE) {
3351 			dnode_phys_t *dnp = db->db.db_data;
3352 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
3353 			    i--, dnp++) {
3354 				if (dnp->dn_type != DMU_OT_NONE)
3355 					fill++;
3356 			}
3357 		} else {
3358 			if (BP_IS_HOLE(bp)) {
3359 				fill = 0;
3360 			} else {
3361 				fill = 1;
3362 			}
3363 		}
3364 	} else {
3365 		blkptr_t *ibp = db->db.db_data;
3366 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3367 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3368 			if (BP_IS_HOLE(ibp))
3369 				continue;
3370 			fill += BP_GET_FILL(ibp);
3371 		}
3372 	}
3373 	DB_DNODE_EXIT(db);
3374 
3375 	if (!BP_IS_EMBEDDED(bp))
3376 		bp->blk_fill = fill;
3377 
3378 	mutex_exit(&db->db_mtx);
3379 
3380 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3381 	*db->db_blkptr = *bp;
3382 	rw_exit(&dn->dn_struct_rwlock);
3383 }
3384 
3385 /* ARGSUSED */
3386 /*
3387  * This function gets called just prior to running through the compression
3388  * stage of the zio pipeline. If we're an indirect block comprised of only
3389  * holes, then we want this indirect to be compressed away to a hole. In
3390  * order to do that we must zero out any information about the holes that
3391  * this indirect points to prior to before we try to compress it.
3392  */
3393 static void
3394 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3395 {
3396 	dmu_buf_impl_t *db = vdb;
3397 	dnode_t *dn;
3398 	blkptr_t *bp;
3399 	unsigned int epbs, i;
3400 
3401 	ASSERT3U(db->db_level, >, 0);
3402 	DB_DNODE_ENTER(db);
3403 	dn = DB_DNODE(db);
3404 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3405 	ASSERT3U(epbs, <, 31);
3406 
3407 	/* Determine if all our children are holes */
3408 	for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3409 		if (!BP_IS_HOLE(bp))
3410 			break;
3411 	}
3412 
3413 	/*
3414 	 * If all the children are holes, then zero them all out so that
3415 	 * we may get compressed away.
3416 	 */
3417 	if (i == 1 << epbs) {
3418 		/*
3419 		 * We only found holes. Grab the rwlock to prevent
3420 		 * anybody from reading the blocks we're about to
3421 		 * zero out.
3422 		 */
3423 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3424 		bzero(db->db.db_data, db->db.db_size);
3425 		rw_exit(&dn->dn_struct_rwlock);
3426 	}
3427 	DB_DNODE_EXIT(db);
3428 }
3429 
3430 /*
3431  * The SPA will call this callback several times for each zio - once
3432  * for every physical child i/o (zio->io_phys_children times).  This
3433  * allows the DMU to monitor the progress of each logical i/o.  For example,
3434  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3435  * block.  There may be a long delay before all copies/fragments are completed,
3436  * so this callback allows us to retire dirty space gradually, as the physical
3437  * i/os complete.
3438  */
3439 /* ARGSUSED */
3440 static void
3441 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3442 {
3443 	dmu_buf_impl_t *db = arg;
3444 	objset_t *os = db->db_objset;
3445 	dsl_pool_t *dp = dmu_objset_pool(os);
3446 	dbuf_dirty_record_t *dr;
3447 	int delta = 0;
3448 
3449 	dr = db->db_data_pending;
3450 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3451 
3452 	/*
3453 	 * The callback will be called io_phys_children times.  Retire one
3454 	 * portion of our dirty space each time we are called.  Any rounding
3455 	 * error will be cleaned up by dsl_pool_sync()'s call to
3456 	 * dsl_pool_undirty_space().
3457 	 */
3458 	delta = dr->dr_accounted / zio->io_phys_children;
3459 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
3460 }
3461 
3462 /* ARGSUSED */
3463 static void
3464 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3465 {
3466 	dmu_buf_impl_t *db = vdb;
3467 	blkptr_t *bp_orig = &zio->io_bp_orig;
3468 	blkptr_t *bp = db->db_blkptr;
3469 	objset_t *os = db->db_objset;
3470 	dmu_tx_t *tx = os->os_synctx;
3471 	dbuf_dirty_record_t **drp, *dr;
3472 
3473 	ASSERT0(zio->io_error);
3474 	ASSERT(db->db_blkptr == bp);
3475 
3476 	/*
3477 	 * For nopwrites and rewrites we ensure that the bp matches our
3478 	 * original and bypass all the accounting.
3479 	 */
3480 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3481 		ASSERT(BP_EQUAL(bp, bp_orig));
3482 	} else {
3483 		dsl_dataset_t *ds = os->os_dsl_dataset;
3484 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3485 		dsl_dataset_block_born(ds, bp, tx);
3486 	}
3487 
3488 	mutex_enter(&db->db_mtx);
3489 
3490 	DBUF_VERIFY(db);
3491 
3492 	drp = &db->db_last_dirty;
3493 	while ((dr = *drp) != db->db_data_pending)
3494 		drp = &dr->dr_next;
3495 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3496 	ASSERT(dr->dr_dbuf == db);
3497 	ASSERT(dr->dr_next == NULL);
3498 	*drp = dr->dr_next;
3499 
3500 #ifdef ZFS_DEBUG
3501 	if (db->db_blkid == DMU_SPILL_BLKID) {
3502 		dnode_t *dn;
3503 
3504 		DB_DNODE_ENTER(db);
3505 		dn = DB_DNODE(db);
3506 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3507 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3508 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3509 		DB_DNODE_EXIT(db);
3510 	}
3511 #endif
3512 
3513 	if (db->db_level == 0) {
3514 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3515 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3516 		if (db->db_state != DB_NOFILL) {
3517 			if (dr->dt.dl.dr_data != db->db_buf)
3518 				arc_buf_destroy(dr->dt.dl.dr_data, db);
3519 		}
3520 	} else {
3521 		dnode_t *dn;
3522 
3523 		DB_DNODE_ENTER(db);
3524 		dn = DB_DNODE(db);
3525 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3526 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3527 		if (!BP_IS_HOLE(db->db_blkptr)) {
3528 			int epbs =
3529 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3530 			ASSERT3U(db->db_blkid, <=,
3531 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3532 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3533 			    db->db.db_size);
3534 		}
3535 		DB_DNODE_EXIT(db);
3536 		mutex_destroy(&dr->dt.di.dr_mtx);
3537 		list_destroy(&dr->dt.di.dr_children);
3538 	}
3539 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
3540 
3541 	cv_broadcast(&db->db_changed);
3542 	ASSERT(db->db_dirtycnt > 0);
3543 	db->db_dirtycnt -= 1;
3544 	db->db_data_pending = NULL;
3545 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3546 }
3547 
3548 static void
3549 dbuf_write_nofill_ready(zio_t *zio)
3550 {
3551 	dbuf_write_ready(zio, NULL, zio->io_private);
3552 }
3553 
3554 static void
3555 dbuf_write_nofill_done(zio_t *zio)
3556 {
3557 	dbuf_write_done(zio, NULL, zio->io_private);
3558 }
3559 
3560 static void
3561 dbuf_write_override_ready(zio_t *zio)
3562 {
3563 	dbuf_dirty_record_t *dr = zio->io_private;
3564 	dmu_buf_impl_t *db = dr->dr_dbuf;
3565 
3566 	dbuf_write_ready(zio, NULL, db);
3567 }
3568 
3569 static void
3570 dbuf_write_override_done(zio_t *zio)
3571 {
3572 	dbuf_dirty_record_t *dr = zio->io_private;
3573 	dmu_buf_impl_t *db = dr->dr_dbuf;
3574 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3575 
3576 	mutex_enter(&db->db_mtx);
3577 	if (!BP_EQUAL(zio->io_bp, obp)) {
3578 		if (!BP_IS_HOLE(obp))
3579 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3580 		arc_release(dr->dt.dl.dr_data, db);
3581 	}
3582 	mutex_exit(&db->db_mtx);
3583 	dbuf_write_done(zio, NULL, db);
3584 
3585 	if (zio->io_abd != NULL)
3586 		abd_put(zio->io_abd);
3587 }
3588 
3589 typedef struct dbuf_remap_impl_callback_arg {
3590 	objset_t	*drica_os;
3591 	uint64_t	drica_blk_birth;
3592 	dmu_tx_t	*drica_tx;
3593 } dbuf_remap_impl_callback_arg_t;
3594 
3595 static void
3596 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
3597     void *arg)
3598 {
3599 	dbuf_remap_impl_callback_arg_t *drica = arg;
3600 	objset_t *os = drica->drica_os;
3601 	spa_t *spa = dmu_objset_spa(os);
3602 	dmu_tx_t *tx = drica->drica_tx;
3603 
3604 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
3605 
3606 	if (os == spa_meta_objset(spa)) {
3607 		spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
3608 	} else {
3609 		dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
3610 		    size, drica->drica_blk_birth, tx);
3611 	}
3612 }
3613 
3614 static void
3615 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
3616 {
3617 	blkptr_t bp_copy = *bp;
3618 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
3619 	dbuf_remap_impl_callback_arg_t drica;
3620 
3621 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
3622 
3623 	drica.drica_os = dn->dn_objset;
3624 	drica.drica_blk_birth = bp->blk_birth;
3625 	drica.drica_tx = tx;
3626 	if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
3627 	    &drica)) {
3628 		/*
3629 		 * The struct_rwlock prevents dbuf_read_impl() from
3630 		 * dereferencing the BP while we are changing it.  To
3631 		 * avoid lock contention, only grab it when we are actually
3632 		 * changing the BP.
3633 		 */
3634 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3635 		*bp = bp_copy;
3636 		rw_exit(&dn->dn_struct_rwlock);
3637 	}
3638 }
3639 
3640 /*
3641  * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
3642  * to remap a copy of every bp in the dbuf.
3643  */
3644 boolean_t
3645 dbuf_can_remap(const dmu_buf_impl_t *db)
3646 {
3647 	spa_t *spa = dmu_objset_spa(db->db_objset);
3648 	blkptr_t *bp = db->db.db_data;
3649 	boolean_t ret = B_FALSE;
3650 
3651 	ASSERT3U(db->db_level, >, 0);
3652 	ASSERT3S(db->db_state, ==, DB_CACHED);
3653 
3654 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
3655 
3656 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3657 	for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
3658 		blkptr_t bp_copy = bp[i];
3659 		if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
3660 			ret = B_TRUE;
3661 			break;
3662 		}
3663 	}
3664 	spa_config_exit(spa, SCL_VDEV, FTAG);
3665 
3666 	return (ret);
3667 }
3668 
3669 boolean_t
3670 dnode_needs_remap(const dnode_t *dn)
3671 {
3672 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
3673 	boolean_t ret = B_FALSE;
3674 
3675 	if (dn->dn_phys->dn_nlevels == 0) {
3676 		return (B_FALSE);
3677 	}
3678 
3679 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
3680 
3681 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3682 	for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
3683 		blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
3684 		if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
3685 			ret = B_TRUE;
3686 			break;
3687 		}
3688 	}
3689 	spa_config_exit(spa, SCL_VDEV, FTAG);
3690 
3691 	return (ret);
3692 }
3693 
3694 /*
3695  * Remap any existing BP's to concrete vdevs, if possible.
3696  */
3697 static void
3698 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
3699 {
3700 	spa_t *spa = dmu_objset_spa(db->db_objset);
3701 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
3702 
3703 	if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
3704 		return;
3705 
3706 	if (db->db_level > 0) {
3707 		blkptr_t *bp = db->db.db_data;
3708 		for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
3709 			dbuf_remap_impl(dn, &bp[i], tx);
3710 		}
3711 	} else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
3712 		dnode_phys_t *dnp = db->db.db_data;
3713 		ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
3714 		    DMU_OT_DNODE);
3715 		for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; i++) {
3716 			for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
3717 				dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
3718 			}
3719 		}
3720 	}
3721 }
3722 
3723 
3724 /* Issue I/O to commit a dirty buffer to disk. */
3725 static void
3726 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3727 {
3728 	dmu_buf_impl_t *db = dr->dr_dbuf;
3729 	dnode_t *dn;
3730 	objset_t *os;
3731 	dmu_buf_impl_t *parent = db->db_parent;
3732 	uint64_t txg = tx->tx_txg;
3733 	zbookmark_phys_t zb;
3734 	zio_prop_t zp;
3735 	zio_t *zio;
3736 	int wp_flag = 0;
3737 
3738 	ASSERT(dmu_tx_is_syncing(tx));
3739 
3740 	DB_DNODE_ENTER(db);
3741 	dn = DB_DNODE(db);
3742 	os = dn->dn_objset;
3743 
3744 	if (db->db_state != DB_NOFILL) {
3745 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3746 			/*
3747 			 * Private object buffers are released here rather
3748 			 * than in dbuf_dirty() since they are only modified
3749 			 * in the syncing context and we don't want the
3750 			 * overhead of making multiple copies of the data.
3751 			 */
3752 			if (BP_IS_HOLE(db->db_blkptr)) {
3753 				arc_buf_thaw(data);
3754 			} else {
3755 				dbuf_release_bp(db);
3756 			}
3757 			dbuf_remap(dn, db, tx);
3758 		}
3759 	}
3760 
3761 	if (parent != dn->dn_dbuf) {
3762 		/* Our parent is an indirect block. */
3763 		/* We have a dirty parent that has been scheduled for write. */
3764 		ASSERT(parent && parent->db_data_pending);
3765 		/* Our parent's buffer is one level closer to the dnode. */
3766 		ASSERT(db->db_level == parent->db_level-1);
3767 		/*
3768 		 * We're about to modify our parent's db_data by modifying
3769 		 * our block pointer, so the parent must be released.
3770 		 */
3771 		ASSERT(arc_released(parent->db_buf));
3772 		zio = parent->db_data_pending->dr_zio;
3773 	} else {
3774 		/* Our parent is the dnode itself. */
3775 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3776 		    db->db_blkid != DMU_SPILL_BLKID) ||
3777 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3778 		if (db->db_blkid != DMU_SPILL_BLKID)
3779 			ASSERT3P(db->db_blkptr, ==,
3780 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
3781 		zio = dn->dn_zio;
3782 	}
3783 
3784 	ASSERT(db->db_level == 0 || data == db->db_buf);
3785 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3786 	ASSERT(zio);
3787 
3788 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3789 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3790 	    db->db.db_object, db->db_level, db->db_blkid);
3791 
3792 	if (db->db_blkid == DMU_SPILL_BLKID)
3793 		wp_flag = WP_SPILL;
3794 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3795 
3796 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3797 	DB_DNODE_EXIT(db);
3798 
3799 	/*
3800 	 * We copy the blkptr now (rather than when we instantiate the dirty
3801 	 * record), because its value can change between open context and
3802 	 * syncing context. We do not need to hold dn_struct_rwlock to read
3803 	 * db_blkptr because we are in syncing context.
3804 	 */
3805 	dr->dr_bp_copy = *db->db_blkptr;
3806 
3807 	if (db->db_level == 0 &&
3808 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3809 		/*
3810 		 * The BP for this block has been provided by open context
3811 		 * (by dmu_sync() or dmu_buf_write_embedded()).
3812 		 */
3813 		abd_t *contents = (data != NULL) ?
3814 		    abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
3815 
3816 		dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy,
3817 		    contents, db->db.db_size, db->db.db_size, &zp,
3818 		    dbuf_write_override_ready, NULL, NULL,
3819 		    dbuf_write_override_done,
3820 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3821 		mutex_enter(&db->db_mtx);
3822 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3823 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3824 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3825 		mutex_exit(&db->db_mtx);
3826 	} else if (db->db_state == DB_NOFILL) {
3827 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3828 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3829 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3830 		    &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
3831 		    dbuf_write_nofill_ready, NULL, NULL,
3832 		    dbuf_write_nofill_done, db,
3833 		    ZIO_PRIORITY_ASYNC_WRITE,
3834 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3835 	} else {
3836 		ASSERT(arc_released(data));
3837 
3838 		/*
3839 		 * For indirect blocks, we want to setup the children
3840 		 * ready callback so that we can properly handle an indirect
3841 		 * block that only contains holes.
3842 		 */
3843 		arc_done_func_t *children_ready_cb = NULL;
3844 		if (db->db_level != 0)
3845 			children_ready_cb = dbuf_write_children_ready;
3846 
3847 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
3848 		    &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3849 		    &zp, dbuf_write_ready, children_ready_cb,
3850 		    dbuf_write_physdone, dbuf_write_done, db,
3851 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3852 	}
3853 }
3854