xref: /illumos-gate/usr/src/uts/common/fs/zfs/dbuf.c (revision 8df0bcf0df7622a075cc6e52f659d2fcfdd08cdc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 
49 /*
50  * Number of times that zfs_free_range() took the slow path while doing
51  * a zfs receive.  A nonzero value indicates a potential performance problem.
52  */
53 uint64_t zfs_free_range_recv_miss;
54 
55 static void dbuf_destroy(dmu_buf_impl_t *db);
56 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
57 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
58 
59 #ifndef __lint
60 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
61     dmu_buf_evict_func_t *evict_func, dmu_buf_t **clear_on_evict_dbufp);
62 #endif /* ! __lint */
63 
64 /*
65  * Global data structures and functions for the dbuf cache.
66  */
67 static kmem_cache_t *dbuf_cache;
68 static taskq_t *dbu_evict_taskq;
69 
70 /* ARGSUSED */
71 static int
72 dbuf_cons(void *vdb, void *unused, int kmflag)
73 {
74 	dmu_buf_impl_t *db = vdb;
75 	bzero(db, sizeof (dmu_buf_impl_t));
76 
77 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
78 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
79 	refcount_create(&db->db_holds);
80 
81 	return (0);
82 }
83 
84 /* ARGSUSED */
85 static void
86 dbuf_dest(void *vdb, void *unused)
87 {
88 	dmu_buf_impl_t *db = vdb;
89 	mutex_destroy(&db->db_mtx);
90 	cv_destroy(&db->db_changed);
91 	refcount_destroy(&db->db_holds);
92 }
93 
94 /*
95  * dbuf hash table routines
96  */
97 static dbuf_hash_table_t dbuf_hash_table;
98 
99 static uint64_t dbuf_hash_count;
100 
101 static uint64_t
102 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
103 {
104 	uintptr_t osv = (uintptr_t)os;
105 	uint64_t crc = -1ULL;
106 
107 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
108 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
109 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
110 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
111 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
112 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
113 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
114 
115 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
116 
117 	return (crc);
118 }
119 
120 #define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
121 
122 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
123 	((dbuf)->db.db_object == (obj) &&		\
124 	(dbuf)->db_objset == (os) &&			\
125 	(dbuf)->db_level == (level) &&			\
126 	(dbuf)->db_blkid == (blkid))
127 
128 dmu_buf_impl_t *
129 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
130 {
131 	dbuf_hash_table_t *h = &dbuf_hash_table;
132 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
133 	uint64_t idx = hv & h->hash_table_mask;
134 	dmu_buf_impl_t *db;
135 
136 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
137 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
138 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
139 			mutex_enter(&db->db_mtx);
140 			if (db->db_state != DB_EVICTING) {
141 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
142 				return (db);
143 			}
144 			mutex_exit(&db->db_mtx);
145 		}
146 	}
147 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
148 	return (NULL);
149 }
150 
151 static dmu_buf_impl_t *
152 dbuf_find_bonus(objset_t *os, uint64_t object)
153 {
154 	dnode_t *dn;
155 	dmu_buf_impl_t *db = NULL;
156 
157 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
158 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
159 		if (dn->dn_bonus != NULL) {
160 			db = dn->dn_bonus;
161 			mutex_enter(&db->db_mtx);
162 		}
163 		rw_exit(&dn->dn_struct_rwlock);
164 		dnode_rele(dn, FTAG);
165 	}
166 	return (db);
167 }
168 
169 /*
170  * Insert an entry into the hash table.  If there is already an element
171  * equal to elem in the hash table, then the already existing element
172  * will be returned and the new element will not be inserted.
173  * Otherwise returns NULL.
174  */
175 static dmu_buf_impl_t *
176 dbuf_hash_insert(dmu_buf_impl_t *db)
177 {
178 	dbuf_hash_table_t *h = &dbuf_hash_table;
179 	objset_t *os = db->db_objset;
180 	uint64_t obj = db->db.db_object;
181 	int level = db->db_level;
182 	uint64_t blkid = db->db_blkid;
183 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
184 	uint64_t idx = hv & h->hash_table_mask;
185 	dmu_buf_impl_t *dbf;
186 
187 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
188 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
189 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
190 			mutex_enter(&dbf->db_mtx);
191 			if (dbf->db_state != DB_EVICTING) {
192 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
193 				return (dbf);
194 			}
195 			mutex_exit(&dbf->db_mtx);
196 		}
197 	}
198 
199 	mutex_enter(&db->db_mtx);
200 	db->db_hash_next = h->hash_table[idx];
201 	h->hash_table[idx] = db;
202 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
203 	atomic_inc_64(&dbuf_hash_count);
204 
205 	return (NULL);
206 }
207 
208 /*
209  * Remove an entry from the hash table.  It must be in the EVICTING state.
210  */
211 static void
212 dbuf_hash_remove(dmu_buf_impl_t *db)
213 {
214 	dbuf_hash_table_t *h = &dbuf_hash_table;
215 	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
216 	    db->db_level, db->db_blkid);
217 	uint64_t idx = hv & h->hash_table_mask;
218 	dmu_buf_impl_t *dbf, **dbp;
219 
220 	/*
221 	 * We musn't hold db_mtx to maintain lock ordering:
222 	 * DBUF_HASH_MUTEX > db_mtx.
223 	 */
224 	ASSERT(refcount_is_zero(&db->db_holds));
225 	ASSERT(db->db_state == DB_EVICTING);
226 	ASSERT(!MUTEX_HELD(&db->db_mtx));
227 
228 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
229 	dbp = &h->hash_table[idx];
230 	while ((dbf = *dbp) != db) {
231 		dbp = &dbf->db_hash_next;
232 		ASSERT(dbf != NULL);
233 	}
234 	*dbp = db->db_hash_next;
235 	db->db_hash_next = NULL;
236 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
237 	atomic_dec_64(&dbuf_hash_count);
238 }
239 
240 static arc_evict_func_t dbuf_do_evict;
241 
242 typedef enum {
243 	DBVU_EVICTING,
244 	DBVU_NOT_EVICTING
245 } dbvu_verify_type_t;
246 
247 static void
248 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
249 {
250 #ifdef ZFS_DEBUG
251 	int64_t holds;
252 
253 	if (db->db_user == NULL)
254 		return;
255 
256 	/* Only data blocks support the attachment of user data. */
257 	ASSERT(db->db_level == 0);
258 
259 	/* Clients must resolve a dbuf before attaching user data. */
260 	ASSERT(db->db.db_data != NULL);
261 	ASSERT3U(db->db_state, ==, DB_CACHED);
262 
263 	holds = refcount_count(&db->db_holds);
264 	if (verify_type == DBVU_EVICTING) {
265 		/*
266 		 * Immediate eviction occurs when holds == dirtycnt.
267 		 * For normal eviction buffers, holds is zero on
268 		 * eviction, except when dbuf_fix_old_data() calls
269 		 * dbuf_clear_data().  However, the hold count can grow
270 		 * during eviction even though db_mtx is held (see
271 		 * dmu_bonus_hold() for an example), so we can only
272 		 * test the generic invariant that holds >= dirtycnt.
273 		 */
274 		ASSERT3U(holds, >=, db->db_dirtycnt);
275 	} else {
276 		if (db->db_user_immediate_evict == TRUE)
277 			ASSERT3U(holds, >=, db->db_dirtycnt);
278 		else
279 			ASSERT3U(holds, >, 0);
280 	}
281 #endif
282 }
283 
284 static void
285 dbuf_evict_user(dmu_buf_impl_t *db)
286 {
287 	dmu_buf_user_t *dbu = db->db_user;
288 
289 	ASSERT(MUTEX_HELD(&db->db_mtx));
290 
291 	if (dbu == NULL)
292 		return;
293 
294 	dbuf_verify_user(db, DBVU_EVICTING);
295 	db->db_user = NULL;
296 
297 #ifdef ZFS_DEBUG
298 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
299 		*dbu->dbu_clear_on_evict_dbufp = NULL;
300 #endif
301 
302 	/*
303 	 * Invoke the callback from a taskq to avoid lock order reversals
304 	 * and limit stack depth.
305 	 */
306 	taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func, dbu, 0,
307 	    &dbu->dbu_tqent);
308 }
309 
310 boolean_t
311 dbuf_is_metadata(dmu_buf_impl_t *db)
312 {
313 	if (db->db_level > 0) {
314 		return (B_TRUE);
315 	} else {
316 		boolean_t is_metadata;
317 
318 		DB_DNODE_ENTER(db);
319 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
320 		DB_DNODE_EXIT(db);
321 
322 		return (is_metadata);
323 	}
324 }
325 
326 void
327 dbuf_evict(dmu_buf_impl_t *db)
328 {
329 	ASSERT(MUTEX_HELD(&db->db_mtx));
330 	ASSERT(db->db_buf == NULL);
331 	ASSERT(db->db_data_pending == NULL);
332 
333 	dbuf_clear(db);
334 	dbuf_destroy(db);
335 }
336 
337 void
338 dbuf_init(void)
339 {
340 	uint64_t hsize = 1ULL << 16;
341 	dbuf_hash_table_t *h = &dbuf_hash_table;
342 	int i;
343 
344 	/*
345 	 * The hash table is big enough to fill all of physical memory
346 	 * with an average 4K block size.  The table will take up
347 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
348 	 */
349 	while (hsize * 4096 < physmem * PAGESIZE)
350 		hsize <<= 1;
351 
352 retry:
353 	h->hash_table_mask = hsize - 1;
354 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
355 	if (h->hash_table == NULL) {
356 		/* XXX - we should really return an error instead of assert */
357 		ASSERT(hsize > (1ULL << 10));
358 		hsize >>= 1;
359 		goto retry;
360 	}
361 
362 	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
363 	    sizeof (dmu_buf_impl_t),
364 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
365 
366 	for (i = 0; i < DBUF_MUTEXES; i++)
367 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
368 
369 	/*
370 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
371 	 * configuration is not required.
372 	 */
373 	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
374 }
375 
376 void
377 dbuf_fini(void)
378 {
379 	dbuf_hash_table_t *h = &dbuf_hash_table;
380 	int i;
381 
382 	for (i = 0; i < DBUF_MUTEXES; i++)
383 		mutex_destroy(&h->hash_mutexes[i]);
384 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
385 	kmem_cache_destroy(dbuf_cache);
386 	taskq_destroy(dbu_evict_taskq);
387 }
388 
389 /*
390  * Other stuff.
391  */
392 
393 #ifdef ZFS_DEBUG
394 static void
395 dbuf_verify(dmu_buf_impl_t *db)
396 {
397 	dnode_t *dn;
398 	dbuf_dirty_record_t *dr;
399 
400 	ASSERT(MUTEX_HELD(&db->db_mtx));
401 
402 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
403 		return;
404 
405 	ASSERT(db->db_objset != NULL);
406 	DB_DNODE_ENTER(db);
407 	dn = DB_DNODE(db);
408 	if (dn == NULL) {
409 		ASSERT(db->db_parent == NULL);
410 		ASSERT(db->db_blkptr == NULL);
411 	} else {
412 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
413 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
414 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
415 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
416 		    db->db_blkid == DMU_SPILL_BLKID ||
417 		    !avl_is_empty(&dn->dn_dbufs));
418 	}
419 	if (db->db_blkid == DMU_BONUS_BLKID) {
420 		ASSERT(dn != NULL);
421 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
422 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
423 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
424 		ASSERT(dn != NULL);
425 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
426 		ASSERT0(db->db.db_offset);
427 	} else {
428 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
429 	}
430 
431 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
432 		ASSERT(dr->dr_dbuf == db);
433 
434 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
435 		ASSERT(dr->dr_dbuf == db);
436 
437 	/*
438 	 * We can't assert that db_size matches dn_datablksz because it
439 	 * can be momentarily different when another thread is doing
440 	 * dnode_set_blksz().
441 	 */
442 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
443 		dr = db->db_data_pending;
444 		/*
445 		 * It should only be modified in syncing context, so
446 		 * make sure we only have one copy of the data.
447 		 */
448 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
449 	}
450 
451 	/* verify db->db_blkptr */
452 	if (db->db_blkptr) {
453 		if (db->db_parent == dn->dn_dbuf) {
454 			/* db is pointed to by the dnode */
455 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
456 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
457 				ASSERT(db->db_parent == NULL);
458 			else
459 				ASSERT(db->db_parent != NULL);
460 			if (db->db_blkid != DMU_SPILL_BLKID)
461 				ASSERT3P(db->db_blkptr, ==,
462 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
463 		} else {
464 			/* db is pointed to by an indirect block */
465 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
466 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
467 			ASSERT3U(db->db_parent->db.db_object, ==,
468 			    db->db.db_object);
469 			/*
470 			 * dnode_grow_indblksz() can make this fail if we don't
471 			 * have the struct_rwlock.  XXX indblksz no longer
472 			 * grows.  safe to do this now?
473 			 */
474 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
475 				ASSERT3P(db->db_blkptr, ==,
476 				    ((blkptr_t *)db->db_parent->db.db_data +
477 				    db->db_blkid % epb));
478 			}
479 		}
480 	}
481 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
482 	    (db->db_buf == NULL || db->db_buf->b_data) &&
483 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
484 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
485 		/*
486 		 * If the blkptr isn't set but they have nonzero data,
487 		 * it had better be dirty, otherwise we'll lose that
488 		 * data when we evict this buffer.
489 		 *
490 		 * There is an exception to this rule for indirect blocks; in
491 		 * this case, if the indirect block is a hole, we fill in a few
492 		 * fields on each of the child blocks (importantly, birth time)
493 		 * to prevent hole birth times from being lost when you
494 		 * partially fill in a hole.
495 		 */
496 		if (db->db_dirtycnt == 0) {
497 			if (db->db_level == 0) {
498 				uint64_t *buf = db->db.db_data;
499 				int i;
500 
501 				for (i = 0; i < db->db.db_size >> 3; i++) {
502 					ASSERT(buf[i] == 0);
503 				}
504 			} else {
505 				blkptr_t *bps = db->db.db_data;
506 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
507 				    db->db.db_size);
508 				/*
509 				 * We want to verify that all the blkptrs in the
510 				 * indirect block are holes, but we may have
511 				 * automatically set up a few fields for them.
512 				 * We iterate through each blkptr and verify
513 				 * they only have those fields set.
514 				 */
515 				for (int i = 0;
516 				    i < db->db.db_size / sizeof (blkptr_t);
517 				    i++) {
518 					blkptr_t *bp = &bps[i];
519 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
520 					    &bp->blk_cksum));
521 					ASSERT(
522 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
523 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
524 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
525 					ASSERT0(bp->blk_fill);
526 					ASSERT0(bp->blk_pad[0]);
527 					ASSERT0(bp->blk_pad[1]);
528 					ASSERT(!BP_IS_EMBEDDED(bp));
529 					ASSERT(BP_IS_HOLE(bp));
530 					ASSERT0(bp->blk_phys_birth);
531 				}
532 			}
533 		}
534 	}
535 	DB_DNODE_EXIT(db);
536 }
537 #endif
538 
539 static void
540 dbuf_clear_data(dmu_buf_impl_t *db)
541 {
542 	ASSERT(MUTEX_HELD(&db->db_mtx));
543 	dbuf_evict_user(db);
544 	db->db_buf = NULL;
545 	db->db.db_data = NULL;
546 	if (db->db_state != DB_NOFILL)
547 		db->db_state = DB_UNCACHED;
548 }
549 
550 static void
551 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
552 {
553 	ASSERT(MUTEX_HELD(&db->db_mtx));
554 	ASSERT(buf != NULL);
555 
556 	db->db_buf = buf;
557 	ASSERT(buf->b_data != NULL);
558 	db->db.db_data = buf->b_data;
559 	if (!arc_released(buf))
560 		arc_set_callback(buf, dbuf_do_evict, db);
561 }
562 
563 /*
564  * Loan out an arc_buf for read.  Return the loaned arc_buf.
565  */
566 arc_buf_t *
567 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
568 {
569 	arc_buf_t *abuf;
570 
571 	mutex_enter(&db->db_mtx);
572 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
573 		int blksz = db->db.db_size;
574 		spa_t *spa = db->db_objset->os_spa;
575 
576 		mutex_exit(&db->db_mtx);
577 		abuf = arc_loan_buf(spa, blksz);
578 		bcopy(db->db.db_data, abuf->b_data, blksz);
579 	} else {
580 		abuf = db->db_buf;
581 		arc_loan_inuse_buf(abuf, db);
582 		dbuf_clear_data(db);
583 		mutex_exit(&db->db_mtx);
584 	}
585 	return (abuf);
586 }
587 
588 /*
589  * Calculate which level n block references the data at the level 0 offset
590  * provided.
591  */
592 uint64_t
593 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
594 {
595 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
596 		/*
597 		 * The level n blkid is equal to the level 0 blkid divided by
598 		 * the number of level 0s in a level n block.
599 		 *
600 		 * The level 0 blkid is offset >> datablkshift =
601 		 * offset / 2^datablkshift.
602 		 *
603 		 * The number of level 0s in a level n is the number of block
604 		 * pointers in an indirect block, raised to the power of level.
605 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
606 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
607 		 *
608 		 * Thus, the level n blkid is: offset /
609 		 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
610 		 * = offset / 2^(datablkshift + level *
611 		 *   (indblkshift - SPA_BLKPTRSHIFT))
612 		 * = offset >> (datablkshift + level *
613 		 *   (indblkshift - SPA_BLKPTRSHIFT))
614 		 */
615 		return (offset >> (dn->dn_datablkshift + level *
616 		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
617 	} else {
618 		ASSERT3U(offset, <, dn->dn_datablksz);
619 		return (0);
620 	}
621 }
622 
623 static void
624 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
625 {
626 	dmu_buf_impl_t *db = vdb;
627 
628 	mutex_enter(&db->db_mtx);
629 	ASSERT3U(db->db_state, ==, DB_READ);
630 	/*
631 	 * All reads are synchronous, so we must have a hold on the dbuf
632 	 */
633 	ASSERT(refcount_count(&db->db_holds) > 0);
634 	ASSERT(db->db_buf == NULL);
635 	ASSERT(db->db.db_data == NULL);
636 	if (db->db_level == 0 && db->db_freed_in_flight) {
637 		/* we were freed in flight; disregard any error */
638 		arc_release(buf, db);
639 		bzero(buf->b_data, db->db.db_size);
640 		arc_buf_freeze(buf);
641 		db->db_freed_in_flight = FALSE;
642 		dbuf_set_data(db, buf);
643 		db->db_state = DB_CACHED;
644 	} else if (zio == NULL || zio->io_error == 0) {
645 		dbuf_set_data(db, buf);
646 		db->db_state = DB_CACHED;
647 	} else {
648 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
649 		ASSERT3P(db->db_buf, ==, NULL);
650 		VERIFY(arc_buf_remove_ref(buf, db));
651 		db->db_state = DB_UNCACHED;
652 	}
653 	cv_broadcast(&db->db_changed);
654 	dbuf_rele_and_unlock(db, NULL);
655 }
656 
657 static void
658 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
659 {
660 	dnode_t *dn;
661 	zbookmark_phys_t zb;
662 	arc_flags_t aflags = ARC_FLAG_NOWAIT;
663 
664 	DB_DNODE_ENTER(db);
665 	dn = DB_DNODE(db);
666 	ASSERT(!refcount_is_zero(&db->db_holds));
667 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
668 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
669 	ASSERT(MUTEX_HELD(&db->db_mtx));
670 	ASSERT(db->db_state == DB_UNCACHED);
671 	ASSERT(db->db_buf == NULL);
672 
673 	if (db->db_blkid == DMU_BONUS_BLKID) {
674 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
675 
676 		ASSERT3U(bonuslen, <=, db->db.db_size);
677 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
678 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
679 		if (bonuslen < DN_MAX_BONUSLEN)
680 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
681 		if (bonuslen)
682 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
683 		DB_DNODE_EXIT(db);
684 		db->db_state = DB_CACHED;
685 		mutex_exit(&db->db_mtx);
686 		return;
687 	}
688 
689 	/*
690 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
691 	 * processes the delete record and clears the bp while we are waiting
692 	 * for the dn_mtx (resulting in a "no" from block_freed).
693 	 */
694 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
695 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
696 	    BP_IS_HOLE(db->db_blkptr)))) {
697 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
698 
699 		dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
700 		    db->db.db_size, db, type));
701 		bzero(db->db.db_data, db->db.db_size);
702 
703 		if (db->db_blkptr != NULL && db->db_level > 0 &&
704 		    BP_IS_HOLE(db->db_blkptr) &&
705 		    db->db_blkptr->blk_birth != 0) {
706 			blkptr_t *bps = db->db.db_data;
707 			for (int i = 0; i < ((1 <<
708 			    DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
709 			    i++) {
710 				blkptr_t *bp = &bps[i];
711 				ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
712 				    1 << dn->dn_indblkshift);
713 				BP_SET_LSIZE(bp,
714 				    BP_GET_LEVEL(db->db_blkptr) == 1 ?
715 				    dn->dn_datablksz :
716 				    BP_GET_LSIZE(db->db_blkptr));
717 				BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
718 				BP_SET_LEVEL(bp,
719 				    BP_GET_LEVEL(db->db_blkptr) - 1);
720 				BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
721 			}
722 		}
723 		DB_DNODE_EXIT(db);
724 		db->db_state = DB_CACHED;
725 		mutex_exit(&db->db_mtx);
726 		return;
727 	}
728 
729 	DB_DNODE_EXIT(db);
730 
731 	db->db_state = DB_READ;
732 	mutex_exit(&db->db_mtx);
733 
734 	if (DBUF_IS_L2CACHEABLE(db))
735 		aflags |= ARC_FLAG_L2CACHE;
736 	if (DBUF_IS_L2COMPRESSIBLE(db))
737 		aflags |= ARC_FLAG_L2COMPRESS;
738 
739 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
740 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
741 	    db->db.db_object, db->db_level, db->db_blkid);
742 
743 	dbuf_add_ref(db, NULL);
744 
745 	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
746 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
747 	    (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
748 	    &aflags, &zb);
749 }
750 
751 int
752 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
753 {
754 	int err = 0;
755 	boolean_t havepzio = (zio != NULL);
756 	boolean_t prefetch;
757 	dnode_t *dn;
758 
759 	/*
760 	 * We don't have to hold the mutex to check db_state because it
761 	 * can't be freed while we have a hold on the buffer.
762 	 */
763 	ASSERT(!refcount_is_zero(&db->db_holds));
764 
765 	if (db->db_state == DB_NOFILL)
766 		return (SET_ERROR(EIO));
767 
768 	DB_DNODE_ENTER(db);
769 	dn = DB_DNODE(db);
770 	if ((flags & DB_RF_HAVESTRUCT) == 0)
771 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
772 
773 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
774 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
775 	    DBUF_IS_CACHEABLE(db);
776 
777 	mutex_enter(&db->db_mtx);
778 	if (db->db_state == DB_CACHED) {
779 		mutex_exit(&db->db_mtx);
780 		if (prefetch)
781 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
782 		if ((flags & DB_RF_HAVESTRUCT) == 0)
783 			rw_exit(&dn->dn_struct_rwlock);
784 		DB_DNODE_EXIT(db);
785 	} else if (db->db_state == DB_UNCACHED) {
786 		spa_t *spa = dn->dn_objset->os_spa;
787 
788 		if (zio == NULL)
789 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
790 		dbuf_read_impl(db, zio, flags);
791 
792 		/* dbuf_read_impl has dropped db_mtx for us */
793 
794 		if (prefetch)
795 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
796 
797 		if ((flags & DB_RF_HAVESTRUCT) == 0)
798 			rw_exit(&dn->dn_struct_rwlock);
799 		DB_DNODE_EXIT(db);
800 
801 		if (!havepzio)
802 			err = zio_wait(zio);
803 	} else {
804 		/*
805 		 * Another reader came in while the dbuf was in flight
806 		 * between UNCACHED and CACHED.  Either a writer will finish
807 		 * writing the buffer (sending the dbuf to CACHED) or the
808 		 * first reader's request will reach the read_done callback
809 		 * and send the dbuf to CACHED.  Otherwise, a failure
810 		 * occurred and the dbuf went to UNCACHED.
811 		 */
812 		mutex_exit(&db->db_mtx);
813 		if (prefetch)
814 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
815 		if ((flags & DB_RF_HAVESTRUCT) == 0)
816 			rw_exit(&dn->dn_struct_rwlock);
817 		DB_DNODE_EXIT(db);
818 
819 		/* Skip the wait per the caller's request. */
820 		mutex_enter(&db->db_mtx);
821 		if ((flags & DB_RF_NEVERWAIT) == 0) {
822 			while (db->db_state == DB_READ ||
823 			    db->db_state == DB_FILL) {
824 				ASSERT(db->db_state == DB_READ ||
825 				    (flags & DB_RF_HAVESTRUCT) == 0);
826 				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
827 				    db, zio_t *, zio);
828 				cv_wait(&db->db_changed, &db->db_mtx);
829 			}
830 			if (db->db_state == DB_UNCACHED)
831 				err = SET_ERROR(EIO);
832 		}
833 		mutex_exit(&db->db_mtx);
834 	}
835 
836 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
837 	return (err);
838 }
839 
840 static void
841 dbuf_noread(dmu_buf_impl_t *db)
842 {
843 	ASSERT(!refcount_is_zero(&db->db_holds));
844 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
845 	mutex_enter(&db->db_mtx);
846 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
847 		cv_wait(&db->db_changed, &db->db_mtx);
848 	if (db->db_state == DB_UNCACHED) {
849 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
850 		spa_t *spa = db->db_objset->os_spa;
851 
852 		ASSERT(db->db_buf == NULL);
853 		ASSERT(db->db.db_data == NULL);
854 		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
855 		db->db_state = DB_FILL;
856 	} else if (db->db_state == DB_NOFILL) {
857 		dbuf_clear_data(db);
858 	} else {
859 		ASSERT3U(db->db_state, ==, DB_CACHED);
860 	}
861 	mutex_exit(&db->db_mtx);
862 }
863 
864 /*
865  * This is our just-in-time copy function.  It makes a copy of
866  * buffers, that have been modified in a previous transaction
867  * group, before we modify them in the current active group.
868  *
869  * This function is used in two places: when we are dirtying a
870  * buffer for the first time in a txg, and when we are freeing
871  * a range in a dnode that includes this buffer.
872  *
873  * Note that when we are called from dbuf_free_range() we do
874  * not put a hold on the buffer, we just traverse the active
875  * dbuf list for the dnode.
876  */
877 static void
878 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
879 {
880 	dbuf_dirty_record_t *dr = db->db_last_dirty;
881 
882 	ASSERT(MUTEX_HELD(&db->db_mtx));
883 	ASSERT(db->db.db_data != NULL);
884 	ASSERT(db->db_level == 0);
885 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
886 
887 	if (dr == NULL ||
888 	    (dr->dt.dl.dr_data !=
889 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
890 		return;
891 
892 	/*
893 	 * If the last dirty record for this dbuf has not yet synced
894 	 * and its referencing the dbuf data, either:
895 	 *	reset the reference to point to a new copy,
896 	 * or (if there a no active holders)
897 	 *	just null out the current db_data pointer.
898 	 */
899 	ASSERT(dr->dr_txg >= txg - 2);
900 	if (db->db_blkid == DMU_BONUS_BLKID) {
901 		/* Note that the data bufs here are zio_bufs */
902 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
903 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
904 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
905 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
906 		int size = db->db.db_size;
907 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
908 		spa_t *spa = db->db_objset->os_spa;
909 
910 		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
911 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
912 	} else {
913 		dbuf_clear_data(db);
914 	}
915 }
916 
917 void
918 dbuf_unoverride(dbuf_dirty_record_t *dr)
919 {
920 	dmu_buf_impl_t *db = dr->dr_dbuf;
921 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
922 	uint64_t txg = dr->dr_txg;
923 
924 	ASSERT(MUTEX_HELD(&db->db_mtx));
925 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
926 	ASSERT(db->db_level == 0);
927 
928 	if (db->db_blkid == DMU_BONUS_BLKID ||
929 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
930 		return;
931 
932 	ASSERT(db->db_data_pending != dr);
933 
934 	/* free this block */
935 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
936 		zio_free(db->db_objset->os_spa, txg, bp);
937 
938 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
939 	dr->dt.dl.dr_nopwrite = B_FALSE;
940 
941 	/*
942 	 * Release the already-written buffer, so we leave it in
943 	 * a consistent dirty state.  Note that all callers are
944 	 * modifying the buffer, so they will immediately do
945 	 * another (redundant) arc_release().  Therefore, leave
946 	 * the buf thawed to save the effort of freezing &
947 	 * immediately re-thawing it.
948 	 */
949 	arc_release(dr->dt.dl.dr_data, db);
950 }
951 
952 /*
953  * Evict (if its unreferenced) or clear (if its referenced) any level-0
954  * data blocks in the free range, so that any future readers will find
955  * empty blocks.
956  *
957  * This is a no-op if the dataset is in the middle of an incremental
958  * receive; see comment below for details.
959  */
960 void
961 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
962     dmu_tx_t *tx)
963 {
964 	dmu_buf_impl_t db_search;
965 	dmu_buf_impl_t *db, *db_next;
966 	uint64_t txg = tx->tx_txg;
967 	avl_index_t where;
968 	boolean_t freespill =
969 	    (start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID);
970 
971 	if (end_blkid > dn->dn_maxblkid && !freespill)
972 		end_blkid = dn->dn_maxblkid;
973 	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
974 
975 	db_search.db_level = 0;
976 	db_search.db_blkid = start_blkid;
977 	db_search.db_state = DB_SEARCH;
978 
979 	mutex_enter(&dn->dn_dbufs_mtx);
980 	if (start_blkid >= dn->dn_unlisted_l0_blkid && !freespill) {
981 		/* There can't be any dbufs in this range; no need to search. */
982 #ifdef DEBUG
983 		db = avl_find(&dn->dn_dbufs, &db_search, &where);
984 		ASSERT3P(db, ==, NULL);
985 		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
986 		ASSERT(db == NULL || db->db_level > 0);
987 #endif
988 		mutex_exit(&dn->dn_dbufs_mtx);
989 		return;
990 	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
991 		/*
992 		 * If we are receiving, we expect there to be no dbufs in
993 		 * the range to be freed, because receive modifies each
994 		 * block at most once, and in offset order.  If this is
995 		 * not the case, it can lead to performance problems,
996 		 * so note that we unexpectedly took the slow path.
997 		 */
998 		atomic_inc_64(&zfs_free_range_recv_miss);
999 	}
1000 
1001 	db = avl_find(&dn->dn_dbufs, &db_search, &where);
1002 	ASSERT3P(db, ==, NULL);
1003 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1004 
1005 	for (; db != NULL; db = db_next) {
1006 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1007 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1008 
1009 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
1010 			break;
1011 		}
1012 		ASSERT3U(db->db_blkid, >=, start_blkid);
1013 
1014 		/* found a level 0 buffer in the range */
1015 		mutex_enter(&db->db_mtx);
1016 		if (dbuf_undirty(db, tx)) {
1017 			/* mutex has been dropped and dbuf destroyed */
1018 			continue;
1019 		}
1020 
1021 		if (db->db_state == DB_UNCACHED ||
1022 		    db->db_state == DB_NOFILL ||
1023 		    db->db_state == DB_EVICTING) {
1024 			ASSERT(db->db.db_data == NULL);
1025 			mutex_exit(&db->db_mtx);
1026 			continue;
1027 		}
1028 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1029 			/* will be handled in dbuf_read_done or dbuf_rele */
1030 			db->db_freed_in_flight = TRUE;
1031 			mutex_exit(&db->db_mtx);
1032 			continue;
1033 		}
1034 		if (refcount_count(&db->db_holds) == 0) {
1035 			ASSERT(db->db_buf);
1036 			dbuf_clear(db);
1037 			continue;
1038 		}
1039 		/* The dbuf is referenced */
1040 
1041 		if (db->db_last_dirty != NULL) {
1042 			dbuf_dirty_record_t *dr = db->db_last_dirty;
1043 
1044 			if (dr->dr_txg == txg) {
1045 				/*
1046 				 * This buffer is "in-use", re-adjust the file
1047 				 * size to reflect that this buffer may
1048 				 * contain new data when we sync.
1049 				 */
1050 				if (db->db_blkid != DMU_SPILL_BLKID &&
1051 				    db->db_blkid > dn->dn_maxblkid)
1052 					dn->dn_maxblkid = db->db_blkid;
1053 				dbuf_unoverride(dr);
1054 			} else {
1055 				/*
1056 				 * This dbuf is not dirty in the open context.
1057 				 * Either uncache it (if its not referenced in
1058 				 * the open context) or reset its contents to
1059 				 * empty.
1060 				 */
1061 				dbuf_fix_old_data(db, txg);
1062 			}
1063 		}
1064 		/* clear the contents if its cached */
1065 		if (db->db_state == DB_CACHED) {
1066 			ASSERT(db->db.db_data != NULL);
1067 			arc_release(db->db_buf, db);
1068 			bzero(db->db.db_data, db->db.db_size);
1069 			arc_buf_freeze(db->db_buf);
1070 		}
1071 
1072 		mutex_exit(&db->db_mtx);
1073 	}
1074 	mutex_exit(&dn->dn_dbufs_mtx);
1075 }
1076 
1077 static int
1078 dbuf_block_freeable(dmu_buf_impl_t *db)
1079 {
1080 	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
1081 	uint64_t birth_txg = 0;
1082 
1083 	/*
1084 	 * We don't need any locking to protect db_blkptr:
1085 	 * If it's syncing, then db_last_dirty will be set
1086 	 * so we'll ignore db_blkptr.
1087 	 *
1088 	 * This logic ensures that only block births for
1089 	 * filled blocks are considered.
1090 	 */
1091 	ASSERT(MUTEX_HELD(&db->db_mtx));
1092 	if (db->db_last_dirty && (db->db_blkptr == NULL ||
1093 	    !BP_IS_HOLE(db->db_blkptr))) {
1094 		birth_txg = db->db_last_dirty->dr_txg;
1095 	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1096 		birth_txg = db->db_blkptr->blk_birth;
1097 	}
1098 
1099 	/*
1100 	 * If this block don't exist or is in a snapshot, it can't be freed.
1101 	 * Don't pass the bp to dsl_dataset_block_freeable() since we
1102 	 * are holding the db_mtx lock and might deadlock if we are
1103 	 * prefetching a dedup-ed block.
1104 	 */
1105 	if (birth_txg != 0)
1106 		return (ds == NULL ||
1107 		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
1108 	else
1109 		return (B_FALSE);
1110 }
1111 
1112 void
1113 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1114 {
1115 	arc_buf_t *buf, *obuf;
1116 	int osize = db->db.db_size;
1117 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1118 	dnode_t *dn;
1119 
1120 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1121 
1122 	DB_DNODE_ENTER(db);
1123 	dn = DB_DNODE(db);
1124 
1125 	/* XXX does *this* func really need the lock? */
1126 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1127 
1128 	/*
1129 	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1130 	 * is OK, because there can be no other references to the db
1131 	 * when we are changing its size, so no concurrent DB_FILL can
1132 	 * be happening.
1133 	 */
1134 	/*
1135 	 * XXX we should be doing a dbuf_read, checking the return
1136 	 * value and returning that up to our callers
1137 	 */
1138 	dmu_buf_will_dirty(&db->db, tx);
1139 
1140 	/* create the data buffer for the new block */
1141 	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
1142 
1143 	/* copy old block data to the new block */
1144 	obuf = db->db_buf;
1145 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1146 	/* zero the remainder */
1147 	if (size > osize)
1148 		bzero((uint8_t *)buf->b_data + osize, size - osize);
1149 
1150 	mutex_enter(&db->db_mtx);
1151 	dbuf_set_data(db, buf);
1152 	VERIFY(arc_buf_remove_ref(obuf, db));
1153 	db->db.db_size = size;
1154 
1155 	if (db->db_level == 0) {
1156 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1157 		db->db_last_dirty->dt.dl.dr_data = buf;
1158 	}
1159 	mutex_exit(&db->db_mtx);
1160 
1161 	dnode_willuse_space(dn, size-osize, tx);
1162 	DB_DNODE_EXIT(db);
1163 }
1164 
1165 void
1166 dbuf_release_bp(dmu_buf_impl_t *db)
1167 {
1168 	objset_t *os = db->db_objset;
1169 
1170 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1171 	ASSERT(arc_released(os->os_phys_buf) ||
1172 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1173 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1174 
1175 	(void) arc_release(db->db_buf, db);
1176 }
1177 
1178 /*
1179  * We already have a dirty record for this TXG, and we are being
1180  * dirtied again.
1181  */
1182 static void
1183 dbuf_redirty(dbuf_dirty_record_t *dr)
1184 {
1185 	dmu_buf_impl_t *db = dr->dr_dbuf;
1186 
1187 	ASSERT(MUTEX_HELD(&db->db_mtx));
1188 
1189 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1190 		/*
1191 		 * If this buffer has already been written out,
1192 		 * we now need to reset its state.
1193 		 */
1194 		dbuf_unoverride(dr);
1195 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1196 		    db->db_state != DB_NOFILL) {
1197 			/* Already released on initial dirty, so just thaw. */
1198 			ASSERT(arc_released(db->db_buf));
1199 			arc_buf_thaw(db->db_buf);
1200 		}
1201 	}
1202 }
1203 
1204 dbuf_dirty_record_t *
1205 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1206 {
1207 	dnode_t *dn;
1208 	objset_t *os;
1209 	dbuf_dirty_record_t **drp, *dr;
1210 	int drop_struct_lock = FALSE;
1211 	boolean_t do_free_accounting = B_FALSE;
1212 	int txgoff = tx->tx_txg & TXG_MASK;
1213 
1214 	ASSERT(tx->tx_txg != 0);
1215 	ASSERT(!refcount_is_zero(&db->db_holds));
1216 	DMU_TX_DIRTY_BUF(tx, db);
1217 
1218 	DB_DNODE_ENTER(db);
1219 	dn = DB_DNODE(db);
1220 	/*
1221 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1222 	 * objects may be dirtied in syncing context, but only if they
1223 	 * were already pre-dirtied in open context.
1224 	 */
1225 	ASSERT(!dmu_tx_is_syncing(tx) ||
1226 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1227 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1228 	    dn->dn_objset->os_dsl_dataset == NULL);
1229 	/*
1230 	 * We make this assert for private objects as well, but after we
1231 	 * check if we're already dirty.  They are allowed to re-dirty
1232 	 * in syncing context.
1233 	 */
1234 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1235 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1236 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1237 
1238 	mutex_enter(&db->db_mtx);
1239 	/*
1240 	 * XXX make this true for indirects too?  The problem is that
1241 	 * transactions created with dmu_tx_create_assigned() from
1242 	 * syncing context don't bother holding ahead.
1243 	 */
1244 	ASSERT(db->db_level != 0 ||
1245 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1246 	    db->db_state == DB_NOFILL);
1247 
1248 	mutex_enter(&dn->dn_mtx);
1249 	/*
1250 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1251 	 * initialize the objset.
1252 	 */
1253 	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1254 	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1255 		dn->dn_dirtyctx =
1256 		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1257 		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1258 		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1259 	}
1260 	mutex_exit(&dn->dn_mtx);
1261 
1262 	if (db->db_blkid == DMU_SPILL_BLKID)
1263 		dn->dn_have_spill = B_TRUE;
1264 
1265 	/*
1266 	 * If this buffer is already dirty, we're done.
1267 	 */
1268 	drp = &db->db_last_dirty;
1269 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1270 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1271 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1272 		drp = &dr->dr_next;
1273 	if (dr && dr->dr_txg == tx->tx_txg) {
1274 		DB_DNODE_EXIT(db);
1275 
1276 		dbuf_redirty(dr);
1277 		mutex_exit(&db->db_mtx);
1278 		return (dr);
1279 	}
1280 
1281 	/*
1282 	 * Only valid if not already dirty.
1283 	 */
1284 	ASSERT(dn->dn_object == 0 ||
1285 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1286 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1287 
1288 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1289 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1290 	    dn->dn_phys->dn_nlevels > db->db_level ||
1291 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1292 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1293 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1294 
1295 	/*
1296 	 * We should only be dirtying in syncing context if it's the
1297 	 * mos or we're initializing the os or it's a special object.
1298 	 * However, we are allowed to dirty in syncing context provided
1299 	 * we already dirtied it in open context.  Hence we must make
1300 	 * this assertion only if we're not already dirty.
1301 	 */
1302 	os = dn->dn_objset;
1303 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1304 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1305 	ASSERT(db->db.db_size != 0);
1306 
1307 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1308 
1309 	if (db->db_blkid != DMU_BONUS_BLKID) {
1310 		/*
1311 		 * Update the accounting.
1312 		 * Note: we delay "free accounting" until after we drop
1313 		 * the db_mtx.  This keeps us from grabbing other locks
1314 		 * (and possibly deadlocking) in bp_get_dsize() while
1315 		 * also holding the db_mtx.
1316 		 */
1317 		dnode_willuse_space(dn, db->db.db_size, tx);
1318 		do_free_accounting = dbuf_block_freeable(db);
1319 	}
1320 
1321 	/*
1322 	 * If this buffer is dirty in an old transaction group we need
1323 	 * to make a copy of it so that the changes we make in this
1324 	 * transaction group won't leak out when we sync the older txg.
1325 	 */
1326 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1327 	if (db->db_level == 0) {
1328 		void *data_old = db->db_buf;
1329 
1330 		if (db->db_state != DB_NOFILL) {
1331 			if (db->db_blkid == DMU_BONUS_BLKID) {
1332 				dbuf_fix_old_data(db, tx->tx_txg);
1333 				data_old = db->db.db_data;
1334 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1335 				/*
1336 				 * Release the data buffer from the cache so
1337 				 * that we can modify it without impacting
1338 				 * possible other users of this cached data
1339 				 * block.  Note that indirect blocks and
1340 				 * private objects are not released until the
1341 				 * syncing state (since they are only modified
1342 				 * then).
1343 				 */
1344 				arc_release(db->db_buf, db);
1345 				dbuf_fix_old_data(db, tx->tx_txg);
1346 				data_old = db->db_buf;
1347 			}
1348 			ASSERT(data_old != NULL);
1349 		}
1350 		dr->dt.dl.dr_data = data_old;
1351 	} else {
1352 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1353 		list_create(&dr->dt.di.dr_children,
1354 		    sizeof (dbuf_dirty_record_t),
1355 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1356 	}
1357 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1358 		dr->dr_accounted = db->db.db_size;
1359 	dr->dr_dbuf = db;
1360 	dr->dr_txg = tx->tx_txg;
1361 	dr->dr_next = *drp;
1362 	*drp = dr;
1363 
1364 	/*
1365 	 * We could have been freed_in_flight between the dbuf_noread
1366 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1367 	 * happened after the free.
1368 	 */
1369 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1370 	    db->db_blkid != DMU_SPILL_BLKID) {
1371 		mutex_enter(&dn->dn_mtx);
1372 		if (dn->dn_free_ranges[txgoff] != NULL) {
1373 			range_tree_clear(dn->dn_free_ranges[txgoff],
1374 			    db->db_blkid, 1);
1375 		}
1376 		mutex_exit(&dn->dn_mtx);
1377 		db->db_freed_in_flight = FALSE;
1378 	}
1379 
1380 	/*
1381 	 * This buffer is now part of this txg
1382 	 */
1383 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1384 	db->db_dirtycnt += 1;
1385 	ASSERT3U(db->db_dirtycnt, <=, 3);
1386 
1387 	mutex_exit(&db->db_mtx);
1388 
1389 	if (db->db_blkid == DMU_BONUS_BLKID ||
1390 	    db->db_blkid == DMU_SPILL_BLKID) {
1391 		mutex_enter(&dn->dn_mtx);
1392 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1393 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1394 		mutex_exit(&dn->dn_mtx);
1395 		dnode_setdirty(dn, tx);
1396 		DB_DNODE_EXIT(db);
1397 		return (dr);
1398 	} else if (do_free_accounting) {
1399 		blkptr_t *bp = db->db_blkptr;
1400 		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1401 		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1402 		/*
1403 		 * This is only a guess -- if the dbuf is dirty
1404 		 * in a previous txg, we don't know how much
1405 		 * space it will use on disk yet.  We should
1406 		 * really have the struct_rwlock to access
1407 		 * db_blkptr, but since this is just a guess,
1408 		 * it's OK if we get an odd answer.
1409 		 */
1410 		ddt_prefetch(os->os_spa, bp);
1411 		dnode_willuse_space(dn, -willfree, tx);
1412 	}
1413 
1414 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1415 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1416 		drop_struct_lock = TRUE;
1417 	}
1418 
1419 	if (db->db_level == 0) {
1420 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1421 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1422 	}
1423 
1424 	if (db->db_level+1 < dn->dn_nlevels) {
1425 		dmu_buf_impl_t *parent = db->db_parent;
1426 		dbuf_dirty_record_t *di;
1427 		int parent_held = FALSE;
1428 
1429 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1430 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1431 
1432 			parent = dbuf_hold_level(dn, db->db_level+1,
1433 			    db->db_blkid >> epbs, FTAG);
1434 			ASSERT(parent != NULL);
1435 			parent_held = TRUE;
1436 		}
1437 		if (drop_struct_lock)
1438 			rw_exit(&dn->dn_struct_rwlock);
1439 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1440 		di = dbuf_dirty(parent, tx);
1441 		if (parent_held)
1442 			dbuf_rele(parent, FTAG);
1443 
1444 		mutex_enter(&db->db_mtx);
1445 		/*
1446 		 * Since we've dropped the mutex, it's possible that
1447 		 * dbuf_undirty() might have changed this out from under us.
1448 		 */
1449 		if (db->db_last_dirty == dr ||
1450 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1451 			mutex_enter(&di->dt.di.dr_mtx);
1452 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1453 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1454 			list_insert_tail(&di->dt.di.dr_children, dr);
1455 			mutex_exit(&di->dt.di.dr_mtx);
1456 			dr->dr_parent = di;
1457 		}
1458 		mutex_exit(&db->db_mtx);
1459 	} else {
1460 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1461 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1462 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1463 		mutex_enter(&dn->dn_mtx);
1464 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1465 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1466 		mutex_exit(&dn->dn_mtx);
1467 		if (drop_struct_lock)
1468 			rw_exit(&dn->dn_struct_rwlock);
1469 	}
1470 
1471 	dnode_setdirty(dn, tx);
1472 	DB_DNODE_EXIT(db);
1473 	return (dr);
1474 }
1475 
1476 /*
1477  * Undirty a buffer in the transaction group referenced by the given
1478  * transaction.  Return whether this evicted the dbuf.
1479  */
1480 static boolean_t
1481 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1482 {
1483 	dnode_t *dn;
1484 	uint64_t txg = tx->tx_txg;
1485 	dbuf_dirty_record_t *dr, **drp;
1486 
1487 	ASSERT(txg != 0);
1488 
1489 	/*
1490 	 * Due to our use of dn_nlevels below, this can only be called
1491 	 * in open context, unless we are operating on the MOS.
1492 	 * From syncing context, dn_nlevels may be different from the
1493 	 * dn_nlevels used when dbuf was dirtied.
1494 	 */
1495 	ASSERT(db->db_objset ==
1496 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1497 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1498 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1499 	ASSERT0(db->db_level);
1500 	ASSERT(MUTEX_HELD(&db->db_mtx));
1501 
1502 	/*
1503 	 * If this buffer is not dirty, we're done.
1504 	 */
1505 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1506 		if (dr->dr_txg <= txg)
1507 			break;
1508 	if (dr == NULL || dr->dr_txg < txg)
1509 		return (B_FALSE);
1510 	ASSERT(dr->dr_txg == txg);
1511 	ASSERT(dr->dr_dbuf == db);
1512 
1513 	DB_DNODE_ENTER(db);
1514 	dn = DB_DNODE(db);
1515 
1516 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1517 
1518 	ASSERT(db->db.db_size != 0);
1519 
1520 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1521 	    dr->dr_accounted, txg);
1522 
1523 	*drp = dr->dr_next;
1524 
1525 	/*
1526 	 * Note that there are three places in dbuf_dirty()
1527 	 * where this dirty record may be put on a list.
1528 	 * Make sure to do a list_remove corresponding to
1529 	 * every one of those list_insert calls.
1530 	 */
1531 	if (dr->dr_parent) {
1532 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1533 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1534 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1535 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1536 	    db->db_level + 1 == dn->dn_nlevels) {
1537 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1538 		mutex_enter(&dn->dn_mtx);
1539 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1540 		mutex_exit(&dn->dn_mtx);
1541 	}
1542 	DB_DNODE_EXIT(db);
1543 
1544 	if (db->db_state != DB_NOFILL) {
1545 		dbuf_unoverride(dr);
1546 
1547 		ASSERT(db->db_buf != NULL);
1548 		ASSERT(dr->dt.dl.dr_data != NULL);
1549 		if (dr->dt.dl.dr_data != db->db_buf)
1550 			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1551 	}
1552 
1553 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1554 
1555 	ASSERT(db->db_dirtycnt > 0);
1556 	db->db_dirtycnt -= 1;
1557 
1558 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1559 		arc_buf_t *buf = db->db_buf;
1560 
1561 		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1562 		dbuf_clear_data(db);
1563 		VERIFY(arc_buf_remove_ref(buf, db));
1564 		dbuf_evict(db);
1565 		return (B_TRUE);
1566 	}
1567 
1568 	return (B_FALSE);
1569 }
1570 
1571 void
1572 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1573 {
1574 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1575 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1576 
1577 	ASSERT(tx->tx_txg != 0);
1578 	ASSERT(!refcount_is_zero(&db->db_holds));
1579 
1580 	/*
1581 	 * Quick check for dirtyness.  For already dirty blocks, this
1582 	 * reduces runtime of this function by >90%, and overall performance
1583 	 * by 50% for some workloads (e.g. file deletion with indirect blocks
1584 	 * cached).
1585 	 */
1586 	mutex_enter(&db->db_mtx);
1587 	dbuf_dirty_record_t *dr;
1588 	for (dr = db->db_last_dirty;
1589 	    dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1590 		/*
1591 		 * It's possible that it is already dirty but not cached,
1592 		 * because there are some calls to dbuf_dirty() that don't
1593 		 * go through dmu_buf_will_dirty().
1594 		 */
1595 		if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1596 			/* This dbuf is already dirty and cached. */
1597 			dbuf_redirty(dr);
1598 			mutex_exit(&db->db_mtx);
1599 			return;
1600 		}
1601 	}
1602 	mutex_exit(&db->db_mtx);
1603 
1604 	DB_DNODE_ENTER(db);
1605 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1606 		rf |= DB_RF_HAVESTRUCT;
1607 	DB_DNODE_EXIT(db);
1608 	(void) dbuf_read(db, NULL, rf);
1609 	(void) dbuf_dirty(db, tx);
1610 }
1611 
1612 void
1613 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1614 {
1615 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1616 
1617 	db->db_state = DB_NOFILL;
1618 
1619 	dmu_buf_will_fill(db_fake, tx);
1620 }
1621 
1622 void
1623 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1624 {
1625 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1626 
1627 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1628 	ASSERT(tx->tx_txg != 0);
1629 	ASSERT(db->db_level == 0);
1630 	ASSERT(!refcount_is_zero(&db->db_holds));
1631 
1632 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1633 	    dmu_tx_private_ok(tx));
1634 
1635 	dbuf_noread(db);
1636 	(void) dbuf_dirty(db, tx);
1637 }
1638 
1639 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1640 /* ARGSUSED */
1641 void
1642 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1643 {
1644 	mutex_enter(&db->db_mtx);
1645 	DBUF_VERIFY(db);
1646 
1647 	if (db->db_state == DB_FILL) {
1648 		if (db->db_level == 0 && db->db_freed_in_flight) {
1649 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1650 			/* we were freed while filling */
1651 			/* XXX dbuf_undirty? */
1652 			bzero(db->db.db_data, db->db.db_size);
1653 			db->db_freed_in_flight = FALSE;
1654 		}
1655 		db->db_state = DB_CACHED;
1656 		cv_broadcast(&db->db_changed);
1657 	}
1658 	mutex_exit(&db->db_mtx);
1659 }
1660 
1661 void
1662 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1663     bp_embedded_type_t etype, enum zio_compress comp,
1664     int uncompressed_size, int compressed_size, int byteorder,
1665     dmu_tx_t *tx)
1666 {
1667 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1668 	struct dirty_leaf *dl;
1669 	dmu_object_type_t type;
1670 
1671 	if (etype == BP_EMBEDDED_TYPE_DATA) {
1672 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1673 		    SPA_FEATURE_EMBEDDED_DATA));
1674 	}
1675 
1676 	DB_DNODE_ENTER(db);
1677 	type = DB_DNODE(db)->dn_type;
1678 	DB_DNODE_EXIT(db);
1679 
1680 	ASSERT0(db->db_level);
1681 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1682 
1683 	dmu_buf_will_not_fill(dbuf, tx);
1684 
1685 	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1686 	dl = &db->db_last_dirty->dt.dl;
1687 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1688 	    data, comp, uncompressed_size, compressed_size);
1689 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1690 	BP_SET_TYPE(&dl->dr_overridden_by, type);
1691 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1692 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1693 
1694 	dl->dr_override_state = DR_OVERRIDDEN;
1695 	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1696 }
1697 
1698 /*
1699  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1700  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1701  */
1702 void
1703 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1704 {
1705 	ASSERT(!refcount_is_zero(&db->db_holds));
1706 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1707 	ASSERT(db->db_level == 0);
1708 	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1709 	ASSERT(buf != NULL);
1710 	ASSERT(arc_buf_size(buf) == db->db.db_size);
1711 	ASSERT(tx->tx_txg != 0);
1712 
1713 	arc_return_buf(buf, db);
1714 	ASSERT(arc_released(buf));
1715 
1716 	mutex_enter(&db->db_mtx);
1717 
1718 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1719 		cv_wait(&db->db_changed, &db->db_mtx);
1720 
1721 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1722 
1723 	if (db->db_state == DB_CACHED &&
1724 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1725 		mutex_exit(&db->db_mtx);
1726 		(void) dbuf_dirty(db, tx);
1727 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1728 		VERIFY(arc_buf_remove_ref(buf, db));
1729 		xuio_stat_wbuf_copied();
1730 		return;
1731 	}
1732 
1733 	xuio_stat_wbuf_nocopy();
1734 	if (db->db_state == DB_CACHED) {
1735 		dbuf_dirty_record_t *dr = db->db_last_dirty;
1736 
1737 		ASSERT(db->db_buf != NULL);
1738 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1739 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1740 			if (!arc_released(db->db_buf)) {
1741 				ASSERT(dr->dt.dl.dr_override_state ==
1742 				    DR_OVERRIDDEN);
1743 				arc_release(db->db_buf, db);
1744 			}
1745 			dr->dt.dl.dr_data = buf;
1746 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1747 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1748 			arc_release(db->db_buf, db);
1749 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1750 		}
1751 		db->db_buf = NULL;
1752 	}
1753 	ASSERT(db->db_buf == NULL);
1754 	dbuf_set_data(db, buf);
1755 	db->db_state = DB_FILL;
1756 	mutex_exit(&db->db_mtx);
1757 	(void) dbuf_dirty(db, tx);
1758 	dmu_buf_fill_done(&db->db, tx);
1759 }
1760 
1761 /*
1762  * "Clear" the contents of this dbuf.  This will mark the dbuf
1763  * EVICTING and clear *most* of its references.  Unfortunately,
1764  * when we are not holding the dn_dbufs_mtx, we can't clear the
1765  * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1766  * in this case.  For callers from the DMU we will usually see:
1767  *	dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy()
1768  * For the arc callback, we will usually see:
1769  *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1770  * Sometimes, though, we will get a mix of these two:
1771  *	DMU: dbuf_clear()->arc_clear_callback()
1772  *	ARC: dbuf_do_evict()->dbuf_destroy()
1773  *
1774  * This routine will dissociate the dbuf from the arc, by calling
1775  * arc_clear_callback(), but will not evict the data from the ARC.
1776  */
1777 void
1778 dbuf_clear(dmu_buf_impl_t *db)
1779 {
1780 	dnode_t *dn;
1781 	dmu_buf_impl_t *parent = db->db_parent;
1782 	dmu_buf_impl_t *dndb;
1783 	boolean_t dbuf_gone = B_FALSE;
1784 
1785 	ASSERT(MUTEX_HELD(&db->db_mtx));
1786 	ASSERT(refcount_is_zero(&db->db_holds));
1787 
1788 	dbuf_evict_user(db);
1789 
1790 	if (db->db_state == DB_CACHED) {
1791 		ASSERT(db->db.db_data != NULL);
1792 		if (db->db_blkid == DMU_BONUS_BLKID) {
1793 			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1794 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1795 		}
1796 		db->db.db_data = NULL;
1797 		db->db_state = DB_UNCACHED;
1798 	}
1799 
1800 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1801 	ASSERT(db->db_data_pending == NULL);
1802 
1803 	db->db_state = DB_EVICTING;
1804 	db->db_blkptr = NULL;
1805 
1806 	DB_DNODE_ENTER(db);
1807 	dn = DB_DNODE(db);
1808 	dndb = dn->dn_dbuf;
1809 	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1810 		avl_remove(&dn->dn_dbufs, db);
1811 		atomic_dec_32(&dn->dn_dbufs_count);
1812 		membar_producer();
1813 		DB_DNODE_EXIT(db);
1814 		/*
1815 		 * Decrementing the dbuf count means that the hold corresponding
1816 		 * to the removed dbuf is no longer discounted in dnode_move(),
1817 		 * so the dnode cannot be moved until after we release the hold.
1818 		 * The membar_producer() ensures visibility of the decremented
1819 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1820 		 * release any lock.
1821 		 */
1822 		dnode_rele(dn, db);
1823 		db->db_dnode_handle = NULL;
1824 	} else {
1825 		DB_DNODE_EXIT(db);
1826 	}
1827 
1828 	if (db->db_buf)
1829 		dbuf_gone = arc_clear_callback(db->db_buf);
1830 
1831 	if (!dbuf_gone)
1832 		mutex_exit(&db->db_mtx);
1833 
1834 	/*
1835 	 * If this dbuf is referenced from an indirect dbuf,
1836 	 * decrement the ref count on the indirect dbuf.
1837 	 */
1838 	if (parent && parent != dndb)
1839 		dbuf_rele(parent, db);
1840 }
1841 
1842 /*
1843  * Note: While bpp will always be updated if the function returns success,
1844  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
1845  * this happens when the dnode is the meta-dnode, or a userused or groupused
1846  * object.
1847  */
1848 static int
1849 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1850     dmu_buf_impl_t **parentp, blkptr_t **bpp)
1851 {
1852 	int nlevels, epbs;
1853 
1854 	*parentp = NULL;
1855 	*bpp = NULL;
1856 
1857 	ASSERT(blkid != DMU_BONUS_BLKID);
1858 
1859 	if (blkid == DMU_SPILL_BLKID) {
1860 		mutex_enter(&dn->dn_mtx);
1861 		if (dn->dn_have_spill &&
1862 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1863 			*bpp = &dn->dn_phys->dn_spill;
1864 		else
1865 			*bpp = NULL;
1866 		dbuf_add_ref(dn->dn_dbuf, NULL);
1867 		*parentp = dn->dn_dbuf;
1868 		mutex_exit(&dn->dn_mtx);
1869 		return (0);
1870 	}
1871 
1872 	if (dn->dn_phys->dn_nlevels == 0)
1873 		nlevels = 1;
1874 	else
1875 		nlevels = dn->dn_phys->dn_nlevels;
1876 
1877 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1878 
1879 	ASSERT3U(level * epbs, <, 64);
1880 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1881 	if (level >= nlevels ||
1882 	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1883 		/* the buffer has no parent yet */
1884 		return (SET_ERROR(ENOENT));
1885 	} else if (level < nlevels-1) {
1886 		/* this block is referenced from an indirect block */
1887 		int err = dbuf_hold_impl(dn, level+1,
1888 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
1889 		if (err)
1890 			return (err);
1891 		err = dbuf_read(*parentp, NULL,
1892 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1893 		if (err) {
1894 			dbuf_rele(*parentp, NULL);
1895 			*parentp = NULL;
1896 			return (err);
1897 		}
1898 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1899 		    (blkid & ((1ULL << epbs) - 1));
1900 		return (0);
1901 	} else {
1902 		/* the block is referenced from the dnode */
1903 		ASSERT3U(level, ==, nlevels-1);
1904 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1905 		    blkid < dn->dn_phys->dn_nblkptr);
1906 		if (dn->dn_dbuf) {
1907 			dbuf_add_ref(dn->dn_dbuf, NULL);
1908 			*parentp = dn->dn_dbuf;
1909 		}
1910 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1911 		return (0);
1912 	}
1913 }
1914 
1915 static dmu_buf_impl_t *
1916 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1917     dmu_buf_impl_t *parent, blkptr_t *blkptr)
1918 {
1919 	objset_t *os = dn->dn_objset;
1920 	dmu_buf_impl_t *db, *odb;
1921 
1922 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1923 	ASSERT(dn->dn_type != DMU_OT_NONE);
1924 
1925 	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1926 
1927 	db->db_objset = os;
1928 	db->db.db_object = dn->dn_object;
1929 	db->db_level = level;
1930 	db->db_blkid = blkid;
1931 	db->db_last_dirty = NULL;
1932 	db->db_dirtycnt = 0;
1933 	db->db_dnode_handle = dn->dn_handle;
1934 	db->db_parent = parent;
1935 	db->db_blkptr = blkptr;
1936 
1937 	db->db_user = NULL;
1938 	db->db_user_immediate_evict = FALSE;
1939 	db->db_freed_in_flight = FALSE;
1940 	db->db_pending_evict = FALSE;
1941 
1942 	if (blkid == DMU_BONUS_BLKID) {
1943 		ASSERT3P(parent, ==, dn->dn_dbuf);
1944 		db->db.db_size = DN_MAX_BONUSLEN -
1945 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1946 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1947 		db->db.db_offset = DMU_BONUS_BLKID;
1948 		db->db_state = DB_UNCACHED;
1949 		/* the bonus dbuf is not placed in the hash table */
1950 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1951 		return (db);
1952 	} else if (blkid == DMU_SPILL_BLKID) {
1953 		db->db.db_size = (blkptr != NULL) ?
1954 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1955 		db->db.db_offset = 0;
1956 	} else {
1957 		int blocksize =
1958 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1959 		db->db.db_size = blocksize;
1960 		db->db.db_offset = db->db_blkid * blocksize;
1961 	}
1962 
1963 	/*
1964 	 * Hold the dn_dbufs_mtx while we get the new dbuf
1965 	 * in the hash table *and* added to the dbufs list.
1966 	 * This prevents a possible deadlock with someone
1967 	 * trying to look up this dbuf before its added to the
1968 	 * dn_dbufs list.
1969 	 */
1970 	mutex_enter(&dn->dn_dbufs_mtx);
1971 	db->db_state = DB_EVICTING;
1972 	if ((odb = dbuf_hash_insert(db)) != NULL) {
1973 		/* someone else inserted it first */
1974 		kmem_cache_free(dbuf_cache, db);
1975 		mutex_exit(&dn->dn_dbufs_mtx);
1976 		return (odb);
1977 	}
1978 	avl_add(&dn->dn_dbufs, db);
1979 	if (db->db_level == 0 && db->db_blkid >=
1980 	    dn->dn_unlisted_l0_blkid)
1981 		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1982 	db->db_state = DB_UNCACHED;
1983 	mutex_exit(&dn->dn_dbufs_mtx);
1984 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1985 
1986 	if (parent && parent != dn->dn_dbuf)
1987 		dbuf_add_ref(parent, db);
1988 
1989 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1990 	    refcount_count(&dn->dn_holds) > 0);
1991 	(void) refcount_add(&dn->dn_holds, db);
1992 	atomic_inc_32(&dn->dn_dbufs_count);
1993 
1994 	dprintf_dbuf(db, "db=%p\n", db);
1995 
1996 	return (db);
1997 }
1998 
1999 static int
2000 dbuf_do_evict(void *private)
2001 {
2002 	dmu_buf_impl_t *db = private;
2003 
2004 	if (!MUTEX_HELD(&db->db_mtx))
2005 		mutex_enter(&db->db_mtx);
2006 
2007 	ASSERT(refcount_is_zero(&db->db_holds));
2008 
2009 	if (db->db_state != DB_EVICTING) {
2010 		ASSERT(db->db_state == DB_CACHED);
2011 		DBUF_VERIFY(db);
2012 		db->db_buf = NULL;
2013 		dbuf_evict(db);
2014 	} else {
2015 		mutex_exit(&db->db_mtx);
2016 		dbuf_destroy(db);
2017 	}
2018 	return (0);
2019 }
2020 
2021 static void
2022 dbuf_destroy(dmu_buf_impl_t *db)
2023 {
2024 	ASSERT(refcount_is_zero(&db->db_holds));
2025 
2026 	if (db->db_blkid != DMU_BONUS_BLKID) {
2027 		/*
2028 		 * If this dbuf is still on the dn_dbufs list,
2029 		 * remove it from that list.
2030 		 */
2031 		if (db->db_dnode_handle != NULL) {
2032 			dnode_t *dn;
2033 
2034 			DB_DNODE_ENTER(db);
2035 			dn = DB_DNODE(db);
2036 			mutex_enter(&dn->dn_dbufs_mtx);
2037 			avl_remove(&dn->dn_dbufs, db);
2038 			atomic_dec_32(&dn->dn_dbufs_count);
2039 			mutex_exit(&dn->dn_dbufs_mtx);
2040 			DB_DNODE_EXIT(db);
2041 			/*
2042 			 * Decrementing the dbuf count means that the hold
2043 			 * corresponding to the removed dbuf is no longer
2044 			 * discounted in dnode_move(), so the dnode cannot be
2045 			 * moved until after we release the hold.
2046 			 */
2047 			dnode_rele(dn, db);
2048 			db->db_dnode_handle = NULL;
2049 		}
2050 		dbuf_hash_remove(db);
2051 	}
2052 	db->db_parent = NULL;
2053 	db->db_buf = NULL;
2054 
2055 	ASSERT(db->db.db_data == NULL);
2056 	ASSERT(db->db_hash_next == NULL);
2057 	ASSERT(db->db_blkptr == NULL);
2058 	ASSERT(db->db_data_pending == NULL);
2059 
2060 	kmem_cache_free(dbuf_cache, db);
2061 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2062 }
2063 
2064 typedef struct dbuf_prefetch_arg {
2065 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
2066 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2067 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2068 	int dpa_curlevel; /* The current level that we're reading */
2069 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2070 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2071 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2072 } dbuf_prefetch_arg_t;
2073 
2074 /*
2075  * Actually issue the prefetch read for the block given.
2076  */
2077 static void
2078 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2079 {
2080 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2081 		return;
2082 
2083 	arc_flags_t aflags =
2084 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2085 
2086 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2087 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2088 	ASSERT(dpa->dpa_zio != NULL);
2089 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2090 	    dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2091 	    &aflags, &dpa->dpa_zb);
2092 }
2093 
2094 /*
2095  * Called when an indirect block above our prefetch target is read in.  This
2096  * will either read in the next indirect block down the tree or issue the actual
2097  * prefetch if the next block down is our target.
2098  */
2099 static void
2100 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2101 {
2102 	dbuf_prefetch_arg_t *dpa = private;
2103 
2104 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2105 	ASSERT3S(dpa->dpa_curlevel, >, 0);
2106 	if (zio != NULL) {
2107 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2108 		ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2109 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2110 	}
2111 
2112 	dpa->dpa_curlevel--;
2113 
2114 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2115 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2116 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2117 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2118 	if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2119 		kmem_free(dpa, sizeof (*dpa));
2120 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2121 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2122 		dbuf_issue_final_prefetch(dpa, bp);
2123 		kmem_free(dpa, sizeof (*dpa));
2124 	} else {
2125 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2126 		zbookmark_phys_t zb;
2127 
2128 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2129 
2130 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2131 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2132 
2133 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2134 		    bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2135 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2136 		    &iter_aflags, &zb);
2137 	}
2138 	(void) arc_buf_remove_ref(abuf, private);
2139 }
2140 
2141 /*
2142  * Issue prefetch reads for the given block on the given level.  If the indirect
2143  * blocks above that block are not in memory, we will read them in
2144  * asynchronously.  As a result, this call never blocks waiting for a read to
2145  * complete.
2146  */
2147 void
2148 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2149     arc_flags_t aflags)
2150 {
2151 	blkptr_t bp;
2152 	int epbs, nlevels, curlevel;
2153 	uint64_t curblkid;
2154 
2155 	ASSERT(blkid != DMU_BONUS_BLKID);
2156 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2157 
2158 	if (blkid > dn->dn_maxblkid)
2159 		return;
2160 
2161 	if (dnode_block_freed(dn, blkid))
2162 		return;
2163 
2164 	/*
2165 	 * This dnode hasn't been written to disk yet, so there's nothing to
2166 	 * prefetch.
2167 	 */
2168 	nlevels = dn->dn_phys->dn_nlevels;
2169 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2170 		return;
2171 
2172 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2173 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2174 		return;
2175 
2176 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2177 	    level, blkid);
2178 	if (db != NULL) {
2179 		mutex_exit(&db->db_mtx);
2180 		/*
2181 		 * This dbuf already exists.  It is either CACHED, or
2182 		 * (we assume) about to be read or filled.
2183 		 */
2184 		return;
2185 	}
2186 
2187 	/*
2188 	 * Find the closest ancestor (indirect block) of the target block
2189 	 * that is present in the cache.  In this indirect block, we will
2190 	 * find the bp that is at curlevel, curblkid.
2191 	 */
2192 	curlevel = level;
2193 	curblkid = blkid;
2194 	while (curlevel < nlevels - 1) {
2195 		int parent_level = curlevel + 1;
2196 		uint64_t parent_blkid = curblkid >> epbs;
2197 		dmu_buf_impl_t *db;
2198 
2199 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2200 		    FALSE, TRUE, FTAG, &db) == 0) {
2201 			blkptr_t *bpp = db->db_buf->b_data;
2202 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2203 			dbuf_rele(db, FTAG);
2204 			break;
2205 		}
2206 
2207 		curlevel = parent_level;
2208 		curblkid = parent_blkid;
2209 	}
2210 
2211 	if (curlevel == nlevels - 1) {
2212 		/* No cached indirect blocks found. */
2213 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2214 		bp = dn->dn_phys->dn_blkptr[curblkid];
2215 	}
2216 	if (BP_IS_HOLE(&bp))
2217 		return;
2218 
2219 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2220 
2221 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2222 	    ZIO_FLAG_CANFAIL);
2223 
2224 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2225 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2226 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2227 	    dn->dn_object, level, blkid);
2228 	dpa->dpa_curlevel = curlevel;
2229 	dpa->dpa_prio = prio;
2230 	dpa->dpa_aflags = aflags;
2231 	dpa->dpa_spa = dn->dn_objset->os_spa;
2232 	dpa->dpa_epbs = epbs;
2233 	dpa->dpa_zio = pio;
2234 
2235 	/*
2236 	 * If we have the indirect just above us, no need to do the asynchronous
2237 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
2238 	 * a higher level, though, we want to issue the prefetches for all the
2239 	 * indirect blocks asynchronously, so we can go on with whatever we were
2240 	 * doing.
2241 	 */
2242 	if (curlevel == level) {
2243 		ASSERT3U(curblkid, ==, blkid);
2244 		dbuf_issue_final_prefetch(dpa, &bp);
2245 		kmem_free(dpa, sizeof (*dpa));
2246 	} else {
2247 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2248 		zbookmark_phys_t zb;
2249 
2250 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2251 		    dn->dn_object, curlevel, curblkid);
2252 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2253 		    &bp, dbuf_prefetch_indirect_done, dpa, prio,
2254 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2255 		    &iter_aflags, &zb);
2256 	}
2257 	/*
2258 	 * We use pio here instead of dpa_zio since it's possible that
2259 	 * dpa may have already been freed.
2260 	 */
2261 	zio_nowait(pio);
2262 }
2263 
2264 /*
2265  * Returns with db_holds incremented, and db_mtx not held.
2266  * Note: dn_struct_rwlock must be held.
2267  */
2268 int
2269 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2270     boolean_t fail_sparse, boolean_t fail_uncached,
2271     void *tag, dmu_buf_impl_t **dbp)
2272 {
2273 	dmu_buf_impl_t *db, *parent = NULL;
2274 
2275 	ASSERT(blkid != DMU_BONUS_BLKID);
2276 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2277 	ASSERT3U(dn->dn_nlevels, >, level);
2278 
2279 	*dbp = NULL;
2280 top:
2281 	/* dbuf_find() returns with db_mtx held */
2282 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2283 
2284 	if (db == NULL) {
2285 		blkptr_t *bp = NULL;
2286 		int err;
2287 
2288 		if (fail_uncached)
2289 			return (SET_ERROR(ENOENT));
2290 
2291 		ASSERT3P(parent, ==, NULL);
2292 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2293 		if (fail_sparse) {
2294 			if (err == 0 && bp && BP_IS_HOLE(bp))
2295 				err = SET_ERROR(ENOENT);
2296 			if (err) {
2297 				if (parent)
2298 					dbuf_rele(parent, NULL);
2299 				return (err);
2300 			}
2301 		}
2302 		if (err && err != ENOENT)
2303 			return (err);
2304 		db = dbuf_create(dn, level, blkid, parent, bp);
2305 	}
2306 
2307 	if (fail_uncached && db->db_state != DB_CACHED) {
2308 		mutex_exit(&db->db_mtx);
2309 		return (SET_ERROR(ENOENT));
2310 	}
2311 
2312 	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
2313 		arc_buf_add_ref(db->db_buf, db);
2314 		if (db->db_buf->b_data == NULL) {
2315 			dbuf_clear(db);
2316 			if (parent) {
2317 				dbuf_rele(parent, NULL);
2318 				parent = NULL;
2319 			}
2320 			goto top;
2321 		}
2322 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2323 	}
2324 
2325 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2326 
2327 	/*
2328 	 * If this buffer is currently syncing out, and we are are
2329 	 * still referencing it from db_data, we need to make a copy
2330 	 * of it in case we decide we want to dirty it again in this txg.
2331 	 */
2332 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2333 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2334 	    db->db_state == DB_CACHED && db->db_data_pending) {
2335 		dbuf_dirty_record_t *dr = db->db_data_pending;
2336 
2337 		if (dr->dt.dl.dr_data == db->db_buf) {
2338 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2339 
2340 			dbuf_set_data(db,
2341 			    arc_buf_alloc(dn->dn_objset->os_spa,
2342 			    db->db.db_size, db, type));
2343 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2344 			    db->db.db_size);
2345 		}
2346 	}
2347 
2348 	(void) refcount_add(&db->db_holds, tag);
2349 	DBUF_VERIFY(db);
2350 	mutex_exit(&db->db_mtx);
2351 
2352 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
2353 	if (parent)
2354 		dbuf_rele(parent, NULL);
2355 
2356 	ASSERT3P(DB_DNODE(db), ==, dn);
2357 	ASSERT3U(db->db_blkid, ==, blkid);
2358 	ASSERT3U(db->db_level, ==, level);
2359 	*dbp = db;
2360 
2361 	return (0);
2362 }
2363 
2364 dmu_buf_impl_t *
2365 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2366 {
2367 	return (dbuf_hold_level(dn, 0, blkid, tag));
2368 }
2369 
2370 dmu_buf_impl_t *
2371 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2372 {
2373 	dmu_buf_impl_t *db;
2374 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2375 	return (err ? NULL : db);
2376 }
2377 
2378 void
2379 dbuf_create_bonus(dnode_t *dn)
2380 {
2381 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2382 
2383 	ASSERT(dn->dn_bonus == NULL);
2384 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2385 }
2386 
2387 int
2388 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2389 {
2390 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2391 	dnode_t *dn;
2392 
2393 	if (db->db_blkid != DMU_SPILL_BLKID)
2394 		return (SET_ERROR(ENOTSUP));
2395 	if (blksz == 0)
2396 		blksz = SPA_MINBLOCKSIZE;
2397 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2398 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2399 
2400 	DB_DNODE_ENTER(db);
2401 	dn = DB_DNODE(db);
2402 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2403 	dbuf_new_size(db, blksz, tx);
2404 	rw_exit(&dn->dn_struct_rwlock);
2405 	DB_DNODE_EXIT(db);
2406 
2407 	return (0);
2408 }
2409 
2410 void
2411 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2412 {
2413 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2414 }
2415 
2416 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2417 void
2418 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2419 {
2420 	int64_t holds = refcount_add(&db->db_holds, tag);
2421 	ASSERT(holds > 1);
2422 }
2423 
2424 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2425 boolean_t
2426 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2427     void *tag)
2428 {
2429 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2430 	dmu_buf_impl_t *found_db;
2431 	boolean_t result = B_FALSE;
2432 
2433 	if (db->db_blkid == DMU_BONUS_BLKID)
2434 		found_db = dbuf_find_bonus(os, obj);
2435 	else
2436 		found_db = dbuf_find(os, obj, 0, blkid);
2437 
2438 	if (found_db != NULL) {
2439 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2440 			(void) refcount_add(&db->db_holds, tag);
2441 			result = B_TRUE;
2442 		}
2443 		mutex_exit(&db->db_mtx);
2444 	}
2445 	return (result);
2446 }
2447 
2448 /*
2449  * If you call dbuf_rele() you had better not be referencing the dnode handle
2450  * unless you have some other direct or indirect hold on the dnode. (An indirect
2451  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2452  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2453  * dnode's parent dbuf evicting its dnode handles.
2454  */
2455 void
2456 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2457 {
2458 	mutex_enter(&db->db_mtx);
2459 	dbuf_rele_and_unlock(db, tag);
2460 }
2461 
2462 void
2463 dmu_buf_rele(dmu_buf_t *db, void *tag)
2464 {
2465 	dbuf_rele((dmu_buf_impl_t *)db, tag);
2466 }
2467 
2468 /*
2469  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2470  * db_dirtycnt and db_holds to be updated atomically.
2471  */
2472 void
2473 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2474 {
2475 	int64_t holds;
2476 
2477 	ASSERT(MUTEX_HELD(&db->db_mtx));
2478 	DBUF_VERIFY(db);
2479 
2480 	/*
2481 	 * Remove the reference to the dbuf before removing its hold on the
2482 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2483 	 * buffer has a corresponding dnode hold.
2484 	 */
2485 	holds = refcount_remove(&db->db_holds, tag);
2486 	ASSERT(holds >= 0);
2487 
2488 	/*
2489 	 * We can't freeze indirects if there is a possibility that they
2490 	 * may be modified in the current syncing context.
2491 	 */
2492 	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2493 		arc_buf_freeze(db->db_buf);
2494 
2495 	if (holds == db->db_dirtycnt &&
2496 	    db->db_level == 0 && db->db_user_immediate_evict)
2497 		dbuf_evict_user(db);
2498 
2499 	if (holds == 0) {
2500 		if (db->db_blkid == DMU_BONUS_BLKID) {
2501 			dnode_t *dn;
2502 			boolean_t evict_dbuf = db->db_pending_evict;
2503 
2504 			/*
2505 			 * If the dnode moves here, we cannot cross this
2506 			 * barrier until the move completes.
2507 			 */
2508 			DB_DNODE_ENTER(db);
2509 
2510 			dn = DB_DNODE(db);
2511 			atomic_dec_32(&dn->dn_dbufs_count);
2512 
2513 			/*
2514 			 * Decrementing the dbuf count means that the bonus
2515 			 * buffer's dnode hold is no longer discounted in
2516 			 * dnode_move(). The dnode cannot move until after
2517 			 * the dnode_rele() below.
2518 			 */
2519 			DB_DNODE_EXIT(db);
2520 
2521 			/*
2522 			 * Do not reference db after its lock is dropped.
2523 			 * Another thread may evict it.
2524 			 */
2525 			mutex_exit(&db->db_mtx);
2526 
2527 			if (evict_dbuf)
2528 				dnode_evict_bonus(dn);
2529 
2530 			dnode_rele(dn, db);
2531 		} else if (db->db_buf == NULL) {
2532 			/*
2533 			 * This is a special case: we never associated this
2534 			 * dbuf with any data allocated from the ARC.
2535 			 */
2536 			ASSERT(db->db_state == DB_UNCACHED ||
2537 			    db->db_state == DB_NOFILL);
2538 			dbuf_evict(db);
2539 		} else if (arc_released(db->db_buf)) {
2540 			arc_buf_t *buf = db->db_buf;
2541 			/*
2542 			 * This dbuf has anonymous data associated with it.
2543 			 */
2544 			dbuf_clear_data(db);
2545 			VERIFY(arc_buf_remove_ref(buf, db));
2546 			dbuf_evict(db);
2547 		} else {
2548 			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2549 
2550 			/*
2551 			 * A dbuf will be eligible for eviction if either the
2552 			 * 'primarycache' property is set or a duplicate
2553 			 * copy of this buffer is already cached in the arc.
2554 			 *
2555 			 * In the case of the 'primarycache' a buffer
2556 			 * is considered for eviction if it matches the
2557 			 * criteria set in the property.
2558 			 *
2559 			 * To decide if our buffer is considered a
2560 			 * duplicate, we must call into the arc to determine
2561 			 * if multiple buffers are referencing the same
2562 			 * block on-disk. If so, then we simply evict
2563 			 * ourselves.
2564 			 */
2565 			if (!DBUF_IS_CACHEABLE(db)) {
2566 				if (db->db_blkptr != NULL &&
2567 				    !BP_IS_HOLE(db->db_blkptr) &&
2568 				    !BP_IS_EMBEDDED(db->db_blkptr)) {
2569 					spa_t *spa =
2570 					    dmu_objset_spa(db->db_objset);
2571 					blkptr_t bp = *db->db_blkptr;
2572 					dbuf_clear(db);
2573 					arc_freed(spa, &bp);
2574 				} else {
2575 					dbuf_clear(db);
2576 				}
2577 			} else if (db->db_pending_evict ||
2578 			    arc_buf_eviction_needed(db->db_buf)) {
2579 				dbuf_clear(db);
2580 			} else {
2581 				mutex_exit(&db->db_mtx);
2582 			}
2583 		}
2584 	} else {
2585 		mutex_exit(&db->db_mtx);
2586 	}
2587 }
2588 
2589 #pragma weak dmu_buf_refcount = dbuf_refcount
2590 uint64_t
2591 dbuf_refcount(dmu_buf_impl_t *db)
2592 {
2593 	return (refcount_count(&db->db_holds));
2594 }
2595 
2596 void *
2597 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2598     dmu_buf_user_t *new_user)
2599 {
2600 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2601 
2602 	mutex_enter(&db->db_mtx);
2603 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2604 	if (db->db_user == old_user)
2605 		db->db_user = new_user;
2606 	else
2607 		old_user = db->db_user;
2608 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2609 	mutex_exit(&db->db_mtx);
2610 
2611 	return (old_user);
2612 }
2613 
2614 void *
2615 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2616 {
2617 	return (dmu_buf_replace_user(db_fake, NULL, user));
2618 }
2619 
2620 void *
2621 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2622 {
2623 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2624 
2625 	db->db_user_immediate_evict = TRUE;
2626 	return (dmu_buf_set_user(db_fake, user));
2627 }
2628 
2629 void *
2630 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2631 {
2632 	return (dmu_buf_replace_user(db_fake, user, NULL));
2633 }
2634 
2635 void *
2636 dmu_buf_get_user(dmu_buf_t *db_fake)
2637 {
2638 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2639 
2640 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2641 	return (db->db_user);
2642 }
2643 
2644 void
2645 dmu_buf_user_evict_wait()
2646 {
2647 	taskq_wait(dbu_evict_taskq);
2648 }
2649 
2650 boolean_t
2651 dmu_buf_freeable(dmu_buf_t *dbuf)
2652 {
2653 	boolean_t res = B_FALSE;
2654 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2655 
2656 	if (db->db_blkptr)
2657 		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2658 		    db->db_blkptr, db->db_blkptr->blk_birth);
2659 
2660 	return (res);
2661 }
2662 
2663 blkptr_t *
2664 dmu_buf_get_blkptr(dmu_buf_t *db)
2665 {
2666 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2667 	return (dbi->db_blkptr);
2668 }
2669 
2670 static void
2671 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2672 {
2673 	/* ASSERT(dmu_tx_is_syncing(tx) */
2674 	ASSERT(MUTEX_HELD(&db->db_mtx));
2675 
2676 	if (db->db_blkptr != NULL)
2677 		return;
2678 
2679 	if (db->db_blkid == DMU_SPILL_BLKID) {
2680 		db->db_blkptr = &dn->dn_phys->dn_spill;
2681 		BP_ZERO(db->db_blkptr);
2682 		return;
2683 	}
2684 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2685 		/*
2686 		 * This buffer was allocated at a time when there was
2687 		 * no available blkptrs from the dnode, or it was
2688 		 * inappropriate to hook it in (i.e., nlevels mis-match).
2689 		 */
2690 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2691 		ASSERT(db->db_parent == NULL);
2692 		db->db_parent = dn->dn_dbuf;
2693 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2694 		DBUF_VERIFY(db);
2695 	} else {
2696 		dmu_buf_impl_t *parent = db->db_parent;
2697 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2698 
2699 		ASSERT(dn->dn_phys->dn_nlevels > 1);
2700 		if (parent == NULL) {
2701 			mutex_exit(&db->db_mtx);
2702 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2703 			parent = dbuf_hold_level(dn, db->db_level + 1,
2704 			    db->db_blkid >> epbs, db);
2705 			rw_exit(&dn->dn_struct_rwlock);
2706 			mutex_enter(&db->db_mtx);
2707 			db->db_parent = parent;
2708 		}
2709 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2710 		    (db->db_blkid & ((1ULL << epbs) - 1));
2711 		DBUF_VERIFY(db);
2712 	}
2713 }
2714 
2715 static void
2716 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2717 {
2718 	dmu_buf_impl_t *db = dr->dr_dbuf;
2719 	dnode_t *dn;
2720 	zio_t *zio;
2721 
2722 	ASSERT(dmu_tx_is_syncing(tx));
2723 
2724 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2725 
2726 	mutex_enter(&db->db_mtx);
2727 
2728 	ASSERT(db->db_level > 0);
2729 	DBUF_VERIFY(db);
2730 
2731 	/* Read the block if it hasn't been read yet. */
2732 	if (db->db_buf == NULL) {
2733 		mutex_exit(&db->db_mtx);
2734 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2735 		mutex_enter(&db->db_mtx);
2736 	}
2737 	ASSERT3U(db->db_state, ==, DB_CACHED);
2738 	ASSERT(db->db_buf != NULL);
2739 
2740 	DB_DNODE_ENTER(db);
2741 	dn = DB_DNODE(db);
2742 	/* Indirect block size must match what the dnode thinks it is. */
2743 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2744 	dbuf_check_blkptr(dn, db);
2745 	DB_DNODE_EXIT(db);
2746 
2747 	/* Provide the pending dirty record to child dbufs */
2748 	db->db_data_pending = dr;
2749 
2750 	mutex_exit(&db->db_mtx);
2751 	dbuf_write(dr, db->db_buf, tx);
2752 
2753 	zio = dr->dr_zio;
2754 	mutex_enter(&dr->dt.di.dr_mtx);
2755 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
2756 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2757 	mutex_exit(&dr->dt.di.dr_mtx);
2758 	zio_nowait(zio);
2759 }
2760 
2761 static void
2762 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2763 {
2764 	arc_buf_t **datap = &dr->dt.dl.dr_data;
2765 	dmu_buf_impl_t *db = dr->dr_dbuf;
2766 	dnode_t *dn;
2767 	objset_t *os;
2768 	uint64_t txg = tx->tx_txg;
2769 
2770 	ASSERT(dmu_tx_is_syncing(tx));
2771 
2772 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2773 
2774 	mutex_enter(&db->db_mtx);
2775 	/*
2776 	 * To be synced, we must be dirtied.  But we
2777 	 * might have been freed after the dirty.
2778 	 */
2779 	if (db->db_state == DB_UNCACHED) {
2780 		/* This buffer has been freed since it was dirtied */
2781 		ASSERT(db->db.db_data == NULL);
2782 	} else if (db->db_state == DB_FILL) {
2783 		/* This buffer was freed and is now being re-filled */
2784 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2785 	} else {
2786 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2787 	}
2788 	DBUF_VERIFY(db);
2789 
2790 	DB_DNODE_ENTER(db);
2791 	dn = DB_DNODE(db);
2792 
2793 	if (db->db_blkid == DMU_SPILL_BLKID) {
2794 		mutex_enter(&dn->dn_mtx);
2795 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2796 		mutex_exit(&dn->dn_mtx);
2797 	}
2798 
2799 	/*
2800 	 * If this is a bonus buffer, simply copy the bonus data into the
2801 	 * dnode.  It will be written out when the dnode is synced (and it
2802 	 * will be synced, since it must have been dirty for dbuf_sync to
2803 	 * be called).
2804 	 */
2805 	if (db->db_blkid == DMU_BONUS_BLKID) {
2806 		dbuf_dirty_record_t **drp;
2807 
2808 		ASSERT(*datap != NULL);
2809 		ASSERT0(db->db_level);
2810 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2811 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2812 		DB_DNODE_EXIT(db);
2813 
2814 		if (*datap != db->db.db_data) {
2815 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2816 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2817 		}
2818 		db->db_data_pending = NULL;
2819 		drp = &db->db_last_dirty;
2820 		while (*drp != dr)
2821 			drp = &(*drp)->dr_next;
2822 		ASSERT(dr->dr_next == NULL);
2823 		ASSERT(dr->dr_dbuf == db);
2824 		*drp = dr->dr_next;
2825 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2826 		ASSERT(db->db_dirtycnt > 0);
2827 		db->db_dirtycnt -= 1;
2828 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2829 		return;
2830 	}
2831 
2832 	os = dn->dn_objset;
2833 
2834 	/*
2835 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2836 	 * operation to sneak in. As a result, we need to ensure that we
2837 	 * don't check the dr_override_state until we have returned from
2838 	 * dbuf_check_blkptr.
2839 	 */
2840 	dbuf_check_blkptr(dn, db);
2841 
2842 	/*
2843 	 * If this buffer is in the middle of an immediate write,
2844 	 * wait for the synchronous IO to complete.
2845 	 */
2846 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2847 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2848 		cv_wait(&db->db_changed, &db->db_mtx);
2849 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2850 	}
2851 
2852 	if (db->db_state != DB_NOFILL &&
2853 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2854 	    refcount_count(&db->db_holds) > 1 &&
2855 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2856 	    *datap == db->db_buf) {
2857 		/*
2858 		 * If this buffer is currently "in use" (i.e., there
2859 		 * are active holds and db_data still references it),
2860 		 * then make a copy before we start the write so that
2861 		 * any modifications from the open txg will not leak
2862 		 * into this write.
2863 		 *
2864 		 * NOTE: this copy does not need to be made for
2865 		 * objects only modified in the syncing context (e.g.
2866 		 * DNONE_DNODE blocks).
2867 		 */
2868 		int blksz = arc_buf_size(*datap);
2869 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2870 		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2871 		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2872 	}
2873 	db->db_data_pending = dr;
2874 
2875 	mutex_exit(&db->db_mtx);
2876 
2877 	dbuf_write(dr, *datap, tx);
2878 
2879 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2880 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2881 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2882 		DB_DNODE_EXIT(db);
2883 	} else {
2884 		/*
2885 		 * Although zio_nowait() does not "wait for an IO", it does
2886 		 * initiate the IO. If this is an empty write it seems plausible
2887 		 * that the IO could actually be completed before the nowait
2888 		 * returns. We need to DB_DNODE_EXIT() first in case
2889 		 * zio_nowait() invalidates the dbuf.
2890 		 */
2891 		DB_DNODE_EXIT(db);
2892 		zio_nowait(dr->dr_zio);
2893 	}
2894 }
2895 
2896 void
2897 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
2898 {
2899 	dbuf_dirty_record_t *dr;
2900 
2901 	while (dr = list_head(list)) {
2902 		if (dr->dr_zio != NULL) {
2903 			/*
2904 			 * If we find an already initialized zio then we
2905 			 * are processing the meta-dnode, and we have finished.
2906 			 * The dbufs for all dnodes are put back on the list
2907 			 * during processing, so that we can zio_wait()
2908 			 * these IOs after initiating all child IOs.
2909 			 */
2910 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2911 			    DMU_META_DNODE_OBJECT);
2912 			break;
2913 		}
2914 		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
2915 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
2916 			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
2917 		}
2918 		list_remove(list, dr);
2919 		if (dr->dr_dbuf->db_level > 0)
2920 			dbuf_sync_indirect(dr, tx);
2921 		else
2922 			dbuf_sync_leaf(dr, tx);
2923 	}
2924 }
2925 
2926 /* ARGSUSED */
2927 static void
2928 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2929 {
2930 	dmu_buf_impl_t *db = vdb;
2931 	dnode_t *dn;
2932 	blkptr_t *bp = zio->io_bp;
2933 	blkptr_t *bp_orig = &zio->io_bp_orig;
2934 	spa_t *spa = zio->io_spa;
2935 	int64_t delta;
2936 	uint64_t fill = 0;
2937 	int i;
2938 
2939 	ASSERT3P(db->db_blkptr, !=, NULL);
2940 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
2941 
2942 	DB_DNODE_ENTER(db);
2943 	dn = DB_DNODE(db);
2944 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2945 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2946 	zio->io_prev_space_delta = delta;
2947 
2948 	if (bp->blk_birth != 0) {
2949 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2950 		    BP_GET_TYPE(bp) == dn->dn_type) ||
2951 		    (db->db_blkid == DMU_SPILL_BLKID &&
2952 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
2953 		    BP_IS_EMBEDDED(bp));
2954 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2955 	}
2956 
2957 	mutex_enter(&db->db_mtx);
2958 
2959 #ifdef ZFS_DEBUG
2960 	if (db->db_blkid == DMU_SPILL_BLKID) {
2961 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2962 		ASSERT(!(BP_IS_HOLE(bp)) &&
2963 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2964 	}
2965 #endif
2966 
2967 	if (db->db_level == 0) {
2968 		mutex_enter(&dn->dn_mtx);
2969 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2970 		    db->db_blkid != DMU_SPILL_BLKID)
2971 			dn->dn_phys->dn_maxblkid = db->db_blkid;
2972 		mutex_exit(&dn->dn_mtx);
2973 
2974 		if (dn->dn_type == DMU_OT_DNODE) {
2975 			dnode_phys_t *dnp = db->db.db_data;
2976 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2977 			    i--, dnp++) {
2978 				if (dnp->dn_type != DMU_OT_NONE)
2979 					fill++;
2980 			}
2981 		} else {
2982 			if (BP_IS_HOLE(bp)) {
2983 				fill = 0;
2984 			} else {
2985 				fill = 1;
2986 			}
2987 		}
2988 	} else {
2989 		blkptr_t *ibp = db->db.db_data;
2990 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2991 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2992 			if (BP_IS_HOLE(ibp))
2993 				continue;
2994 			fill += BP_GET_FILL(ibp);
2995 		}
2996 	}
2997 	DB_DNODE_EXIT(db);
2998 
2999 	if (!BP_IS_EMBEDDED(bp))
3000 		bp->blk_fill = fill;
3001 
3002 	mutex_exit(&db->db_mtx);
3003 
3004 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3005 	*db->db_blkptr = *bp;
3006 	rw_exit(&dn->dn_struct_rwlock);
3007 }
3008 
3009 /* ARGSUSED */
3010 /*
3011  * This function gets called just prior to running through the compression
3012  * stage of the zio pipeline. If we're an indirect block comprised of only
3013  * holes, then we want this indirect to be compressed away to a hole. In
3014  * order to do that we must zero out any information about the holes that
3015  * this indirect points to prior to before we try to compress it.
3016  */
3017 static void
3018 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3019 {
3020 	dmu_buf_impl_t *db = vdb;
3021 	dnode_t *dn;
3022 	blkptr_t *bp;
3023 	uint64_t i;
3024 	int epbs;
3025 
3026 	ASSERT3U(db->db_level, >, 0);
3027 	DB_DNODE_ENTER(db);
3028 	dn = DB_DNODE(db);
3029 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3030 
3031 	/* Determine if all our children are holes */
3032 	for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3033 		if (!BP_IS_HOLE(bp))
3034 			break;
3035 	}
3036 
3037 	/*
3038 	 * If all the children are holes, then zero them all out so that
3039 	 * we may get compressed away.
3040 	 */
3041 	if (i == 1 << epbs) {
3042 		/* didn't find any non-holes */
3043 		bzero(db->db.db_data, db->db.db_size);
3044 	}
3045 	DB_DNODE_EXIT(db);
3046 }
3047 
3048 /*
3049  * The SPA will call this callback several times for each zio - once
3050  * for every physical child i/o (zio->io_phys_children times).  This
3051  * allows the DMU to monitor the progress of each logical i/o.  For example,
3052  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3053  * block.  There may be a long delay before all copies/fragments are completed,
3054  * so this callback allows us to retire dirty space gradually, as the physical
3055  * i/os complete.
3056  */
3057 /* ARGSUSED */
3058 static void
3059 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3060 {
3061 	dmu_buf_impl_t *db = arg;
3062 	objset_t *os = db->db_objset;
3063 	dsl_pool_t *dp = dmu_objset_pool(os);
3064 	dbuf_dirty_record_t *dr;
3065 	int delta = 0;
3066 
3067 	dr = db->db_data_pending;
3068 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3069 
3070 	/*
3071 	 * The callback will be called io_phys_children times.  Retire one
3072 	 * portion of our dirty space each time we are called.  Any rounding
3073 	 * error will be cleaned up by dsl_pool_sync()'s call to
3074 	 * dsl_pool_undirty_space().
3075 	 */
3076 	delta = dr->dr_accounted / zio->io_phys_children;
3077 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
3078 }
3079 
3080 /* ARGSUSED */
3081 static void
3082 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3083 {
3084 	dmu_buf_impl_t *db = vdb;
3085 	blkptr_t *bp_orig = &zio->io_bp_orig;
3086 	blkptr_t *bp = db->db_blkptr;
3087 	objset_t *os = db->db_objset;
3088 	dmu_tx_t *tx = os->os_synctx;
3089 	dbuf_dirty_record_t **drp, *dr;
3090 
3091 	ASSERT0(zio->io_error);
3092 	ASSERT(db->db_blkptr == bp);
3093 
3094 	/*
3095 	 * For nopwrites and rewrites we ensure that the bp matches our
3096 	 * original and bypass all the accounting.
3097 	 */
3098 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3099 		ASSERT(BP_EQUAL(bp, bp_orig));
3100 	} else {
3101 		dsl_dataset_t *ds = os->os_dsl_dataset;
3102 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3103 		dsl_dataset_block_born(ds, bp, tx);
3104 	}
3105 
3106 	mutex_enter(&db->db_mtx);
3107 
3108 	DBUF_VERIFY(db);
3109 
3110 	drp = &db->db_last_dirty;
3111 	while ((dr = *drp) != db->db_data_pending)
3112 		drp = &dr->dr_next;
3113 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3114 	ASSERT(dr->dr_dbuf == db);
3115 	ASSERT(dr->dr_next == NULL);
3116 	*drp = dr->dr_next;
3117 
3118 #ifdef ZFS_DEBUG
3119 	if (db->db_blkid == DMU_SPILL_BLKID) {
3120 		dnode_t *dn;
3121 
3122 		DB_DNODE_ENTER(db);
3123 		dn = DB_DNODE(db);
3124 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3125 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3126 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3127 		DB_DNODE_EXIT(db);
3128 	}
3129 #endif
3130 
3131 	if (db->db_level == 0) {
3132 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3133 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3134 		if (db->db_state != DB_NOFILL) {
3135 			if (dr->dt.dl.dr_data != db->db_buf)
3136 				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
3137 				    db));
3138 			else if (!arc_released(db->db_buf))
3139 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
3140 		}
3141 	} else {
3142 		dnode_t *dn;
3143 
3144 		DB_DNODE_ENTER(db);
3145 		dn = DB_DNODE(db);
3146 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3147 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3148 		if (!BP_IS_HOLE(db->db_blkptr)) {
3149 			int epbs =
3150 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3151 			ASSERT3U(db->db_blkid, <=,
3152 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3153 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3154 			    db->db.db_size);
3155 			if (!arc_released(db->db_buf))
3156 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
3157 		}
3158 		DB_DNODE_EXIT(db);
3159 		mutex_destroy(&dr->dt.di.dr_mtx);
3160 		list_destroy(&dr->dt.di.dr_children);
3161 	}
3162 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
3163 
3164 	cv_broadcast(&db->db_changed);
3165 	ASSERT(db->db_dirtycnt > 0);
3166 	db->db_dirtycnt -= 1;
3167 	db->db_data_pending = NULL;
3168 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3169 }
3170 
3171 static void
3172 dbuf_write_nofill_ready(zio_t *zio)
3173 {
3174 	dbuf_write_ready(zio, NULL, zio->io_private);
3175 }
3176 
3177 static void
3178 dbuf_write_nofill_done(zio_t *zio)
3179 {
3180 	dbuf_write_done(zio, NULL, zio->io_private);
3181 }
3182 
3183 static void
3184 dbuf_write_override_ready(zio_t *zio)
3185 {
3186 	dbuf_dirty_record_t *dr = zio->io_private;
3187 	dmu_buf_impl_t *db = dr->dr_dbuf;
3188 
3189 	dbuf_write_ready(zio, NULL, db);
3190 }
3191 
3192 static void
3193 dbuf_write_override_done(zio_t *zio)
3194 {
3195 	dbuf_dirty_record_t *dr = zio->io_private;
3196 	dmu_buf_impl_t *db = dr->dr_dbuf;
3197 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3198 
3199 	mutex_enter(&db->db_mtx);
3200 	if (!BP_EQUAL(zio->io_bp, obp)) {
3201 		if (!BP_IS_HOLE(obp))
3202 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3203 		arc_release(dr->dt.dl.dr_data, db);
3204 	}
3205 	mutex_exit(&db->db_mtx);
3206 
3207 	dbuf_write_done(zio, NULL, db);
3208 }
3209 
3210 /* Issue I/O to commit a dirty buffer to disk. */
3211 static void
3212 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3213 {
3214 	dmu_buf_impl_t *db = dr->dr_dbuf;
3215 	dnode_t *dn;
3216 	objset_t *os;
3217 	dmu_buf_impl_t *parent = db->db_parent;
3218 	uint64_t txg = tx->tx_txg;
3219 	zbookmark_phys_t zb;
3220 	zio_prop_t zp;
3221 	zio_t *zio;
3222 	int wp_flag = 0;
3223 
3224 	ASSERT(dmu_tx_is_syncing(tx));
3225 
3226 	DB_DNODE_ENTER(db);
3227 	dn = DB_DNODE(db);
3228 	os = dn->dn_objset;
3229 
3230 	if (db->db_state != DB_NOFILL) {
3231 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3232 			/*
3233 			 * Private object buffers are released here rather
3234 			 * than in dbuf_dirty() since they are only modified
3235 			 * in the syncing context and we don't want the
3236 			 * overhead of making multiple copies of the data.
3237 			 */
3238 			if (BP_IS_HOLE(db->db_blkptr)) {
3239 				arc_buf_thaw(data);
3240 			} else {
3241 				dbuf_release_bp(db);
3242 			}
3243 		}
3244 	}
3245 
3246 	if (parent != dn->dn_dbuf) {
3247 		/* Our parent is an indirect block. */
3248 		/* We have a dirty parent that has been scheduled for write. */
3249 		ASSERT(parent && parent->db_data_pending);
3250 		/* Our parent's buffer is one level closer to the dnode. */
3251 		ASSERT(db->db_level == parent->db_level-1);
3252 		/*
3253 		 * We're about to modify our parent's db_data by modifying
3254 		 * our block pointer, so the parent must be released.
3255 		 */
3256 		ASSERT(arc_released(parent->db_buf));
3257 		zio = parent->db_data_pending->dr_zio;
3258 	} else {
3259 		/* Our parent is the dnode itself. */
3260 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3261 		    db->db_blkid != DMU_SPILL_BLKID) ||
3262 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3263 		if (db->db_blkid != DMU_SPILL_BLKID)
3264 			ASSERT3P(db->db_blkptr, ==,
3265 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
3266 		zio = dn->dn_zio;
3267 	}
3268 
3269 	ASSERT(db->db_level == 0 || data == db->db_buf);
3270 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3271 	ASSERT(zio);
3272 
3273 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3274 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3275 	    db->db.db_object, db->db_level, db->db_blkid);
3276 
3277 	if (db->db_blkid == DMU_SPILL_BLKID)
3278 		wp_flag = WP_SPILL;
3279 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3280 
3281 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3282 	DB_DNODE_EXIT(db);
3283 
3284 	/*
3285 	 * We copy the blkptr now (rather than when we instantiate the dirty
3286 	 * record), because its value can change between open context and
3287 	 * syncing context. We do not need to hold dn_struct_rwlock to read
3288 	 * db_blkptr because we are in syncing context.
3289 	 */
3290 	dr->dr_bp_copy = *db->db_blkptr;
3291 
3292 	if (db->db_level == 0 &&
3293 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3294 		/*
3295 		 * The BP for this block has been provided by open context
3296 		 * (by dmu_sync() or dmu_buf_write_embedded()).
3297 		 */
3298 		void *contents = (data != NULL) ? data->b_data : NULL;
3299 
3300 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3301 		    &dr->dr_bp_copy, contents, db->db.db_size, &zp,
3302 		    dbuf_write_override_ready, NULL, NULL,
3303 		    dbuf_write_override_done,
3304 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3305 		mutex_enter(&db->db_mtx);
3306 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3307 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3308 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3309 		mutex_exit(&db->db_mtx);
3310 	} else if (db->db_state == DB_NOFILL) {
3311 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3312 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3313 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3314 		    &dr->dr_bp_copy, NULL, db->db.db_size, &zp,
3315 		    dbuf_write_nofill_ready, NULL, NULL,
3316 		    dbuf_write_nofill_done, db,
3317 		    ZIO_PRIORITY_ASYNC_WRITE,
3318 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3319 	} else {
3320 		ASSERT(arc_released(data));
3321 
3322 		/*
3323 		 * For indirect blocks, we want to setup the children
3324 		 * ready callback so that we can properly handle an indirect
3325 		 * block that only contains holes.
3326 		 */
3327 		arc_done_func_t *children_ready_cb = NULL;
3328 		if (db->db_level != 0)
3329 			children_ready_cb = dbuf_write_children_ready;
3330 
3331 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
3332 		    &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3333 		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
3334 		    children_ready_cb,
3335 		    dbuf_write_physdone, dbuf_write_done, db,
3336 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3337 	}
3338 }
3339