xref: /illumos-gate/usr/src/uts/common/fs/zfs/dbuf.c (revision 7802d7bf98dec568dadf72286893b1fe5abd8602)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_send.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dbuf.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/spa.h>
39 #include <sys/zio.h>
40 #include <sys/dmu_zfetch.h>
41 #include <sys/sa.h>
42 #include <sys/sa_impl.h>
43 #include <sys/zfeature.h>
44 #include <sys/blkptr.h>
45 #include <sys/range_tree.h>
46 
47 /*
48  * Number of times that zfs_free_range() took the slow path while doing
49  * a zfs receive.  A nonzero value indicates a potential performance problem.
50  */
51 uint64_t zfs_free_range_recv_miss;
52 
53 static void dbuf_destroy(dmu_buf_impl_t *db);
54 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
55 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
56 
57 /*
58  * Global data structures and functions for the dbuf cache.
59  */
60 static kmem_cache_t *dbuf_cache;
61 
62 /* ARGSUSED */
63 static int
64 dbuf_cons(void *vdb, void *unused, int kmflag)
65 {
66 	dmu_buf_impl_t *db = vdb;
67 	bzero(db, sizeof (dmu_buf_impl_t));
68 
69 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
70 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
71 	refcount_create(&db->db_holds);
72 	return (0);
73 }
74 
75 /* ARGSUSED */
76 static void
77 dbuf_dest(void *vdb, void *unused)
78 {
79 	dmu_buf_impl_t *db = vdb;
80 	mutex_destroy(&db->db_mtx);
81 	cv_destroy(&db->db_changed);
82 	refcount_destroy(&db->db_holds);
83 }
84 
85 /*
86  * dbuf hash table routines
87  */
88 static dbuf_hash_table_t dbuf_hash_table;
89 
90 static uint64_t dbuf_hash_count;
91 
92 static uint64_t
93 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
94 {
95 	uintptr_t osv = (uintptr_t)os;
96 	uint64_t crc = -1ULL;
97 
98 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
99 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
100 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
101 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
102 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
103 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
104 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
105 
106 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
107 
108 	return (crc);
109 }
110 
111 #define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
112 
113 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
114 	((dbuf)->db.db_object == (obj) &&		\
115 	(dbuf)->db_objset == (os) &&			\
116 	(dbuf)->db_level == (level) &&			\
117 	(dbuf)->db_blkid == (blkid))
118 
119 dmu_buf_impl_t *
120 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid)
121 {
122 	dbuf_hash_table_t *h = &dbuf_hash_table;
123 	objset_t *os = dn->dn_objset;
124 	uint64_t obj = dn->dn_object;
125 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
126 	uint64_t idx = hv & h->hash_table_mask;
127 	dmu_buf_impl_t *db;
128 
129 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
130 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
131 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
132 			mutex_enter(&db->db_mtx);
133 			if (db->db_state != DB_EVICTING) {
134 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
135 				return (db);
136 			}
137 			mutex_exit(&db->db_mtx);
138 		}
139 	}
140 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
141 	return (NULL);
142 }
143 
144 /*
145  * Insert an entry into the hash table.  If there is already an element
146  * equal to elem in the hash table, then the already existing element
147  * will be returned and the new element will not be inserted.
148  * Otherwise returns NULL.
149  */
150 static dmu_buf_impl_t *
151 dbuf_hash_insert(dmu_buf_impl_t *db)
152 {
153 	dbuf_hash_table_t *h = &dbuf_hash_table;
154 	objset_t *os = db->db_objset;
155 	uint64_t obj = db->db.db_object;
156 	int level = db->db_level;
157 	uint64_t blkid = db->db_blkid;
158 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
159 	uint64_t idx = hv & h->hash_table_mask;
160 	dmu_buf_impl_t *dbf;
161 
162 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
163 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
164 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
165 			mutex_enter(&dbf->db_mtx);
166 			if (dbf->db_state != DB_EVICTING) {
167 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
168 				return (dbf);
169 			}
170 			mutex_exit(&dbf->db_mtx);
171 		}
172 	}
173 
174 	mutex_enter(&db->db_mtx);
175 	db->db_hash_next = h->hash_table[idx];
176 	h->hash_table[idx] = db;
177 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
178 	atomic_add_64(&dbuf_hash_count, 1);
179 
180 	return (NULL);
181 }
182 
183 /*
184  * Remove an entry from the hash table.  This operation will
185  * fail if there are any existing holds on the db.
186  */
187 static void
188 dbuf_hash_remove(dmu_buf_impl_t *db)
189 {
190 	dbuf_hash_table_t *h = &dbuf_hash_table;
191 	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
192 	    db->db_level, db->db_blkid);
193 	uint64_t idx = hv & h->hash_table_mask;
194 	dmu_buf_impl_t *dbf, **dbp;
195 
196 	/*
197 	 * We musn't hold db_mtx to maintin lock ordering:
198 	 * DBUF_HASH_MUTEX > db_mtx.
199 	 */
200 	ASSERT(refcount_is_zero(&db->db_holds));
201 	ASSERT(db->db_state == DB_EVICTING);
202 	ASSERT(!MUTEX_HELD(&db->db_mtx));
203 
204 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
205 	dbp = &h->hash_table[idx];
206 	while ((dbf = *dbp) != db) {
207 		dbp = &dbf->db_hash_next;
208 		ASSERT(dbf != NULL);
209 	}
210 	*dbp = db->db_hash_next;
211 	db->db_hash_next = NULL;
212 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
213 	atomic_add_64(&dbuf_hash_count, -1);
214 }
215 
216 static arc_evict_func_t dbuf_do_evict;
217 
218 static void
219 dbuf_evict_user(dmu_buf_impl_t *db)
220 {
221 	ASSERT(MUTEX_HELD(&db->db_mtx));
222 
223 	if (db->db_level != 0 || db->db_evict_func == NULL)
224 		return;
225 
226 	if (db->db_user_data_ptr_ptr)
227 		*db->db_user_data_ptr_ptr = db->db.db_data;
228 	db->db_evict_func(&db->db, db->db_user_ptr);
229 	db->db_user_ptr = NULL;
230 	db->db_user_data_ptr_ptr = NULL;
231 	db->db_evict_func = NULL;
232 }
233 
234 boolean_t
235 dbuf_is_metadata(dmu_buf_impl_t *db)
236 {
237 	if (db->db_level > 0) {
238 		return (B_TRUE);
239 	} else {
240 		boolean_t is_metadata;
241 
242 		DB_DNODE_ENTER(db);
243 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
244 		DB_DNODE_EXIT(db);
245 
246 		return (is_metadata);
247 	}
248 }
249 
250 void
251 dbuf_evict(dmu_buf_impl_t *db)
252 {
253 	ASSERT(MUTEX_HELD(&db->db_mtx));
254 	ASSERT(db->db_buf == NULL);
255 	ASSERT(db->db_data_pending == NULL);
256 
257 	dbuf_clear(db);
258 	dbuf_destroy(db);
259 }
260 
261 void
262 dbuf_init(void)
263 {
264 	uint64_t hsize = 1ULL << 16;
265 	dbuf_hash_table_t *h = &dbuf_hash_table;
266 	int i;
267 
268 	/*
269 	 * The hash table is big enough to fill all of physical memory
270 	 * with an average 4K block size.  The table will take up
271 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
272 	 */
273 	while (hsize * 4096 < physmem * PAGESIZE)
274 		hsize <<= 1;
275 
276 retry:
277 	h->hash_table_mask = hsize - 1;
278 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
279 	if (h->hash_table == NULL) {
280 		/* XXX - we should really return an error instead of assert */
281 		ASSERT(hsize > (1ULL << 10));
282 		hsize >>= 1;
283 		goto retry;
284 	}
285 
286 	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
287 	    sizeof (dmu_buf_impl_t),
288 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
289 
290 	for (i = 0; i < DBUF_MUTEXES; i++)
291 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
292 }
293 
294 void
295 dbuf_fini(void)
296 {
297 	dbuf_hash_table_t *h = &dbuf_hash_table;
298 	int i;
299 
300 	for (i = 0; i < DBUF_MUTEXES; i++)
301 		mutex_destroy(&h->hash_mutexes[i]);
302 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
303 	kmem_cache_destroy(dbuf_cache);
304 }
305 
306 /*
307  * Other stuff.
308  */
309 
310 #ifdef ZFS_DEBUG
311 static void
312 dbuf_verify(dmu_buf_impl_t *db)
313 {
314 	dnode_t *dn;
315 	dbuf_dirty_record_t *dr;
316 
317 	ASSERT(MUTEX_HELD(&db->db_mtx));
318 
319 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
320 		return;
321 
322 	ASSERT(db->db_objset != NULL);
323 	DB_DNODE_ENTER(db);
324 	dn = DB_DNODE(db);
325 	if (dn == NULL) {
326 		ASSERT(db->db_parent == NULL);
327 		ASSERT(db->db_blkptr == NULL);
328 	} else {
329 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
330 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
331 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
332 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
333 		    db->db_blkid == DMU_SPILL_BLKID ||
334 		    !list_is_empty(&dn->dn_dbufs));
335 	}
336 	if (db->db_blkid == DMU_BONUS_BLKID) {
337 		ASSERT(dn != NULL);
338 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
339 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
340 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
341 		ASSERT(dn != NULL);
342 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
343 		ASSERT0(db->db.db_offset);
344 	} else {
345 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
346 	}
347 
348 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
349 		ASSERT(dr->dr_dbuf == db);
350 
351 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
352 		ASSERT(dr->dr_dbuf == db);
353 
354 	/*
355 	 * We can't assert that db_size matches dn_datablksz because it
356 	 * can be momentarily different when another thread is doing
357 	 * dnode_set_blksz().
358 	 */
359 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
360 		dr = db->db_data_pending;
361 		/*
362 		 * It should only be modified in syncing context, so
363 		 * make sure we only have one copy of the data.
364 		 */
365 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
366 	}
367 
368 	/* verify db->db_blkptr */
369 	if (db->db_blkptr) {
370 		if (db->db_parent == dn->dn_dbuf) {
371 			/* db is pointed to by the dnode */
372 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
373 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
374 				ASSERT(db->db_parent == NULL);
375 			else
376 				ASSERT(db->db_parent != NULL);
377 			if (db->db_blkid != DMU_SPILL_BLKID)
378 				ASSERT3P(db->db_blkptr, ==,
379 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
380 		} else {
381 			/* db is pointed to by an indirect block */
382 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
383 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
384 			ASSERT3U(db->db_parent->db.db_object, ==,
385 			    db->db.db_object);
386 			/*
387 			 * dnode_grow_indblksz() can make this fail if we don't
388 			 * have the struct_rwlock.  XXX indblksz no longer
389 			 * grows.  safe to do this now?
390 			 */
391 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
392 				ASSERT3P(db->db_blkptr, ==,
393 				    ((blkptr_t *)db->db_parent->db.db_data +
394 				    db->db_blkid % epb));
395 			}
396 		}
397 	}
398 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
399 	    (db->db_buf == NULL || db->db_buf->b_data) &&
400 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
401 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
402 		/*
403 		 * If the blkptr isn't set but they have nonzero data,
404 		 * it had better be dirty, otherwise we'll lose that
405 		 * data when we evict this buffer.
406 		 */
407 		if (db->db_dirtycnt == 0) {
408 			uint64_t *buf = db->db.db_data;
409 			int i;
410 
411 			for (i = 0; i < db->db.db_size >> 3; i++) {
412 				ASSERT(buf[i] == 0);
413 			}
414 		}
415 	}
416 	DB_DNODE_EXIT(db);
417 }
418 #endif
419 
420 static void
421 dbuf_update_data(dmu_buf_impl_t *db)
422 {
423 	ASSERT(MUTEX_HELD(&db->db_mtx));
424 	if (db->db_level == 0 && db->db_user_data_ptr_ptr) {
425 		ASSERT(!refcount_is_zero(&db->db_holds));
426 		*db->db_user_data_ptr_ptr = db->db.db_data;
427 	}
428 }
429 
430 static void
431 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
432 {
433 	ASSERT(MUTEX_HELD(&db->db_mtx));
434 	ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf));
435 	db->db_buf = buf;
436 	if (buf != NULL) {
437 		ASSERT(buf->b_data != NULL);
438 		db->db.db_data = buf->b_data;
439 		if (!arc_released(buf))
440 			arc_set_callback(buf, dbuf_do_evict, db);
441 		dbuf_update_data(db);
442 	} else {
443 		dbuf_evict_user(db);
444 		db->db.db_data = NULL;
445 		if (db->db_state != DB_NOFILL)
446 			db->db_state = DB_UNCACHED;
447 	}
448 }
449 
450 /*
451  * Loan out an arc_buf for read.  Return the loaned arc_buf.
452  */
453 arc_buf_t *
454 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
455 {
456 	arc_buf_t *abuf;
457 
458 	mutex_enter(&db->db_mtx);
459 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
460 		int blksz = db->db.db_size;
461 		spa_t *spa = db->db_objset->os_spa;
462 
463 		mutex_exit(&db->db_mtx);
464 		abuf = arc_loan_buf(spa, blksz);
465 		bcopy(db->db.db_data, abuf->b_data, blksz);
466 	} else {
467 		abuf = db->db_buf;
468 		arc_loan_inuse_buf(abuf, db);
469 		dbuf_set_data(db, NULL);
470 		mutex_exit(&db->db_mtx);
471 	}
472 	return (abuf);
473 }
474 
475 uint64_t
476 dbuf_whichblock(dnode_t *dn, uint64_t offset)
477 {
478 	if (dn->dn_datablkshift) {
479 		return (offset >> dn->dn_datablkshift);
480 	} else {
481 		ASSERT3U(offset, <, dn->dn_datablksz);
482 		return (0);
483 	}
484 }
485 
486 static void
487 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
488 {
489 	dmu_buf_impl_t *db = vdb;
490 
491 	mutex_enter(&db->db_mtx);
492 	ASSERT3U(db->db_state, ==, DB_READ);
493 	/*
494 	 * All reads are synchronous, so we must have a hold on the dbuf
495 	 */
496 	ASSERT(refcount_count(&db->db_holds) > 0);
497 	ASSERT(db->db_buf == NULL);
498 	ASSERT(db->db.db_data == NULL);
499 	if (db->db_level == 0 && db->db_freed_in_flight) {
500 		/* we were freed in flight; disregard any error */
501 		arc_release(buf, db);
502 		bzero(buf->b_data, db->db.db_size);
503 		arc_buf_freeze(buf);
504 		db->db_freed_in_flight = FALSE;
505 		dbuf_set_data(db, buf);
506 		db->db_state = DB_CACHED;
507 	} else if (zio == NULL || zio->io_error == 0) {
508 		dbuf_set_data(db, buf);
509 		db->db_state = DB_CACHED;
510 	} else {
511 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
512 		ASSERT3P(db->db_buf, ==, NULL);
513 		VERIFY(arc_buf_remove_ref(buf, db));
514 		db->db_state = DB_UNCACHED;
515 	}
516 	cv_broadcast(&db->db_changed);
517 	dbuf_rele_and_unlock(db, NULL);
518 }
519 
520 static void
521 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
522 {
523 	dnode_t *dn;
524 	zbookmark_phys_t zb;
525 	uint32_t aflags = ARC_NOWAIT;
526 
527 	DB_DNODE_ENTER(db);
528 	dn = DB_DNODE(db);
529 	ASSERT(!refcount_is_zero(&db->db_holds));
530 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
531 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
532 	ASSERT(MUTEX_HELD(&db->db_mtx));
533 	ASSERT(db->db_state == DB_UNCACHED);
534 	ASSERT(db->db_buf == NULL);
535 
536 	if (db->db_blkid == DMU_BONUS_BLKID) {
537 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
538 
539 		ASSERT3U(bonuslen, <=, db->db.db_size);
540 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
541 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
542 		if (bonuslen < DN_MAX_BONUSLEN)
543 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
544 		if (bonuslen)
545 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
546 		DB_DNODE_EXIT(db);
547 		dbuf_update_data(db);
548 		db->db_state = DB_CACHED;
549 		mutex_exit(&db->db_mtx);
550 		return;
551 	}
552 
553 	/*
554 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
555 	 * processes the delete record and clears the bp while we are waiting
556 	 * for the dn_mtx (resulting in a "no" from block_freed).
557 	 */
558 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
559 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
560 	    BP_IS_HOLE(db->db_blkptr)))) {
561 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
562 
563 		DB_DNODE_EXIT(db);
564 		dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
565 		    db->db.db_size, db, type));
566 		bzero(db->db.db_data, db->db.db_size);
567 		db->db_state = DB_CACHED;
568 		*flags |= DB_RF_CACHED;
569 		mutex_exit(&db->db_mtx);
570 		return;
571 	}
572 
573 	DB_DNODE_EXIT(db);
574 
575 	db->db_state = DB_READ;
576 	mutex_exit(&db->db_mtx);
577 
578 	if (DBUF_IS_L2CACHEABLE(db))
579 		aflags |= ARC_L2CACHE;
580 	if (DBUF_IS_L2COMPRESSIBLE(db))
581 		aflags |= ARC_L2COMPRESS;
582 
583 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
584 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
585 	    db->db.db_object, db->db_level, db->db_blkid);
586 
587 	dbuf_add_ref(db, NULL);
588 
589 	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
590 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
591 	    (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
592 	    &aflags, &zb);
593 	if (aflags & ARC_CACHED)
594 		*flags |= DB_RF_CACHED;
595 }
596 
597 int
598 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
599 {
600 	int err = 0;
601 	boolean_t havepzio = (zio != NULL);
602 	boolean_t prefetch;
603 	dnode_t *dn;
604 
605 	/*
606 	 * We don't have to hold the mutex to check db_state because it
607 	 * can't be freed while we have a hold on the buffer.
608 	 */
609 	ASSERT(!refcount_is_zero(&db->db_holds));
610 
611 	if (db->db_state == DB_NOFILL)
612 		return (SET_ERROR(EIO));
613 
614 	DB_DNODE_ENTER(db);
615 	dn = DB_DNODE(db);
616 	if ((flags & DB_RF_HAVESTRUCT) == 0)
617 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
618 
619 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
620 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
621 	    DBUF_IS_CACHEABLE(db);
622 
623 	mutex_enter(&db->db_mtx);
624 	if (db->db_state == DB_CACHED) {
625 		mutex_exit(&db->db_mtx);
626 		if (prefetch)
627 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
628 			    db->db.db_size, TRUE);
629 		if ((flags & DB_RF_HAVESTRUCT) == 0)
630 			rw_exit(&dn->dn_struct_rwlock);
631 		DB_DNODE_EXIT(db);
632 	} else if (db->db_state == DB_UNCACHED) {
633 		spa_t *spa = dn->dn_objset->os_spa;
634 
635 		if (zio == NULL)
636 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
637 		dbuf_read_impl(db, zio, &flags);
638 
639 		/* dbuf_read_impl has dropped db_mtx for us */
640 
641 		if (prefetch)
642 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
643 			    db->db.db_size, flags & DB_RF_CACHED);
644 
645 		if ((flags & DB_RF_HAVESTRUCT) == 0)
646 			rw_exit(&dn->dn_struct_rwlock);
647 		DB_DNODE_EXIT(db);
648 
649 		if (!havepzio)
650 			err = zio_wait(zio);
651 	} else {
652 		/*
653 		 * Another reader came in while the dbuf was in flight
654 		 * between UNCACHED and CACHED.  Either a writer will finish
655 		 * writing the buffer (sending the dbuf to CACHED) or the
656 		 * first reader's request will reach the read_done callback
657 		 * and send the dbuf to CACHED.  Otherwise, a failure
658 		 * occurred and the dbuf went to UNCACHED.
659 		 */
660 		mutex_exit(&db->db_mtx);
661 		if (prefetch)
662 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
663 			    db->db.db_size, TRUE);
664 		if ((flags & DB_RF_HAVESTRUCT) == 0)
665 			rw_exit(&dn->dn_struct_rwlock);
666 		DB_DNODE_EXIT(db);
667 
668 		/* Skip the wait per the caller's request. */
669 		mutex_enter(&db->db_mtx);
670 		if ((flags & DB_RF_NEVERWAIT) == 0) {
671 			while (db->db_state == DB_READ ||
672 			    db->db_state == DB_FILL) {
673 				ASSERT(db->db_state == DB_READ ||
674 				    (flags & DB_RF_HAVESTRUCT) == 0);
675 				cv_wait(&db->db_changed, &db->db_mtx);
676 			}
677 			if (db->db_state == DB_UNCACHED)
678 				err = SET_ERROR(EIO);
679 		}
680 		mutex_exit(&db->db_mtx);
681 	}
682 
683 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
684 	return (err);
685 }
686 
687 static void
688 dbuf_noread(dmu_buf_impl_t *db)
689 {
690 	ASSERT(!refcount_is_zero(&db->db_holds));
691 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
692 	mutex_enter(&db->db_mtx);
693 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
694 		cv_wait(&db->db_changed, &db->db_mtx);
695 	if (db->db_state == DB_UNCACHED) {
696 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
697 		spa_t *spa = db->db_objset->os_spa;
698 
699 		ASSERT(db->db_buf == NULL);
700 		ASSERT(db->db.db_data == NULL);
701 		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
702 		db->db_state = DB_FILL;
703 	} else if (db->db_state == DB_NOFILL) {
704 		dbuf_set_data(db, NULL);
705 	} else {
706 		ASSERT3U(db->db_state, ==, DB_CACHED);
707 	}
708 	mutex_exit(&db->db_mtx);
709 }
710 
711 /*
712  * This is our just-in-time copy function.  It makes a copy of
713  * buffers, that have been modified in a previous transaction
714  * group, before we modify them in the current active group.
715  *
716  * This function is used in two places: when we are dirtying a
717  * buffer for the first time in a txg, and when we are freeing
718  * a range in a dnode that includes this buffer.
719  *
720  * Note that when we are called from dbuf_free_range() we do
721  * not put a hold on the buffer, we just traverse the active
722  * dbuf list for the dnode.
723  */
724 static void
725 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
726 {
727 	dbuf_dirty_record_t *dr = db->db_last_dirty;
728 
729 	ASSERT(MUTEX_HELD(&db->db_mtx));
730 	ASSERT(db->db.db_data != NULL);
731 	ASSERT(db->db_level == 0);
732 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
733 
734 	if (dr == NULL ||
735 	    (dr->dt.dl.dr_data !=
736 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
737 		return;
738 
739 	/*
740 	 * If the last dirty record for this dbuf has not yet synced
741 	 * and its referencing the dbuf data, either:
742 	 *	reset the reference to point to a new copy,
743 	 * or (if there a no active holders)
744 	 *	just null out the current db_data pointer.
745 	 */
746 	ASSERT(dr->dr_txg >= txg - 2);
747 	if (db->db_blkid == DMU_BONUS_BLKID) {
748 		/* Note that the data bufs here are zio_bufs */
749 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
750 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
751 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
752 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
753 		int size = db->db.db_size;
754 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
755 		spa_t *spa = db->db_objset->os_spa;
756 
757 		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
758 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
759 	} else {
760 		dbuf_set_data(db, NULL);
761 	}
762 }
763 
764 void
765 dbuf_unoverride(dbuf_dirty_record_t *dr)
766 {
767 	dmu_buf_impl_t *db = dr->dr_dbuf;
768 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
769 	uint64_t txg = dr->dr_txg;
770 
771 	ASSERT(MUTEX_HELD(&db->db_mtx));
772 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
773 	ASSERT(db->db_level == 0);
774 
775 	if (db->db_blkid == DMU_BONUS_BLKID ||
776 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
777 		return;
778 
779 	ASSERT(db->db_data_pending != dr);
780 
781 	/* free this block */
782 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
783 		zio_free(db->db_objset->os_spa, txg, bp);
784 
785 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
786 	dr->dt.dl.dr_nopwrite = B_FALSE;
787 
788 	/*
789 	 * Release the already-written buffer, so we leave it in
790 	 * a consistent dirty state.  Note that all callers are
791 	 * modifying the buffer, so they will immediately do
792 	 * another (redundant) arc_release().  Therefore, leave
793 	 * the buf thawed to save the effort of freezing &
794 	 * immediately re-thawing it.
795 	 */
796 	arc_release(dr->dt.dl.dr_data, db);
797 }
798 
799 /*
800  * Evict (if its unreferenced) or clear (if its referenced) any level-0
801  * data blocks in the free range, so that any future readers will find
802  * empty blocks.
803  *
804  * This is a no-op if the dataset is in the middle of an incremental
805  * receive; see comment below for details.
806  */
807 void
808 dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx)
809 {
810 	dmu_buf_impl_t *db, *db_next;
811 	uint64_t txg = tx->tx_txg;
812 
813 	if (end > dn->dn_maxblkid && (end != DMU_SPILL_BLKID))
814 		end = dn->dn_maxblkid;
815 	dprintf_dnode(dn, "start=%llu end=%llu\n", start, end);
816 
817 	mutex_enter(&dn->dn_dbufs_mtx);
818 	if (start >= dn->dn_unlisted_l0_blkid * dn->dn_datablksz) {
819 		/* There can't be any dbufs in this range; no need to search. */
820 		mutex_exit(&dn->dn_dbufs_mtx);
821 		return;
822 	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
823 		/*
824 		 * If we are receiving, we expect there to be no dbufs in
825 		 * the range to be freed, because receive modifies each
826 		 * block at most once, and in offset order.  If this is
827 		 * not the case, it can lead to performance problems,
828 		 * so note that we unexpectedly took the slow path.
829 		 */
830 		atomic_inc_64(&zfs_free_range_recv_miss);
831 	}
832 
833 	for (db = list_head(&dn->dn_dbufs); db != NULL; db = db_next) {
834 		db_next = list_next(&dn->dn_dbufs, db);
835 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
836 
837 		if (db->db_level != 0)
838 			continue;
839 		if (db->db_blkid < start || db->db_blkid > end)
840 			continue;
841 
842 		/* found a level 0 buffer in the range */
843 		mutex_enter(&db->db_mtx);
844 		if (dbuf_undirty(db, tx)) {
845 			/* mutex has been dropped and dbuf destroyed */
846 			continue;
847 		}
848 
849 		if (db->db_state == DB_UNCACHED ||
850 		    db->db_state == DB_NOFILL ||
851 		    db->db_state == DB_EVICTING) {
852 			ASSERT(db->db.db_data == NULL);
853 			mutex_exit(&db->db_mtx);
854 			continue;
855 		}
856 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
857 			/* will be handled in dbuf_read_done or dbuf_rele */
858 			db->db_freed_in_flight = TRUE;
859 			mutex_exit(&db->db_mtx);
860 			continue;
861 		}
862 		if (refcount_count(&db->db_holds) == 0) {
863 			ASSERT(db->db_buf);
864 			dbuf_clear(db);
865 			continue;
866 		}
867 		/* The dbuf is referenced */
868 
869 		if (db->db_last_dirty != NULL) {
870 			dbuf_dirty_record_t *dr = db->db_last_dirty;
871 
872 			if (dr->dr_txg == txg) {
873 				/*
874 				 * This buffer is "in-use", re-adjust the file
875 				 * size to reflect that this buffer may
876 				 * contain new data when we sync.
877 				 */
878 				if (db->db_blkid != DMU_SPILL_BLKID &&
879 				    db->db_blkid > dn->dn_maxblkid)
880 					dn->dn_maxblkid = db->db_blkid;
881 				dbuf_unoverride(dr);
882 			} else {
883 				/*
884 				 * This dbuf is not dirty in the open context.
885 				 * Either uncache it (if its not referenced in
886 				 * the open context) or reset its contents to
887 				 * empty.
888 				 */
889 				dbuf_fix_old_data(db, txg);
890 			}
891 		}
892 		/* clear the contents if its cached */
893 		if (db->db_state == DB_CACHED) {
894 			ASSERT(db->db.db_data != NULL);
895 			arc_release(db->db_buf, db);
896 			bzero(db->db.db_data, db->db.db_size);
897 			arc_buf_freeze(db->db_buf);
898 		}
899 
900 		mutex_exit(&db->db_mtx);
901 	}
902 	mutex_exit(&dn->dn_dbufs_mtx);
903 }
904 
905 static int
906 dbuf_block_freeable(dmu_buf_impl_t *db)
907 {
908 	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
909 	uint64_t birth_txg = 0;
910 
911 	/*
912 	 * We don't need any locking to protect db_blkptr:
913 	 * If it's syncing, then db_last_dirty will be set
914 	 * so we'll ignore db_blkptr.
915 	 *
916 	 * This logic ensures that only block births for
917 	 * filled blocks are considered.
918 	 */
919 	ASSERT(MUTEX_HELD(&db->db_mtx));
920 	if (db->db_last_dirty && (db->db_blkptr == NULL ||
921 	    !BP_IS_HOLE(db->db_blkptr))) {
922 		birth_txg = db->db_last_dirty->dr_txg;
923 	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
924 		birth_txg = db->db_blkptr->blk_birth;
925 	}
926 
927 	/*
928 	 * If this block don't exist or is in a snapshot, it can't be freed.
929 	 * Don't pass the bp to dsl_dataset_block_freeable() since we
930 	 * are holding the db_mtx lock and might deadlock if we are
931 	 * prefetching a dedup-ed block.
932 	 */
933 	if (birth_txg != 0)
934 		return (ds == NULL ||
935 		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
936 	else
937 		return (B_FALSE);
938 }
939 
940 void
941 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
942 {
943 	arc_buf_t *buf, *obuf;
944 	int osize = db->db.db_size;
945 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
946 	dnode_t *dn;
947 
948 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
949 
950 	DB_DNODE_ENTER(db);
951 	dn = DB_DNODE(db);
952 
953 	/* XXX does *this* func really need the lock? */
954 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
955 
956 	/*
957 	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
958 	 * is OK, because there can be no other references to the db
959 	 * when we are changing its size, so no concurrent DB_FILL can
960 	 * be happening.
961 	 */
962 	/*
963 	 * XXX we should be doing a dbuf_read, checking the return
964 	 * value and returning that up to our callers
965 	 */
966 	dmu_buf_will_dirty(&db->db, tx);
967 
968 	/* create the data buffer for the new block */
969 	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
970 
971 	/* copy old block data to the new block */
972 	obuf = db->db_buf;
973 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
974 	/* zero the remainder */
975 	if (size > osize)
976 		bzero((uint8_t *)buf->b_data + osize, size - osize);
977 
978 	mutex_enter(&db->db_mtx);
979 	dbuf_set_data(db, buf);
980 	VERIFY(arc_buf_remove_ref(obuf, db));
981 	db->db.db_size = size;
982 
983 	if (db->db_level == 0) {
984 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
985 		db->db_last_dirty->dt.dl.dr_data = buf;
986 	}
987 	mutex_exit(&db->db_mtx);
988 
989 	dnode_willuse_space(dn, size-osize, tx);
990 	DB_DNODE_EXIT(db);
991 }
992 
993 void
994 dbuf_release_bp(dmu_buf_impl_t *db)
995 {
996 	objset_t *os = db->db_objset;
997 
998 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
999 	ASSERT(arc_released(os->os_phys_buf) ||
1000 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1001 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1002 
1003 	(void) arc_release(db->db_buf, db);
1004 }
1005 
1006 dbuf_dirty_record_t *
1007 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1008 {
1009 	dnode_t *dn;
1010 	objset_t *os;
1011 	dbuf_dirty_record_t **drp, *dr;
1012 	int drop_struct_lock = FALSE;
1013 	boolean_t do_free_accounting = B_FALSE;
1014 	int txgoff = tx->tx_txg & TXG_MASK;
1015 
1016 	ASSERT(tx->tx_txg != 0);
1017 	ASSERT(!refcount_is_zero(&db->db_holds));
1018 	DMU_TX_DIRTY_BUF(tx, db);
1019 
1020 	DB_DNODE_ENTER(db);
1021 	dn = DB_DNODE(db);
1022 	/*
1023 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1024 	 * objects may be dirtied in syncing context, but only if they
1025 	 * were already pre-dirtied in open context.
1026 	 */
1027 	ASSERT(!dmu_tx_is_syncing(tx) ||
1028 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1029 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1030 	    dn->dn_objset->os_dsl_dataset == NULL);
1031 	/*
1032 	 * We make this assert for private objects as well, but after we
1033 	 * check if we're already dirty.  They are allowed to re-dirty
1034 	 * in syncing context.
1035 	 */
1036 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1037 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1038 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1039 
1040 	mutex_enter(&db->db_mtx);
1041 	/*
1042 	 * XXX make this true for indirects too?  The problem is that
1043 	 * transactions created with dmu_tx_create_assigned() from
1044 	 * syncing context don't bother holding ahead.
1045 	 */
1046 	ASSERT(db->db_level != 0 ||
1047 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1048 	    db->db_state == DB_NOFILL);
1049 
1050 	mutex_enter(&dn->dn_mtx);
1051 	/*
1052 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1053 	 * initialize the objset.
1054 	 */
1055 	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1056 	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1057 		dn->dn_dirtyctx =
1058 		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1059 		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1060 		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1061 	}
1062 	mutex_exit(&dn->dn_mtx);
1063 
1064 	if (db->db_blkid == DMU_SPILL_BLKID)
1065 		dn->dn_have_spill = B_TRUE;
1066 
1067 	/*
1068 	 * If this buffer is already dirty, we're done.
1069 	 */
1070 	drp = &db->db_last_dirty;
1071 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1072 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1073 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1074 		drp = &dr->dr_next;
1075 	if (dr && dr->dr_txg == tx->tx_txg) {
1076 		DB_DNODE_EXIT(db);
1077 
1078 		if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1079 			/*
1080 			 * If this buffer has already been written out,
1081 			 * we now need to reset its state.
1082 			 */
1083 			dbuf_unoverride(dr);
1084 			if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1085 			    db->db_state != DB_NOFILL)
1086 				arc_buf_thaw(db->db_buf);
1087 		}
1088 		mutex_exit(&db->db_mtx);
1089 		return (dr);
1090 	}
1091 
1092 	/*
1093 	 * Only valid if not already dirty.
1094 	 */
1095 	ASSERT(dn->dn_object == 0 ||
1096 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1097 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1098 
1099 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1100 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1101 	    dn->dn_phys->dn_nlevels > db->db_level ||
1102 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1103 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1104 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1105 
1106 	/*
1107 	 * We should only be dirtying in syncing context if it's the
1108 	 * mos or we're initializing the os or it's a special object.
1109 	 * However, we are allowed to dirty in syncing context provided
1110 	 * we already dirtied it in open context.  Hence we must make
1111 	 * this assertion only if we're not already dirty.
1112 	 */
1113 	os = dn->dn_objset;
1114 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1115 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1116 	ASSERT(db->db.db_size != 0);
1117 
1118 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1119 
1120 	if (db->db_blkid != DMU_BONUS_BLKID) {
1121 		/*
1122 		 * Update the accounting.
1123 		 * Note: we delay "free accounting" until after we drop
1124 		 * the db_mtx.  This keeps us from grabbing other locks
1125 		 * (and possibly deadlocking) in bp_get_dsize() while
1126 		 * also holding the db_mtx.
1127 		 */
1128 		dnode_willuse_space(dn, db->db.db_size, tx);
1129 		do_free_accounting = dbuf_block_freeable(db);
1130 	}
1131 
1132 	/*
1133 	 * If this buffer is dirty in an old transaction group we need
1134 	 * to make a copy of it so that the changes we make in this
1135 	 * transaction group won't leak out when we sync the older txg.
1136 	 */
1137 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1138 	if (db->db_level == 0) {
1139 		void *data_old = db->db_buf;
1140 
1141 		if (db->db_state != DB_NOFILL) {
1142 			if (db->db_blkid == DMU_BONUS_BLKID) {
1143 				dbuf_fix_old_data(db, tx->tx_txg);
1144 				data_old = db->db.db_data;
1145 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1146 				/*
1147 				 * Release the data buffer from the cache so
1148 				 * that we can modify it without impacting
1149 				 * possible other users of this cached data
1150 				 * block.  Note that indirect blocks and
1151 				 * private objects are not released until the
1152 				 * syncing state (since they are only modified
1153 				 * then).
1154 				 */
1155 				arc_release(db->db_buf, db);
1156 				dbuf_fix_old_data(db, tx->tx_txg);
1157 				data_old = db->db_buf;
1158 			}
1159 			ASSERT(data_old != NULL);
1160 		}
1161 		dr->dt.dl.dr_data = data_old;
1162 	} else {
1163 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1164 		list_create(&dr->dt.di.dr_children,
1165 		    sizeof (dbuf_dirty_record_t),
1166 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1167 	}
1168 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1169 		dr->dr_accounted = db->db.db_size;
1170 	dr->dr_dbuf = db;
1171 	dr->dr_txg = tx->tx_txg;
1172 	dr->dr_next = *drp;
1173 	*drp = dr;
1174 
1175 	/*
1176 	 * We could have been freed_in_flight between the dbuf_noread
1177 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1178 	 * happened after the free.
1179 	 */
1180 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1181 	    db->db_blkid != DMU_SPILL_BLKID) {
1182 		mutex_enter(&dn->dn_mtx);
1183 		if (dn->dn_free_ranges[txgoff] != NULL) {
1184 			range_tree_clear(dn->dn_free_ranges[txgoff],
1185 			    db->db_blkid, 1);
1186 		}
1187 		mutex_exit(&dn->dn_mtx);
1188 		db->db_freed_in_flight = FALSE;
1189 	}
1190 
1191 	/*
1192 	 * This buffer is now part of this txg
1193 	 */
1194 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1195 	db->db_dirtycnt += 1;
1196 	ASSERT3U(db->db_dirtycnt, <=, 3);
1197 
1198 	mutex_exit(&db->db_mtx);
1199 
1200 	if (db->db_blkid == DMU_BONUS_BLKID ||
1201 	    db->db_blkid == DMU_SPILL_BLKID) {
1202 		mutex_enter(&dn->dn_mtx);
1203 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1204 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1205 		mutex_exit(&dn->dn_mtx);
1206 		dnode_setdirty(dn, tx);
1207 		DB_DNODE_EXIT(db);
1208 		return (dr);
1209 	} else if (do_free_accounting) {
1210 		blkptr_t *bp = db->db_blkptr;
1211 		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1212 		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1213 		/*
1214 		 * This is only a guess -- if the dbuf is dirty
1215 		 * in a previous txg, we don't know how much
1216 		 * space it will use on disk yet.  We should
1217 		 * really have the struct_rwlock to access
1218 		 * db_blkptr, but since this is just a guess,
1219 		 * it's OK if we get an odd answer.
1220 		 */
1221 		ddt_prefetch(os->os_spa, bp);
1222 		dnode_willuse_space(dn, -willfree, tx);
1223 	}
1224 
1225 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1226 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1227 		drop_struct_lock = TRUE;
1228 	}
1229 
1230 	if (db->db_level == 0) {
1231 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1232 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1233 	}
1234 
1235 	if (db->db_level+1 < dn->dn_nlevels) {
1236 		dmu_buf_impl_t *parent = db->db_parent;
1237 		dbuf_dirty_record_t *di;
1238 		int parent_held = FALSE;
1239 
1240 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1241 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1242 
1243 			parent = dbuf_hold_level(dn, db->db_level+1,
1244 			    db->db_blkid >> epbs, FTAG);
1245 			ASSERT(parent != NULL);
1246 			parent_held = TRUE;
1247 		}
1248 		if (drop_struct_lock)
1249 			rw_exit(&dn->dn_struct_rwlock);
1250 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1251 		di = dbuf_dirty(parent, tx);
1252 		if (parent_held)
1253 			dbuf_rele(parent, FTAG);
1254 
1255 		mutex_enter(&db->db_mtx);
1256 		/*
1257 		 * Since we've dropped the mutex, it's possible that
1258 		 * dbuf_undirty() might have changed this out from under us.
1259 		 */
1260 		if (db->db_last_dirty == dr ||
1261 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1262 			mutex_enter(&di->dt.di.dr_mtx);
1263 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1264 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1265 			list_insert_tail(&di->dt.di.dr_children, dr);
1266 			mutex_exit(&di->dt.di.dr_mtx);
1267 			dr->dr_parent = di;
1268 		}
1269 		mutex_exit(&db->db_mtx);
1270 	} else {
1271 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1272 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1273 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1274 		mutex_enter(&dn->dn_mtx);
1275 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1276 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1277 		mutex_exit(&dn->dn_mtx);
1278 		if (drop_struct_lock)
1279 			rw_exit(&dn->dn_struct_rwlock);
1280 	}
1281 
1282 	dnode_setdirty(dn, tx);
1283 	DB_DNODE_EXIT(db);
1284 	return (dr);
1285 }
1286 
1287 /*
1288  * Undirty a buffer in the transaction group referenced by the given
1289  * transaction.  Return whether this evicted the dbuf.
1290  */
1291 static boolean_t
1292 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1293 {
1294 	dnode_t *dn;
1295 	uint64_t txg = tx->tx_txg;
1296 	dbuf_dirty_record_t *dr, **drp;
1297 
1298 	ASSERT(txg != 0);
1299 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1300 	ASSERT0(db->db_level);
1301 	ASSERT(MUTEX_HELD(&db->db_mtx));
1302 
1303 	/*
1304 	 * If this buffer is not dirty, we're done.
1305 	 */
1306 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1307 		if (dr->dr_txg <= txg)
1308 			break;
1309 	if (dr == NULL || dr->dr_txg < txg)
1310 		return (B_FALSE);
1311 	ASSERT(dr->dr_txg == txg);
1312 	ASSERT(dr->dr_dbuf == db);
1313 
1314 	DB_DNODE_ENTER(db);
1315 	dn = DB_DNODE(db);
1316 
1317 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1318 
1319 	ASSERT(db->db.db_size != 0);
1320 
1321 	/*
1322 	 * Any space we accounted for in dp_dirty_* will be cleaned up by
1323 	 * dsl_pool_sync().  This is relatively rare so the discrepancy
1324 	 * is not a big deal.
1325 	 */
1326 
1327 	*drp = dr->dr_next;
1328 
1329 	/*
1330 	 * Note that there are three places in dbuf_dirty()
1331 	 * where this dirty record may be put on a list.
1332 	 * Make sure to do a list_remove corresponding to
1333 	 * every one of those list_insert calls.
1334 	 */
1335 	if (dr->dr_parent) {
1336 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1337 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1338 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1339 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1340 	    db->db_level+1 == dn->dn_nlevels) {
1341 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1342 		mutex_enter(&dn->dn_mtx);
1343 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1344 		mutex_exit(&dn->dn_mtx);
1345 	}
1346 	DB_DNODE_EXIT(db);
1347 
1348 	if (db->db_state != DB_NOFILL) {
1349 		dbuf_unoverride(dr);
1350 
1351 		ASSERT(db->db_buf != NULL);
1352 		ASSERT(dr->dt.dl.dr_data != NULL);
1353 		if (dr->dt.dl.dr_data != db->db_buf)
1354 			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1355 	}
1356 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1357 
1358 	ASSERT(db->db_dirtycnt > 0);
1359 	db->db_dirtycnt -= 1;
1360 
1361 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1362 		arc_buf_t *buf = db->db_buf;
1363 
1364 		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1365 		dbuf_set_data(db, NULL);
1366 		VERIFY(arc_buf_remove_ref(buf, db));
1367 		dbuf_evict(db);
1368 		return (B_TRUE);
1369 	}
1370 
1371 	return (B_FALSE);
1372 }
1373 
1374 void
1375 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1376 {
1377 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1378 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1379 
1380 	ASSERT(tx->tx_txg != 0);
1381 	ASSERT(!refcount_is_zero(&db->db_holds));
1382 
1383 	DB_DNODE_ENTER(db);
1384 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1385 		rf |= DB_RF_HAVESTRUCT;
1386 	DB_DNODE_EXIT(db);
1387 	(void) dbuf_read(db, NULL, rf);
1388 	(void) dbuf_dirty(db, tx);
1389 }
1390 
1391 void
1392 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1393 {
1394 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1395 
1396 	db->db_state = DB_NOFILL;
1397 
1398 	dmu_buf_will_fill(db_fake, tx);
1399 }
1400 
1401 void
1402 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1403 {
1404 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1405 
1406 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1407 	ASSERT(tx->tx_txg != 0);
1408 	ASSERT(db->db_level == 0);
1409 	ASSERT(!refcount_is_zero(&db->db_holds));
1410 
1411 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1412 	    dmu_tx_private_ok(tx));
1413 
1414 	dbuf_noread(db);
1415 	(void) dbuf_dirty(db, tx);
1416 }
1417 
1418 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1419 /* ARGSUSED */
1420 void
1421 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1422 {
1423 	mutex_enter(&db->db_mtx);
1424 	DBUF_VERIFY(db);
1425 
1426 	if (db->db_state == DB_FILL) {
1427 		if (db->db_level == 0 && db->db_freed_in_flight) {
1428 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1429 			/* we were freed while filling */
1430 			/* XXX dbuf_undirty? */
1431 			bzero(db->db.db_data, db->db.db_size);
1432 			db->db_freed_in_flight = FALSE;
1433 		}
1434 		db->db_state = DB_CACHED;
1435 		cv_broadcast(&db->db_changed);
1436 	}
1437 	mutex_exit(&db->db_mtx);
1438 }
1439 
1440 void
1441 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1442     bp_embedded_type_t etype, enum zio_compress comp,
1443     int uncompressed_size, int compressed_size, int byteorder,
1444     dmu_tx_t *tx)
1445 {
1446 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1447 	struct dirty_leaf *dl;
1448 	dmu_object_type_t type;
1449 
1450 	DB_DNODE_ENTER(db);
1451 	type = DB_DNODE(db)->dn_type;
1452 	DB_DNODE_EXIT(db);
1453 
1454 	ASSERT0(db->db_level);
1455 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1456 
1457 	dmu_buf_will_not_fill(dbuf, tx);
1458 
1459 	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1460 	dl = &db->db_last_dirty->dt.dl;
1461 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1462 	    data, comp, uncompressed_size, compressed_size);
1463 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1464 	BP_SET_TYPE(&dl->dr_overridden_by, type);
1465 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1466 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1467 
1468 	dl->dr_override_state = DR_OVERRIDDEN;
1469 	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1470 }
1471 
1472 /*
1473  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1474  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1475  */
1476 void
1477 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1478 {
1479 	ASSERT(!refcount_is_zero(&db->db_holds));
1480 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1481 	ASSERT(db->db_level == 0);
1482 	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1483 	ASSERT(buf != NULL);
1484 	ASSERT(arc_buf_size(buf) == db->db.db_size);
1485 	ASSERT(tx->tx_txg != 0);
1486 
1487 	arc_return_buf(buf, db);
1488 	ASSERT(arc_released(buf));
1489 
1490 	mutex_enter(&db->db_mtx);
1491 
1492 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1493 		cv_wait(&db->db_changed, &db->db_mtx);
1494 
1495 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1496 
1497 	if (db->db_state == DB_CACHED &&
1498 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1499 		mutex_exit(&db->db_mtx);
1500 		(void) dbuf_dirty(db, tx);
1501 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1502 		VERIFY(arc_buf_remove_ref(buf, db));
1503 		xuio_stat_wbuf_copied();
1504 		return;
1505 	}
1506 
1507 	xuio_stat_wbuf_nocopy();
1508 	if (db->db_state == DB_CACHED) {
1509 		dbuf_dirty_record_t *dr = db->db_last_dirty;
1510 
1511 		ASSERT(db->db_buf != NULL);
1512 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1513 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1514 			if (!arc_released(db->db_buf)) {
1515 				ASSERT(dr->dt.dl.dr_override_state ==
1516 				    DR_OVERRIDDEN);
1517 				arc_release(db->db_buf, db);
1518 			}
1519 			dr->dt.dl.dr_data = buf;
1520 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1521 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1522 			arc_release(db->db_buf, db);
1523 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1524 		}
1525 		db->db_buf = NULL;
1526 	}
1527 	ASSERT(db->db_buf == NULL);
1528 	dbuf_set_data(db, buf);
1529 	db->db_state = DB_FILL;
1530 	mutex_exit(&db->db_mtx);
1531 	(void) dbuf_dirty(db, tx);
1532 	dmu_buf_fill_done(&db->db, tx);
1533 }
1534 
1535 /*
1536  * "Clear" the contents of this dbuf.  This will mark the dbuf
1537  * EVICTING and clear *most* of its references.  Unfortunately,
1538  * when we are not holding the dn_dbufs_mtx, we can't clear the
1539  * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1540  * in this case.  For callers from the DMU we will usually see:
1541  *	dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy()
1542  * For the arc callback, we will usually see:
1543  *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1544  * Sometimes, though, we will get a mix of these two:
1545  *	DMU: dbuf_clear()->arc_buf_evict()
1546  *	ARC: dbuf_do_evict()->dbuf_destroy()
1547  */
1548 void
1549 dbuf_clear(dmu_buf_impl_t *db)
1550 {
1551 	dnode_t *dn;
1552 	dmu_buf_impl_t *parent = db->db_parent;
1553 	dmu_buf_impl_t *dndb;
1554 	int dbuf_gone = FALSE;
1555 
1556 	ASSERT(MUTEX_HELD(&db->db_mtx));
1557 	ASSERT(refcount_is_zero(&db->db_holds));
1558 
1559 	dbuf_evict_user(db);
1560 
1561 	if (db->db_state == DB_CACHED) {
1562 		ASSERT(db->db.db_data != NULL);
1563 		if (db->db_blkid == DMU_BONUS_BLKID) {
1564 			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1565 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1566 		}
1567 		db->db.db_data = NULL;
1568 		db->db_state = DB_UNCACHED;
1569 	}
1570 
1571 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1572 	ASSERT(db->db_data_pending == NULL);
1573 
1574 	db->db_state = DB_EVICTING;
1575 	db->db_blkptr = NULL;
1576 
1577 	DB_DNODE_ENTER(db);
1578 	dn = DB_DNODE(db);
1579 	dndb = dn->dn_dbuf;
1580 	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1581 		list_remove(&dn->dn_dbufs, db);
1582 		(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1583 		membar_producer();
1584 		DB_DNODE_EXIT(db);
1585 		/*
1586 		 * Decrementing the dbuf count means that the hold corresponding
1587 		 * to the removed dbuf is no longer discounted in dnode_move(),
1588 		 * so the dnode cannot be moved until after we release the hold.
1589 		 * The membar_producer() ensures visibility of the decremented
1590 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1591 		 * release any lock.
1592 		 */
1593 		dnode_rele(dn, db);
1594 		db->db_dnode_handle = NULL;
1595 	} else {
1596 		DB_DNODE_EXIT(db);
1597 	}
1598 
1599 	if (db->db_buf)
1600 		dbuf_gone = arc_buf_evict(db->db_buf);
1601 
1602 	if (!dbuf_gone)
1603 		mutex_exit(&db->db_mtx);
1604 
1605 	/*
1606 	 * If this dbuf is referenced from an indirect dbuf,
1607 	 * decrement the ref count on the indirect dbuf.
1608 	 */
1609 	if (parent && parent != dndb)
1610 		dbuf_rele(parent, db);
1611 }
1612 
1613 static int
1614 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1615     dmu_buf_impl_t **parentp, blkptr_t **bpp)
1616 {
1617 	int nlevels, epbs;
1618 
1619 	*parentp = NULL;
1620 	*bpp = NULL;
1621 
1622 	ASSERT(blkid != DMU_BONUS_BLKID);
1623 
1624 	if (blkid == DMU_SPILL_BLKID) {
1625 		mutex_enter(&dn->dn_mtx);
1626 		if (dn->dn_have_spill &&
1627 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1628 			*bpp = &dn->dn_phys->dn_spill;
1629 		else
1630 			*bpp = NULL;
1631 		dbuf_add_ref(dn->dn_dbuf, NULL);
1632 		*parentp = dn->dn_dbuf;
1633 		mutex_exit(&dn->dn_mtx);
1634 		return (0);
1635 	}
1636 
1637 	if (dn->dn_phys->dn_nlevels == 0)
1638 		nlevels = 1;
1639 	else
1640 		nlevels = dn->dn_phys->dn_nlevels;
1641 
1642 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1643 
1644 	ASSERT3U(level * epbs, <, 64);
1645 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1646 	if (level >= nlevels ||
1647 	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1648 		/* the buffer has no parent yet */
1649 		return (SET_ERROR(ENOENT));
1650 	} else if (level < nlevels-1) {
1651 		/* this block is referenced from an indirect block */
1652 		int err = dbuf_hold_impl(dn, level+1,
1653 		    blkid >> epbs, fail_sparse, NULL, parentp);
1654 		if (err)
1655 			return (err);
1656 		err = dbuf_read(*parentp, NULL,
1657 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1658 		if (err) {
1659 			dbuf_rele(*parentp, NULL);
1660 			*parentp = NULL;
1661 			return (err);
1662 		}
1663 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1664 		    (blkid & ((1ULL << epbs) - 1));
1665 		return (0);
1666 	} else {
1667 		/* the block is referenced from the dnode */
1668 		ASSERT3U(level, ==, nlevels-1);
1669 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1670 		    blkid < dn->dn_phys->dn_nblkptr);
1671 		if (dn->dn_dbuf) {
1672 			dbuf_add_ref(dn->dn_dbuf, NULL);
1673 			*parentp = dn->dn_dbuf;
1674 		}
1675 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1676 		return (0);
1677 	}
1678 }
1679 
1680 static dmu_buf_impl_t *
1681 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1682     dmu_buf_impl_t *parent, blkptr_t *blkptr)
1683 {
1684 	objset_t *os = dn->dn_objset;
1685 	dmu_buf_impl_t *db, *odb;
1686 
1687 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1688 	ASSERT(dn->dn_type != DMU_OT_NONE);
1689 
1690 	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1691 
1692 	db->db_objset = os;
1693 	db->db.db_object = dn->dn_object;
1694 	db->db_level = level;
1695 	db->db_blkid = blkid;
1696 	db->db_last_dirty = NULL;
1697 	db->db_dirtycnt = 0;
1698 	db->db_dnode_handle = dn->dn_handle;
1699 	db->db_parent = parent;
1700 	db->db_blkptr = blkptr;
1701 
1702 	db->db_user_ptr = NULL;
1703 	db->db_user_data_ptr_ptr = NULL;
1704 	db->db_evict_func = NULL;
1705 	db->db_immediate_evict = 0;
1706 	db->db_freed_in_flight = 0;
1707 
1708 	if (blkid == DMU_BONUS_BLKID) {
1709 		ASSERT3P(parent, ==, dn->dn_dbuf);
1710 		db->db.db_size = DN_MAX_BONUSLEN -
1711 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1712 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1713 		db->db.db_offset = DMU_BONUS_BLKID;
1714 		db->db_state = DB_UNCACHED;
1715 		/* the bonus dbuf is not placed in the hash table */
1716 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1717 		return (db);
1718 	} else if (blkid == DMU_SPILL_BLKID) {
1719 		db->db.db_size = (blkptr != NULL) ?
1720 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1721 		db->db.db_offset = 0;
1722 	} else {
1723 		int blocksize =
1724 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1725 		db->db.db_size = blocksize;
1726 		db->db.db_offset = db->db_blkid * blocksize;
1727 	}
1728 
1729 	/*
1730 	 * Hold the dn_dbufs_mtx while we get the new dbuf
1731 	 * in the hash table *and* added to the dbufs list.
1732 	 * This prevents a possible deadlock with someone
1733 	 * trying to look up this dbuf before its added to the
1734 	 * dn_dbufs list.
1735 	 */
1736 	mutex_enter(&dn->dn_dbufs_mtx);
1737 	db->db_state = DB_EVICTING;
1738 	if ((odb = dbuf_hash_insert(db)) != NULL) {
1739 		/* someone else inserted it first */
1740 		kmem_cache_free(dbuf_cache, db);
1741 		mutex_exit(&dn->dn_dbufs_mtx);
1742 		return (odb);
1743 	}
1744 	list_insert_head(&dn->dn_dbufs, db);
1745 	if (db->db_level == 0 && db->db_blkid >=
1746 	    dn->dn_unlisted_l0_blkid)
1747 		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1748 	db->db_state = DB_UNCACHED;
1749 	mutex_exit(&dn->dn_dbufs_mtx);
1750 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1751 
1752 	if (parent && parent != dn->dn_dbuf)
1753 		dbuf_add_ref(parent, db);
1754 
1755 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1756 	    refcount_count(&dn->dn_holds) > 0);
1757 	(void) refcount_add(&dn->dn_holds, db);
1758 	(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
1759 
1760 	dprintf_dbuf(db, "db=%p\n", db);
1761 
1762 	return (db);
1763 }
1764 
1765 static int
1766 dbuf_do_evict(void *private)
1767 {
1768 	arc_buf_t *buf = private;
1769 	dmu_buf_impl_t *db = buf->b_private;
1770 
1771 	if (!MUTEX_HELD(&db->db_mtx))
1772 		mutex_enter(&db->db_mtx);
1773 
1774 	ASSERT(refcount_is_zero(&db->db_holds));
1775 
1776 	if (db->db_state != DB_EVICTING) {
1777 		ASSERT(db->db_state == DB_CACHED);
1778 		DBUF_VERIFY(db);
1779 		db->db_buf = NULL;
1780 		dbuf_evict(db);
1781 	} else {
1782 		mutex_exit(&db->db_mtx);
1783 		dbuf_destroy(db);
1784 	}
1785 	return (0);
1786 }
1787 
1788 static void
1789 dbuf_destroy(dmu_buf_impl_t *db)
1790 {
1791 	ASSERT(refcount_is_zero(&db->db_holds));
1792 
1793 	if (db->db_blkid != DMU_BONUS_BLKID) {
1794 		/*
1795 		 * If this dbuf is still on the dn_dbufs list,
1796 		 * remove it from that list.
1797 		 */
1798 		if (db->db_dnode_handle != NULL) {
1799 			dnode_t *dn;
1800 
1801 			DB_DNODE_ENTER(db);
1802 			dn = DB_DNODE(db);
1803 			mutex_enter(&dn->dn_dbufs_mtx);
1804 			list_remove(&dn->dn_dbufs, db);
1805 			(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1806 			mutex_exit(&dn->dn_dbufs_mtx);
1807 			DB_DNODE_EXIT(db);
1808 			/*
1809 			 * Decrementing the dbuf count means that the hold
1810 			 * corresponding to the removed dbuf is no longer
1811 			 * discounted in dnode_move(), so the dnode cannot be
1812 			 * moved until after we release the hold.
1813 			 */
1814 			dnode_rele(dn, db);
1815 			db->db_dnode_handle = NULL;
1816 		}
1817 		dbuf_hash_remove(db);
1818 	}
1819 	db->db_parent = NULL;
1820 	db->db_buf = NULL;
1821 
1822 	ASSERT(!list_link_active(&db->db_link));
1823 	ASSERT(db->db.db_data == NULL);
1824 	ASSERT(db->db_hash_next == NULL);
1825 	ASSERT(db->db_blkptr == NULL);
1826 	ASSERT(db->db_data_pending == NULL);
1827 
1828 	kmem_cache_free(dbuf_cache, db);
1829 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1830 }
1831 
1832 void
1833 dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio)
1834 {
1835 	dmu_buf_impl_t *db = NULL;
1836 	blkptr_t *bp = NULL;
1837 
1838 	ASSERT(blkid != DMU_BONUS_BLKID);
1839 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1840 
1841 	if (dnode_block_freed(dn, blkid))
1842 		return;
1843 
1844 	/* dbuf_find() returns with db_mtx held */
1845 	if (db = dbuf_find(dn, 0, blkid)) {
1846 		/*
1847 		 * This dbuf is already in the cache.  We assume that
1848 		 * it is already CACHED, or else about to be either
1849 		 * read or filled.
1850 		 */
1851 		mutex_exit(&db->db_mtx);
1852 		return;
1853 	}
1854 
1855 	if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) {
1856 		if (bp && !BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
1857 			dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
1858 			uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH;
1859 			zbookmark_phys_t zb;
1860 
1861 			SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1862 			    dn->dn_object, 0, blkid);
1863 
1864 			(void) arc_read(NULL, dn->dn_objset->os_spa,
1865 			    bp, NULL, NULL, prio,
1866 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1867 			    &aflags, &zb);
1868 		}
1869 		if (db)
1870 			dbuf_rele(db, NULL);
1871 	}
1872 }
1873 
1874 /*
1875  * Returns with db_holds incremented, and db_mtx not held.
1876  * Note: dn_struct_rwlock must be held.
1877  */
1878 int
1879 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
1880     void *tag, dmu_buf_impl_t **dbp)
1881 {
1882 	dmu_buf_impl_t *db, *parent = NULL;
1883 
1884 	ASSERT(blkid != DMU_BONUS_BLKID);
1885 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1886 	ASSERT3U(dn->dn_nlevels, >, level);
1887 
1888 	*dbp = NULL;
1889 top:
1890 	/* dbuf_find() returns with db_mtx held */
1891 	db = dbuf_find(dn, level, blkid);
1892 
1893 	if (db == NULL) {
1894 		blkptr_t *bp = NULL;
1895 		int err;
1896 
1897 		ASSERT3P(parent, ==, NULL);
1898 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
1899 		if (fail_sparse) {
1900 			if (err == 0 && bp && BP_IS_HOLE(bp))
1901 				err = SET_ERROR(ENOENT);
1902 			if (err) {
1903 				if (parent)
1904 					dbuf_rele(parent, NULL);
1905 				return (err);
1906 			}
1907 		}
1908 		if (err && err != ENOENT)
1909 			return (err);
1910 		db = dbuf_create(dn, level, blkid, parent, bp);
1911 	}
1912 
1913 	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
1914 		arc_buf_add_ref(db->db_buf, db);
1915 		if (db->db_buf->b_data == NULL) {
1916 			dbuf_clear(db);
1917 			if (parent) {
1918 				dbuf_rele(parent, NULL);
1919 				parent = NULL;
1920 			}
1921 			goto top;
1922 		}
1923 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
1924 	}
1925 
1926 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
1927 
1928 	/*
1929 	 * If this buffer is currently syncing out, and we are are
1930 	 * still referencing it from db_data, we need to make a copy
1931 	 * of it in case we decide we want to dirty it again in this txg.
1932 	 */
1933 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1934 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
1935 	    db->db_state == DB_CACHED && db->db_data_pending) {
1936 		dbuf_dirty_record_t *dr = db->db_data_pending;
1937 
1938 		if (dr->dt.dl.dr_data == db->db_buf) {
1939 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1940 
1941 			dbuf_set_data(db,
1942 			    arc_buf_alloc(dn->dn_objset->os_spa,
1943 			    db->db.db_size, db, type));
1944 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
1945 			    db->db.db_size);
1946 		}
1947 	}
1948 
1949 	(void) refcount_add(&db->db_holds, tag);
1950 	dbuf_update_data(db);
1951 	DBUF_VERIFY(db);
1952 	mutex_exit(&db->db_mtx);
1953 
1954 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
1955 	if (parent)
1956 		dbuf_rele(parent, NULL);
1957 
1958 	ASSERT3P(DB_DNODE(db), ==, dn);
1959 	ASSERT3U(db->db_blkid, ==, blkid);
1960 	ASSERT3U(db->db_level, ==, level);
1961 	*dbp = db;
1962 
1963 	return (0);
1964 }
1965 
1966 dmu_buf_impl_t *
1967 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
1968 {
1969 	dmu_buf_impl_t *db;
1970 	int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db);
1971 	return (err ? NULL : db);
1972 }
1973 
1974 dmu_buf_impl_t *
1975 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
1976 {
1977 	dmu_buf_impl_t *db;
1978 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db);
1979 	return (err ? NULL : db);
1980 }
1981 
1982 void
1983 dbuf_create_bonus(dnode_t *dn)
1984 {
1985 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1986 
1987 	ASSERT(dn->dn_bonus == NULL);
1988 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
1989 }
1990 
1991 int
1992 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
1993 {
1994 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1995 	dnode_t *dn;
1996 
1997 	if (db->db_blkid != DMU_SPILL_BLKID)
1998 		return (SET_ERROR(ENOTSUP));
1999 	if (blksz == 0)
2000 		blksz = SPA_MINBLOCKSIZE;
2001 	if (blksz > SPA_MAXBLOCKSIZE)
2002 		blksz = SPA_MAXBLOCKSIZE;
2003 	else
2004 		blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2005 
2006 	DB_DNODE_ENTER(db);
2007 	dn = DB_DNODE(db);
2008 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2009 	dbuf_new_size(db, blksz, tx);
2010 	rw_exit(&dn->dn_struct_rwlock);
2011 	DB_DNODE_EXIT(db);
2012 
2013 	return (0);
2014 }
2015 
2016 void
2017 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2018 {
2019 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2020 }
2021 
2022 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2023 void
2024 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2025 {
2026 	int64_t holds = refcount_add(&db->db_holds, tag);
2027 	ASSERT(holds > 1);
2028 }
2029 
2030 /*
2031  * If you call dbuf_rele() you had better not be referencing the dnode handle
2032  * unless you have some other direct or indirect hold on the dnode. (An indirect
2033  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2034  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2035  * dnode's parent dbuf evicting its dnode handles.
2036  */
2037 void
2038 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2039 {
2040 	mutex_enter(&db->db_mtx);
2041 	dbuf_rele_and_unlock(db, tag);
2042 }
2043 
2044 void
2045 dmu_buf_rele(dmu_buf_t *db, void *tag)
2046 {
2047 	dbuf_rele((dmu_buf_impl_t *)db, tag);
2048 }
2049 
2050 /*
2051  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2052  * db_dirtycnt and db_holds to be updated atomically.
2053  */
2054 void
2055 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2056 {
2057 	int64_t holds;
2058 
2059 	ASSERT(MUTEX_HELD(&db->db_mtx));
2060 	DBUF_VERIFY(db);
2061 
2062 	/*
2063 	 * Remove the reference to the dbuf before removing its hold on the
2064 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2065 	 * buffer has a corresponding dnode hold.
2066 	 */
2067 	holds = refcount_remove(&db->db_holds, tag);
2068 	ASSERT(holds >= 0);
2069 
2070 	/*
2071 	 * We can't freeze indirects if there is a possibility that they
2072 	 * may be modified in the current syncing context.
2073 	 */
2074 	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2075 		arc_buf_freeze(db->db_buf);
2076 
2077 	if (holds == db->db_dirtycnt &&
2078 	    db->db_level == 0 && db->db_immediate_evict)
2079 		dbuf_evict_user(db);
2080 
2081 	if (holds == 0) {
2082 		if (db->db_blkid == DMU_BONUS_BLKID) {
2083 			mutex_exit(&db->db_mtx);
2084 
2085 			/*
2086 			 * If the dnode moves here, we cannot cross this barrier
2087 			 * until the move completes.
2088 			 */
2089 			DB_DNODE_ENTER(db);
2090 			(void) atomic_dec_32_nv(&DB_DNODE(db)->dn_dbufs_count);
2091 			DB_DNODE_EXIT(db);
2092 			/*
2093 			 * The bonus buffer's dnode hold is no longer discounted
2094 			 * in dnode_move(). The dnode cannot move until after
2095 			 * the dnode_rele().
2096 			 */
2097 			dnode_rele(DB_DNODE(db), db);
2098 		} else if (db->db_buf == NULL) {
2099 			/*
2100 			 * This is a special case: we never associated this
2101 			 * dbuf with any data allocated from the ARC.
2102 			 */
2103 			ASSERT(db->db_state == DB_UNCACHED ||
2104 			    db->db_state == DB_NOFILL);
2105 			dbuf_evict(db);
2106 		} else if (arc_released(db->db_buf)) {
2107 			arc_buf_t *buf = db->db_buf;
2108 			/*
2109 			 * This dbuf has anonymous data associated with it.
2110 			 */
2111 			dbuf_set_data(db, NULL);
2112 			VERIFY(arc_buf_remove_ref(buf, db));
2113 			dbuf_evict(db);
2114 		} else {
2115 			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2116 
2117 			/*
2118 			 * A dbuf will be eligible for eviction if either the
2119 			 * 'primarycache' property is set or a duplicate
2120 			 * copy of this buffer is already cached in the arc.
2121 			 *
2122 			 * In the case of the 'primarycache' a buffer
2123 			 * is considered for eviction if it matches the
2124 			 * criteria set in the property.
2125 			 *
2126 			 * To decide if our buffer is considered a
2127 			 * duplicate, we must call into the arc to determine
2128 			 * if multiple buffers are referencing the same
2129 			 * block on-disk. If so, then we simply evict
2130 			 * ourselves.
2131 			 */
2132 			if (!DBUF_IS_CACHEABLE(db) ||
2133 			    arc_buf_eviction_needed(db->db_buf))
2134 				dbuf_clear(db);
2135 			else
2136 				mutex_exit(&db->db_mtx);
2137 		}
2138 	} else {
2139 		mutex_exit(&db->db_mtx);
2140 	}
2141 }
2142 
2143 #pragma weak dmu_buf_refcount = dbuf_refcount
2144 uint64_t
2145 dbuf_refcount(dmu_buf_impl_t *db)
2146 {
2147 	return (refcount_count(&db->db_holds));
2148 }
2149 
2150 void *
2151 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2152     dmu_buf_evict_func_t *evict_func)
2153 {
2154 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2155 	    user_data_ptr_ptr, evict_func));
2156 }
2157 
2158 void *
2159 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2160     dmu_buf_evict_func_t *evict_func)
2161 {
2162 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2163 
2164 	db->db_immediate_evict = TRUE;
2165 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2166 	    user_data_ptr_ptr, evict_func));
2167 }
2168 
2169 void *
2170 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr,
2171     void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func)
2172 {
2173 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2174 	ASSERT(db->db_level == 0);
2175 
2176 	ASSERT((user_ptr == NULL) == (evict_func == NULL));
2177 
2178 	mutex_enter(&db->db_mtx);
2179 
2180 	if (db->db_user_ptr == old_user_ptr) {
2181 		db->db_user_ptr = user_ptr;
2182 		db->db_user_data_ptr_ptr = user_data_ptr_ptr;
2183 		db->db_evict_func = evict_func;
2184 
2185 		dbuf_update_data(db);
2186 	} else {
2187 		old_user_ptr = db->db_user_ptr;
2188 	}
2189 
2190 	mutex_exit(&db->db_mtx);
2191 	return (old_user_ptr);
2192 }
2193 
2194 void *
2195 dmu_buf_get_user(dmu_buf_t *db_fake)
2196 {
2197 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2198 	ASSERT(!refcount_is_zero(&db->db_holds));
2199 
2200 	return (db->db_user_ptr);
2201 }
2202 
2203 boolean_t
2204 dmu_buf_freeable(dmu_buf_t *dbuf)
2205 {
2206 	boolean_t res = B_FALSE;
2207 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2208 
2209 	if (db->db_blkptr)
2210 		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2211 		    db->db_blkptr, db->db_blkptr->blk_birth);
2212 
2213 	return (res);
2214 }
2215 
2216 blkptr_t *
2217 dmu_buf_get_blkptr(dmu_buf_t *db)
2218 {
2219 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2220 	return (dbi->db_blkptr);
2221 }
2222 
2223 static void
2224 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2225 {
2226 	/* ASSERT(dmu_tx_is_syncing(tx) */
2227 	ASSERT(MUTEX_HELD(&db->db_mtx));
2228 
2229 	if (db->db_blkptr != NULL)
2230 		return;
2231 
2232 	if (db->db_blkid == DMU_SPILL_BLKID) {
2233 		db->db_blkptr = &dn->dn_phys->dn_spill;
2234 		BP_ZERO(db->db_blkptr);
2235 		return;
2236 	}
2237 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2238 		/*
2239 		 * This buffer was allocated at a time when there was
2240 		 * no available blkptrs from the dnode, or it was
2241 		 * inappropriate to hook it in (i.e., nlevels mis-match).
2242 		 */
2243 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2244 		ASSERT(db->db_parent == NULL);
2245 		db->db_parent = dn->dn_dbuf;
2246 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2247 		DBUF_VERIFY(db);
2248 	} else {
2249 		dmu_buf_impl_t *parent = db->db_parent;
2250 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2251 
2252 		ASSERT(dn->dn_phys->dn_nlevels > 1);
2253 		if (parent == NULL) {
2254 			mutex_exit(&db->db_mtx);
2255 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2256 			(void) dbuf_hold_impl(dn, db->db_level+1,
2257 			    db->db_blkid >> epbs, FALSE, db, &parent);
2258 			rw_exit(&dn->dn_struct_rwlock);
2259 			mutex_enter(&db->db_mtx);
2260 			db->db_parent = parent;
2261 		}
2262 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2263 		    (db->db_blkid & ((1ULL << epbs) - 1));
2264 		DBUF_VERIFY(db);
2265 	}
2266 }
2267 
2268 static void
2269 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2270 {
2271 	dmu_buf_impl_t *db = dr->dr_dbuf;
2272 	dnode_t *dn;
2273 	zio_t *zio;
2274 
2275 	ASSERT(dmu_tx_is_syncing(tx));
2276 
2277 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2278 
2279 	mutex_enter(&db->db_mtx);
2280 
2281 	ASSERT(db->db_level > 0);
2282 	DBUF_VERIFY(db);
2283 
2284 	/* Read the block if it hasn't been read yet. */
2285 	if (db->db_buf == NULL) {
2286 		mutex_exit(&db->db_mtx);
2287 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2288 		mutex_enter(&db->db_mtx);
2289 	}
2290 	ASSERT3U(db->db_state, ==, DB_CACHED);
2291 	ASSERT(db->db_buf != NULL);
2292 
2293 	DB_DNODE_ENTER(db);
2294 	dn = DB_DNODE(db);
2295 	/* Indirect block size must match what the dnode thinks it is. */
2296 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2297 	dbuf_check_blkptr(dn, db);
2298 	DB_DNODE_EXIT(db);
2299 
2300 	/* Provide the pending dirty record to child dbufs */
2301 	db->db_data_pending = dr;
2302 
2303 	mutex_exit(&db->db_mtx);
2304 	dbuf_write(dr, db->db_buf, tx);
2305 
2306 	zio = dr->dr_zio;
2307 	mutex_enter(&dr->dt.di.dr_mtx);
2308 	dbuf_sync_list(&dr->dt.di.dr_children, tx);
2309 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2310 	mutex_exit(&dr->dt.di.dr_mtx);
2311 	zio_nowait(zio);
2312 }
2313 
2314 static void
2315 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2316 {
2317 	arc_buf_t **datap = &dr->dt.dl.dr_data;
2318 	dmu_buf_impl_t *db = dr->dr_dbuf;
2319 	dnode_t *dn;
2320 	objset_t *os;
2321 	uint64_t txg = tx->tx_txg;
2322 
2323 	ASSERT(dmu_tx_is_syncing(tx));
2324 
2325 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2326 
2327 	mutex_enter(&db->db_mtx);
2328 	/*
2329 	 * To be synced, we must be dirtied.  But we
2330 	 * might have been freed after the dirty.
2331 	 */
2332 	if (db->db_state == DB_UNCACHED) {
2333 		/* This buffer has been freed since it was dirtied */
2334 		ASSERT(db->db.db_data == NULL);
2335 	} else if (db->db_state == DB_FILL) {
2336 		/* This buffer was freed and is now being re-filled */
2337 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2338 	} else {
2339 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2340 	}
2341 	DBUF_VERIFY(db);
2342 
2343 	DB_DNODE_ENTER(db);
2344 	dn = DB_DNODE(db);
2345 
2346 	if (db->db_blkid == DMU_SPILL_BLKID) {
2347 		mutex_enter(&dn->dn_mtx);
2348 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2349 		mutex_exit(&dn->dn_mtx);
2350 	}
2351 
2352 	/*
2353 	 * If this is a bonus buffer, simply copy the bonus data into the
2354 	 * dnode.  It will be written out when the dnode is synced (and it
2355 	 * will be synced, since it must have been dirty for dbuf_sync to
2356 	 * be called).
2357 	 */
2358 	if (db->db_blkid == DMU_BONUS_BLKID) {
2359 		dbuf_dirty_record_t **drp;
2360 
2361 		ASSERT(*datap != NULL);
2362 		ASSERT0(db->db_level);
2363 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2364 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2365 		DB_DNODE_EXIT(db);
2366 
2367 		if (*datap != db->db.db_data) {
2368 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2369 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2370 		}
2371 		db->db_data_pending = NULL;
2372 		drp = &db->db_last_dirty;
2373 		while (*drp != dr)
2374 			drp = &(*drp)->dr_next;
2375 		ASSERT(dr->dr_next == NULL);
2376 		ASSERT(dr->dr_dbuf == db);
2377 		*drp = dr->dr_next;
2378 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2379 		ASSERT(db->db_dirtycnt > 0);
2380 		db->db_dirtycnt -= 1;
2381 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2382 		return;
2383 	}
2384 
2385 	os = dn->dn_objset;
2386 
2387 	/*
2388 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2389 	 * operation to sneak in. As a result, we need to ensure that we
2390 	 * don't check the dr_override_state until we have returned from
2391 	 * dbuf_check_blkptr.
2392 	 */
2393 	dbuf_check_blkptr(dn, db);
2394 
2395 	/*
2396 	 * If this buffer is in the middle of an immediate write,
2397 	 * wait for the synchronous IO to complete.
2398 	 */
2399 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2400 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2401 		cv_wait(&db->db_changed, &db->db_mtx);
2402 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2403 	}
2404 
2405 	if (db->db_state != DB_NOFILL &&
2406 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2407 	    refcount_count(&db->db_holds) > 1 &&
2408 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2409 	    *datap == db->db_buf) {
2410 		/*
2411 		 * If this buffer is currently "in use" (i.e., there
2412 		 * are active holds and db_data still references it),
2413 		 * then make a copy before we start the write so that
2414 		 * any modifications from the open txg will not leak
2415 		 * into this write.
2416 		 *
2417 		 * NOTE: this copy does not need to be made for
2418 		 * objects only modified in the syncing context (e.g.
2419 		 * DNONE_DNODE blocks).
2420 		 */
2421 		int blksz = arc_buf_size(*datap);
2422 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2423 		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2424 		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2425 	}
2426 	db->db_data_pending = dr;
2427 
2428 	mutex_exit(&db->db_mtx);
2429 
2430 	dbuf_write(dr, *datap, tx);
2431 
2432 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2433 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2434 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2435 		DB_DNODE_EXIT(db);
2436 	} else {
2437 		/*
2438 		 * Although zio_nowait() does not "wait for an IO", it does
2439 		 * initiate the IO. If this is an empty write it seems plausible
2440 		 * that the IO could actually be completed before the nowait
2441 		 * returns. We need to DB_DNODE_EXIT() first in case
2442 		 * zio_nowait() invalidates the dbuf.
2443 		 */
2444 		DB_DNODE_EXIT(db);
2445 		zio_nowait(dr->dr_zio);
2446 	}
2447 }
2448 
2449 void
2450 dbuf_sync_list(list_t *list, dmu_tx_t *tx)
2451 {
2452 	dbuf_dirty_record_t *dr;
2453 
2454 	while (dr = list_head(list)) {
2455 		if (dr->dr_zio != NULL) {
2456 			/*
2457 			 * If we find an already initialized zio then we
2458 			 * are processing the meta-dnode, and we have finished.
2459 			 * The dbufs for all dnodes are put back on the list
2460 			 * during processing, so that we can zio_wait()
2461 			 * these IOs after initiating all child IOs.
2462 			 */
2463 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2464 			    DMU_META_DNODE_OBJECT);
2465 			break;
2466 		}
2467 		list_remove(list, dr);
2468 		if (dr->dr_dbuf->db_level > 0)
2469 			dbuf_sync_indirect(dr, tx);
2470 		else
2471 			dbuf_sync_leaf(dr, tx);
2472 	}
2473 }
2474 
2475 /* ARGSUSED */
2476 static void
2477 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2478 {
2479 	dmu_buf_impl_t *db = vdb;
2480 	dnode_t *dn;
2481 	blkptr_t *bp = zio->io_bp;
2482 	blkptr_t *bp_orig = &zio->io_bp_orig;
2483 	spa_t *spa = zio->io_spa;
2484 	int64_t delta;
2485 	uint64_t fill = 0;
2486 	int i;
2487 
2488 	ASSERT3P(db->db_blkptr, ==, bp);
2489 
2490 	DB_DNODE_ENTER(db);
2491 	dn = DB_DNODE(db);
2492 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2493 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2494 	zio->io_prev_space_delta = delta;
2495 
2496 	if (bp->blk_birth != 0) {
2497 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2498 		    BP_GET_TYPE(bp) == dn->dn_type) ||
2499 		    (db->db_blkid == DMU_SPILL_BLKID &&
2500 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
2501 		    BP_IS_EMBEDDED(bp));
2502 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2503 	}
2504 
2505 	mutex_enter(&db->db_mtx);
2506 
2507 #ifdef ZFS_DEBUG
2508 	if (db->db_blkid == DMU_SPILL_BLKID) {
2509 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2510 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2511 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2512 	}
2513 #endif
2514 
2515 	if (db->db_level == 0) {
2516 		mutex_enter(&dn->dn_mtx);
2517 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2518 		    db->db_blkid != DMU_SPILL_BLKID)
2519 			dn->dn_phys->dn_maxblkid = db->db_blkid;
2520 		mutex_exit(&dn->dn_mtx);
2521 
2522 		if (dn->dn_type == DMU_OT_DNODE) {
2523 			dnode_phys_t *dnp = db->db.db_data;
2524 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2525 			    i--, dnp++) {
2526 				if (dnp->dn_type != DMU_OT_NONE)
2527 					fill++;
2528 			}
2529 		} else {
2530 			if (BP_IS_HOLE(bp)) {
2531 				fill = 0;
2532 			} else {
2533 				fill = 1;
2534 			}
2535 		}
2536 	} else {
2537 		blkptr_t *ibp = db->db.db_data;
2538 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2539 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2540 			if (BP_IS_HOLE(ibp))
2541 				continue;
2542 			fill += BP_GET_FILL(ibp);
2543 		}
2544 	}
2545 	DB_DNODE_EXIT(db);
2546 
2547 	if (!BP_IS_EMBEDDED(bp))
2548 		bp->blk_fill = fill;
2549 
2550 	mutex_exit(&db->db_mtx);
2551 }
2552 
2553 /*
2554  * The SPA will call this callback several times for each zio - once
2555  * for every physical child i/o (zio->io_phys_children times).  This
2556  * allows the DMU to monitor the progress of each logical i/o.  For example,
2557  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2558  * block.  There may be a long delay before all copies/fragments are completed,
2559  * so this callback allows us to retire dirty space gradually, as the physical
2560  * i/os complete.
2561  */
2562 /* ARGSUSED */
2563 static void
2564 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2565 {
2566 	dmu_buf_impl_t *db = arg;
2567 	objset_t *os = db->db_objset;
2568 	dsl_pool_t *dp = dmu_objset_pool(os);
2569 	dbuf_dirty_record_t *dr;
2570 	int delta = 0;
2571 
2572 	dr = db->db_data_pending;
2573 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2574 
2575 	/*
2576 	 * The callback will be called io_phys_children times.  Retire one
2577 	 * portion of our dirty space each time we are called.  Any rounding
2578 	 * error will be cleaned up by dsl_pool_sync()'s call to
2579 	 * dsl_pool_undirty_space().
2580 	 */
2581 	delta = dr->dr_accounted / zio->io_phys_children;
2582 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
2583 }
2584 
2585 /* ARGSUSED */
2586 static void
2587 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2588 {
2589 	dmu_buf_impl_t *db = vdb;
2590 	blkptr_t *bp_orig = &zio->io_bp_orig;
2591 	blkptr_t *bp = db->db_blkptr;
2592 	objset_t *os = db->db_objset;
2593 	dmu_tx_t *tx = os->os_synctx;
2594 	dbuf_dirty_record_t **drp, *dr;
2595 
2596 	ASSERT0(zio->io_error);
2597 	ASSERT(db->db_blkptr == bp);
2598 
2599 	/*
2600 	 * For nopwrites and rewrites we ensure that the bp matches our
2601 	 * original and bypass all the accounting.
2602 	 */
2603 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2604 		ASSERT(BP_EQUAL(bp, bp_orig));
2605 	} else {
2606 		dsl_dataset_t *ds = os->os_dsl_dataset;
2607 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2608 		dsl_dataset_block_born(ds, bp, tx);
2609 	}
2610 
2611 	mutex_enter(&db->db_mtx);
2612 
2613 	DBUF_VERIFY(db);
2614 
2615 	drp = &db->db_last_dirty;
2616 	while ((dr = *drp) != db->db_data_pending)
2617 		drp = &dr->dr_next;
2618 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2619 	ASSERT(dr->dr_dbuf == db);
2620 	ASSERT(dr->dr_next == NULL);
2621 	*drp = dr->dr_next;
2622 
2623 #ifdef ZFS_DEBUG
2624 	if (db->db_blkid == DMU_SPILL_BLKID) {
2625 		dnode_t *dn;
2626 
2627 		DB_DNODE_ENTER(db);
2628 		dn = DB_DNODE(db);
2629 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2630 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2631 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2632 		DB_DNODE_EXIT(db);
2633 	}
2634 #endif
2635 
2636 	if (db->db_level == 0) {
2637 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2638 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2639 		if (db->db_state != DB_NOFILL) {
2640 			if (dr->dt.dl.dr_data != db->db_buf)
2641 				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
2642 				    db));
2643 			else if (!arc_released(db->db_buf))
2644 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2645 		}
2646 	} else {
2647 		dnode_t *dn;
2648 
2649 		DB_DNODE_ENTER(db);
2650 		dn = DB_DNODE(db);
2651 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2652 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
2653 		if (!BP_IS_HOLE(db->db_blkptr)) {
2654 			int epbs =
2655 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2656 			ASSERT3U(db->db_blkid, <=,
2657 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
2658 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
2659 			    db->db.db_size);
2660 			if (!arc_released(db->db_buf))
2661 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2662 		}
2663 		DB_DNODE_EXIT(db);
2664 		mutex_destroy(&dr->dt.di.dr_mtx);
2665 		list_destroy(&dr->dt.di.dr_children);
2666 	}
2667 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2668 
2669 	cv_broadcast(&db->db_changed);
2670 	ASSERT(db->db_dirtycnt > 0);
2671 	db->db_dirtycnt -= 1;
2672 	db->db_data_pending = NULL;
2673 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
2674 }
2675 
2676 static void
2677 dbuf_write_nofill_ready(zio_t *zio)
2678 {
2679 	dbuf_write_ready(zio, NULL, zio->io_private);
2680 }
2681 
2682 static void
2683 dbuf_write_nofill_done(zio_t *zio)
2684 {
2685 	dbuf_write_done(zio, NULL, zio->io_private);
2686 }
2687 
2688 static void
2689 dbuf_write_override_ready(zio_t *zio)
2690 {
2691 	dbuf_dirty_record_t *dr = zio->io_private;
2692 	dmu_buf_impl_t *db = dr->dr_dbuf;
2693 
2694 	dbuf_write_ready(zio, NULL, db);
2695 }
2696 
2697 static void
2698 dbuf_write_override_done(zio_t *zio)
2699 {
2700 	dbuf_dirty_record_t *dr = zio->io_private;
2701 	dmu_buf_impl_t *db = dr->dr_dbuf;
2702 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
2703 
2704 	mutex_enter(&db->db_mtx);
2705 	if (!BP_EQUAL(zio->io_bp, obp)) {
2706 		if (!BP_IS_HOLE(obp))
2707 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
2708 		arc_release(dr->dt.dl.dr_data, db);
2709 	}
2710 	mutex_exit(&db->db_mtx);
2711 
2712 	dbuf_write_done(zio, NULL, db);
2713 }
2714 
2715 /* Issue I/O to commit a dirty buffer to disk. */
2716 static void
2717 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
2718 {
2719 	dmu_buf_impl_t *db = dr->dr_dbuf;
2720 	dnode_t *dn;
2721 	objset_t *os;
2722 	dmu_buf_impl_t *parent = db->db_parent;
2723 	uint64_t txg = tx->tx_txg;
2724 	zbookmark_phys_t zb;
2725 	zio_prop_t zp;
2726 	zio_t *zio;
2727 	int wp_flag = 0;
2728 
2729 	DB_DNODE_ENTER(db);
2730 	dn = DB_DNODE(db);
2731 	os = dn->dn_objset;
2732 
2733 	if (db->db_state != DB_NOFILL) {
2734 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
2735 			/*
2736 			 * Private object buffers are released here rather
2737 			 * than in dbuf_dirty() since they are only modified
2738 			 * in the syncing context and we don't want the
2739 			 * overhead of making multiple copies of the data.
2740 			 */
2741 			if (BP_IS_HOLE(db->db_blkptr)) {
2742 				arc_buf_thaw(data);
2743 			} else {
2744 				dbuf_release_bp(db);
2745 			}
2746 		}
2747 	}
2748 
2749 	if (parent != dn->dn_dbuf) {
2750 		/* Our parent is an indirect block. */
2751 		/* We have a dirty parent that has been scheduled for write. */
2752 		ASSERT(parent && parent->db_data_pending);
2753 		/* Our parent's buffer is one level closer to the dnode. */
2754 		ASSERT(db->db_level == parent->db_level-1);
2755 		/*
2756 		 * We're about to modify our parent's db_data by modifying
2757 		 * our block pointer, so the parent must be released.
2758 		 */
2759 		ASSERT(arc_released(parent->db_buf));
2760 		zio = parent->db_data_pending->dr_zio;
2761 	} else {
2762 		/* Our parent is the dnode itself. */
2763 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
2764 		    db->db_blkid != DMU_SPILL_BLKID) ||
2765 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
2766 		if (db->db_blkid != DMU_SPILL_BLKID)
2767 			ASSERT3P(db->db_blkptr, ==,
2768 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
2769 		zio = dn->dn_zio;
2770 	}
2771 
2772 	ASSERT(db->db_level == 0 || data == db->db_buf);
2773 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
2774 	ASSERT(zio);
2775 
2776 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
2777 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
2778 	    db->db.db_object, db->db_level, db->db_blkid);
2779 
2780 	if (db->db_blkid == DMU_SPILL_BLKID)
2781 		wp_flag = WP_SPILL;
2782 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
2783 
2784 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
2785 	DB_DNODE_EXIT(db);
2786 
2787 	if (db->db_level == 0 &&
2788 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2789 		/*
2790 		 * The BP for this block has been provided by open context
2791 		 * (by dmu_sync() or dmu_buf_write_embedded()).
2792 		 */
2793 		void *contents = (data != NULL) ? data->b_data : NULL;
2794 
2795 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2796 		    db->db_blkptr, contents, db->db.db_size, &zp,
2797 		    dbuf_write_override_ready, NULL, dbuf_write_override_done,
2798 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2799 		mutex_enter(&db->db_mtx);
2800 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
2801 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
2802 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
2803 		mutex_exit(&db->db_mtx);
2804 	} else if (db->db_state == DB_NOFILL) {
2805 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
2806 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
2807 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2808 		    db->db_blkptr, NULL, db->db.db_size, &zp,
2809 		    dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
2810 		    ZIO_PRIORITY_ASYNC_WRITE,
2811 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
2812 	} else {
2813 		ASSERT(arc_released(data));
2814 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
2815 		    db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
2816 		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
2817 		    dbuf_write_physdone, dbuf_write_done, db,
2818 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2819 	}
2820 }
2821