xref: /illumos-gate/usr/src/uts/common/fs/zfs/dbuf.c (revision 43466aae47bfcd2ad9bf501faec8e75c08095e4f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_send.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dbuf.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/spa.h>
39 #include <sys/zio.h>
40 #include <sys/dmu_zfetch.h>
41 #include <sys/sa.h>
42 #include <sys/sa_impl.h>
43 
44 /*
45  * Number of times that zfs_free_range() took the slow path while doing
46  * a zfs receive.  A nonzero value indicates a potential performance problem.
47  */
48 uint64_t zfs_free_range_recv_miss;
49 
50 static void dbuf_destroy(dmu_buf_impl_t *db);
51 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
52 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
53 
54 /*
55  * Global data structures and functions for the dbuf cache.
56  */
57 static kmem_cache_t *dbuf_cache;
58 
59 /* ARGSUSED */
60 static int
61 dbuf_cons(void *vdb, void *unused, int kmflag)
62 {
63 	dmu_buf_impl_t *db = vdb;
64 	bzero(db, sizeof (dmu_buf_impl_t));
65 
66 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
67 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
68 	refcount_create(&db->db_holds);
69 	return (0);
70 }
71 
72 /* ARGSUSED */
73 static void
74 dbuf_dest(void *vdb, void *unused)
75 {
76 	dmu_buf_impl_t *db = vdb;
77 	mutex_destroy(&db->db_mtx);
78 	cv_destroy(&db->db_changed);
79 	refcount_destroy(&db->db_holds);
80 }
81 
82 /*
83  * dbuf hash table routines
84  */
85 static dbuf_hash_table_t dbuf_hash_table;
86 
87 static uint64_t dbuf_hash_count;
88 
89 static uint64_t
90 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
91 {
92 	uintptr_t osv = (uintptr_t)os;
93 	uint64_t crc = -1ULL;
94 
95 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
96 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
97 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
98 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
99 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
100 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
101 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
102 
103 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
104 
105 	return (crc);
106 }
107 
108 #define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
109 
110 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
111 	((dbuf)->db.db_object == (obj) &&		\
112 	(dbuf)->db_objset == (os) &&			\
113 	(dbuf)->db_level == (level) &&			\
114 	(dbuf)->db_blkid == (blkid))
115 
116 dmu_buf_impl_t *
117 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid)
118 {
119 	dbuf_hash_table_t *h = &dbuf_hash_table;
120 	objset_t *os = dn->dn_objset;
121 	uint64_t obj = dn->dn_object;
122 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
123 	uint64_t idx = hv & h->hash_table_mask;
124 	dmu_buf_impl_t *db;
125 
126 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
127 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
128 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
129 			mutex_enter(&db->db_mtx);
130 			if (db->db_state != DB_EVICTING) {
131 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
132 				return (db);
133 			}
134 			mutex_exit(&db->db_mtx);
135 		}
136 	}
137 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
138 	return (NULL);
139 }
140 
141 /*
142  * Insert an entry into the hash table.  If there is already an element
143  * equal to elem in the hash table, then the already existing element
144  * will be returned and the new element will not be inserted.
145  * Otherwise returns NULL.
146  */
147 static dmu_buf_impl_t *
148 dbuf_hash_insert(dmu_buf_impl_t *db)
149 {
150 	dbuf_hash_table_t *h = &dbuf_hash_table;
151 	objset_t *os = db->db_objset;
152 	uint64_t obj = db->db.db_object;
153 	int level = db->db_level;
154 	uint64_t blkid = db->db_blkid;
155 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
156 	uint64_t idx = hv & h->hash_table_mask;
157 	dmu_buf_impl_t *dbf;
158 
159 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
160 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
161 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
162 			mutex_enter(&dbf->db_mtx);
163 			if (dbf->db_state != DB_EVICTING) {
164 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
165 				return (dbf);
166 			}
167 			mutex_exit(&dbf->db_mtx);
168 		}
169 	}
170 
171 	mutex_enter(&db->db_mtx);
172 	db->db_hash_next = h->hash_table[idx];
173 	h->hash_table[idx] = db;
174 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
175 	atomic_add_64(&dbuf_hash_count, 1);
176 
177 	return (NULL);
178 }
179 
180 /*
181  * Remove an entry from the hash table.  This operation will
182  * fail if there are any existing holds on the db.
183  */
184 static void
185 dbuf_hash_remove(dmu_buf_impl_t *db)
186 {
187 	dbuf_hash_table_t *h = &dbuf_hash_table;
188 	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
189 	    db->db_level, db->db_blkid);
190 	uint64_t idx = hv & h->hash_table_mask;
191 	dmu_buf_impl_t *dbf, **dbp;
192 
193 	/*
194 	 * We musn't hold db_mtx to maintin lock ordering:
195 	 * DBUF_HASH_MUTEX > db_mtx.
196 	 */
197 	ASSERT(refcount_is_zero(&db->db_holds));
198 	ASSERT(db->db_state == DB_EVICTING);
199 	ASSERT(!MUTEX_HELD(&db->db_mtx));
200 
201 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
202 	dbp = &h->hash_table[idx];
203 	while ((dbf = *dbp) != db) {
204 		dbp = &dbf->db_hash_next;
205 		ASSERT(dbf != NULL);
206 	}
207 	*dbp = db->db_hash_next;
208 	db->db_hash_next = NULL;
209 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
210 	atomic_add_64(&dbuf_hash_count, -1);
211 }
212 
213 static arc_evict_func_t dbuf_do_evict;
214 
215 static void
216 dbuf_evict_user(dmu_buf_impl_t *db)
217 {
218 	ASSERT(MUTEX_HELD(&db->db_mtx));
219 
220 	if (db->db_level != 0 || db->db_evict_func == NULL)
221 		return;
222 
223 	if (db->db_user_data_ptr_ptr)
224 		*db->db_user_data_ptr_ptr = db->db.db_data;
225 	db->db_evict_func(&db->db, db->db_user_ptr);
226 	db->db_user_ptr = NULL;
227 	db->db_user_data_ptr_ptr = NULL;
228 	db->db_evict_func = NULL;
229 }
230 
231 boolean_t
232 dbuf_is_metadata(dmu_buf_impl_t *db)
233 {
234 	if (db->db_level > 0) {
235 		return (B_TRUE);
236 	} else {
237 		boolean_t is_metadata;
238 
239 		DB_DNODE_ENTER(db);
240 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
241 		DB_DNODE_EXIT(db);
242 
243 		return (is_metadata);
244 	}
245 }
246 
247 void
248 dbuf_evict(dmu_buf_impl_t *db)
249 {
250 	ASSERT(MUTEX_HELD(&db->db_mtx));
251 	ASSERT(db->db_buf == NULL);
252 	ASSERT(db->db_data_pending == NULL);
253 
254 	dbuf_clear(db);
255 	dbuf_destroy(db);
256 }
257 
258 void
259 dbuf_init(void)
260 {
261 	uint64_t hsize = 1ULL << 16;
262 	dbuf_hash_table_t *h = &dbuf_hash_table;
263 	int i;
264 
265 	/*
266 	 * The hash table is big enough to fill all of physical memory
267 	 * with an average 4K block size.  The table will take up
268 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
269 	 */
270 	while (hsize * 4096 < physmem * PAGESIZE)
271 		hsize <<= 1;
272 
273 retry:
274 	h->hash_table_mask = hsize - 1;
275 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
276 	if (h->hash_table == NULL) {
277 		/* XXX - we should really return an error instead of assert */
278 		ASSERT(hsize > (1ULL << 10));
279 		hsize >>= 1;
280 		goto retry;
281 	}
282 
283 	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
284 	    sizeof (dmu_buf_impl_t),
285 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
286 
287 	for (i = 0; i < DBUF_MUTEXES; i++)
288 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
289 }
290 
291 void
292 dbuf_fini(void)
293 {
294 	dbuf_hash_table_t *h = &dbuf_hash_table;
295 	int i;
296 
297 	for (i = 0; i < DBUF_MUTEXES; i++)
298 		mutex_destroy(&h->hash_mutexes[i]);
299 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
300 	kmem_cache_destroy(dbuf_cache);
301 }
302 
303 /*
304  * Other stuff.
305  */
306 
307 #ifdef ZFS_DEBUG
308 static void
309 dbuf_verify(dmu_buf_impl_t *db)
310 {
311 	dnode_t *dn;
312 	dbuf_dirty_record_t *dr;
313 
314 	ASSERT(MUTEX_HELD(&db->db_mtx));
315 
316 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
317 		return;
318 
319 	ASSERT(db->db_objset != NULL);
320 	DB_DNODE_ENTER(db);
321 	dn = DB_DNODE(db);
322 	if (dn == NULL) {
323 		ASSERT(db->db_parent == NULL);
324 		ASSERT(db->db_blkptr == NULL);
325 	} else {
326 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
327 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
328 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
329 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
330 		    db->db_blkid == DMU_SPILL_BLKID ||
331 		    !list_is_empty(&dn->dn_dbufs));
332 	}
333 	if (db->db_blkid == DMU_BONUS_BLKID) {
334 		ASSERT(dn != NULL);
335 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
336 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
337 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
338 		ASSERT(dn != NULL);
339 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
340 		ASSERT0(db->db.db_offset);
341 	} else {
342 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
343 	}
344 
345 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
346 		ASSERT(dr->dr_dbuf == db);
347 
348 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
349 		ASSERT(dr->dr_dbuf == db);
350 
351 	/*
352 	 * We can't assert that db_size matches dn_datablksz because it
353 	 * can be momentarily different when another thread is doing
354 	 * dnode_set_blksz().
355 	 */
356 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
357 		dr = db->db_data_pending;
358 		/*
359 		 * It should only be modified in syncing context, so
360 		 * make sure we only have one copy of the data.
361 		 */
362 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
363 	}
364 
365 	/* verify db->db_blkptr */
366 	if (db->db_blkptr) {
367 		if (db->db_parent == dn->dn_dbuf) {
368 			/* db is pointed to by the dnode */
369 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
370 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
371 				ASSERT(db->db_parent == NULL);
372 			else
373 				ASSERT(db->db_parent != NULL);
374 			if (db->db_blkid != DMU_SPILL_BLKID)
375 				ASSERT3P(db->db_blkptr, ==,
376 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
377 		} else {
378 			/* db is pointed to by an indirect block */
379 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
380 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
381 			ASSERT3U(db->db_parent->db.db_object, ==,
382 			    db->db.db_object);
383 			/*
384 			 * dnode_grow_indblksz() can make this fail if we don't
385 			 * have the struct_rwlock.  XXX indblksz no longer
386 			 * grows.  safe to do this now?
387 			 */
388 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
389 				ASSERT3P(db->db_blkptr, ==,
390 				    ((blkptr_t *)db->db_parent->db.db_data +
391 				    db->db_blkid % epb));
392 			}
393 		}
394 	}
395 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
396 	    (db->db_buf == NULL || db->db_buf->b_data) &&
397 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
398 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
399 		/*
400 		 * If the blkptr isn't set but they have nonzero data,
401 		 * it had better be dirty, otherwise we'll lose that
402 		 * data when we evict this buffer.
403 		 */
404 		if (db->db_dirtycnt == 0) {
405 			uint64_t *buf = db->db.db_data;
406 			int i;
407 
408 			for (i = 0; i < db->db.db_size >> 3; i++) {
409 				ASSERT(buf[i] == 0);
410 			}
411 		}
412 	}
413 	DB_DNODE_EXIT(db);
414 }
415 #endif
416 
417 static void
418 dbuf_update_data(dmu_buf_impl_t *db)
419 {
420 	ASSERT(MUTEX_HELD(&db->db_mtx));
421 	if (db->db_level == 0 && db->db_user_data_ptr_ptr) {
422 		ASSERT(!refcount_is_zero(&db->db_holds));
423 		*db->db_user_data_ptr_ptr = db->db.db_data;
424 	}
425 }
426 
427 static void
428 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
429 {
430 	ASSERT(MUTEX_HELD(&db->db_mtx));
431 	ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf));
432 	db->db_buf = buf;
433 	if (buf != NULL) {
434 		ASSERT(buf->b_data != NULL);
435 		db->db.db_data = buf->b_data;
436 		if (!arc_released(buf))
437 			arc_set_callback(buf, dbuf_do_evict, db);
438 		dbuf_update_data(db);
439 	} else {
440 		dbuf_evict_user(db);
441 		db->db.db_data = NULL;
442 		if (db->db_state != DB_NOFILL)
443 			db->db_state = DB_UNCACHED;
444 	}
445 }
446 
447 /*
448  * Loan out an arc_buf for read.  Return the loaned arc_buf.
449  */
450 arc_buf_t *
451 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
452 {
453 	arc_buf_t *abuf;
454 
455 	mutex_enter(&db->db_mtx);
456 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
457 		int blksz = db->db.db_size;
458 		spa_t *spa = db->db_objset->os_spa;
459 
460 		mutex_exit(&db->db_mtx);
461 		abuf = arc_loan_buf(spa, blksz);
462 		bcopy(db->db.db_data, abuf->b_data, blksz);
463 	} else {
464 		abuf = db->db_buf;
465 		arc_loan_inuse_buf(abuf, db);
466 		dbuf_set_data(db, NULL);
467 		mutex_exit(&db->db_mtx);
468 	}
469 	return (abuf);
470 }
471 
472 uint64_t
473 dbuf_whichblock(dnode_t *dn, uint64_t offset)
474 {
475 	if (dn->dn_datablkshift) {
476 		return (offset >> dn->dn_datablkshift);
477 	} else {
478 		ASSERT3U(offset, <, dn->dn_datablksz);
479 		return (0);
480 	}
481 }
482 
483 static void
484 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
485 {
486 	dmu_buf_impl_t *db = vdb;
487 
488 	mutex_enter(&db->db_mtx);
489 	ASSERT3U(db->db_state, ==, DB_READ);
490 	/*
491 	 * All reads are synchronous, so we must have a hold on the dbuf
492 	 */
493 	ASSERT(refcount_count(&db->db_holds) > 0);
494 	ASSERT(db->db_buf == NULL);
495 	ASSERT(db->db.db_data == NULL);
496 	if (db->db_level == 0 && db->db_freed_in_flight) {
497 		/* we were freed in flight; disregard any error */
498 		arc_release(buf, db);
499 		bzero(buf->b_data, db->db.db_size);
500 		arc_buf_freeze(buf);
501 		db->db_freed_in_flight = FALSE;
502 		dbuf_set_data(db, buf);
503 		db->db_state = DB_CACHED;
504 	} else if (zio == NULL || zio->io_error == 0) {
505 		dbuf_set_data(db, buf);
506 		db->db_state = DB_CACHED;
507 	} else {
508 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
509 		ASSERT3P(db->db_buf, ==, NULL);
510 		VERIFY(arc_buf_remove_ref(buf, db));
511 		db->db_state = DB_UNCACHED;
512 	}
513 	cv_broadcast(&db->db_changed);
514 	dbuf_rele_and_unlock(db, NULL);
515 }
516 
517 static void
518 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
519 {
520 	dnode_t *dn;
521 	zbookmark_t zb;
522 	uint32_t aflags = ARC_NOWAIT;
523 
524 	DB_DNODE_ENTER(db);
525 	dn = DB_DNODE(db);
526 	ASSERT(!refcount_is_zero(&db->db_holds));
527 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
528 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
529 	ASSERT(MUTEX_HELD(&db->db_mtx));
530 	ASSERT(db->db_state == DB_UNCACHED);
531 	ASSERT(db->db_buf == NULL);
532 
533 	if (db->db_blkid == DMU_BONUS_BLKID) {
534 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
535 
536 		ASSERT3U(bonuslen, <=, db->db.db_size);
537 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
538 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
539 		if (bonuslen < DN_MAX_BONUSLEN)
540 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
541 		if (bonuslen)
542 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
543 		DB_DNODE_EXIT(db);
544 		dbuf_update_data(db);
545 		db->db_state = DB_CACHED;
546 		mutex_exit(&db->db_mtx);
547 		return;
548 	}
549 
550 	/*
551 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
552 	 * processes the delete record and clears the bp while we are waiting
553 	 * for the dn_mtx (resulting in a "no" from block_freed).
554 	 */
555 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
556 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
557 	    BP_IS_HOLE(db->db_blkptr)))) {
558 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
559 
560 		DB_DNODE_EXIT(db);
561 		dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
562 		    db->db.db_size, db, type));
563 		bzero(db->db.db_data, db->db.db_size);
564 		db->db_state = DB_CACHED;
565 		*flags |= DB_RF_CACHED;
566 		mutex_exit(&db->db_mtx);
567 		return;
568 	}
569 
570 	DB_DNODE_EXIT(db);
571 
572 	db->db_state = DB_READ;
573 	mutex_exit(&db->db_mtx);
574 
575 	if (DBUF_IS_L2CACHEABLE(db))
576 		aflags |= ARC_L2CACHE;
577 	if (DBUF_IS_L2COMPRESSIBLE(db))
578 		aflags |= ARC_L2COMPRESS;
579 
580 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
581 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
582 	    db->db.db_object, db->db_level, db->db_blkid);
583 
584 	dbuf_add_ref(db, NULL);
585 
586 	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
587 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
588 	    (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
589 	    &aflags, &zb);
590 	if (aflags & ARC_CACHED)
591 		*flags |= DB_RF_CACHED;
592 }
593 
594 int
595 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
596 {
597 	int err = 0;
598 	boolean_t havepzio = (zio != NULL);
599 	boolean_t prefetch;
600 	dnode_t *dn;
601 
602 	/*
603 	 * We don't have to hold the mutex to check db_state because it
604 	 * can't be freed while we have a hold on the buffer.
605 	 */
606 	ASSERT(!refcount_is_zero(&db->db_holds));
607 
608 	if (db->db_state == DB_NOFILL)
609 		return (SET_ERROR(EIO));
610 
611 	DB_DNODE_ENTER(db);
612 	dn = DB_DNODE(db);
613 	if ((flags & DB_RF_HAVESTRUCT) == 0)
614 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
615 
616 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
617 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
618 	    DBUF_IS_CACHEABLE(db);
619 
620 	mutex_enter(&db->db_mtx);
621 	if (db->db_state == DB_CACHED) {
622 		mutex_exit(&db->db_mtx);
623 		if (prefetch)
624 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
625 			    db->db.db_size, TRUE);
626 		if ((flags & DB_RF_HAVESTRUCT) == 0)
627 			rw_exit(&dn->dn_struct_rwlock);
628 		DB_DNODE_EXIT(db);
629 	} else if (db->db_state == DB_UNCACHED) {
630 		spa_t *spa = dn->dn_objset->os_spa;
631 
632 		if (zio == NULL)
633 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
634 		dbuf_read_impl(db, zio, &flags);
635 
636 		/* dbuf_read_impl has dropped db_mtx for us */
637 
638 		if (prefetch)
639 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
640 			    db->db.db_size, flags & DB_RF_CACHED);
641 
642 		if ((flags & DB_RF_HAVESTRUCT) == 0)
643 			rw_exit(&dn->dn_struct_rwlock);
644 		DB_DNODE_EXIT(db);
645 
646 		if (!havepzio)
647 			err = zio_wait(zio);
648 	} else {
649 		/*
650 		 * Another reader came in while the dbuf was in flight
651 		 * between UNCACHED and CACHED.  Either a writer will finish
652 		 * writing the buffer (sending the dbuf to CACHED) or the
653 		 * first reader's request will reach the read_done callback
654 		 * and send the dbuf to CACHED.  Otherwise, a failure
655 		 * occurred and the dbuf went to UNCACHED.
656 		 */
657 		mutex_exit(&db->db_mtx);
658 		if (prefetch)
659 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
660 			    db->db.db_size, TRUE);
661 		if ((flags & DB_RF_HAVESTRUCT) == 0)
662 			rw_exit(&dn->dn_struct_rwlock);
663 		DB_DNODE_EXIT(db);
664 
665 		/* Skip the wait per the caller's request. */
666 		mutex_enter(&db->db_mtx);
667 		if ((flags & DB_RF_NEVERWAIT) == 0) {
668 			while (db->db_state == DB_READ ||
669 			    db->db_state == DB_FILL) {
670 				ASSERT(db->db_state == DB_READ ||
671 				    (flags & DB_RF_HAVESTRUCT) == 0);
672 				cv_wait(&db->db_changed, &db->db_mtx);
673 			}
674 			if (db->db_state == DB_UNCACHED)
675 				err = SET_ERROR(EIO);
676 		}
677 		mutex_exit(&db->db_mtx);
678 	}
679 
680 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
681 	return (err);
682 }
683 
684 static void
685 dbuf_noread(dmu_buf_impl_t *db)
686 {
687 	ASSERT(!refcount_is_zero(&db->db_holds));
688 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
689 	mutex_enter(&db->db_mtx);
690 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
691 		cv_wait(&db->db_changed, &db->db_mtx);
692 	if (db->db_state == DB_UNCACHED) {
693 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
694 		spa_t *spa = db->db_objset->os_spa;
695 
696 		ASSERT(db->db_buf == NULL);
697 		ASSERT(db->db.db_data == NULL);
698 		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
699 		db->db_state = DB_FILL;
700 	} else if (db->db_state == DB_NOFILL) {
701 		dbuf_set_data(db, NULL);
702 	} else {
703 		ASSERT3U(db->db_state, ==, DB_CACHED);
704 	}
705 	mutex_exit(&db->db_mtx);
706 }
707 
708 /*
709  * This is our just-in-time copy function.  It makes a copy of
710  * buffers, that have been modified in a previous transaction
711  * group, before we modify them in the current active group.
712  *
713  * This function is used in two places: when we are dirtying a
714  * buffer for the first time in a txg, and when we are freeing
715  * a range in a dnode that includes this buffer.
716  *
717  * Note that when we are called from dbuf_free_range() we do
718  * not put a hold on the buffer, we just traverse the active
719  * dbuf list for the dnode.
720  */
721 static void
722 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
723 {
724 	dbuf_dirty_record_t *dr = db->db_last_dirty;
725 
726 	ASSERT(MUTEX_HELD(&db->db_mtx));
727 	ASSERT(db->db.db_data != NULL);
728 	ASSERT(db->db_level == 0);
729 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
730 
731 	if (dr == NULL ||
732 	    (dr->dt.dl.dr_data !=
733 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
734 		return;
735 
736 	/*
737 	 * If the last dirty record for this dbuf has not yet synced
738 	 * and its referencing the dbuf data, either:
739 	 *	reset the reference to point to a new copy,
740 	 * or (if there a no active holders)
741 	 *	just null out the current db_data pointer.
742 	 */
743 	ASSERT(dr->dr_txg >= txg - 2);
744 	if (db->db_blkid == DMU_BONUS_BLKID) {
745 		/* Note that the data bufs here are zio_bufs */
746 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
747 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
748 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
749 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
750 		int size = db->db.db_size;
751 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
752 		spa_t *spa = db->db_objset->os_spa;
753 
754 		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
755 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
756 	} else {
757 		dbuf_set_data(db, NULL);
758 	}
759 }
760 
761 void
762 dbuf_unoverride(dbuf_dirty_record_t *dr)
763 {
764 	dmu_buf_impl_t *db = dr->dr_dbuf;
765 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
766 	uint64_t txg = dr->dr_txg;
767 
768 	ASSERT(MUTEX_HELD(&db->db_mtx));
769 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
770 	ASSERT(db->db_level == 0);
771 
772 	if (db->db_blkid == DMU_BONUS_BLKID ||
773 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
774 		return;
775 
776 	ASSERT(db->db_data_pending != dr);
777 
778 	/* free this block */
779 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
780 		zio_free(db->db_objset->os_spa, txg, bp);
781 
782 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
783 	dr->dt.dl.dr_nopwrite = B_FALSE;
784 
785 	/*
786 	 * Release the already-written buffer, so we leave it in
787 	 * a consistent dirty state.  Note that all callers are
788 	 * modifying the buffer, so they will immediately do
789 	 * another (redundant) arc_release().  Therefore, leave
790 	 * the buf thawed to save the effort of freezing &
791 	 * immediately re-thawing it.
792 	 */
793 	arc_release(dr->dt.dl.dr_data, db);
794 }
795 
796 /*
797  * Evict (if its unreferenced) or clear (if its referenced) any level-0
798  * data blocks in the free range, so that any future readers will find
799  * empty blocks.
800  *
801  * This is a no-op if the dataset is in the middle of an incremental
802  * receive; see comment below for details.
803  */
804 void
805 dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx)
806 {
807 	dmu_buf_impl_t *db, *db_next;
808 	uint64_t txg = tx->tx_txg;
809 
810 	if (end > dn->dn_maxblkid && (end != DMU_SPILL_BLKID))
811 		end = dn->dn_maxblkid;
812 	dprintf_dnode(dn, "start=%llu end=%llu\n", start, end);
813 
814 	mutex_enter(&dn->dn_dbufs_mtx);
815 	if (start >= dn->dn_unlisted_l0_blkid * dn->dn_datablksz) {
816 		/* There can't be any dbufs in this range; no need to search. */
817 		mutex_exit(&dn->dn_dbufs_mtx);
818 		return;
819 	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
820 		/*
821 		 * If we are receiving, we expect there to be no dbufs in
822 		 * the range to be freed, because receive modifies each
823 		 * block at most once, and in offset order.  If this is
824 		 * not the case, it can lead to performance problems,
825 		 * so note that we unexpectedly took the slow path.
826 		 */
827 		atomic_inc_64(&zfs_free_range_recv_miss);
828 	}
829 
830 	for (db = list_head(&dn->dn_dbufs); db != NULL; db = db_next) {
831 		db_next = list_next(&dn->dn_dbufs, db);
832 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
833 
834 		if (db->db_level != 0)
835 			continue;
836 		if (db->db_blkid < start || db->db_blkid > end)
837 			continue;
838 
839 		/* found a level 0 buffer in the range */
840 		mutex_enter(&db->db_mtx);
841 		if (dbuf_undirty(db, tx)) {
842 			/* mutex has been dropped and dbuf destroyed */
843 			continue;
844 		}
845 
846 		if (db->db_state == DB_UNCACHED ||
847 		    db->db_state == DB_NOFILL ||
848 		    db->db_state == DB_EVICTING) {
849 			ASSERT(db->db.db_data == NULL);
850 			mutex_exit(&db->db_mtx);
851 			continue;
852 		}
853 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
854 			/* will be handled in dbuf_read_done or dbuf_rele */
855 			db->db_freed_in_flight = TRUE;
856 			mutex_exit(&db->db_mtx);
857 			continue;
858 		}
859 		if (refcount_count(&db->db_holds) == 0) {
860 			ASSERT(db->db_buf);
861 			dbuf_clear(db);
862 			continue;
863 		}
864 		/* The dbuf is referenced */
865 
866 		if (db->db_last_dirty != NULL) {
867 			dbuf_dirty_record_t *dr = db->db_last_dirty;
868 
869 			if (dr->dr_txg == txg) {
870 				/*
871 				 * This buffer is "in-use", re-adjust the file
872 				 * size to reflect that this buffer may
873 				 * contain new data when we sync.
874 				 */
875 				if (db->db_blkid != DMU_SPILL_BLKID &&
876 				    db->db_blkid > dn->dn_maxblkid)
877 					dn->dn_maxblkid = db->db_blkid;
878 				dbuf_unoverride(dr);
879 			} else {
880 				/*
881 				 * This dbuf is not dirty in the open context.
882 				 * Either uncache it (if its not referenced in
883 				 * the open context) or reset its contents to
884 				 * empty.
885 				 */
886 				dbuf_fix_old_data(db, txg);
887 			}
888 		}
889 		/* clear the contents if its cached */
890 		if (db->db_state == DB_CACHED) {
891 			ASSERT(db->db.db_data != NULL);
892 			arc_release(db->db_buf, db);
893 			bzero(db->db.db_data, db->db.db_size);
894 			arc_buf_freeze(db->db_buf);
895 		}
896 
897 		mutex_exit(&db->db_mtx);
898 	}
899 	mutex_exit(&dn->dn_dbufs_mtx);
900 }
901 
902 static int
903 dbuf_block_freeable(dmu_buf_impl_t *db)
904 {
905 	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
906 	uint64_t birth_txg = 0;
907 
908 	/*
909 	 * We don't need any locking to protect db_blkptr:
910 	 * If it's syncing, then db_last_dirty will be set
911 	 * so we'll ignore db_blkptr.
912 	 *
913 	 * This logic ensures that only block births for
914 	 * filled blocks are considered.
915 	 */
916 	ASSERT(MUTEX_HELD(&db->db_mtx));
917 	if (db->db_last_dirty && (db->db_blkptr == NULL ||
918 	    !BP_IS_HOLE(db->db_blkptr))) {
919 		birth_txg = db->db_last_dirty->dr_txg;
920 	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
921 		birth_txg = db->db_blkptr->blk_birth;
922 	}
923 
924 	/*
925 	 * If this block don't exist or is in a snapshot, it can't be freed.
926 	 * Don't pass the bp to dsl_dataset_block_freeable() since we
927 	 * are holding the db_mtx lock and might deadlock if we are
928 	 * prefetching a dedup-ed block.
929 	 */
930 	if (birth_txg != 0)
931 		return (ds == NULL ||
932 		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
933 	else
934 		return (B_FALSE);
935 }
936 
937 void
938 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
939 {
940 	arc_buf_t *buf, *obuf;
941 	int osize = db->db.db_size;
942 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
943 	dnode_t *dn;
944 
945 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
946 
947 	DB_DNODE_ENTER(db);
948 	dn = DB_DNODE(db);
949 
950 	/* XXX does *this* func really need the lock? */
951 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
952 
953 	/*
954 	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
955 	 * is OK, because there can be no other references to the db
956 	 * when we are changing its size, so no concurrent DB_FILL can
957 	 * be happening.
958 	 */
959 	/*
960 	 * XXX we should be doing a dbuf_read, checking the return
961 	 * value and returning that up to our callers
962 	 */
963 	dmu_buf_will_dirty(&db->db, tx);
964 
965 	/* create the data buffer for the new block */
966 	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
967 
968 	/* copy old block data to the new block */
969 	obuf = db->db_buf;
970 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
971 	/* zero the remainder */
972 	if (size > osize)
973 		bzero((uint8_t *)buf->b_data + osize, size - osize);
974 
975 	mutex_enter(&db->db_mtx);
976 	dbuf_set_data(db, buf);
977 	VERIFY(arc_buf_remove_ref(obuf, db));
978 	db->db.db_size = size;
979 
980 	if (db->db_level == 0) {
981 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
982 		db->db_last_dirty->dt.dl.dr_data = buf;
983 	}
984 	mutex_exit(&db->db_mtx);
985 
986 	dnode_willuse_space(dn, size-osize, tx);
987 	DB_DNODE_EXIT(db);
988 }
989 
990 void
991 dbuf_release_bp(dmu_buf_impl_t *db)
992 {
993 	objset_t *os = db->db_objset;
994 
995 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
996 	ASSERT(arc_released(os->os_phys_buf) ||
997 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
998 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
999 
1000 	(void) arc_release(db->db_buf, db);
1001 }
1002 
1003 dbuf_dirty_record_t *
1004 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1005 {
1006 	dnode_t *dn;
1007 	objset_t *os;
1008 	dbuf_dirty_record_t **drp, *dr;
1009 	int drop_struct_lock = FALSE;
1010 	boolean_t do_free_accounting = B_FALSE;
1011 	int txgoff = tx->tx_txg & TXG_MASK;
1012 
1013 	ASSERT(tx->tx_txg != 0);
1014 	ASSERT(!refcount_is_zero(&db->db_holds));
1015 	DMU_TX_DIRTY_BUF(tx, db);
1016 
1017 	DB_DNODE_ENTER(db);
1018 	dn = DB_DNODE(db);
1019 	/*
1020 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1021 	 * objects may be dirtied in syncing context, but only if they
1022 	 * were already pre-dirtied in open context.
1023 	 */
1024 	ASSERT(!dmu_tx_is_syncing(tx) ||
1025 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1026 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1027 	    dn->dn_objset->os_dsl_dataset == NULL);
1028 	/*
1029 	 * We make this assert for private objects as well, but after we
1030 	 * check if we're already dirty.  They are allowed to re-dirty
1031 	 * in syncing context.
1032 	 */
1033 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1034 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1035 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1036 
1037 	mutex_enter(&db->db_mtx);
1038 	/*
1039 	 * XXX make this true for indirects too?  The problem is that
1040 	 * transactions created with dmu_tx_create_assigned() from
1041 	 * syncing context don't bother holding ahead.
1042 	 */
1043 	ASSERT(db->db_level != 0 ||
1044 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1045 	    db->db_state == DB_NOFILL);
1046 
1047 	mutex_enter(&dn->dn_mtx);
1048 	/*
1049 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1050 	 * initialize the objset.
1051 	 */
1052 	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1053 	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1054 		dn->dn_dirtyctx =
1055 		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1056 		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1057 		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1058 	}
1059 	mutex_exit(&dn->dn_mtx);
1060 
1061 	if (db->db_blkid == DMU_SPILL_BLKID)
1062 		dn->dn_have_spill = B_TRUE;
1063 
1064 	/*
1065 	 * If this buffer is already dirty, we're done.
1066 	 */
1067 	drp = &db->db_last_dirty;
1068 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1069 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1070 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1071 		drp = &dr->dr_next;
1072 	if (dr && dr->dr_txg == tx->tx_txg) {
1073 		DB_DNODE_EXIT(db);
1074 
1075 		if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1076 			/*
1077 			 * If this buffer has already been written out,
1078 			 * we now need to reset its state.
1079 			 */
1080 			dbuf_unoverride(dr);
1081 			if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1082 			    db->db_state != DB_NOFILL)
1083 				arc_buf_thaw(db->db_buf);
1084 		}
1085 		mutex_exit(&db->db_mtx);
1086 		return (dr);
1087 	}
1088 
1089 	/*
1090 	 * Only valid if not already dirty.
1091 	 */
1092 	ASSERT(dn->dn_object == 0 ||
1093 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1094 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1095 
1096 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1097 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1098 	    dn->dn_phys->dn_nlevels > db->db_level ||
1099 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1100 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1101 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1102 
1103 	/*
1104 	 * We should only be dirtying in syncing context if it's the
1105 	 * mos or we're initializing the os or it's a special object.
1106 	 * However, we are allowed to dirty in syncing context provided
1107 	 * we already dirtied it in open context.  Hence we must make
1108 	 * this assertion only if we're not already dirty.
1109 	 */
1110 	os = dn->dn_objset;
1111 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1112 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1113 	ASSERT(db->db.db_size != 0);
1114 
1115 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1116 
1117 	if (db->db_blkid != DMU_BONUS_BLKID) {
1118 		/*
1119 		 * Update the accounting.
1120 		 * Note: we delay "free accounting" until after we drop
1121 		 * the db_mtx.  This keeps us from grabbing other locks
1122 		 * (and possibly deadlocking) in bp_get_dsize() while
1123 		 * also holding the db_mtx.
1124 		 */
1125 		dnode_willuse_space(dn, db->db.db_size, tx);
1126 		do_free_accounting = dbuf_block_freeable(db);
1127 	}
1128 
1129 	/*
1130 	 * If this buffer is dirty in an old transaction group we need
1131 	 * to make a copy of it so that the changes we make in this
1132 	 * transaction group won't leak out when we sync the older txg.
1133 	 */
1134 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1135 	if (db->db_level == 0) {
1136 		void *data_old = db->db_buf;
1137 
1138 		if (db->db_state != DB_NOFILL) {
1139 			if (db->db_blkid == DMU_BONUS_BLKID) {
1140 				dbuf_fix_old_data(db, tx->tx_txg);
1141 				data_old = db->db.db_data;
1142 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1143 				/*
1144 				 * Release the data buffer from the cache so
1145 				 * that we can modify it without impacting
1146 				 * possible other users of this cached data
1147 				 * block.  Note that indirect blocks and
1148 				 * private objects are not released until the
1149 				 * syncing state (since they are only modified
1150 				 * then).
1151 				 */
1152 				arc_release(db->db_buf, db);
1153 				dbuf_fix_old_data(db, tx->tx_txg);
1154 				data_old = db->db_buf;
1155 			}
1156 			ASSERT(data_old != NULL);
1157 		}
1158 		dr->dt.dl.dr_data = data_old;
1159 	} else {
1160 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1161 		list_create(&dr->dt.di.dr_children,
1162 		    sizeof (dbuf_dirty_record_t),
1163 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1164 	}
1165 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1166 		dr->dr_accounted = db->db.db_size;
1167 	dr->dr_dbuf = db;
1168 	dr->dr_txg = tx->tx_txg;
1169 	dr->dr_next = *drp;
1170 	*drp = dr;
1171 
1172 	/*
1173 	 * We could have been freed_in_flight between the dbuf_noread
1174 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1175 	 * happened after the free.
1176 	 */
1177 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1178 	    db->db_blkid != DMU_SPILL_BLKID) {
1179 		mutex_enter(&dn->dn_mtx);
1180 		dnode_clear_range(dn, db->db_blkid, 1, tx);
1181 		mutex_exit(&dn->dn_mtx);
1182 		db->db_freed_in_flight = FALSE;
1183 	}
1184 
1185 	/*
1186 	 * This buffer is now part of this txg
1187 	 */
1188 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1189 	db->db_dirtycnt += 1;
1190 	ASSERT3U(db->db_dirtycnt, <=, 3);
1191 
1192 	mutex_exit(&db->db_mtx);
1193 
1194 	if (db->db_blkid == DMU_BONUS_BLKID ||
1195 	    db->db_blkid == DMU_SPILL_BLKID) {
1196 		mutex_enter(&dn->dn_mtx);
1197 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1198 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1199 		mutex_exit(&dn->dn_mtx);
1200 		dnode_setdirty(dn, tx);
1201 		DB_DNODE_EXIT(db);
1202 		return (dr);
1203 	} else if (do_free_accounting) {
1204 		blkptr_t *bp = db->db_blkptr;
1205 		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1206 		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1207 		/*
1208 		 * This is only a guess -- if the dbuf is dirty
1209 		 * in a previous txg, we don't know how much
1210 		 * space it will use on disk yet.  We should
1211 		 * really have the struct_rwlock to access
1212 		 * db_blkptr, but since this is just a guess,
1213 		 * it's OK if we get an odd answer.
1214 		 */
1215 		ddt_prefetch(os->os_spa, bp);
1216 		dnode_willuse_space(dn, -willfree, tx);
1217 	}
1218 
1219 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1220 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1221 		drop_struct_lock = TRUE;
1222 	}
1223 
1224 	if (db->db_level == 0) {
1225 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1226 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1227 	}
1228 
1229 	if (db->db_level+1 < dn->dn_nlevels) {
1230 		dmu_buf_impl_t *parent = db->db_parent;
1231 		dbuf_dirty_record_t *di;
1232 		int parent_held = FALSE;
1233 
1234 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1235 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1236 
1237 			parent = dbuf_hold_level(dn, db->db_level+1,
1238 			    db->db_blkid >> epbs, FTAG);
1239 			ASSERT(parent != NULL);
1240 			parent_held = TRUE;
1241 		}
1242 		if (drop_struct_lock)
1243 			rw_exit(&dn->dn_struct_rwlock);
1244 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1245 		di = dbuf_dirty(parent, tx);
1246 		if (parent_held)
1247 			dbuf_rele(parent, FTAG);
1248 
1249 		mutex_enter(&db->db_mtx);
1250 		/*
1251 		 * Since we've dropped the mutex, it's possible that
1252 		 * dbuf_undirty() might have changed this out from under us.
1253 		 */
1254 		if (db->db_last_dirty == dr ||
1255 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1256 			mutex_enter(&di->dt.di.dr_mtx);
1257 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1258 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1259 			list_insert_tail(&di->dt.di.dr_children, dr);
1260 			mutex_exit(&di->dt.di.dr_mtx);
1261 			dr->dr_parent = di;
1262 		}
1263 		mutex_exit(&db->db_mtx);
1264 	} else {
1265 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1266 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1267 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1268 		mutex_enter(&dn->dn_mtx);
1269 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1270 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1271 		mutex_exit(&dn->dn_mtx);
1272 		if (drop_struct_lock)
1273 			rw_exit(&dn->dn_struct_rwlock);
1274 	}
1275 
1276 	dnode_setdirty(dn, tx);
1277 	DB_DNODE_EXIT(db);
1278 	return (dr);
1279 }
1280 
1281 /*
1282  * Undirty a buffer in the transaction group referenced by the given
1283  * transaction.  Return whether this evicted the dbuf.
1284  */
1285 static boolean_t
1286 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1287 {
1288 	dnode_t *dn;
1289 	uint64_t txg = tx->tx_txg;
1290 	dbuf_dirty_record_t *dr, **drp;
1291 
1292 	ASSERT(txg != 0);
1293 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1294 	ASSERT0(db->db_level);
1295 	ASSERT(MUTEX_HELD(&db->db_mtx));
1296 
1297 	/*
1298 	 * If this buffer is not dirty, we're done.
1299 	 */
1300 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1301 		if (dr->dr_txg <= txg)
1302 			break;
1303 	if (dr == NULL || dr->dr_txg < txg)
1304 		return (B_FALSE);
1305 	ASSERT(dr->dr_txg == txg);
1306 	ASSERT(dr->dr_dbuf == db);
1307 
1308 	DB_DNODE_ENTER(db);
1309 	dn = DB_DNODE(db);
1310 
1311 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1312 
1313 	ASSERT(db->db.db_size != 0);
1314 
1315 	/*
1316 	 * Any space we accounted for in dp_dirty_* will be cleaned up by
1317 	 * dsl_pool_sync().  This is relatively rare so the discrepancy
1318 	 * is not a big deal.
1319 	 */
1320 
1321 	*drp = dr->dr_next;
1322 
1323 	/*
1324 	 * Note that there are three places in dbuf_dirty()
1325 	 * where this dirty record may be put on a list.
1326 	 * Make sure to do a list_remove corresponding to
1327 	 * every one of those list_insert calls.
1328 	 */
1329 	if (dr->dr_parent) {
1330 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1331 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1332 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1333 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1334 	    db->db_level+1 == dn->dn_nlevels) {
1335 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1336 		mutex_enter(&dn->dn_mtx);
1337 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1338 		mutex_exit(&dn->dn_mtx);
1339 	}
1340 	DB_DNODE_EXIT(db);
1341 
1342 	if (db->db_state != DB_NOFILL) {
1343 		dbuf_unoverride(dr);
1344 
1345 		ASSERT(db->db_buf != NULL);
1346 		ASSERT(dr->dt.dl.dr_data != NULL);
1347 		if (dr->dt.dl.dr_data != db->db_buf)
1348 			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1349 	}
1350 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1351 
1352 	ASSERT(db->db_dirtycnt > 0);
1353 	db->db_dirtycnt -= 1;
1354 
1355 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1356 		arc_buf_t *buf = db->db_buf;
1357 
1358 		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1359 		dbuf_set_data(db, NULL);
1360 		VERIFY(arc_buf_remove_ref(buf, db));
1361 		dbuf_evict(db);
1362 		return (B_TRUE);
1363 	}
1364 
1365 	return (B_FALSE);
1366 }
1367 
1368 void
1369 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1370 {
1371 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1372 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1373 
1374 	ASSERT(tx->tx_txg != 0);
1375 	ASSERT(!refcount_is_zero(&db->db_holds));
1376 
1377 	DB_DNODE_ENTER(db);
1378 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1379 		rf |= DB_RF_HAVESTRUCT;
1380 	DB_DNODE_EXIT(db);
1381 	(void) dbuf_read(db, NULL, rf);
1382 	(void) dbuf_dirty(db, tx);
1383 }
1384 
1385 void
1386 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1387 {
1388 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1389 
1390 	db->db_state = DB_NOFILL;
1391 
1392 	dmu_buf_will_fill(db_fake, tx);
1393 }
1394 
1395 void
1396 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1397 {
1398 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1399 
1400 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1401 	ASSERT(tx->tx_txg != 0);
1402 	ASSERT(db->db_level == 0);
1403 	ASSERT(!refcount_is_zero(&db->db_holds));
1404 
1405 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1406 	    dmu_tx_private_ok(tx));
1407 
1408 	dbuf_noread(db);
1409 	(void) dbuf_dirty(db, tx);
1410 }
1411 
1412 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1413 /* ARGSUSED */
1414 void
1415 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1416 {
1417 	mutex_enter(&db->db_mtx);
1418 	DBUF_VERIFY(db);
1419 
1420 	if (db->db_state == DB_FILL) {
1421 		if (db->db_level == 0 && db->db_freed_in_flight) {
1422 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1423 			/* we were freed while filling */
1424 			/* XXX dbuf_undirty? */
1425 			bzero(db->db.db_data, db->db.db_size);
1426 			db->db_freed_in_flight = FALSE;
1427 		}
1428 		db->db_state = DB_CACHED;
1429 		cv_broadcast(&db->db_changed);
1430 	}
1431 	mutex_exit(&db->db_mtx);
1432 }
1433 
1434 /*
1435  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1436  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1437  */
1438 void
1439 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1440 {
1441 	ASSERT(!refcount_is_zero(&db->db_holds));
1442 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1443 	ASSERT(db->db_level == 0);
1444 	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1445 	ASSERT(buf != NULL);
1446 	ASSERT(arc_buf_size(buf) == db->db.db_size);
1447 	ASSERT(tx->tx_txg != 0);
1448 
1449 	arc_return_buf(buf, db);
1450 	ASSERT(arc_released(buf));
1451 
1452 	mutex_enter(&db->db_mtx);
1453 
1454 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1455 		cv_wait(&db->db_changed, &db->db_mtx);
1456 
1457 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1458 
1459 	if (db->db_state == DB_CACHED &&
1460 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1461 		mutex_exit(&db->db_mtx);
1462 		(void) dbuf_dirty(db, tx);
1463 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1464 		VERIFY(arc_buf_remove_ref(buf, db));
1465 		xuio_stat_wbuf_copied();
1466 		return;
1467 	}
1468 
1469 	xuio_stat_wbuf_nocopy();
1470 	if (db->db_state == DB_CACHED) {
1471 		dbuf_dirty_record_t *dr = db->db_last_dirty;
1472 
1473 		ASSERT(db->db_buf != NULL);
1474 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1475 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1476 			if (!arc_released(db->db_buf)) {
1477 				ASSERT(dr->dt.dl.dr_override_state ==
1478 				    DR_OVERRIDDEN);
1479 				arc_release(db->db_buf, db);
1480 			}
1481 			dr->dt.dl.dr_data = buf;
1482 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1483 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1484 			arc_release(db->db_buf, db);
1485 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1486 		}
1487 		db->db_buf = NULL;
1488 	}
1489 	ASSERT(db->db_buf == NULL);
1490 	dbuf_set_data(db, buf);
1491 	db->db_state = DB_FILL;
1492 	mutex_exit(&db->db_mtx);
1493 	(void) dbuf_dirty(db, tx);
1494 	dmu_buf_fill_done(&db->db, tx);
1495 }
1496 
1497 /*
1498  * "Clear" the contents of this dbuf.  This will mark the dbuf
1499  * EVICTING and clear *most* of its references.  Unfortunately,
1500  * when we are not holding the dn_dbufs_mtx, we can't clear the
1501  * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1502  * in this case.  For callers from the DMU we will usually see:
1503  *	dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy()
1504  * For the arc callback, we will usually see:
1505  *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1506  * Sometimes, though, we will get a mix of these two:
1507  *	DMU: dbuf_clear()->arc_buf_evict()
1508  *	ARC: dbuf_do_evict()->dbuf_destroy()
1509  */
1510 void
1511 dbuf_clear(dmu_buf_impl_t *db)
1512 {
1513 	dnode_t *dn;
1514 	dmu_buf_impl_t *parent = db->db_parent;
1515 	dmu_buf_impl_t *dndb;
1516 	int dbuf_gone = FALSE;
1517 
1518 	ASSERT(MUTEX_HELD(&db->db_mtx));
1519 	ASSERT(refcount_is_zero(&db->db_holds));
1520 
1521 	dbuf_evict_user(db);
1522 
1523 	if (db->db_state == DB_CACHED) {
1524 		ASSERT(db->db.db_data != NULL);
1525 		if (db->db_blkid == DMU_BONUS_BLKID) {
1526 			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1527 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1528 		}
1529 		db->db.db_data = NULL;
1530 		db->db_state = DB_UNCACHED;
1531 	}
1532 
1533 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1534 	ASSERT(db->db_data_pending == NULL);
1535 
1536 	db->db_state = DB_EVICTING;
1537 	db->db_blkptr = NULL;
1538 
1539 	DB_DNODE_ENTER(db);
1540 	dn = DB_DNODE(db);
1541 	dndb = dn->dn_dbuf;
1542 	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1543 		list_remove(&dn->dn_dbufs, db);
1544 		(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1545 		membar_producer();
1546 		DB_DNODE_EXIT(db);
1547 		/*
1548 		 * Decrementing the dbuf count means that the hold corresponding
1549 		 * to the removed dbuf is no longer discounted in dnode_move(),
1550 		 * so the dnode cannot be moved until after we release the hold.
1551 		 * The membar_producer() ensures visibility of the decremented
1552 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1553 		 * release any lock.
1554 		 */
1555 		dnode_rele(dn, db);
1556 		db->db_dnode_handle = NULL;
1557 	} else {
1558 		DB_DNODE_EXIT(db);
1559 	}
1560 
1561 	if (db->db_buf)
1562 		dbuf_gone = arc_buf_evict(db->db_buf);
1563 
1564 	if (!dbuf_gone)
1565 		mutex_exit(&db->db_mtx);
1566 
1567 	/*
1568 	 * If this dbuf is referenced from an indirect dbuf,
1569 	 * decrement the ref count on the indirect dbuf.
1570 	 */
1571 	if (parent && parent != dndb)
1572 		dbuf_rele(parent, db);
1573 }
1574 
1575 static int
1576 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1577     dmu_buf_impl_t **parentp, blkptr_t **bpp)
1578 {
1579 	int nlevels, epbs;
1580 
1581 	*parentp = NULL;
1582 	*bpp = NULL;
1583 
1584 	ASSERT(blkid != DMU_BONUS_BLKID);
1585 
1586 	if (blkid == DMU_SPILL_BLKID) {
1587 		mutex_enter(&dn->dn_mtx);
1588 		if (dn->dn_have_spill &&
1589 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1590 			*bpp = &dn->dn_phys->dn_spill;
1591 		else
1592 			*bpp = NULL;
1593 		dbuf_add_ref(dn->dn_dbuf, NULL);
1594 		*parentp = dn->dn_dbuf;
1595 		mutex_exit(&dn->dn_mtx);
1596 		return (0);
1597 	}
1598 
1599 	if (dn->dn_phys->dn_nlevels == 0)
1600 		nlevels = 1;
1601 	else
1602 		nlevels = dn->dn_phys->dn_nlevels;
1603 
1604 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1605 
1606 	ASSERT3U(level * epbs, <, 64);
1607 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1608 	if (level >= nlevels ||
1609 	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1610 		/* the buffer has no parent yet */
1611 		return (SET_ERROR(ENOENT));
1612 	} else if (level < nlevels-1) {
1613 		/* this block is referenced from an indirect block */
1614 		int err = dbuf_hold_impl(dn, level+1,
1615 		    blkid >> epbs, fail_sparse, NULL, parentp);
1616 		if (err)
1617 			return (err);
1618 		err = dbuf_read(*parentp, NULL,
1619 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1620 		if (err) {
1621 			dbuf_rele(*parentp, NULL);
1622 			*parentp = NULL;
1623 			return (err);
1624 		}
1625 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1626 		    (blkid & ((1ULL << epbs) - 1));
1627 		return (0);
1628 	} else {
1629 		/* the block is referenced from the dnode */
1630 		ASSERT3U(level, ==, nlevels-1);
1631 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1632 		    blkid < dn->dn_phys->dn_nblkptr);
1633 		if (dn->dn_dbuf) {
1634 			dbuf_add_ref(dn->dn_dbuf, NULL);
1635 			*parentp = dn->dn_dbuf;
1636 		}
1637 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1638 		return (0);
1639 	}
1640 }
1641 
1642 static dmu_buf_impl_t *
1643 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1644     dmu_buf_impl_t *parent, blkptr_t *blkptr)
1645 {
1646 	objset_t *os = dn->dn_objset;
1647 	dmu_buf_impl_t *db, *odb;
1648 
1649 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1650 	ASSERT(dn->dn_type != DMU_OT_NONE);
1651 
1652 	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1653 
1654 	db->db_objset = os;
1655 	db->db.db_object = dn->dn_object;
1656 	db->db_level = level;
1657 	db->db_blkid = blkid;
1658 	db->db_last_dirty = NULL;
1659 	db->db_dirtycnt = 0;
1660 	db->db_dnode_handle = dn->dn_handle;
1661 	db->db_parent = parent;
1662 	db->db_blkptr = blkptr;
1663 
1664 	db->db_user_ptr = NULL;
1665 	db->db_user_data_ptr_ptr = NULL;
1666 	db->db_evict_func = NULL;
1667 	db->db_immediate_evict = 0;
1668 	db->db_freed_in_flight = 0;
1669 
1670 	if (blkid == DMU_BONUS_BLKID) {
1671 		ASSERT3P(parent, ==, dn->dn_dbuf);
1672 		db->db.db_size = DN_MAX_BONUSLEN -
1673 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1674 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1675 		db->db.db_offset = DMU_BONUS_BLKID;
1676 		db->db_state = DB_UNCACHED;
1677 		/* the bonus dbuf is not placed in the hash table */
1678 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1679 		return (db);
1680 	} else if (blkid == DMU_SPILL_BLKID) {
1681 		db->db.db_size = (blkptr != NULL) ?
1682 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1683 		db->db.db_offset = 0;
1684 	} else {
1685 		int blocksize =
1686 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1687 		db->db.db_size = blocksize;
1688 		db->db.db_offset = db->db_blkid * blocksize;
1689 	}
1690 
1691 	/*
1692 	 * Hold the dn_dbufs_mtx while we get the new dbuf
1693 	 * in the hash table *and* added to the dbufs list.
1694 	 * This prevents a possible deadlock with someone
1695 	 * trying to look up this dbuf before its added to the
1696 	 * dn_dbufs list.
1697 	 */
1698 	mutex_enter(&dn->dn_dbufs_mtx);
1699 	db->db_state = DB_EVICTING;
1700 	if ((odb = dbuf_hash_insert(db)) != NULL) {
1701 		/* someone else inserted it first */
1702 		kmem_cache_free(dbuf_cache, db);
1703 		mutex_exit(&dn->dn_dbufs_mtx);
1704 		return (odb);
1705 	}
1706 	list_insert_head(&dn->dn_dbufs, db);
1707 	if (db->db_level == 0 && db->db_blkid >=
1708 	    dn->dn_unlisted_l0_blkid)
1709 		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1710 	db->db_state = DB_UNCACHED;
1711 	mutex_exit(&dn->dn_dbufs_mtx);
1712 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1713 
1714 	if (parent && parent != dn->dn_dbuf)
1715 		dbuf_add_ref(parent, db);
1716 
1717 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1718 	    refcount_count(&dn->dn_holds) > 0);
1719 	(void) refcount_add(&dn->dn_holds, db);
1720 	(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
1721 
1722 	dprintf_dbuf(db, "db=%p\n", db);
1723 
1724 	return (db);
1725 }
1726 
1727 static int
1728 dbuf_do_evict(void *private)
1729 {
1730 	arc_buf_t *buf = private;
1731 	dmu_buf_impl_t *db = buf->b_private;
1732 
1733 	if (!MUTEX_HELD(&db->db_mtx))
1734 		mutex_enter(&db->db_mtx);
1735 
1736 	ASSERT(refcount_is_zero(&db->db_holds));
1737 
1738 	if (db->db_state != DB_EVICTING) {
1739 		ASSERT(db->db_state == DB_CACHED);
1740 		DBUF_VERIFY(db);
1741 		db->db_buf = NULL;
1742 		dbuf_evict(db);
1743 	} else {
1744 		mutex_exit(&db->db_mtx);
1745 		dbuf_destroy(db);
1746 	}
1747 	return (0);
1748 }
1749 
1750 static void
1751 dbuf_destroy(dmu_buf_impl_t *db)
1752 {
1753 	ASSERT(refcount_is_zero(&db->db_holds));
1754 
1755 	if (db->db_blkid != DMU_BONUS_BLKID) {
1756 		/*
1757 		 * If this dbuf is still on the dn_dbufs list,
1758 		 * remove it from that list.
1759 		 */
1760 		if (db->db_dnode_handle != NULL) {
1761 			dnode_t *dn;
1762 
1763 			DB_DNODE_ENTER(db);
1764 			dn = DB_DNODE(db);
1765 			mutex_enter(&dn->dn_dbufs_mtx);
1766 			list_remove(&dn->dn_dbufs, db);
1767 			(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1768 			mutex_exit(&dn->dn_dbufs_mtx);
1769 			DB_DNODE_EXIT(db);
1770 			/*
1771 			 * Decrementing the dbuf count means that the hold
1772 			 * corresponding to the removed dbuf is no longer
1773 			 * discounted in dnode_move(), so the dnode cannot be
1774 			 * moved until after we release the hold.
1775 			 */
1776 			dnode_rele(dn, db);
1777 			db->db_dnode_handle = NULL;
1778 		}
1779 		dbuf_hash_remove(db);
1780 	}
1781 	db->db_parent = NULL;
1782 	db->db_buf = NULL;
1783 
1784 	ASSERT(!list_link_active(&db->db_link));
1785 	ASSERT(db->db.db_data == NULL);
1786 	ASSERT(db->db_hash_next == NULL);
1787 	ASSERT(db->db_blkptr == NULL);
1788 	ASSERT(db->db_data_pending == NULL);
1789 
1790 	kmem_cache_free(dbuf_cache, db);
1791 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1792 }
1793 
1794 void
1795 dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio)
1796 {
1797 	dmu_buf_impl_t *db = NULL;
1798 	blkptr_t *bp = NULL;
1799 
1800 	ASSERT(blkid != DMU_BONUS_BLKID);
1801 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1802 
1803 	if (dnode_block_freed(dn, blkid))
1804 		return;
1805 
1806 	/* dbuf_find() returns with db_mtx held */
1807 	if (db = dbuf_find(dn, 0, blkid)) {
1808 		/*
1809 		 * This dbuf is already in the cache.  We assume that
1810 		 * it is already CACHED, or else about to be either
1811 		 * read or filled.
1812 		 */
1813 		mutex_exit(&db->db_mtx);
1814 		return;
1815 	}
1816 
1817 	if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) {
1818 		if (bp && !BP_IS_HOLE(bp)) {
1819 			dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
1820 			uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH;
1821 			zbookmark_t zb;
1822 
1823 			SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1824 			    dn->dn_object, 0, blkid);
1825 
1826 			(void) arc_read(NULL, dn->dn_objset->os_spa,
1827 			    bp, NULL, NULL, prio,
1828 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1829 			    &aflags, &zb);
1830 		}
1831 		if (db)
1832 			dbuf_rele(db, NULL);
1833 	}
1834 }
1835 
1836 /*
1837  * Returns with db_holds incremented, and db_mtx not held.
1838  * Note: dn_struct_rwlock must be held.
1839  */
1840 int
1841 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
1842     void *tag, dmu_buf_impl_t **dbp)
1843 {
1844 	dmu_buf_impl_t *db, *parent = NULL;
1845 
1846 	ASSERT(blkid != DMU_BONUS_BLKID);
1847 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1848 	ASSERT3U(dn->dn_nlevels, >, level);
1849 
1850 	*dbp = NULL;
1851 top:
1852 	/* dbuf_find() returns with db_mtx held */
1853 	db = dbuf_find(dn, level, blkid);
1854 
1855 	if (db == NULL) {
1856 		blkptr_t *bp = NULL;
1857 		int err;
1858 
1859 		ASSERT3P(parent, ==, NULL);
1860 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
1861 		if (fail_sparse) {
1862 			if (err == 0 && bp && BP_IS_HOLE(bp))
1863 				err = SET_ERROR(ENOENT);
1864 			if (err) {
1865 				if (parent)
1866 					dbuf_rele(parent, NULL);
1867 				return (err);
1868 			}
1869 		}
1870 		if (err && err != ENOENT)
1871 			return (err);
1872 		db = dbuf_create(dn, level, blkid, parent, bp);
1873 	}
1874 
1875 	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
1876 		arc_buf_add_ref(db->db_buf, db);
1877 		if (db->db_buf->b_data == NULL) {
1878 			dbuf_clear(db);
1879 			if (parent) {
1880 				dbuf_rele(parent, NULL);
1881 				parent = NULL;
1882 			}
1883 			goto top;
1884 		}
1885 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
1886 	}
1887 
1888 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
1889 
1890 	/*
1891 	 * If this buffer is currently syncing out, and we are are
1892 	 * still referencing it from db_data, we need to make a copy
1893 	 * of it in case we decide we want to dirty it again in this txg.
1894 	 */
1895 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1896 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
1897 	    db->db_state == DB_CACHED && db->db_data_pending) {
1898 		dbuf_dirty_record_t *dr = db->db_data_pending;
1899 
1900 		if (dr->dt.dl.dr_data == db->db_buf) {
1901 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1902 
1903 			dbuf_set_data(db,
1904 			    arc_buf_alloc(dn->dn_objset->os_spa,
1905 			    db->db.db_size, db, type));
1906 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
1907 			    db->db.db_size);
1908 		}
1909 	}
1910 
1911 	(void) refcount_add(&db->db_holds, tag);
1912 	dbuf_update_data(db);
1913 	DBUF_VERIFY(db);
1914 	mutex_exit(&db->db_mtx);
1915 
1916 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
1917 	if (parent)
1918 		dbuf_rele(parent, NULL);
1919 
1920 	ASSERT3P(DB_DNODE(db), ==, dn);
1921 	ASSERT3U(db->db_blkid, ==, blkid);
1922 	ASSERT3U(db->db_level, ==, level);
1923 	*dbp = db;
1924 
1925 	return (0);
1926 }
1927 
1928 dmu_buf_impl_t *
1929 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
1930 {
1931 	dmu_buf_impl_t *db;
1932 	int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db);
1933 	return (err ? NULL : db);
1934 }
1935 
1936 dmu_buf_impl_t *
1937 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
1938 {
1939 	dmu_buf_impl_t *db;
1940 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db);
1941 	return (err ? NULL : db);
1942 }
1943 
1944 void
1945 dbuf_create_bonus(dnode_t *dn)
1946 {
1947 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1948 
1949 	ASSERT(dn->dn_bonus == NULL);
1950 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
1951 }
1952 
1953 int
1954 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
1955 {
1956 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1957 	dnode_t *dn;
1958 
1959 	if (db->db_blkid != DMU_SPILL_BLKID)
1960 		return (SET_ERROR(ENOTSUP));
1961 	if (blksz == 0)
1962 		blksz = SPA_MINBLOCKSIZE;
1963 	if (blksz > SPA_MAXBLOCKSIZE)
1964 		blksz = SPA_MAXBLOCKSIZE;
1965 	else
1966 		blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
1967 
1968 	DB_DNODE_ENTER(db);
1969 	dn = DB_DNODE(db);
1970 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1971 	dbuf_new_size(db, blksz, tx);
1972 	rw_exit(&dn->dn_struct_rwlock);
1973 	DB_DNODE_EXIT(db);
1974 
1975 	return (0);
1976 }
1977 
1978 void
1979 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
1980 {
1981 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
1982 }
1983 
1984 #pragma weak dmu_buf_add_ref = dbuf_add_ref
1985 void
1986 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
1987 {
1988 	int64_t holds = refcount_add(&db->db_holds, tag);
1989 	ASSERT(holds > 1);
1990 }
1991 
1992 /*
1993  * If you call dbuf_rele() you had better not be referencing the dnode handle
1994  * unless you have some other direct or indirect hold on the dnode. (An indirect
1995  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
1996  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
1997  * dnode's parent dbuf evicting its dnode handles.
1998  */
1999 void
2000 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2001 {
2002 	mutex_enter(&db->db_mtx);
2003 	dbuf_rele_and_unlock(db, tag);
2004 }
2005 
2006 void
2007 dmu_buf_rele(dmu_buf_t *db, void *tag)
2008 {
2009 	dbuf_rele((dmu_buf_impl_t *)db, tag);
2010 }
2011 
2012 /*
2013  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2014  * db_dirtycnt and db_holds to be updated atomically.
2015  */
2016 void
2017 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2018 {
2019 	int64_t holds;
2020 
2021 	ASSERT(MUTEX_HELD(&db->db_mtx));
2022 	DBUF_VERIFY(db);
2023 
2024 	/*
2025 	 * Remove the reference to the dbuf before removing its hold on the
2026 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2027 	 * buffer has a corresponding dnode hold.
2028 	 */
2029 	holds = refcount_remove(&db->db_holds, tag);
2030 	ASSERT(holds >= 0);
2031 
2032 	/*
2033 	 * We can't freeze indirects if there is a possibility that they
2034 	 * may be modified in the current syncing context.
2035 	 */
2036 	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2037 		arc_buf_freeze(db->db_buf);
2038 
2039 	if (holds == db->db_dirtycnt &&
2040 	    db->db_level == 0 && db->db_immediate_evict)
2041 		dbuf_evict_user(db);
2042 
2043 	if (holds == 0) {
2044 		if (db->db_blkid == DMU_BONUS_BLKID) {
2045 			mutex_exit(&db->db_mtx);
2046 
2047 			/*
2048 			 * If the dnode moves here, we cannot cross this barrier
2049 			 * until the move completes.
2050 			 */
2051 			DB_DNODE_ENTER(db);
2052 			(void) atomic_dec_32_nv(&DB_DNODE(db)->dn_dbufs_count);
2053 			DB_DNODE_EXIT(db);
2054 			/*
2055 			 * The bonus buffer's dnode hold is no longer discounted
2056 			 * in dnode_move(). The dnode cannot move until after
2057 			 * the dnode_rele().
2058 			 */
2059 			dnode_rele(DB_DNODE(db), db);
2060 		} else if (db->db_buf == NULL) {
2061 			/*
2062 			 * This is a special case: we never associated this
2063 			 * dbuf with any data allocated from the ARC.
2064 			 */
2065 			ASSERT(db->db_state == DB_UNCACHED ||
2066 			    db->db_state == DB_NOFILL);
2067 			dbuf_evict(db);
2068 		} else if (arc_released(db->db_buf)) {
2069 			arc_buf_t *buf = db->db_buf;
2070 			/*
2071 			 * This dbuf has anonymous data associated with it.
2072 			 */
2073 			dbuf_set_data(db, NULL);
2074 			VERIFY(arc_buf_remove_ref(buf, db));
2075 			dbuf_evict(db);
2076 		} else {
2077 			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2078 
2079 			/*
2080 			 * A dbuf will be eligible for eviction if either the
2081 			 * 'primarycache' property is set or a duplicate
2082 			 * copy of this buffer is already cached in the arc.
2083 			 *
2084 			 * In the case of the 'primarycache' a buffer
2085 			 * is considered for eviction if it matches the
2086 			 * criteria set in the property.
2087 			 *
2088 			 * To decide if our buffer is considered a
2089 			 * duplicate, we must call into the arc to determine
2090 			 * if multiple buffers are referencing the same
2091 			 * block on-disk. If so, then we simply evict
2092 			 * ourselves.
2093 			 */
2094 			if (!DBUF_IS_CACHEABLE(db) ||
2095 			    arc_buf_eviction_needed(db->db_buf))
2096 				dbuf_clear(db);
2097 			else
2098 				mutex_exit(&db->db_mtx);
2099 		}
2100 	} else {
2101 		mutex_exit(&db->db_mtx);
2102 	}
2103 }
2104 
2105 #pragma weak dmu_buf_refcount = dbuf_refcount
2106 uint64_t
2107 dbuf_refcount(dmu_buf_impl_t *db)
2108 {
2109 	return (refcount_count(&db->db_holds));
2110 }
2111 
2112 void *
2113 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2114     dmu_buf_evict_func_t *evict_func)
2115 {
2116 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2117 	    user_data_ptr_ptr, evict_func));
2118 }
2119 
2120 void *
2121 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2122     dmu_buf_evict_func_t *evict_func)
2123 {
2124 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2125 
2126 	db->db_immediate_evict = TRUE;
2127 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2128 	    user_data_ptr_ptr, evict_func));
2129 }
2130 
2131 void *
2132 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr,
2133     void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func)
2134 {
2135 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2136 	ASSERT(db->db_level == 0);
2137 
2138 	ASSERT((user_ptr == NULL) == (evict_func == NULL));
2139 
2140 	mutex_enter(&db->db_mtx);
2141 
2142 	if (db->db_user_ptr == old_user_ptr) {
2143 		db->db_user_ptr = user_ptr;
2144 		db->db_user_data_ptr_ptr = user_data_ptr_ptr;
2145 		db->db_evict_func = evict_func;
2146 
2147 		dbuf_update_data(db);
2148 	} else {
2149 		old_user_ptr = db->db_user_ptr;
2150 	}
2151 
2152 	mutex_exit(&db->db_mtx);
2153 	return (old_user_ptr);
2154 }
2155 
2156 void *
2157 dmu_buf_get_user(dmu_buf_t *db_fake)
2158 {
2159 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2160 	ASSERT(!refcount_is_zero(&db->db_holds));
2161 
2162 	return (db->db_user_ptr);
2163 }
2164 
2165 boolean_t
2166 dmu_buf_freeable(dmu_buf_t *dbuf)
2167 {
2168 	boolean_t res = B_FALSE;
2169 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2170 
2171 	if (db->db_blkptr)
2172 		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2173 		    db->db_blkptr, db->db_blkptr->blk_birth);
2174 
2175 	return (res);
2176 }
2177 
2178 blkptr_t *
2179 dmu_buf_get_blkptr(dmu_buf_t *db)
2180 {
2181 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2182 	return (dbi->db_blkptr);
2183 }
2184 
2185 static void
2186 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2187 {
2188 	/* ASSERT(dmu_tx_is_syncing(tx) */
2189 	ASSERT(MUTEX_HELD(&db->db_mtx));
2190 
2191 	if (db->db_blkptr != NULL)
2192 		return;
2193 
2194 	if (db->db_blkid == DMU_SPILL_BLKID) {
2195 		db->db_blkptr = &dn->dn_phys->dn_spill;
2196 		BP_ZERO(db->db_blkptr);
2197 		return;
2198 	}
2199 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2200 		/*
2201 		 * This buffer was allocated at a time when there was
2202 		 * no available blkptrs from the dnode, or it was
2203 		 * inappropriate to hook it in (i.e., nlevels mis-match).
2204 		 */
2205 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2206 		ASSERT(db->db_parent == NULL);
2207 		db->db_parent = dn->dn_dbuf;
2208 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2209 		DBUF_VERIFY(db);
2210 	} else {
2211 		dmu_buf_impl_t *parent = db->db_parent;
2212 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2213 
2214 		ASSERT(dn->dn_phys->dn_nlevels > 1);
2215 		if (parent == NULL) {
2216 			mutex_exit(&db->db_mtx);
2217 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2218 			(void) dbuf_hold_impl(dn, db->db_level+1,
2219 			    db->db_blkid >> epbs, FALSE, db, &parent);
2220 			rw_exit(&dn->dn_struct_rwlock);
2221 			mutex_enter(&db->db_mtx);
2222 			db->db_parent = parent;
2223 		}
2224 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2225 		    (db->db_blkid & ((1ULL << epbs) - 1));
2226 		DBUF_VERIFY(db);
2227 	}
2228 }
2229 
2230 static void
2231 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2232 {
2233 	dmu_buf_impl_t *db = dr->dr_dbuf;
2234 	dnode_t *dn;
2235 	zio_t *zio;
2236 
2237 	ASSERT(dmu_tx_is_syncing(tx));
2238 
2239 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2240 
2241 	mutex_enter(&db->db_mtx);
2242 
2243 	ASSERT(db->db_level > 0);
2244 	DBUF_VERIFY(db);
2245 
2246 	/* Read the block if it hasn't been read yet. */
2247 	if (db->db_buf == NULL) {
2248 		mutex_exit(&db->db_mtx);
2249 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2250 		mutex_enter(&db->db_mtx);
2251 	}
2252 	ASSERT3U(db->db_state, ==, DB_CACHED);
2253 	ASSERT(db->db_buf != NULL);
2254 
2255 	DB_DNODE_ENTER(db);
2256 	dn = DB_DNODE(db);
2257 	/* Indirect block size must match what the dnode thinks it is. */
2258 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2259 	dbuf_check_blkptr(dn, db);
2260 	DB_DNODE_EXIT(db);
2261 
2262 	/* Provide the pending dirty record to child dbufs */
2263 	db->db_data_pending = dr;
2264 
2265 	mutex_exit(&db->db_mtx);
2266 	dbuf_write(dr, db->db_buf, tx);
2267 
2268 	zio = dr->dr_zio;
2269 	mutex_enter(&dr->dt.di.dr_mtx);
2270 	dbuf_sync_list(&dr->dt.di.dr_children, tx);
2271 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2272 	mutex_exit(&dr->dt.di.dr_mtx);
2273 	zio_nowait(zio);
2274 }
2275 
2276 static void
2277 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2278 {
2279 	arc_buf_t **datap = &dr->dt.dl.dr_data;
2280 	dmu_buf_impl_t *db = dr->dr_dbuf;
2281 	dnode_t *dn;
2282 	objset_t *os;
2283 	uint64_t txg = tx->tx_txg;
2284 
2285 	ASSERT(dmu_tx_is_syncing(tx));
2286 
2287 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2288 
2289 	mutex_enter(&db->db_mtx);
2290 	/*
2291 	 * To be synced, we must be dirtied.  But we
2292 	 * might have been freed after the dirty.
2293 	 */
2294 	if (db->db_state == DB_UNCACHED) {
2295 		/* This buffer has been freed since it was dirtied */
2296 		ASSERT(db->db.db_data == NULL);
2297 	} else if (db->db_state == DB_FILL) {
2298 		/* This buffer was freed and is now being re-filled */
2299 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2300 	} else {
2301 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2302 	}
2303 	DBUF_VERIFY(db);
2304 
2305 	DB_DNODE_ENTER(db);
2306 	dn = DB_DNODE(db);
2307 
2308 	if (db->db_blkid == DMU_SPILL_BLKID) {
2309 		mutex_enter(&dn->dn_mtx);
2310 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2311 		mutex_exit(&dn->dn_mtx);
2312 	}
2313 
2314 	/*
2315 	 * If this is a bonus buffer, simply copy the bonus data into the
2316 	 * dnode.  It will be written out when the dnode is synced (and it
2317 	 * will be synced, since it must have been dirty for dbuf_sync to
2318 	 * be called).
2319 	 */
2320 	if (db->db_blkid == DMU_BONUS_BLKID) {
2321 		dbuf_dirty_record_t **drp;
2322 
2323 		ASSERT(*datap != NULL);
2324 		ASSERT0(db->db_level);
2325 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2326 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2327 		DB_DNODE_EXIT(db);
2328 
2329 		if (*datap != db->db.db_data) {
2330 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2331 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2332 		}
2333 		db->db_data_pending = NULL;
2334 		drp = &db->db_last_dirty;
2335 		while (*drp != dr)
2336 			drp = &(*drp)->dr_next;
2337 		ASSERT(dr->dr_next == NULL);
2338 		ASSERT(dr->dr_dbuf == db);
2339 		*drp = dr->dr_next;
2340 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2341 		ASSERT(db->db_dirtycnt > 0);
2342 		db->db_dirtycnt -= 1;
2343 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2344 		return;
2345 	}
2346 
2347 	os = dn->dn_objset;
2348 
2349 	/*
2350 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2351 	 * operation to sneak in. As a result, we need to ensure that we
2352 	 * don't check the dr_override_state until we have returned from
2353 	 * dbuf_check_blkptr.
2354 	 */
2355 	dbuf_check_blkptr(dn, db);
2356 
2357 	/*
2358 	 * If this buffer is in the middle of an immediate write,
2359 	 * wait for the synchronous IO to complete.
2360 	 */
2361 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2362 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2363 		cv_wait(&db->db_changed, &db->db_mtx);
2364 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2365 	}
2366 
2367 	if (db->db_state != DB_NOFILL &&
2368 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2369 	    refcount_count(&db->db_holds) > 1 &&
2370 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2371 	    *datap == db->db_buf) {
2372 		/*
2373 		 * If this buffer is currently "in use" (i.e., there
2374 		 * are active holds and db_data still references it),
2375 		 * then make a copy before we start the write so that
2376 		 * any modifications from the open txg will not leak
2377 		 * into this write.
2378 		 *
2379 		 * NOTE: this copy does not need to be made for
2380 		 * objects only modified in the syncing context (e.g.
2381 		 * DNONE_DNODE blocks).
2382 		 */
2383 		int blksz = arc_buf_size(*datap);
2384 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2385 		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2386 		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2387 	}
2388 	db->db_data_pending = dr;
2389 
2390 	mutex_exit(&db->db_mtx);
2391 
2392 	dbuf_write(dr, *datap, tx);
2393 
2394 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2395 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2396 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2397 		DB_DNODE_EXIT(db);
2398 	} else {
2399 		/*
2400 		 * Although zio_nowait() does not "wait for an IO", it does
2401 		 * initiate the IO. If this is an empty write it seems plausible
2402 		 * that the IO could actually be completed before the nowait
2403 		 * returns. We need to DB_DNODE_EXIT() first in case
2404 		 * zio_nowait() invalidates the dbuf.
2405 		 */
2406 		DB_DNODE_EXIT(db);
2407 		zio_nowait(dr->dr_zio);
2408 	}
2409 }
2410 
2411 void
2412 dbuf_sync_list(list_t *list, dmu_tx_t *tx)
2413 {
2414 	dbuf_dirty_record_t *dr;
2415 
2416 	while (dr = list_head(list)) {
2417 		if (dr->dr_zio != NULL) {
2418 			/*
2419 			 * If we find an already initialized zio then we
2420 			 * are processing the meta-dnode, and we have finished.
2421 			 * The dbufs for all dnodes are put back on the list
2422 			 * during processing, so that we can zio_wait()
2423 			 * these IOs after initiating all child IOs.
2424 			 */
2425 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2426 			    DMU_META_DNODE_OBJECT);
2427 			break;
2428 		}
2429 		list_remove(list, dr);
2430 		if (dr->dr_dbuf->db_level > 0)
2431 			dbuf_sync_indirect(dr, tx);
2432 		else
2433 			dbuf_sync_leaf(dr, tx);
2434 	}
2435 }
2436 
2437 /* ARGSUSED */
2438 static void
2439 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2440 {
2441 	dmu_buf_impl_t *db = vdb;
2442 	dnode_t *dn;
2443 	blkptr_t *bp = zio->io_bp;
2444 	blkptr_t *bp_orig = &zio->io_bp_orig;
2445 	spa_t *spa = zio->io_spa;
2446 	int64_t delta;
2447 	uint64_t fill = 0;
2448 	int i;
2449 
2450 	ASSERT(db->db_blkptr == bp);
2451 
2452 	DB_DNODE_ENTER(db);
2453 	dn = DB_DNODE(db);
2454 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2455 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2456 	zio->io_prev_space_delta = delta;
2457 
2458 	if (bp->blk_birth != 0) {
2459 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2460 		    BP_GET_TYPE(bp) == dn->dn_type) ||
2461 		    (db->db_blkid == DMU_SPILL_BLKID &&
2462 		    BP_GET_TYPE(bp) == dn->dn_bonustype));
2463 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2464 	}
2465 
2466 	mutex_enter(&db->db_mtx);
2467 
2468 #ifdef ZFS_DEBUG
2469 	if (db->db_blkid == DMU_SPILL_BLKID) {
2470 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2471 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2472 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2473 	}
2474 #endif
2475 
2476 	if (db->db_level == 0) {
2477 		mutex_enter(&dn->dn_mtx);
2478 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2479 		    db->db_blkid != DMU_SPILL_BLKID)
2480 			dn->dn_phys->dn_maxblkid = db->db_blkid;
2481 		mutex_exit(&dn->dn_mtx);
2482 
2483 		if (dn->dn_type == DMU_OT_DNODE) {
2484 			dnode_phys_t *dnp = db->db.db_data;
2485 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2486 			    i--, dnp++) {
2487 				if (dnp->dn_type != DMU_OT_NONE)
2488 					fill++;
2489 			}
2490 		} else {
2491 			if (BP_IS_HOLE(bp)) {
2492 				fill = 0;
2493 			} else {
2494 				fill = 1;
2495 			}
2496 		}
2497 	} else {
2498 		blkptr_t *ibp = db->db.db_data;
2499 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2500 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2501 			if (BP_IS_HOLE(ibp))
2502 				continue;
2503 			fill += ibp->blk_fill;
2504 		}
2505 	}
2506 	DB_DNODE_EXIT(db);
2507 
2508 	bp->blk_fill = fill;
2509 
2510 	mutex_exit(&db->db_mtx);
2511 }
2512 
2513 /*
2514  * The SPA will call this callback several times for each zio - once
2515  * for every physical child i/o (zio->io_phys_children times).  This
2516  * allows the DMU to monitor the progress of each logical i/o.  For example,
2517  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2518  * block.  There may be a long delay before all copies/fragments are completed,
2519  * so this callback allows us to retire dirty space gradually, as the physical
2520  * i/os complete.
2521  */
2522 /* ARGSUSED */
2523 static void
2524 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2525 {
2526 	dmu_buf_impl_t *db = arg;
2527 	objset_t *os = db->db_objset;
2528 	dsl_pool_t *dp = dmu_objset_pool(os);
2529 	dbuf_dirty_record_t *dr;
2530 	int delta = 0;
2531 
2532 	dr = db->db_data_pending;
2533 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2534 
2535 	/*
2536 	 * The callback will be called io_phys_children times.  Retire one
2537 	 * portion of our dirty space each time we are called.  Any rounding
2538 	 * error will be cleaned up by dsl_pool_sync()'s call to
2539 	 * dsl_pool_undirty_space().
2540 	 */
2541 	delta = dr->dr_accounted / zio->io_phys_children;
2542 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
2543 }
2544 
2545 /* ARGSUSED */
2546 static void
2547 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2548 {
2549 	dmu_buf_impl_t *db = vdb;
2550 	blkptr_t *bp_orig = &zio->io_bp_orig;
2551 	blkptr_t *bp = db->db_blkptr;
2552 	objset_t *os = db->db_objset;
2553 	dmu_tx_t *tx = os->os_synctx;
2554 	dbuf_dirty_record_t **drp, *dr;
2555 
2556 	ASSERT0(zio->io_error);
2557 	ASSERT(db->db_blkptr == bp);
2558 
2559 	/*
2560 	 * For nopwrites and rewrites we ensure that the bp matches our
2561 	 * original and bypass all the accounting.
2562 	 */
2563 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2564 		ASSERT(BP_EQUAL(bp, bp_orig));
2565 	} else {
2566 		dsl_dataset_t *ds = os->os_dsl_dataset;
2567 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2568 		dsl_dataset_block_born(ds, bp, tx);
2569 	}
2570 
2571 	mutex_enter(&db->db_mtx);
2572 
2573 	DBUF_VERIFY(db);
2574 
2575 	drp = &db->db_last_dirty;
2576 	while ((dr = *drp) != db->db_data_pending)
2577 		drp = &dr->dr_next;
2578 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2579 	ASSERT(dr->dr_dbuf == db);
2580 	ASSERT(dr->dr_next == NULL);
2581 	*drp = dr->dr_next;
2582 
2583 #ifdef ZFS_DEBUG
2584 	if (db->db_blkid == DMU_SPILL_BLKID) {
2585 		dnode_t *dn;
2586 
2587 		DB_DNODE_ENTER(db);
2588 		dn = DB_DNODE(db);
2589 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2590 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2591 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2592 		DB_DNODE_EXIT(db);
2593 	}
2594 #endif
2595 
2596 	if (db->db_level == 0) {
2597 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2598 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2599 		if (db->db_state != DB_NOFILL) {
2600 			if (dr->dt.dl.dr_data != db->db_buf)
2601 				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
2602 				    db));
2603 			else if (!arc_released(db->db_buf))
2604 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2605 		}
2606 	} else {
2607 		dnode_t *dn;
2608 
2609 		DB_DNODE_ENTER(db);
2610 		dn = DB_DNODE(db);
2611 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2612 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
2613 		if (!BP_IS_HOLE(db->db_blkptr)) {
2614 			int epbs =
2615 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2616 			ASSERT3U(db->db_blkid, <=,
2617 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
2618 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
2619 			    db->db.db_size);
2620 			arc_set_callback(db->db_buf, dbuf_do_evict, db);
2621 		}
2622 		DB_DNODE_EXIT(db);
2623 		mutex_destroy(&dr->dt.di.dr_mtx);
2624 		list_destroy(&dr->dt.di.dr_children);
2625 	}
2626 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2627 
2628 	cv_broadcast(&db->db_changed);
2629 	ASSERT(db->db_dirtycnt > 0);
2630 	db->db_dirtycnt -= 1;
2631 	db->db_data_pending = NULL;
2632 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
2633 }
2634 
2635 static void
2636 dbuf_write_nofill_ready(zio_t *zio)
2637 {
2638 	dbuf_write_ready(zio, NULL, zio->io_private);
2639 }
2640 
2641 static void
2642 dbuf_write_nofill_done(zio_t *zio)
2643 {
2644 	dbuf_write_done(zio, NULL, zio->io_private);
2645 }
2646 
2647 static void
2648 dbuf_write_override_ready(zio_t *zio)
2649 {
2650 	dbuf_dirty_record_t *dr = zio->io_private;
2651 	dmu_buf_impl_t *db = dr->dr_dbuf;
2652 
2653 	dbuf_write_ready(zio, NULL, db);
2654 }
2655 
2656 static void
2657 dbuf_write_override_done(zio_t *zio)
2658 {
2659 	dbuf_dirty_record_t *dr = zio->io_private;
2660 	dmu_buf_impl_t *db = dr->dr_dbuf;
2661 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
2662 
2663 	mutex_enter(&db->db_mtx);
2664 	if (!BP_EQUAL(zio->io_bp, obp)) {
2665 		if (!BP_IS_HOLE(obp))
2666 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
2667 		arc_release(dr->dt.dl.dr_data, db);
2668 	}
2669 	mutex_exit(&db->db_mtx);
2670 
2671 	dbuf_write_done(zio, NULL, db);
2672 }
2673 
2674 /* Issue I/O to commit a dirty buffer to disk. */
2675 static void
2676 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
2677 {
2678 	dmu_buf_impl_t *db = dr->dr_dbuf;
2679 	dnode_t *dn;
2680 	objset_t *os;
2681 	dmu_buf_impl_t *parent = db->db_parent;
2682 	uint64_t txg = tx->tx_txg;
2683 	zbookmark_t zb;
2684 	zio_prop_t zp;
2685 	zio_t *zio;
2686 	int wp_flag = 0;
2687 
2688 	DB_DNODE_ENTER(db);
2689 	dn = DB_DNODE(db);
2690 	os = dn->dn_objset;
2691 
2692 	if (db->db_state != DB_NOFILL) {
2693 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
2694 			/*
2695 			 * Private object buffers are released here rather
2696 			 * than in dbuf_dirty() since they are only modified
2697 			 * in the syncing context and we don't want the
2698 			 * overhead of making multiple copies of the data.
2699 			 */
2700 			if (BP_IS_HOLE(db->db_blkptr)) {
2701 				arc_buf_thaw(data);
2702 			} else {
2703 				dbuf_release_bp(db);
2704 			}
2705 		}
2706 	}
2707 
2708 	if (parent != dn->dn_dbuf) {
2709 		/* Our parent is an indirect block. */
2710 		/* We have a dirty parent that has been scheduled for write. */
2711 		ASSERT(parent && parent->db_data_pending);
2712 		/* Our parent's buffer is one level closer to the dnode. */
2713 		ASSERT(db->db_level == parent->db_level-1);
2714 		/*
2715 		 * We're about to modify our parent's db_data by modifying
2716 		 * our block pointer, so the parent must be released.
2717 		 */
2718 		ASSERT(arc_released(parent->db_buf));
2719 		zio = parent->db_data_pending->dr_zio;
2720 	} else {
2721 		/* Our parent is the dnode itself. */
2722 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
2723 		    db->db_blkid != DMU_SPILL_BLKID) ||
2724 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
2725 		if (db->db_blkid != DMU_SPILL_BLKID)
2726 			ASSERT3P(db->db_blkptr, ==,
2727 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
2728 		zio = dn->dn_zio;
2729 	}
2730 
2731 	ASSERT(db->db_level == 0 || data == db->db_buf);
2732 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
2733 	ASSERT(zio);
2734 
2735 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
2736 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
2737 	    db->db.db_object, db->db_level, db->db_blkid);
2738 
2739 	if (db->db_blkid == DMU_SPILL_BLKID)
2740 		wp_flag = WP_SPILL;
2741 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
2742 
2743 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
2744 	DB_DNODE_EXIT(db);
2745 
2746 	if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2747 		ASSERT(db->db_state != DB_NOFILL);
2748 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2749 		    db->db_blkptr, data->b_data, arc_buf_size(data), &zp,
2750 		    dbuf_write_override_ready, NULL, dbuf_write_override_done,
2751 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2752 		mutex_enter(&db->db_mtx);
2753 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
2754 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
2755 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
2756 		mutex_exit(&db->db_mtx);
2757 	} else if (db->db_state == DB_NOFILL) {
2758 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
2759 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
2760 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2761 		    db->db_blkptr, NULL, db->db.db_size, &zp,
2762 		    dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
2763 		    ZIO_PRIORITY_ASYNC_WRITE,
2764 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
2765 	} else {
2766 		ASSERT(arc_released(data));
2767 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
2768 		    db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
2769 		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
2770 		    dbuf_write_physdone, dbuf_write_done, db,
2771 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2772 	}
2773 }
2774