xref: /illumos-gate/usr/src/uts/common/fs/zfs/arc.c (revision abe1fd01)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2018, Joyent, Inc.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 /*
30  * DVA-based Adjustable Replacement Cache
31  *
32  * While much of the theory of operation used here is
33  * based on the self-tuning, low overhead replacement cache
34  * presented by Megiddo and Modha at FAST 2003, there are some
35  * significant differences:
36  *
37  * 1. The Megiddo and Modha model assumes any page is evictable.
38  * Pages in its cache cannot be "locked" into memory.  This makes
39  * the eviction algorithm simple: evict the last page in the list.
40  * This also make the performance characteristics easy to reason
41  * about.  Our cache is not so simple.  At any given moment, some
42  * subset of the blocks in the cache are un-evictable because we
43  * have handed out a reference to them.  Blocks are only evictable
44  * when there are no external references active.  This makes
45  * eviction far more problematic:  we choose to evict the evictable
46  * blocks that are the "lowest" in the list.
47  *
48  * There are times when it is not possible to evict the requested
49  * space.  In these circumstances we are unable to adjust the cache
50  * size.  To prevent the cache growing unbounded at these times we
51  * implement a "cache throttle" that slows the flow of new data
52  * into the cache until we can make space available.
53  *
54  * 2. The Megiddo and Modha model assumes a fixed cache size.
55  * Pages are evicted when the cache is full and there is a cache
56  * miss.  Our model has a variable sized cache.  It grows with
57  * high use, but also tries to react to memory pressure from the
58  * operating system: decreasing its size when system memory is
59  * tight.
60  *
61  * 3. The Megiddo and Modha model assumes a fixed page size. All
62  * elements of the cache are therefore exactly the same size.  So
63  * when adjusting the cache size following a cache miss, its simply
64  * a matter of choosing a single page to evict.  In our model, we
65  * have variable sized cache blocks (rangeing from 512 bytes to
66  * 128K bytes).  We therefore choose a set of blocks to evict to make
67  * space for a cache miss that approximates as closely as possible
68  * the space used by the new block.
69  *
70  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71  * by N. Megiddo & D. Modha, FAST 2003
72  */
73 
74 /*
75  * The locking model:
76  *
77  * A new reference to a cache buffer can be obtained in two
78  * ways: 1) via a hash table lookup using the DVA as a key,
79  * or 2) via one of the ARC lists.  The arc_read() interface
80  * uses method 1, while the internal ARC algorithms for
81  * adjusting the cache use method 2.  We therefore provide two
82  * types of locks: 1) the hash table lock array, and 2) the
83  * ARC list locks.
84  *
85  * Buffers do not have their own mutexes, rather they rely on the
86  * hash table mutexes for the bulk of their protection (i.e. most
87  * fields in the arc_buf_hdr_t are protected by these mutexes).
88  *
89  * buf_hash_find() returns the appropriate mutex (held) when it
90  * locates the requested buffer in the hash table.  It returns
91  * NULL for the mutex if the buffer was not in the table.
92  *
93  * buf_hash_remove() expects the appropriate hash mutex to be
94  * already held before it is invoked.
95  *
96  * Each ARC state also has a mutex which is used to protect the
97  * buffer list associated with the state.  When attempting to
98  * obtain a hash table lock while holding an ARC list lock you
99  * must use: mutex_tryenter() to avoid deadlock.  Also note that
100  * the active state mutex must be held before the ghost state mutex.
101  *
102  * Note that the majority of the performance stats are manipulated
103  * with atomic operations.
104  *
105  * The L2ARC uses the l2ad_mtx on each vdev for the following:
106  *
107  *	- L2ARC buflist creation
108  *	- L2ARC buflist eviction
109  *	- L2ARC write completion, which walks L2ARC buflists
110  *	- ARC header destruction, as it removes from L2ARC buflists
111  *	- ARC header release, as it removes from L2ARC buflists
112  */
113 
114 /*
115  * ARC operation:
116  *
117  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
118  * This structure can point either to a block that is still in the cache or to
119  * one that is only accessible in an L2 ARC device, or it can provide
120  * information about a block that was recently evicted. If a block is
121  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
122  * information to retrieve it from the L2ARC device. This information is
123  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
124  * that is in this state cannot access the data directly.
125  *
126  * Blocks that are actively being referenced or have not been evicted
127  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
128  * the arc_buf_hdr_t that will point to the data block in memory. A block can
129  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
130  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
131  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
132  *
133  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
134  * ability to store the physical data (b_pabd) associated with the DVA of the
135  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
136  * it will match its on-disk compression characteristics. This behavior can be
137  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
138  * compressed ARC functionality is disabled, the b_pabd will point to an
139  * uncompressed version of the on-disk data.
140  *
141  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
142  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
143  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
144  * consumer. The ARC will provide references to this data and will keep it
145  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
146  * data block and will evict any arc_buf_t that is no longer referenced. The
147  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
148  * "overhead_size" kstat.
149  *
150  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
151  * compressed form. The typical case is that consumers will want uncompressed
152  * data, and when that happens a new data buffer is allocated where the data is
153  * decompressed for them to use. Currently the only consumer who wants
154  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
155  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
156  * with the arc_buf_hdr_t.
157  *
158  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
159  * first one is owned by a compressed send consumer (and therefore references
160  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
161  * used by any other consumer (and has its own uncompressed copy of the data
162  * buffer).
163  *
164  *   arc_buf_hdr_t
165  *   +-----------+
166  *   | fields    |
167  *   | common to |
168  *   | L1- and   |
169  *   | L2ARC     |
170  *   +-----------+
171  *   | l2arc_buf_hdr_t
172  *   |           |
173  *   +-----------+
174  *   | l1arc_buf_hdr_t
175  *   |           |              arc_buf_t
176  *   | b_buf     +------------>+-----------+      arc_buf_t
177  *   | b_pabd    +-+           |b_next     +---->+-----------+
178  *   +-----------+ |           |-----------|     |b_next     +-->NULL
179  *                 |           |b_comp = T |     +-----------+
180  *                 |           |b_data     +-+   |b_comp = F |
181  *                 |           +-----------+ |   |b_data     +-+
182  *                 +->+------+               |   +-----------+ |
183  *        compressed  |      |               |                 |
184  *           data     |      |<--------------+                 | uncompressed
185  *                    +------+          compressed,            |     data
186  *                                        shared               +-->+------+
187  *                                         data                    |      |
188  *                                                                 |      |
189  *                                                                 +------+
190  *
191  * When a consumer reads a block, the ARC must first look to see if the
192  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
193  * arc_buf_t and either copies uncompressed data into a new data buffer from an
194  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
195  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
196  * hdr is compressed and the desired compression characteristics of the
197  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
198  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
199  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
200  * be anywhere in the hdr's list.
201  *
202  * The diagram below shows an example of an uncompressed ARC hdr that is
203  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
204  * the last element in the buf list):
205  *
206  *                arc_buf_hdr_t
207  *                +-----------+
208  *                |           |
209  *                |           |
210  *                |           |
211  *                +-----------+
212  * l2arc_buf_hdr_t|           |
213  *                |           |
214  *                +-----------+
215  * l1arc_buf_hdr_t|           |
216  *                |           |                 arc_buf_t    (shared)
217  *                |    b_buf  +------------>+---------+      arc_buf_t
218  *                |           |             |b_next   +---->+---------+
219  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
220  *                +-----------+ |           |         |     +---------+
221  *                              |           |b_data   +-+   |         |
222  *                              |           +---------+ |   |b_data   +-+
223  *                              +->+------+             |   +---------+ |
224  *                                 |      |             |               |
225  *                   uncompressed  |      |             |               |
226  *                        data     +------+             |               |
227  *                                    ^                 +->+------+     |
228  *                                    |       uncompressed |      |     |
229  *                                    |           data     |      |     |
230  *                                    |                    +------+     |
231  *                                    +---------------------------------+
232  *
233  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
234  * since the physical block is about to be rewritten. The new data contents
235  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
236  * it may compress the data before writing it to disk. The ARC will be called
237  * with the transformed data and will bcopy the transformed on-disk block into
238  * a newly allocated b_pabd. Writes are always done into buffers which have
239  * either been loaned (and hence are new and don't have other readers) or
240  * buffers which have been released (and hence have their own hdr, if there
241  * were originally other readers of the buf's original hdr). This ensures that
242  * the ARC only needs to update a single buf and its hdr after a write occurs.
243  *
244  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
245  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
246  * that when compressed ARC is enabled that the L2ARC blocks are identical
247  * to the on-disk block in the main data pool. This provides a significant
248  * advantage since the ARC can leverage the bp's checksum when reading from the
249  * L2ARC to determine if the contents are valid. However, if the compressed
250  * ARC is disabled, then the L2ARC's block must be transformed to look
251  * like the physical block in the main data pool before comparing the
252  * checksum and determining its validity.
253  */
254 
255 #include <sys/spa.h>
256 #include <sys/zio.h>
257 #include <sys/spa_impl.h>
258 #include <sys/zio_compress.h>
259 #include <sys/zio_checksum.h>
260 #include <sys/zfs_context.h>
261 #include <sys/arc.h>
262 #include <sys/refcount.h>
263 #include <sys/vdev.h>
264 #include <sys/vdev_impl.h>
265 #include <sys/dsl_pool.h>
266 #include <sys/zio_checksum.h>
267 #include <sys/multilist.h>
268 #include <sys/abd.h>
269 #ifdef _KERNEL
270 #include <sys/vmsystm.h>
271 #include <vm/anon.h>
272 #include <sys/fs/swapnode.h>
273 #include <sys/dnlc.h>
274 #endif
275 #include <sys/callb.h>
276 #include <sys/kstat.h>
277 #include <sys/zthr.h>
278 #include <zfs_fletcher.h>
279 #include <sys/aggsum.h>
280 #include <sys/cityhash.h>
281 
282 #ifndef _KERNEL
283 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
284 boolean_t arc_watch = B_FALSE;
285 int arc_procfd;
286 #endif
287 
288 /*
289  * This thread's job is to keep enough free memory in the system, by
290  * calling arc_kmem_reap_now() plus arc_shrink(), which improves
291  * arc_available_memory().
292  */
293 static zthr_t		*arc_reap_zthr;
294 
295 /*
296  * This thread's job is to keep arc_size under arc_c, by calling
297  * arc_adjust(), which improves arc_is_overflowing().
298  */
299 static zthr_t		*arc_adjust_zthr;
300 
301 static kmutex_t		arc_adjust_lock;
302 static kcondvar_t	arc_adjust_waiters_cv;
303 static boolean_t	arc_adjust_needed = B_FALSE;
304 
305 uint_t arc_reduce_dnlc_percent = 3;
306 
307 /*
308  * The number of headers to evict in arc_evict_state_impl() before
309  * dropping the sublist lock and evicting from another sublist. A lower
310  * value means we're more likely to evict the "correct" header (i.e. the
311  * oldest header in the arc state), but comes with higher overhead
312  * (i.e. more invocations of arc_evict_state_impl()).
313  */
314 int zfs_arc_evict_batch_limit = 10;
315 
316 /* number of seconds before growing cache again */
317 int arc_grow_retry = 60;
318 
319 /*
320  * Minimum time between calls to arc_kmem_reap_soon().  Note that this will
321  * be converted to ticks, so with the default hz=100, a setting of 15 ms
322  * will actually wait 2 ticks, or 20ms.
323  */
324 int arc_kmem_cache_reap_retry_ms = 1000;
325 
326 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
327 int zfs_arc_overflow_shift = 8;
328 
329 /* shift of arc_c for calculating both min and max arc_p */
330 int arc_p_min_shift = 4;
331 
332 /* log2(fraction of arc to reclaim) */
333 int arc_shrink_shift = 7;
334 
335 /*
336  * log2(fraction of ARC which must be free to allow growing).
337  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
338  * when reading a new block into the ARC, we will evict an equal-sized block
339  * from the ARC.
340  *
341  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
342  * we will still not allow it to grow.
343  */
344 int			arc_no_grow_shift = 5;
345 
346 
347 /*
348  * minimum lifespan of a prefetch block in clock ticks
349  * (initialized in arc_init())
350  */
351 static int		arc_min_prefetch_lifespan;
352 
353 /*
354  * If this percent of memory is free, don't throttle.
355  */
356 int arc_lotsfree_percent = 10;
357 
358 static boolean_t arc_initialized;
359 
360 /*
361  * The arc has filled available memory and has now warmed up.
362  */
363 static boolean_t arc_warm;
364 
365 /*
366  * log2 fraction of the zio arena to keep free.
367  */
368 int arc_zio_arena_free_shift = 2;
369 
370 /*
371  * These tunables are for performance analysis.
372  */
373 uint64_t zfs_arc_max;
374 uint64_t zfs_arc_min;
375 uint64_t zfs_arc_meta_limit = 0;
376 uint64_t zfs_arc_meta_min = 0;
377 int zfs_arc_grow_retry = 0;
378 int zfs_arc_shrink_shift = 0;
379 int zfs_arc_p_min_shift = 0;
380 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
381 
382 /*
383  * ARC dirty data constraints for arc_tempreserve_space() throttle
384  */
385 uint_t zfs_arc_dirty_limit_percent = 50;	/* total dirty data limit */
386 uint_t zfs_arc_anon_limit_percent = 25;		/* anon block dirty limit */
387 uint_t zfs_arc_pool_dirty_percent = 20;		/* each pool's anon allowance */
388 
389 boolean_t zfs_compressed_arc_enabled = B_TRUE;
390 
391 /*
392  * Note that buffers can be in one of 6 states:
393  *	ARC_anon	- anonymous (discussed below)
394  *	ARC_mru		- recently used, currently cached
395  *	ARC_mru_ghost	- recentely used, no longer in cache
396  *	ARC_mfu		- frequently used, currently cached
397  *	ARC_mfu_ghost	- frequently used, no longer in cache
398  *	ARC_l2c_only	- exists in L2ARC but not other states
399  * When there are no active references to the buffer, they are
400  * are linked onto a list in one of these arc states.  These are
401  * the only buffers that can be evicted or deleted.  Within each
402  * state there are multiple lists, one for meta-data and one for
403  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
404  * etc.) is tracked separately so that it can be managed more
405  * explicitly: favored over data, limited explicitly.
406  *
407  * Anonymous buffers are buffers that are not associated with
408  * a DVA.  These are buffers that hold dirty block copies
409  * before they are written to stable storage.  By definition,
410  * they are "ref'd" and are considered part of arc_mru
411  * that cannot be freed.  Generally, they will aquire a DVA
412  * as they are written and migrate onto the arc_mru list.
413  *
414  * The ARC_l2c_only state is for buffers that are in the second
415  * level ARC but no longer in any of the ARC_m* lists.  The second
416  * level ARC itself may also contain buffers that are in any of
417  * the ARC_m* states - meaning that a buffer can exist in two
418  * places.  The reason for the ARC_l2c_only state is to keep the
419  * buffer header in the hash table, so that reads that hit the
420  * second level ARC benefit from these fast lookups.
421  */
422 
423 typedef struct arc_state {
424 	/*
425 	 * list of evictable buffers
426 	 */
427 	multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
428 	/*
429 	 * total amount of evictable data in this state
430 	 */
431 	refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
432 	/*
433 	 * total amount of data in this state; this includes: evictable,
434 	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
435 	 */
436 	refcount_t arcs_size;
437 } arc_state_t;
438 
439 /* The 6 states: */
440 static arc_state_t ARC_anon;
441 static arc_state_t ARC_mru;
442 static arc_state_t ARC_mru_ghost;
443 static arc_state_t ARC_mfu;
444 static arc_state_t ARC_mfu_ghost;
445 static arc_state_t ARC_l2c_only;
446 
447 typedef struct arc_stats {
448 	kstat_named_t arcstat_hits;
449 	kstat_named_t arcstat_misses;
450 	kstat_named_t arcstat_demand_data_hits;
451 	kstat_named_t arcstat_demand_data_misses;
452 	kstat_named_t arcstat_demand_metadata_hits;
453 	kstat_named_t arcstat_demand_metadata_misses;
454 	kstat_named_t arcstat_prefetch_data_hits;
455 	kstat_named_t arcstat_prefetch_data_misses;
456 	kstat_named_t arcstat_prefetch_metadata_hits;
457 	kstat_named_t arcstat_prefetch_metadata_misses;
458 	kstat_named_t arcstat_mru_hits;
459 	kstat_named_t arcstat_mru_ghost_hits;
460 	kstat_named_t arcstat_mfu_hits;
461 	kstat_named_t arcstat_mfu_ghost_hits;
462 	kstat_named_t arcstat_deleted;
463 	/*
464 	 * Number of buffers that could not be evicted because the hash lock
465 	 * was held by another thread.  The lock may not necessarily be held
466 	 * by something using the same buffer, since hash locks are shared
467 	 * by multiple buffers.
468 	 */
469 	kstat_named_t arcstat_mutex_miss;
470 	/*
471 	 * Number of buffers skipped because they have I/O in progress, are
472 	 * indrect prefetch buffers that have not lived long enough, or are
473 	 * not from the spa we're trying to evict from.
474 	 */
475 	kstat_named_t arcstat_evict_skip;
476 	/*
477 	 * Number of times arc_evict_state() was unable to evict enough
478 	 * buffers to reach it's target amount.
479 	 */
480 	kstat_named_t arcstat_evict_not_enough;
481 	kstat_named_t arcstat_evict_l2_cached;
482 	kstat_named_t arcstat_evict_l2_eligible;
483 	kstat_named_t arcstat_evict_l2_ineligible;
484 	kstat_named_t arcstat_evict_l2_skip;
485 	kstat_named_t arcstat_hash_elements;
486 	kstat_named_t arcstat_hash_elements_max;
487 	kstat_named_t arcstat_hash_collisions;
488 	kstat_named_t arcstat_hash_chains;
489 	kstat_named_t arcstat_hash_chain_max;
490 	kstat_named_t arcstat_p;
491 	kstat_named_t arcstat_c;
492 	kstat_named_t arcstat_c_min;
493 	kstat_named_t arcstat_c_max;
494 	/* Not updated directly; only synced in arc_kstat_update. */
495 	kstat_named_t arcstat_size;
496 	/*
497 	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
498 	 * Note that the compressed bytes may match the uncompressed bytes
499 	 * if the block is either not compressed or compressed arc is disabled.
500 	 */
501 	kstat_named_t arcstat_compressed_size;
502 	/*
503 	 * Uncompressed size of the data stored in b_pabd. If compressed
504 	 * arc is disabled then this value will be identical to the stat
505 	 * above.
506 	 */
507 	kstat_named_t arcstat_uncompressed_size;
508 	/*
509 	 * Number of bytes stored in all the arc_buf_t's. This is classified
510 	 * as "overhead" since this data is typically short-lived and will
511 	 * be evicted from the arc when it becomes unreferenced unless the
512 	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
513 	 * values have been set (see comment in dbuf.c for more information).
514 	 */
515 	kstat_named_t arcstat_overhead_size;
516 	/*
517 	 * Number of bytes consumed by internal ARC structures necessary
518 	 * for tracking purposes; these structures are not actually
519 	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
520 	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
521 	 * caches), and arc_buf_t structures (allocated via arc_buf_t
522 	 * cache).
523 	 * Not updated directly; only synced in arc_kstat_update.
524 	 */
525 	kstat_named_t arcstat_hdr_size;
526 	/*
527 	 * Number of bytes consumed by ARC buffers of type equal to
528 	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
529 	 * on disk user data (e.g. plain file contents).
530 	 * Not updated directly; only synced in arc_kstat_update.
531 	 */
532 	kstat_named_t arcstat_data_size;
533 	/*
534 	 * Number of bytes consumed by ARC buffers of type equal to
535 	 * ARC_BUFC_METADATA. This is generally consumed by buffers
536 	 * backing on disk data that is used for internal ZFS
537 	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
538 	 * Not updated directly; only synced in arc_kstat_update.
539 	 */
540 	kstat_named_t arcstat_metadata_size;
541 	/*
542 	 * Number of bytes consumed by various buffers and structures
543 	 * not actually backed with ARC buffers. This includes bonus
544 	 * buffers (allocated directly via zio_buf_* functions),
545 	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
546 	 * cache), and dnode_t structures (allocated via dnode_t cache).
547 	 * Not updated directly; only synced in arc_kstat_update.
548 	 */
549 	kstat_named_t arcstat_other_size;
550 	/*
551 	 * Total number of bytes consumed by ARC buffers residing in the
552 	 * arc_anon state. This includes *all* buffers in the arc_anon
553 	 * state; e.g. data, metadata, evictable, and unevictable buffers
554 	 * are all included in this value.
555 	 * Not updated directly; only synced in arc_kstat_update.
556 	 */
557 	kstat_named_t arcstat_anon_size;
558 	/*
559 	 * Number of bytes consumed by ARC buffers that meet the
560 	 * following criteria: backing buffers of type ARC_BUFC_DATA,
561 	 * residing in the arc_anon state, and are eligible for eviction
562 	 * (e.g. have no outstanding holds on the buffer).
563 	 * Not updated directly; only synced in arc_kstat_update.
564 	 */
565 	kstat_named_t arcstat_anon_evictable_data;
566 	/*
567 	 * Number of bytes consumed by ARC buffers that meet the
568 	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
569 	 * residing in the arc_anon state, and are eligible for eviction
570 	 * (e.g. have no outstanding holds on the buffer).
571 	 * Not updated directly; only synced in arc_kstat_update.
572 	 */
573 	kstat_named_t arcstat_anon_evictable_metadata;
574 	/*
575 	 * Total number of bytes consumed by ARC buffers residing in the
576 	 * arc_mru state. This includes *all* buffers in the arc_mru
577 	 * state; e.g. data, metadata, evictable, and unevictable buffers
578 	 * are all included in this value.
579 	 * Not updated directly; only synced in arc_kstat_update.
580 	 */
581 	kstat_named_t arcstat_mru_size;
582 	/*
583 	 * Number of bytes consumed by ARC buffers that meet the
584 	 * following criteria: backing buffers of type ARC_BUFC_DATA,
585 	 * residing in the arc_mru state, and are eligible for eviction
586 	 * (e.g. have no outstanding holds on the buffer).
587 	 * Not updated directly; only synced in arc_kstat_update.
588 	 */
589 	kstat_named_t arcstat_mru_evictable_data;
590 	/*
591 	 * Number of bytes consumed by ARC buffers that meet the
592 	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
593 	 * residing in the arc_mru state, and are eligible for eviction
594 	 * (e.g. have no outstanding holds on the buffer).
595 	 * Not updated directly; only synced in arc_kstat_update.
596 	 */
597 	kstat_named_t arcstat_mru_evictable_metadata;
598 	/*
599 	 * Total number of bytes that *would have been* consumed by ARC
600 	 * buffers in the arc_mru_ghost state. The key thing to note
601 	 * here, is the fact that this size doesn't actually indicate
602 	 * RAM consumption. The ghost lists only consist of headers and
603 	 * don't actually have ARC buffers linked off of these headers.
604 	 * Thus, *if* the headers had associated ARC buffers, these
605 	 * buffers *would have* consumed this number of bytes.
606 	 * Not updated directly; only synced in arc_kstat_update.
607 	 */
608 	kstat_named_t arcstat_mru_ghost_size;
609 	/*
610 	 * Number of bytes that *would have been* consumed by ARC
611 	 * buffers that are eligible for eviction, of type
612 	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
613 	 * Not updated directly; only synced in arc_kstat_update.
614 	 */
615 	kstat_named_t arcstat_mru_ghost_evictable_data;
616 	/*
617 	 * Number of bytes that *would have been* consumed by ARC
618 	 * buffers that are eligible for eviction, of type
619 	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
620 	 * Not updated directly; only synced in arc_kstat_update.
621 	 */
622 	kstat_named_t arcstat_mru_ghost_evictable_metadata;
623 	/*
624 	 * Total number of bytes consumed by ARC buffers residing in the
625 	 * arc_mfu state. This includes *all* buffers in the arc_mfu
626 	 * state; e.g. data, metadata, evictable, and unevictable buffers
627 	 * are all included in this value.
628 	 * Not updated directly; only synced in arc_kstat_update.
629 	 */
630 	kstat_named_t arcstat_mfu_size;
631 	/*
632 	 * Number of bytes consumed by ARC buffers that are eligible for
633 	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
634 	 * state.
635 	 * Not updated directly; only synced in arc_kstat_update.
636 	 */
637 	kstat_named_t arcstat_mfu_evictable_data;
638 	/*
639 	 * Number of bytes consumed by ARC buffers that are eligible for
640 	 * eviction, of type ARC_BUFC_METADATA, and reside in the
641 	 * arc_mfu state.
642 	 * Not updated directly; only synced in arc_kstat_update.
643 	 */
644 	kstat_named_t arcstat_mfu_evictable_metadata;
645 	/*
646 	 * Total number of bytes that *would have been* consumed by ARC
647 	 * buffers in the arc_mfu_ghost state. See the comment above
648 	 * arcstat_mru_ghost_size for more details.
649 	 * Not updated directly; only synced in arc_kstat_update.
650 	 */
651 	kstat_named_t arcstat_mfu_ghost_size;
652 	/*
653 	 * Number of bytes that *would have been* consumed by ARC
654 	 * buffers that are eligible for eviction, of type
655 	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
656 	 * Not updated directly; only synced in arc_kstat_update.
657 	 */
658 	kstat_named_t arcstat_mfu_ghost_evictable_data;
659 	/*
660 	 * Number of bytes that *would have been* consumed by ARC
661 	 * buffers that are eligible for eviction, of type
662 	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
663 	 * Not updated directly; only synced in arc_kstat_update.
664 	 */
665 	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
666 	kstat_named_t arcstat_l2_hits;
667 	kstat_named_t arcstat_l2_misses;
668 	kstat_named_t arcstat_l2_feeds;
669 	kstat_named_t arcstat_l2_rw_clash;
670 	kstat_named_t arcstat_l2_read_bytes;
671 	kstat_named_t arcstat_l2_write_bytes;
672 	kstat_named_t arcstat_l2_writes_sent;
673 	kstat_named_t arcstat_l2_writes_done;
674 	kstat_named_t arcstat_l2_writes_error;
675 	kstat_named_t arcstat_l2_writes_lock_retry;
676 	kstat_named_t arcstat_l2_evict_lock_retry;
677 	kstat_named_t arcstat_l2_evict_reading;
678 	kstat_named_t arcstat_l2_evict_l1cached;
679 	kstat_named_t arcstat_l2_free_on_write;
680 	kstat_named_t arcstat_l2_abort_lowmem;
681 	kstat_named_t arcstat_l2_cksum_bad;
682 	kstat_named_t arcstat_l2_io_error;
683 	kstat_named_t arcstat_l2_lsize;
684 	kstat_named_t arcstat_l2_psize;
685 	/* Not updated directly; only synced in arc_kstat_update. */
686 	kstat_named_t arcstat_l2_hdr_size;
687 	kstat_named_t arcstat_memory_throttle_count;
688 	/* Not updated directly; only synced in arc_kstat_update. */
689 	kstat_named_t arcstat_meta_used;
690 	kstat_named_t arcstat_meta_limit;
691 	kstat_named_t arcstat_meta_max;
692 	kstat_named_t arcstat_meta_min;
693 	kstat_named_t arcstat_sync_wait_for_async;
694 	kstat_named_t arcstat_demand_hit_predictive_prefetch;
695 } arc_stats_t;
696 
697 static arc_stats_t arc_stats = {
698 	{ "hits",			KSTAT_DATA_UINT64 },
699 	{ "misses",			KSTAT_DATA_UINT64 },
700 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
701 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
702 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
703 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
704 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
705 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
706 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
707 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
708 	{ "mru_hits",			KSTAT_DATA_UINT64 },
709 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
710 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
711 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
712 	{ "deleted",			KSTAT_DATA_UINT64 },
713 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
714 	{ "evict_skip",			KSTAT_DATA_UINT64 },
715 	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
716 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
717 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
718 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
719 	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
720 	{ "hash_elements",		KSTAT_DATA_UINT64 },
721 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
722 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
723 	{ "hash_chains",		KSTAT_DATA_UINT64 },
724 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
725 	{ "p",				KSTAT_DATA_UINT64 },
726 	{ "c",				KSTAT_DATA_UINT64 },
727 	{ "c_min",			KSTAT_DATA_UINT64 },
728 	{ "c_max",			KSTAT_DATA_UINT64 },
729 	{ "size",			KSTAT_DATA_UINT64 },
730 	{ "compressed_size",		KSTAT_DATA_UINT64 },
731 	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
732 	{ "overhead_size",		KSTAT_DATA_UINT64 },
733 	{ "hdr_size",			KSTAT_DATA_UINT64 },
734 	{ "data_size",			KSTAT_DATA_UINT64 },
735 	{ "metadata_size",		KSTAT_DATA_UINT64 },
736 	{ "other_size",			KSTAT_DATA_UINT64 },
737 	{ "anon_size",			KSTAT_DATA_UINT64 },
738 	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
739 	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
740 	{ "mru_size",			KSTAT_DATA_UINT64 },
741 	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
742 	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
743 	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
744 	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
745 	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
746 	{ "mfu_size",			KSTAT_DATA_UINT64 },
747 	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
748 	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
749 	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
750 	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
751 	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
752 	{ "l2_hits",			KSTAT_DATA_UINT64 },
753 	{ "l2_misses",			KSTAT_DATA_UINT64 },
754 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
755 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
756 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
757 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
758 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
759 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
760 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
761 	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
762 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
763 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
764 	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
765 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
766 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
767 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
768 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
769 	{ "l2_size",			KSTAT_DATA_UINT64 },
770 	{ "l2_asize",			KSTAT_DATA_UINT64 },
771 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
772 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
773 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
774 	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
775 	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
776 	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
777 	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
778 	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
779 };
780 
781 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
782 
783 #define	ARCSTAT_INCR(stat, val) \
784 	atomic_add_64(&arc_stats.stat.value.ui64, (val))
785 
786 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
787 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
788 
789 #define	ARCSTAT_MAX(stat, val) {					\
790 	uint64_t m;							\
791 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
792 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
793 		continue;						\
794 }
795 
796 #define	ARCSTAT_MAXSTAT(stat) \
797 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
798 
799 /*
800  * We define a macro to allow ARC hits/misses to be easily broken down by
801  * two separate conditions, giving a total of four different subtypes for
802  * each of hits and misses (so eight statistics total).
803  */
804 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
805 	if (cond1) {							\
806 		if (cond2) {						\
807 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
808 		} else {						\
809 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
810 		}							\
811 	} else {							\
812 		if (cond2) {						\
813 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
814 		} else {						\
815 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
816 		}							\
817 	}
818 
819 kstat_t			*arc_ksp;
820 static arc_state_t	*arc_anon;
821 static arc_state_t	*arc_mru;
822 static arc_state_t	*arc_mru_ghost;
823 static arc_state_t	*arc_mfu;
824 static arc_state_t	*arc_mfu_ghost;
825 static arc_state_t	*arc_l2c_only;
826 
827 /*
828  * There are several ARC variables that are critical to export as kstats --
829  * but we don't want to have to grovel around in the kstat whenever we wish to
830  * manipulate them.  For these variables, we therefore define them to be in
831  * terms of the statistic variable.  This assures that we are not introducing
832  * the possibility of inconsistency by having shadow copies of the variables,
833  * while still allowing the code to be readable.
834  */
835 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
836 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
837 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
838 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
839 #define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
840 #define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
841 #define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
842 
843 /* compressed size of entire arc */
844 #define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
845 /* uncompressed size of entire arc */
846 #define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
847 /* number of bytes in the arc from arc_buf_t's */
848 #define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
849 
850 /*
851  * There are also some ARC variables that we want to export, but that are
852  * updated so often that having the canonical representation be the statistic
853  * variable causes a performance bottleneck. We want to use aggsum_t's for these
854  * instead, but still be able to export the kstat in the same way as before.
855  * The solution is to always use the aggsum version, except in the kstat update
856  * callback.
857  */
858 aggsum_t arc_size;
859 aggsum_t arc_meta_used;
860 aggsum_t astat_data_size;
861 aggsum_t astat_metadata_size;
862 aggsum_t astat_hdr_size;
863 aggsum_t astat_other_size;
864 aggsum_t astat_l2_hdr_size;
865 
866 static int		arc_no_grow;	/* Don't try to grow cache size */
867 static hrtime_t		arc_growtime;
868 static uint64_t		arc_tempreserve;
869 static uint64_t		arc_loaned_bytes;
870 
871 typedef struct arc_callback arc_callback_t;
872 
873 struct arc_callback {
874 	void			*acb_private;
875 	arc_done_func_t		*acb_done;
876 	arc_buf_t		*acb_buf;
877 	boolean_t		acb_compressed;
878 	zio_t			*acb_zio_dummy;
879 	arc_callback_t		*acb_next;
880 };
881 
882 typedef struct arc_write_callback arc_write_callback_t;
883 
884 struct arc_write_callback {
885 	void		*awcb_private;
886 	arc_done_func_t	*awcb_ready;
887 	arc_done_func_t	*awcb_children_ready;
888 	arc_done_func_t	*awcb_physdone;
889 	arc_done_func_t	*awcb_done;
890 	arc_buf_t	*awcb_buf;
891 };
892 
893 /*
894  * ARC buffers are separated into multiple structs as a memory saving measure:
895  *   - Common fields struct, always defined, and embedded within it:
896  *       - L2-only fields, always allocated but undefined when not in L2ARC
897  *       - L1-only fields, only allocated when in L1ARC
898  *
899  *           Buffer in L1                     Buffer only in L2
900  *    +------------------------+          +------------------------+
901  *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
902  *    |                        |          |                        |
903  *    |                        |          |                        |
904  *    |                        |          |                        |
905  *    +------------------------+          +------------------------+
906  *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
907  *    | (undefined if L1-only) |          |                        |
908  *    +------------------------+          +------------------------+
909  *    | l1arc_buf_hdr_t        |
910  *    |                        |
911  *    |                        |
912  *    |                        |
913  *    |                        |
914  *    +------------------------+
915  *
916  * Because it's possible for the L2ARC to become extremely large, we can wind
917  * up eating a lot of memory in L2ARC buffer headers, so the size of a header
918  * is minimized by only allocating the fields necessary for an L1-cached buffer
919  * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
920  * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
921  * words in pointers. arc_hdr_realloc() is used to switch a header between
922  * these two allocation states.
923  */
924 typedef struct l1arc_buf_hdr {
925 	kmutex_t		b_freeze_lock;
926 	zio_cksum_t		*b_freeze_cksum;
927 #ifdef ZFS_DEBUG
928 	/*
929 	 * Used for debugging with kmem_flags - by allocating and freeing
930 	 * b_thawed when the buffer is thawed, we get a record of the stack
931 	 * trace that thawed it.
932 	 */
933 	void			*b_thawed;
934 #endif
935 
936 	arc_buf_t		*b_buf;
937 	uint32_t		b_bufcnt;
938 	/* for waiting on writes to complete */
939 	kcondvar_t		b_cv;
940 	uint8_t			b_byteswap;
941 
942 	/* protected by arc state mutex */
943 	arc_state_t		*b_state;
944 	multilist_node_t	b_arc_node;
945 
946 	/* updated atomically */
947 	clock_t			b_arc_access;
948 
949 	/* self protecting */
950 	refcount_t		b_refcnt;
951 
952 	arc_callback_t		*b_acb;
953 	abd_t			*b_pabd;
954 } l1arc_buf_hdr_t;
955 
956 typedef struct l2arc_dev l2arc_dev_t;
957 
958 typedef struct l2arc_buf_hdr {
959 	/* protected by arc_buf_hdr mutex */
960 	l2arc_dev_t		*b_dev;		/* L2ARC device */
961 	uint64_t		b_daddr;	/* disk address, offset byte */
962 
963 	list_node_t		b_l2node;
964 } l2arc_buf_hdr_t;
965 
966 struct arc_buf_hdr {
967 	/* protected by hash lock */
968 	dva_t			b_dva;
969 	uint64_t		b_birth;
970 
971 	arc_buf_contents_t	b_type;
972 	arc_buf_hdr_t		*b_hash_next;
973 	arc_flags_t		b_flags;
974 
975 	/*
976 	 * This field stores the size of the data buffer after
977 	 * compression, and is set in the arc's zio completion handlers.
978 	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
979 	 *
980 	 * While the block pointers can store up to 32MB in their psize
981 	 * field, we can only store up to 32MB minus 512B. This is due
982 	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
983 	 * a field of zeros represents 512B in the bp). We can't use a
984 	 * bias of 1 since we need to reserve a psize of zero, here, to
985 	 * represent holes and embedded blocks.
986 	 *
987 	 * This isn't a problem in practice, since the maximum size of a
988 	 * buffer is limited to 16MB, so we never need to store 32MB in
989 	 * this field. Even in the upstream illumos code base, the
990 	 * maximum size of a buffer is limited to 16MB.
991 	 */
992 	uint16_t		b_psize;
993 
994 	/*
995 	 * This field stores the size of the data buffer before
996 	 * compression, and cannot change once set. It is in units
997 	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
998 	 */
999 	uint16_t		b_lsize;	/* immutable */
1000 	uint64_t		b_spa;		/* immutable */
1001 
1002 	/* L2ARC fields. Undefined when not in L2ARC. */
1003 	l2arc_buf_hdr_t		b_l2hdr;
1004 	/* L1ARC fields. Undefined when in l2arc_only state */
1005 	l1arc_buf_hdr_t		b_l1hdr;
1006 };
1007 
1008 #define	GHOST_STATE(state)	\
1009 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
1010 	(state) == arc_l2c_only)
1011 
1012 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
1013 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1014 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
1015 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1016 #define	HDR_COMPRESSION_ENABLED(hdr)	\
1017 	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
1018 
1019 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1020 #define	HDR_L2_READING(hdr)	\
1021 	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1022 	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1023 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1024 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1025 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1026 #define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1027 
1028 #define	HDR_ISTYPE_METADATA(hdr)	\
1029 	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1030 #define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1031 
1032 #define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1033 #define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1034 
1035 /* For storing compression mode in b_flags */
1036 #define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
1037 
1038 #define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
1039 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1040 #define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1041 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1042 
1043 #define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
1044 #define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
1045 #define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
1046 
1047 /*
1048  * Other sizes
1049  */
1050 
1051 #define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1052 #define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1053 
1054 /*
1055  * Hash table routines
1056  */
1057 
1058 #define	HT_LOCK_PAD	64
1059 
1060 struct ht_lock {
1061 	kmutex_t	ht_lock;
1062 #ifdef _KERNEL
1063 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1064 #endif
1065 };
1066 
1067 #define	BUF_LOCKS 256
1068 typedef struct buf_hash_table {
1069 	uint64_t ht_mask;
1070 	arc_buf_hdr_t **ht_table;
1071 	struct ht_lock ht_locks[BUF_LOCKS];
1072 } buf_hash_table_t;
1073 
1074 static buf_hash_table_t buf_hash_table;
1075 
1076 #define	BUF_HASH_INDEX(spa, dva, birth) \
1077 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1078 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1079 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1080 #define	HDR_LOCK(hdr) \
1081 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1082 
1083 uint64_t zfs_crc64_table[256];
1084 
1085 /*
1086  * Level 2 ARC
1087  */
1088 
1089 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1090 #define	L2ARC_HEADROOM		2			/* num of writes */
1091 /*
1092  * If we discover during ARC scan any buffers to be compressed, we boost
1093  * our headroom for the next scanning cycle by this percentage multiple.
1094  */
1095 #define	L2ARC_HEADROOM_BOOST	200
1096 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
1097 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1098 
1099 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1100 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1101 
1102 /* L2ARC Performance Tunables */
1103 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1104 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1105 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1106 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1107 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1108 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1109 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1110 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1111 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1112 
1113 /*
1114  * L2ARC Internals
1115  */
1116 struct l2arc_dev {
1117 	vdev_t			*l2ad_vdev;	/* vdev */
1118 	spa_t			*l2ad_spa;	/* spa */
1119 	uint64_t		l2ad_hand;	/* next write location */
1120 	uint64_t		l2ad_start;	/* first addr on device */
1121 	uint64_t		l2ad_end;	/* last addr on device */
1122 	boolean_t		l2ad_first;	/* first sweep through */
1123 	boolean_t		l2ad_writing;	/* currently writing */
1124 	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1125 	list_t			l2ad_buflist;	/* buffer list */
1126 	list_node_t		l2ad_node;	/* device list node */
1127 	refcount_t		l2ad_alloc;	/* allocated bytes */
1128 };
1129 
1130 static list_t L2ARC_dev_list;			/* device list */
1131 static list_t *l2arc_dev_list;			/* device list pointer */
1132 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1133 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1134 static list_t L2ARC_free_on_write;		/* free after write buf list */
1135 static list_t *l2arc_free_on_write;		/* free after write list ptr */
1136 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1137 static uint64_t l2arc_ndev;			/* number of devices */
1138 
1139 typedef struct l2arc_read_callback {
1140 	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
1141 	blkptr_t		l2rcb_bp;		/* original blkptr */
1142 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1143 	int			l2rcb_flags;		/* original flags */
1144 	abd_t			*l2rcb_abd;		/* temporary buffer */
1145 } l2arc_read_callback_t;
1146 
1147 typedef struct l2arc_write_callback {
1148 	l2arc_dev_t	*l2wcb_dev;		/* device info */
1149 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1150 } l2arc_write_callback_t;
1151 
1152 typedef struct l2arc_data_free {
1153 	/* protected by l2arc_free_on_write_mtx */
1154 	abd_t		*l2df_abd;
1155 	size_t		l2df_size;
1156 	arc_buf_contents_t l2df_type;
1157 	list_node_t	l2df_list_node;
1158 } l2arc_data_free_t;
1159 
1160 static kmutex_t l2arc_feed_thr_lock;
1161 static kcondvar_t l2arc_feed_thr_cv;
1162 static uint8_t l2arc_thread_exit;
1163 
1164 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1165 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1166 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1167 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1168 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1169 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1170 static void arc_hdr_free_pabd(arc_buf_hdr_t *);
1171 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
1172 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1173 static boolean_t arc_is_overflowing();
1174 static void arc_buf_watch(arc_buf_t *);
1175 
1176 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1177 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1178 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1179 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1180 
1181 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1182 static void l2arc_read_done(zio_t *);
1183 
1184 
1185 /*
1186  * We use Cityhash for this. It's fast, and has good hash properties without
1187  * requiring any large static buffers.
1188  */
1189 static uint64_t
1190 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1191 {
1192 	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1193 }
1194 
1195 #define	HDR_EMPTY(hdr)						\
1196 	((hdr)->b_dva.dva_word[0] == 0 &&			\
1197 	(hdr)->b_dva.dva_word[1] == 0)
1198 
1199 #define	HDR_EQUAL(spa, dva, birth, hdr)				\
1200 	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1201 	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1202 	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1203 
1204 static void
1205 buf_discard_identity(arc_buf_hdr_t *hdr)
1206 {
1207 	hdr->b_dva.dva_word[0] = 0;
1208 	hdr->b_dva.dva_word[1] = 0;
1209 	hdr->b_birth = 0;
1210 }
1211 
1212 static arc_buf_hdr_t *
1213 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1214 {
1215 	const dva_t *dva = BP_IDENTITY(bp);
1216 	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1217 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1218 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1219 	arc_buf_hdr_t *hdr;
1220 
1221 	mutex_enter(hash_lock);
1222 	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1223 	    hdr = hdr->b_hash_next) {
1224 		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1225 			*lockp = hash_lock;
1226 			return (hdr);
1227 		}
1228 	}
1229 	mutex_exit(hash_lock);
1230 	*lockp = NULL;
1231 	return (NULL);
1232 }
1233 
1234 /*
1235  * Insert an entry into the hash table.  If there is already an element
1236  * equal to elem in the hash table, then the already existing element
1237  * will be returned and the new element will not be inserted.
1238  * Otherwise returns NULL.
1239  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1240  */
1241 static arc_buf_hdr_t *
1242 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1243 {
1244 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1245 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1246 	arc_buf_hdr_t *fhdr;
1247 	uint32_t i;
1248 
1249 	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1250 	ASSERT(hdr->b_birth != 0);
1251 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1252 
1253 	if (lockp != NULL) {
1254 		*lockp = hash_lock;
1255 		mutex_enter(hash_lock);
1256 	} else {
1257 		ASSERT(MUTEX_HELD(hash_lock));
1258 	}
1259 
1260 	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1261 	    fhdr = fhdr->b_hash_next, i++) {
1262 		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1263 			return (fhdr);
1264 	}
1265 
1266 	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1267 	buf_hash_table.ht_table[idx] = hdr;
1268 	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1269 
1270 	/* collect some hash table performance data */
1271 	if (i > 0) {
1272 		ARCSTAT_BUMP(arcstat_hash_collisions);
1273 		if (i == 1)
1274 			ARCSTAT_BUMP(arcstat_hash_chains);
1275 
1276 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1277 	}
1278 
1279 	ARCSTAT_BUMP(arcstat_hash_elements);
1280 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1281 
1282 	return (NULL);
1283 }
1284 
1285 static void
1286 buf_hash_remove(arc_buf_hdr_t *hdr)
1287 {
1288 	arc_buf_hdr_t *fhdr, **hdrp;
1289 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1290 
1291 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1292 	ASSERT(HDR_IN_HASH_TABLE(hdr));
1293 
1294 	hdrp = &buf_hash_table.ht_table[idx];
1295 	while ((fhdr = *hdrp) != hdr) {
1296 		ASSERT3P(fhdr, !=, NULL);
1297 		hdrp = &fhdr->b_hash_next;
1298 	}
1299 	*hdrp = hdr->b_hash_next;
1300 	hdr->b_hash_next = NULL;
1301 	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1302 
1303 	/* collect some hash table performance data */
1304 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1305 
1306 	if (buf_hash_table.ht_table[idx] &&
1307 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1308 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1309 }
1310 
1311 /*
1312  * Global data structures and functions for the buf kmem cache.
1313  */
1314 static kmem_cache_t *hdr_full_cache;
1315 static kmem_cache_t *hdr_l2only_cache;
1316 static kmem_cache_t *buf_cache;
1317 
1318 static void
1319 buf_fini(void)
1320 {
1321 	int i;
1322 
1323 	kmem_free(buf_hash_table.ht_table,
1324 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1325 	for (i = 0; i < BUF_LOCKS; i++)
1326 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1327 	kmem_cache_destroy(hdr_full_cache);
1328 	kmem_cache_destroy(hdr_l2only_cache);
1329 	kmem_cache_destroy(buf_cache);
1330 }
1331 
1332 /*
1333  * Constructor callback - called when the cache is empty
1334  * and a new buf is requested.
1335  */
1336 /* ARGSUSED */
1337 static int
1338 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1339 {
1340 	arc_buf_hdr_t *hdr = vbuf;
1341 
1342 	bzero(hdr, HDR_FULL_SIZE);
1343 	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1344 	refcount_create(&hdr->b_l1hdr.b_refcnt);
1345 	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1346 	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1347 	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1348 
1349 	return (0);
1350 }
1351 
1352 /* ARGSUSED */
1353 static int
1354 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1355 {
1356 	arc_buf_hdr_t *hdr = vbuf;
1357 
1358 	bzero(hdr, HDR_L2ONLY_SIZE);
1359 	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1360 
1361 	return (0);
1362 }
1363 
1364 /* ARGSUSED */
1365 static int
1366 buf_cons(void *vbuf, void *unused, int kmflag)
1367 {
1368 	arc_buf_t *buf = vbuf;
1369 
1370 	bzero(buf, sizeof (arc_buf_t));
1371 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1372 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1373 
1374 	return (0);
1375 }
1376 
1377 /*
1378  * Destructor callback - called when a cached buf is
1379  * no longer required.
1380  */
1381 /* ARGSUSED */
1382 static void
1383 hdr_full_dest(void *vbuf, void *unused)
1384 {
1385 	arc_buf_hdr_t *hdr = vbuf;
1386 
1387 	ASSERT(HDR_EMPTY(hdr));
1388 	cv_destroy(&hdr->b_l1hdr.b_cv);
1389 	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1390 	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1391 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1392 	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1393 }
1394 
1395 /* ARGSUSED */
1396 static void
1397 hdr_l2only_dest(void *vbuf, void *unused)
1398 {
1399 	arc_buf_hdr_t *hdr = vbuf;
1400 
1401 	ASSERT(HDR_EMPTY(hdr));
1402 	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1403 }
1404 
1405 /* ARGSUSED */
1406 static void
1407 buf_dest(void *vbuf, void *unused)
1408 {
1409 	arc_buf_t *buf = vbuf;
1410 
1411 	mutex_destroy(&buf->b_evict_lock);
1412 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1413 }
1414 
1415 /*
1416  * Reclaim callback -- invoked when memory is low.
1417  */
1418 /* ARGSUSED */
1419 static void
1420 hdr_recl(void *unused)
1421 {
1422 	dprintf("hdr_recl called\n");
1423 	/*
1424 	 * umem calls the reclaim func when we destroy the buf cache,
1425 	 * which is after we do arc_fini().
1426 	 */
1427 	if (arc_initialized)
1428 		zthr_wakeup(arc_reap_zthr);
1429 }
1430 
1431 static void
1432 buf_init(void)
1433 {
1434 	uint64_t *ct;
1435 	uint64_t hsize = 1ULL << 12;
1436 	int i, j;
1437 
1438 	/*
1439 	 * The hash table is big enough to fill all of physical memory
1440 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1441 	 * By default, the table will take up
1442 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1443 	 */
1444 	while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1445 		hsize <<= 1;
1446 retry:
1447 	buf_hash_table.ht_mask = hsize - 1;
1448 	buf_hash_table.ht_table =
1449 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1450 	if (buf_hash_table.ht_table == NULL) {
1451 		ASSERT(hsize > (1ULL << 8));
1452 		hsize >>= 1;
1453 		goto retry;
1454 	}
1455 
1456 	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1457 	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1458 	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1459 	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1460 	    NULL, NULL, 0);
1461 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1462 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1463 
1464 	for (i = 0; i < 256; i++)
1465 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1466 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1467 
1468 	for (i = 0; i < BUF_LOCKS; i++) {
1469 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1470 		    NULL, MUTEX_DEFAULT, NULL);
1471 	}
1472 }
1473 
1474 /*
1475  * This is the size that the buf occupies in memory. If the buf is compressed,
1476  * it will correspond to the compressed size. You should use this method of
1477  * getting the buf size unless you explicitly need the logical size.
1478  */
1479 int32_t
1480 arc_buf_size(arc_buf_t *buf)
1481 {
1482 	return (ARC_BUF_COMPRESSED(buf) ?
1483 	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1484 }
1485 
1486 int32_t
1487 arc_buf_lsize(arc_buf_t *buf)
1488 {
1489 	return (HDR_GET_LSIZE(buf->b_hdr));
1490 }
1491 
1492 enum zio_compress
1493 arc_get_compression(arc_buf_t *buf)
1494 {
1495 	return (ARC_BUF_COMPRESSED(buf) ?
1496 	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1497 }
1498 
1499 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
1500 
1501 static inline boolean_t
1502 arc_buf_is_shared(arc_buf_t *buf)
1503 {
1504 	boolean_t shared = (buf->b_data != NULL &&
1505 	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1506 	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1507 	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1508 	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1509 	IMPLY(shared, ARC_BUF_SHARED(buf));
1510 	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1511 
1512 	/*
1513 	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1514 	 * already being shared" requirement prevents us from doing that.
1515 	 */
1516 
1517 	return (shared);
1518 }
1519 
1520 /*
1521  * Free the checksum associated with this header. If there is no checksum, this
1522  * is a no-op.
1523  */
1524 static inline void
1525 arc_cksum_free(arc_buf_hdr_t *hdr)
1526 {
1527 	ASSERT(HDR_HAS_L1HDR(hdr));
1528 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1529 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1530 		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1531 		hdr->b_l1hdr.b_freeze_cksum = NULL;
1532 	}
1533 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1534 }
1535 
1536 /*
1537  * Return true iff at least one of the bufs on hdr is not compressed.
1538  */
1539 static boolean_t
1540 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1541 {
1542 	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1543 		if (!ARC_BUF_COMPRESSED(b)) {
1544 			return (B_TRUE);
1545 		}
1546 	}
1547 	return (B_FALSE);
1548 }
1549 
1550 /*
1551  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1552  * matches the checksum that is stored in the hdr. If there is no checksum,
1553  * or if the buf is compressed, this is a no-op.
1554  */
1555 static void
1556 arc_cksum_verify(arc_buf_t *buf)
1557 {
1558 	arc_buf_hdr_t *hdr = buf->b_hdr;
1559 	zio_cksum_t zc;
1560 
1561 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1562 		return;
1563 
1564 	if (ARC_BUF_COMPRESSED(buf)) {
1565 		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1566 		    arc_hdr_has_uncompressed_buf(hdr));
1567 		return;
1568 	}
1569 
1570 	ASSERT(HDR_HAS_L1HDR(hdr));
1571 
1572 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1573 	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1574 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1575 		return;
1576 	}
1577 
1578 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1579 	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1580 		panic("buffer modified while frozen!");
1581 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1582 }
1583 
1584 static boolean_t
1585 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1586 {
1587 	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1588 	boolean_t valid_cksum;
1589 
1590 	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1591 	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1592 
1593 	/*
1594 	 * We rely on the blkptr's checksum to determine if the block
1595 	 * is valid or not. When compressed arc is enabled, the l2arc
1596 	 * writes the block to the l2arc just as it appears in the pool.
1597 	 * This allows us to use the blkptr's checksum to validate the
1598 	 * data that we just read off of the l2arc without having to store
1599 	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1600 	 * arc is disabled, then the data written to the l2arc is always
1601 	 * uncompressed and won't match the block as it exists in the main
1602 	 * pool. When this is the case, we must first compress it if it is
1603 	 * compressed on the main pool before we can validate the checksum.
1604 	 */
1605 	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1606 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1607 		uint64_t lsize = HDR_GET_LSIZE(hdr);
1608 		uint64_t csize;
1609 
1610 		abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1611 		csize = zio_compress_data(compress, zio->io_abd,
1612 		    abd_to_buf(cdata), lsize);
1613 
1614 		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1615 		if (csize < HDR_GET_PSIZE(hdr)) {
1616 			/*
1617 			 * Compressed blocks are always a multiple of the
1618 			 * smallest ashift in the pool. Ideally, we would
1619 			 * like to round up the csize to the next
1620 			 * spa_min_ashift but that value may have changed
1621 			 * since the block was last written. Instead,
1622 			 * we rely on the fact that the hdr's psize
1623 			 * was set to the psize of the block when it was
1624 			 * last written. We set the csize to that value
1625 			 * and zero out any part that should not contain
1626 			 * data.
1627 			 */
1628 			abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1629 			csize = HDR_GET_PSIZE(hdr);
1630 		}
1631 		zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1632 	}
1633 
1634 	/*
1635 	 * Block pointers always store the checksum for the logical data.
1636 	 * If the block pointer has the gang bit set, then the checksum
1637 	 * it represents is for the reconstituted data and not for an
1638 	 * individual gang member. The zio pipeline, however, must be able to
1639 	 * determine the checksum of each of the gang constituents so it
1640 	 * treats the checksum comparison differently than what we need
1641 	 * for l2arc blocks. This prevents us from using the
1642 	 * zio_checksum_error() interface directly. Instead we must call the
1643 	 * zio_checksum_error_impl() so that we can ensure the checksum is
1644 	 * generated using the correct checksum algorithm and accounts for the
1645 	 * logical I/O size and not just a gang fragment.
1646 	 */
1647 	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1648 	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1649 	    zio->io_offset, NULL) == 0);
1650 	zio_pop_transforms(zio);
1651 	return (valid_cksum);
1652 }
1653 
1654 /*
1655  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1656  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1657  * isn't modified later on. If buf is compressed or there is already a checksum
1658  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1659  */
1660 static void
1661 arc_cksum_compute(arc_buf_t *buf)
1662 {
1663 	arc_buf_hdr_t *hdr = buf->b_hdr;
1664 
1665 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1666 		return;
1667 
1668 	ASSERT(HDR_HAS_L1HDR(hdr));
1669 
1670 	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1671 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1672 		ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1673 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1674 		return;
1675 	} else if (ARC_BUF_COMPRESSED(buf)) {
1676 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1677 		return;
1678 	}
1679 
1680 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1681 	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1682 	    KM_SLEEP);
1683 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1684 	    hdr->b_l1hdr.b_freeze_cksum);
1685 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1686 	arc_buf_watch(buf);
1687 }
1688 
1689 #ifndef _KERNEL
1690 typedef struct procctl {
1691 	long cmd;
1692 	prwatch_t prwatch;
1693 } procctl_t;
1694 #endif
1695 
1696 /* ARGSUSED */
1697 static void
1698 arc_buf_unwatch(arc_buf_t *buf)
1699 {
1700 #ifndef _KERNEL
1701 	if (arc_watch) {
1702 		int result;
1703 		procctl_t ctl;
1704 		ctl.cmd = PCWATCH;
1705 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1706 		ctl.prwatch.pr_size = 0;
1707 		ctl.prwatch.pr_wflags = 0;
1708 		result = write(arc_procfd, &ctl, sizeof (ctl));
1709 		ASSERT3U(result, ==, sizeof (ctl));
1710 	}
1711 #endif
1712 }
1713 
1714 /* ARGSUSED */
1715 static void
1716 arc_buf_watch(arc_buf_t *buf)
1717 {
1718 #ifndef _KERNEL
1719 	if (arc_watch) {
1720 		int result;
1721 		procctl_t ctl;
1722 		ctl.cmd = PCWATCH;
1723 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1724 		ctl.prwatch.pr_size = arc_buf_size(buf);
1725 		ctl.prwatch.pr_wflags = WA_WRITE;
1726 		result = write(arc_procfd, &ctl, sizeof (ctl));
1727 		ASSERT3U(result, ==, sizeof (ctl));
1728 	}
1729 #endif
1730 }
1731 
1732 static arc_buf_contents_t
1733 arc_buf_type(arc_buf_hdr_t *hdr)
1734 {
1735 	arc_buf_contents_t type;
1736 	if (HDR_ISTYPE_METADATA(hdr)) {
1737 		type = ARC_BUFC_METADATA;
1738 	} else {
1739 		type = ARC_BUFC_DATA;
1740 	}
1741 	VERIFY3U(hdr->b_type, ==, type);
1742 	return (type);
1743 }
1744 
1745 boolean_t
1746 arc_is_metadata(arc_buf_t *buf)
1747 {
1748 	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1749 }
1750 
1751 static uint32_t
1752 arc_bufc_to_flags(arc_buf_contents_t type)
1753 {
1754 	switch (type) {
1755 	case ARC_BUFC_DATA:
1756 		/* metadata field is 0 if buffer contains normal data */
1757 		return (0);
1758 	case ARC_BUFC_METADATA:
1759 		return (ARC_FLAG_BUFC_METADATA);
1760 	default:
1761 		break;
1762 	}
1763 	panic("undefined ARC buffer type!");
1764 	return ((uint32_t)-1);
1765 }
1766 
1767 void
1768 arc_buf_thaw(arc_buf_t *buf)
1769 {
1770 	arc_buf_hdr_t *hdr = buf->b_hdr;
1771 
1772 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1773 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1774 
1775 	arc_cksum_verify(buf);
1776 
1777 	/*
1778 	 * Compressed buffers do not manipulate the b_freeze_cksum or
1779 	 * allocate b_thawed.
1780 	 */
1781 	if (ARC_BUF_COMPRESSED(buf)) {
1782 		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1783 		    arc_hdr_has_uncompressed_buf(hdr));
1784 		return;
1785 	}
1786 
1787 	ASSERT(HDR_HAS_L1HDR(hdr));
1788 	arc_cksum_free(hdr);
1789 
1790 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1791 #ifdef ZFS_DEBUG
1792 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1793 		if (hdr->b_l1hdr.b_thawed != NULL)
1794 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1795 		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1796 	}
1797 #endif
1798 
1799 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1800 
1801 	arc_buf_unwatch(buf);
1802 }
1803 
1804 void
1805 arc_buf_freeze(arc_buf_t *buf)
1806 {
1807 	arc_buf_hdr_t *hdr = buf->b_hdr;
1808 	kmutex_t *hash_lock;
1809 
1810 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1811 		return;
1812 
1813 	if (ARC_BUF_COMPRESSED(buf)) {
1814 		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1815 		    arc_hdr_has_uncompressed_buf(hdr));
1816 		return;
1817 	}
1818 
1819 	hash_lock = HDR_LOCK(hdr);
1820 	mutex_enter(hash_lock);
1821 
1822 	ASSERT(HDR_HAS_L1HDR(hdr));
1823 	ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1824 	    hdr->b_l1hdr.b_state == arc_anon);
1825 	arc_cksum_compute(buf);
1826 	mutex_exit(hash_lock);
1827 }
1828 
1829 /*
1830  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1831  * the following functions should be used to ensure that the flags are
1832  * updated in a thread-safe way. When manipulating the flags either
1833  * the hash_lock must be held or the hdr must be undiscoverable. This
1834  * ensures that we're not racing with any other threads when updating
1835  * the flags.
1836  */
1837 static inline void
1838 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1839 {
1840 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1841 	hdr->b_flags |= flags;
1842 }
1843 
1844 static inline void
1845 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1846 {
1847 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1848 	hdr->b_flags &= ~flags;
1849 }
1850 
1851 /*
1852  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1853  * done in a special way since we have to clear and set bits
1854  * at the same time. Consumers that wish to set the compression bits
1855  * must use this function to ensure that the flags are updated in
1856  * thread-safe manner.
1857  */
1858 static void
1859 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1860 {
1861 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1862 
1863 	/*
1864 	 * Holes and embedded blocks will always have a psize = 0 so
1865 	 * we ignore the compression of the blkptr and set the
1866 	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1867 	 * Holes and embedded blocks remain anonymous so we don't
1868 	 * want to uncompress them. Mark them as uncompressed.
1869 	 */
1870 	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1871 		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1872 		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1873 		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1874 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1875 	} else {
1876 		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1877 		HDR_SET_COMPRESS(hdr, cmp);
1878 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1879 		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1880 	}
1881 }
1882 
1883 /*
1884  * Looks for another buf on the same hdr which has the data decompressed, copies
1885  * from it, and returns true. If no such buf exists, returns false.
1886  */
1887 static boolean_t
1888 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1889 {
1890 	arc_buf_hdr_t *hdr = buf->b_hdr;
1891 	boolean_t copied = B_FALSE;
1892 
1893 	ASSERT(HDR_HAS_L1HDR(hdr));
1894 	ASSERT3P(buf->b_data, !=, NULL);
1895 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1896 
1897 	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1898 	    from = from->b_next) {
1899 		/* can't use our own data buffer */
1900 		if (from == buf) {
1901 			continue;
1902 		}
1903 
1904 		if (!ARC_BUF_COMPRESSED(from)) {
1905 			bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1906 			copied = B_TRUE;
1907 			break;
1908 		}
1909 	}
1910 
1911 	/*
1912 	 * There were no decompressed bufs, so there should not be a
1913 	 * checksum on the hdr either.
1914 	 */
1915 	EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1916 
1917 	return (copied);
1918 }
1919 
1920 /*
1921  * Given a buf that has a data buffer attached to it, this function will
1922  * efficiently fill the buf with data of the specified compression setting from
1923  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1924  * are already sharing a data buf, no copy is performed.
1925  *
1926  * If the buf is marked as compressed but uncompressed data was requested, this
1927  * will allocate a new data buffer for the buf, remove that flag, and fill the
1928  * buf with uncompressed data. You can't request a compressed buf on a hdr with
1929  * uncompressed data, and (since we haven't added support for it yet) if you
1930  * want compressed data your buf must already be marked as compressed and have
1931  * the correct-sized data buffer.
1932  */
1933 static int
1934 arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
1935 {
1936 	arc_buf_hdr_t *hdr = buf->b_hdr;
1937 	boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
1938 	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1939 
1940 	ASSERT3P(buf->b_data, !=, NULL);
1941 	IMPLY(compressed, hdr_compressed);
1942 	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1943 
1944 	if (hdr_compressed == compressed) {
1945 		if (!arc_buf_is_shared(buf)) {
1946 			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1947 			    arc_buf_size(buf));
1948 		}
1949 	} else {
1950 		ASSERT(hdr_compressed);
1951 		ASSERT(!compressed);
1952 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1953 
1954 		/*
1955 		 * If the buf is sharing its data with the hdr, unlink it and
1956 		 * allocate a new data buffer for the buf.
1957 		 */
1958 		if (arc_buf_is_shared(buf)) {
1959 			ASSERT(ARC_BUF_COMPRESSED(buf));
1960 
1961 			/* We need to give the buf it's own b_data */
1962 			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1963 			buf->b_data =
1964 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1965 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1966 
1967 			/* Previously overhead was 0; just add new overhead */
1968 			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1969 		} else if (ARC_BUF_COMPRESSED(buf)) {
1970 			/* We need to reallocate the buf's b_data */
1971 			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1972 			    buf);
1973 			buf->b_data =
1974 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1975 
1976 			/* We increased the size of b_data; update overhead */
1977 			ARCSTAT_INCR(arcstat_overhead_size,
1978 			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1979 		}
1980 
1981 		/*
1982 		 * Regardless of the buf's previous compression settings, it
1983 		 * should not be compressed at the end of this function.
1984 		 */
1985 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1986 
1987 		/*
1988 		 * Try copying the data from another buf which already has a
1989 		 * decompressed version. If that's not possible, it's time to
1990 		 * bite the bullet and decompress the data from the hdr.
1991 		 */
1992 		if (arc_buf_try_copy_decompressed_data(buf)) {
1993 			/* Skip byteswapping and checksumming (already done) */
1994 			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1995 			return (0);
1996 		} else {
1997 			int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1998 			    hdr->b_l1hdr.b_pabd, buf->b_data,
1999 			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2000 
2001 			/*
2002 			 * Absent hardware errors or software bugs, this should
2003 			 * be impossible, but log it anyway so we can debug it.
2004 			 */
2005 			if (error != 0) {
2006 				zfs_dbgmsg(
2007 				    "hdr %p, compress %d, psize %d, lsize %d",
2008 				    hdr, HDR_GET_COMPRESS(hdr),
2009 				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2010 				return (SET_ERROR(EIO));
2011 			}
2012 		}
2013 	}
2014 
2015 	/* Byteswap the buf's data if necessary */
2016 	if (bswap != DMU_BSWAP_NUMFUNCS) {
2017 		ASSERT(!HDR_SHARED_DATA(hdr));
2018 		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2019 		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2020 	}
2021 
2022 	/* Compute the hdr's checksum if necessary */
2023 	arc_cksum_compute(buf);
2024 
2025 	return (0);
2026 }
2027 
2028 int
2029 arc_decompress(arc_buf_t *buf)
2030 {
2031 	return (arc_buf_fill(buf, B_FALSE));
2032 }
2033 
2034 /*
2035  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
2036  */
2037 static uint64_t
2038 arc_hdr_size(arc_buf_hdr_t *hdr)
2039 {
2040 	uint64_t size;
2041 
2042 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2043 	    HDR_GET_PSIZE(hdr) > 0) {
2044 		size = HDR_GET_PSIZE(hdr);
2045 	} else {
2046 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2047 		size = HDR_GET_LSIZE(hdr);
2048 	}
2049 	return (size);
2050 }
2051 
2052 /*
2053  * Increment the amount of evictable space in the arc_state_t's refcount.
2054  * We account for the space used by the hdr and the arc buf individually
2055  * so that we can add and remove them from the refcount individually.
2056  */
2057 static void
2058 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2059 {
2060 	arc_buf_contents_t type = arc_buf_type(hdr);
2061 
2062 	ASSERT(HDR_HAS_L1HDR(hdr));
2063 
2064 	if (GHOST_STATE(state)) {
2065 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2066 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2067 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2068 		(void) refcount_add_many(&state->arcs_esize[type],
2069 		    HDR_GET_LSIZE(hdr), hdr);
2070 		return;
2071 	}
2072 
2073 	ASSERT(!GHOST_STATE(state));
2074 	if (hdr->b_l1hdr.b_pabd != NULL) {
2075 		(void) refcount_add_many(&state->arcs_esize[type],
2076 		    arc_hdr_size(hdr), hdr);
2077 	}
2078 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2079 	    buf = buf->b_next) {
2080 		if (arc_buf_is_shared(buf))
2081 			continue;
2082 		(void) refcount_add_many(&state->arcs_esize[type],
2083 		    arc_buf_size(buf), buf);
2084 	}
2085 }
2086 
2087 /*
2088  * Decrement the amount of evictable space in the arc_state_t's refcount.
2089  * We account for the space used by the hdr and the arc buf individually
2090  * so that we can add and remove them from the refcount individually.
2091  */
2092 static void
2093 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2094 {
2095 	arc_buf_contents_t type = arc_buf_type(hdr);
2096 
2097 	ASSERT(HDR_HAS_L1HDR(hdr));
2098 
2099 	if (GHOST_STATE(state)) {
2100 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2101 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2102 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2103 		(void) refcount_remove_many(&state->arcs_esize[type],
2104 		    HDR_GET_LSIZE(hdr), hdr);
2105 		return;
2106 	}
2107 
2108 	ASSERT(!GHOST_STATE(state));
2109 	if (hdr->b_l1hdr.b_pabd != NULL) {
2110 		(void) refcount_remove_many(&state->arcs_esize[type],
2111 		    arc_hdr_size(hdr), hdr);
2112 	}
2113 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2114 	    buf = buf->b_next) {
2115 		if (arc_buf_is_shared(buf))
2116 			continue;
2117 		(void) refcount_remove_many(&state->arcs_esize[type],
2118 		    arc_buf_size(buf), buf);
2119 	}
2120 }
2121 
2122 /*
2123  * Add a reference to this hdr indicating that someone is actively
2124  * referencing that memory. When the refcount transitions from 0 to 1,
2125  * we remove it from the respective arc_state_t list to indicate that
2126  * it is not evictable.
2127  */
2128 static void
2129 add_reference(arc_buf_hdr_t *hdr, void *tag)
2130 {
2131 	ASSERT(HDR_HAS_L1HDR(hdr));
2132 	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2133 		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2134 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2135 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2136 	}
2137 
2138 	arc_state_t *state = hdr->b_l1hdr.b_state;
2139 
2140 	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2141 	    (state != arc_anon)) {
2142 		/* We don't use the L2-only state list. */
2143 		if (state != arc_l2c_only) {
2144 			multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2145 			    hdr);
2146 			arc_evictable_space_decrement(hdr, state);
2147 		}
2148 		/* remove the prefetch flag if we get a reference */
2149 		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2150 	}
2151 }
2152 
2153 /*
2154  * Remove a reference from this hdr. When the reference transitions from
2155  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2156  * list making it eligible for eviction.
2157  */
2158 static int
2159 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2160 {
2161 	int cnt;
2162 	arc_state_t *state = hdr->b_l1hdr.b_state;
2163 
2164 	ASSERT(HDR_HAS_L1HDR(hdr));
2165 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2166 	ASSERT(!GHOST_STATE(state));
2167 
2168 	/*
2169 	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2170 	 * check to prevent usage of the arc_l2c_only list.
2171 	 */
2172 	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2173 	    (state != arc_anon)) {
2174 		multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2175 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2176 		arc_evictable_space_increment(hdr, state);
2177 	}
2178 	return (cnt);
2179 }
2180 
2181 /*
2182  * Move the supplied buffer to the indicated state. The hash lock
2183  * for the buffer must be held by the caller.
2184  */
2185 static void
2186 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2187     kmutex_t *hash_lock)
2188 {
2189 	arc_state_t *old_state;
2190 	int64_t refcnt;
2191 	uint32_t bufcnt;
2192 	boolean_t update_old, update_new;
2193 	arc_buf_contents_t buftype = arc_buf_type(hdr);
2194 
2195 	/*
2196 	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2197 	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2198 	 * L1 hdr doesn't always exist when we change state to arc_anon before
2199 	 * destroying a header, in which case reallocating to add the L1 hdr is
2200 	 * pointless.
2201 	 */
2202 	if (HDR_HAS_L1HDR(hdr)) {
2203 		old_state = hdr->b_l1hdr.b_state;
2204 		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2205 		bufcnt = hdr->b_l1hdr.b_bufcnt;
2206 		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2207 	} else {
2208 		old_state = arc_l2c_only;
2209 		refcnt = 0;
2210 		bufcnt = 0;
2211 		update_old = B_FALSE;
2212 	}
2213 	update_new = update_old;
2214 
2215 	ASSERT(MUTEX_HELD(hash_lock));
2216 	ASSERT3P(new_state, !=, old_state);
2217 	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2218 	ASSERT(old_state != arc_anon || bufcnt <= 1);
2219 
2220 	/*
2221 	 * If this buffer is evictable, transfer it from the
2222 	 * old state list to the new state list.
2223 	 */
2224 	if (refcnt == 0) {
2225 		if (old_state != arc_anon && old_state != arc_l2c_only) {
2226 			ASSERT(HDR_HAS_L1HDR(hdr));
2227 			multilist_remove(old_state->arcs_list[buftype], hdr);
2228 
2229 			if (GHOST_STATE(old_state)) {
2230 				ASSERT0(bufcnt);
2231 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2232 				update_old = B_TRUE;
2233 			}
2234 			arc_evictable_space_decrement(hdr, old_state);
2235 		}
2236 		if (new_state != arc_anon && new_state != arc_l2c_only) {
2237 
2238 			/*
2239 			 * An L1 header always exists here, since if we're
2240 			 * moving to some L1-cached state (i.e. not l2c_only or
2241 			 * anonymous), we realloc the header to add an L1hdr
2242 			 * beforehand.
2243 			 */
2244 			ASSERT(HDR_HAS_L1HDR(hdr));
2245 			multilist_insert(new_state->arcs_list[buftype], hdr);
2246 
2247 			if (GHOST_STATE(new_state)) {
2248 				ASSERT0(bufcnt);
2249 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2250 				update_new = B_TRUE;
2251 			}
2252 			arc_evictable_space_increment(hdr, new_state);
2253 		}
2254 	}
2255 
2256 	ASSERT(!HDR_EMPTY(hdr));
2257 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2258 		buf_hash_remove(hdr);
2259 
2260 	/* adjust state sizes (ignore arc_l2c_only) */
2261 
2262 	if (update_new && new_state != arc_l2c_only) {
2263 		ASSERT(HDR_HAS_L1HDR(hdr));
2264 		if (GHOST_STATE(new_state)) {
2265 			ASSERT0(bufcnt);
2266 
2267 			/*
2268 			 * When moving a header to a ghost state, we first
2269 			 * remove all arc buffers. Thus, we'll have a
2270 			 * bufcnt of zero, and no arc buffer to use for
2271 			 * the reference. As a result, we use the arc
2272 			 * header pointer for the reference.
2273 			 */
2274 			(void) refcount_add_many(&new_state->arcs_size,
2275 			    HDR_GET_LSIZE(hdr), hdr);
2276 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2277 		} else {
2278 			uint32_t buffers = 0;
2279 
2280 			/*
2281 			 * Each individual buffer holds a unique reference,
2282 			 * thus we must remove each of these references one
2283 			 * at a time.
2284 			 */
2285 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2286 			    buf = buf->b_next) {
2287 				ASSERT3U(bufcnt, !=, 0);
2288 				buffers++;
2289 
2290 				/*
2291 				 * When the arc_buf_t is sharing the data
2292 				 * block with the hdr, the owner of the
2293 				 * reference belongs to the hdr. Only
2294 				 * add to the refcount if the arc_buf_t is
2295 				 * not shared.
2296 				 */
2297 				if (arc_buf_is_shared(buf))
2298 					continue;
2299 
2300 				(void) refcount_add_many(&new_state->arcs_size,
2301 				    arc_buf_size(buf), buf);
2302 			}
2303 			ASSERT3U(bufcnt, ==, buffers);
2304 
2305 			if (hdr->b_l1hdr.b_pabd != NULL) {
2306 				(void) refcount_add_many(&new_state->arcs_size,
2307 				    arc_hdr_size(hdr), hdr);
2308 			} else {
2309 				ASSERT(GHOST_STATE(old_state));
2310 			}
2311 		}
2312 	}
2313 
2314 	if (update_old && old_state != arc_l2c_only) {
2315 		ASSERT(HDR_HAS_L1HDR(hdr));
2316 		if (GHOST_STATE(old_state)) {
2317 			ASSERT0(bufcnt);
2318 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2319 
2320 			/*
2321 			 * When moving a header off of a ghost state,
2322 			 * the header will not contain any arc buffers.
2323 			 * We use the arc header pointer for the reference
2324 			 * which is exactly what we did when we put the
2325 			 * header on the ghost state.
2326 			 */
2327 
2328 			(void) refcount_remove_many(&old_state->arcs_size,
2329 			    HDR_GET_LSIZE(hdr), hdr);
2330 		} else {
2331 			uint32_t buffers = 0;
2332 
2333 			/*
2334 			 * Each individual buffer holds a unique reference,
2335 			 * thus we must remove each of these references one
2336 			 * at a time.
2337 			 */
2338 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2339 			    buf = buf->b_next) {
2340 				ASSERT3U(bufcnt, !=, 0);
2341 				buffers++;
2342 
2343 				/*
2344 				 * When the arc_buf_t is sharing the data
2345 				 * block with the hdr, the owner of the
2346 				 * reference belongs to the hdr. Only
2347 				 * add to the refcount if the arc_buf_t is
2348 				 * not shared.
2349 				 */
2350 				if (arc_buf_is_shared(buf))
2351 					continue;
2352 
2353 				(void) refcount_remove_many(
2354 				    &old_state->arcs_size, arc_buf_size(buf),
2355 				    buf);
2356 			}
2357 			ASSERT3U(bufcnt, ==, buffers);
2358 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2359 			(void) refcount_remove_many(
2360 			    &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2361 		}
2362 	}
2363 
2364 	if (HDR_HAS_L1HDR(hdr))
2365 		hdr->b_l1hdr.b_state = new_state;
2366 
2367 	/*
2368 	 * L2 headers should never be on the L2 state list since they don't
2369 	 * have L1 headers allocated.
2370 	 */
2371 	ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2372 	    multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2373 }
2374 
2375 void
2376 arc_space_consume(uint64_t space, arc_space_type_t type)
2377 {
2378 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2379 
2380 	switch (type) {
2381 	case ARC_SPACE_DATA:
2382 		aggsum_add(&astat_data_size, space);
2383 		break;
2384 	case ARC_SPACE_META:
2385 		aggsum_add(&astat_metadata_size, space);
2386 		break;
2387 	case ARC_SPACE_OTHER:
2388 		aggsum_add(&astat_other_size, space);
2389 		break;
2390 	case ARC_SPACE_HDRS:
2391 		aggsum_add(&astat_hdr_size, space);
2392 		break;
2393 	case ARC_SPACE_L2HDRS:
2394 		aggsum_add(&astat_l2_hdr_size, space);
2395 		break;
2396 	}
2397 
2398 	if (type != ARC_SPACE_DATA)
2399 		aggsum_add(&arc_meta_used, space);
2400 
2401 	aggsum_add(&arc_size, space);
2402 }
2403 
2404 void
2405 arc_space_return(uint64_t space, arc_space_type_t type)
2406 {
2407 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2408 
2409 	switch (type) {
2410 	case ARC_SPACE_DATA:
2411 		aggsum_add(&astat_data_size, -space);
2412 		break;
2413 	case ARC_SPACE_META:
2414 		aggsum_add(&astat_metadata_size, -space);
2415 		break;
2416 	case ARC_SPACE_OTHER:
2417 		aggsum_add(&astat_other_size, -space);
2418 		break;
2419 	case ARC_SPACE_HDRS:
2420 		aggsum_add(&astat_hdr_size, -space);
2421 		break;
2422 	case ARC_SPACE_L2HDRS:
2423 		aggsum_add(&astat_l2_hdr_size, -space);
2424 		break;
2425 	}
2426 
2427 	if (type != ARC_SPACE_DATA) {
2428 		ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2429 		/*
2430 		 * We use the upper bound here rather than the precise value
2431 		 * because the arc_meta_max value doesn't need to be
2432 		 * precise. It's only consumed by humans via arcstats.
2433 		 */
2434 		if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2435 			arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2436 		aggsum_add(&arc_meta_used, -space);
2437 	}
2438 
2439 	ASSERT(aggsum_compare(&arc_size, space) >= 0);
2440 	aggsum_add(&arc_size, -space);
2441 }
2442 
2443 /*
2444  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2445  * with the hdr's b_pabd.
2446  */
2447 static boolean_t
2448 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2449 {
2450 	/*
2451 	 * The criteria for sharing a hdr's data are:
2452 	 * 1. the hdr's compression matches the buf's compression
2453 	 * 2. the hdr doesn't need to be byteswapped
2454 	 * 3. the hdr isn't already being shared
2455 	 * 4. the buf is either compressed or it is the last buf in the hdr list
2456 	 *
2457 	 * Criterion #4 maintains the invariant that shared uncompressed
2458 	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2459 	 * might ask, "if a compressed buf is allocated first, won't that be the
2460 	 * last thing in the list?", but in that case it's impossible to create
2461 	 * a shared uncompressed buf anyway (because the hdr must be compressed
2462 	 * to have the compressed buf). You might also think that #3 is
2463 	 * sufficient to make this guarantee, however it's possible
2464 	 * (specifically in the rare L2ARC write race mentioned in
2465 	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2466 	 * is sharable, but wasn't at the time of its allocation. Rather than
2467 	 * allow a new shared uncompressed buf to be created and then shuffle
2468 	 * the list around to make it the last element, this simply disallows
2469 	 * sharing if the new buf isn't the first to be added.
2470 	 */
2471 	ASSERT3P(buf->b_hdr, ==, hdr);
2472 	boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2473 	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2474 	return (buf_compressed == hdr_compressed &&
2475 	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2476 	    !HDR_SHARED_DATA(hdr) &&
2477 	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2478 }
2479 
2480 /*
2481  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2482  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2483  * copy was made successfully, or an error code otherwise.
2484  */
2485 static int
2486 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2487     boolean_t fill, arc_buf_t **ret)
2488 {
2489 	arc_buf_t *buf;
2490 
2491 	ASSERT(HDR_HAS_L1HDR(hdr));
2492 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2493 	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2494 	    hdr->b_type == ARC_BUFC_METADATA);
2495 	ASSERT3P(ret, !=, NULL);
2496 	ASSERT3P(*ret, ==, NULL);
2497 
2498 	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2499 	buf->b_hdr = hdr;
2500 	buf->b_data = NULL;
2501 	buf->b_next = hdr->b_l1hdr.b_buf;
2502 	buf->b_flags = 0;
2503 
2504 	add_reference(hdr, tag);
2505 
2506 	/*
2507 	 * We're about to change the hdr's b_flags. We must either
2508 	 * hold the hash_lock or be undiscoverable.
2509 	 */
2510 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2511 
2512 	/*
2513 	 * Only honor requests for compressed bufs if the hdr is actually
2514 	 * compressed.
2515 	 */
2516 	if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2517 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2518 
2519 	/*
2520 	 * If the hdr's data can be shared then we share the data buffer and
2521 	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2522 	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2523 	 * buffer to store the buf's data.
2524 	 *
2525 	 * There are two additional restrictions here because we're sharing
2526 	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2527 	 * actively involved in an L2ARC write, because if this buf is used by
2528 	 * an arc_write() then the hdr's data buffer will be released when the
2529 	 * write completes, even though the L2ARC write might still be using it.
2530 	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2531 	 * need to be ABD-aware.
2532 	 */
2533 	boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2534 	    abd_is_linear(hdr->b_l1hdr.b_pabd);
2535 
2536 	/* Set up b_data and sharing */
2537 	if (can_share) {
2538 		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2539 		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2540 		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2541 	} else {
2542 		buf->b_data =
2543 		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2544 		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2545 	}
2546 	VERIFY3P(buf->b_data, !=, NULL);
2547 
2548 	hdr->b_l1hdr.b_buf = buf;
2549 	hdr->b_l1hdr.b_bufcnt += 1;
2550 
2551 	/*
2552 	 * If the user wants the data from the hdr, we need to either copy or
2553 	 * decompress the data.
2554 	 */
2555 	if (fill) {
2556 		return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2557 	}
2558 
2559 	return (0);
2560 }
2561 
2562 static char *arc_onloan_tag = "onloan";
2563 
2564 static inline void
2565 arc_loaned_bytes_update(int64_t delta)
2566 {
2567 	atomic_add_64(&arc_loaned_bytes, delta);
2568 
2569 	/* assert that it did not wrap around */
2570 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2571 }
2572 
2573 /*
2574  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2575  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2576  * buffers must be returned to the arc before they can be used by the DMU or
2577  * freed.
2578  */
2579 arc_buf_t *
2580 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2581 {
2582 	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2583 	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2584 
2585 	arc_loaned_bytes_update(arc_buf_size(buf));
2586 
2587 	return (buf);
2588 }
2589 
2590 arc_buf_t *
2591 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2592     enum zio_compress compression_type)
2593 {
2594 	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2595 	    psize, lsize, compression_type);
2596 
2597 	arc_loaned_bytes_update(arc_buf_size(buf));
2598 
2599 	return (buf);
2600 }
2601 
2602 
2603 /*
2604  * Return a loaned arc buffer to the arc.
2605  */
2606 void
2607 arc_return_buf(arc_buf_t *buf, void *tag)
2608 {
2609 	arc_buf_hdr_t *hdr = buf->b_hdr;
2610 
2611 	ASSERT3P(buf->b_data, !=, NULL);
2612 	ASSERT(HDR_HAS_L1HDR(hdr));
2613 	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2614 	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2615 
2616 	arc_loaned_bytes_update(-arc_buf_size(buf));
2617 }
2618 
2619 /* Detach an arc_buf from a dbuf (tag) */
2620 void
2621 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2622 {
2623 	arc_buf_hdr_t *hdr = buf->b_hdr;
2624 
2625 	ASSERT3P(buf->b_data, !=, NULL);
2626 	ASSERT(HDR_HAS_L1HDR(hdr));
2627 	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2628 	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2629 
2630 	arc_loaned_bytes_update(arc_buf_size(buf));
2631 }
2632 
2633 static void
2634 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2635 {
2636 	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2637 
2638 	df->l2df_abd = abd;
2639 	df->l2df_size = size;
2640 	df->l2df_type = type;
2641 	mutex_enter(&l2arc_free_on_write_mtx);
2642 	list_insert_head(l2arc_free_on_write, df);
2643 	mutex_exit(&l2arc_free_on_write_mtx);
2644 }
2645 
2646 static void
2647 arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2648 {
2649 	arc_state_t *state = hdr->b_l1hdr.b_state;
2650 	arc_buf_contents_t type = arc_buf_type(hdr);
2651 	uint64_t size = arc_hdr_size(hdr);
2652 
2653 	/* protected by hash lock, if in the hash table */
2654 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2655 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2656 		ASSERT(state != arc_anon && state != arc_l2c_only);
2657 
2658 		(void) refcount_remove_many(&state->arcs_esize[type],
2659 		    size, hdr);
2660 	}
2661 	(void) refcount_remove_many(&state->arcs_size, size, hdr);
2662 	if (type == ARC_BUFC_METADATA) {
2663 		arc_space_return(size, ARC_SPACE_META);
2664 	} else {
2665 		ASSERT(type == ARC_BUFC_DATA);
2666 		arc_space_return(size, ARC_SPACE_DATA);
2667 	}
2668 
2669 	l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2670 }
2671 
2672 /*
2673  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2674  * data buffer, we transfer the refcount ownership to the hdr and update
2675  * the appropriate kstats.
2676  */
2677 static void
2678 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2679 {
2680 	arc_state_t *state = hdr->b_l1hdr.b_state;
2681 
2682 	ASSERT(arc_can_share(hdr, buf));
2683 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2684 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2685 
2686 	/*
2687 	 * Start sharing the data buffer. We transfer the
2688 	 * refcount ownership to the hdr since it always owns
2689 	 * the refcount whenever an arc_buf_t is shared.
2690 	 */
2691 	refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2692 	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2693 	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2694 	    HDR_ISTYPE_METADATA(hdr));
2695 	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2696 	buf->b_flags |= ARC_BUF_FLAG_SHARED;
2697 
2698 	/*
2699 	 * Since we've transferred ownership to the hdr we need
2700 	 * to increment its compressed and uncompressed kstats and
2701 	 * decrement the overhead size.
2702 	 */
2703 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2704 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2705 	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2706 }
2707 
2708 static void
2709 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2710 {
2711 	arc_state_t *state = hdr->b_l1hdr.b_state;
2712 
2713 	ASSERT(arc_buf_is_shared(buf));
2714 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2715 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2716 
2717 	/*
2718 	 * We are no longer sharing this buffer so we need
2719 	 * to transfer its ownership to the rightful owner.
2720 	 */
2721 	refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2722 	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2723 	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2724 	abd_put(hdr->b_l1hdr.b_pabd);
2725 	hdr->b_l1hdr.b_pabd = NULL;
2726 	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2727 
2728 	/*
2729 	 * Since the buffer is no longer shared between
2730 	 * the arc buf and the hdr, count it as overhead.
2731 	 */
2732 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2733 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2734 	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2735 }
2736 
2737 /*
2738  * Remove an arc_buf_t from the hdr's buf list and return the last
2739  * arc_buf_t on the list. If no buffers remain on the list then return
2740  * NULL.
2741  */
2742 static arc_buf_t *
2743 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2744 {
2745 	ASSERT(HDR_HAS_L1HDR(hdr));
2746 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2747 
2748 	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2749 	arc_buf_t *lastbuf = NULL;
2750 
2751 	/*
2752 	 * Remove the buf from the hdr list and locate the last
2753 	 * remaining buffer on the list.
2754 	 */
2755 	while (*bufp != NULL) {
2756 		if (*bufp == buf)
2757 			*bufp = buf->b_next;
2758 
2759 		/*
2760 		 * If we've removed a buffer in the middle of
2761 		 * the list then update the lastbuf and update
2762 		 * bufp.
2763 		 */
2764 		if (*bufp != NULL) {
2765 			lastbuf = *bufp;
2766 			bufp = &(*bufp)->b_next;
2767 		}
2768 	}
2769 	buf->b_next = NULL;
2770 	ASSERT3P(lastbuf, !=, buf);
2771 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2772 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2773 	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2774 
2775 	return (lastbuf);
2776 }
2777 
2778 /*
2779  * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2780  * list and free it.
2781  */
2782 static void
2783 arc_buf_destroy_impl(arc_buf_t *buf)
2784 {
2785 	arc_buf_hdr_t *hdr = buf->b_hdr;
2786 
2787 	/*
2788 	 * Free up the data associated with the buf but only if we're not
2789 	 * sharing this with the hdr. If we are sharing it with the hdr, the
2790 	 * hdr is responsible for doing the free.
2791 	 */
2792 	if (buf->b_data != NULL) {
2793 		/*
2794 		 * We're about to change the hdr's b_flags. We must either
2795 		 * hold the hash_lock or be undiscoverable.
2796 		 */
2797 		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2798 
2799 		arc_cksum_verify(buf);
2800 		arc_buf_unwatch(buf);
2801 
2802 		if (arc_buf_is_shared(buf)) {
2803 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2804 		} else {
2805 			uint64_t size = arc_buf_size(buf);
2806 			arc_free_data_buf(hdr, buf->b_data, size, buf);
2807 			ARCSTAT_INCR(arcstat_overhead_size, -size);
2808 		}
2809 		buf->b_data = NULL;
2810 
2811 		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2812 		hdr->b_l1hdr.b_bufcnt -= 1;
2813 	}
2814 
2815 	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2816 
2817 	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2818 		/*
2819 		 * If the current arc_buf_t is sharing its data buffer with the
2820 		 * hdr, then reassign the hdr's b_pabd to share it with the new
2821 		 * buffer at the end of the list. The shared buffer is always
2822 		 * the last one on the hdr's buffer list.
2823 		 *
2824 		 * There is an equivalent case for compressed bufs, but since
2825 		 * they aren't guaranteed to be the last buf in the list and
2826 		 * that is an exceedingly rare case, we just allow that space be
2827 		 * wasted temporarily.
2828 		 */
2829 		if (lastbuf != NULL) {
2830 			/* Only one buf can be shared at once */
2831 			VERIFY(!arc_buf_is_shared(lastbuf));
2832 			/* hdr is uncompressed so can't have compressed buf */
2833 			VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2834 
2835 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2836 			arc_hdr_free_pabd(hdr);
2837 
2838 			/*
2839 			 * We must setup a new shared block between the
2840 			 * last buffer and the hdr. The data would have
2841 			 * been allocated by the arc buf so we need to transfer
2842 			 * ownership to the hdr since it's now being shared.
2843 			 */
2844 			arc_share_buf(hdr, lastbuf);
2845 		}
2846 	} else if (HDR_SHARED_DATA(hdr)) {
2847 		/*
2848 		 * Uncompressed shared buffers are always at the end
2849 		 * of the list. Compressed buffers don't have the
2850 		 * same requirements. This makes it hard to
2851 		 * simply assert that the lastbuf is shared so
2852 		 * we rely on the hdr's compression flags to determine
2853 		 * if we have a compressed, shared buffer.
2854 		 */
2855 		ASSERT3P(lastbuf, !=, NULL);
2856 		ASSERT(arc_buf_is_shared(lastbuf) ||
2857 		    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2858 	}
2859 
2860 	/*
2861 	 * Free the checksum if we're removing the last uncompressed buf from
2862 	 * this hdr.
2863 	 */
2864 	if (!arc_hdr_has_uncompressed_buf(hdr)) {
2865 		arc_cksum_free(hdr);
2866 	}
2867 
2868 	/* clean up the buf */
2869 	buf->b_hdr = NULL;
2870 	kmem_cache_free(buf_cache, buf);
2871 }
2872 
2873 static void
2874 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
2875 {
2876 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2877 	ASSERT(HDR_HAS_L1HDR(hdr));
2878 	ASSERT(!HDR_SHARED_DATA(hdr));
2879 
2880 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2881 	hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2882 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2883 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2884 
2885 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2886 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2887 }
2888 
2889 static void
2890 arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
2891 {
2892 	ASSERT(HDR_HAS_L1HDR(hdr));
2893 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2894 
2895 	/*
2896 	 * If the hdr is currently being written to the l2arc then
2897 	 * we defer freeing the data by adding it to the l2arc_free_on_write
2898 	 * list. The l2arc will free the data once it's finished
2899 	 * writing it to the l2arc device.
2900 	 */
2901 	if (HDR_L2_WRITING(hdr)) {
2902 		arc_hdr_free_on_write(hdr);
2903 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2904 	} else {
2905 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2906 		    arc_hdr_size(hdr), hdr);
2907 	}
2908 	hdr->b_l1hdr.b_pabd = NULL;
2909 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2910 
2911 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2912 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2913 }
2914 
2915 static arc_buf_hdr_t *
2916 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2917     enum zio_compress compression_type, arc_buf_contents_t type)
2918 {
2919 	arc_buf_hdr_t *hdr;
2920 
2921 	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2922 
2923 	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2924 	ASSERT(HDR_EMPTY(hdr));
2925 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2926 	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
2927 	HDR_SET_PSIZE(hdr, psize);
2928 	HDR_SET_LSIZE(hdr, lsize);
2929 	hdr->b_spa = spa;
2930 	hdr->b_type = type;
2931 	hdr->b_flags = 0;
2932 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2933 	arc_hdr_set_compress(hdr, compression_type);
2934 
2935 	hdr->b_l1hdr.b_state = arc_anon;
2936 	hdr->b_l1hdr.b_arc_access = 0;
2937 	hdr->b_l1hdr.b_bufcnt = 0;
2938 	hdr->b_l1hdr.b_buf = NULL;
2939 
2940 	/*
2941 	 * Allocate the hdr's buffer. This will contain either
2942 	 * the compressed or uncompressed data depending on the block
2943 	 * it references and compressed arc enablement.
2944 	 */
2945 	arc_hdr_alloc_pabd(hdr);
2946 	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2947 
2948 	return (hdr);
2949 }
2950 
2951 /*
2952  * Transition between the two allocation states for the arc_buf_hdr struct.
2953  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2954  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2955  * version is used when a cache buffer is only in the L2ARC in order to reduce
2956  * memory usage.
2957  */
2958 static arc_buf_hdr_t *
2959 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2960 {
2961 	ASSERT(HDR_HAS_L2HDR(hdr));
2962 
2963 	arc_buf_hdr_t *nhdr;
2964 	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2965 
2966 	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2967 	    (old == hdr_l2only_cache && new == hdr_full_cache));
2968 
2969 	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2970 
2971 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2972 	buf_hash_remove(hdr);
2973 
2974 	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2975 
2976 	if (new == hdr_full_cache) {
2977 		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2978 		/*
2979 		 * arc_access and arc_change_state need to be aware that a
2980 		 * header has just come out of L2ARC, so we set its state to
2981 		 * l2c_only even though it's about to change.
2982 		 */
2983 		nhdr->b_l1hdr.b_state = arc_l2c_only;
2984 
2985 		/* Verify previous threads set to NULL before freeing */
2986 		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
2987 	} else {
2988 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2989 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2990 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2991 
2992 		/*
2993 		 * If we've reached here, We must have been called from
2994 		 * arc_evict_hdr(), as such we should have already been
2995 		 * removed from any ghost list we were previously on
2996 		 * (which protects us from racing with arc_evict_state),
2997 		 * thus no locking is needed during this check.
2998 		 */
2999 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3000 
3001 		/*
3002 		 * A buffer must not be moved into the arc_l2c_only
3003 		 * state if it's not finished being written out to the
3004 		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3005 		 * might try to be accessed, even though it was removed.
3006 		 */
3007 		VERIFY(!HDR_L2_WRITING(hdr));
3008 		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3009 
3010 #ifdef ZFS_DEBUG
3011 		if (hdr->b_l1hdr.b_thawed != NULL) {
3012 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3013 			hdr->b_l1hdr.b_thawed = NULL;
3014 		}
3015 #endif
3016 
3017 		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3018 	}
3019 	/*
3020 	 * The header has been reallocated so we need to re-insert it into any
3021 	 * lists it was on.
3022 	 */
3023 	(void) buf_hash_insert(nhdr, NULL);
3024 
3025 	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3026 
3027 	mutex_enter(&dev->l2ad_mtx);
3028 
3029 	/*
3030 	 * We must place the realloc'ed header back into the list at
3031 	 * the same spot. Otherwise, if it's placed earlier in the list,
3032 	 * l2arc_write_buffers() could find it during the function's
3033 	 * write phase, and try to write it out to the l2arc.
3034 	 */
3035 	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3036 	list_remove(&dev->l2ad_buflist, hdr);
3037 
3038 	mutex_exit(&dev->l2ad_mtx);
3039 
3040 	/*
3041 	 * Since we're using the pointer address as the tag when
3042 	 * incrementing and decrementing the l2ad_alloc refcount, we
3043 	 * must remove the old pointer (that we're about to destroy) and
3044 	 * add the new pointer to the refcount. Otherwise we'd remove
3045 	 * the wrong pointer address when calling arc_hdr_destroy() later.
3046 	 */
3047 
3048 	(void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
3049 	(void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
3050 
3051 	buf_discard_identity(hdr);
3052 	kmem_cache_free(old, hdr);
3053 
3054 	return (nhdr);
3055 }
3056 
3057 /*
3058  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3059  * The buf is returned thawed since we expect the consumer to modify it.
3060  */
3061 arc_buf_t *
3062 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3063 {
3064 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3065 	    ZIO_COMPRESS_OFF, type);
3066 	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3067 
3068 	arc_buf_t *buf = NULL;
3069 	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
3070 	arc_buf_thaw(buf);
3071 
3072 	return (buf);
3073 }
3074 
3075 /*
3076  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3077  * for bufs containing metadata.
3078  */
3079 arc_buf_t *
3080 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3081     enum zio_compress compression_type)
3082 {
3083 	ASSERT3U(lsize, >, 0);
3084 	ASSERT3U(lsize, >=, psize);
3085 	ASSERT(compression_type > ZIO_COMPRESS_OFF);
3086 	ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
3087 
3088 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3089 	    compression_type, ARC_BUFC_DATA);
3090 	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3091 
3092 	arc_buf_t *buf = NULL;
3093 	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
3094 	arc_buf_thaw(buf);
3095 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3096 
3097 	if (!arc_buf_is_shared(buf)) {
3098 		/*
3099 		 * To ensure that the hdr has the correct data in it if we call
3100 		 * arc_decompress() on this buf before it's been written to
3101 		 * disk, it's easiest if we just set up sharing between the
3102 		 * buf and the hdr.
3103 		 */
3104 		ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3105 		arc_hdr_free_pabd(hdr);
3106 		arc_share_buf(hdr, buf);
3107 	}
3108 
3109 	return (buf);
3110 }
3111 
3112 static void
3113 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3114 {
3115 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3116 	l2arc_dev_t *dev = l2hdr->b_dev;
3117 	uint64_t psize = arc_hdr_size(hdr);
3118 
3119 	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3120 	ASSERT(HDR_HAS_L2HDR(hdr));
3121 
3122 	list_remove(&dev->l2ad_buflist, hdr);
3123 
3124 	ARCSTAT_INCR(arcstat_l2_psize, -psize);
3125 	ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3126 
3127 	vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3128 
3129 	(void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3130 	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3131 }
3132 
3133 static void
3134 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3135 {
3136 	if (HDR_HAS_L1HDR(hdr)) {
3137 		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3138 		    hdr->b_l1hdr.b_bufcnt > 0);
3139 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3140 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3141 	}
3142 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3143 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3144 
3145 	if (!HDR_EMPTY(hdr))
3146 		buf_discard_identity(hdr);
3147 
3148 	if (HDR_HAS_L2HDR(hdr)) {
3149 		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3150 		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3151 
3152 		if (!buflist_held)
3153 			mutex_enter(&dev->l2ad_mtx);
3154 
3155 		/*
3156 		 * Even though we checked this conditional above, we
3157 		 * need to check this again now that we have the
3158 		 * l2ad_mtx. This is because we could be racing with
3159 		 * another thread calling l2arc_evict() which might have
3160 		 * destroyed this header's L2 portion as we were waiting
3161 		 * to acquire the l2ad_mtx. If that happens, we don't
3162 		 * want to re-destroy the header's L2 portion.
3163 		 */
3164 		if (HDR_HAS_L2HDR(hdr))
3165 			arc_hdr_l2hdr_destroy(hdr);
3166 
3167 		if (!buflist_held)
3168 			mutex_exit(&dev->l2ad_mtx);
3169 	}
3170 
3171 	if (HDR_HAS_L1HDR(hdr)) {
3172 		arc_cksum_free(hdr);
3173 
3174 		while (hdr->b_l1hdr.b_buf != NULL)
3175 			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3176 
3177 #ifdef ZFS_DEBUG
3178 		if (hdr->b_l1hdr.b_thawed != NULL) {
3179 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3180 			hdr->b_l1hdr.b_thawed = NULL;
3181 		}
3182 #endif
3183 
3184 		if (hdr->b_l1hdr.b_pabd != NULL) {
3185 			arc_hdr_free_pabd(hdr);
3186 		}
3187 	}
3188 
3189 	ASSERT3P(hdr->b_hash_next, ==, NULL);
3190 	if (HDR_HAS_L1HDR(hdr)) {
3191 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3192 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3193 		kmem_cache_free(hdr_full_cache, hdr);
3194 	} else {
3195 		kmem_cache_free(hdr_l2only_cache, hdr);
3196 	}
3197 }
3198 
3199 void
3200 arc_buf_destroy(arc_buf_t *buf, void* tag)
3201 {
3202 	arc_buf_hdr_t *hdr = buf->b_hdr;
3203 	kmutex_t *hash_lock = HDR_LOCK(hdr);
3204 
3205 	if (hdr->b_l1hdr.b_state == arc_anon) {
3206 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3207 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3208 		VERIFY0(remove_reference(hdr, NULL, tag));
3209 		arc_hdr_destroy(hdr);
3210 		return;
3211 	}
3212 
3213 	mutex_enter(hash_lock);
3214 	ASSERT3P(hdr, ==, buf->b_hdr);
3215 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3216 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3217 	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3218 	ASSERT3P(buf->b_data, !=, NULL);
3219 
3220 	(void) remove_reference(hdr, hash_lock, tag);
3221 	arc_buf_destroy_impl(buf);
3222 	mutex_exit(hash_lock);
3223 }
3224 
3225 /*
3226  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3227  * state of the header is dependent on it's state prior to entering this
3228  * function. The following transitions are possible:
3229  *
3230  *    - arc_mru -> arc_mru_ghost
3231  *    - arc_mfu -> arc_mfu_ghost
3232  *    - arc_mru_ghost -> arc_l2c_only
3233  *    - arc_mru_ghost -> deleted
3234  *    - arc_mfu_ghost -> arc_l2c_only
3235  *    - arc_mfu_ghost -> deleted
3236  */
3237 static int64_t
3238 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3239 {
3240 	arc_state_t *evicted_state, *state;
3241 	int64_t bytes_evicted = 0;
3242 
3243 	ASSERT(MUTEX_HELD(hash_lock));
3244 	ASSERT(HDR_HAS_L1HDR(hdr));
3245 
3246 	state = hdr->b_l1hdr.b_state;
3247 	if (GHOST_STATE(state)) {
3248 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3249 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3250 
3251 		/*
3252 		 * l2arc_write_buffers() relies on a header's L1 portion
3253 		 * (i.e. its b_pabd field) during it's write phase.
3254 		 * Thus, we cannot push a header onto the arc_l2c_only
3255 		 * state (removing it's L1 piece) until the header is
3256 		 * done being written to the l2arc.
3257 		 */
3258 		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3259 			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3260 			return (bytes_evicted);
3261 		}
3262 
3263 		ARCSTAT_BUMP(arcstat_deleted);
3264 		bytes_evicted += HDR_GET_LSIZE(hdr);
3265 
3266 		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3267 
3268 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3269 		if (HDR_HAS_L2HDR(hdr)) {
3270 			/*
3271 			 * This buffer is cached on the 2nd Level ARC;
3272 			 * don't destroy the header.
3273 			 */
3274 			arc_change_state(arc_l2c_only, hdr, hash_lock);
3275 			/*
3276 			 * dropping from L1+L2 cached to L2-only,
3277 			 * realloc to remove the L1 header.
3278 			 */
3279 			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3280 			    hdr_l2only_cache);
3281 		} else {
3282 			arc_change_state(arc_anon, hdr, hash_lock);
3283 			arc_hdr_destroy(hdr);
3284 		}
3285 		return (bytes_evicted);
3286 	}
3287 
3288 	ASSERT(state == arc_mru || state == arc_mfu);
3289 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3290 
3291 	/* prefetch buffers have a minimum lifespan */
3292 	if (HDR_IO_IN_PROGRESS(hdr) ||
3293 	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3294 	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3295 	    arc_min_prefetch_lifespan)) {
3296 		ARCSTAT_BUMP(arcstat_evict_skip);
3297 		return (bytes_evicted);
3298 	}
3299 
3300 	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3301 	while (hdr->b_l1hdr.b_buf) {
3302 		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3303 		if (!mutex_tryenter(&buf->b_evict_lock)) {
3304 			ARCSTAT_BUMP(arcstat_mutex_miss);
3305 			break;
3306 		}
3307 		if (buf->b_data != NULL)
3308 			bytes_evicted += HDR_GET_LSIZE(hdr);
3309 		mutex_exit(&buf->b_evict_lock);
3310 		arc_buf_destroy_impl(buf);
3311 	}
3312 
3313 	if (HDR_HAS_L2HDR(hdr)) {
3314 		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3315 	} else {
3316 		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3317 			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3318 			    HDR_GET_LSIZE(hdr));
3319 		} else {
3320 			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3321 			    HDR_GET_LSIZE(hdr));
3322 		}
3323 	}
3324 
3325 	if (hdr->b_l1hdr.b_bufcnt == 0) {
3326 		arc_cksum_free(hdr);
3327 
3328 		bytes_evicted += arc_hdr_size(hdr);
3329 
3330 		/*
3331 		 * If this hdr is being evicted and has a compressed
3332 		 * buffer then we discard it here before we change states.
3333 		 * This ensures that the accounting is updated correctly
3334 		 * in arc_free_data_impl().
3335 		 */
3336 		arc_hdr_free_pabd(hdr);
3337 
3338 		arc_change_state(evicted_state, hdr, hash_lock);
3339 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3340 		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3341 		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3342 	}
3343 
3344 	return (bytes_evicted);
3345 }
3346 
3347 static uint64_t
3348 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3349     uint64_t spa, int64_t bytes)
3350 {
3351 	multilist_sublist_t *mls;
3352 	uint64_t bytes_evicted = 0;
3353 	arc_buf_hdr_t *hdr;
3354 	kmutex_t *hash_lock;
3355 	int evict_count = 0;
3356 
3357 	ASSERT3P(marker, !=, NULL);
3358 	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3359 
3360 	mls = multilist_sublist_lock(ml, idx);
3361 
3362 	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3363 	    hdr = multilist_sublist_prev(mls, marker)) {
3364 		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3365 		    (evict_count >= zfs_arc_evict_batch_limit))
3366 			break;
3367 
3368 		/*
3369 		 * To keep our iteration location, move the marker
3370 		 * forward. Since we're not holding hdr's hash lock, we
3371 		 * must be very careful and not remove 'hdr' from the
3372 		 * sublist. Otherwise, other consumers might mistake the
3373 		 * 'hdr' as not being on a sublist when they call the
3374 		 * multilist_link_active() function (they all rely on
3375 		 * the hash lock protecting concurrent insertions and
3376 		 * removals). multilist_sublist_move_forward() was
3377 		 * specifically implemented to ensure this is the case
3378 		 * (only 'marker' will be removed and re-inserted).
3379 		 */
3380 		multilist_sublist_move_forward(mls, marker);
3381 
3382 		/*
3383 		 * The only case where the b_spa field should ever be
3384 		 * zero, is the marker headers inserted by
3385 		 * arc_evict_state(). It's possible for multiple threads
3386 		 * to be calling arc_evict_state() concurrently (e.g.
3387 		 * dsl_pool_close() and zio_inject_fault()), so we must
3388 		 * skip any markers we see from these other threads.
3389 		 */
3390 		if (hdr->b_spa == 0)
3391 			continue;
3392 
3393 		/* we're only interested in evicting buffers of a certain spa */
3394 		if (spa != 0 && hdr->b_spa != spa) {
3395 			ARCSTAT_BUMP(arcstat_evict_skip);
3396 			continue;
3397 		}
3398 
3399 		hash_lock = HDR_LOCK(hdr);
3400 
3401 		/*
3402 		 * We aren't calling this function from any code path
3403 		 * that would already be holding a hash lock, so we're
3404 		 * asserting on this assumption to be defensive in case
3405 		 * this ever changes. Without this check, it would be
3406 		 * possible to incorrectly increment arcstat_mutex_miss
3407 		 * below (e.g. if the code changed such that we called
3408 		 * this function with a hash lock held).
3409 		 */
3410 		ASSERT(!MUTEX_HELD(hash_lock));
3411 
3412 		if (mutex_tryenter(hash_lock)) {
3413 			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3414 			mutex_exit(hash_lock);
3415 
3416 			bytes_evicted += evicted;
3417 
3418 			/*
3419 			 * If evicted is zero, arc_evict_hdr() must have
3420 			 * decided to skip this header, don't increment
3421 			 * evict_count in this case.
3422 			 */
3423 			if (evicted != 0)
3424 				evict_count++;
3425 
3426 			/*
3427 			 * If arc_size isn't overflowing, signal any
3428 			 * threads that might happen to be waiting.
3429 			 *
3430 			 * For each header evicted, we wake up a single
3431 			 * thread. If we used cv_broadcast, we could
3432 			 * wake up "too many" threads causing arc_size
3433 			 * to significantly overflow arc_c; since
3434 			 * arc_get_data_impl() doesn't check for overflow
3435 			 * when it's woken up (it doesn't because it's
3436 			 * possible for the ARC to be overflowing while
3437 			 * full of un-evictable buffers, and the
3438 			 * function should proceed in this case).
3439 			 *
3440 			 * If threads are left sleeping, due to not
3441 			 * using cv_broadcast here, they will be woken
3442 			 * up via cv_broadcast in arc_adjust_cb() just
3443 			 * before arc_adjust_zthr sleeps.
3444 			 */
3445 			mutex_enter(&arc_adjust_lock);
3446 			if (!arc_is_overflowing())
3447 				cv_signal(&arc_adjust_waiters_cv);
3448 			mutex_exit(&arc_adjust_lock);
3449 		} else {
3450 			ARCSTAT_BUMP(arcstat_mutex_miss);
3451 		}
3452 	}
3453 
3454 	multilist_sublist_unlock(mls);
3455 
3456 	return (bytes_evicted);
3457 }
3458 
3459 /*
3460  * Evict buffers from the given arc state, until we've removed the
3461  * specified number of bytes. Move the removed buffers to the
3462  * appropriate evict state.
3463  *
3464  * This function makes a "best effort". It skips over any buffers
3465  * it can't get a hash_lock on, and so, may not catch all candidates.
3466  * It may also return without evicting as much space as requested.
3467  *
3468  * If bytes is specified using the special value ARC_EVICT_ALL, this
3469  * will evict all available (i.e. unlocked and evictable) buffers from
3470  * the given arc state; which is used by arc_flush().
3471  */
3472 static uint64_t
3473 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3474     arc_buf_contents_t type)
3475 {
3476 	uint64_t total_evicted = 0;
3477 	multilist_t *ml = state->arcs_list[type];
3478 	int num_sublists;
3479 	arc_buf_hdr_t **markers;
3480 
3481 	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3482 
3483 	num_sublists = multilist_get_num_sublists(ml);
3484 
3485 	/*
3486 	 * If we've tried to evict from each sublist, made some
3487 	 * progress, but still have not hit the target number of bytes
3488 	 * to evict, we want to keep trying. The markers allow us to
3489 	 * pick up where we left off for each individual sublist, rather
3490 	 * than starting from the tail each time.
3491 	 */
3492 	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3493 	for (int i = 0; i < num_sublists; i++) {
3494 		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3495 
3496 		/*
3497 		 * A b_spa of 0 is used to indicate that this header is
3498 		 * a marker. This fact is used in arc_adjust_type() and
3499 		 * arc_evict_state_impl().
3500 		 */
3501 		markers[i]->b_spa = 0;
3502 
3503 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3504 		multilist_sublist_insert_tail(mls, markers[i]);
3505 		multilist_sublist_unlock(mls);
3506 	}
3507 
3508 	/*
3509 	 * While we haven't hit our target number of bytes to evict, or
3510 	 * we're evicting all available buffers.
3511 	 */
3512 	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3513 		/*
3514 		 * Start eviction using a randomly selected sublist,
3515 		 * this is to try and evenly balance eviction across all
3516 		 * sublists. Always starting at the same sublist
3517 		 * (e.g. index 0) would cause evictions to favor certain
3518 		 * sublists over others.
3519 		 */
3520 		int sublist_idx = multilist_get_random_index(ml);
3521 		uint64_t scan_evicted = 0;
3522 
3523 		for (int i = 0; i < num_sublists; i++) {
3524 			uint64_t bytes_remaining;
3525 			uint64_t bytes_evicted;
3526 
3527 			if (bytes == ARC_EVICT_ALL)
3528 				bytes_remaining = ARC_EVICT_ALL;
3529 			else if (total_evicted < bytes)
3530 				bytes_remaining = bytes - total_evicted;
3531 			else
3532 				break;
3533 
3534 			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3535 			    markers[sublist_idx], spa, bytes_remaining);
3536 
3537 			scan_evicted += bytes_evicted;
3538 			total_evicted += bytes_evicted;
3539 
3540 			/* we've reached the end, wrap to the beginning */
3541 			if (++sublist_idx >= num_sublists)
3542 				sublist_idx = 0;
3543 		}
3544 
3545 		/*
3546 		 * If we didn't evict anything during this scan, we have
3547 		 * no reason to believe we'll evict more during another
3548 		 * scan, so break the loop.
3549 		 */
3550 		if (scan_evicted == 0) {
3551 			/* This isn't possible, let's make that obvious */
3552 			ASSERT3S(bytes, !=, 0);
3553 
3554 			/*
3555 			 * When bytes is ARC_EVICT_ALL, the only way to
3556 			 * break the loop is when scan_evicted is zero.
3557 			 * In that case, we actually have evicted enough,
3558 			 * so we don't want to increment the kstat.
3559 			 */
3560 			if (bytes != ARC_EVICT_ALL) {
3561 				ASSERT3S(total_evicted, <, bytes);
3562 				ARCSTAT_BUMP(arcstat_evict_not_enough);
3563 			}
3564 
3565 			break;
3566 		}
3567 	}
3568 
3569 	for (int i = 0; i < num_sublists; i++) {
3570 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3571 		multilist_sublist_remove(mls, markers[i]);
3572 		multilist_sublist_unlock(mls);
3573 
3574 		kmem_cache_free(hdr_full_cache, markers[i]);
3575 	}
3576 	kmem_free(markers, sizeof (*markers) * num_sublists);
3577 
3578 	return (total_evicted);
3579 }
3580 
3581 /*
3582  * Flush all "evictable" data of the given type from the arc state
3583  * specified. This will not evict any "active" buffers (i.e. referenced).
3584  *
3585  * When 'retry' is set to B_FALSE, the function will make a single pass
3586  * over the state and evict any buffers that it can. Since it doesn't
3587  * continually retry the eviction, it might end up leaving some buffers
3588  * in the ARC due to lock misses.
3589  *
3590  * When 'retry' is set to B_TRUE, the function will continually retry the
3591  * eviction until *all* evictable buffers have been removed from the
3592  * state. As a result, if concurrent insertions into the state are
3593  * allowed (e.g. if the ARC isn't shutting down), this function might
3594  * wind up in an infinite loop, continually trying to evict buffers.
3595  */
3596 static uint64_t
3597 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3598     boolean_t retry)
3599 {
3600 	uint64_t evicted = 0;
3601 
3602 	while (refcount_count(&state->arcs_esize[type]) != 0) {
3603 		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3604 
3605 		if (!retry)
3606 			break;
3607 	}
3608 
3609 	return (evicted);
3610 }
3611 
3612 /*
3613  * Evict the specified number of bytes from the state specified,
3614  * restricting eviction to the spa and type given. This function
3615  * prevents us from trying to evict more from a state's list than
3616  * is "evictable", and to skip evicting altogether when passed a
3617  * negative value for "bytes". In contrast, arc_evict_state() will
3618  * evict everything it can, when passed a negative value for "bytes".
3619  */
3620 static uint64_t
3621 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3622     arc_buf_contents_t type)
3623 {
3624 	int64_t delta;
3625 
3626 	if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3627 		delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3628 		return (arc_evict_state(state, spa, delta, type));
3629 	}
3630 
3631 	return (0);
3632 }
3633 
3634 /*
3635  * Evict metadata buffers from the cache, such that arc_meta_used is
3636  * capped by the arc_meta_limit tunable.
3637  */
3638 static uint64_t
3639 arc_adjust_meta(uint64_t meta_used)
3640 {
3641 	uint64_t total_evicted = 0;
3642 	int64_t target;
3643 
3644 	/*
3645 	 * If we're over the meta limit, we want to evict enough
3646 	 * metadata to get back under the meta limit. We don't want to
3647 	 * evict so much that we drop the MRU below arc_p, though. If
3648 	 * we're over the meta limit more than we're over arc_p, we
3649 	 * evict some from the MRU here, and some from the MFU below.
3650 	 */
3651 	target = MIN((int64_t)(meta_used - arc_meta_limit),
3652 	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3653 	    refcount_count(&arc_mru->arcs_size) - arc_p));
3654 
3655 	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3656 
3657 	/*
3658 	 * Similar to the above, we want to evict enough bytes to get us
3659 	 * below the meta limit, but not so much as to drop us below the
3660 	 * space allotted to the MFU (which is defined as arc_c - arc_p).
3661 	 */
3662 	target = MIN((int64_t)(meta_used - arc_meta_limit),
3663 	    (int64_t)(refcount_count(&arc_mfu->arcs_size) -
3664 	    (arc_c - arc_p)));
3665 
3666 	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3667 
3668 	return (total_evicted);
3669 }
3670 
3671 /*
3672  * Return the type of the oldest buffer in the given arc state
3673  *
3674  * This function will select a random sublist of type ARC_BUFC_DATA and
3675  * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3676  * is compared, and the type which contains the "older" buffer will be
3677  * returned.
3678  */
3679 static arc_buf_contents_t
3680 arc_adjust_type(arc_state_t *state)
3681 {
3682 	multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3683 	multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3684 	int data_idx = multilist_get_random_index(data_ml);
3685 	int meta_idx = multilist_get_random_index(meta_ml);
3686 	multilist_sublist_t *data_mls;
3687 	multilist_sublist_t *meta_mls;
3688 	arc_buf_contents_t type;
3689 	arc_buf_hdr_t *data_hdr;
3690 	arc_buf_hdr_t *meta_hdr;
3691 
3692 	/*
3693 	 * We keep the sublist lock until we're finished, to prevent
3694 	 * the headers from being destroyed via arc_evict_state().
3695 	 */
3696 	data_mls = multilist_sublist_lock(data_ml, data_idx);
3697 	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3698 
3699 	/*
3700 	 * These two loops are to ensure we skip any markers that
3701 	 * might be at the tail of the lists due to arc_evict_state().
3702 	 */
3703 
3704 	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3705 	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3706 		if (data_hdr->b_spa != 0)
3707 			break;
3708 	}
3709 
3710 	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3711 	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3712 		if (meta_hdr->b_spa != 0)
3713 			break;
3714 	}
3715 
3716 	if (data_hdr == NULL && meta_hdr == NULL) {
3717 		type = ARC_BUFC_DATA;
3718 	} else if (data_hdr == NULL) {
3719 		ASSERT3P(meta_hdr, !=, NULL);
3720 		type = ARC_BUFC_METADATA;
3721 	} else if (meta_hdr == NULL) {
3722 		ASSERT3P(data_hdr, !=, NULL);
3723 		type = ARC_BUFC_DATA;
3724 	} else {
3725 		ASSERT3P(data_hdr, !=, NULL);
3726 		ASSERT3P(meta_hdr, !=, NULL);
3727 
3728 		/* The headers can't be on the sublist without an L1 header */
3729 		ASSERT(HDR_HAS_L1HDR(data_hdr));
3730 		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3731 
3732 		if (data_hdr->b_l1hdr.b_arc_access <
3733 		    meta_hdr->b_l1hdr.b_arc_access) {
3734 			type = ARC_BUFC_DATA;
3735 		} else {
3736 			type = ARC_BUFC_METADATA;
3737 		}
3738 	}
3739 
3740 	multilist_sublist_unlock(meta_mls);
3741 	multilist_sublist_unlock(data_mls);
3742 
3743 	return (type);
3744 }
3745 
3746 /*
3747  * Evict buffers from the cache, such that arc_size is capped by arc_c.
3748  */
3749 static uint64_t
3750 arc_adjust(void)
3751 {
3752 	uint64_t total_evicted = 0;
3753 	uint64_t bytes;
3754 	int64_t target;
3755 	uint64_t asize = aggsum_value(&arc_size);
3756 	uint64_t ameta = aggsum_value(&arc_meta_used);
3757 
3758 	/*
3759 	 * If we're over arc_meta_limit, we want to correct that before
3760 	 * potentially evicting data buffers below.
3761 	 */
3762 	total_evicted += arc_adjust_meta(ameta);
3763 
3764 	/*
3765 	 * Adjust MRU size
3766 	 *
3767 	 * If we're over the target cache size, we want to evict enough
3768 	 * from the list to get back to our target size. We don't want
3769 	 * to evict too much from the MRU, such that it drops below
3770 	 * arc_p. So, if we're over our target cache size more than
3771 	 * the MRU is over arc_p, we'll evict enough to get back to
3772 	 * arc_p here, and then evict more from the MFU below.
3773 	 */
3774 	target = MIN((int64_t)(asize - arc_c),
3775 	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3776 	    refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
3777 
3778 	/*
3779 	 * If we're below arc_meta_min, always prefer to evict data.
3780 	 * Otherwise, try to satisfy the requested number of bytes to
3781 	 * evict from the type which contains older buffers; in an
3782 	 * effort to keep newer buffers in the cache regardless of their
3783 	 * type. If we cannot satisfy the number of bytes from this
3784 	 * type, spill over into the next type.
3785 	 */
3786 	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3787 	    ameta > arc_meta_min) {
3788 		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3789 		total_evicted += bytes;
3790 
3791 		/*
3792 		 * If we couldn't evict our target number of bytes from
3793 		 * metadata, we try to get the rest from data.
3794 		 */
3795 		target -= bytes;
3796 
3797 		total_evicted +=
3798 		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3799 	} else {
3800 		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3801 		total_evicted += bytes;
3802 
3803 		/*
3804 		 * If we couldn't evict our target number of bytes from
3805 		 * data, we try to get the rest from metadata.
3806 		 */
3807 		target -= bytes;
3808 
3809 		total_evicted +=
3810 		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3811 	}
3812 
3813 	/*
3814 	 * Adjust MFU size
3815 	 *
3816 	 * Now that we've tried to evict enough from the MRU to get its
3817 	 * size back to arc_p, if we're still above the target cache
3818 	 * size, we evict the rest from the MFU.
3819 	 */
3820 	target = asize - arc_c;
3821 
3822 	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3823 	    ameta > arc_meta_min) {
3824 		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3825 		total_evicted += bytes;
3826 
3827 		/*
3828 		 * If we couldn't evict our target number of bytes from
3829 		 * metadata, we try to get the rest from data.
3830 		 */
3831 		target -= bytes;
3832 
3833 		total_evicted +=
3834 		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3835 	} else {
3836 		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3837 		total_evicted += bytes;
3838 
3839 		/*
3840 		 * If we couldn't evict our target number of bytes from
3841 		 * data, we try to get the rest from data.
3842 		 */
3843 		target -= bytes;
3844 
3845 		total_evicted +=
3846 		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3847 	}
3848 
3849 	/*
3850 	 * Adjust ghost lists
3851 	 *
3852 	 * In addition to the above, the ARC also defines target values
3853 	 * for the ghost lists. The sum of the mru list and mru ghost
3854 	 * list should never exceed the target size of the cache, and
3855 	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3856 	 * ghost list should never exceed twice the target size of the
3857 	 * cache. The following logic enforces these limits on the ghost
3858 	 * caches, and evicts from them as needed.
3859 	 */
3860 	target = refcount_count(&arc_mru->arcs_size) +
3861 	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3862 
3863 	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3864 	total_evicted += bytes;
3865 
3866 	target -= bytes;
3867 
3868 	total_evicted +=
3869 	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3870 
3871 	/*
3872 	 * We assume the sum of the mru list and mfu list is less than
3873 	 * or equal to arc_c (we enforced this above), which means we
3874 	 * can use the simpler of the two equations below:
3875 	 *
3876 	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3877 	 *		    mru ghost + mfu ghost <= arc_c
3878 	 */
3879 	target = refcount_count(&arc_mru_ghost->arcs_size) +
3880 	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3881 
3882 	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3883 	total_evicted += bytes;
3884 
3885 	target -= bytes;
3886 
3887 	total_evicted +=
3888 	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3889 
3890 	return (total_evicted);
3891 }
3892 
3893 void
3894 arc_flush(spa_t *spa, boolean_t retry)
3895 {
3896 	uint64_t guid = 0;
3897 
3898 	/*
3899 	 * If retry is B_TRUE, a spa must not be specified since we have
3900 	 * no good way to determine if all of a spa's buffers have been
3901 	 * evicted from an arc state.
3902 	 */
3903 	ASSERT(!retry || spa == 0);
3904 
3905 	if (spa != NULL)
3906 		guid = spa_load_guid(spa);
3907 
3908 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3909 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3910 
3911 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3912 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3913 
3914 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3915 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3916 
3917 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3918 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3919 }
3920 
3921 static void
3922 arc_reduce_target_size(int64_t to_free)
3923 {
3924 	uint64_t asize = aggsum_value(&arc_size);
3925 	if (arc_c > arc_c_min) {
3926 
3927 		if (arc_c > arc_c_min + to_free)
3928 			atomic_add_64(&arc_c, -to_free);
3929 		else
3930 			arc_c = arc_c_min;
3931 
3932 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3933 		if (asize < arc_c)
3934 			arc_c = MAX(asize, arc_c_min);
3935 		if (arc_p > arc_c)
3936 			arc_p = (arc_c >> 1);
3937 		ASSERT(arc_c >= arc_c_min);
3938 		ASSERT((int64_t)arc_p >= 0);
3939 	}
3940 
3941 	if (asize > arc_c) {
3942 		/* See comment in arc_adjust_cb_check() on why lock+flag */
3943 		mutex_enter(&arc_adjust_lock);
3944 		arc_adjust_needed = B_TRUE;
3945 		mutex_exit(&arc_adjust_lock);
3946 		zthr_wakeup(arc_adjust_zthr);
3947 	}
3948 }
3949 
3950 typedef enum free_memory_reason_t {
3951 	FMR_UNKNOWN,
3952 	FMR_NEEDFREE,
3953 	FMR_LOTSFREE,
3954 	FMR_SWAPFS_MINFREE,
3955 	FMR_PAGES_PP_MAXIMUM,
3956 	FMR_HEAP_ARENA,
3957 	FMR_ZIO_ARENA,
3958 } free_memory_reason_t;
3959 
3960 int64_t last_free_memory;
3961 free_memory_reason_t last_free_reason;
3962 
3963 /*
3964  * Additional reserve of pages for pp_reserve.
3965  */
3966 int64_t arc_pages_pp_reserve = 64;
3967 
3968 /*
3969  * Additional reserve of pages for swapfs.
3970  */
3971 int64_t arc_swapfs_reserve = 64;
3972 
3973 /*
3974  * Return the amount of memory that can be consumed before reclaim will be
3975  * needed.  Positive if there is sufficient free memory, negative indicates
3976  * the amount of memory that needs to be freed up.
3977  */
3978 static int64_t
3979 arc_available_memory(void)
3980 {
3981 	int64_t lowest = INT64_MAX;
3982 	int64_t n;
3983 	free_memory_reason_t r = FMR_UNKNOWN;
3984 
3985 #ifdef _KERNEL
3986 	if (needfree > 0) {
3987 		n = PAGESIZE * (-needfree);
3988 		if (n < lowest) {
3989 			lowest = n;
3990 			r = FMR_NEEDFREE;
3991 		}
3992 	}
3993 
3994 	/*
3995 	 * check that we're out of range of the pageout scanner.  It starts to
3996 	 * schedule paging if freemem is less than lotsfree and needfree.
3997 	 * lotsfree is the high-water mark for pageout, and needfree is the
3998 	 * number of needed free pages.  We add extra pages here to make sure
3999 	 * the scanner doesn't start up while we're freeing memory.
4000 	 */
4001 	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4002 	if (n < lowest) {
4003 		lowest = n;
4004 		r = FMR_LOTSFREE;
4005 	}
4006 
4007 	/*
4008 	 * check to make sure that swapfs has enough space so that anon
4009 	 * reservations can still succeed. anon_resvmem() checks that the
4010 	 * availrmem is greater than swapfs_minfree, and the number of reserved
4011 	 * swap pages.  We also add a bit of extra here just to prevent
4012 	 * circumstances from getting really dire.
4013 	 */
4014 	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4015 	    desfree - arc_swapfs_reserve);
4016 	if (n < lowest) {
4017 		lowest = n;
4018 		r = FMR_SWAPFS_MINFREE;
4019 	}
4020 
4021 
4022 	/*
4023 	 * Check that we have enough availrmem that memory locking (e.g., via
4024 	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
4025 	 * stores the number of pages that cannot be locked; when availrmem
4026 	 * drops below pages_pp_maximum, page locking mechanisms such as
4027 	 * page_pp_lock() will fail.)
4028 	 */
4029 	n = PAGESIZE * (availrmem - pages_pp_maximum -
4030 	    arc_pages_pp_reserve);
4031 	if (n < lowest) {
4032 		lowest = n;
4033 		r = FMR_PAGES_PP_MAXIMUM;
4034 	}
4035 
4036 #if defined(__i386)
4037 	/*
4038 	 * If we're on an i386 platform, it's possible that we'll exhaust the
4039 	 * kernel heap space before we ever run out of available physical
4040 	 * memory.  Most checks of the size of the heap_area compare against
4041 	 * tune.t_minarmem, which is the minimum available real memory that we
4042 	 * can have in the system.  However, this is generally fixed at 25 pages
4043 	 * which is so low that it's useless.  In this comparison, we seek to
4044 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4045 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
4046 	 * free)
4047 	 */
4048 	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
4049 	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4050 	if (n < lowest) {
4051 		lowest = n;
4052 		r = FMR_HEAP_ARENA;
4053 	}
4054 #endif
4055 
4056 	/*
4057 	 * If zio data pages are being allocated out of a separate heap segment,
4058 	 * then enforce that the size of available vmem for this arena remains
4059 	 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4060 	 *
4061 	 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4062 	 * memory (in the zio_arena) free, which can avoid memory
4063 	 * fragmentation issues.
4064 	 */
4065 	if (zio_arena != NULL) {
4066 		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4067 		    (vmem_size(zio_arena, VMEM_ALLOC) >>
4068 		    arc_zio_arena_free_shift);
4069 		if (n < lowest) {
4070 			lowest = n;
4071 			r = FMR_ZIO_ARENA;
4072 		}
4073 	}
4074 #else
4075 	/* Every 100 calls, free a small amount */
4076 	if (spa_get_random(100) == 0)
4077 		lowest = -1024;
4078 #endif
4079 
4080 	last_free_memory = lowest;
4081 	last_free_reason = r;
4082 
4083 	return (lowest);
4084 }
4085 
4086 
4087 /*
4088  * Determine if the system is under memory pressure and is asking
4089  * to reclaim memory. A return value of B_TRUE indicates that the system
4090  * is under memory pressure and that the arc should adjust accordingly.
4091  */
4092 static boolean_t
4093 arc_reclaim_needed(void)
4094 {
4095 	return (arc_available_memory() < 0);
4096 }
4097 
4098 static void
4099 arc_kmem_reap_soon(void)
4100 {
4101 	size_t			i;
4102 	kmem_cache_t		*prev_cache = NULL;
4103 	kmem_cache_t		*prev_data_cache = NULL;
4104 	extern kmem_cache_t	*zio_buf_cache[];
4105 	extern kmem_cache_t	*zio_data_buf_cache[];
4106 	extern kmem_cache_t	*range_seg_cache;
4107 	extern kmem_cache_t	*abd_chunk_cache;
4108 
4109 #ifdef _KERNEL
4110 	if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
4111 		/*
4112 		 * We are exceeding our meta-data cache limit.
4113 		 * Purge some DNLC entries to release holds on meta-data.
4114 		 */
4115 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4116 	}
4117 #if defined(__i386)
4118 	/*
4119 	 * Reclaim unused memory from all kmem caches.
4120 	 */
4121 	kmem_reap();
4122 #endif
4123 #endif
4124 
4125 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4126 		if (zio_buf_cache[i] != prev_cache) {
4127 			prev_cache = zio_buf_cache[i];
4128 			kmem_cache_reap_soon(zio_buf_cache[i]);
4129 		}
4130 		if (zio_data_buf_cache[i] != prev_data_cache) {
4131 			prev_data_cache = zio_data_buf_cache[i];
4132 			kmem_cache_reap_soon(zio_data_buf_cache[i]);
4133 		}
4134 	}
4135 	kmem_cache_reap_soon(abd_chunk_cache);
4136 	kmem_cache_reap_soon(buf_cache);
4137 	kmem_cache_reap_soon(hdr_full_cache);
4138 	kmem_cache_reap_soon(hdr_l2only_cache);
4139 	kmem_cache_reap_soon(range_seg_cache);
4140 
4141 	if (zio_arena != NULL) {
4142 		/*
4143 		 * Ask the vmem arena to reclaim unused memory from its
4144 		 * quantum caches.
4145 		 */
4146 		vmem_qcache_reap(zio_arena);
4147 	}
4148 }
4149 
4150 /* ARGSUSED */
4151 static boolean_t
4152 arc_adjust_cb_check(void *arg, zthr_t *zthr)
4153 {
4154 	/*
4155 	 * This is necessary in order for the mdb ::arc dcmd to
4156 	 * show up to date information. Since the ::arc command
4157 	 * does not call the kstat's update function, without
4158 	 * this call, the command may show stale stats for the
4159 	 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4160 	 * with this change, the data might be up to 1 second
4161 	 * out of date(the arc_adjust_zthr has a maximum sleep
4162 	 * time of 1 second); but that should suffice.  The
4163 	 * arc_state_t structures can be queried directly if more
4164 	 * accurate information is needed.
4165 	 */
4166 	if (arc_ksp != NULL)
4167 		arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4168 
4169 	/*
4170 	 * We have to rely on arc_get_data_impl() to tell us when to adjust,
4171 	 * rather than checking if we are overflowing here, so that we are
4172 	 * sure to not leave arc_get_data_impl() waiting on
4173 	 * arc_adjust_waiters_cv.  If we have become "not overflowing" since
4174 	 * arc_get_data_impl() checked, we need to wake it up.  We could
4175 	 * broadcast the CV here, but arc_get_data_impl() may have not yet
4176 	 * gone to sleep.  We would need to use a mutex to ensure that this
4177 	 * function doesn't broadcast until arc_get_data_impl() has gone to
4178 	 * sleep (e.g. the arc_adjust_lock).  However, the lock ordering of
4179 	 * such a lock would necessarily be incorrect with respect to the
4180 	 * zthr_lock, which is held before this function is called, and is
4181 	 * held by arc_get_data_impl() when it calls zthr_wakeup().
4182 	 */
4183 	return (arc_adjust_needed);
4184 }
4185 
4186 /*
4187  * Keep arc_size under arc_c by running arc_adjust which evicts data
4188  * from the ARC.
4189  */
4190 /* ARGSUSED */
4191 static int
4192 arc_adjust_cb(void *arg, zthr_t *zthr)
4193 {
4194 	uint64_t evicted = 0;
4195 
4196 	/* Evict from cache */
4197 	evicted = arc_adjust();
4198 
4199 	/*
4200 	 * If evicted is zero, we couldn't evict anything
4201 	 * via arc_adjust(). This could be due to hash lock
4202 	 * collisions, but more likely due to the majority of
4203 	 * arc buffers being unevictable. Therefore, even if
4204 	 * arc_size is above arc_c, another pass is unlikely to
4205 	 * be helpful and could potentially cause us to enter an
4206 	 * infinite loop.  Additionally, zthr_iscancelled() is
4207 	 * checked here so that if the arc is shutting down, the
4208 	 * broadcast will wake any remaining arc adjust waiters.
4209 	 */
4210 	mutex_enter(&arc_adjust_lock);
4211 	arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) &&
4212 	    evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0;
4213 	if (!arc_adjust_needed) {
4214 		/*
4215 		 * We're either no longer overflowing, or we
4216 		 * can't evict anything more, so we should wake
4217 		 * up any waiters.
4218 		 */
4219 		cv_broadcast(&arc_adjust_waiters_cv);
4220 	}
4221 	mutex_exit(&arc_adjust_lock);
4222 
4223 	return (0);
4224 }
4225 
4226 /* ARGSUSED */
4227 static boolean_t
4228 arc_reap_cb_check(void *arg, zthr_t *zthr)
4229 {
4230 	int64_t free_memory = arc_available_memory();
4231 
4232 	/*
4233 	 * If a kmem reap is already active, don't schedule more.  We must
4234 	 * check for this because kmem_cache_reap_soon() won't actually
4235 	 * block on the cache being reaped (this is to prevent callers from
4236 	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4237 	 * on a system with many, many full magazines, can take minutes).
4238 	 */
4239 	if (!kmem_cache_reap_active() &&
4240 	    free_memory < 0) {
4241 		arc_no_grow = B_TRUE;
4242 		arc_warm = B_TRUE;
4243 		/*
4244 		 * Wait at least zfs_grow_retry (default 60) seconds
4245 		 * before considering growing.
4246 		 */
4247 		arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4248 		return (B_TRUE);
4249 	} else if (free_memory < arc_c >> arc_no_grow_shift) {
4250 		arc_no_grow = B_TRUE;
4251 	} else if (gethrtime() >= arc_growtime) {
4252 		arc_no_grow = B_FALSE;
4253 	}
4254 
4255 	return (B_FALSE);
4256 }
4257 
4258 /*
4259  * Keep enough free memory in the system by reaping the ARC's kmem
4260  * caches.  To cause more slabs to be reapable, we may reduce the
4261  * target size of the cache (arc_c), causing the arc_adjust_cb()
4262  * to free more buffers.
4263  */
4264 /* ARGSUSED */
4265 static int
4266 arc_reap_cb(void *arg, zthr_t *zthr)
4267 {
4268 	int64_t free_memory;
4269 
4270 	/*
4271 	 * Kick off asynchronous kmem_reap()'s of all our caches.
4272 	 */
4273 	arc_kmem_reap_soon();
4274 
4275 	/*
4276 	 * Wait at least arc_kmem_cache_reap_retry_ms between
4277 	 * arc_kmem_reap_soon() calls. Without this check it is possible to
4278 	 * end up in a situation where we spend lots of time reaping
4279 	 * caches, while we're near arc_c_min.  Waiting here also gives the
4280 	 * subsequent free memory check a chance of finding that the
4281 	 * asynchronous reap has already freed enough memory, and we don't
4282 	 * need to call arc_reduce_target_size().
4283 	 */
4284 	delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4285 
4286 	/*
4287 	 * Reduce the target size as needed to maintain the amount of free
4288 	 * memory in the system at a fraction of the arc_size (1/128th by
4289 	 * default).  If oversubscribed (free_memory < 0) then reduce the
4290 	 * target arc_size by the deficit amount plus the fractional
4291 	 * amount.  If free memory is positive but less then the fractional
4292 	 * amount, reduce by what is needed to hit the fractional amount.
4293 	 */
4294 	free_memory = arc_available_memory();
4295 
4296 	int64_t to_free =
4297 	    (arc_c >> arc_shrink_shift) - free_memory;
4298 	if (to_free > 0) {
4299 #ifdef _KERNEL
4300 		to_free = MAX(to_free, ptob(needfree));
4301 #endif
4302 		arc_reduce_target_size(to_free);
4303 	}
4304 
4305 	return (0);
4306 }
4307 
4308 /*
4309  * Adapt arc info given the number of bytes we are trying to add and
4310  * the state that we are comming from.  This function is only called
4311  * when we are adding new content to the cache.
4312  */
4313 static void
4314 arc_adapt(int bytes, arc_state_t *state)
4315 {
4316 	int mult;
4317 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4318 	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4319 	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4320 
4321 	if (state == arc_l2c_only)
4322 		return;
4323 
4324 	ASSERT(bytes > 0);
4325 	/*
4326 	 * Adapt the target size of the MRU list:
4327 	 *	- if we just hit in the MRU ghost list, then increase
4328 	 *	  the target size of the MRU list.
4329 	 *	- if we just hit in the MFU ghost list, then increase
4330 	 *	  the target size of the MFU list by decreasing the
4331 	 *	  target size of the MRU list.
4332 	 */
4333 	if (state == arc_mru_ghost) {
4334 		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4335 		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4336 
4337 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4338 	} else if (state == arc_mfu_ghost) {
4339 		uint64_t delta;
4340 
4341 		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4342 		mult = MIN(mult, 10);
4343 
4344 		delta = MIN(bytes * mult, arc_p);
4345 		arc_p = MAX(arc_p_min, arc_p - delta);
4346 	}
4347 	ASSERT((int64_t)arc_p >= 0);
4348 
4349 	/*
4350 	 * Wake reap thread if we do not have any available memory
4351 	 */
4352 	if (arc_reclaim_needed()) {
4353 		zthr_wakeup(arc_reap_zthr);
4354 		return;
4355 	}
4356 
4357 
4358 	if (arc_no_grow)
4359 		return;
4360 
4361 	if (arc_c >= arc_c_max)
4362 		return;
4363 
4364 	/*
4365 	 * If we're within (2 * maxblocksize) bytes of the target
4366 	 * cache size, increment the target cache size
4367 	 */
4368 	if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
4369 	    0) {
4370 		atomic_add_64(&arc_c, (int64_t)bytes);
4371 		if (arc_c > arc_c_max)
4372 			arc_c = arc_c_max;
4373 		else if (state == arc_anon)
4374 			atomic_add_64(&arc_p, (int64_t)bytes);
4375 		if (arc_p > arc_c)
4376 			arc_p = arc_c;
4377 	}
4378 	ASSERT((int64_t)arc_p >= 0);
4379 }
4380 
4381 /*
4382  * Check if arc_size has grown past our upper threshold, determined by
4383  * zfs_arc_overflow_shift.
4384  */
4385 static boolean_t
4386 arc_is_overflowing(void)
4387 {
4388 	/* Always allow at least one block of overflow */
4389 	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4390 	    arc_c >> zfs_arc_overflow_shift);
4391 
4392 	/*
4393 	 * We just compare the lower bound here for performance reasons. Our
4394 	 * primary goals are to make sure that the arc never grows without
4395 	 * bound, and that it can reach its maximum size. This check
4396 	 * accomplishes both goals. The maximum amount we could run over by is
4397 	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4398 	 * in the ARC. In practice, that's in the tens of MB, which is low
4399 	 * enough to be safe.
4400 	 */
4401 	return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
4402 }
4403 
4404 static abd_t *
4405 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4406 {
4407 	arc_buf_contents_t type = arc_buf_type(hdr);
4408 
4409 	arc_get_data_impl(hdr, size, tag);
4410 	if (type == ARC_BUFC_METADATA) {
4411 		return (abd_alloc(size, B_TRUE));
4412 	} else {
4413 		ASSERT(type == ARC_BUFC_DATA);
4414 		return (abd_alloc(size, B_FALSE));
4415 	}
4416 }
4417 
4418 static void *
4419 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4420 {
4421 	arc_buf_contents_t type = arc_buf_type(hdr);
4422 
4423 	arc_get_data_impl(hdr, size, tag);
4424 	if (type == ARC_BUFC_METADATA) {
4425 		return (zio_buf_alloc(size));
4426 	} else {
4427 		ASSERT(type == ARC_BUFC_DATA);
4428 		return (zio_data_buf_alloc(size));
4429 	}
4430 }
4431 
4432 /*
4433  * Allocate a block and return it to the caller. If we are hitting the
4434  * hard limit for the cache size, we must sleep, waiting for the eviction
4435  * thread to catch up. If we're past the target size but below the hard
4436  * limit, we'll only signal the reclaim thread and continue on.
4437  */
4438 static void
4439 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4440 {
4441 	arc_state_t *state = hdr->b_l1hdr.b_state;
4442 	arc_buf_contents_t type = arc_buf_type(hdr);
4443 
4444 	arc_adapt(size, state);
4445 
4446 	/*
4447 	 * If arc_size is currently overflowing, and has grown past our
4448 	 * upper limit, we must be adding data faster than the evict
4449 	 * thread can evict. Thus, to ensure we don't compound the
4450 	 * problem by adding more data and forcing arc_size to grow even
4451 	 * further past it's target size, we halt and wait for the
4452 	 * eviction thread to catch up.
4453 	 *
4454 	 * It's also possible that the reclaim thread is unable to evict
4455 	 * enough buffers to get arc_size below the overflow limit (e.g.
4456 	 * due to buffers being un-evictable, or hash lock collisions).
4457 	 * In this case, we want to proceed regardless if we're
4458 	 * overflowing; thus we don't use a while loop here.
4459 	 */
4460 	if (arc_is_overflowing()) {
4461 		mutex_enter(&arc_adjust_lock);
4462 
4463 		/*
4464 		 * Now that we've acquired the lock, we may no longer be
4465 		 * over the overflow limit, lets check.
4466 		 *
4467 		 * We're ignoring the case of spurious wake ups. If that
4468 		 * were to happen, it'd let this thread consume an ARC
4469 		 * buffer before it should have (i.e. before we're under
4470 		 * the overflow limit and were signalled by the reclaim
4471 		 * thread). As long as that is a rare occurrence, it
4472 		 * shouldn't cause any harm.
4473 		 */
4474 		if (arc_is_overflowing()) {
4475 			arc_adjust_needed = B_TRUE;
4476 			zthr_wakeup(arc_adjust_zthr);
4477 			(void) cv_wait(&arc_adjust_waiters_cv,
4478 			    &arc_adjust_lock);
4479 		}
4480 		mutex_exit(&arc_adjust_lock);
4481 	}
4482 
4483 	VERIFY3U(hdr->b_type, ==, type);
4484 	if (type == ARC_BUFC_METADATA) {
4485 		arc_space_consume(size, ARC_SPACE_META);
4486 	} else {
4487 		arc_space_consume(size, ARC_SPACE_DATA);
4488 	}
4489 
4490 	/*
4491 	 * Update the state size.  Note that ghost states have a
4492 	 * "ghost size" and so don't need to be updated.
4493 	 */
4494 	if (!GHOST_STATE(state)) {
4495 
4496 		(void) refcount_add_many(&state->arcs_size, size, tag);
4497 
4498 		/*
4499 		 * If this is reached via arc_read, the link is
4500 		 * protected by the hash lock. If reached via
4501 		 * arc_buf_alloc, the header should not be accessed by
4502 		 * any other thread. And, if reached via arc_read_done,
4503 		 * the hash lock will protect it if it's found in the
4504 		 * hash table; otherwise no other thread should be
4505 		 * trying to [add|remove]_reference it.
4506 		 */
4507 		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4508 			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4509 			(void) refcount_add_many(&state->arcs_esize[type],
4510 			    size, tag);
4511 		}
4512 
4513 		/*
4514 		 * If we are growing the cache, and we are adding anonymous
4515 		 * data, and we have outgrown arc_p, update arc_p
4516 		 */
4517 		if (aggsum_compare(&arc_size, arc_c) < 0 &&
4518 		    hdr->b_l1hdr.b_state == arc_anon &&
4519 		    (refcount_count(&arc_anon->arcs_size) +
4520 		    refcount_count(&arc_mru->arcs_size) > arc_p))
4521 			arc_p = MIN(arc_c, arc_p + size);
4522 	}
4523 }
4524 
4525 static void
4526 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4527 {
4528 	arc_free_data_impl(hdr, size, tag);
4529 	abd_free(abd);
4530 }
4531 
4532 static void
4533 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4534 {
4535 	arc_buf_contents_t type = arc_buf_type(hdr);
4536 
4537 	arc_free_data_impl(hdr, size, tag);
4538 	if (type == ARC_BUFC_METADATA) {
4539 		zio_buf_free(buf, size);
4540 	} else {
4541 		ASSERT(type == ARC_BUFC_DATA);
4542 		zio_data_buf_free(buf, size);
4543 	}
4544 }
4545 
4546 /*
4547  * Free the arc data buffer.
4548  */
4549 static void
4550 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4551 {
4552 	arc_state_t *state = hdr->b_l1hdr.b_state;
4553 	arc_buf_contents_t type = arc_buf_type(hdr);
4554 
4555 	/* protected by hash lock, if in the hash table */
4556 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4557 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4558 		ASSERT(state != arc_anon && state != arc_l2c_only);
4559 
4560 		(void) refcount_remove_many(&state->arcs_esize[type],
4561 		    size, tag);
4562 	}
4563 	(void) refcount_remove_many(&state->arcs_size, size, tag);
4564 
4565 	VERIFY3U(hdr->b_type, ==, type);
4566 	if (type == ARC_BUFC_METADATA) {
4567 		arc_space_return(size, ARC_SPACE_META);
4568 	} else {
4569 		ASSERT(type == ARC_BUFC_DATA);
4570 		arc_space_return(size, ARC_SPACE_DATA);
4571 	}
4572 }
4573 
4574 /*
4575  * This routine is called whenever a buffer is accessed.
4576  * NOTE: the hash lock is dropped in this function.
4577  */
4578 static void
4579 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4580 {
4581 	clock_t now;
4582 
4583 	ASSERT(MUTEX_HELD(hash_lock));
4584 	ASSERT(HDR_HAS_L1HDR(hdr));
4585 
4586 	if (hdr->b_l1hdr.b_state == arc_anon) {
4587 		/*
4588 		 * This buffer is not in the cache, and does not
4589 		 * appear in our "ghost" list.  Add the new buffer
4590 		 * to the MRU state.
4591 		 */
4592 
4593 		ASSERT0(hdr->b_l1hdr.b_arc_access);
4594 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4595 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4596 		arc_change_state(arc_mru, hdr, hash_lock);
4597 
4598 	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4599 		now = ddi_get_lbolt();
4600 
4601 		/*
4602 		 * If this buffer is here because of a prefetch, then either:
4603 		 * - clear the flag if this is a "referencing" read
4604 		 *   (any subsequent access will bump this into the MFU state).
4605 		 * or
4606 		 * - move the buffer to the head of the list if this is
4607 		 *   another prefetch (to make it less likely to be evicted).
4608 		 */
4609 		if (HDR_PREFETCH(hdr)) {
4610 			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4611 				/* link protected by hash lock */
4612 				ASSERT(multilist_link_active(
4613 				    &hdr->b_l1hdr.b_arc_node));
4614 			} else {
4615 				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4616 				ARCSTAT_BUMP(arcstat_mru_hits);
4617 			}
4618 			hdr->b_l1hdr.b_arc_access = now;
4619 			return;
4620 		}
4621 
4622 		/*
4623 		 * This buffer has been "accessed" only once so far,
4624 		 * but it is still in the cache. Move it to the MFU
4625 		 * state.
4626 		 */
4627 		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4628 			/*
4629 			 * More than 125ms have passed since we
4630 			 * instantiated this buffer.  Move it to the
4631 			 * most frequently used state.
4632 			 */
4633 			hdr->b_l1hdr.b_arc_access = now;
4634 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4635 			arc_change_state(arc_mfu, hdr, hash_lock);
4636 		}
4637 		ARCSTAT_BUMP(arcstat_mru_hits);
4638 	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4639 		arc_state_t	*new_state;
4640 		/*
4641 		 * This buffer has been "accessed" recently, but
4642 		 * was evicted from the cache.  Move it to the
4643 		 * MFU state.
4644 		 */
4645 
4646 		if (HDR_PREFETCH(hdr)) {
4647 			new_state = arc_mru;
4648 			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4649 				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4650 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4651 		} else {
4652 			new_state = arc_mfu;
4653 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4654 		}
4655 
4656 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4657 		arc_change_state(new_state, hdr, hash_lock);
4658 
4659 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4660 	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4661 		/*
4662 		 * This buffer has been accessed more than once and is
4663 		 * still in the cache.  Keep it in the MFU state.
4664 		 *
4665 		 * NOTE: an add_reference() that occurred when we did
4666 		 * the arc_read() will have kicked this off the list.
4667 		 * If it was a prefetch, we will explicitly move it to
4668 		 * the head of the list now.
4669 		 */
4670 		if ((HDR_PREFETCH(hdr)) != 0) {
4671 			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4672 			/* link protected by hash_lock */
4673 			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4674 		}
4675 		ARCSTAT_BUMP(arcstat_mfu_hits);
4676 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4677 	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4678 		arc_state_t	*new_state = arc_mfu;
4679 		/*
4680 		 * This buffer has been accessed more than once but has
4681 		 * been evicted from the cache.  Move it back to the
4682 		 * MFU state.
4683 		 */
4684 
4685 		if (HDR_PREFETCH(hdr)) {
4686 			/*
4687 			 * This is a prefetch access...
4688 			 * move this block back to the MRU state.
4689 			 */
4690 			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4691 			new_state = arc_mru;
4692 		}
4693 
4694 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4695 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4696 		arc_change_state(new_state, hdr, hash_lock);
4697 
4698 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4699 	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4700 		/*
4701 		 * This buffer is on the 2nd Level ARC.
4702 		 */
4703 
4704 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4705 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4706 		arc_change_state(arc_mfu, hdr, hash_lock);
4707 	} else {
4708 		ASSERT(!"invalid arc state");
4709 	}
4710 }
4711 
4712 /* a generic arc_done_func_t which you can use */
4713 /* ARGSUSED */
4714 void
4715 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4716 {
4717 	if (zio == NULL || zio->io_error == 0)
4718 		bcopy(buf->b_data, arg, arc_buf_size(buf));
4719 	arc_buf_destroy(buf, arg);
4720 }
4721 
4722 /* a generic arc_done_func_t */
4723 void
4724 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4725 {
4726 	arc_buf_t **bufp = arg;
4727 	if (buf == NULL) {
4728 		ASSERT(zio == NULL || zio->io_error != 0);
4729 		*bufp = NULL;
4730 	} else {
4731 		ASSERT(zio == NULL || zio->io_error == 0);
4732 		*bufp = buf;
4733 		ASSERT(buf->b_data != NULL);
4734 	}
4735 }
4736 
4737 static void
4738 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4739 {
4740 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4741 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4742 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4743 	} else {
4744 		if (HDR_COMPRESSION_ENABLED(hdr)) {
4745 			ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4746 			    BP_GET_COMPRESS(bp));
4747 		}
4748 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4749 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4750 	}
4751 }
4752 
4753 static void
4754 arc_read_done(zio_t *zio)
4755 {
4756 	arc_buf_hdr_t	*hdr = zio->io_private;
4757 	kmutex_t	*hash_lock = NULL;
4758 	arc_callback_t	*callback_list;
4759 	arc_callback_t	*acb;
4760 	boolean_t	freeable = B_FALSE;
4761 	boolean_t	no_zio_error = (zio->io_error == 0);
4762 
4763 	/*
4764 	 * The hdr was inserted into hash-table and removed from lists
4765 	 * prior to starting I/O.  We should find this header, since
4766 	 * it's in the hash table, and it should be legit since it's
4767 	 * not possible to evict it during the I/O.  The only possible
4768 	 * reason for it not to be found is if we were freed during the
4769 	 * read.
4770 	 */
4771 	if (HDR_IN_HASH_TABLE(hdr)) {
4772 		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4773 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4774 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4775 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4776 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4777 
4778 		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4779 		    &hash_lock);
4780 
4781 		ASSERT((found == hdr &&
4782 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4783 		    (found == hdr && HDR_L2_READING(hdr)));
4784 		ASSERT3P(hash_lock, !=, NULL);
4785 	}
4786 
4787 	if (no_zio_error) {
4788 		/* byteswap if necessary */
4789 		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4790 			if (BP_GET_LEVEL(zio->io_bp) > 0) {
4791 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4792 			} else {
4793 				hdr->b_l1hdr.b_byteswap =
4794 				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4795 			}
4796 		} else {
4797 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4798 		}
4799 	}
4800 
4801 	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4802 	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4803 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4804 
4805 	callback_list = hdr->b_l1hdr.b_acb;
4806 	ASSERT3P(callback_list, !=, NULL);
4807 
4808 	if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
4809 		/*
4810 		 * Only call arc_access on anonymous buffers.  This is because
4811 		 * if we've issued an I/O for an evicted buffer, we've already
4812 		 * called arc_access (to prevent any simultaneous readers from
4813 		 * getting confused).
4814 		 */
4815 		arc_access(hdr, hash_lock);
4816 	}
4817 
4818 	/*
4819 	 * If a read request has a callback (i.e. acb_done is not NULL), then we
4820 	 * make a buf containing the data according to the parameters which were
4821 	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
4822 	 * aren't needlessly decompressing the data multiple times.
4823 	 */
4824 	int callback_cnt = 0;
4825 	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
4826 		if (!acb->acb_done)
4827 			continue;
4828 
4829 		/* This is a demand read since prefetches don't use callbacks */
4830 		callback_cnt++;
4831 
4832 		if (no_zio_error) {
4833 			int error = arc_buf_alloc_impl(hdr, acb->acb_private,
4834 			    acb->acb_compressed, zio->io_error == 0,
4835 			    &acb->acb_buf);
4836 			if (error != 0) {
4837 				/*
4838 				 * Decompression failed.  Set io_error
4839 				 * so that when we call acb_done (below),
4840 				 * we will indicate that the read failed.
4841 				 * Note that in the unusual case where one
4842 				 * callback is compressed and another
4843 				 * uncompressed, we will mark all of them
4844 				 * as failed, even though the uncompressed
4845 				 * one can't actually fail.  In this case,
4846 				 * the hdr will not be anonymous, because
4847 				 * if there are multiple callbacks, it's
4848 				 * because multiple threads found the same
4849 				 * arc buf in the hash table.
4850 				 */
4851 				zio->io_error = error;
4852 			}
4853 		}
4854 	}
4855 	/*
4856 	 * If there are multiple callbacks, we must have the hash lock,
4857 	 * because the only way for multiple threads to find this hdr is
4858 	 * in the hash table.  This ensures that if there are multiple
4859 	 * callbacks, the hdr is not anonymous.  If it were anonymous,
4860 	 * we couldn't use arc_buf_destroy() in the error case below.
4861 	 */
4862 	ASSERT(callback_cnt < 2 || hash_lock != NULL);
4863 
4864 	hdr->b_l1hdr.b_acb = NULL;
4865 	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4866 	if (callback_cnt == 0) {
4867 		ASSERT(HDR_PREFETCH(hdr));
4868 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
4869 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
4870 	}
4871 
4872 	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4873 	    callback_list != NULL);
4874 
4875 	if (no_zio_error) {
4876 		arc_hdr_verify(hdr, zio->io_bp);
4877 	} else {
4878 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
4879 		if (hdr->b_l1hdr.b_state != arc_anon)
4880 			arc_change_state(arc_anon, hdr, hash_lock);
4881 		if (HDR_IN_HASH_TABLE(hdr))
4882 			buf_hash_remove(hdr);
4883 		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4884 	}
4885 
4886 	/*
4887 	 * Broadcast before we drop the hash_lock to avoid the possibility
4888 	 * that the hdr (and hence the cv) might be freed before we get to
4889 	 * the cv_broadcast().
4890 	 */
4891 	cv_broadcast(&hdr->b_l1hdr.b_cv);
4892 
4893 	if (hash_lock != NULL) {
4894 		mutex_exit(hash_lock);
4895 	} else {
4896 		/*
4897 		 * This block was freed while we waited for the read to
4898 		 * complete.  It has been removed from the hash table and
4899 		 * moved to the anonymous state (so that it won't show up
4900 		 * in the cache).
4901 		 */
4902 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4903 		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4904 	}
4905 
4906 	/* execute each callback and free its structure */
4907 	while ((acb = callback_list) != NULL) {
4908 		if (acb->acb_done != NULL) {
4909 			if (zio->io_error != 0 && acb->acb_buf != NULL) {
4910 				/*
4911 				 * If arc_buf_alloc_impl() fails during
4912 				 * decompression, the buf will still be
4913 				 * allocated, and needs to be freed here.
4914 				 */
4915 				arc_buf_destroy(acb->acb_buf, acb->acb_private);
4916 				acb->acb_buf = NULL;
4917 			}
4918 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4919 		}
4920 
4921 		if (acb->acb_zio_dummy != NULL) {
4922 			acb->acb_zio_dummy->io_error = zio->io_error;
4923 			zio_nowait(acb->acb_zio_dummy);
4924 		}
4925 
4926 		callback_list = acb->acb_next;
4927 		kmem_free(acb, sizeof (arc_callback_t));
4928 	}
4929 
4930 	if (freeable)
4931 		arc_hdr_destroy(hdr);
4932 }
4933 
4934 /*
4935  * "Read" the block at the specified DVA (in bp) via the
4936  * cache.  If the block is found in the cache, invoke the provided
4937  * callback immediately and return.  Note that the `zio' parameter
4938  * in the callback will be NULL in this case, since no IO was
4939  * required.  If the block is not in the cache pass the read request
4940  * on to the spa with a substitute callback function, so that the
4941  * requested block will be added to the cache.
4942  *
4943  * If a read request arrives for a block that has a read in-progress,
4944  * either wait for the in-progress read to complete (and return the
4945  * results); or, if this is a read with a "done" func, add a record
4946  * to the read to invoke the "done" func when the read completes,
4947  * and return; or just return.
4948  *
4949  * arc_read_done() will invoke all the requested "done" functions
4950  * for readers of this block.
4951  */
4952 int
4953 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4954     void *private, zio_priority_t priority, int zio_flags,
4955     arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4956 {
4957 	arc_buf_hdr_t *hdr = NULL;
4958 	kmutex_t *hash_lock = NULL;
4959 	zio_t *rzio;
4960 	uint64_t guid = spa_load_guid(spa);
4961 	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
4962 
4963 	ASSERT(!BP_IS_EMBEDDED(bp) ||
4964 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4965 
4966 top:
4967 	if (!BP_IS_EMBEDDED(bp)) {
4968 		/*
4969 		 * Embedded BP's have no DVA and require no I/O to "read".
4970 		 * Create an anonymous arc buf to back it.
4971 		 */
4972 		hdr = buf_hash_find(guid, bp, &hash_lock);
4973 	}
4974 
4975 	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
4976 		arc_buf_t *buf = NULL;
4977 		*arc_flags |= ARC_FLAG_CACHED;
4978 
4979 		if (HDR_IO_IN_PROGRESS(hdr)) {
4980 
4981 			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4982 			    priority == ZIO_PRIORITY_SYNC_READ) {
4983 				/*
4984 				 * This sync read must wait for an
4985 				 * in-progress async read (e.g. a predictive
4986 				 * prefetch).  Async reads are queued
4987 				 * separately at the vdev_queue layer, so
4988 				 * this is a form of priority inversion.
4989 				 * Ideally, we would "inherit" the demand
4990 				 * i/o's priority by moving the i/o from
4991 				 * the async queue to the synchronous queue,
4992 				 * but there is currently no mechanism to do
4993 				 * so.  Track this so that we can evaluate
4994 				 * the magnitude of this potential performance
4995 				 * problem.
4996 				 *
4997 				 * Note that if the prefetch i/o is already
4998 				 * active (has been issued to the device),
4999 				 * the prefetch improved performance, because
5000 				 * we issued it sooner than we would have
5001 				 * without the prefetch.
5002 				 */
5003 				DTRACE_PROBE1(arc__sync__wait__for__async,
5004 				    arc_buf_hdr_t *, hdr);
5005 				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
5006 			}
5007 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5008 				arc_hdr_clear_flags(hdr,
5009 				    ARC_FLAG_PREDICTIVE_PREFETCH);
5010 			}
5011 
5012 			if (*arc_flags & ARC_FLAG_WAIT) {
5013 				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5014 				mutex_exit(hash_lock);
5015 				goto top;
5016 			}
5017 			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5018 
5019 			if (done) {
5020 				arc_callback_t *acb = NULL;
5021 
5022 				acb = kmem_zalloc(sizeof (arc_callback_t),
5023 				    KM_SLEEP);
5024 				acb->acb_done = done;
5025 				acb->acb_private = private;
5026 				acb->acb_compressed = compressed_read;
5027 				if (pio != NULL)
5028 					acb->acb_zio_dummy = zio_null(pio,
5029 					    spa, NULL, NULL, NULL, zio_flags);
5030 
5031 				ASSERT3P(acb->acb_done, !=, NULL);
5032 				acb->acb_next = hdr->b_l1hdr.b_acb;
5033 				hdr->b_l1hdr.b_acb = acb;
5034 				mutex_exit(hash_lock);
5035 				return (0);
5036 			}
5037 			mutex_exit(hash_lock);
5038 			return (0);
5039 		}
5040 
5041 		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5042 		    hdr->b_l1hdr.b_state == arc_mfu);
5043 
5044 		if (done) {
5045 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5046 				/*
5047 				 * This is a demand read which does not have to
5048 				 * wait for i/o because we did a predictive
5049 				 * prefetch i/o for it, which has completed.
5050 				 */
5051 				DTRACE_PROBE1(
5052 				    arc__demand__hit__predictive__prefetch,
5053 				    arc_buf_hdr_t *, hdr);
5054 				ARCSTAT_BUMP(
5055 				    arcstat_demand_hit_predictive_prefetch);
5056 				arc_hdr_clear_flags(hdr,
5057 				    ARC_FLAG_PREDICTIVE_PREFETCH);
5058 			}
5059 			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5060 
5061 			/* Get a buf with the desired data in it. */
5062 			VERIFY0(arc_buf_alloc_impl(hdr, private,
5063 			    compressed_read, B_TRUE, &buf));
5064 		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
5065 		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5066 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5067 		}
5068 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5069 		arc_access(hdr, hash_lock);
5070 		if (*arc_flags & ARC_FLAG_L2CACHE)
5071 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5072 		mutex_exit(hash_lock);
5073 		ARCSTAT_BUMP(arcstat_hits);
5074 		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5075 		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5076 		    data, metadata, hits);
5077 
5078 		if (done)
5079 			done(NULL, buf, private);
5080 	} else {
5081 		uint64_t lsize = BP_GET_LSIZE(bp);
5082 		uint64_t psize = BP_GET_PSIZE(bp);
5083 		arc_callback_t *acb;
5084 		vdev_t *vd = NULL;
5085 		uint64_t addr = 0;
5086 		boolean_t devw = B_FALSE;
5087 		uint64_t size;
5088 
5089 		if (hdr == NULL) {
5090 			/* this block is not in the cache */
5091 			arc_buf_hdr_t *exists = NULL;
5092 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5093 			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5094 			    BP_GET_COMPRESS(bp), type);
5095 
5096 			if (!BP_IS_EMBEDDED(bp)) {
5097 				hdr->b_dva = *BP_IDENTITY(bp);
5098 				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5099 				exists = buf_hash_insert(hdr, &hash_lock);
5100 			}
5101 			if (exists != NULL) {
5102 				/* somebody beat us to the hash insert */
5103 				mutex_exit(hash_lock);
5104 				buf_discard_identity(hdr);
5105 				arc_hdr_destroy(hdr);
5106 				goto top; /* restart the IO request */
5107 			}
5108 		} else {
5109 			/*
5110 			 * This block is in the ghost cache. If it was L2-only
5111 			 * (and thus didn't have an L1 hdr), we realloc the
5112 			 * header to add an L1 hdr.
5113 			 */
5114 			if (!HDR_HAS_L1HDR(hdr)) {
5115 				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5116 				    hdr_full_cache);
5117 			}
5118 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5119 			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5120 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5121 			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5122 			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5123 			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5124 
5125 			/*
5126 			 * This is a delicate dance that we play here.
5127 			 * This hdr is in the ghost list so we access it
5128 			 * to move it out of the ghost list before we
5129 			 * initiate the read. If it's a prefetch then
5130 			 * it won't have a callback so we'll remove the
5131 			 * reference that arc_buf_alloc_impl() created. We
5132 			 * do this after we've called arc_access() to
5133 			 * avoid hitting an assert in remove_reference().
5134 			 */
5135 			arc_access(hdr, hash_lock);
5136 			arc_hdr_alloc_pabd(hdr);
5137 		}
5138 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5139 		size = arc_hdr_size(hdr);
5140 
5141 		/*
5142 		 * If compression is enabled on the hdr, then will do
5143 		 * RAW I/O and will store the compressed data in the hdr's
5144 		 * data block. Otherwise, the hdr's data block will contain
5145 		 * the uncompressed data.
5146 		 */
5147 		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5148 			zio_flags |= ZIO_FLAG_RAW;
5149 		}
5150 
5151 		if (*arc_flags & ARC_FLAG_PREFETCH)
5152 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5153 		if (*arc_flags & ARC_FLAG_L2CACHE)
5154 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5155 		if (BP_GET_LEVEL(bp) > 0)
5156 			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5157 		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5158 			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5159 		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5160 
5161 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5162 		acb->acb_done = done;
5163 		acb->acb_private = private;
5164 		acb->acb_compressed = compressed_read;
5165 
5166 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5167 		hdr->b_l1hdr.b_acb = acb;
5168 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5169 
5170 		if (HDR_HAS_L2HDR(hdr) &&
5171 		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5172 			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5173 			addr = hdr->b_l2hdr.b_daddr;
5174 			/*
5175 			 * Lock out L2ARC device removal.
5176 			 */
5177 			if (vdev_is_dead(vd) ||
5178 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5179 				vd = NULL;
5180 		}
5181 
5182 		if (priority == ZIO_PRIORITY_ASYNC_READ)
5183 			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5184 		else
5185 			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5186 
5187 		if (hash_lock != NULL)
5188 			mutex_exit(hash_lock);
5189 
5190 		/*
5191 		 * At this point, we have a level 1 cache miss.  Try again in
5192 		 * L2ARC if possible.
5193 		 */
5194 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5195 
5196 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5197 		    uint64_t, lsize, zbookmark_phys_t *, zb);
5198 		ARCSTAT_BUMP(arcstat_misses);
5199 		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5200 		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5201 		    data, metadata, misses);
5202 
5203 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5204 			/*
5205 			 * Read from the L2ARC if the following are true:
5206 			 * 1. The L2ARC vdev was previously cached.
5207 			 * 2. This buffer still has L2ARC metadata.
5208 			 * 3. This buffer isn't currently writing to the L2ARC.
5209 			 * 4. The L2ARC entry wasn't evicted, which may
5210 			 *    also have invalidated the vdev.
5211 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
5212 			 */
5213 			if (HDR_HAS_L2HDR(hdr) &&
5214 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5215 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5216 				l2arc_read_callback_t *cb;
5217 				abd_t *abd;
5218 				uint64_t asize;
5219 
5220 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5221 				ARCSTAT_BUMP(arcstat_l2_hits);
5222 
5223 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5224 				    KM_SLEEP);
5225 				cb->l2rcb_hdr = hdr;
5226 				cb->l2rcb_bp = *bp;
5227 				cb->l2rcb_zb = *zb;
5228 				cb->l2rcb_flags = zio_flags;
5229 
5230 				asize = vdev_psize_to_asize(vd, size);
5231 				if (asize != size) {
5232 					abd = abd_alloc_for_io(asize,
5233 					    HDR_ISTYPE_METADATA(hdr));
5234 					cb->l2rcb_abd = abd;
5235 				} else {
5236 					abd = hdr->b_l1hdr.b_pabd;
5237 				}
5238 
5239 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5240 				    addr + asize <= vd->vdev_psize -
5241 				    VDEV_LABEL_END_SIZE);
5242 
5243 				/*
5244 				 * l2arc read.  The SCL_L2ARC lock will be
5245 				 * released by l2arc_read_done().
5246 				 * Issue a null zio if the underlying buffer
5247 				 * was squashed to zero size by compression.
5248 				 */
5249 				ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5250 				    ZIO_COMPRESS_EMPTY);
5251 				rzio = zio_read_phys(pio, vd, addr,
5252 				    asize, abd,
5253 				    ZIO_CHECKSUM_OFF,
5254 				    l2arc_read_done, cb, priority,
5255 				    zio_flags | ZIO_FLAG_DONT_CACHE |
5256 				    ZIO_FLAG_CANFAIL |
5257 				    ZIO_FLAG_DONT_PROPAGATE |
5258 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5259 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5260 				    zio_t *, rzio);
5261 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5262 
5263 				if (*arc_flags & ARC_FLAG_NOWAIT) {
5264 					zio_nowait(rzio);
5265 					return (0);
5266 				}
5267 
5268 				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5269 				if (zio_wait(rzio) == 0)
5270 					return (0);
5271 
5272 				/* l2arc read error; goto zio_read() */
5273 			} else {
5274 				DTRACE_PROBE1(l2arc__miss,
5275 				    arc_buf_hdr_t *, hdr);
5276 				ARCSTAT_BUMP(arcstat_l2_misses);
5277 				if (HDR_L2_WRITING(hdr))
5278 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5279 				spa_config_exit(spa, SCL_L2ARC, vd);
5280 			}
5281 		} else {
5282 			if (vd != NULL)
5283 				spa_config_exit(spa, SCL_L2ARC, vd);
5284 			if (l2arc_ndev != 0) {
5285 				DTRACE_PROBE1(l2arc__miss,
5286 				    arc_buf_hdr_t *, hdr);
5287 				ARCSTAT_BUMP(arcstat_l2_misses);
5288 			}
5289 		}
5290 
5291 		rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5292 		    arc_read_done, hdr, priority, zio_flags, zb);
5293 
5294 		if (*arc_flags & ARC_FLAG_WAIT)
5295 			return (zio_wait(rzio));
5296 
5297 		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5298 		zio_nowait(rzio);
5299 	}
5300 	return (0);
5301 }
5302 
5303 /*
5304  * Notify the arc that a block was freed, and thus will never be used again.
5305  */
5306 void
5307 arc_freed(spa_t *spa, const blkptr_t *bp)
5308 {
5309 	arc_buf_hdr_t *hdr;
5310 	kmutex_t *hash_lock;
5311 	uint64_t guid = spa_load_guid(spa);
5312 
5313 	ASSERT(!BP_IS_EMBEDDED(bp));
5314 
5315 	hdr = buf_hash_find(guid, bp, &hash_lock);
5316 	if (hdr == NULL)
5317 		return;
5318 
5319 	/*
5320 	 * We might be trying to free a block that is still doing I/O
5321 	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5322 	 * dmu_sync-ed block). If this block is being prefetched, then it
5323 	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5324 	 * until the I/O completes. A block may also have a reference if it is
5325 	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5326 	 * have written the new block to its final resting place on disk but
5327 	 * without the dedup flag set. This would have left the hdr in the MRU
5328 	 * state and discoverable. When the txg finally syncs it detects that
5329 	 * the block was overridden in open context and issues an override I/O.
5330 	 * Since this is a dedup block, the override I/O will determine if the
5331 	 * block is already in the DDT. If so, then it will replace the io_bp
5332 	 * with the bp from the DDT and allow the I/O to finish. When the I/O
5333 	 * reaches the done callback, dbuf_write_override_done, it will
5334 	 * check to see if the io_bp and io_bp_override are identical.
5335 	 * If they are not, then it indicates that the bp was replaced with
5336 	 * the bp in the DDT and the override bp is freed. This allows
5337 	 * us to arrive here with a reference on a block that is being
5338 	 * freed. So if we have an I/O in progress, or a reference to
5339 	 * this hdr, then we don't destroy the hdr.
5340 	 */
5341 	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5342 	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5343 		arc_change_state(arc_anon, hdr, hash_lock);
5344 		arc_hdr_destroy(hdr);
5345 		mutex_exit(hash_lock);
5346 	} else {
5347 		mutex_exit(hash_lock);
5348 	}
5349 
5350 }
5351 
5352 /*
5353  * Release this buffer from the cache, making it an anonymous buffer.  This
5354  * must be done after a read and prior to modifying the buffer contents.
5355  * If the buffer has more than one reference, we must make
5356  * a new hdr for the buffer.
5357  */
5358 void
5359 arc_release(arc_buf_t *buf, void *tag)
5360 {
5361 	arc_buf_hdr_t *hdr = buf->b_hdr;
5362 
5363 	/*
5364 	 * It would be nice to assert that if it's DMU metadata (level >
5365 	 * 0 || it's the dnode file), then it must be syncing context.
5366 	 * But we don't know that information at this level.
5367 	 */
5368 
5369 	mutex_enter(&buf->b_evict_lock);
5370 
5371 	ASSERT(HDR_HAS_L1HDR(hdr));
5372 
5373 	/*
5374 	 * We don't grab the hash lock prior to this check, because if
5375 	 * the buffer's header is in the arc_anon state, it won't be
5376 	 * linked into the hash table.
5377 	 */
5378 	if (hdr->b_l1hdr.b_state == arc_anon) {
5379 		mutex_exit(&buf->b_evict_lock);
5380 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5381 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
5382 		ASSERT(!HDR_HAS_L2HDR(hdr));
5383 		ASSERT(HDR_EMPTY(hdr));
5384 
5385 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5386 		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5387 		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5388 
5389 		hdr->b_l1hdr.b_arc_access = 0;
5390 
5391 		/*
5392 		 * If the buf is being overridden then it may already
5393 		 * have a hdr that is not empty.
5394 		 */
5395 		buf_discard_identity(hdr);
5396 		arc_buf_thaw(buf);
5397 
5398 		return;
5399 	}
5400 
5401 	kmutex_t *hash_lock = HDR_LOCK(hdr);
5402 	mutex_enter(hash_lock);
5403 
5404 	/*
5405 	 * This assignment is only valid as long as the hash_lock is
5406 	 * held, we must be careful not to reference state or the
5407 	 * b_state field after dropping the lock.
5408 	 */
5409 	arc_state_t *state = hdr->b_l1hdr.b_state;
5410 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5411 	ASSERT3P(state, !=, arc_anon);
5412 
5413 	/* this buffer is not on any list */
5414 	ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5415 
5416 	if (HDR_HAS_L2HDR(hdr)) {
5417 		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5418 
5419 		/*
5420 		 * We have to recheck this conditional again now that
5421 		 * we're holding the l2ad_mtx to prevent a race with
5422 		 * another thread which might be concurrently calling
5423 		 * l2arc_evict(). In that case, l2arc_evict() might have
5424 		 * destroyed the header's L2 portion as we were waiting
5425 		 * to acquire the l2ad_mtx.
5426 		 */
5427 		if (HDR_HAS_L2HDR(hdr))
5428 			arc_hdr_l2hdr_destroy(hdr);
5429 
5430 		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5431 	}
5432 
5433 	/*
5434 	 * Do we have more than one buf?
5435 	 */
5436 	if (hdr->b_l1hdr.b_bufcnt > 1) {
5437 		arc_buf_hdr_t *nhdr;
5438 		uint64_t spa = hdr->b_spa;
5439 		uint64_t psize = HDR_GET_PSIZE(hdr);
5440 		uint64_t lsize = HDR_GET_LSIZE(hdr);
5441 		enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5442 		arc_buf_contents_t type = arc_buf_type(hdr);
5443 		VERIFY3U(hdr->b_type, ==, type);
5444 
5445 		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5446 		(void) remove_reference(hdr, hash_lock, tag);
5447 
5448 		if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5449 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5450 			ASSERT(ARC_BUF_LAST(buf));
5451 		}
5452 
5453 		/*
5454 		 * Pull the data off of this hdr and attach it to
5455 		 * a new anonymous hdr. Also find the last buffer
5456 		 * in the hdr's buffer list.
5457 		 */
5458 		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5459 		ASSERT3P(lastbuf, !=, NULL);
5460 
5461 		/*
5462 		 * If the current arc_buf_t and the hdr are sharing their data
5463 		 * buffer, then we must stop sharing that block.
5464 		 */
5465 		if (arc_buf_is_shared(buf)) {
5466 			VERIFY(!arc_buf_is_shared(lastbuf));
5467 
5468 			/*
5469 			 * First, sever the block sharing relationship between
5470 			 * buf and the arc_buf_hdr_t.
5471 			 */
5472 			arc_unshare_buf(hdr, buf);
5473 
5474 			/*
5475 			 * Now we need to recreate the hdr's b_pabd. Since we
5476 			 * have lastbuf handy, we try to share with it, but if
5477 			 * we can't then we allocate a new b_pabd and copy the
5478 			 * data from buf into it.
5479 			 */
5480 			if (arc_can_share(hdr, lastbuf)) {
5481 				arc_share_buf(hdr, lastbuf);
5482 			} else {
5483 				arc_hdr_alloc_pabd(hdr);
5484 				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5485 				    buf->b_data, psize);
5486 			}
5487 			VERIFY3P(lastbuf->b_data, !=, NULL);
5488 		} else if (HDR_SHARED_DATA(hdr)) {
5489 			/*
5490 			 * Uncompressed shared buffers are always at the end
5491 			 * of the list. Compressed buffers don't have the
5492 			 * same requirements. This makes it hard to
5493 			 * simply assert that the lastbuf is shared so
5494 			 * we rely on the hdr's compression flags to determine
5495 			 * if we have a compressed, shared buffer.
5496 			 */
5497 			ASSERT(arc_buf_is_shared(lastbuf) ||
5498 			    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5499 			ASSERT(!ARC_BUF_SHARED(buf));
5500 		}
5501 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5502 		ASSERT3P(state, !=, arc_l2c_only);
5503 
5504 		(void) refcount_remove_many(&state->arcs_size,
5505 		    arc_buf_size(buf), buf);
5506 
5507 		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5508 			ASSERT3P(state, !=, arc_l2c_only);
5509 			(void) refcount_remove_many(&state->arcs_esize[type],
5510 			    arc_buf_size(buf), buf);
5511 		}
5512 
5513 		hdr->b_l1hdr.b_bufcnt -= 1;
5514 		arc_cksum_verify(buf);
5515 		arc_buf_unwatch(buf);
5516 
5517 		mutex_exit(hash_lock);
5518 
5519 		/*
5520 		 * Allocate a new hdr. The new hdr will contain a b_pabd
5521 		 * buffer which will be freed in arc_write().
5522 		 */
5523 		nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5524 		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5525 		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5526 		ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5527 		VERIFY3U(nhdr->b_type, ==, type);
5528 		ASSERT(!HDR_SHARED_DATA(nhdr));
5529 
5530 		nhdr->b_l1hdr.b_buf = buf;
5531 		nhdr->b_l1hdr.b_bufcnt = 1;
5532 		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5533 		buf->b_hdr = nhdr;
5534 
5535 		mutex_exit(&buf->b_evict_lock);
5536 		(void) refcount_add_many(&arc_anon->arcs_size,
5537 		    arc_buf_size(buf), buf);
5538 	} else {
5539 		mutex_exit(&buf->b_evict_lock);
5540 		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5541 		/* protected by hash lock, or hdr is on arc_anon */
5542 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5543 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5544 		arc_change_state(arc_anon, hdr, hash_lock);
5545 		hdr->b_l1hdr.b_arc_access = 0;
5546 		mutex_exit(hash_lock);
5547 
5548 		buf_discard_identity(hdr);
5549 		arc_buf_thaw(buf);
5550 	}
5551 }
5552 
5553 int
5554 arc_released(arc_buf_t *buf)
5555 {
5556 	int released;
5557 
5558 	mutex_enter(&buf->b_evict_lock);
5559 	released = (buf->b_data != NULL &&
5560 	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5561 	mutex_exit(&buf->b_evict_lock);
5562 	return (released);
5563 }
5564 
5565 #ifdef ZFS_DEBUG
5566 int
5567 arc_referenced(arc_buf_t *buf)
5568 {
5569 	int referenced;
5570 
5571 	mutex_enter(&buf->b_evict_lock);
5572 	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5573 	mutex_exit(&buf->b_evict_lock);
5574 	return (referenced);
5575 }
5576 #endif
5577 
5578 static void
5579 arc_write_ready(zio_t *zio)
5580 {
5581 	arc_write_callback_t *callback = zio->io_private;
5582 	arc_buf_t *buf = callback->awcb_buf;
5583 	arc_buf_hdr_t *hdr = buf->b_hdr;
5584 	uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5585 
5586 	ASSERT(HDR_HAS_L1HDR(hdr));
5587 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5588 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5589 
5590 	/*
5591 	 * If we're reexecuting this zio because the pool suspended, then
5592 	 * cleanup any state that was previously set the first time the
5593 	 * callback was invoked.
5594 	 */
5595 	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5596 		arc_cksum_free(hdr);
5597 		arc_buf_unwatch(buf);
5598 		if (hdr->b_l1hdr.b_pabd != NULL) {
5599 			if (arc_buf_is_shared(buf)) {
5600 				arc_unshare_buf(hdr, buf);
5601 			} else {
5602 				arc_hdr_free_pabd(hdr);
5603 			}
5604 		}
5605 	}
5606 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5607 	ASSERT(!HDR_SHARED_DATA(hdr));
5608 	ASSERT(!arc_buf_is_shared(buf));
5609 
5610 	callback->awcb_ready(zio, buf, callback->awcb_private);
5611 
5612 	if (HDR_IO_IN_PROGRESS(hdr))
5613 		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5614 
5615 	arc_cksum_compute(buf);
5616 	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5617 
5618 	enum zio_compress compress;
5619 	if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5620 		compress = ZIO_COMPRESS_OFF;
5621 	} else {
5622 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5623 		compress = BP_GET_COMPRESS(zio->io_bp);
5624 	}
5625 	HDR_SET_PSIZE(hdr, psize);
5626 	arc_hdr_set_compress(hdr, compress);
5627 
5628 
5629 	/*
5630 	 * Fill the hdr with data. If the hdr is compressed, the data we want
5631 	 * is available from the zio, otherwise we can take it from the buf.
5632 	 *
5633 	 * We might be able to share the buf's data with the hdr here. However,
5634 	 * doing so would cause the ARC to be full of linear ABDs if we write a
5635 	 * lot of shareable data. As a compromise, we check whether scattered
5636 	 * ABDs are allowed, and assume that if they are then the user wants
5637 	 * the ARC to be primarily filled with them regardless of the data being
5638 	 * written. Therefore, if they're allowed then we allocate one and copy
5639 	 * the data into it; otherwise, we share the data directly if we can.
5640 	 */
5641 	if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5642 		arc_hdr_alloc_pabd(hdr);
5643 
5644 		/*
5645 		 * Ideally, we would always copy the io_abd into b_pabd, but the
5646 		 * user may have disabled compressed ARC, thus we must check the
5647 		 * hdr's compression setting rather than the io_bp's.
5648 		 */
5649 		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5650 			ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5651 			    ZIO_COMPRESS_OFF);
5652 			ASSERT3U(psize, >, 0);
5653 
5654 			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5655 		} else {
5656 			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5657 
5658 			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5659 			    arc_buf_size(buf));
5660 		}
5661 	} else {
5662 		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
5663 		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5664 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5665 
5666 		arc_share_buf(hdr, buf);
5667 	}
5668 
5669 	arc_hdr_verify(hdr, zio->io_bp);
5670 }
5671 
5672 static void
5673 arc_write_children_ready(zio_t *zio)
5674 {
5675 	arc_write_callback_t *callback = zio->io_private;
5676 	arc_buf_t *buf = callback->awcb_buf;
5677 
5678 	callback->awcb_children_ready(zio, buf, callback->awcb_private);
5679 }
5680 
5681 /*
5682  * The SPA calls this callback for each physical write that happens on behalf
5683  * of a logical write.  See the comment in dbuf_write_physdone() for details.
5684  */
5685 static void
5686 arc_write_physdone(zio_t *zio)
5687 {
5688 	arc_write_callback_t *cb = zio->io_private;
5689 	if (cb->awcb_physdone != NULL)
5690 		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5691 }
5692 
5693 static void
5694 arc_write_done(zio_t *zio)
5695 {
5696 	arc_write_callback_t *callback = zio->io_private;
5697 	arc_buf_t *buf = callback->awcb_buf;
5698 	arc_buf_hdr_t *hdr = buf->b_hdr;
5699 
5700 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5701 
5702 	if (zio->io_error == 0) {
5703 		arc_hdr_verify(hdr, zio->io_bp);
5704 
5705 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5706 			buf_discard_identity(hdr);
5707 		} else {
5708 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5709 			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5710 		}
5711 	} else {
5712 		ASSERT(HDR_EMPTY(hdr));
5713 	}
5714 
5715 	/*
5716 	 * If the block to be written was all-zero or compressed enough to be
5717 	 * embedded in the BP, no write was performed so there will be no
5718 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5719 	 * (and uncached).
5720 	 */
5721 	if (!HDR_EMPTY(hdr)) {
5722 		arc_buf_hdr_t *exists;
5723 		kmutex_t *hash_lock;
5724 
5725 		ASSERT3U(zio->io_error, ==, 0);
5726 
5727 		arc_cksum_verify(buf);
5728 
5729 		exists = buf_hash_insert(hdr, &hash_lock);
5730 		if (exists != NULL) {
5731 			/*
5732 			 * This can only happen if we overwrite for
5733 			 * sync-to-convergence, because we remove
5734 			 * buffers from the hash table when we arc_free().
5735 			 */
5736 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5737 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5738 					panic("bad overwrite, hdr=%p exists=%p",
5739 					    (void *)hdr, (void *)exists);
5740 				ASSERT(refcount_is_zero(
5741 				    &exists->b_l1hdr.b_refcnt));
5742 				arc_change_state(arc_anon, exists, hash_lock);
5743 				mutex_exit(hash_lock);
5744 				arc_hdr_destroy(exists);
5745 				exists = buf_hash_insert(hdr, &hash_lock);
5746 				ASSERT3P(exists, ==, NULL);
5747 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5748 				/* nopwrite */
5749 				ASSERT(zio->io_prop.zp_nopwrite);
5750 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5751 					panic("bad nopwrite, hdr=%p exists=%p",
5752 					    (void *)hdr, (void *)exists);
5753 			} else {
5754 				/* Dedup */
5755 				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5756 				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5757 				ASSERT(BP_GET_DEDUP(zio->io_bp));
5758 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5759 			}
5760 		}
5761 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5762 		/* if it's not anon, we are doing a scrub */
5763 		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5764 			arc_access(hdr, hash_lock);
5765 		mutex_exit(hash_lock);
5766 	} else {
5767 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5768 	}
5769 
5770 	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5771 	callback->awcb_done(zio, buf, callback->awcb_private);
5772 
5773 	abd_put(zio->io_abd);
5774 	kmem_free(callback, sizeof (arc_write_callback_t));
5775 }
5776 
5777 zio_t *
5778 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
5779     boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
5780     arc_done_func_t *children_ready, arc_done_func_t *physdone,
5781     arc_done_func_t *done, void *private, zio_priority_t priority,
5782     int zio_flags, const zbookmark_phys_t *zb)
5783 {
5784 	arc_buf_hdr_t *hdr = buf->b_hdr;
5785 	arc_write_callback_t *callback;
5786 	zio_t *zio;
5787 	zio_prop_t localprop = *zp;
5788 
5789 	ASSERT3P(ready, !=, NULL);
5790 	ASSERT3P(done, !=, NULL);
5791 	ASSERT(!HDR_IO_ERROR(hdr));
5792 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5793 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5794 	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5795 	if (l2arc)
5796 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5797 	if (ARC_BUF_COMPRESSED(buf)) {
5798 		/*
5799 		 * We're writing a pre-compressed buffer.  Make the
5800 		 * compression algorithm requested by the zio_prop_t match
5801 		 * the pre-compressed buffer's compression algorithm.
5802 		 */
5803 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
5804 
5805 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
5806 		zio_flags |= ZIO_FLAG_RAW;
5807 	}
5808 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5809 	callback->awcb_ready = ready;
5810 	callback->awcb_children_ready = children_ready;
5811 	callback->awcb_physdone = physdone;
5812 	callback->awcb_done = done;
5813 	callback->awcb_private = private;
5814 	callback->awcb_buf = buf;
5815 
5816 	/*
5817 	 * The hdr's b_pabd is now stale, free it now. A new data block
5818 	 * will be allocated when the zio pipeline calls arc_write_ready().
5819 	 */
5820 	if (hdr->b_l1hdr.b_pabd != NULL) {
5821 		/*
5822 		 * If the buf is currently sharing the data block with
5823 		 * the hdr then we need to break that relationship here.
5824 		 * The hdr will remain with a NULL data pointer and the
5825 		 * buf will take sole ownership of the block.
5826 		 */
5827 		if (arc_buf_is_shared(buf)) {
5828 			arc_unshare_buf(hdr, buf);
5829 		} else {
5830 			arc_hdr_free_pabd(hdr);
5831 		}
5832 		VERIFY3P(buf->b_data, !=, NULL);
5833 		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
5834 	}
5835 	ASSERT(!arc_buf_is_shared(buf));
5836 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5837 
5838 	zio = zio_write(pio, spa, txg, bp,
5839 	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
5840 	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
5841 	    (children_ready != NULL) ? arc_write_children_ready : NULL,
5842 	    arc_write_physdone, arc_write_done, callback,
5843 	    priority, zio_flags, zb);
5844 
5845 	return (zio);
5846 }
5847 
5848 static int
5849 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
5850 {
5851 #ifdef _KERNEL
5852 	uint64_t available_memory = ptob(freemem);
5853 
5854 #if defined(__i386)
5855 	available_memory =
5856 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
5857 #endif
5858 
5859 	if (freemem > physmem * arc_lotsfree_percent / 100)
5860 		return (0);
5861 
5862 	if (txg > spa->spa_lowmem_last_txg) {
5863 		spa->spa_lowmem_last_txg = txg;
5864 		spa->spa_lowmem_page_load = 0;
5865 	}
5866 	/*
5867 	 * If we are in pageout, we know that memory is already tight,
5868 	 * the arc is already going to be evicting, so we just want to
5869 	 * continue to let page writes occur as quickly as possible.
5870 	 */
5871 	if (curproc == proc_pageout) {
5872 		if (spa->spa_lowmem_page_load >
5873 		    MAX(ptob(minfree), available_memory) / 4)
5874 			return (SET_ERROR(ERESTART));
5875 		/* Note: reserve is inflated, so we deflate */
5876 		atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
5877 		return (0);
5878 	} else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
5879 		/* memory is low, delay before restarting */
5880 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5881 		return (SET_ERROR(EAGAIN));
5882 	}
5883 	spa->spa_lowmem_page_load = 0;
5884 #endif /* _KERNEL */
5885 	return (0);
5886 }
5887 
5888 void
5889 arc_tempreserve_clear(uint64_t reserve)
5890 {
5891 	atomic_add_64(&arc_tempreserve, -reserve);
5892 	ASSERT((int64_t)arc_tempreserve >= 0);
5893 }
5894 
5895 int
5896 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
5897 {
5898 	int error;
5899 	uint64_t anon_size;
5900 
5901 	if (reserve > arc_c/4 && !arc_no_grow)
5902 		arc_c = MIN(arc_c_max, reserve * 4);
5903 	if (reserve > arc_c)
5904 		return (SET_ERROR(ENOMEM));
5905 
5906 	/*
5907 	 * Don't count loaned bufs as in flight dirty data to prevent long
5908 	 * network delays from blocking transactions that are ready to be
5909 	 * assigned to a txg.
5910 	 */
5911 
5912 	/* assert that it has not wrapped around */
5913 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
5914 
5915 	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5916 	    arc_loaned_bytes), 0);
5917 
5918 	/*
5919 	 * Writes will, almost always, require additional memory allocations
5920 	 * in order to compress/encrypt/etc the data.  We therefore need to
5921 	 * make sure that there is sufficient available memory for this.
5922 	 */
5923 	error = arc_memory_throttle(spa, reserve, txg);
5924 	if (error != 0)
5925 		return (error);
5926 
5927 	/*
5928 	 * Throttle writes when the amount of dirty data in the cache
5929 	 * gets too large.  We try to keep the cache less than half full
5930 	 * of dirty blocks so that our sync times don't grow too large.
5931 	 *
5932 	 * In the case of one pool being built on another pool, we want
5933 	 * to make sure we don't end up throttling the lower (backing)
5934 	 * pool when the upper pool is the majority contributor to dirty
5935 	 * data. To insure we make forward progress during throttling, we
5936 	 * also check the current pool's net dirty data and only throttle
5937 	 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
5938 	 * data in the cache.
5939 	 *
5940 	 * Note: if two requests come in concurrently, we might let them
5941 	 * both succeed, when one of them should fail.  Not a huge deal.
5942 	 */
5943 	uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
5944 	uint64_t spa_dirty_anon = spa_dirty_data(spa);
5945 
5946 	if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 &&
5947 	    anon_size > arc_c * zfs_arc_anon_limit_percent / 100 &&
5948 	    spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
5949 		uint64_t meta_esize =
5950 		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5951 		uint64_t data_esize =
5952 		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5953 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5954 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5955 		    arc_tempreserve >> 10, meta_esize >> 10,
5956 		    data_esize >> 10, reserve >> 10, arc_c >> 10);
5957 		return (SET_ERROR(ERESTART));
5958 	}
5959 	atomic_add_64(&arc_tempreserve, reserve);
5960 	return (0);
5961 }
5962 
5963 static void
5964 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5965     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5966 {
5967 	size->value.ui64 = refcount_count(&state->arcs_size);
5968 	evict_data->value.ui64 =
5969 	    refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
5970 	evict_metadata->value.ui64 =
5971 	    refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
5972 }
5973 
5974 static int
5975 arc_kstat_update(kstat_t *ksp, int rw)
5976 {
5977 	arc_stats_t *as = ksp->ks_data;
5978 
5979 	if (rw == KSTAT_WRITE) {
5980 		return (EACCES);
5981 	} else {
5982 		arc_kstat_update_state(arc_anon,
5983 		    &as->arcstat_anon_size,
5984 		    &as->arcstat_anon_evictable_data,
5985 		    &as->arcstat_anon_evictable_metadata);
5986 		arc_kstat_update_state(arc_mru,
5987 		    &as->arcstat_mru_size,
5988 		    &as->arcstat_mru_evictable_data,
5989 		    &as->arcstat_mru_evictable_metadata);
5990 		arc_kstat_update_state(arc_mru_ghost,
5991 		    &as->arcstat_mru_ghost_size,
5992 		    &as->arcstat_mru_ghost_evictable_data,
5993 		    &as->arcstat_mru_ghost_evictable_metadata);
5994 		arc_kstat_update_state(arc_mfu,
5995 		    &as->arcstat_mfu_size,
5996 		    &as->arcstat_mfu_evictable_data,
5997 		    &as->arcstat_mfu_evictable_metadata);
5998 		arc_kstat_update_state(arc_mfu_ghost,
5999 		    &as->arcstat_mfu_ghost_size,
6000 		    &as->arcstat_mfu_ghost_evictable_data,
6001 		    &as->arcstat_mfu_ghost_evictable_metadata);
6002 
6003 		ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
6004 		ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
6005 		ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
6006 		ARCSTAT(arcstat_metadata_size) =
6007 		    aggsum_value(&astat_metadata_size);
6008 		ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
6009 		ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size);
6010 		ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
6011 	}
6012 
6013 	return (0);
6014 }
6015 
6016 /*
6017  * This function *must* return indices evenly distributed between all
6018  * sublists of the multilist. This is needed due to how the ARC eviction
6019  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6020  * distributed between all sublists and uses this assumption when
6021  * deciding which sublist to evict from and how much to evict from it.
6022  */
6023 unsigned int
6024 arc_state_multilist_index_func(multilist_t *ml, void *obj)
6025 {
6026 	arc_buf_hdr_t *hdr = obj;
6027 
6028 	/*
6029 	 * We rely on b_dva to generate evenly distributed index
6030 	 * numbers using buf_hash below. So, as an added precaution,
6031 	 * let's make sure we never add empty buffers to the arc lists.
6032 	 */
6033 	ASSERT(!HDR_EMPTY(hdr));
6034 
6035 	/*
6036 	 * The assumption here, is the hash value for a given
6037 	 * arc_buf_hdr_t will remain constant throughout it's lifetime
6038 	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
6039 	 * Thus, we don't need to store the header's sublist index
6040 	 * on insertion, as this index can be recalculated on removal.
6041 	 *
6042 	 * Also, the low order bits of the hash value are thought to be
6043 	 * distributed evenly. Otherwise, in the case that the multilist
6044 	 * has a power of two number of sublists, each sublists' usage
6045 	 * would not be evenly distributed.
6046 	 */
6047 	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6048 	    multilist_get_num_sublists(ml));
6049 }
6050 
6051 static void
6052 arc_state_init(void)
6053 {
6054 	arc_anon = &ARC_anon;
6055 	arc_mru = &ARC_mru;
6056 	arc_mru_ghost = &ARC_mru_ghost;
6057 	arc_mfu = &ARC_mfu;
6058 	arc_mfu_ghost = &ARC_mfu_ghost;
6059 	arc_l2c_only = &ARC_l2c_only;
6060 
6061 	arc_mru->arcs_list[ARC_BUFC_METADATA] =
6062 	    multilist_create(sizeof (arc_buf_hdr_t),
6063 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6064 	    arc_state_multilist_index_func);
6065 	arc_mru->arcs_list[ARC_BUFC_DATA] =
6066 	    multilist_create(sizeof (arc_buf_hdr_t),
6067 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6068 	    arc_state_multilist_index_func);
6069 	arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6070 	    multilist_create(sizeof (arc_buf_hdr_t),
6071 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6072 	    arc_state_multilist_index_func);
6073 	arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
6074 	    multilist_create(sizeof (arc_buf_hdr_t),
6075 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6076 	    arc_state_multilist_index_func);
6077 	arc_mfu->arcs_list[ARC_BUFC_METADATA] =
6078 	    multilist_create(sizeof (arc_buf_hdr_t),
6079 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6080 	    arc_state_multilist_index_func);
6081 	arc_mfu->arcs_list[ARC_BUFC_DATA] =
6082 	    multilist_create(sizeof (arc_buf_hdr_t),
6083 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6084 	    arc_state_multilist_index_func);
6085 	arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
6086 	    multilist_create(sizeof (arc_buf_hdr_t),
6087 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6088 	    arc_state_multilist_index_func);
6089 	arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
6090 	    multilist_create(sizeof (arc_buf_hdr_t),
6091 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6092 	    arc_state_multilist_index_func);
6093 	arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
6094 	    multilist_create(sizeof (arc_buf_hdr_t),
6095 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6096 	    arc_state_multilist_index_func);
6097 	arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6098 	    multilist_create(sizeof (arc_buf_hdr_t),
6099 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6100 	    arc_state_multilist_index_func);
6101 
6102 	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6103 	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6104 	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6105 	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6106 	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6107 	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6108 	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6109 	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6110 	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6111 	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6112 	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6113 	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6114 
6115 	refcount_create(&arc_anon->arcs_size);
6116 	refcount_create(&arc_mru->arcs_size);
6117 	refcount_create(&arc_mru_ghost->arcs_size);
6118 	refcount_create(&arc_mfu->arcs_size);
6119 	refcount_create(&arc_mfu_ghost->arcs_size);
6120 	refcount_create(&arc_l2c_only->arcs_size);
6121 
6122 	aggsum_init(&arc_meta_used, 0);
6123 	aggsum_init(&arc_size, 0);
6124 	aggsum_init(&astat_data_size, 0);
6125 	aggsum_init(&astat_metadata_size, 0);
6126 	aggsum_init(&astat_hdr_size, 0);
6127 	aggsum_init(&astat_other_size, 0);
6128 	aggsum_init(&astat_l2_hdr_size, 0);
6129 }
6130 
6131 static void
6132 arc_state_fini(void)
6133 {
6134 	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6135 	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6136 	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6137 	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6138 	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6139 	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6140 	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6141 	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6142 	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6143 	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6144 	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6145 	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6146 
6147 	refcount_destroy(&arc_anon->arcs_size);
6148 	refcount_destroy(&arc_mru->arcs_size);
6149 	refcount_destroy(&arc_mru_ghost->arcs_size);
6150 	refcount_destroy(&arc_mfu->arcs_size);
6151 	refcount_destroy(&arc_mfu_ghost->arcs_size);
6152 	refcount_destroy(&arc_l2c_only->arcs_size);
6153 
6154 	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6155 	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6156 	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6157 	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6158 	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6159 	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6160 	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6161 	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6162 }
6163 
6164 uint64_t
6165 arc_max_bytes(void)
6166 {
6167 	return (arc_c_max);
6168 }
6169 
6170 void
6171 arc_init(void)
6172 {
6173 	/*
6174 	 * allmem is "all memory that we could possibly use".
6175 	 */
6176 #ifdef _KERNEL
6177 	uint64_t allmem = ptob(physmem - swapfs_minfree);
6178 #else
6179 	uint64_t allmem = (physmem * PAGESIZE) / 2;
6180 #endif
6181 	mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL);
6182 	cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL);
6183 
6184 	/* Convert seconds to clock ticks */
6185 	arc_min_prefetch_lifespan = 1 * hz;
6186 
6187 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
6188 	arc_c_min = MAX(allmem / 32, 64 << 20);
6189 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
6190 	if (allmem >= 1 << 30)
6191 		arc_c_max = allmem - (1 << 30);
6192 	else
6193 		arc_c_max = arc_c_min;
6194 	arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
6195 
6196 	/*
6197 	 * In userland, there's only the memory pressure that we artificially
6198 	 * create (see arc_available_memory()).  Don't let arc_c get too
6199 	 * small, because it can cause transactions to be larger than
6200 	 * arc_c, causing arc_tempreserve_space() to fail.
6201 	 */
6202 #ifndef _KERNEL
6203 	arc_c_min = arc_c_max / 2;
6204 #endif
6205 
6206 	/*
6207 	 * Allow the tunables to override our calculations if they are
6208 	 * reasonable (ie. over 64MB)
6209 	 */
6210 	if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) {
6211 		arc_c_max = zfs_arc_max;
6212 		arc_c_min = MIN(arc_c_min, arc_c_max);
6213 	}
6214 	if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
6215 		arc_c_min = zfs_arc_min;
6216 
6217 	arc_c = arc_c_max;
6218 	arc_p = (arc_c >> 1);
6219 
6220 	/* limit meta-data to 1/4 of the arc capacity */
6221 	arc_meta_limit = arc_c_max / 4;
6222 
6223 #ifdef _KERNEL
6224 	/*
6225 	 * Metadata is stored in the kernel's heap.  Don't let us
6226 	 * use more than half the heap for the ARC.
6227 	 */
6228 	arc_meta_limit = MIN(arc_meta_limit,
6229 	    vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
6230 #endif
6231 
6232 	/* Allow the tunable to override if it is reasonable */
6233 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6234 		arc_meta_limit = zfs_arc_meta_limit;
6235 
6236 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6237 		arc_c_min = arc_meta_limit / 2;
6238 
6239 	if (zfs_arc_meta_min > 0) {
6240 		arc_meta_min = zfs_arc_meta_min;
6241 	} else {
6242 		arc_meta_min = arc_c_min / 2;
6243 	}
6244 
6245 	if (zfs_arc_grow_retry > 0)
6246 		arc_grow_retry = zfs_arc_grow_retry;
6247 
6248 	if (zfs_arc_shrink_shift > 0)
6249 		arc_shrink_shift = zfs_arc_shrink_shift;
6250 
6251 	/*
6252 	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6253 	 */
6254 	if (arc_no_grow_shift >= arc_shrink_shift)
6255 		arc_no_grow_shift = arc_shrink_shift - 1;
6256 
6257 	if (zfs_arc_p_min_shift > 0)
6258 		arc_p_min_shift = zfs_arc_p_min_shift;
6259 
6260 	/* if kmem_flags are set, lets try to use less memory */
6261 	if (kmem_debugging())
6262 		arc_c = arc_c / 2;
6263 	if (arc_c < arc_c_min)
6264 		arc_c = arc_c_min;
6265 
6266 	arc_state_init();
6267 
6268 	/*
6269 	 * The arc must be "uninitialized", so that hdr_recl() (which is
6270 	 * registered by buf_init()) will not access arc_reap_zthr before
6271 	 * it is created.
6272 	 */
6273 	ASSERT(!arc_initialized);
6274 	buf_init();
6275 
6276 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6277 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6278 
6279 	if (arc_ksp != NULL) {
6280 		arc_ksp->ks_data = &arc_stats;
6281 		arc_ksp->ks_update = arc_kstat_update;
6282 		kstat_install(arc_ksp);
6283 	}
6284 
6285 	arc_adjust_zthr = zthr_create(arc_adjust_cb_check,
6286 	    arc_adjust_cb, NULL);
6287 	arc_reap_zthr = zthr_create_timer(arc_reap_cb_check,
6288 	    arc_reap_cb, NULL, SEC2NSEC(1));
6289 
6290 	arc_initialized = B_TRUE;
6291 	arc_warm = B_FALSE;
6292 
6293 	/*
6294 	 * Calculate maximum amount of dirty data per pool.
6295 	 *
6296 	 * If it has been set by /etc/system, take that.
6297 	 * Otherwise, use a percentage of physical memory defined by
6298 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
6299 	 * zfs_dirty_data_max_max (default 4GB).
6300 	 */
6301 	if (zfs_dirty_data_max == 0) {
6302 		zfs_dirty_data_max = physmem * PAGESIZE *
6303 		    zfs_dirty_data_max_percent / 100;
6304 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6305 		    zfs_dirty_data_max_max);
6306 	}
6307 }
6308 
6309 void
6310 arc_fini(void)
6311 {
6312 	/* Use B_TRUE to ensure *all* buffers are evicted */
6313 	arc_flush(NULL, B_TRUE);
6314 
6315 	arc_initialized = B_FALSE;
6316 
6317 	if (arc_ksp != NULL) {
6318 		kstat_delete(arc_ksp);
6319 		arc_ksp = NULL;
6320 	}
6321 
6322 	(void) zthr_cancel(arc_adjust_zthr);
6323 	zthr_destroy(arc_adjust_zthr);
6324 
6325 	(void) zthr_cancel(arc_reap_zthr);
6326 	zthr_destroy(arc_reap_zthr);
6327 
6328 	mutex_destroy(&arc_adjust_lock);
6329 	cv_destroy(&arc_adjust_waiters_cv);
6330 
6331 	arc_state_fini();
6332 	buf_fini();
6333 
6334 	ASSERT0(arc_loaned_bytes);
6335 }
6336 
6337 /*
6338  * Level 2 ARC
6339  *
6340  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6341  * It uses dedicated storage devices to hold cached data, which are populated
6342  * using large infrequent writes.  The main role of this cache is to boost
6343  * the performance of random read workloads.  The intended L2ARC devices
6344  * include short-stroked disks, solid state disks, and other media with
6345  * substantially faster read latency than disk.
6346  *
6347  *                 +-----------------------+
6348  *                 |         ARC           |
6349  *                 +-----------------------+
6350  *                    |         ^     ^
6351  *                    |         |     |
6352  *      l2arc_feed_thread()    arc_read()
6353  *                    |         |     |
6354  *                    |  l2arc read   |
6355  *                    V         |     |
6356  *               +---------------+    |
6357  *               |     L2ARC     |    |
6358  *               +---------------+    |
6359  *                   |    ^           |
6360  *          l2arc_write() |           |
6361  *                   |    |           |
6362  *                   V    |           |
6363  *                 +-------+      +-------+
6364  *                 | vdev  |      | vdev  |
6365  *                 | cache |      | cache |
6366  *                 +-------+      +-------+
6367  *                 +=========+     .-----.
6368  *                 :  L2ARC  :    |-_____-|
6369  *                 : devices :    | Disks |
6370  *                 +=========+    `-_____-'
6371  *
6372  * Read requests are satisfied from the following sources, in order:
6373  *
6374  *	1) ARC
6375  *	2) vdev cache of L2ARC devices
6376  *	3) L2ARC devices
6377  *	4) vdev cache of disks
6378  *	5) disks
6379  *
6380  * Some L2ARC device types exhibit extremely slow write performance.
6381  * To accommodate for this there are some significant differences between
6382  * the L2ARC and traditional cache design:
6383  *
6384  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6385  * the ARC behave as usual, freeing buffers and placing headers on ghost
6386  * lists.  The ARC does not send buffers to the L2ARC during eviction as
6387  * this would add inflated write latencies for all ARC memory pressure.
6388  *
6389  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6390  * It does this by periodically scanning buffers from the eviction-end of
6391  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6392  * not already there. It scans until a headroom of buffers is satisfied,
6393  * which itself is a buffer for ARC eviction. If a compressible buffer is
6394  * found during scanning and selected for writing to an L2ARC device, we
6395  * temporarily boost scanning headroom during the next scan cycle to make
6396  * sure we adapt to compression effects (which might significantly reduce
6397  * the data volume we write to L2ARC). The thread that does this is
6398  * l2arc_feed_thread(), illustrated below; example sizes are included to
6399  * provide a better sense of ratio than this diagram:
6400  *
6401  *	       head -->                        tail
6402  *	        +---------------------+----------+
6403  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6404  *	        +---------------------+----------+   |   o L2ARC eligible
6405  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6406  *	        +---------------------+----------+   |
6407  *	             15.9 Gbytes      ^ 32 Mbytes    |
6408  *	                           headroom          |
6409  *	                                      l2arc_feed_thread()
6410  *	                                             |
6411  *	                 l2arc write hand <--[oooo]--'
6412  *	                         |           8 Mbyte
6413  *	                         |          write max
6414  *	                         V
6415  *		  +==============================+
6416  *	L2ARC dev |####|#|###|###|    |####| ... |
6417  *	          +==============================+
6418  *	                     32 Gbytes
6419  *
6420  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6421  * evicted, then the L2ARC has cached a buffer much sooner than it probably
6422  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
6423  * safe to say that this is an uncommon case, since buffers at the end of
6424  * the ARC lists have moved there due to inactivity.
6425  *
6426  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6427  * then the L2ARC simply misses copying some buffers.  This serves as a
6428  * pressure valve to prevent heavy read workloads from both stalling the ARC
6429  * with waits and clogging the L2ARC with writes.  This also helps prevent
6430  * the potential for the L2ARC to churn if it attempts to cache content too
6431  * quickly, such as during backups of the entire pool.
6432  *
6433  * 5. After system boot and before the ARC has filled main memory, there are
6434  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6435  * lists can remain mostly static.  Instead of searching from tail of these
6436  * lists as pictured, the l2arc_feed_thread() will search from the list heads
6437  * for eligible buffers, greatly increasing its chance of finding them.
6438  *
6439  * The L2ARC device write speed is also boosted during this time so that
6440  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
6441  * there are no L2ARC reads, and no fear of degrading read performance
6442  * through increased writes.
6443  *
6444  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6445  * the vdev queue can aggregate them into larger and fewer writes.  Each
6446  * device is written to in a rotor fashion, sweeping writes through
6447  * available space then repeating.
6448  *
6449  * 7. The L2ARC does not store dirty content.  It never needs to flush
6450  * write buffers back to disk based storage.
6451  *
6452  * 8. If an ARC buffer is written (and dirtied) which also exists in the
6453  * L2ARC, the now stale L2ARC buffer is immediately dropped.
6454  *
6455  * The performance of the L2ARC can be tweaked by a number of tunables, which
6456  * may be necessary for different workloads:
6457  *
6458  *	l2arc_write_max		max write bytes per interval
6459  *	l2arc_write_boost	extra write bytes during device warmup
6460  *	l2arc_noprefetch	skip caching prefetched buffers
6461  *	l2arc_headroom		number of max device writes to precache
6462  *	l2arc_headroom_boost	when we find compressed buffers during ARC
6463  *				scanning, we multiply headroom by this
6464  *				percentage factor for the next scan cycle,
6465  *				since more compressed buffers are likely to
6466  *				be present
6467  *	l2arc_feed_secs		seconds between L2ARC writing
6468  *
6469  * Tunables may be removed or added as future performance improvements are
6470  * integrated, and also may become zpool properties.
6471  *
6472  * There are three key functions that control how the L2ARC warms up:
6473  *
6474  *	l2arc_write_eligible()	check if a buffer is eligible to cache
6475  *	l2arc_write_size()	calculate how much to write
6476  *	l2arc_write_interval()	calculate sleep delay between writes
6477  *
6478  * These three functions determine what to write, how much, and how quickly
6479  * to send writes.
6480  */
6481 
6482 static boolean_t
6483 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6484 {
6485 	/*
6486 	 * A buffer is *not* eligible for the L2ARC if it:
6487 	 * 1. belongs to a different spa.
6488 	 * 2. is already cached on the L2ARC.
6489 	 * 3. has an I/O in progress (it may be an incomplete read).
6490 	 * 4. is flagged not eligible (zfs property).
6491 	 */
6492 	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
6493 	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
6494 		return (B_FALSE);
6495 
6496 	return (B_TRUE);
6497 }
6498 
6499 static uint64_t
6500 l2arc_write_size(void)
6501 {
6502 	uint64_t size;
6503 
6504 	/*
6505 	 * Make sure our globals have meaningful values in case the user
6506 	 * altered them.
6507 	 */
6508 	size = l2arc_write_max;
6509 	if (size == 0) {
6510 		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6511 		    "be greater than zero, resetting it to the default (%d)",
6512 		    L2ARC_WRITE_SIZE);
6513 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
6514 	}
6515 
6516 	if (arc_warm == B_FALSE)
6517 		size += l2arc_write_boost;
6518 
6519 	return (size);
6520 
6521 }
6522 
6523 static clock_t
6524 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6525 {
6526 	clock_t interval, next, now;
6527 
6528 	/*
6529 	 * If the ARC lists are busy, increase our write rate; if the
6530 	 * lists are stale, idle back.  This is achieved by checking
6531 	 * how much we previously wrote - if it was more than half of
6532 	 * what we wanted, schedule the next write much sooner.
6533 	 */
6534 	if (l2arc_feed_again && wrote > (wanted / 2))
6535 		interval = (hz * l2arc_feed_min_ms) / 1000;
6536 	else
6537 		interval = hz * l2arc_feed_secs;
6538 
6539 	now = ddi_get_lbolt();
6540 	next = MAX(now, MIN(now + interval, began + interval));
6541 
6542 	return (next);
6543 }
6544 
6545 /*
6546  * Cycle through L2ARC devices.  This is how L2ARC load balances.
6547  * If a device is returned, this also returns holding the spa config lock.
6548  */
6549 static l2arc_dev_t *
6550 l2arc_dev_get_next(void)
6551 {
6552 	l2arc_dev_t *first, *next = NULL;
6553 
6554 	/*
6555 	 * Lock out the removal of spas (spa_namespace_lock), then removal
6556 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6557 	 * both locks will be dropped and a spa config lock held instead.
6558 	 */
6559 	mutex_enter(&spa_namespace_lock);
6560 	mutex_enter(&l2arc_dev_mtx);
6561 
6562 	/* if there are no vdevs, there is nothing to do */
6563 	if (l2arc_ndev == 0)
6564 		goto out;
6565 
6566 	first = NULL;
6567 	next = l2arc_dev_last;
6568 	do {
6569 		/* loop around the list looking for a non-faulted vdev */
6570 		if (next == NULL) {
6571 			next = list_head(l2arc_dev_list);
6572 		} else {
6573 			next = list_next(l2arc_dev_list, next);
6574 			if (next == NULL)
6575 				next = list_head(l2arc_dev_list);
6576 		}
6577 
6578 		/* if we have come back to the start, bail out */
6579 		if (first == NULL)
6580 			first = next;
6581 		else if (next == first)
6582 			break;
6583 
6584 	} while (vdev_is_dead(next->l2ad_vdev));
6585 
6586 	/* if we were unable to find any usable vdevs, return NULL */
6587 	if (vdev_is_dead(next->l2ad_vdev))
6588 		next = NULL;
6589 
6590 	l2arc_dev_last = next;
6591 
6592 out:
6593 	mutex_exit(&l2arc_dev_mtx);
6594 
6595 	/*
6596 	 * Grab the config lock to prevent the 'next' device from being
6597 	 * removed while we are writing to it.
6598 	 */
6599 	if (next != NULL)
6600 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6601 	mutex_exit(&spa_namespace_lock);
6602 
6603 	return (next);
6604 }
6605 
6606 /*
6607  * Free buffers that were tagged for destruction.
6608  */
6609 static void
6610 l2arc_do_free_on_write()
6611 {
6612 	list_t *buflist;
6613 	l2arc_data_free_t *df, *df_prev;
6614 
6615 	mutex_enter(&l2arc_free_on_write_mtx);
6616 	buflist = l2arc_free_on_write;
6617 
6618 	for (df = list_tail(buflist); df; df = df_prev) {
6619 		df_prev = list_prev(buflist, df);
6620 		ASSERT3P(df->l2df_abd, !=, NULL);
6621 		abd_free(df->l2df_abd);
6622 		list_remove(buflist, df);
6623 		kmem_free(df, sizeof (l2arc_data_free_t));
6624 	}
6625 
6626 	mutex_exit(&l2arc_free_on_write_mtx);
6627 }
6628 
6629 /*
6630  * A write to a cache device has completed.  Update all headers to allow
6631  * reads from these buffers to begin.
6632  */
6633 static void
6634 l2arc_write_done(zio_t *zio)
6635 {
6636 	l2arc_write_callback_t *cb;
6637 	l2arc_dev_t *dev;
6638 	list_t *buflist;
6639 	arc_buf_hdr_t *head, *hdr, *hdr_prev;
6640 	kmutex_t *hash_lock;
6641 	int64_t bytes_dropped = 0;
6642 
6643 	cb = zio->io_private;
6644 	ASSERT3P(cb, !=, NULL);
6645 	dev = cb->l2wcb_dev;
6646 	ASSERT3P(dev, !=, NULL);
6647 	head = cb->l2wcb_head;
6648 	ASSERT3P(head, !=, NULL);
6649 	buflist = &dev->l2ad_buflist;
6650 	ASSERT3P(buflist, !=, NULL);
6651 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6652 	    l2arc_write_callback_t *, cb);
6653 
6654 	if (zio->io_error != 0)
6655 		ARCSTAT_BUMP(arcstat_l2_writes_error);
6656 
6657 	/*
6658 	 * All writes completed, or an error was hit.
6659 	 */
6660 top:
6661 	mutex_enter(&dev->l2ad_mtx);
6662 	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6663 		hdr_prev = list_prev(buflist, hdr);
6664 
6665 		hash_lock = HDR_LOCK(hdr);
6666 
6667 		/*
6668 		 * We cannot use mutex_enter or else we can deadlock
6669 		 * with l2arc_write_buffers (due to swapping the order
6670 		 * the hash lock and l2ad_mtx are taken).
6671 		 */
6672 		if (!mutex_tryenter(hash_lock)) {
6673 			/*
6674 			 * Missed the hash lock. We must retry so we
6675 			 * don't leave the ARC_FLAG_L2_WRITING bit set.
6676 			 */
6677 			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6678 
6679 			/*
6680 			 * We don't want to rescan the headers we've
6681 			 * already marked as having been written out, so
6682 			 * we reinsert the head node so we can pick up
6683 			 * where we left off.
6684 			 */
6685 			list_remove(buflist, head);
6686 			list_insert_after(buflist, hdr, head);
6687 
6688 			mutex_exit(&dev->l2ad_mtx);
6689 
6690 			/*
6691 			 * We wait for the hash lock to become available
6692 			 * to try and prevent busy waiting, and increase
6693 			 * the chance we'll be able to acquire the lock
6694 			 * the next time around.
6695 			 */
6696 			mutex_enter(hash_lock);
6697 			mutex_exit(hash_lock);
6698 			goto top;
6699 		}
6700 
6701 		/*
6702 		 * We could not have been moved into the arc_l2c_only
6703 		 * state while in-flight due to our ARC_FLAG_L2_WRITING
6704 		 * bit being set. Let's just ensure that's being enforced.
6705 		 */
6706 		ASSERT(HDR_HAS_L1HDR(hdr));
6707 
6708 		if (zio->io_error != 0) {
6709 			/*
6710 			 * Error - drop L2ARC entry.
6711 			 */
6712 			list_remove(buflist, hdr);
6713 			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6714 
6715 			ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
6716 			ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
6717 
6718 			bytes_dropped += arc_hdr_size(hdr);
6719 			(void) refcount_remove_many(&dev->l2ad_alloc,
6720 			    arc_hdr_size(hdr), hdr);
6721 		}
6722 
6723 		/*
6724 		 * Allow ARC to begin reads and ghost list evictions to
6725 		 * this L2ARC entry.
6726 		 */
6727 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6728 
6729 		mutex_exit(hash_lock);
6730 	}
6731 
6732 	atomic_inc_64(&l2arc_writes_done);
6733 	list_remove(buflist, head);
6734 	ASSERT(!HDR_HAS_L1HDR(head));
6735 	kmem_cache_free(hdr_l2only_cache, head);
6736 	mutex_exit(&dev->l2ad_mtx);
6737 
6738 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6739 
6740 	l2arc_do_free_on_write();
6741 
6742 	kmem_free(cb, sizeof (l2arc_write_callback_t));
6743 }
6744 
6745 /*
6746  * A read to a cache device completed.  Validate buffer contents before
6747  * handing over to the regular ARC routines.
6748  */
6749 static void
6750 l2arc_read_done(zio_t *zio)
6751 {
6752 	l2arc_read_callback_t *cb;
6753 	arc_buf_hdr_t *hdr;
6754 	kmutex_t *hash_lock;
6755 	boolean_t valid_cksum;
6756 
6757 	ASSERT3P(zio->io_vd, !=, NULL);
6758 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6759 
6760 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6761 
6762 	cb = zio->io_private;
6763 	ASSERT3P(cb, !=, NULL);
6764 	hdr = cb->l2rcb_hdr;
6765 	ASSERT3P(hdr, !=, NULL);
6766 
6767 	hash_lock = HDR_LOCK(hdr);
6768 	mutex_enter(hash_lock);
6769 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6770 
6771 	/*
6772 	 * If the data was read into a temporary buffer,
6773 	 * move it and free the buffer.
6774 	 */
6775 	if (cb->l2rcb_abd != NULL) {
6776 		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
6777 		if (zio->io_error == 0) {
6778 			abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
6779 			    arc_hdr_size(hdr));
6780 		}
6781 
6782 		/*
6783 		 * The following must be done regardless of whether
6784 		 * there was an error:
6785 		 * - free the temporary buffer
6786 		 * - point zio to the real ARC buffer
6787 		 * - set zio size accordingly
6788 		 * These are required because zio is either re-used for
6789 		 * an I/O of the block in the case of the error
6790 		 * or the zio is passed to arc_read_done() and it
6791 		 * needs real data.
6792 		 */
6793 		abd_free(cb->l2rcb_abd);
6794 		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
6795 		zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
6796 	}
6797 
6798 	ASSERT3P(zio->io_abd, !=, NULL);
6799 
6800 	/*
6801 	 * Check this survived the L2ARC journey.
6802 	 */
6803 	ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
6804 	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6805 	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6806 
6807 	valid_cksum = arc_cksum_is_equal(hdr, zio);
6808 	if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6809 		mutex_exit(hash_lock);
6810 		zio->io_private = hdr;
6811 		arc_read_done(zio);
6812 	} else {
6813 		mutex_exit(hash_lock);
6814 		/*
6815 		 * Buffer didn't survive caching.  Increment stats and
6816 		 * reissue to the original storage device.
6817 		 */
6818 		if (zio->io_error != 0) {
6819 			ARCSTAT_BUMP(arcstat_l2_io_error);
6820 		} else {
6821 			zio->io_error = SET_ERROR(EIO);
6822 		}
6823 		if (!valid_cksum)
6824 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6825 
6826 		/*
6827 		 * If there's no waiter, issue an async i/o to the primary
6828 		 * storage now.  If there *is* a waiter, the caller must
6829 		 * issue the i/o in a context where it's OK to block.
6830 		 */
6831 		if (zio->io_waiter == NULL) {
6832 			zio_t *pio = zio_unique_parent(zio);
6833 
6834 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6835 
6836 			zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
6837 			    hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
6838 			    hdr, zio->io_priority, cb->l2rcb_flags,
6839 			    &cb->l2rcb_zb));
6840 		}
6841 	}
6842 
6843 	kmem_free(cb, sizeof (l2arc_read_callback_t));
6844 }
6845 
6846 /*
6847  * This is the list priority from which the L2ARC will search for pages to
6848  * cache.  This is used within loops (0..3) to cycle through lists in the
6849  * desired order.  This order can have a significant effect on cache
6850  * performance.
6851  *
6852  * Currently the metadata lists are hit first, MFU then MRU, followed by
6853  * the data lists.  This function returns a locked list, and also returns
6854  * the lock pointer.
6855  */
6856 static multilist_sublist_t *
6857 l2arc_sublist_lock(int list_num)
6858 {
6859 	multilist_t *ml = NULL;
6860 	unsigned int idx;
6861 
6862 	ASSERT(list_num >= 0 && list_num <= 3);
6863 
6864 	switch (list_num) {
6865 	case 0:
6866 		ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
6867 		break;
6868 	case 1:
6869 		ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
6870 		break;
6871 	case 2:
6872 		ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
6873 		break;
6874 	case 3:
6875 		ml = arc_mru->arcs_list[ARC_BUFC_DATA];
6876 		break;
6877 	}
6878 
6879 	/*
6880 	 * Return a randomly-selected sublist. This is acceptable
6881 	 * because the caller feeds only a little bit of data for each
6882 	 * call (8MB). Subsequent calls will result in different
6883 	 * sublists being selected.
6884 	 */
6885 	idx = multilist_get_random_index(ml);
6886 	return (multilist_sublist_lock(ml, idx));
6887 }
6888 
6889 /*
6890  * Evict buffers from the device write hand to the distance specified in
6891  * bytes.  This distance may span populated buffers, it may span nothing.
6892  * This is clearing a region on the L2ARC device ready for writing.
6893  * If the 'all' boolean is set, every buffer is evicted.
6894  */
6895 static void
6896 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6897 {
6898 	list_t *buflist;
6899 	arc_buf_hdr_t *hdr, *hdr_prev;
6900 	kmutex_t *hash_lock;
6901 	uint64_t taddr;
6902 
6903 	buflist = &dev->l2ad_buflist;
6904 
6905 	if (!all && dev->l2ad_first) {
6906 		/*
6907 		 * This is the first sweep through the device.  There is
6908 		 * nothing to evict.
6909 		 */
6910 		return;
6911 	}
6912 
6913 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6914 		/*
6915 		 * When nearing the end of the device, evict to the end
6916 		 * before the device write hand jumps to the start.
6917 		 */
6918 		taddr = dev->l2ad_end;
6919 	} else {
6920 		taddr = dev->l2ad_hand + distance;
6921 	}
6922 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6923 	    uint64_t, taddr, boolean_t, all);
6924 
6925 top:
6926 	mutex_enter(&dev->l2ad_mtx);
6927 	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6928 		hdr_prev = list_prev(buflist, hdr);
6929 
6930 		hash_lock = HDR_LOCK(hdr);
6931 
6932 		/*
6933 		 * We cannot use mutex_enter or else we can deadlock
6934 		 * with l2arc_write_buffers (due to swapping the order
6935 		 * the hash lock and l2ad_mtx are taken).
6936 		 */
6937 		if (!mutex_tryenter(hash_lock)) {
6938 			/*
6939 			 * Missed the hash lock.  Retry.
6940 			 */
6941 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6942 			mutex_exit(&dev->l2ad_mtx);
6943 			mutex_enter(hash_lock);
6944 			mutex_exit(hash_lock);
6945 			goto top;
6946 		}
6947 
6948 		/*
6949 		 * A header can't be on this list if it doesn't have L2 header.
6950 		 */
6951 		ASSERT(HDR_HAS_L2HDR(hdr));
6952 
6953 		/* Ensure this header has finished being written. */
6954 		ASSERT(!HDR_L2_WRITING(hdr));
6955 		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
6956 
6957 		if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
6958 		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6959 			/*
6960 			 * We've evicted to the target address,
6961 			 * or the end of the device.
6962 			 */
6963 			mutex_exit(hash_lock);
6964 			break;
6965 		}
6966 
6967 		if (!HDR_HAS_L1HDR(hdr)) {
6968 			ASSERT(!HDR_L2_READING(hdr));
6969 			/*
6970 			 * This doesn't exist in the ARC.  Destroy.
6971 			 * arc_hdr_destroy() will call list_remove()
6972 			 * and decrement arcstat_l2_lsize.
6973 			 */
6974 			arc_change_state(arc_anon, hdr, hash_lock);
6975 			arc_hdr_destroy(hdr);
6976 		} else {
6977 			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6978 			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6979 			/*
6980 			 * Invalidate issued or about to be issued
6981 			 * reads, since we may be about to write
6982 			 * over this location.
6983 			 */
6984 			if (HDR_L2_READING(hdr)) {
6985 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6986 				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
6987 			}
6988 
6989 			arc_hdr_l2hdr_destroy(hdr);
6990 		}
6991 		mutex_exit(hash_lock);
6992 	}
6993 	mutex_exit(&dev->l2ad_mtx);
6994 }
6995 
6996 /*
6997  * Find and write ARC buffers to the L2ARC device.
6998  *
6999  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
7000  * for reading until they have completed writing.
7001  * The headroom_boost is an in-out parameter used to maintain headroom boost
7002  * state between calls to this function.
7003  *
7004  * Returns the number of bytes actually written (which may be smaller than
7005  * the delta by which the device hand has changed due to alignment).
7006  */
7007 static uint64_t
7008 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
7009 {
7010 	arc_buf_hdr_t *hdr, *hdr_prev, *head;
7011 	uint64_t write_asize, write_psize, write_lsize, headroom;
7012 	boolean_t full;
7013 	l2arc_write_callback_t *cb;
7014 	zio_t *pio, *wzio;
7015 	uint64_t guid = spa_load_guid(spa);
7016 
7017 	ASSERT3P(dev->l2ad_vdev, !=, NULL);
7018 
7019 	pio = NULL;
7020 	write_lsize = write_asize = write_psize = 0;
7021 	full = B_FALSE;
7022 	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
7023 	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
7024 
7025 	/*
7026 	 * Copy buffers for L2ARC writing.
7027 	 */
7028 	for (int try = 0; try <= 3; try++) {
7029 		multilist_sublist_t *mls = l2arc_sublist_lock(try);
7030 		uint64_t passed_sz = 0;
7031 
7032 		/*
7033 		 * L2ARC fast warmup.
7034 		 *
7035 		 * Until the ARC is warm and starts to evict, read from the
7036 		 * head of the ARC lists rather than the tail.
7037 		 */
7038 		if (arc_warm == B_FALSE)
7039 			hdr = multilist_sublist_head(mls);
7040 		else
7041 			hdr = multilist_sublist_tail(mls);
7042 
7043 		headroom = target_sz * l2arc_headroom;
7044 		if (zfs_compressed_arc_enabled)
7045 			headroom = (headroom * l2arc_headroom_boost) / 100;
7046 
7047 		for (; hdr; hdr = hdr_prev) {
7048 			kmutex_t *hash_lock;
7049 
7050 			if (arc_warm == B_FALSE)
7051 				hdr_prev = multilist_sublist_next(mls, hdr);
7052 			else
7053 				hdr_prev = multilist_sublist_prev(mls, hdr);
7054 
7055 			hash_lock = HDR_LOCK(hdr);
7056 			if (!mutex_tryenter(hash_lock)) {
7057 				/*
7058 				 * Skip this buffer rather than waiting.
7059 				 */
7060 				continue;
7061 			}
7062 
7063 			passed_sz += HDR_GET_LSIZE(hdr);
7064 			if (passed_sz > headroom) {
7065 				/*
7066 				 * Searched too far.
7067 				 */
7068 				mutex_exit(hash_lock);
7069 				break;
7070 			}
7071 
7072 			if (!l2arc_write_eligible(guid, hdr)) {
7073 				mutex_exit(hash_lock);
7074 				continue;
7075 			}
7076 
7077 			/*
7078 			 * We rely on the L1 portion of the header below, so
7079 			 * it's invalid for this header to have been evicted out
7080 			 * of the ghost cache, prior to being written out. The
7081 			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
7082 			 */
7083 			ASSERT(HDR_HAS_L1HDR(hdr));
7084 
7085 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
7086 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7087 			ASSERT3U(arc_hdr_size(hdr), >, 0);
7088 			uint64_t psize = arc_hdr_size(hdr);
7089 			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
7090 			    psize);
7091 
7092 			if ((write_asize + asize) > target_sz) {
7093 				full = B_TRUE;
7094 				mutex_exit(hash_lock);
7095 				break;
7096 			}
7097 
7098 			if (pio == NULL) {
7099 				/*
7100 				 * Insert a dummy header on the buflist so
7101 				 * l2arc_write_done() can find where the
7102 				 * write buffers begin without searching.
7103 				 */
7104 				mutex_enter(&dev->l2ad_mtx);
7105 				list_insert_head(&dev->l2ad_buflist, head);
7106 				mutex_exit(&dev->l2ad_mtx);
7107 
7108 				cb = kmem_alloc(
7109 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
7110 				cb->l2wcb_dev = dev;
7111 				cb->l2wcb_head = head;
7112 				pio = zio_root(spa, l2arc_write_done, cb,
7113 				    ZIO_FLAG_CANFAIL);
7114 			}
7115 
7116 			hdr->b_l2hdr.b_dev = dev;
7117 			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7118 			arc_hdr_set_flags(hdr,
7119 			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7120 
7121 			mutex_enter(&dev->l2ad_mtx);
7122 			list_insert_head(&dev->l2ad_buflist, hdr);
7123 			mutex_exit(&dev->l2ad_mtx);
7124 
7125 			(void) refcount_add_many(&dev->l2ad_alloc, psize, hdr);
7126 
7127 			/*
7128 			 * Normally the L2ARC can use the hdr's data, but if
7129 			 * we're sharing data between the hdr and one of its
7130 			 * bufs, L2ARC needs its own copy of the data so that
7131 			 * the ZIO below can't race with the buf consumer.
7132 			 * Another case where we need to create a copy of the
7133 			 * data is when the buffer size is not device-aligned
7134 			 * and we need to pad the block to make it such.
7135 			 * That also keeps the clock hand suitably aligned.
7136 			 *
7137 			 * To ensure that the copy will be available for the
7138 			 * lifetime of the ZIO and be cleaned up afterwards, we
7139 			 * add it to the l2arc_free_on_write queue.
7140 			 */
7141 			abd_t *to_write;
7142 			if (!HDR_SHARED_DATA(hdr) && psize == asize) {
7143 				to_write = hdr->b_l1hdr.b_pabd;
7144 			} else {
7145 				to_write = abd_alloc_for_io(asize,
7146 				    HDR_ISTYPE_METADATA(hdr));
7147 				abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
7148 				if (asize != psize) {
7149 					abd_zero_off(to_write, psize,
7150 					    asize - psize);
7151 				}
7152 				l2arc_free_abd_on_write(to_write, asize,
7153 				    arc_buf_type(hdr));
7154 			}
7155 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
7156 			    hdr->b_l2hdr.b_daddr, asize, to_write,
7157 			    ZIO_CHECKSUM_OFF, NULL, hdr,
7158 			    ZIO_PRIORITY_ASYNC_WRITE,
7159 			    ZIO_FLAG_CANFAIL, B_FALSE);
7160 
7161 			write_lsize += HDR_GET_LSIZE(hdr);
7162 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7163 			    zio_t *, wzio);
7164 
7165 			write_psize += psize;
7166 			write_asize += asize;
7167 			dev->l2ad_hand += asize;
7168 
7169 			mutex_exit(hash_lock);
7170 
7171 			(void) zio_nowait(wzio);
7172 		}
7173 
7174 		multilist_sublist_unlock(mls);
7175 
7176 		if (full == B_TRUE)
7177 			break;
7178 	}
7179 
7180 	/* No buffers selected for writing? */
7181 	if (pio == NULL) {
7182 		ASSERT0(write_lsize);
7183 		ASSERT(!HDR_HAS_L1HDR(head));
7184 		kmem_cache_free(hdr_l2only_cache, head);
7185 		return (0);
7186 	}
7187 
7188 	ASSERT3U(write_asize, <=, target_sz);
7189 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
7190 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
7191 	ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
7192 	ARCSTAT_INCR(arcstat_l2_psize, write_psize);
7193 	vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
7194 
7195 	/*
7196 	 * Bump device hand to the device start if it is approaching the end.
7197 	 * l2arc_evict() will already have evicted ahead for this case.
7198 	 */
7199 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7200 		dev->l2ad_hand = dev->l2ad_start;
7201 		dev->l2ad_first = B_FALSE;
7202 	}
7203 
7204 	dev->l2ad_writing = B_TRUE;
7205 	(void) zio_wait(pio);
7206 	dev->l2ad_writing = B_FALSE;
7207 
7208 	return (write_asize);
7209 }
7210 
7211 /*
7212  * This thread feeds the L2ARC at regular intervals.  This is the beating
7213  * heart of the L2ARC.
7214  */
7215 /* ARGSUSED */
7216 static void
7217 l2arc_feed_thread(void *unused)
7218 {
7219 	callb_cpr_t cpr;
7220 	l2arc_dev_t *dev;
7221 	spa_t *spa;
7222 	uint64_t size, wrote;
7223 	clock_t begin, next = ddi_get_lbolt();
7224 
7225 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7226 
7227 	mutex_enter(&l2arc_feed_thr_lock);
7228 
7229 	while (l2arc_thread_exit == 0) {
7230 		CALLB_CPR_SAFE_BEGIN(&cpr);
7231 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7232 		    next);
7233 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7234 		next = ddi_get_lbolt() + hz;
7235 
7236 		/*
7237 		 * Quick check for L2ARC devices.
7238 		 */
7239 		mutex_enter(&l2arc_dev_mtx);
7240 		if (l2arc_ndev == 0) {
7241 			mutex_exit(&l2arc_dev_mtx);
7242 			continue;
7243 		}
7244 		mutex_exit(&l2arc_dev_mtx);
7245 		begin = ddi_get_lbolt();
7246 
7247 		/*
7248 		 * This selects the next l2arc device to write to, and in
7249 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7250 		 * will return NULL if there are now no l2arc devices or if
7251 		 * they are all faulted.
7252 		 *
7253 		 * If a device is returned, its spa's config lock is also
7254 		 * held to prevent device removal.  l2arc_dev_get_next()
7255 		 * will grab and release l2arc_dev_mtx.
7256 		 */
7257 		if ((dev = l2arc_dev_get_next()) == NULL)
7258 			continue;
7259 
7260 		spa = dev->l2ad_spa;
7261 		ASSERT3P(spa, !=, NULL);
7262 
7263 		/*
7264 		 * If the pool is read-only then force the feed thread to
7265 		 * sleep a little longer.
7266 		 */
7267 		if (!spa_writeable(spa)) {
7268 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7269 			spa_config_exit(spa, SCL_L2ARC, dev);
7270 			continue;
7271 		}
7272 
7273 		/*
7274 		 * Avoid contributing to memory pressure.
7275 		 */
7276 		if (arc_reclaim_needed()) {
7277 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7278 			spa_config_exit(spa, SCL_L2ARC, dev);
7279 			continue;
7280 		}
7281 
7282 		ARCSTAT_BUMP(arcstat_l2_feeds);
7283 
7284 		size = l2arc_write_size();
7285 
7286 		/*
7287 		 * Evict L2ARC buffers that will be overwritten.
7288 		 */
7289 		l2arc_evict(dev, size, B_FALSE);
7290 
7291 		/*
7292 		 * Write ARC buffers.
7293 		 */
7294 		wrote = l2arc_write_buffers(spa, dev, size);
7295 
7296 		/*
7297 		 * Calculate interval between writes.
7298 		 */
7299 		next = l2arc_write_interval(begin, size, wrote);
7300 		spa_config_exit(spa, SCL_L2ARC, dev);
7301 	}
7302 
7303 	l2arc_thread_exit = 0;
7304 	cv_broadcast(&l2arc_feed_thr_cv);
7305 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7306 	thread_exit();
7307 }
7308 
7309 boolean_t
7310 l2arc_vdev_present(vdev_t *vd)
7311 {
7312 	l2arc_dev_t *dev;
7313 
7314 	mutex_enter(&l2arc_dev_mtx);
7315 	for (dev = list_head(l2arc_dev_list); dev != NULL;
7316 	    dev = list_next(l2arc_dev_list, dev)) {
7317 		if (dev->l2ad_vdev == vd)
7318 			break;
7319 	}
7320 	mutex_exit(&l2arc_dev_mtx);
7321 
7322 	return (dev != NULL);
7323 }
7324 
7325 /*
7326  * Add a vdev for use by the L2ARC.  By this point the spa has already
7327  * validated the vdev and opened it.
7328  */
7329 void
7330 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7331 {
7332 	l2arc_dev_t *adddev;
7333 
7334 	ASSERT(!l2arc_vdev_present(vd));
7335 
7336 	/*
7337 	 * Create a new l2arc device entry.
7338 	 */
7339 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7340 	adddev->l2ad_spa = spa;
7341 	adddev->l2ad_vdev = vd;
7342 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7343 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7344 	adddev->l2ad_hand = adddev->l2ad_start;
7345 	adddev->l2ad_first = B_TRUE;
7346 	adddev->l2ad_writing = B_FALSE;
7347 
7348 	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7349 	/*
7350 	 * This is a list of all ARC buffers that are still valid on the
7351 	 * device.
7352 	 */
7353 	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7354 	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7355 
7356 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7357 	refcount_create(&adddev->l2ad_alloc);
7358 
7359 	/*
7360 	 * Add device to global list
7361 	 */
7362 	mutex_enter(&l2arc_dev_mtx);
7363 	list_insert_head(l2arc_dev_list, adddev);
7364 	atomic_inc_64(&l2arc_ndev);
7365 	mutex_exit(&l2arc_dev_mtx);
7366 }
7367 
7368 /*
7369  * Remove a vdev from the L2ARC.
7370  */
7371 void
7372 l2arc_remove_vdev(vdev_t *vd)
7373 {
7374 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7375 
7376 	/*
7377 	 * Find the device by vdev
7378 	 */
7379 	mutex_enter(&l2arc_dev_mtx);
7380 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7381 		nextdev = list_next(l2arc_dev_list, dev);
7382 		if (vd == dev->l2ad_vdev) {
7383 			remdev = dev;
7384 			break;
7385 		}
7386 	}
7387 	ASSERT3P(remdev, !=, NULL);
7388 
7389 	/*
7390 	 * Remove device from global list
7391 	 */
7392 	list_remove(l2arc_dev_list, remdev);
7393 	l2arc_dev_last = NULL;		/* may have been invalidated */
7394 	atomic_dec_64(&l2arc_ndev);
7395 	mutex_exit(&l2arc_dev_mtx);
7396 
7397 	/*
7398 	 * Clear all buflists and ARC references.  L2ARC device flush.
7399 	 */
7400 	l2arc_evict(remdev, 0, B_TRUE);
7401 	list_destroy(&remdev->l2ad_buflist);
7402 	mutex_destroy(&remdev->l2ad_mtx);
7403 	refcount_destroy(&remdev->l2ad_alloc);
7404 	kmem_free(remdev, sizeof (l2arc_dev_t));
7405 }
7406 
7407 void
7408 l2arc_init(void)
7409 {
7410 	l2arc_thread_exit = 0;
7411 	l2arc_ndev = 0;
7412 	l2arc_writes_sent = 0;
7413 	l2arc_writes_done = 0;
7414 
7415 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7416 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7417 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7418 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7419 
7420 	l2arc_dev_list = &L2ARC_dev_list;
7421 	l2arc_free_on_write = &L2ARC_free_on_write;
7422 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7423 	    offsetof(l2arc_dev_t, l2ad_node));
7424 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7425 	    offsetof(l2arc_data_free_t, l2df_list_node));
7426 }
7427 
7428 void
7429 l2arc_fini(void)
7430 {
7431 	/*
7432 	 * This is called from dmu_fini(), which is called from spa_fini();
7433 	 * Because of this, we can assume that all l2arc devices have
7434 	 * already been removed when the pools themselves were removed.
7435 	 */
7436 
7437 	l2arc_do_free_on_write();
7438 
7439 	mutex_destroy(&l2arc_feed_thr_lock);
7440 	cv_destroy(&l2arc_feed_thr_cv);
7441 	mutex_destroy(&l2arc_dev_mtx);
7442 	mutex_destroy(&l2arc_free_on_write_mtx);
7443 
7444 	list_destroy(l2arc_dev_list);
7445 	list_destroy(l2arc_free_on_write);
7446 }
7447 
7448 void
7449 l2arc_start(void)
7450 {
7451 	if (!(spa_mode_global & FWRITE))
7452 		return;
7453 
7454 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7455 	    TS_RUN, minclsyspri);
7456 }
7457 
7458 void
7459 l2arc_stop(void)
7460 {
7461 	if (!(spa_mode_global & FWRITE))
7462 		return;
7463 
7464 	mutex_enter(&l2arc_feed_thr_lock);
7465 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7466 	l2arc_thread_exit = 1;
7467 	while (l2arc_thread_exit != 0)
7468 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7469 	mutex_exit(&l2arc_feed_thr_lock);
7470 }
7471