xref: /illumos-gate/usr/src/uts/common/fs/zfs/arc.c (revision 5ad820458efd0fdb914baff9c1447c22b819fa23)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * DVA-based Adjustable Relpacement Cache
30  *
31  * While much of the theory of operation used here is
32  * based on the self-tuning, low overhead replacement cache
33  * presented by Megiddo and Modha at FAST 2003, there are some
34  * significant differences:
35  *
36  * 1. The Megiddo and Modha model assumes any page is evictable.
37  * Pages in its cache cannot be "locked" into memory.  This makes
38  * the eviction algorithm simple: evict the last page in the list.
39  * This also make the performance characteristics easy to reason
40  * about.  Our cache is not so simple.  At any given moment, some
41  * subset of the blocks in the cache are un-evictable because we
42  * have handed out a reference to them.  Blocks are only evictable
43  * when there are no external references active.  This makes
44  * eviction far more problematic:  we choose to evict the evictable
45  * blocks that are the "lowest" in the list.
46  *
47  * There are times when it is not possible to evict the requested
48  * space.  In these circumstances we are unable to adjust the cache
49  * size.  To prevent the cache growing unbounded at these times we
50  * implement a "cache throttle" that slowes the flow of new data
51  * into the cache until we can make space avaiable.
52  *
53  * 2. The Megiddo and Modha model assumes a fixed cache size.
54  * Pages are evicted when the cache is full and there is a cache
55  * miss.  Our model has a variable sized cache.  It grows with
56  * high use, but also tries to react to memory preasure from the
57  * operating system: decreasing its size when system memory is
58  * tight.
59  *
60  * 3. The Megiddo and Modha model assumes a fixed page size. All
61  * elements of the cache are therefor exactly the same size.  So
62  * when adjusting the cache size following a cache miss, its simply
63  * a matter of choosing a single page to evict.  In our model, we
64  * have variable sized cache blocks (rangeing from 512 bytes to
65  * 128K bytes).  We therefor choose a set of blocks to evict to make
66  * space for a cache miss that approximates as closely as possible
67  * the space used by the new block.
68  *
69  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70  * by N. Megiddo & D. Modha, FAST 2003
71  */
72 
73 /*
74  * The locking model:
75  *
76  * A new reference to a cache buffer can be obtained in two
77  * ways: 1) via a hash table lookup using the DVA as a key,
78  * or 2) via one of the ARC lists.  The arc_read() inerface
79  * uses method 1, while the internal arc algorithms for
80  * adjusting the cache use method 2.  We therefor provide two
81  * types of locks: 1) the hash table lock array, and 2) the
82  * arc list locks.
83  *
84  * Buffers do not have their own mutexs, rather they rely on the
85  * hash table mutexs for the bulk of their protection (i.e. most
86  * fields in the arc_buf_hdr_t are protected by these mutexs).
87  *
88  * buf_hash_find() returns the appropriate mutex (held) when it
89  * locates the requested buffer in the hash table.  It returns
90  * NULL for the mutex if the buffer was not in the table.
91  *
92  * buf_hash_remove() expects the appropriate hash mutex to be
93  * already held before it is invoked.
94  *
95  * Each arc state also has a mutex which is used to protect the
96  * buffer list associated with the state.  When attempting to
97  * obtain a hash table lock while holding an arc list lock you
98  * must use: mutex_tryenter() to avoid deadlock.  Also note that
99  * the active state mutex must be held before the ghost state mutex.
100  *
101  * Arc buffers may have an associated eviction callback function.
102  * This function will be invoked prior to removing the buffer (e.g.
103  * in arc_do_user_evicts()).  Note however that the data associated
104  * with the buffer may be evicted prior to the callback.  The callback
105  * must be made with *no locks held* (to prevent deadlock).  Additionally,
106  * the users of callbacks must ensure that their private data is
107  * protected from simultaneous callbacks from arc_buf_evict()
108  * and arc_do_user_evicts().
109  *
110  * Note that the majority of the performance stats are manipulated
111  * with atomic operations.
112  */
113 
114 #include <sys/spa.h>
115 #include <sys/zio.h>
116 #include <sys/zfs_context.h>
117 #include <sys/arc.h>
118 #include <sys/refcount.h>
119 #ifdef _KERNEL
120 #include <sys/vmsystm.h>
121 #include <vm/anon.h>
122 #include <sys/fs/swapnode.h>
123 #include <sys/dnlc.h>
124 #endif
125 #include <sys/callb.h>
126 
127 static kmutex_t		arc_reclaim_thr_lock;
128 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
129 static uint8_t		arc_thread_exit;
130 
131 #define	ARC_REDUCE_DNLC_PERCENT	3
132 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
133 
134 typedef enum arc_reclaim_strategy {
135 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
136 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
137 } arc_reclaim_strategy_t;
138 
139 /* number of seconds before growing cache again */
140 static int		arc_grow_retry = 60;
141 
142 /*
143  * minimum lifespan of a prefetch block in clock ticks
144  * (initialized in arc_init())
145  */
146 static int		arc_min_prefetch_lifespan;
147 
148 static kmutex_t arc_reclaim_lock;
149 static int arc_dead;
150 
151 /*
152  * Note that buffers can be on one of 5 states:
153  *	ARC_anon	- anonymous (discussed below)
154  *	ARC_mru		- recently used, currently cached
155  *	ARC_mru_ghost	- recentely used, no longer in cache
156  *	ARC_mfu		- frequently used, currently cached
157  *	ARC_mfu_ghost	- frequently used, no longer in cache
158  * When there are no active references to the buffer, they
159  * are linked onto one of the lists in arc.  These are the
160  * only buffers that can be evicted or deleted.
161  *
162  * Anonymous buffers are buffers that are not associated with
163  * a DVA.  These are buffers that hold dirty block copies
164  * before they are written to stable storage.  By definition,
165  * they are "ref'd" and are considered part of arc_mru
166  * that cannot be freed.  Generally, they will aquire a DVA
167  * as they are written and migrate onto the arc_mru list.
168  */
169 
170 typedef struct arc_state {
171 	list_t	list;	/* linked list of evictable buffer in state */
172 	uint64_t lsize;	/* total size of buffers in the linked list */
173 	uint64_t size;	/* total size of all buffers in this state */
174 	uint64_t hits;
175 	kmutex_t mtx;
176 } arc_state_t;
177 
178 /* The 5 states: */
179 static arc_state_t ARC_anon;
180 static arc_state_t ARC_mru;
181 static arc_state_t ARC_mru_ghost;
182 static arc_state_t ARC_mfu;
183 static arc_state_t ARC_mfu_ghost;
184 
185 static struct arc {
186 	arc_state_t 	*anon;
187 	arc_state_t	*mru;
188 	arc_state_t	*mru_ghost;
189 	arc_state_t	*mfu;
190 	arc_state_t	*mfu_ghost;
191 	uint64_t	size;		/* Actual total arc size */
192 	uint64_t	p;		/* Target size (in bytes) of mru */
193 	uint64_t	c;		/* Target size of cache (in bytes) */
194 	uint64_t	c_min;		/* Minimum target cache size */
195 	uint64_t	c_max;		/* Maximum target cache size */
196 
197 	/* performance stats */
198 	uint64_t	hits;
199 	uint64_t	misses;
200 	uint64_t	deleted;
201 	uint64_t	recycle_miss;
202 	uint64_t	mutex_miss;
203 	uint64_t	evict_skip;
204 	uint64_t	hash_elements;
205 	uint64_t	hash_elements_max;
206 	uint64_t	hash_collisions;
207 	uint64_t	hash_chains;
208 	uint32_t	hash_chain_max;
209 
210 	int		no_grow;	/* Don't try to grow cache size */
211 } arc;
212 
213 static uint64_t arc_tempreserve;
214 
215 typedef struct arc_callback arc_callback_t;
216 
217 struct arc_callback {
218 	arc_done_func_t		*acb_done;
219 	void			*acb_private;
220 	arc_byteswap_func_t	*acb_byteswap;
221 	arc_buf_t		*acb_buf;
222 	zio_t			*acb_zio_dummy;
223 	arc_callback_t		*acb_next;
224 };
225 
226 struct arc_buf_hdr {
227 	/* immutable */
228 	uint64_t		b_size;
229 	spa_t			*b_spa;
230 
231 	/* protected by hash lock */
232 	dva_t			b_dva;
233 	uint64_t		b_birth;
234 	uint64_t		b_cksum0;
235 
236 	arc_buf_hdr_t		*b_hash_next;
237 	arc_buf_t		*b_buf;
238 	uint32_t		b_flags;
239 	uint32_t		b_datacnt;
240 
241 	kcondvar_t		b_cv;
242 	arc_callback_t		*b_acb;
243 
244 	/* protected by arc state mutex */
245 	arc_state_t		*b_state;
246 	list_node_t		b_arc_node;
247 
248 	/* updated atomically */
249 	clock_t			b_arc_access;
250 
251 	/* self protecting */
252 	refcount_t		b_refcnt;
253 };
254 
255 static arc_buf_t *arc_eviction_list;
256 static kmutex_t arc_eviction_mtx;
257 static void arc_get_data_buf(arc_buf_t *buf);
258 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
259 
260 #define	GHOST_STATE(state)	\
261 	((state) == arc.mru_ghost || (state) == arc.mfu_ghost)
262 
263 /*
264  * Private ARC flags.  These flags are private ARC only flags that will show up
265  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
266  * be passed in as arc_flags in things like arc_read.  However, these flags
267  * should never be passed and should only be set by ARC code.  When adding new
268  * public flags, make sure not to smash the private ones.
269  */
270 
271 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
272 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
273 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
274 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
275 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
276 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
277 
278 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
279 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
280 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
281 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
282 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
283 
284 /*
285  * Hash table routines
286  */
287 
288 #define	HT_LOCK_PAD	64
289 
290 struct ht_lock {
291 	kmutex_t	ht_lock;
292 #ifdef _KERNEL
293 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
294 #endif
295 };
296 
297 #define	BUF_LOCKS 256
298 typedef struct buf_hash_table {
299 	uint64_t ht_mask;
300 	arc_buf_hdr_t **ht_table;
301 	struct ht_lock ht_locks[BUF_LOCKS];
302 } buf_hash_table_t;
303 
304 static buf_hash_table_t buf_hash_table;
305 
306 #define	BUF_HASH_INDEX(spa, dva, birth) \
307 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
308 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
309 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
310 #define	HDR_LOCK(buf) \
311 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
312 
313 uint64_t zfs_crc64_table[256];
314 
315 static uint64_t
316 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth)
317 {
318 	uintptr_t spav = (uintptr_t)spa;
319 	uint8_t *vdva = (uint8_t *)dva;
320 	uint64_t crc = -1ULL;
321 	int i;
322 
323 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
324 
325 	for (i = 0; i < sizeof (dva_t); i++)
326 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
327 
328 	crc ^= (spav>>8) ^ birth;
329 
330 	return (crc);
331 }
332 
333 #define	BUF_EMPTY(buf)						\
334 	((buf)->b_dva.dva_word[0] == 0 &&			\
335 	(buf)->b_dva.dva_word[1] == 0 &&			\
336 	(buf)->b_birth == 0)
337 
338 #define	BUF_EQUAL(spa, dva, birth, buf)				\
339 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
340 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
341 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
342 
343 static arc_buf_hdr_t *
344 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp)
345 {
346 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
347 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
348 	arc_buf_hdr_t *buf;
349 
350 	mutex_enter(hash_lock);
351 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
352 	    buf = buf->b_hash_next) {
353 		if (BUF_EQUAL(spa, dva, birth, buf)) {
354 			*lockp = hash_lock;
355 			return (buf);
356 		}
357 	}
358 	mutex_exit(hash_lock);
359 	*lockp = NULL;
360 	return (NULL);
361 }
362 
363 /*
364  * Insert an entry into the hash table.  If there is already an element
365  * equal to elem in the hash table, then the already existing element
366  * will be returned and the new element will not be inserted.
367  * Otherwise returns NULL.
368  */
369 static arc_buf_hdr_t *
370 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
371 {
372 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
373 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
374 	arc_buf_hdr_t *fbuf;
375 	uint32_t max, i;
376 
377 	ASSERT(!HDR_IN_HASH_TABLE(buf));
378 	*lockp = hash_lock;
379 	mutex_enter(hash_lock);
380 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
381 	    fbuf = fbuf->b_hash_next, i++) {
382 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
383 			return (fbuf);
384 	}
385 
386 	buf->b_hash_next = buf_hash_table.ht_table[idx];
387 	buf_hash_table.ht_table[idx] = buf;
388 	buf->b_flags |= ARC_IN_HASH_TABLE;
389 
390 	/* collect some hash table performance data */
391 	if (i > 0) {
392 		atomic_add_64(&arc.hash_collisions, 1);
393 		if (i == 1)
394 			atomic_add_64(&arc.hash_chains, 1);
395 	}
396 	while (i > (max = arc.hash_chain_max) &&
397 	    max != atomic_cas_32(&arc.hash_chain_max, max, i)) {
398 		continue;
399 	}
400 	atomic_add_64(&arc.hash_elements, 1);
401 	if (arc.hash_elements > arc.hash_elements_max)
402 		atomic_add_64(&arc.hash_elements_max, 1);
403 
404 	return (NULL);
405 }
406 
407 static void
408 buf_hash_remove(arc_buf_hdr_t *buf)
409 {
410 	arc_buf_hdr_t *fbuf, **bufp;
411 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
412 
413 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
414 	ASSERT(HDR_IN_HASH_TABLE(buf));
415 
416 	bufp = &buf_hash_table.ht_table[idx];
417 	while ((fbuf = *bufp) != buf) {
418 		ASSERT(fbuf != NULL);
419 		bufp = &fbuf->b_hash_next;
420 	}
421 	*bufp = buf->b_hash_next;
422 	buf->b_hash_next = NULL;
423 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
424 
425 	/* collect some hash table performance data */
426 	atomic_add_64(&arc.hash_elements, -1);
427 	if (buf_hash_table.ht_table[idx] &&
428 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
429 		atomic_add_64(&arc.hash_chains, -1);
430 }
431 
432 /*
433  * Global data structures and functions for the buf kmem cache.
434  */
435 static kmem_cache_t *hdr_cache;
436 static kmem_cache_t *buf_cache;
437 
438 static void
439 buf_fini(void)
440 {
441 	int i;
442 
443 	kmem_free(buf_hash_table.ht_table,
444 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
445 	for (i = 0; i < BUF_LOCKS; i++)
446 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
447 	kmem_cache_destroy(hdr_cache);
448 	kmem_cache_destroy(buf_cache);
449 }
450 
451 /*
452  * Constructor callback - called when the cache is empty
453  * and a new buf is requested.
454  */
455 /* ARGSUSED */
456 static int
457 hdr_cons(void *vbuf, void *unused, int kmflag)
458 {
459 	arc_buf_hdr_t *buf = vbuf;
460 
461 	bzero(buf, sizeof (arc_buf_hdr_t));
462 	refcount_create(&buf->b_refcnt);
463 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
464 	return (0);
465 }
466 
467 /*
468  * Destructor callback - called when a cached buf is
469  * no longer required.
470  */
471 /* ARGSUSED */
472 static void
473 hdr_dest(void *vbuf, void *unused)
474 {
475 	arc_buf_hdr_t *buf = vbuf;
476 
477 	refcount_destroy(&buf->b_refcnt);
478 	cv_destroy(&buf->b_cv);
479 }
480 
481 static int arc_reclaim_needed(void);
482 void arc_kmem_reclaim(void);
483 
484 /*
485  * Reclaim callback -- invoked when memory is low.
486  */
487 /* ARGSUSED */
488 static void
489 hdr_recl(void *unused)
490 {
491 	dprintf("hdr_recl called\n");
492 	if (arc_reclaim_needed())
493 		arc_kmem_reclaim();
494 }
495 
496 static void
497 buf_init(void)
498 {
499 	uint64_t *ct;
500 	uint64_t hsize = 1ULL << 12;
501 	int i, j;
502 
503 	/*
504 	 * The hash table is big enough to fill all of physical memory
505 	 * with an average 64K block size.  The table will take up
506 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
507 	 */
508 	while (hsize * 65536 < physmem * PAGESIZE)
509 		hsize <<= 1;
510 retry:
511 	buf_hash_table.ht_mask = hsize - 1;
512 	buf_hash_table.ht_table =
513 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
514 	if (buf_hash_table.ht_table == NULL) {
515 		ASSERT(hsize > (1ULL << 8));
516 		hsize >>= 1;
517 		goto retry;
518 	}
519 
520 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
521 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
522 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
523 	    0, NULL, NULL, NULL, NULL, NULL, 0);
524 
525 	for (i = 0; i < 256; i++)
526 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
527 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
528 
529 	for (i = 0; i < BUF_LOCKS; i++) {
530 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
531 		    NULL, MUTEX_DEFAULT, NULL);
532 	}
533 }
534 
535 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
536 
537 static void
538 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
539 {
540 	ASSERT(MUTEX_HELD(hash_lock));
541 
542 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
543 	    (ab->b_state != arc.anon)) {
544 		int delta = ab->b_size * ab->b_datacnt;
545 
546 		ASSERT(!MUTEX_HELD(&ab->b_state->mtx));
547 		mutex_enter(&ab->b_state->mtx);
548 		ASSERT(list_link_active(&ab->b_arc_node));
549 		list_remove(&ab->b_state->list, ab);
550 		if (GHOST_STATE(ab->b_state)) {
551 			ASSERT3U(ab->b_datacnt, ==, 0);
552 			ASSERT3P(ab->b_buf, ==, NULL);
553 			delta = ab->b_size;
554 		}
555 		ASSERT(delta > 0);
556 		ASSERT3U(ab->b_state->lsize, >=, delta);
557 		atomic_add_64(&ab->b_state->lsize, -delta);
558 		mutex_exit(&ab->b_state->mtx);
559 		/* remove the prefetch flag is we get a reference */
560 		if (ab->b_flags & ARC_PREFETCH)
561 			ab->b_flags &= ~ARC_PREFETCH;
562 	}
563 }
564 
565 static int
566 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
567 {
568 	int cnt;
569 
570 	ASSERT(ab->b_state == arc.anon || MUTEX_HELD(hash_lock));
571 	ASSERT(!GHOST_STATE(ab->b_state));
572 
573 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
574 	    (ab->b_state != arc.anon)) {
575 
576 		ASSERT(!MUTEX_HELD(&ab->b_state->mtx));
577 		mutex_enter(&ab->b_state->mtx);
578 		ASSERT(!list_link_active(&ab->b_arc_node));
579 		list_insert_head(&ab->b_state->list, ab);
580 		ASSERT(ab->b_datacnt > 0);
581 		atomic_add_64(&ab->b_state->lsize, ab->b_size * ab->b_datacnt);
582 		ASSERT3U(ab->b_state->size, >=, ab->b_state->lsize);
583 		mutex_exit(&ab->b_state->mtx);
584 	}
585 	return (cnt);
586 }
587 
588 /*
589  * Move the supplied buffer to the indicated state.  The mutex
590  * for the buffer must be held by the caller.
591  */
592 static void
593 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
594 {
595 	arc_state_t *old_state = ab->b_state;
596 	int refcnt = refcount_count(&ab->b_refcnt);
597 	int from_delta, to_delta;
598 
599 	ASSERT(MUTEX_HELD(hash_lock));
600 	ASSERT(new_state != old_state);
601 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
602 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
603 
604 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
605 
606 	/*
607 	 * If this buffer is evictable, transfer it from the
608 	 * old state list to the new state list.
609 	 */
610 	if (refcnt == 0) {
611 		if (old_state != arc.anon) {
612 			int use_mutex = !MUTEX_HELD(&old_state->mtx);
613 
614 			if (use_mutex)
615 				mutex_enter(&old_state->mtx);
616 
617 			ASSERT(list_link_active(&ab->b_arc_node));
618 			list_remove(&old_state->list, ab);
619 
620 			/*
621 			 * If prefetching out of the ghost cache,
622 			 * we will have a non-null datacnt.
623 			 */
624 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
625 				/* ghost elements have a ghost size */
626 				ASSERT(ab->b_buf == NULL);
627 				from_delta = ab->b_size;
628 			}
629 			ASSERT3U(old_state->lsize, >=, from_delta);
630 			atomic_add_64(&old_state->lsize, -from_delta);
631 
632 			if (use_mutex)
633 				mutex_exit(&old_state->mtx);
634 		}
635 		if (new_state != arc.anon) {
636 			int use_mutex = !MUTEX_HELD(&new_state->mtx);
637 
638 			if (use_mutex)
639 				mutex_enter(&new_state->mtx);
640 
641 			list_insert_head(&new_state->list, ab);
642 
643 			/* ghost elements have a ghost size */
644 			if (GHOST_STATE(new_state)) {
645 				ASSERT(ab->b_datacnt == 0);
646 				ASSERT(ab->b_buf == NULL);
647 				to_delta = ab->b_size;
648 			}
649 			atomic_add_64(&new_state->lsize, to_delta);
650 			ASSERT3U(new_state->size + to_delta, >=,
651 			    new_state->lsize);
652 
653 			if (use_mutex)
654 				mutex_exit(&new_state->mtx);
655 		}
656 	}
657 
658 	ASSERT(!BUF_EMPTY(ab));
659 	if (new_state == arc.anon && old_state != arc.anon) {
660 		buf_hash_remove(ab);
661 	}
662 
663 	/* adjust state sizes */
664 	if (to_delta)
665 		atomic_add_64(&new_state->size, to_delta);
666 	if (from_delta) {
667 		ASSERT3U(old_state->size, >=, from_delta);
668 		atomic_add_64(&old_state->size, -from_delta);
669 	}
670 	ab->b_state = new_state;
671 }
672 
673 arc_buf_t *
674 arc_buf_alloc(spa_t *spa, int size, void *tag)
675 {
676 	arc_buf_hdr_t *hdr;
677 	arc_buf_t *buf;
678 
679 	ASSERT3U(size, >, 0);
680 	hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
681 	ASSERT(BUF_EMPTY(hdr));
682 	hdr->b_size = size;
683 	hdr->b_spa = spa;
684 	hdr->b_state = arc.anon;
685 	hdr->b_arc_access = 0;
686 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
687 	buf->b_hdr = hdr;
688 	buf->b_data = NULL;
689 	buf->b_efunc = NULL;
690 	buf->b_private = NULL;
691 	buf->b_next = NULL;
692 	hdr->b_buf = buf;
693 	arc_get_data_buf(buf);
694 	hdr->b_datacnt = 1;
695 	hdr->b_flags = 0;
696 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
697 	(void) refcount_add(&hdr->b_refcnt, tag);
698 
699 	return (buf);
700 }
701 
702 static arc_buf_t *
703 arc_buf_clone(arc_buf_t *from)
704 {
705 	arc_buf_t *buf;
706 	arc_buf_hdr_t *hdr = from->b_hdr;
707 	uint64_t size = hdr->b_size;
708 
709 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
710 	buf->b_hdr = hdr;
711 	buf->b_data = NULL;
712 	buf->b_efunc = NULL;
713 	buf->b_private = NULL;
714 	buf->b_next = hdr->b_buf;
715 	hdr->b_buf = buf;
716 	arc_get_data_buf(buf);
717 	bcopy(from->b_data, buf->b_data, size);
718 	hdr->b_datacnt += 1;
719 	return (buf);
720 }
721 
722 void
723 arc_buf_add_ref(arc_buf_t *buf, void* tag)
724 {
725 	arc_buf_hdr_t *hdr = buf->b_hdr;
726 	kmutex_t *hash_lock;
727 
728 	/*
729 	 * Check to see if this buffer is currently being evicted via
730 	 * arc_do_user_evicts().  We can do this without holding any
731 	 * locks because if we happen to obtain the header before its
732 	 * cleared, we will find b_data is NULL later.
733 	 */
734 	if (hdr == NULL)
735 		return;
736 
737 	hash_lock = HDR_LOCK(hdr);
738 	mutex_enter(hash_lock);
739 	if (buf->b_data == NULL) {
740 		/*
741 		 * This buffer is evicted.
742 		 */
743 		mutex_exit(hash_lock);
744 		return;
745 	}
746 
747 	ASSERT(buf->b_hdr == hdr);
748 	ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu);
749 	add_reference(hdr, hash_lock, tag);
750 	arc_access(hdr, hash_lock);
751 	mutex_exit(hash_lock);
752 	atomic_add_64(&arc.hits, 1);
753 }
754 
755 static void
756 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
757 {
758 	arc_buf_t **bufp;
759 
760 	/* free up data associated with the buf */
761 	if (buf->b_data) {
762 		arc_state_t *state = buf->b_hdr->b_state;
763 		uint64_t size = buf->b_hdr->b_size;
764 
765 		if (!recycle) {
766 			zio_buf_free(buf->b_data, size);
767 			atomic_add_64(&arc.size, -size);
768 		}
769 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
770 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
771 			ASSERT(state != arc.anon);
772 			ASSERT3U(state->lsize, >=, size);
773 			atomic_add_64(&state->lsize, -size);
774 		}
775 		ASSERT3U(state->size, >=, size);
776 		atomic_add_64(&state->size, -size);
777 		buf->b_data = NULL;
778 		ASSERT(buf->b_hdr->b_datacnt > 0);
779 		buf->b_hdr->b_datacnt -= 1;
780 	}
781 
782 	/* only remove the buf if requested */
783 	if (!all)
784 		return;
785 
786 	/* remove the buf from the hdr list */
787 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
788 		continue;
789 	*bufp = buf->b_next;
790 
791 	ASSERT(buf->b_efunc == NULL);
792 
793 	/* clean up the buf */
794 	buf->b_hdr = NULL;
795 	kmem_cache_free(buf_cache, buf);
796 }
797 
798 static void
799 arc_hdr_destroy(arc_buf_hdr_t *hdr)
800 {
801 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
802 	ASSERT3P(hdr->b_state, ==, arc.anon);
803 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
804 
805 	if (!BUF_EMPTY(hdr)) {
806 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
807 		bzero(&hdr->b_dva, sizeof (dva_t));
808 		hdr->b_birth = 0;
809 		hdr->b_cksum0 = 0;
810 	}
811 	while (hdr->b_buf) {
812 		arc_buf_t *buf = hdr->b_buf;
813 
814 		if (buf->b_efunc) {
815 			mutex_enter(&arc_eviction_mtx);
816 			ASSERT(buf->b_hdr != NULL);
817 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
818 			hdr->b_buf = buf->b_next;
819 			buf->b_next = arc_eviction_list;
820 			arc_eviction_list = buf;
821 			mutex_exit(&arc_eviction_mtx);
822 		} else {
823 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
824 		}
825 	}
826 
827 	ASSERT(!list_link_active(&hdr->b_arc_node));
828 	ASSERT3P(hdr->b_hash_next, ==, NULL);
829 	ASSERT3P(hdr->b_acb, ==, NULL);
830 	kmem_cache_free(hdr_cache, hdr);
831 }
832 
833 void
834 arc_buf_free(arc_buf_t *buf, void *tag)
835 {
836 	arc_buf_hdr_t *hdr = buf->b_hdr;
837 	int hashed = hdr->b_state != arc.anon;
838 
839 	ASSERT(buf->b_efunc == NULL);
840 	ASSERT(buf->b_data != NULL);
841 
842 	if (hashed) {
843 		kmutex_t *hash_lock = HDR_LOCK(hdr);
844 
845 		mutex_enter(hash_lock);
846 		(void) remove_reference(hdr, hash_lock, tag);
847 		if (hdr->b_datacnt > 1)
848 			arc_buf_destroy(buf, FALSE, TRUE);
849 		else
850 			hdr->b_flags |= ARC_BUF_AVAILABLE;
851 		mutex_exit(hash_lock);
852 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
853 		int destroy_hdr;
854 		/*
855 		 * We are in the middle of an async write.  Don't destroy
856 		 * this buffer unless the write completes before we finish
857 		 * decrementing the reference count.
858 		 */
859 		mutex_enter(&arc_eviction_mtx);
860 		(void) remove_reference(hdr, NULL, tag);
861 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
862 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
863 		mutex_exit(&arc_eviction_mtx);
864 		if (destroy_hdr)
865 			arc_hdr_destroy(hdr);
866 	} else {
867 		if (remove_reference(hdr, NULL, tag) > 0) {
868 			ASSERT(HDR_IO_ERROR(hdr));
869 			arc_buf_destroy(buf, FALSE, TRUE);
870 		} else {
871 			arc_hdr_destroy(hdr);
872 		}
873 	}
874 }
875 
876 int
877 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
878 {
879 	arc_buf_hdr_t *hdr = buf->b_hdr;
880 	kmutex_t *hash_lock = HDR_LOCK(hdr);
881 	int no_callback = (buf->b_efunc == NULL);
882 
883 	if (hdr->b_state == arc.anon) {
884 		arc_buf_free(buf, tag);
885 		return (no_callback);
886 	}
887 
888 	mutex_enter(hash_lock);
889 	ASSERT(hdr->b_state != arc.anon);
890 	ASSERT(buf->b_data != NULL);
891 
892 	(void) remove_reference(hdr, hash_lock, tag);
893 	if (hdr->b_datacnt > 1) {
894 		if (no_callback)
895 			arc_buf_destroy(buf, FALSE, TRUE);
896 	} else if (no_callback) {
897 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
898 		hdr->b_flags |= ARC_BUF_AVAILABLE;
899 	}
900 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
901 	    refcount_is_zero(&hdr->b_refcnt));
902 	mutex_exit(hash_lock);
903 	return (no_callback);
904 }
905 
906 int
907 arc_buf_size(arc_buf_t *buf)
908 {
909 	return (buf->b_hdr->b_size);
910 }
911 
912 /*
913  * Evict buffers from list until we've removed the specified number of
914  * bytes.  Move the removed buffers to the appropriate evict state.
915  * If the recycle flag is set, then attempt to "recycle" a buffer:
916  * - look for a buffer to evict that is `bytes' long.
917  * - return the data block from this buffer rather than freeing it.
918  * This flag is used by callers that are trying to make space for a
919  * new buffer in a full arc cache.
920  */
921 static void *
922 arc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle)
923 {
924 	arc_state_t *evicted_state;
925 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
926 	arc_buf_hdr_t *ab, *ab_prev;
927 	kmutex_t *hash_lock;
928 	boolean_t have_lock;
929 	void *steal = NULL;
930 
931 	ASSERT(state == arc.mru || state == arc.mfu);
932 
933 	evicted_state = (state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost;
934 
935 	mutex_enter(&state->mtx);
936 	mutex_enter(&evicted_state->mtx);
937 
938 	for (ab = list_tail(&state->list); ab; ab = ab_prev) {
939 		ab_prev = list_prev(&state->list, ab);
940 		/* prefetch buffers have a minimum lifespan */
941 		if (HDR_IO_IN_PROGRESS(ab) ||
942 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
943 		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
944 			skipped++;
945 			continue;
946 		}
947 		if (recycle && (ab->b_size != bytes || ab->b_datacnt > 1))
948 			continue;
949 		hash_lock = HDR_LOCK(ab);
950 		have_lock = MUTEX_HELD(hash_lock);
951 		if (have_lock || mutex_tryenter(hash_lock)) {
952 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
953 			ASSERT(ab->b_datacnt > 0);
954 			while (ab->b_buf) {
955 				arc_buf_t *buf = ab->b_buf;
956 				if (buf->b_data) {
957 					bytes_evicted += ab->b_size;
958 					if (recycle)
959 						steal = buf->b_data;
960 				}
961 				if (buf->b_efunc) {
962 					mutex_enter(&arc_eviction_mtx);
963 					arc_buf_destroy(buf, recycle, FALSE);
964 					ab->b_buf = buf->b_next;
965 					buf->b_next = arc_eviction_list;
966 					arc_eviction_list = buf;
967 					mutex_exit(&arc_eviction_mtx);
968 				} else {
969 					arc_buf_destroy(buf, recycle, TRUE);
970 				}
971 			}
972 			ASSERT(ab->b_datacnt == 0);
973 			arc_change_state(evicted_state, ab, hash_lock);
974 			ASSERT(HDR_IN_HASH_TABLE(ab));
975 			ab->b_flags = ARC_IN_HASH_TABLE;
976 			DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
977 			if (!have_lock)
978 				mutex_exit(hash_lock);
979 			if (bytes >= 0 && bytes_evicted >= bytes)
980 				break;
981 		} else {
982 			missed += 1;
983 		}
984 	}
985 	mutex_exit(&evicted_state->mtx);
986 	mutex_exit(&state->mtx);
987 
988 	if (bytes_evicted < bytes)
989 		dprintf("only evicted %lld bytes from %x",
990 		    (longlong_t)bytes_evicted, state);
991 
992 	if (skipped)
993 		atomic_add_64(&arc.evict_skip, skipped);
994 	if (missed)
995 		atomic_add_64(&arc.mutex_miss, missed);
996 	return (steal);
997 }
998 
999 /*
1000  * Remove buffers from list until we've removed the specified number of
1001  * bytes.  Destroy the buffers that are removed.
1002  */
1003 static void
1004 arc_evict_ghost(arc_state_t *state, int64_t bytes)
1005 {
1006 	arc_buf_hdr_t *ab, *ab_prev;
1007 	kmutex_t *hash_lock;
1008 	uint64_t bytes_deleted = 0;
1009 	uint_t bufs_skipped = 0;
1010 
1011 	ASSERT(GHOST_STATE(state));
1012 top:
1013 	mutex_enter(&state->mtx);
1014 	for (ab = list_tail(&state->list); ab; ab = ab_prev) {
1015 		ab_prev = list_prev(&state->list, ab);
1016 		hash_lock = HDR_LOCK(ab);
1017 		if (mutex_tryenter(hash_lock)) {
1018 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1019 			ASSERT(ab->b_buf == NULL);
1020 			arc_change_state(arc.anon, ab, hash_lock);
1021 			mutex_exit(hash_lock);
1022 			atomic_add_64(&arc.deleted, 1);
1023 			bytes_deleted += ab->b_size;
1024 			arc_hdr_destroy(ab);
1025 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1026 			if (bytes >= 0 && bytes_deleted >= bytes)
1027 				break;
1028 		} else {
1029 			if (bytes < 0) {
1030 				mutex_exit(&state->mtx);
1031 				mutex_enter(hash_lock);
1032 				mutex_exit(hash_lock);
1033 				goto top;
1034 			}
1035 			bufs_skipped += 1;
1036 		}
1037 	}
1038 	mutex_exit(&state->mtx);
1039 
1040 	if (bufs_skipped) {
1041 		atomic_add_64(&arc.mutex_miss, bufs_skipped);
1042 		ASSERT(bytes >= 0);
1043 	}
1044 
1045 	if (bytes_deleted < bytes)
1046 		dprintf("only deleted %lld bytes from %p",
1047 		    (longlong_t)bytes_deleted, state);
1048 }
1049 
1050 static void
1051 arc_adjust(void)
1052 {
1053 	int64_t top_sz, mru_over, arc_over;
1054 
1055 	top_sz = arc.anon->size + arc.mru->size;
1056 
1057 	if (top_sz > arc.p && arc.mru->lsize > 0) {
1058 		int64_t toevict = MIN(arc.mru->lsize, top_sz-arc.p);
1059 		(void) arc_evict(arc.mru, toevict, FALSE);
1060 		top_sz = arc.anon->size + arc.mru->size;
1061 	}
1062 
1063 	mru_over = top_sz + arc.mru_ghost->size - arc.c;
1064 
1065 	if (mru_over > 0) {
1066 		if (arc.mru_ghost->lsize > 0) {
1067 			int64_t todelete = MIN(arc.mru_ghost->lsize, mru_over);
1068 			arc_evict_ghost(arc.mru_ghost, todelete);
1069 		}
1070 	}
1071 
1072 	if ((arc_over = arc.size - arc.c) > 0) {
1073 		int64_t tbl_over;
1074 
1075 		if (arc.mfu->lsize > 0) {
1076 			int64_t toevict = MIN(arc.mfu->lsize, arc_over);
1077 			(void) arc_evict(arc.mfu, toevict, FALSE);
1078 		}
1079 
1080 		tbl_over = arc.size + arc.mru_ghost->lsize +
1081 		    arc.mfu_ghost->lsize - arc.c*2;
1082 
1083 		if (tbl_over > 0 && arc.mfu_ghost->lsize > 0) {
1084 			int64_t todelete = MIN(arc.mfu_ghost->lsize, tbl_over);
1085 			arc_evict_ghost(arc.mfu_ghost, todelete);
1086 		}
1087 	}
1088 }
1089 
1090 static void
1091 arc_do_user_evicts(void)
1092 {
1093 	mutex_enter(&arc_eviction_mtx);
1094 	while (arc_eviction_list != NULL) {
1095 		arc_buf_t *buf = arc_eviction_list;
1096 		arc_eviction_list = buf->b_next;
1097 		buf->b_hdr = NULL;
1098 		mutex_exit(&arc_eviction_mtx);
1099 
1100 		if (buf->b_efunc != NULL)
1101 			VERIFY(buf->b_efunc(buf) == 0);
1102 
1103 		buf->b_efunc = NULL;
1104 		buf->b_private = NULL;
1105 		kmem_cache_free(buf_cache, buf);
1106 		mutex_enter(&arc_eviction_mtx);
1107 	}
1108 	mutex_exit(&arc_eviction_mtx);
1109 }
1110 
1111 /*
1112  * Flush all *evictable* data from the cache.
1113  * NOTE: this will not touch "active" (i.e. referenced) data.
1114  */
1115 void
1116 arc_flush(void)
1117 {
1118 	while (list_head(&arc.mru->list))
1119 		(void) arc_evict(arc.mru, -1, FALSE);
1120 	while (list_head(&arc.mfu->list))
1121 		(void) arc_evict(arc.mfu, -1, FALSE);
1122 
1123 	arc_evict_ghost(arc.mru_ghost, -1);
1124 	arc_evict_ghost(arc.mfu_ghost, -1);
1125 
1126 	mutex_enter(&arc_reclaim_thr_lock);
1127 	arc_do_user_evicts();
1128 	mutex_exit(&arc_reclaim_thr_lock);
1129 	ASSERT(arc_eviction_list == NULL);
1130 }
1131 
1132 int arc_kmem_reclaim_shift = 5;		/* log2(fraction of arc to reclaim) */
1133 
1134 void
1135 arc_kmem_reclaim(void)
1136 {
1137 	uint64_t to_free;
1138 
1139 	/*
1140 	 * We need arc_reclaim_lock because we don't want multiple
1141 	 * threads trying to reclaim concurrently.
1142 	 */
1143 
1144 	/*
1145 	 * umem calls the reclaim func when we destroy the buf cache,
1146 	 * which is after we do arc_fini().  So we set a flag to prevent
1147 	 * accessing the destroyed mutexes and lists.
1148 	 */
1149 	if (arc_dead)
1150 		return;
1151 
1152 	if (arc.c <= arc.c_min)
1153 		return;
1154 
1155 	mutex_enter(&arc_reclaim_lock);
1156 
1157 #ifdef _KERNEL
1158 	to_free = MAX(arc.c >> arc_kmem_reclaim_shift, ptob(needfree));
1159 #else
1160 	to_free = arc.c >> arc_kmem_reclaim_shift;
1161 #endif
1162 	if (arc.c > to_free)
1163 		atomic_add_64(&arc.c, -to_free);
1164 	else
1165 		arc.c = arc.c_min;
1166 
1167 	atomic_add_64(&arc.p, -(arc.p >> arc_kmem_reclaim_shift));
1168 	if (arc.c > arc.size)
1169 		arc.c = arc.size;
1170 	if (arc.c < arc.c_min)
1171 		arc.c = arc.c_min;
1172 	if (arc.p > arc.c)
1173 		arc.p = (arc.c >> 1);
1174 	ASSERT((int64_t)arc.p >= 0);
1175 
1176 	arc_adjust();
1177 
1178 	mutex_exit(&arc_reclaim_lock);
1179 }
1180 
1181 static int
1182 arc_reclaim_needed(void)
1183 {
1184 	uint64_t extra;
1185 
1186 #ifdef _KERNEL
1187 
1188 	if (needfree)
1189 		return (1);
1190 
1191 	/*
1192 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1193 	 */
1194 	extra = desfree;
1195 
1196 	/*
1197 	 * check that we're out of range of the pageout scanner.  It starts to
1198 	 * schedule paging if freemem is less than lotsfree and needfree.
1199 	 * lotsfree is the high-water mark for pageout, and needfree is the
1200 	 * number of needed free pages.  We add extra pages here to make sure
1201 	 * the scanner doesn't start up while we're freeing memory.
1202 	 */
1203 	if (freemem < lotsfree + needfree + extra)
1204 		return (1);
1205 
1206 	/*
1207 	 * check to make sure that swapfs has enough space so that anon
1208 	 * reservations can still succeeed. anon_resvmem() checks that the
1209 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1210 	 * swap pages.  We also add a bit of extra here just to prevent
1211 	 * circumstances from getting really dire.
1212 	 */
1213 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1214 		return (1);
1215 
1216 #if defined(__i386)
1217 	/*
1218 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1219 	 * kernel heap space before we ever run out of available physical
1220 	 * memory.  Most checks of the size of the heap_area compare against
1221 	 * tune.t_minarmem, which is the minimum available real memory that we
1222 	 * can have in the system.  However, this is generally fixed at 25 pages
1223 	 * which is so low that it's useless.  In this comparison, we seek to
1224 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1225 	 * heap is allocated.  (Or, in the caclulation, if less than 1/4th is
1226 	 * free)
1227 	 */
1228 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1229 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1230 		return (1);
1231 #endif
1232 
1233 #else
1234 	if (spa_get_random(100) == 0)
1235 		return (1);
1236 #endif
1237 	return (0);
1238 }
1239 
1240 static void
1241 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1242 {
1243 	size_t			i;
1244 	kmem_cache_t		*prev_cache = NULL;
1245 	extern kmem_cache_t	*zio_buf_cache[];
1246 
1247 #ifdef _KERNEL
1248 	/*
1249 	 * First purge some DNLC entries, in case the DNLC is using
1250 	 * up too much memory.
1251 	 */
1252 	dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1253 
1254 #if defined(__i386)
1255 	/*
1256 	 * Reclaim unused memory from all kmem caches.
1257 	 */
1258 	kmem_reap();
1259 #endif
1260 #endif
1261 
1262 	/*
1263 	 * An agressive reclamation will shrink the cache size as well as
1264 	 * reap free buffers from the arc kmem caches.
1265 	 */
1266 	if (strat == ARC_RECLAIM_AGGR)
1267 		arc_kmem_reclaim();
1268 
1269 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1270 		if (zio_buf_cache[i] != prev_cache) {
1271 			prev_cache = zio_buf_cache[i];
1272 			kmem_cache_reap_now(zio_buf_cache[i]);
1273 		}
1274 	}
1275 	kmem_cache_reap_now(buf_cache);
1276 	kmem_cache_reap_now(hdr_cache);
1277 }
1278 
1279 static void
1280 arc_reclaim_thread(void)
1281 {
1282 	clock_t			growtime = 0;
1283 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1284 	callb_cpr_t		cpr;
1285 
1286 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1287 
1288 	mutex_enter(&arc_reclaim_thr_lock);
1289 	while (arc_thread_exit == 0) {
1290 		if (arc_reclaim_needed()) {
1291 
1292 			if (arc.no_grow) {
1293 				if (last_reclaim == ARC_RECLAIM_CONS) {
1294 					last_reclaim = ARC_RECLAIM_AGGR;
1295 				} else {
1296 					last_reclaim = ARC_RECLAIM_CONS;
1297 				}
1298 			} else {
1299 				arc.no_grow = TRUE;
1300 				last_reclaim = ARC_RECLAIM_AGGR;
1301 				membar_producer();
1302 			}
1303 
1304 			/* reset the growth delay for every reclaim */
1305 			growtime = lbolt + (arc_grow_retry * hz);
1306 			ASSERT(growtime > 0);
1307 
1308 			arc_kmem_reap_now(last_reclaim);
1309 
1310 		} else if ((growtime > 0) && ((growtime - lbolt) <= 0)) {
1311 			arc.no_grow = FALSE;
1312 		}
1313 
1314 		if (arc_eviction_list != NULL)
1315 			arc_do_user_evicts();
1316 
1317 		/* block until needed, or one second, whichever is shorter */
1318 		CALLB_CPR_SAFE_BEGIN(&cpr);
1319 		(void) cv_timedwait(&arc_reclaim_thr_cv,
1320 		    &arc_reclaim_thr_lock, (lbolt + hz));
1321 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1322 	}
1323 
1324 	arc_thread_exit = 0;
1325 	cv_broadcast(&arc_reclaim_thr_cv);
1326 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
1327 	thread_exit();
1328 }
1329 
1330 /*
1331  * Adapt arc info given the number of bytes we are trying to add and
1332  * the state that we are comming from.  This function is only called
1333  * when we are adding new content to the cache.
1334  */
1335 static void
1336 arc_adapt(int bytes, arc_state_t *state)
1337 {
1338 	int mult;
1339 
1340 	ASSERT(bytes > 0);
1341 	/*
1342 	 * Adapt the target size of the MRU list:
1343 	 *	- if we just hit in the MRU ghost list, then increase
1344 	 *	  the target size of the MRU list.
1345 	 *	- if we just hit in the MFU ghost list, then increase
1346 	 *	  the target size of the MFU list by decreasing the
1347 	 *	  target size of the MRU list.
1348 	 */
1349 	if (state == arc.mru_ghost) {
1350 		mult = ((arc.mru_ghost->size >= arc.mfu_ghost->size) ?
1351 		    1 : (arc.mfu_ghost->size/arc.mru_ghost->size));
1352 
1353 		arc.p = MIN(arc.c, arc.p + bytes * mult);
1354 	} else if (state == arc.mfu_ghost) {
1355 		mult = ((arc.mfu_ghost->size >= arc.mru_ghost->size) ?
1356 		    1 : (arc.mru_ghost->size/arc.mfu_ghost->size));
1357 
1358 		arc.p = MAX(0, (int64_t)arc.p - bytes * mult);
1359 	}
1360 	ASSERT((int64_t)arc.p >= 0);
1361 
1362 	if (arc_reclaim_needed()) {
1363 		cv_signal(&arc_reclaim_thr_cv);
1364 		return;
1365 	}
1366 
1367 	if (arc.no_grow)
1368 		return;
1369 
1370 	if (arc.c >= arc.c_max)
1371 		return;
1372 
1373 	/*
1374 	 * If we're within (2 * maxblocksize) bytes of the target
1375 	 * cache size, increment the target cache size
1376 	 */
1377 	if (arc.size > arc.c - (2ULL << SPA_MAXBLOCKSHIFT)) {
1378 		atomic_add_64(&arc.c, (int64_t)bytes);
1379 		if (arc.c > arc.c_max)
1380 			arc.c = arc.c_max;
1381 		else if (state == arc.anon)
1382 			atomic_add_64(&arc.p, (int64_t)bytes);
1383 		if (arc.p > arc.c)
1384 			arc.p = arc.c;
1385 	}
1386 	ASSERT((int64_t)arc.p >= 0);
1387 }
1388 
1389 /*
1390  * Check if the cache has reached its limits and eviction is required
1391  * prior to insert.
1392  */
1393 static int
1394 arc_evict_needed()
1395 {
1396 	if (arc_reclaim_needed())
1397 		return (1);
1398 
1399 	return (arc.size > arc.c);
1400 }
1401 
1402 /*
1403  * The buffer, supplied as the first argument, needs a data block.
1404  * So, if we are at cache max, determine which cache should be victimized.
1405  * We have the following cases:
1406  *
1407  * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru) ->
1408  * In this situation if we're out of space, but the resident size of the MFU is
1409  * under the limit, victimize the MFU cache to satisfy this insertion request.
1410  *
1411  * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru) ->
1412  * Here, we've used up all of the available space for the MRU, so we need to
1413  * evict from our own cache instead.  Evict from the set of resident MRU
1414  * entries.
1415  *
1416  * 3. Insert for MFU (c - p) > sizeof(arc.mfu) ->
1417  * c minus p represents the MFU space in the cache, since p is the size of the
1418  * cache that is dedicated to the MRU.  In this situation there's still space on
1419  * the MFU side, so the MRU side needs to be victimized.
1420  *
1421  * 4. Insert for MFU (c - p) < sizeof(arc.mfu) ->
1422  * MFU's resident set is consuming more space than it has been allotted.  In
1423  * this situation, we must victimize our own cache, the MFU, for this insertion.
1424  */
1425 static void
1426 arc_get_data_buf(arc_buf_t *buf)
1427 {
1428 	arc_state_t	*state = buf->b_hdr->b_state;
1429 	uint64_t	size = buf->b_hdr->b_size;
1430 
1431 	arc_adapt(size, state);
1432 
1433 	/*
1434 	 * We have not yet reached cache maximum size,
1435 	 * just allocate a new buffer.
1436 	 */
1437 	if (!arc_evict_needed()) {
1438 		buf->b_data = zio_buf_alloc(size);
1439 		atomic_add_64(&arc.size, size);
1440 		goto out;
1441 	}
1442 
1443 	/*
1444 	 * If we are prefetching from the mfu ghost list, this buffer
1445 	 * will end up on the mru list; so steal space from there.
1446 	 */
1447 	if (state == arc.mfu_ghost)
1448 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc.mru : arc.mfu;
1449 	else if (state == arc.mru_ghost)
1450 		state = arc.mru;
1451 
1452 	if (state == arc.mru || state == arc.anon) {
1453 		uint64_t mru_used = arc.anon->size + arc.mru->size;
1454 		state = (arc.p > mru_used) ? arc.mfu : arc.mru;
1455 	} else {
1456 		/* MFU cases */
1457 		uint64_t mfu_space = arc.c - arc.p;
1458 		state =  (mfu_space > arc.mfu->size) ? arc.mru : arc.mfu;
1459 	}
1460 	if ((buf->b_data = arc_evict(state, size, TRUE)) == NULL) {
1461 		(void) arc_evict(state, size, FALSE);
1462 		buf->b_data = zio_buf_alloc(size);
1463 		atomic_add_64(&arc.size, size);
1464 		atomic_add_64(&arc.recycle_miss, 1);
1465 		if (arc.size > arc.c)
1466 			arc_adjust();
1467 	}
1468 	ASSERT(buf->b_data != NULL);
1469 out:
1470 	/*
1471 	 * Update the state size.  Note that ghost states have a
1472 	 * "ghost size" and so don't need to be updated.
1473 	 */
1474 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
1475 		arc_buf_hdr_t *hdr = buf->b_hdr;
1476 
1477 		atomic_add_64(&hdr->b_state->size, size);
1478 		if (list_link_active(&hdr->b_arc_node)) {
1479 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
1480 			atomic_add_64(&hdr->b_state->lsize, size);
1481 		}
1482 	}
1483 }
1484 
1485 /*
1486  * This routine is called whenever a buffer is accessed.
1487  * NOTE: the hash lock is dropped in this function.
1488  */
1489 static void
1490 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
1491 {
1492 	ASSERT(MUTEX_HELD(hash_lock));
1493 
1494 	if (buf->b_state == arc.anon) {
1495 		/*
1496 		 * This buffer is not in the cache, and does not
1497 		 * appear in our "ghost" list.  Add the new buffer
1498 		 * to the MRU state.
1499 		 */
1500 
1501 		ASSERT(buf->b_arc_access == 0);
1502 		buf->b_arc_access = lbolt;
1503 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1504 		arc_change_state(arc.mru, buf, hash_lock);
1505 
1506 	} else if (buf->b_state == arc.mru) {
1507 		/*
1508 		 * If this buffer is here because of a prefetch, then either:
1509 		 * - clear the flag if this is a "referencing" read
1510 		 *   (any subsequent access will bump this into the MFU state).
1511 		 * or
1512 		 * - move the buffer to the head of the list if this is
1513 		 *   another prefetch (to make it less likely to be evicted).
1514 		 */
1515 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1516 			if (refcount_count(&buf->b_refcnt) == 0) {
1517 				ASSERT(list_link_active(&buf->b_arc_node));
1518 				mutex_enter(&arc.mru->mtx);
1519 				list_remove(&arc.mru->list, buf);
1520 				list_insert_head(&arc.mru->list, buf);
1521 				mutex_exit(&arc.mru->mtx);
1522 			} else {
1523 				buf->b_flags &= ~ARC_PREFETCH;
1524 				atomic_add_64(&arc.mru->hits, 1);
1525 			}
1526 			buf->b_arc_access = lbolt;
1527 			return;
1528 		}
1529 
1530 		/*
1531 		 * This buffer has been "accessed" only once so far,
1532 		 * but it is still in the cache. Move it to the MFU
1533 		 * state.
1534 		 */
1535 		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
1536 			/*
1537 			 * More than 125ms have passed since we
1538 			 * instantiated this buffer.  Move it to the
1539 			 * most frequently used state.
1540 			 */
1541 			buf->b_arc_access = lbolt;
1542 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1543 			arc_change_state(arc.mfu, buf, hash_lock);
1544 		}
1545 		atomic_add_64(&arc.mru->hits, 1);
1546 	} else if (buf->b_state == arc.mru_ghost) {
1547 		arc_state_t	*new_state;
1548 		/*
1549 		 * This buffer has been "accessed" recently, but
1550 		 * was evicted from the cache.  Move it to the
1551 		 * MFU state.
1552 		 */
1553 
1554 		if (buf->b_flags & ARC_PREFETCH) {
1555 			new_state = arc.mru;
1556 			if (refcount_count(&buf->b_refcnt) > 0)
1557 				buf->b_flags &= ~ARC_PREFETCH;
1558 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1559 		} else {
1560 			new_state = arc.mfu;
1561 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1562 		}
1563 
1564 		buf->b_arc_access = lbolt;
1565 		arc_change_state(new_state, buf, hash_lock);
1566 
1567 		atomic_add_64(&arc.mru_ghost->hits, 1);
1568 	} else if (buf->b_state == arc.mfu) {
1569 		/*
1570 		 * This buffer has been accessed more than once and is
1571 		 * still in the cache.  Keep it in the MFU state.
1572 		 *
1573 		 * NOTE: an add_reference() that occurred when we did
1574 		 * the arc_read() will have kicked this off the list.
1575 		 * If it was a prefetch, we will explicitly move it to
1576 		 * the head of the list now.
1577 		 */
1578 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1579 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
1580 			ASSERT(list_link_active(&buf->b_arc_node));
1581 			mutex_enter(&arc.mfu->mtx);
1582 			list_remove(&arc.mfu->list, buf);
1583 			list_insert_head(&arc.mfu->list, buf);
1584 			mutex_exit(&arc.mfu->mtx);
1585 		}
1586 		atomic_add_64(&arc.mfu->hits, 1);
1587 		buf->b_arc_access = lbolt;
1588 	} else if (buf->b_state == arc.mfu_ghost) {
1589 		arc_state_t	*new_state = arc.mfu;
1590 		/*
1591 		 * This buffer has been accessed more than once but has
1592 		 * been evicted from the cache.  Move it back to the
1593 		 * MFU state.
1594 		 */
1595 
1596 		if (buf->b_flags & ARC_PREFETCH) {
1597 			/*
1598 			 * This is a prefetch access...
1599 			 * move this block back to the MRU state.
1600 			 */
1601 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
1602 			new_state = arc.mru;
1603 		}
1604 
1605 		buf->b_arc_access = lbolt;
1606 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1607 		arc_change_state(new_state, buf, hash_lock);
1608 
1609 		atomic_add_64(&arc.mfu_ghost->hits, 1);
1610 	} else {
1611 		ASSERT(!"invalid arc state");
1612 	}
1613 }
1614 
1615 /* a generic arc_done_func_t which you can use */
1616 /* ARGSUSED */
1617 void
1618 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
1619 {
1620 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
1621 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1622 }
1623 
1624 /* a generic arc_done_func_t which you can use */
1625 void
1626 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
1627 {
1628 	arc_buf_t **bufp = arg;
1629 	if (zio && zio->io_error) {
1630 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1631 		*bufp = NULL;
1632 	} else {
1633 		*bufp = buf;
1634 	}
1635 }
1636 
1637 static void
1638 arc_read_done(zio_t *zio)
1639 {
1640 	arc_buf_hdr_t	*hdr, *found;
1641 	arc_buf_t	*buf;
1642 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
1643 	kmutex_t	*hash_lock;
1644 	arc_callback_t	*callback_list, *acb;
1645 	int		freeable = FALSE;
1646 
1647 	buf = zio->io_private;
1648 	hdr = buf->b_hdr;
1649 
1650 	/*
1651 	 * The hdr was inserted into hash-table and removed from lists
1652 	 * prior to starting I/O.  We should find this header, since
1653 	 * it's in the hash table, and it should be legit since it's
1654 	 * not possible to evict it during the I/O.  The only possible
1655 	 * reason for it not to be found is if we were freed during the
1656 	 * read.
1657 	 */
1658 	found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
1659 		    &hash_lock);
1660 
1661 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
1662 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))));
1663 
1664 	/* byteswap if necessary */
1665 	callback_list = hdr->b_acb;
1666 	ASSERT(callback_list != NULL);
1667 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap)
1668 		callback_list->acb_byteswap(buf->b_data, hdr->b_size);
1669 
1670 	/* create copies of the data buffer for the callers */
1671 	abuf = buf;
1672 	for (acb = callback_list; acb; acb = acb->acb_next) {
1673 		if (acb->acb_done) {
1674 			if (abuf == NULL)
1675 				abuf = arc_buf_clone(buf);
1676 			acb->acb_buf = abuf;
1677 			abuf = NULL;
1678 		}
1679 	}
1680 	hdr->b_acb = NULL;
1681 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
1682 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
1683 	if (abuf == buf)
1684 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1685 
1686 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
1687 
1688 	if (zio->io_error != 0) {
1689 		hdr->b_flags |= ARC_IO_ERROR;
1690 		if (hdr->b_state != arc.anon)
1691 			arc_change_state(arc.anon, hdr, hash_lock);
1692 		if (HDR_IN_HASH_TABLE(hdr))
1693 			buf_hash_remove(hdr);
1694 		freeable = refcount_is_zero(&hdr->b_refcnt);
1695 		/* convert checksum errors into IO errors */
1696 		if (zio->io_error == ECKSUM)
1697 			zio->io_error = EIO;
1698 	}
1699 
1700 	/*
1701 	 * Broadcast before we drop the hash_lock to avoid the possibility
1702 	 * that the hdr (and hence the cv) might be freed before we get to
1703 	 * the cv_broadcast().
1704 	 */
1705 	cv_broadcast(&hdr->b_cv);
1706 
1707 	if (hash_lock) {
1708 		/*
1709 		 * Only call arc_access on anonymous buffers.  This is because
1710 		 * if we've issued an I/O for an evicted buffer, we've already
1711 		 * called arc_access (to prevent any simultaneous readers from
1712 		 * getting confused).
1713 		 */
1714 		if (zio->io_error == 0 && hdr->b_state == arc.anon)
1715 			arc_access(hdr, hash_lock);
1716 		mutex_exit(hash_lock);
1717 	} else {
1718 		/*
1719 		 * This block was freed while we waited for the read to
1720 		 * complete.  It has been removed from the hash table and
1721 		 * moved to the anonymous state (so that it won't show up
1722 		 * in the cache).
1723 		 */
1724 		ASSERT3P(hdr->b_state, ==, arc.anon);
1725 		freeable = refcount_is_zero(&hdr->b_refcnt);
1726 	}
1727 
1728 	/* execute each callback and free its structure */
1729 	while ((acb = callback_list) != NULL) {
1730 		if (acb->acb_done)
1731 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
1732 
1733 		if (acb->acb_zio_dummy != NULL) {
1734 			acb->acb_zio_dummy->io_error = zio->io_error;
1735 			zio_nowait(acb->acb_zio_dummy);
1736 		}
1737 
1738 		callback_list = acb->acb_next;
1739 		kmem_free(acb, sizeof (arc_callback_t));
1740 	}
1741 
1742 	if (freeable)
1743 		arc_hdr_destroy(hdr);
1744 }
1745 
1746 /*
1747  * "Read" the block block at the specified DVA (in bp) via the
1748  * cache.  If the block is found in the cache, invoke the provided
1749  * callback immediately and return.  Note that the `zio' parameter
1750  * in the callback will be NULL in this case, since no IO was
1751  * required.  If the block is not in the cache pass the read request
1752  * on to the spa with a substitute callback function, so that the
1753  * requested block will be added to the cache.
1754  *
1755  * If a read request arrives for a block that has a read in-progress,
1756  * either wait for the in-progress read to complete (and return the
1757  * results); or, if this is a read with a "done" func, add a record
1758  * to the read to invoke the "done" func when the read completes,
1759  * and return; or just return.
1760  *
1761  * arc_read_done() will invoke all the requested "done" functions
1762  * for readers of this block.
1763  */
1764 int
1765 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap,
1766     arc_done_func_t *done, void *private, int priority, int flags,
1767     uint32_t *arc_flags, zbookmark_t *zb)
1768 {
1769 	arc_buf_hdr_t *hdr;
1770 	arc_buf_t *buf;
1771 	kmutex_t *hash_lock;
1772 	zio_t	*rzio;
1773 
1774 top:
1775 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
1776 	if (hdr && hdr->b_datacnt > 0) {
1777 
1778 		*arc_flags |= ARC_CACHED;
1779 
1780 		if (HDR_IO_IN_PROGRESS(hdr)) {
1781 
1782 			if (*arc_flags & ARC_WAIT) {
1783 				cv_wait(&hdr->b_cv, hash_lock);
1784 				mutex_exit(hash_lock);
1785 				goto top;
1786 			}
1787 			ASSERT(*arc_flags & ARC_NOWAIT);
1788 
1789 			if (done) {
1790 				arc_callback_t	*acb = NULL;
1791 
1792 				acb = kmem_zalloc(sizeof (arc_callback_t),
1793 				    KM_SLEEP);
1794 				acb->acb_done = done;
1795 				acb->acb_private = private;
1796 				acb->acb_byteswap = swap;
1797 				if (pio != NULL)
1798 					acb->acb_zio_dummy = zio_null(pio,
1799 					    spa, NULL, NULL, flags);
1800 
1801 				ASSERT(acb->acb_done != NULL);
1802 				acb->acb_next = hdr->b_acb;
1803 				hdr->b_acb = acb;
1804 				add_reference(hdr, hash_lock, private);
1805 				mutex_exit(hash_lock);
1806 				return (0);
1807 			}
1808 			mutex_exit(hash_lock);
1809 			return (0);
1810 		}
1811 
1812 		ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu);
1813 
1814 		if (done) {
1815 			add_reference(hdr, hash_lock, private);
1816 			/*
1817 			 * If this block is already in use, create a new
1818 			 * copy of the data so that we will be guaranteed
1819 			 * that arc_release() will always succeed.
1820 			 */
1821 			buf = hdr->b_buf;
1822 			ASSERT(buf);
1823 			ASSERT(buf->b_data);
1824 			if (HDR_BUF_AVAILABLE(hdr)) {
1825 				ASSERT(buf->b_efunc == NULL);
1826 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
1827 			} else {
1828 				buf = arc_buf_clone(buf);
1829 			}
1830 		} else if (*arc_flags & ARC_PREFETCH &&
1831 		    refcount_count(&hdr->b_refcnt) == 0) {
1832 			hdr->b_flags |= ARC_PREFETCH;
1833 		}
1834 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1835 		arc_access(hdr, hash_lock);
1836 		mutex_exit(hash_lock);
1837 		atomic_add_64(&arc.hits, 1);
1838 		if (done)
1839 			done(NULL, buf, private);
1840 	} else {
1841 		uint64_t size = BP_GET_LSIZE(bp);
1842 		arc_callback_t	*acb;
1843 
1844 		if (hdr == NULL) {
1845 			/* this block is not in the cache */
1846 			arc_buf_hdr_t	*exists;
1847 
1848 			buf = arc_buf_alloc(spa, size, private);
1849 			hdr = buf->b_hdr;
1850 			hdr->b_dva = *BP_IDENTITY(bp);
1851 			hdr->b_birth = bp->blk_birth;
1852 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
1853 			exists = buf_hash_insert(hdr, &hash_lock);
1854 			if (exists) {
1855 				/* somebody beat us to the hash insert */
1856 				mutex_exit(hash_lock);
1857 				bzero(&hdr->b_dva, sizeof (dva_t));
1858 				hdr->b_birth = 0;
1859 				hdr->b_cksum0 = 0;
1860 				(void) arc_buf_remove_ref(buf, private);
1861 				goto top; /* restart the IO request */
1862 			}
1863 			/* if this is a prefetch, we don't have a reference */
1864 			if (*arc_flags & ARC_PREFETCH) {
1865 				(void) remove_reference(hdr, hash_lock,
1866 				    private);
1867 				hdr->b_flags |= ARC_PREFETCH;
1868 			}
1869 			if (BP_GET_LEVEL(bp) > 0)
1870 				hdr->b_flags |= ARC_INDIRECT;
1871 		} else {
1872 			/* this block is in the ghost cache */
1873 			ASSERT(GHOST_STATE(hdr->b_state));
1874 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1875 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
1876 			ASSERT(hdr->b_buf == NULL);
1877 
1878 			/* if this is a prefetch, we don't have a reference */
1879 			if (*arc_flags & ARC_PREFETCH)
1880 				hdr->b_flags |= ARC_PREFETCH;
1881 			else
1882 				add_reference(hdr, hash_lock, private);
1883 			buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
1884 			buf->b_hdr = hdr;
1885 			buf->b_data = NULL;
1886 			buf->b_efunc = NULL;
1887 			buf->b_private = NULL;
1888 			buf->b_next = NULL;
1889 			hdr->b_buf = buf;
1890 			arc_get_data_buf(buf);
1891 			ASSERT(hdr->b_datacnt == 0);
1892 			hdr->b_datacnt = 1;
1893 
1894 		}
1895 
1896 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
1897 		acb->acb_done = done;
1898 		acb->acb_private = private;
1899 		acb->acb_byteswap = swap;
1900 
1901 		ASSERT(hdr->b_acb == NULL);
1902 		hdr->b_acb = acb;
1903 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
1904 
1905 		/*
1906 		 * If the buffer has been evicted, migrate it to a present state
1907 		 * before issuing the I/O.  Once we drop the hash-table lock,
1908 		 * the header will be marked as I/O in progress and have an
1909 		 * attached buffer.  At this point, anybody who finds this
1910 		 * buffer ought to notice that it's legit but has a pending I/O.
1911 		 */
1912 
1913 		if (GHOST_STATE(hdr->b_state))
1914 			arc_access(hdr, hash_lock);
1915 		mutex_exit(hash_lock);
1916 
1917 		ASSERT3U(hdr->b_size, ==, size);
1918 		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
1919 		    zbookmark_t *, zb);
1920 		atomic_add_64(&arc.misses, 1);
1921 
1922 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
1923 		    arc_read_done, buf, priority, flags, zb);
1924 
1925 		if (*arc_flags & ARC_WAIT)
1926 			return (zio_wait(rzio));
1927 
1928 		ASSERT(*arc_flags & ARC_NOWAIT);
1929 		zio_nowait(rzio);
1930 	}
1931 	return (0);
1932 }
1933 
1934 /*
1935  * arc_read() variant to support pool traversal.  If the block is already
1936  * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
1937  * The idea is that we don't want pool traversal filling up memory, but
1938  * if the ARC already has the data anyway, we shouldn't pay for the I/O.
1939  */
1940 int
1941 arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
1942 {
1943 	arc_buf_hdr_t *hdr;
1944 	kmutex_t *hash_mtx;
1945 	int rc = 0;
1946 
1947 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
1948 
1949 	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
1950 		arc_buf_t *buf = hdr->b_buf;
1951 
1952 		ASSERT(buf);
1953 		while (buf->b_data == NULL) {
1954 			buf = buf->b_next;
1955 			ASSERT(buf);
1956 		}
1957 		bcopy(buf->b_data, data, hdr->b_size);
1958 	} else {
1959 		rc = ENOENT;
1960 	}
1961 
1962 	if (hash_mtx)
1963 		mutex_exit(hash_mtx);
1964 
1965 	return (rc);
1966 }
1967 
1968 void
1969 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
1970 {
1971 	ASSERT(buf->b_hdr != NULL);
1972 	ASSERT(buf->b_hdr->b_state != arc.anon);
1973 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
1974 	buf->b_efunc = func;
1975 	buf->b_private = private;
1976 }
1977 
1978 /*
1979  * This is used by the DMU to let the ARC know that a buffer is
1980  * being evicted, so the ARC should clean up.  If this arc buf
1981  * is not yet in the evicted state, it will be put there.
1982  */
1983 int
1984 arc_buf_evict(arc_buf_t *buf)
1985 {
1986 	arc_buf_hdr_t *hdr = buf->b_hdr;
1987 	kmutex_t *hash_lock;
1988 	arc_buf_t **bufp;
1989 
1990 	if (hdr == NULL) {
1991 		/*
1992 		 * We are in arc_do_user_evicts().
1993 		 */
1994 		ASSERT(buf->b_data == NULL);
1995 		return (0);
1996 	}
1997 
1998 	hash_lock = HDR_LOCK(hdr);
1999 	mutex_enter(hash_lock);
2000 
2001 	if (buf->b_data == NULL) {
2002 		/*
2003 		 * We are on the eviction list.
2004 		 */
2005 		mutex_exit(hash_lock);
2006 		mutex_enter(&arc_eviction_mtx);
2007 		if (buf->b_hdr == NULL) {
2008 			/*
2009 			 * We are already in arc_do_user_evicts().
2010 			 */
2011 			mutex_exit(&arc_eviction_mtx);
2012 			return (0);
2013 		} else {
2014 			arc_buf_t copy = *buf; /* structure assignment */
2015 			/*
2016 			 * Process this buffer now
2017 			 * but let arc_do_user_evicts() do the reaping.
2018 			 */
2019 			buf->b_efunc = NULL;
2020 			mutex_exit(&arc_eviction_mtx);
2021 			VERIFY(copy.b_efunc(&copy) == 0);
2022 			return (1);
2023 		}
2024 	}
2025 
2026 	ASSERT(buf->b_hdr == hdr);
2027 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2028 	ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu);
2029 
2030 	/*
2031 	 * Pull this buffer off of the hdr
2032 	 */
2033 	bufp = &hdr->b_buf;
2034 	while (*bufp != buf)
2035 		bufp = &(*bufp)->b_next;
2036 	*bufp = buf->b_next;
2037 
2038 	ASSERT(buf->b_data != NULL);
2039 	buf->b_hdr = hdr;
2040 	arc_buf_destroy(buf, FALSE, FALSE);
2041 
2042 	if (hdr->b_datacnt == 0) {
2043 		arc_state_t *old_state = hdr->b_state;
2044 		arc_state_t *evicted_state;
2045 
2046 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2047 
2048 		evicted_state =
2049 		    (old_state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost;
2050 
2051 		mutex_enter(&old_state->mtx);
2052 		mutex_enter(&evicted_state->mtx);
2053 
2054 		arc_change_state(evicted_state, hdr, hash_lock);
2055 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2056 		hdr->b_flags = ARC_IN_HASH_TABLE;
2057 
2058 		mutex_exit(&evicted_state->mtx);
2059 		mutex_exit(&old_state->mtx);
2060 	}
2061 	mutex_exit(hash_lock);
2062 
2063 	VERIFY(buf->b_efunc(buf) == 0);
2064 	buf->b_efunc = NULL;
2065 	buf->b_private = NULL;
2066 	buf->b_hdr = NULL;
2067 	kmem_cache_free(buf_cache, buf);
2068 	return (1);
2069 }
2070 
2071 /*
2072  * Release this buffer from the cache.  This must be done
2073  * after a read and prior to modifying the buffer contents.
2074  * If the buffer has more than one reference, we must make
2075  * make a new hdr for the buffer.
2076  */
2077 void
2078 arc_release(arc_buf_t *buf, void *tag)
2079 {
2080 	arc_buf_hdr_t *hdr = buf->b_hdr;
2081 	kmutex_t *hash_lock = HDR_LOCK(hdr);
2082 
2083 	/* this buffer is not on any list */
2084 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2085 
2086 	if (hdr->b_state == arc.anon) {
2087 		/* this buffer is already released */
2088 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2089 		ASSERT(BUF_EMPTY(hdr));
2090 		ASSERT(buf->b_efunc == NULL);
2091 		return;
2092 	}
2093 
2094 	mutex_enter(hash_lock);
2095 
2096 	/*
2097 	 * Do we have more than one buf?
2098 	 */
2099 	if (hdr->b_buf != buf || buf->b_next != NULL) {
2100 		arc_buf_hdr_t *nhdr;
2101 		arc_buf_t **bufp;
2102 		uint64_t blksz = hdr->b_size;
2103 		spa_t *spa = hdr->b_spa;
2104 
2105 		ASSERT(hdr->b_datacnt > 1);
2106 		/*
2107 		 * Pull the data off of this buf and attach it to
2108 		 * a new anonymous buf.
2109 		 */
2110 		(void) remove_reference(hdr, hash_lock, tag);
2111 		bufp = &hdr->b_buf;
2112 		while (*bufp != buf)
2113 			bufp = &(*bufp)->b_next;
2114 		*bufp = (*bufp)->b_next;
2115 
2116 		ASSERT3U(hdr->b_state->size, >=, hdr->b_size);
2117 		atomic_add_64(&hdr->b_state->size, -hdr->b_size);
2118 		if (refcount_is_zero(&hdr->b_refcnt)) {
2119 			ASSERT3U(hdr->b_state->lsize, >=, hdr->b_size);
2120 			atomic_add_64(&hdr->b_state->lsize, -hdr->b_size);
2121 		}
2122 		hdr->b_datacnt -= 1;
2123 
2124 		mutex_exit(hash_lock);
2125 
2126 		nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
2127 		nhdr->b_size = blksz;
2128 		nhdr->b_spa = spa;
2129 		nhdr->b_buf = buf;
2130 		nhdr->b_state = arc.anon;
2131 		nhdr->b_arc_access = 0;
2132 		nhdr->b_flags = 0;
2133 		nhdr->b_datacnt = 1;
2134 		buf->b_hdr = nhdr;
2135 		buf->b_next = NULL;
2136 		(void) refcount_add(&nhdr->b_refcnt, tag);
2137 		atomic_add_64(&arc.anon->size, blksz);
2138 
2139 		hdr = nhdr;
2140 	} else {
2141 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2142 		ASSERT(!list_link_active(&hdr->b_arc_node));
2143 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2144 		arc_change_state(arc.anon, hdr, hash_lock);
2145 		hdr->b_arc_access = 0;
2146 		mutex_exit(hash_lock);
2147 		bzero(&hdr->b_dva, sizeof (dva_t));
2148 		hdr->b_birth = 0;
2149 		hdr->b_cksum0 = 0;
2150 	}
2151 	buf->b_efunc = NULL;
2152 	buf->b_private = NULL;
2153 }
2154 
2155 int
2156 arc_released(arc_buf_t *buf)
2157 {
2158 	return (buf->b_data != NULL && buf->b_hdr->b_state == arc.anon);
2159 }
2160 
2161 int
2162 arc_has_callback(arc_buf_t *buf)
2163 {
2164 	return (buf->b_efunc != NULL);
2165 }
2166 
2167 #ifdef ZFS_DEBUG
2168 int
2169 arc_referenced(arc_buf_t *buf)
2170 {
2171 	return (refcount_count(&buf->b_hdr->b_refcnt));
2172 }
2173 #endif
2174 
2175 static void
2176 arc_write_done(zio_t *zio)
2177 {
2178 	arc_buf_t *buf;
2179 	arc_buf_hdr_t *hdr;
2180 	arc_callback_t *acb;
2181 
2182 	buf = zio->io_private;
2183 	hdr = buf->b_hdr;
2184 	acb = hdr->b_acb;
2185 	hdr->b_acb = NULL;
2186 	ASSERT(acb != NULL);
2187 
2188 	/* this buffer is on no lists and is not in the hash table */
2189 	ASSERT3P(hdr->b_state, ==, arc.anon);
2190 
2191 	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
2192 	hdr->b_birth = zio->io_bp->blk_birth;
2193 	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
2194 	/*
2195 	 * If the block to be written was all-zero, we may have
2196 	 * compressed it away.  In this case no write was performed
2197 	 * so there will be no dva/birth-date/checksum.  The buffer
2198 	 * must therefor remain anonymous (and uncached).
2199 	 */
2200 	if (!BUF_EMPTY(hdr)) {
2201 		arc_buf_hdr_t *exists;
2202 		kmutex_t *hash_lock;
2203 
2204 		exists = buf_hash_insert(hdr, &hash_lock);
2205 		if (exists) {
2206 			/*
2207 			 * This can only happen if we overwrite for
2208 			 * sync-to-convergence, because we remove
2209 			 * buffers from the hash table when we arc_free().
2210 			 */
2211 			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
2212 			    BP_IDENTITY(zio->io_bp)));
2213 			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
2214 			    zio->io_bp->blk_birth);
2215 
2216 			ASSERT(refcount_is_zero(&exists->b_refcnt));
2217 			arc_change_state(arc.anon, exists, hash_lock);
2218 			mutex_exit(hash_lock);
2219 			arc_hdr_destroy(exists);
2220 			exists = buf_hash_insert(hdr, &hash_lock);
2221 			ASSERT3P(exists, ==, NULL);
2222 		}
2223 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2224 		arc_access(hdr, hash_lock);
2225 		mutex_exit(hash_lock);
2226 	} else if (acb->acb_done == NULL) {
2227 		int destroy_hdr;
2228 		/*
2229 		 * This is an anonymous buffer with no user callback,
2230 		 * destroy it if there are no active references.
2231 		 */
2232 		mutex_enter(&arc_eviction_mtx);
2233 		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
2234 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2235 		mutex_exit(&arc_eviction_mtx);
2236 		if (destroy_hdr)
2237 			arc_hdr_destroy(hdr);
2238 	} else {
2239 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2240 	}
2241 
2242 	if (acb->acb_done) {
2243 		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
2244 		acb->acb_done(zio, buf, acb->acb_private);
2245 	}
2246 
2247 	kmem_free(acb, sizeof (arc_callback_t));
2248 }
2249 
2250 int
2251 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies,
2252     uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
2253     arc_done_func_t *done, void *private, int priority, int flags,
2254     uint32_t arc_flags, zbookmark_t *zb)
2255 {
2256 	arc_buf_hdr_t *hdr = buf->b_hdr;
2257 	arc_callback_t	*acb;
2258 	zio_t	*rzio;
2259 
2260 	/* this is a private buffer - no locking required */
2261 	ASSERT3P(hdr->b_state, ==, arc.anon);
2262 	ASSERT(BUF_EMPTY(hdr));
2263 	ASSERT(!HDR_IO_ERROR(hdr));
2264 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
2265 	ASSERT(hdr->b_acb == 0);
2266 	acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2267 	acb->acb_done = done;
2268 	acb->acb_private = private;
2269 	acb->acb_byteswap = (arc_byteswap_func_t *)-1;
2270 	hdr->b_acb = acb;
2271 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
2272 	rzio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp,
2273 	    buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags, zb);
2274 
2275 	if (arc_flags & ARC_WAIT)
2276 		return (zio_wait(rzio));
2277 
2278 	ASSERT(arc_flags & ARC_NOWAIT);
2279 	zio_nowait(rzio);
2280 
2281 	return (0);
2282 }
2283 
2284 int
2285 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
2286     zio_done_func_t *done, void *private, uint32_t arc_flags)
2287 {
2288 	arc_buf_hdr_t *ab;
2289 	kmutex_t *hash_lock;
2290 	zio_t	*zio;
2291 
2292 	/*
2293 	 * If this buffer is in the cache, release it, so it
2294 	 * can be re-used.
2295 	 */
2296 	ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2297 	if (ab != NULL) {
2298 		/*
2299 		 * The checksum of blocks to free is not always
2300 		 * preserved (eg. on the deadlist).  However, if it is
2301 		 * nonzero, it should match what we have in the cache.
2302 		 */
2303 		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
2304 		    ab->b_cksum0 == bp->blk_cksum.zc_word[0]);
2305 		if (ab->b_state != arc.anon)
2306 			arc_change_state(arc.anon, ab, hash_lock);
2307 		if (HDR_IO_IN_PROGRESS(ab)) {
2308 			/*
2309 			 * This should only happen when we prefetch.
2310 			 */
2311 			ASSERT(ab->b_flags & ARC_PREFETCH);
2312 			ASSERT3U(ab->b_datacnt, ==, 1);
2313 			ab->b_flags |= ARC_FREED_IN_READ;
2314 			if (HDR_IN_HASH_TABLE(ab))
2315 				buf_hash_remove(ab);
2316 			ab->b_arc_access = 0;
2317 			bzero(&ab->b_dva, sizeof (dva_t));
2318 			ab->b_birth = 0;
2319 			ab->b_cksum0 = 0;
2320 			ab->b_buf->b_efunc = NULL;
2321 			ab->b_buf->b_private = NULL;
2322 			mutex_exit(hash_lock);
2323 		} else if (refcount_is_zero(&ab->b_refcnt)) {
2324 			mutex_exit(hash_lock);
2325 			arc_hdr_destroy(ab);
2326 			atomic_add_64(&arc.deleted, 1);
2327 		} else {
2328 			/*
2329 			 * We still have an active reference on this
2330 			 * buffer.  This can happen, e.g., from
2331 			 * dbuf_unoverride().
2332 			 */
2333 			ASSERT(!HDR_IN_HASH_TABLE(ab));
2334 			ab->b_arc_access = 0;
2335 			bzero(&ab->b_dva, sizeof (dva_t));
2336 			ab->b_birth = 0;
2337 			ab->b_cksum0 = 0;
2338 			ab->b_buf->b_efunc = NULL;
2339 			ab->b_buf->b_private = NULL;
2340 			mutex_exit(hash_lock);
2341 		}
2342 	}
2343 
2344 	zio = zio_free(pio, spa, txg, bp, done, private);
2345 
2346 	if (arc_flags & ARC_WAIT)
2347 		return (zio_wait(zio));
2348 
2349 	ASSERT(arc_flags & ARC_NOWAIT);
2350 	zio_nowait(zio);
2351 
2352 	return (0);
2353 }
2354 
2355 void
2356 arc_tempreserve_clear(uint64_t tempreserve)
2357 {
2358 	atomic_add_64(&arc_tempreserve, -tempreserve);
2359 	ASSERT((int64_t)arc_tempreserve >= 0);
2360 }
2361 
2362 int
2363 arc_tempreserve_space(uint64_t tempreserve)
2364 {
2365 #ifdef ZFS_DEBUG
2366 	/*
2367 	 * Once in a while, fail for no reason.  Everything should cope.
2368 	 */
2369 	if (spa_get_random(10000) == 0) {
2370 		dprintf("forcing random failure\n");
2371 		return (ERESTART);
2372 	}
2373 #endif
2374 	if (tempreserve > arc.c/4 && !arc.no_grow)
2375 		arc.c = MIN(arc.c_max, tempreserve * 4);
2376 	if (tempreserve > arc.c)
2377 		return (ENOMEM);
2378 
2379 	/*
2380 	 * Throttle writes when the amount of dirty data in the cache
2381 	 * gets too large.  We try to keep the cache less than half full
2382 	 * of dirty blocks so that our sync times don't grow too large.
2383 	 * Note: if two requests come in concurrently, we might let them
2384 	 * both succeed, when one of them should fail.  Not a huge deal.
2385 	 *
2386 	 * XXX The limit should be adjusted dynamically to keep the time
2387 	 * to sync a dataset fixed (around 1-5 seconds?).
2388 	 */
2389 
2390 	if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 &&
2391 	    arc_tempreserve + arc.anon->size > arc.c / 4) {
2392 		dprintf("failing, arc_tempreserve=%lluK anon=%lluK "
2393 		    "tempreserve=%lluK arc.c=%lluK\n",
2394 		    arc_tempreserve>>10, arc.anon->lsize>>10,
2395 		    tempreserve>>10, arc.c>>10);
2396 		return (ERESTART);
2397 	}
2398 	atomic_add_64(&arc_tempreserve, tempreserve);
2399 	return (0);
2400 }
2401 
2402 void
2403 arc_init(void)
2404 {
2405 	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
2406 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
2407 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
2408 
2409 	/* Convert seconds to clock ticks */
2410 	arc_min_prefetch_lifespan = 1 * hz;
2411 
2412 	/* Start out with 1/8 of all memory */
2413 	arc.c = physmem * PAGESIZE / 8;
2414 
2415 #ifdef _KERNEL
2416 	/*
2417 	 * On architectures where the physical memory can be larger
2418 	 * than the addressable space (intel in 32-bit mode), we may
2419 	 * need to limit the cache to 1/8 of VM size.
2420 	 */
2421 	arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
2422 #endif
2423 
2424 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
2425 	arc.c_min = MAX(arc.c / 4, 64<<20);
2426 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
2427 	if (arc.c * 8 >= 1<<30)
2428 		arc.c_max = (arc.c * 8) - (1<<30);
2429 	else
2430 		arc.c_max = arc.c_min;
2431 	arc.c_max = MAX(arc.c * 6, arc.c_max);
2432 	arc.c = arc.c_max;
2433 	arc.p = (arc.c >> 1);
2434 
2435 	/* if kmem_flags are set, lets try to use less memory */
2436 	if (kmem_debugging())
2437 		arc.c = arc.c / 2;
2438 	if (arc.c < arc.c_min)
2439 		arc.c = arc.c_min;
2440 
2441 	arc.anon = &ARC_anon;
2442 	arc.mru = &ARC_mru;
2443 	arc.mru_ghost = &ARC_mru_ghost;
2444 	arc.mfu = &ARC_mfu;
2445 	arc.mfu_ghost = &ARC_mfu_ghost;
2446 	arc.size = 0;
2447 
2448 	arc.hits = 0;
2449 	arc.recycle_miss = 0;
2450 	arc.evict_skip = 0;
2451 	arc.mutex_miss = 0;
2452 
2453 	mutex_init(&arc.anon->mtx, NULL, MUTEX_DEFAULT, NULL);
2454 	mutex_init(&arc.mru->mtx, NULL, MUTEX_DEFAULT, NULL);
2455 	mutex_init(&arc.mru_ghost->mtx, NULL, MUTEX_DEFAULT, NULL);
2456 	mutex_init(&arc.mfu->mtx, NULL, MUTEX_DEFAULT, NULL);
2457 	mutex_init(&arc.mfu_ghost->mtx, NULL, MUTEX_DEFAULT, NULL);
2458 
2459 	list_create(&arc.mru->list, sizeof (arc_buf_hdr_t),
2460 	    offsetof(arc_buf_hdr_t, b_arc_node));
2461 	list_create(&arc.mru_ghost->list, sizeof (arc_buf_hdr_t),
2462 	    offsetof(arc_buf_hdr_t, b_arc_node));
2463 	list_create(&arc.mfu->list, sizeof (arc_buf_hdr_t),
2464 	    offsetof(arc_buf_hdr_t, b_arc_node));
2465 	list_create(&arc.mfu_ghost->list, sizeof (arc_buf_hdr_t),
2466 	    offsetof(arc_buf_hdr_t, b_arc_node));
2467 
2468 	buf_init();
2469 
2470 	arc_thread_exit = 0;
2471 	arc_eviction_list = NULL;
2472 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
2473 
2474 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
2475 	    TS_RUN, minclsyspri);
2476 }
2477 
2478 void
2479 arc_fini(void)
2480 {
2481 	mutex_enter(&arc_reclaim_thr_lock);
2482 	arc_thread_exit = 1;
2483 	while (arc_thread_exit != 0)
2484 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
2485 	mutex_exit(&arc_reclaim_thr_lock);
2486 
2487 	arc_flush();
2488 
2489 	arc_dead = TRUE;
2490 
2491 	mutex_destroy(&arc_eviction_mtx);
2492 	mutex_destroy(&arc_reclaim_lock);
2493 	mutex_destroy(&arc_reclaim_thr_lock);
2494 	cv_destroy(&arc_reclaim_thr_cv);
2495 
2496 	list_destroy(&arc.mru->list);
2497 	list_destroy(&arc.mru_ghost->list);
2498 	list_destroy(&arc.mfu->list);
2499 	list_destroy(&arc.mfu_ghost->list);
2500 
2501 	mutex_destroy(&arc.anon->mtx);
2502 	mutex_destroy(&arc.mru->mtx);
2503 	mutex_destroy(&arc.mru_ghost->mtx);
2504 	mutex_destroy(&arc.mfu->mtx);
2505 	mutex_destroy(&arc.mfu_ghost->mtx);
2506 
2507 	buf_fini();
2508 }
2509