xref: /illumos-gate/usr/src/uts/common/fs/zfs/arc.c (revision 01a059ee0cdece49f47fd4d70086dd5bc7d0b0ff)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 /*
30  * DVA-based Adjustable Replacement Cache
31  *
32  * While much of the theory of operation used here is
33  * based on the self-tuning, low overhead replacement cache
34  * presented by Megiddo and Modha at FAST 2003, there are some
35  * significant differences:
36  *
37  * 1. The Megiddo and Modha model assumes any page is evictable.
38  * Pages in its cache cannot be "locked" into memory.  This makes
39  * the eviction algorithm simple: evict the last page in the list.
40  * This also make the performance characteristics easy to reason
41  * about.  Our cache is not so simple.  At any given moment, some
42  * subset of the blocks in the cache are un-evictable because we
43  * have handed out a reference to them.  Blocks are only evictable
44  * when there are no external references active.  This makes
45  * eviction far more problematic:  we choose to evict the evictable
46  * blocks that are the "lowest" in the list.
47  *
48  * There are times when it is not possible to evict the requested
49  * space.  In these circumstances we are unable to adjust the cache
50  * size.  To prevent the cache growing unbounded at these times we
51  * implement a "cache throttle" that slows the flow of new data
52  * into the cache until we can make space available.
53  *
54  * 2. The Megiddo and Modha model assumes a fixed cache size.
55  * Pages are evicted when the cache is full and there is a cache
56  * miss.  Our model has a variable sized cache.  It grows with
57  * high use, but also tries to react to memory pressure from the
58  * operating system: decreasing its size when system memory is
59  * tight.
60  *
61  * 3. The Megiddo and Modha model assumes a fixed page size. All
62  * elements of the cache are therefore exactly the same size.  So
63  * when adjusting the cache size following a cache miss, its simply
64  * a matter of choosing a single page to evict.  In our model, we
65  * have variable sized cache blocks (rangeing from 512 bytes to
66  * 128K bytes).  We therefore choose a set of blocks to evict to make
67  * space for a cache miss that approximates as closely as possible
68  * the space used by the new block.
69  *
70  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71  * by N. Megiddo & D. Modha, FAST 2003
72  */
73 
74 /*
75  * The locking model:
76  *
77  * A new reference to a cache buffer can be obtained in two
78  * ways: 1) via a hash table lookup using the DVA as a key,
79  * or 2) via one of the ARC lists.  The arc_read() interface
80  * uses method 1, while the internal ARC algorithms for
81  * adjusting the cache use method 2.  We therefore provide two
82  * types of locks: 1) the hash table lock array, and 2) the
83  * ARC list locks.
84  *
85  * Buffers do not have their own mutexes, rather they rely on the
86  * hash table mutexes for the bulk of their protection (i.e. most
87  * fields in the arc_buf_hdr_t are protected by these mutexes).
88  *
89  * buf_hash_find() returns the appropriate mutex (held) when it
90  * locates the requested buffer in the hash table.  It returns
91  * NULL for the mutex if the buffer was not in the table.
92  *
93  * buf_hash_remove() expects the appropriate hash mutex to be
94  * already held before it is invoked.
95  *
96  * Each ARC state also has a mutex which is used to protect the
97  * buffer list associated with the state.  When attempting to
98  * obtain a hash table lock while holding an ARC list lock you
99  * must use: mutex_tryenter() to avoid deadlock.  Also note that
100  * the active state mutex must be held before the ghost state mutex.
101  *
102  * Note that the majority of the performance stats are manipulated
103  * with atomic operations.
104  *
105  * The L2ARC uses the l2ad_mtx on each vdev for the following:
106  *
107  *	- L2ARC buflist creation
108  *	- L2ARC buflist eviction
109  *	- L2ARC write completion, which walks L2ARC buflists
110  *	- ARC header destruction, as it removes from L2ARC buflists
111  *	- ARC header release, as it removes from L2ARC buflists
112  */
113 
114 /*
115  * ARC operation:
116  *
117  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
118  * This structure can point either to a block that is still in the cache or to
119  * one that is only accessible in an L2 ARC device, or it can provide
120  * information about a block that was recently evicted. If a block is
121  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
122  * information to retrieve it from the L2ARC device. This information is
123  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
124  * that is in this state cannot access the data directly.
125  *
126  * Blocks that are actively being referenced or have not been evicted
127  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
128  * the arc_buf_hdr_t that will point to the data block in memory. A block can
129  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
130  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
131  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
132  *
133  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
134  * ability to store the physical data (b_pabd) associated with the DVA of the
135  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
136  * it will match its on-disk compression characteristics. This behavior can be
137  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
138  * compressed ARC functionality is disabled, the b_pabd will point to an
139  * uncompressed version of the on-disk data.
140  *
141  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
142  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
143  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
144  * consumer. The ARC will provide references to this data and will keep it
145  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
146  * data block and will evict any arc_buf_t that is no longer referenced. The
147  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
148  * "overhead_size" kstat.
149  *
150  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
151  * compressed form. The typical case is that consumers will want uncompressed
152  * data, and when that happens a new data buffer is allocated where the data is
153  * decompressed for them to use. Currently the only consumer who wants
154  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
155  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
156  * with the arc_buf_hdr_t.
157  *
158  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
159  * first one is owned by a compressed send consumer (and therefore references
160  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
161  * used by any other consumer (and has its own uncompressed copy of the data
162  * buffer).
163  *
164  *   arc_buf_hdr_t
165  *   +-----------+
166  *   | fields    |
167  *   | common to |
168  *   | L1- and   |
169  *   | L2ARC     |
170  *   +-----------+
171  *   | l2arc_buf_hdr_t
172  *   |           |
173  *   +-----------+
174  *   | l1arc_buf_hdr_t
175  *   |           |              arc_buf_t
176  *   | b_buf     +------------>+-----------+      arc_buf_t
177  *   | b_pabd    +-+           |b_next     +---->+-----------+
178  *   +-----------+ |           |-----------|     |b_next     +-->NULL
179  *                 |           |b_comp = T |     +-----------+
180  *                 |           |b_data     +-+   |b_comp = F |
181  *                 |           +-----------+ |   |b_data     +-+
182  *                 +->+------+               |   +-----------+ |
183  *        compressed  |      |               |                 |
184  *           data     |      |<--------------+                 | uncompressed
185  *                    +------+          compressed,            |     data
186  *                                        shared               +-->+------+
187  *                                         data                    |      |
188  *                                                                 |      |
189  *                                                                 +------+
190  *
191  * When a consumer reads a block, the ARC must first look to see if the
192  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
193  * arc_buf_t and either copies uncompressed data into a new data buffer from an
194  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
195  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
196  * hdr is compressed and the desired compression characteristics of the
197  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
198  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
199  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
200  * be anywhere in the hdr's list.
201  *
202  * The diagram below shows an example of an uncompressed ARC hdr that is
203  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
204  * the last element in the buf list):
205  *
206  *                arc_buf_hdr_t
207  *                +-----------+
208  *                |           |
209  *                |           |
210  *                |           |
211  *                +-----------+
212  * l2arc_buf_hdr_t|           |
213  *                |           |
214  *                +-----------+
215  * l1arc_buf_hdr_t|           |
216  *                |           |                 arc_buf_t    (shared)
217  *                |    b_buf  +------------>+---------+      arc_buf_t
218  *                |           |             |b_next   +---->+---------+
219  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
220  *                +-----------+ |           |         |     +---------+
221  *                              |           |b_data   +-+   |         |
222  *                              |           +---------+ |   |b_data   +-+
223  *                              +->+------+             |   +---------+ |
224  *                                 |      |             |               |
225  *                   uncompressed  |      |             |               |
226  *                        data     +------+             |               |
227  *                                    ^                 +->+------+     |
228  *                                    |       uncompressed |      |     |
229  *                                    |           data     |      |     |
230  *                                    |                    +------+     |
231  *                                    +---------------------------------+
232  *
233  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
234  * since the physical block is about to be rewritten. The new data contents
235  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
236  * it may compress the data before writing it to disk. The ARC will be called
237  * with the transformed data and will bcopy the transformed on-disk block into
238  * a newly allocated b_pabd. Writes are always done into buffers which have
239  * either been loaned (and hence are new and don't have other readers) or
240  * buffers which have been released (and hence have their own hdr, if there
241  * were originally other readers of the buf's original hdr). This ensures that
242  * the ARC only needs to update a single buf and its hdr after a write occurs.
243  *
244  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
245  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
246  * that when compressed ARC is enabled that the L2ARC blocks are identical
247  * to the on-disk block in the main data pool. This provides a significant
248  * advantage since the ARC can leverage the bp's checksum when reading from the
249  * L2ARC to determine if the contents are valid. However, if the compressed
250  * ARC is disabled, then the L2ARC's block must be transformed to look
251  * like the physical block in the main data pool before comparing the
252  * checksum and determining its validity.
253  */
254 
255 #include <sys/spa.h>
256 #include <sys/zio.h>
257 #include <sys/spa_impl.h>
258 #include <sys/zio_compress.h>
259 #include <sys/zio_checksum.h>
260 #include <sys/zfs_context.h>
261 #include <sys/arc.h>
262 #include <sys/refcount.h>
263 #include <sys/vdev.h>
264 #include <sys/vdev_impl.h>
265 #include <sys/dsl_pool.h>
266 #include <sys/zio_checksum.h>
267 #include <sys/multilist.h>
268 #include <sys/abd.h>
269 #ifdef _KERNEL
270 #include <sys/vmsystm.h>
271 #include <vm/anon.h>
272 #include <sys/fs/swapnode.h>
273 #include <sys/dnlc.h>
274 #endif
275 #include <sys/callb.h>
276 #include <sys/kstat.h>
277 #include <zfs_fletcher.h>
278 
279 #ifndef _KERNEL
280 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
281 boolean_t arc_watch = B_FALSE;
282 int arc_procfd;
283 #endif
284 
285 static kmutex_t		arc_reclaim_lock;
286 static kcondvar_t	arc_reclaim_thread_cv;
287 static boolean_t	arc_reclaim_thread_exit;
288 static kcondvar_t	arc_reclaim_waiters_cv;
289 
290 uint_t arc_reduce_dnlc_percent = 3;
291 
292 /*
293  * The number of headers to evict in arc_evict_state_impl() before
294  * dropping the sublist lock and evicting from another sublist. A lower
295  * value means we're more likely to evict the "correct" header (i.e. the
296  * oldest header in the arc state), but comes with higher overhead
297  * (i.e. more invocations of arc_evict_state_impl()).
298  */
299 int zfs_arc_evict_batch_limit = 10;
300 
301 /* number of seconds before growing cache again */
302 static int		arc_grow_retry = 60;
303 
304 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
305 int		zfs_arc_overflow_shift = 8;
306 
307 /* shift of arc_c for calculating both min and max arc_p */
308 static int		arc_p_min_shift = 4;
309 
310 /* log2(fraction of arc to reclaim) */
311 static int		arc_shrink_shift = 7;
312 
313 /*
314  * log2(fraction of ARC which must be free to allow growing).
315  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
316  * when reading a new block into the ARC, we will evict an equal-sized block
317  * from the ARC.
318  *
319  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
320  * we will still not allow it to grow.
321  */
322 int			arc_no_grow_shift = 5;
323 
324 
325 /*
326  * minimum lifespan of a prefetch block in clock ticks
327  * (initialized in arc_init())
328  */
329 static int		arc_min_prefetch_lifespan;
330 
331 /*
332  * If this percent of memory is free, don't throttle.
333  */
334 int arc_lotsfree_percent = 10;
335 
336 static int arc_dead;
337 
338 /*
339  * The arc has filled available memory and has now warmed up.
340  */
341 static boolean_t arc_warm;
342 
343 /*
344  * log2 fraction of the zio arena to keep free.
345  */
346 int arc_zio_arena_free_shift = 2;
347 
348 /*
349  * These tunables are for performance analysis.
350  */
351 uint64_t zfs_arc_max;
352 uint64_t zfs_arc_min;
353 uint64_t zfs_arc_meta_limit = 0;
354 uint64_t zfs_arc_meta_min = 0;
355 int zfs_arc_grow_retry = 0;
356 int zfs_arc_shrink_shift = 0;
357 int zfs_arc_p_min_shift = 0;
358 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
359 
360 boolean_t zfs_compressed_arc_enabled = B_TRUE;
361 
362 /*
363  * Note that buffers can be in one of 6 states:
364  *	ARC_anon	- anonymous (discussed below)
365  *	ARC_mru		- recently used, currently cached
366  *	ARC_mru_ghost	- recentely used, no longer in cache
367  *	ARC_mfu		- frequently used, currently cached
368  *	ARC_mfu_ghost	- frequently used, no longer in cache
369  *	ARC_l2c_only	- exists in L2ARC but not other states
370  * When there are no active references to the buffer, they are
371  * are linked onto a list in one of these arc states.  These are
372  * the only buffers that can be evicted or deleted.  Within each
373  * state there are multiple lists, one for meta-data and one for
374  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
375  * etc.) is tracked separately so that it can be managed more
376  * explicitly: favored over data, limited explicitly.
377  *
378  * Anonymous buffers are buffers that are not associated with
379  * a DVA.  These are buffers that hold dirty block copies
380  * before they are written to stable storage.  By definition,
381  * they are "ref'd" and are considered part of arc_mru
382  * that cannot be freed.  Generally, they will aquire a DVA
383  * as they are written and migrate onto the arc_mru list.
384  *
385  * The ARC_l2c_only state is for buffers that are in the second
386  * level ARC but no longer in any of the ARC_m* lists.  The second
387  * level ARC itself may also contain buffers that are in any of
388  * the ARC_m* states - meaning that a buffer can exist in two
389  * places.  The reason for the ARC_l2c_only state is to keep the
390  * buffer header in the hash table, so that reads that hit the
391  * second level ARC benefit from these fast lookups.
392  */
393 
394 typedef struct arc_state {
395 	/*
396 	 * list of evictable buffers
397 	 */
398 	multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
399 	/*
400 	 * total amount of evictable data in this state
401 	 */
402 	refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
403 	/*
404 	 * total amount of data in this state; this includes: evictable,
405 	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
406 	 */
407 	refcount_t arcs_size;
408 } arc_state_t;
409 
410 /* The 6 states: */
411 static arc_state_t ARC_anon;
412 static arc_state_t ARC_mru;
413 static arc_state_t ARC_mru_ghost;
414 static arc_state_t ARC_mfu;
415 static arc_state_t ARC_mfu_ghost;
416 static arc_state_t ARC_l2c_only;
417 
418 typedef struct arc_stats {
419 	kstat_named_t arcstat_hits;
420 	kstat_named_t arcstat_misses;
421 	kstat_named_t arcstat_demand_data_hits;
422 	kstat_named_t arcstat_demand_data_misses;
423 	kstat_named_t arcstat_demand_metadata_hits;
424 	kstat_named_t arcstat_demand_metadata_misses;
425 	kstat_named_t arcstat_prefetch_data_hits;
426 	kstat_named_t arcstat_prefetch_data_misses;
427 	kstat_named_t arcstat_prefetch_metadata_hits;
428 	kstat_named_t arcstat_prefetch_metadata_misses;
429 	kstat_named_t arcstat_mru_hits;
430 	kstat_named_t arcstat_mru_ghost_hits;
431 	kstat_named_t arcstat_mfu_hits;
432 	kstat_named_t arcstat_mfu_ghost_hits;
433 	kstat_named_t arcstat_deleted;
434 	/*
435 	 * Number of buffers that could not be evicted because the hash lock
436 	 * was held by another thread.  The lock may not necessarily be held
437 	 * by something using the same buffer, since hash locks are shared
438 	 * by multiple buffers.
439 	 */
440 	kstat_named_t arcstat_mutex_miss;
441 	/*
442 	 * Number of buffers skipped because they have I/O in progress, are
443 	 * indrect prefetch buffers that have not lived long enough, or are
444 	 * not from the spa we're trying to evict from.
445 	 */
446 	kstat_named_t arcstat_evict_skip;
447 	/*
448 	 * Number of times arc_evict_state() was unable to evict enough
449 	 * buffers to reach it's target amount.
450 	 */
451 	kstat_named_t arcstat_evict_not_enough;
452 	kstat_named_t arcstat_evict_l2_cached;
453 	kstat_named_t arcstat_evict_l2_eligible;
454 	kstat_named_t arcstat_evict_l2_ineligible;
455 	kstat_named_t arcstat_evict_l2_skip;
456 	kstat_named_t arcstat_hash_elements;
457 	kstat_named_t arcstat_hash_elements_max;
458 	kstat_named_t arcstat_hash_collisions;
459 	kstat_named_t arcstat_hash_chains;
460 	kstat_named_t arcstat_hash_chain_max;
461 	kstat_named_t arcstat_p;
462 	kstat_named_t arcstat_c;
463 	kstat_named_t arcstat_c_min;
464 	kstat_named_t arcstat_c_max;
465 	kstat_named_t arcstat_size;
466 	/*
467 	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
468 	 * Note that the compressed bytes may match the uncompressed bytes
469 	 * if the block is either not compressed or compressed arc is disabled.
470 	 */
471 	kstat_named_t arcstat_compressed_size;
472 	/*
473 	 * Uncompressed size of the data stored in b_pabd. If compressed
474 	 * arc is disabled then this value will be identical to the stat
475 	 * above.
476 	 */
477 	kstat_named_t arcstat_uncompressed_size;
478 	/*
479 	 * Number of bytes stored in all the arc_buf_t's. This is classified
480 	 * as "overhead" since this data is typically short-lived and will
481 	 * be evicted from the arc when it becomes unreferenced unless the
482 	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
483 	 * values have been set (see comment in dbuf.c for more information).
484 	 */
485 	kstat_named_t arcstat_overhead_size;
486 	/*
487 	 * Number of bytes consumed by internal ARC structures necessary
488 	 * for tracking purposes; these structures are not actually
489 	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
490 	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
491 	 * caches), and arc_buf_t structures (allocated via arc_buf_t
492 	 * cache).
493 	 */
494 	kstat_named_t arcstat_hdr_size;
495 	/*
496 	 * Number of bytes consumed by ARC buffers of type equal to
497 	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
498 	 * on disk user data (e.g. plain file contents).
499 	 */
500 	kstat_named_t arcstat_data_size;
501 	/*
502 	 * Number of bytes consumed by ARC buffers of type equal to
503 	 * ARC_BUFC_METADATA. This is generally consumed by buffers
504 	 * backing on disk data that is used for internal ZFS
505 	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
506 	 */
507 	kstat_named_t arcstat_metadata_size;
508 	/*
509 	 * Number of bytes consumed by various buffers and structures
510 	 * not actually backed with ARC buffers. This includes bonus
511 	 * buffers (allocated directly via zio_buf_* functions),
512 	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
513 	 * cache), and dnode_t structures (allocated via dnode_t cache).
514 	 */
515 	kstat_named_t arcstat_other_size;
516 	/*
517 	 * Total number of bytes consumed by ARC buffers residing in the
518 	 * arc_anon state. This includes *all* buffers in the arc_anon
519 	 * state; e.g. data, metadata, evictable, and unevictable buffers
520 	 * are all included in this value.
521 	 */
522 	kstat_named_t arcstat_anon_size;
523 	/*
524 	 * Number of bytes consumed by ARC buffers that meet the
525 	 * following criteria: backing buffers of type ARC_BUFC_DATA,
526 	 * residing in the arc_anon state, and are eligible for eviction
527 	 * (e.g. have no outstanding holds on the buffer).
528 	 */
529 	kstat_named_t arcstat_anon_evictable_data;
530 	/*
531 	 * Number of bytes consumed by ARC buffers that meet the
532 	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
533 	 * residing in the arc_anon state, and are eligible for eviction
534 	 * (e.g. have no outstanding holds on the buffer).
535 	 */
536 	kstat_named_t arcstat_anon_evictable_metadata;
537 	/*
538 	 * Total number of bytes consumed by ARC buffers residing in the
539 	 * arc_mru state. This includes *all* buffers in the arc_mru
540 	 * state; e.g. data, metadata, evictable, and unevictable buffers
541 	 * are all included in this value.
542 	 */
543 	kstat_named_t arcstat_mru_size;
544 	/*
545 	 * Number of bytes consumed by ARC buffers that meet the
546 	 * following criteria: backing buffers of type ARC_BUFC_DATA,
547 	 * residing in the arc_mru state, and are eligible for eviction
548 	 * (e.g. have no outstanding holds on the buffer).
549 	 */
550 	kstat_named_t arcstat_mru_evictable_data;
551 	/*
552 	 * Number of bytes consumed by ARC buffers that meet the
553 	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
554 	 * residing in the arc_mru state, and are eligible for eviction
555 	 * (e.g. have no outstanding holds on the buffer).
556 	 */
557 	kstat_named_t arcstat_mru_evictable_metadata;
558 	/*
559 	 * Total number of bytes that *would have been* consumed by ARC
560 	 * buffers in the arc_mru_ghost state. The key thing to note
561 	 * here, is the fact that this size doesn't actually indicate
562 	 * RAM consumption. The ghost lists only consist of headers and
563 	 * don't actually have ARC buffers linked off of these headers.
564 	 * Thus, *if* the headers had associated ARC buffers, these
565 	 * buffers *would have* consumed this number of bytes.
566 	 */
567 	kstat_named_t arcstat_mru_ghost_size;
568 	/*
569 	 * Number of bytes that *would have been* consumed by ARC
570 	 * buffers that are eligible for eviction, of type
571 	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
572 	 */
573 	kstat_named_t arcstat_mru_ghost_evictable_data;
574 	/*
575 	 * Number of bytes that *would have been* consumed by ARC
576 	 * buffers that are eligible for eviction, of type
577 	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
578 	 */
579 	kstat_named_t arcstat_mru_ghost_evictable_metadata;
580 	/*
581 	 * Total number of bytes consumed by ARC buffers residing in the
582 	 * arc_mfu state. This includes *all* buffers in the arc_mfu
583 	 * state; e.g. data, metadata, evictable, and unevictable buffers
584 	 * are all included in this value.
585 	 */
586 	kstat_named_t arcstat_mfu_size;
587 	/*
588 	 * Number of bytes consumed by ARC buffers that are eligible for
589 	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
590 	 * state.
591 	 */
592 	kstat_named_t arcstat_mfu_evictable_data;
593 	/*
594 	 * Number of bytes consumed by ARC buffers that are eligible for
595 	 * eviction, of type ARC_BUFC_METADATA, and reside in the
596 	 * arc_mfu state.
597 	 */
598 	kstat_named_t arcstat_mfu_evictable_metadata;
599 	/*
600 	 * Total number of bytes that *would have been* consumed by ARC
601 	 * buffers in the arc_mfu_ghost state. See the comment above
602 	 * arcstat_mru_ghost_size for more details.
603 	 */
604 	kstat_named_t arcstat_mfu_ghost_size;
605 	/*
606 	 * Number of bytes that *would have been* consumed by ARC
607 	 * buffers that are eligible for eviction, of type
608 	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
609 	 */
610 	kstat_named_t arcstat_mfu_ghost_evictable_data;
611 	/*
612 	 * Number of bytes that *would have been* consumed by ARC
613 	 * buffers that are eligible for eviction, of type
614 	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
615 	 */
616 	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
617 	kstat_named_t arcstat_l2_hits;
618 	kstat_named_t arcstat_l2_misses;
619 	kstat_named_t arcstat_l2_feeds;
620 	kstat_named_t arcstat_l2_rw_clash;
621 	kstat_named_t arcstat_l2_read_bytes;
622 	kstat_named_t arcstat_l2_write_bytes;
623 	kstat_named_t arcstat_l2_writes_sent;
624 	kstat_named_t arcstat_l2_writes_done;
625 	kstat_named_t arcstat_l2_writes_error;
626 	kstat_named_t arcstat_l2_writes_lock_retry;
627 	kstat_named_t arcstat_l2_evict_lock_retry;
628 	kstat_named_t arcstat_l2_evict_reading;
629 	kstat_named_t arcstat_l2_evict_l1cached;
630 	kstat_named_t arcstat_l2_free_on_write;
631 	kstat_named_t arcstat_l2_abort_lowmem;
632 	kstat_named_t arcstat_l2_cksum_bad;
633 	kstat_named_t arcstat_l2_io_error;
634 	kstat_named_t arcstat_l2_lsize;
635 	kstat_named_t arcstat_l2_psize;
636 	kstat_named_t arcstat_l2_hdr_size;
637 	kstat_named_t arcstat_memory_throttle_count;
638 	kstat_named_t arcstat_meta_used;
639 	kstat_named_t arcstat_meta_limit;
640 	kstat_named_t arcstat_meta_max;
641 	kstat_named_t arcstat_meta_min;
642 	kstat_named_t arcstat_sync_wait_for_async;
643 	kstat_named_t arcstat_demand_hit_predictive_prefetch;
644 } arc_stats_t;
645 
646 static arc_stats_t arc_stats = {
647 	{ "hits",			KSTAT_DATA_UINT64 },
648 	{ "misses",			KSTAT_DATA_UINT64 },
649 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
650 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
651 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
652 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
653 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
654 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
655 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
656 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
657 	{ "mru_hits",			KSTAT_DATA_UINT64 },
658 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
659 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
660 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
661 	{ "deleted",			KSTAT_DATA_UINT64 },
662 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
663 	{ "evict_skip",			KSTAT_DATA_UINT64 },
664 	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
665 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
666 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
667 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
668 	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
669 	{ "hash_elements",		KSTAT_DATA_UINT64 },
670 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
671 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
672 	{ "hash_chains",		KSTAT_DATA_UINT64 },
673 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
674 	{ "p",				KSTAT_DATA_UINT64 },
675 	{ "c",				KSTAT_DATA_UINT64 },
676 	{ "c_min",			KSTAT_DATA_UINT64 },
677 	{ "c_max",			KSTAT_DATA_UINT64 },
678 	{ "size",			KSTAT_DATA_UINT64 },
679 	{ "compressed_size",		KSTAT_DATA_UINT64 },
680 	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
681 	{ "overhead_size",		KSTAT_DATA_UINT64 },
682 	{ "hdr_size",			KSTAT_DATA_UINT64 },
683 	{ "data_size",			KSTAT_DATA_UINT64 },
684 	{ "metadata_size",		KSTAT_DATA_UINT64 },
685 	{ "other_size",			KSTAT_DATA_UINT64 },
686 	{ "anon_size",			KSTAT_DATA_UINT64 },
687 	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
688 	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
689 	{ "mru_size",			KSTAT_DATA_UINT64 },
690 	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
691 	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
692 	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
693 	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
694 	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
695 	{ "mfu_size",			KSTAT_DATA_UINT64 },
696 	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
697 	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
698 	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
699 	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
700 	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
701 	{ "l2_hits",			KSTAT_DATA_UINT64 },
702 	{ "l2_misses",			KSTAT_DATA_UINT64 },
703 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
704 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
705 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
706 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
707 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
708 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
709 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
710 	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
711 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
712 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
713 	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
714 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
715 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
716 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
717 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
718 	{ "l2_size",			KSTAT_DATA_UINT64 },
719 	{ "l2_asize",			KSTAT_DATA_UINT64 },
720 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
721 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
722 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
723 	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
724 	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
725 	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
726 	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
727 	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
728 };
729 
730 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
731 
732 #define	ARCSTAT_INCR(stat, val) \
733 	atomic_add_64(&arc_stats.stat.value.ui64, (val))
734 
735 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
736 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
737 
738 #define	ARCSTAT_MAX(stat, val) {					\
739 	uint64_t m;							\
740 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
741 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
742 		continue;						\
743 }
744 
745 #define	ARCSTAT_MAXSTAT(stat) \
746 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
747 
748 /*
749  * We define a macro to allow ARC hits/misses to be easily broken down by
750  * two separate conditions, giving a total of four different subtypes for
751  * each of hits and misses (so eight statistics total).
752  */
753 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
754 	if (cond1) {							\
755 		if (cond2) {						\
756 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
757 		} else {						\
758 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
759 		}							\
760 	} else {							\
761 		if (cond2) {						\
762 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
763 		} else {						\
764 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
765 		}							\
766 	}
767 
768 kstat_t			*arc_ksp;
769 static arc_state_t	*arc_anon;
770 static arc_state_t	*arc_mru;
771 static arc_state_t	*arc_mru_ghost;
772 static arc_state_t	*arc_mfu;
773 static arc_state_t	*arc_mfu_ghost;
774 static arc_state_t	*arc_l2c_only;
775 
776 /*
777  * There are several ARC variables that are critical to export as kstats --
778  * but we don't want to have to grovel around in the kstat whenever we wish to
779  * manipulate them.  For these variables, we therefore define them to be in
780  * terms of the statistic variable.  This assures that we are not introducing
781  * the possibility of inconsistency by having shadow copies of the variables,
782  * while still allowing the code to be readable.
783  */
784 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
785 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
786 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
787 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
788 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
789 #define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
790 #define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
791 #define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
792 #define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
793 
794 /* compressed size of entire arc */
795 #define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
796 /* uncompressed size of entire arc */
797 #define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
798 /* number of bytes in the arc from arc_buf_t's */
799 #define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
800 
801 static int		arc_no_grow;	/* Don't try to grow cache size */
802 static uint64_t		arc_tempreserve;
803 static uint64_t		arc_loaned_bytes;
804 
805 typedef struct arc_callback arc_callback_t;
806 
807 struct arc_callback {
808 	void			*acb_private;
809 	arc_done_func_t		*acb_done;
810 	arc_buf_t		*acb_buf;
811 	boolean_t		acb_compressed;
812 	zio_t			*acb_zio_dummy;
813 	arc_callback_t		*acb_next;
814 };
815 
816 typedef struct arc_write_callback arc_write_callback_t;
817 
818 struct arc_write_callback {
819 	void		*awcb_private;
820 	arc_done_func_t	*awcb_ready;
821 	arc_done_func_t	*awcb_children_ready;
822 	arc_done_func_t	*awcb_physdone;
823 	arc_done_func_t	*awcb_done;
824 	arc_buf_t	*awcb_buf;
825 };
826 
827 /*
828  * ARC buffers are separated into multiple structs as a memory saving measure:
829  *   - Common fields struct, always defined, and embedded within it:
830  *       - L2-only fields, always allocated but undefined when not in L2ARC
831  *       - L1-only fields, only allocated when in L1ARC
832  *
833  *           Buffer in L1                     Buffer only in L2
834  *    +------------------------+          +------------------------+
835  *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
836  *    |                        |          |                        |
837  *    |                        |          |                        |
838  *    |                        |          |                        |
839  *    +------------------------+          +------------------------+
840  *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
841  *    | (undefined if L1-only) |          |                        |
842  *    +------------------------+          +------------------------+
843  *    | l1arc_buf_hdr_t        |
844  *    |                        |
845  *    |                        |
846  *    |                        |
847  *    |                        |
848  *    +------------------------+
849  *
850  * Because it's possible for the L2ARC to become extremely large, we can wind
851  * up eating a lot of memory in L2ARC buffer headers, so the size of a header
852  * is minimized by only allocating the fields necessary for an L1-cached buffer
853  * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
854  * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
855  * words in pointers. arc_hdr_realloc() is used to switch a header between
856  * these two allocation states.
857  */
858 typedef struct l1arc_buf_hdr {
859 	kmutex_t		b_freeze_lock;
860 	zio_cksum_t		*b_freeze_cksum;
861 #ifdef ZFS_DEBUG
862 	/*
863 	 * Used for debugging with kmem_flags - by allocating and freeing
864 	 * b_thawed when the buffer is thawed, we get a record of the stack
865 	 * trace that thawed it.
866 	 */
867 	void			*b_thawed;
868 #endif
869 
870 	arc_buf_t		*b_buf;
871 	uint32_t		b_bufcnt;
872 	/* for waiting on writes to complete */
873 	kcondvar_t		b_cv;
874 	uint8_t			b_byteswap;
875 
876 	/* protected by arc state mutex */
877 	arc_state_t		*b_state;
878 	multilist_node_t	b_arc_node;
879 
880 	/* updated atomically */
881 	clock_t			b_arc_access;
882 
883 	/* self protecting */
884 	refcount_t		b_refcnt;
885 
886 	arc_callback_t		*b_acb;
887 	abd_t			*b_pabd;
888 } l1arc_buf_hdr_t;
889 
890 typedef struct l2arc_dev l2arc_dev_t;
891 
892 typedef struct l2arc_buf_hdr {
893 	/* protected by arc_buf_hdr mutex */
894 	l2arc_dev_t		*b_dev;		/* L2ARC device */
895 	uint64_t		b_daddr;	/* disk address, offset byte */
896 
897 	list_node_t		b_l2node;
898 } l2arc_buf_hdr_t;
899 
900 struct arc_buf_hdr {
901 	/* protected by hash lock */
902 	dva_t			b_dva;
903 	uint64_t		b_birth;
904 
905 	arc_buf_contents_t	b_type;
906 	arc_buf_hdr_t		*b_hash_next;
907 	arc_flags_t		b_flags;
908 
909 	/*
910 	 * This field stores the size of the data buffer after
911 	 * compression, and is set in the arc's zio completion handlers.
912 	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
913 	 *
914 	 * While the block pointers can store up to 32MB in their psize
915 	 * field, we can only store up to 32MB minus 512B. This is due
916 	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
917 	 * a field of zeros represents 512B in the bp). We can't use a
918 	 * bias of 1 since we need to reserve a psize of zero, here, to
919 	 * represent holes and embedded blocks.
920 	 *
921 	 * This isn't a problem in practice, since the maximum size of a
922 	 * buffer is limited to 16MB, so we never need to store 32MB in
923 	 * this field. Even in the upstream illumos code base, the
924 	 * maximum size of a buffer is limited to 16MB.
925 	 */
926 	uint16_t		b_psize;
927 
928 	/*
929 	 * This field stores the size of the data buffer before
930 	 * compression, and cannot change once set. It is in units
931 	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
932 	 */
933 	uint16_t		b_lsize;	/* immutable */
934 	uint64_t		b_spa;		/* immutable */
935 
936 	/* L2ARC fields. Undefined when not in L2ARC. */
937 	l2arc_buf_hdr_t		b_l2hdr;
938 	/* L1ARC fields. Undefined when in l2arc_only state */
939 	l1arc_buf_hdr_t		b_l1hdr;
940 };
941 
942 #define	GHOST_STATE(state)	\
943 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
944 	(state) == arc_l2c_only)
945 
946 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
947 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
948 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
949 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
950 #define	HDR_COMPRESSION_ENABLED(hdr)	\
951 	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
952 
953 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
954 #define	HDR_L2_READING(hdr)	\
955 	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
956 	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
957 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
958 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
959 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
960 #define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
961 
962 #define	HDR_ISTYPE_METADATA(hdr)	\
963 	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
964 #define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
965 
966 #define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
967 #define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
968 
969 /* For storing compression mode in b_flags */
970 #define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
971 
972 #define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
973 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
974 #define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
975 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
976 
977 #define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
978 #define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
979 #define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
980 
981 /*
982  * Other sizes
983  */
984 
985 #define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
986 #define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
987 
988 /*
989  * Hash table routines
990  */
991 
992 #define	HT_LOCK_PAD	64
993 
994 struct ht_lock {
995 	kmutex_t	ht_lock;
996 #ifdef _KERNEL
997 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
998 #endif
999 };
1000 
1001 #define	BUF_LOCKS 256
1002 typedef struct buf_hash_table {
1003 	uint64_t ht_mask;
1004 	arc_buf_hdr_t **ht_table;
1005 	struct ht_lock ht_locks[BUF_LOCKS];
1006 } buf_hash_table_t;
1007 
1008 static buf_hash_table_t buf_hash_table;
1009 
1010 #define	BUF_HASH_INDEX(spa, dva, birth) \
1011 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1012 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1013 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1014 #define	HDR_LOCK(hdr) \
1015 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1016 
1017 uint64_t zfs_crc64_table[256];
1018 
1019 /*
1020  * Level 2 ARC
1021  */
1022 
1023 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1024 #define	L2ARC_HEADROOM		2			/* num of writes */
1025 /*
1026  * If we discover during ARC scan any buffers to be compressed, we boost
1027  * our headroom for the next scanning cycle by this percentage multiple.
1028  */
1029 #define	L2ARC_HEADROOM_BOOST	200
1030 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
1031 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1032 
1033 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1034 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1035 
1036 /* L2ARC Performance Tunables */
1037 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1038 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1039 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1040 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1041 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1042 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1043 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1044 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1045 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1046 
1047 /*
1048  * L2ARC Internals
1049  */
1050 struct l2arc_dev {
1051 	vdev_t			*l2ad_vdev;	/* vdev */
1052 	spa_t			*l2ad_spa;	/* spa */
1053 	uint64_t		l2ad_hand;	/* next write location */
1054 	uint64_t		l2ad_start;	/* first addr on device */
1055 	uint64_t		l2ad_end;	/* last addr on device */
1056 	boolean_t		l2ad_first;	/* first sweep through */
1057 	boolean_t		l2ad_writing;	/* currently writing */
1058 	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1059 	list_t			l2ad_buflist;	/* buffer list */
1060 	list_node_t		l2ad_node;	/* device list node */
1061 	refcount_t		l2ad_alloc;	/* allocated bytes */
1062 };
1063 
1064 static list_t L2ARC_dev_list;			/* device list */
1065 static list_t *l2arc_dev_list;			/* device list pointer */
1066 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1067 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1068 static list_t L2ARC_free_on_write;		/* free after write buf list */
1069 static list_t *l2arc_free_on_write;		/* free after write list ptr */
1070 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1071 static uint64_t l2arc_ndev;			/* number of devices */
1072 
1073 typedef struct l2arc_read_callback {
1074 	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
1075 	blkptr_t		l2rcb_bp;		/* original blkptr */
1076 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1077 	int			l2rcb_flags;		/* original flags */
1078 	abd_t			*l2rcb_abd;		/* temporary buffer */
1079 } l2arc_read_callback_t;
1080 
1081 typedef struct l2arc_write_callback {
1082 	l2arc_dev_t	*l2wcb_dev;		/* device info */
1083 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1084 } l2arc_write_callback_t;
1085 
1086 typedef struct l2arc_data_free {
1087 	/* protected by l2arc_free_on_write_mtx */
1088 	abd_t		*l2df_abd;
1089 	size_t		l2df_size;
1090 	arc_buf_contents_t l2df_type;
1091 	list_node_t	l2df_list_node;
1092 } l2arc_data_free_t;
1093 
1094 static kmutex_t l2arc_feed_thr_lock;
1095 static kcondvar_t l2arc_feed_thr_cv;
1096 static uint8_t l2arc_thread_exit;
1097 
1098 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1099 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1100 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1101 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1102 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1103 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1104 static void arc_hdr_free_pabd(arc_buf_hdr_t *);
1105 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
1106 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1107 static boolean_t arc_is_overflowing();
1108 static void arc_buf_watch(arc_buf_t *);
1109 
1110 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1111 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1112 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1113 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1114 
1115 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1116 static void l2arc_read_done(zio_t *);
1117 
1118 static uint64_t
1119 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1120 {
1121 	uint8_t *vdva = (uint8_t *)dva;
1122 	uint64_t crc = -1ULL;
1123 	int i;
1124 
1125 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1126 
1127 	for (i = 0; i < sizeof (dva_t); i++)
1128 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1129 
1130 	crc ^= (spa>>8) ^ birth;
1131 
1132 	return (crc);
1133 }
1134 
1135 #define	HDR_EMPTY(hdr)						\
1136 	((hdr)->b_dva.dva_word[0] == 0 &&			\
1137 	(hdr)->b_dva.dva_word[1] == 0)
1138 
1139 #define	HDR_EQUAL(spa, dva, birth, hdr)				\
1140 	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1141 	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1142 	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1143 
1144 static void
1145 buf_discard_identity(arc_buf_hdr_t *hdr)
1146 {
1147 	hdr->b_dva.dva_word[0] = 0;
1148 	hdr->b_dva.dva_word[1] = 0;
1149 	hdr->b_birth = 0;
1150 }
1151 
1152 static arc_buf_hdr_t *
1153 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1154 {
1155 	const dva_t *dva = BP_IDENTITY(bp);
1156 	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1157 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1158 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1159 	arc_buf_hdr_t *hdr;
1160 
1161 	mutex_enter(hash_lock);
1162 	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1163 	    hdr = hdr->b_hash_next) {
1164 		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1165 			*lockp = hash_lock;
1166 			return (hdr);
1167 		}
1168 	}
1169 	mutex_exit(hash_lock);
1170 	*lockp = NULL;
1171 	return (NULL);
1172 }
1173 
1174 /*
1175  * Insert an entry into the hash table.  If there is already an element
1176  * equal to elem in the hash table, then the already existing element
1177  * will be returned and the new element will not be inserted.
1178  * Otherwise returns NULL.
1179  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1180  */
1181 static arc_buf_hdr_t *
1182 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1183 {
1184 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1185 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1186 	arc_buf_hdr_t *fhdr;
1187 	uint32_t i;
1188 
1189 	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1190 	ASSERT(hdr->b_birth != 0);
1191 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1192 
1193 	if (lockp != NULL) {
1194 		*lockp = hash_lock;
1195 		mutex_enter(hash_lock);
1196 	} else {
1197 		ASSERT(MUTEX_HELD(hash_lock));
1198 	}
1199 
1200 	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1201 	    fhdr = fhdr->b_hash_next, i++) {
1202 		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1203 			return (fhdr);
1204 	}
1205 
1206 	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1207 	buf_hash_table.ht_table[idx] = hdr;
1208 	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1209 
1210 	/* collect some hash table performance data */
1211 	if (i > 0) {
1212 		ARCSTAT_BUMP(arcstat_hash_collisions);
1213 		if (i == 1)
1214 			ARCSTAT_BUMP(arcstat_hash_chains);
1215 
1216 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1217 	}
1218 
1219 	ARCSTAT_BUMP(arcstat_hash_elements);
1220 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1221 
1222 	return (NULL);
1223 }
1224 
1225 static void
1226 buf_hash_remove(arc_buf_hdr_t *hdr)
1227 {
1228 	arc_buf_hdr_t *fhdr, **hdrp;
1229 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1230 
1231 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1232 	ASSERT(HDR_IN_HASH_TABLE(hdr));
1233 
1234 	hdrp = &buf_hash_table.ht_table[idx];
1235 	while ((fhdr = *hdrp) != hdr) {
1236 		ASSERT3P(fhdr, !=, NULL);
1237 		hdrp = &fhdr->b_hash_next;
1238 	}
1239 	*hdrp = hdr->b_hash_next;
1240 	hdr->b_hash_next = NULL;
1241 	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1242 
1243 	/* collect some hash table performance data */
1244 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1245 
1246 	if (buf_hash_table.ht_table[idx] &&
1247 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1248 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1249 }
1250 
1251 /*
1252  * Global data structures and functions for the buf kmem cache.
1253  */
1254 static kmem_cache_t *hdr_full_cache;
1255 static kmem_cache_t *hdr_l2only_cache;
1256 static kmem_cache_t *buf_cache;
1257 
1258 static void
1259 buf_fini(void)
1260 {
1261 	int i;
1262 
1263 	kmem_free(buf_hash_table.ht_table,
1264 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1265 	for (i = 0; i < BUF_LOCKS; i++)
1266 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1267 	kmem_cache_destroy(hdr_full_cache);
1268 	kmem_cache_destroy(hdr_l2only_cache);
1269 	kmem_cache_destroy(buf_cache);
1270 }
1271 
1272 /*
1273  * Constructor callback - called when the cache is empty
1274  * and a new buf is requested.
1275  */
1276 /* ARGSUSED */
1277 static int
1278 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1279 {
1280 	arc_buf_hdr_t *hdr = vbuf;
1281 
1282 	bzero(hdr, HDR_FULL_SIZE);
1283 	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1284 	refcount_create(&hdr->b_l1hdr.b_refcnt);
1285 	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1286 	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1287 	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1288 
1289 	return (0);
1290 }
1291 
1292 /* ARGSUSED */
1293 static int
1294 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1295 {
1296 	arc_buf_hdr_t *hdr = vbuf;
1297 
1298 	bzero(hdr, HDR_L2ONLY_SIZE);
1299 	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1300 
1301 	return (0);
1302 }
1303 
1304 /* ARGSUSED */
1305 static int
1306 buf_cons(void *vbuf, void *unused, int kmflag)
1307 {
1308 	arc_buf_t *buf = vbuf;
1309 
1310 	bzero(buf, sizeof (arc_buf_t));
1311 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1312 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1313 
1314 	return (0);
1315 }
1316 
1317 /*
1318  * Destructor callback - called when a cached buf is
1319  * no longer required.
1320  */
1321 /* ARGSUSED */
1322 static void
1323 hdr_full_dest(void *vbuf, void *unused)
1324 {
1325 	arc_buf_hdr_t *hdr = vbuf;
1326 
1327 	ASSERT(HDR_EMPTY(hdr));
1328 	cv_destroy(&hdr->b_l1hdr.b_cv);
1329 	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1330 	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1331 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1332 	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1333 }
1334 
1335 /* ARGSUSED */
1336 static void
1337 hdr_l2only_dest(void *vbuf, void *unused)
1338 {
1339 	arc_buf_hdr_t *hdr = vbuf;
1340 
1341 	ASSERT(HDR_EMPTY(hdr));
1342 	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1343 }
1344 
1345 /* ARGSUSED */
1346 static void
1347 buf_dest(void *vbuf, void *unused)
1348 {
1349 	arc_buf_t *buf = vbuf;
1350 
1351 	mutex_destroy(&buf->b_evict_lock);
1352 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1353 }
1354 
1355 /*
1356  * Reclaim callback -- invoked when memory is low.
1357  */
1358 /* ARGSUSED */
1359 static void
1360 hdr_recl(void *unused)
1361 {
1362 	dprintf("hdr_recl called\n");
1363 	/*
1364 	 * umem calls the reclaim func when we destroy the buf cache,
1365 	 * which is after we do arc_fini().
1366 	 */
1367 	if (!arc_dead)
1368 		cv_signal(&arc_reclaim_thread_cv);
1369 }
1370 
1371 static void
1372 buf_init(void)
1373 {
1374 	uint64_t *ct;
1375 	uint64_t hsize = 1ULL << 12;
1376 	int i, j;
1377 
1378 	/*
1379 	 * The hash table is big enough to fill all of physical memory
1380 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1381 	 * By default, the table will take up
1382 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1383 	 */
1384 	while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1385 		hsize <<= 1;
1386 retry:
1387 	buf_hash_table.ht_mask = hsize - 1;
1388 	buf_hash_table.ht_table =
1389 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1390 	if (buf_hash_table.ht_table == NULL) {
1391 		ASSERT(hsize > (1ULL << 8));
1392 		hsize >>= 1;
1393 		goto retry;
1394 	}
1395 
1396 	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1397 	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1398 	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1399 	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1400 	    NULL, NULL, 0);
1401 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1402 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1403 
1404 	for (i = 0; i < 256; i++)
1405 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1406 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1407 
1408 	for (i = 0; i < BUF_LOCKS; i++) {
1409 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1410 		    NULL, MUTEX_DEFAULT, NULL);
1411 	}
1412 }
1413 
1414 /*
1415  * This is the size that the buf occupies in memory. If the buf is compressed,
1416  * it will correspond to the compressed size. You should use this method of
1417  * getting the buf size unless you explicitly need the logical size.
1418  */
1419 int32_t
1420 arc_buf_size(arc_buf_t *buf)
1421 {
1422 	return (ARC_BUF_COMPRESSED(buf) ?
1423 	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1424 }
1425 
1426 int32_t
1427 arc_buf_lsize(arc_buf_t *buf)
1428 {
1429 	return (HDR_GET_LSIZE(buf->b_hdr));
1430 }
1431 
1432 enum zio_compress
1433 arc_get_compression(arc_buf_t *buf)
1434 {
1435 	return (ARC_BUF_COMPRESSED(buf) ?
1436 	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1437 }
1438 
1439 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
1440 
1441 static inline boolean_t
1442 arc_buf_is_shared(arc_buf_t *buf)
1443 {
1444 	boolean_t shared = (buf->b_data != NULL &&
1445 	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1446 	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1447 	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1448 	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1449 	IMPLY(shared, ARC_BUF_SHARED(buf));
1450 	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1451 
1452 	/*
1453 	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1454 	 * already being shared" requirement prevents us from doing that.
1455 	 */
1456 
1457 	return (shared);
1458 }
1459 
1460 /*
1461  * Free the checksum associated with this header. If there is no checksum, this
1462  * is a no-op.
1463  */
1464 static inline void
1465 arc_cksum_free(arc_buf_hdr_t *hdr)
1466 {
1467 	ASSERT(HDR_HAS_L1HDR(hdr));
1468 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1469 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1470 		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1471 		hdr->b_l1hdr.b_freeze_cksum = NULL;
1472 	}
1473 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1474 }
1475 
1476 /*
1477  * Return true iff at least one of the bufs on hdr is not compressed.
1478  */
1479 static boolean_t
1480 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1481 {
1482 	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1483 		if (!ARC_BUF_COMPRESSED(b)) {
1484 			return (B_TRUE);
1485 		}
1486 	}
1487 	return (B_FALSE);
1488 }
1489 
1490 /*
1491  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1492  * matches the checksum that is stored in the hdr. If there is no checksum,
1493  * or if the buf is compressed, this is a no-op.
1494  */
1495 static void
1496 arc_cksum_verify(arc_buf_t *buf)
1497 {
1498 	arc_buf_hdr_t *hdr = buf->b_hdr;
1499 	zio_cksum_t zc;
1500 
1501 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1502 		return;
1503 
1504 	if (ARC_BUF_COMPRESSED(buf)) {
1505 		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1506 		    arc_hdr_has_uncompressed_buf(hdr));
1507 		return;
1508 	}
1509 
1510 	ASSERT(HDR_HAS_L1HDR(hdr));
1511 
1512 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1513 	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1514 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1515 		return;
1516 	}
1517 
1518 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1519 	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1520 		panic("buffer modified while frozen!");
1521 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1522 }
1523 
1524 static boolean_t
1525 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1526 {
1527 	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1528 	boolean_t valid_cksum;
1529 
1530 	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1531 	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1532 
1533 	/*
1534 	 * We rely on the blkptr's checksum to determine if the block
1535 	 * is valid or not. When compressed arc is enabled, the l2arc
1536 	 * writes the block to the l2arc just as it appears in the pool.
1537 	 * This allows us to use the blkptr's checksum to validate the
1538 	 * data that we just read off of the l2arc without having to store
1539 	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1540 	 * arc is disabled, then the data written to the l2arc is always
1541 	 * uncompressed and won't match the block as it exists in the main
1542 	 * pool. When this is the case, we must first compress it if it is
1543 	 * compressed on the main pool before we can validate the checksum.
1544 	 */
1545 	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1546 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1547 		uint64_t lsize = HDR_GET_LSIZE(hdr);
1548 		uint64_t csize;
1549 
1550 		abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1551 		csize = zio_compress_data(compress, zio->io_abd,
1552 		    abd_to_buf(cdata), lsize);
1553 
1554 		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1555 		if (csize < HDR_GET_PSIZE(hdr)) {
1556 			/*
1557 			 * Compressed blocks are always a multiple of the
1558 			 * smallest ashift in the pool. Ideally, we would
1559 			 * like to round up the csize to the next
1560 			 * spa_min_ashift but that value may have changed
1561 			 * since the block was last written. Instead,
1562 			 * we rely on the fact that the hdr's psize
1563 			 * was set to the psize of the block when it was
1564 			 * last written. We set the csize to that value
1565 			 * and zero out any part that should not contain
1566 			 * data.
1567 			 */
1568 			abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1569 			csize = HDR_GET_PSIZE(hdr);
1570 		}
1571 		zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1572 	}
1573 
1574 	/*
1575 	 * Block pointers always store the checksum for the logical data.
1576 	 * If the block pointer has the gang bit set, then the checksum
1577 	 * it represents is for the reconstituted data and not for an
1578 	 * individual gang member. The zio pipeline, however, must be able to
1579 	 * determine the checksum of each of the gang constituents so it
1580 	 * treats the checksum comparison differently than what we need
1581 	 * for l2arc blocks. This prevents us from using the
1582 	 * zio_checksum_error() interface directly. Instead we must call the
1583 	 * zio_checksum_error_impl() so that we can ensure the checksum is
1584 	 * generated using the correct checksum algorithm and accounts for the
1585 	 * logical I/O size and not just a gang fragment.
1586 	 */
1587 	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1588 	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1589 	    zio->io_offset, NULL) == 0);
1590 	zio_pop_transforms(zio);
1591 	return (valid_cksum);
1592 }
1593 
1594 /*
1595  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1596  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1597  * isn't modified later on. If buf is compressed or there is already a checksum
1598  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1599  */
1600 static void
1601 arc_cksum_compute(arc_buf_t *buf)
1602 {
1603 	arc_buf_hdr_t *hdr = buf->b_hdr;
1604 
1605 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1606 		return;
1607 
1608 	ASSERT(HDR_HAS_L1HDR(hdr));
1609 
1610 	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1611 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1612 		ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1613 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1614 		return;
1615 	} else if (ARC_BUF_COMPRESSED(buf)) {
1616 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1617 		return;
1618 	}
1619 
1620 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1621 	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1622 	    KM_SLEEP);
1623 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1624 	    hdr->b_l1hdr.b_freeze_cksum);
1625 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1626 	arc_buf_watch(buf);
1627 }
1628 
1629 #ifndef _KERNEL
1630 typedef struct procctl {
1631 	long cmd;
1632 	prwatch_t prwatch;
1633 } procctl_t;
1634 #endif
1635 
1636 /* ARGSUSED */
1637 static void
1638 arc_buf_unwatch(arc_buf_t *buf)
1639 {
1640 #ifndef _KERNEL
1641 	if (arc_watch) {
1642 		int result;
1643 		procctl_t ctl;
1644 		ctl.cmd = PCWATCH;
1645 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1646 		ctl.prwatch.pr_size = 0;
1647 		ctl.prwatch.pr_wflags = 0;
1648 		result = write(arc_procfd, &ctl, sizeof (ctl));
1649 		ASSERT3U(result, ==, sizeof (ctl));
1650 	}
1651 #endif
1652 }
1653 
1654 /* ARGSUSED */
1655 static void
1656 arc_buf_watch(arc_buf_t *buf)
1657 {
1658 #ifndef _KERNEL
1659 	if (arc_watch) {
1660 		int result;
1661 		procctl_t ctl;
1662 		ctl.cmd = PCWATCH;
1663 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1664 		ctl.prwatch.pr_size = arc_buf_size(buf);
1665 		ctl.prwatch.pr_wflags = WA_WRITE;
1666 		result = write(arc_procfd, &ctl, sizeof (ctl));
1667 		ASSERT3U(result, ==, sizeof (ctl));
1668 	}
1669 #endif
1670 }
1671 
1672 static arc_buf_contents_t
1673 arc_buf_type(arc_buf_hdr_t *hdr)
1674 {
1675 	arc_buf_contents_t type;
1676 	if (HDR_ISTYPE_METADATA(hdr)) {
1677 		type = ARC_BUFC_METADATA;
1678 	} else {
1679 		type = ARC_BUFC_DATA;
1680 	}
1681 	VERIFY3U(hdr->b_type, ==, type);
1682 	return (type);
1683 }
1684 
1685 boolean_t
1686 arc_is_metadata(arc_buf_t *buf)
1687 {
1688 	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1689 }
1690 
1691 static uint32_t
1692 arc_bufc_to_flags(arc_buf_contents_t type)
1693 {
1694 	switch (type) {
1695 	case ARC_BUFC_DATA:
1696 		/* metadata field is 0 if buffer contains normal data */
1697 		return (0);
1698 	case ARC_BUFC_METADATA:
1699 		return (ARC_FLAG_BUFC_METADATA);
1700 	default:
1701 		break;
1702 	}
1703 	panic("undefined ARC buffer type!");
1704 	return ((uint32_t)-1);
1705 }
1706 
1707 void
1708 arc_buf_thaw(arc_buf_t *buf)
1709 {
1710 	arc_buf_hdr_t *hdr = buf->b_hdr;
1711 
1712 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1713 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1714 
1715 	arc_cksum_verify(buf);
1716 
1717 	/*
1718 	 * Compressed buffers do not manipulate the b_freeze_cksum or
1719 	 * allocate b_thawed.
1720 	 */
1721 	if (ARC_BUF_COMPRESSED(buf)) {
1722 		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1723 		    arc_hdr_has_uncompressed_buf(hdr));
1724 		return;
1725 	}
1726 
1727 	ASSERT(HDR_HAS_L1HDR(hdr));
1728 	arc_cksum_free(hdr);
1729 
1730 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1731 #ifdef ZFS_DEBUG
1732 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1733 		if (hdr->b_l1hdr.b_thawed != NULL)
1734 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1735 		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1736 	}
1737 #endif
1738 
1739 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1740 
1741 	arc_buf_unwatch(buf);
1742 }
1743 
1744 void
1745 arc_buf_freeze(arc_buf_t *buf)
1746 {
1747 	arc_buf_hdr_t *hdr = buf->b_hdr;
1748 	kmutex_t *hash_lock;
1749 
1750 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1751 		return;
1752 
1753 	if (ARC_BUF_COMPRESSED(buf)) {
1754 		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1755 		    arc_hdr_has_uncompressed_buf(hdr));
1756 		return;
1757 	}
1758 
1759 	hash_lock = HDR_LOCK(hdr);
1760 	mutex_enter(hash_lock);
1761 
1762 	ASSERT(HDR_HAS_L1HDR(hdr));
1763 	ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1764 	    hdr->b_l1hdr.b_state == arc_anon);
1765 	arc_cksum_compute(buf);
1766 	mutex_exit(hash_lock);
1767 }
1768 
1769 /*
1770  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1771  * the following functions should be used to ensure that the flags are
1772  * updated in a thread-safe way. When manipulating the flags either
1773  * the hash_lock must be held or the hdr must be undiscoverable. This
1774  * ensures that we're not racing with any other threads when updating
1775  * the flags.
1776  */
1777 static inline void
1778 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1779 {
1780 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1781 	hdr->b_flags |= flags;
1782 }
1783 
1784 static inline void
1785 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1786 {
1787 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1788 	hdr->b_flags &= ~flags;
1789 }
1790 
1791 /*
1792  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1793  * done in a special way since we have to clear and set bits
1794  * at the same time. Consumers that wish to set the compression bits
1795  * must use this function to ensure that the flags are updated in
1796  * thread-safe manner.
1797  */
1798 static void
1799 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1800 {
1801 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1802 
1803 	/*
1804 	 * Holes and embedded blocks will always have a psize = 0 so
1805 	 * we ignore the compression of the blkptr and set the
1806 	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1807 	 * Holes and embedded blocks remain anonymous so we don't
1808 	 * want to uncompress them. Mark them as uncompressed.
1809 	 */
1810 	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1811 		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1812 		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1813 		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1814 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1815 	} else {
1816 		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1817 		HDR_SET_COMPRESS(hdr, cmp);
1818 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1819 		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1820 	}
1821 }
1822 
1823 /*
1824  * Looks for another buf on the same hdr which has the data decompressed, copies
1825  * from it, and returns true. If no such buf exists, returns false.
1826  */
1827 static boolean_t
1828 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1829 {
1830 	arc_buf_hdr_t *hdr = buf->b_hdr;
1831 	boolean_t copied = B_FALSE;
1832 
1833 	ASSERT(HDR_HAS_L1HDR(hdr));
1834 	ASSERT3P(buf->b_data, !=, NULL);
1835 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1836 
1837 	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1838 	    from = from->b_next) {
1839 		/* can't use our own data buffer */
1840 		if (from == buf) {
1841 			continue;
1842 		}
1843 
1844 		if (!ARC_BUF_COMPRESSED(from)) {
1845 			bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1846 			copied = B_TRUE;
1847 			break;
1848 		}
1849 	}
1850 
1851 	/*
1852 	 * There were no decompressed bufs, so there should not be a
1853 	 * checksum on the hdr either.
1854 	 */
1855 	EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1856 
1857 	return (copied);
1858 }
1859 
1860 /*
1861  * Given a buf that has a data buffer attached to it, this function will
1862  * efficiently fill the buf with data of the specified compression setting from
1863  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1864  * are already sharing a data buf, no copy is performed.
1865  *
1866  * If the buf is marked as compressed but uncompressed data was requested, this
1867  * will allocate a new data buffer for the buf, remove that flag, and fill the
1868  * buf with uncompressed data. You can't request a compressed buf on a hdr with
1869  * uncompressed data, and (since we haven't added support for it yet) if you
1870  * want compressed data your buf must already be marked as compressed and have
1871  * the correct-sized data buffer.
1872  */
1873 static int
1874 arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
1875 {
1876 	arc_buf_hdr_t *hdr = buf->b_hdr;
1877 	boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
1878 	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1879 
1880 	ASSERT3P(buf->b_data, !=, NULL);
1881 	IMPLY(compressed, hdr_compressed);
1882 	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1883 
1884 	if (hdr_compressed == compressed) {
1885 		if (!arc_buf_is_shared(buf)) {
1886 			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1887 			    arc_buf_size(buf));
1888 		}
1889 	} else {
1890 		ASSERT(hdr_compressed);
1891 		ASSERT(!compressed);
1892 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1893 
1894 		/*
1895 		 * If the buf is sharing its data with the hdr, unlink it and
1896 		 * allocate a new data buffer for the buf.
1897 		 */
1898 		if (arc_buf_is_shared(buf)) {
1899 			ASSERT(ARC_BUF_COMPRESSED(buf));
1900 
1901 			/* We need to give the buf it's own b_data */
1902 			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1903 			buf->b_data =
1904 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1905 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1906 
1907 			/* Previously overhead was 0; just add new overhead */
1908 			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1909 		} else if (ARC_BUF_COMPRESSED(buf)) {
1910 			/* We need to reallocate the buf's b_data */
1911 			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1912 			    buf);
1913 			buf->b_data =
1914 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1915 
1916 			/* We increased the size of b_data; update overhead */
1917 			ARCSTAT_INCR(arcstat_overhead_size,
1918 			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1919 		}
1920 
1921 		/*
1922 		 * Regardless of the buf's previous compression settings, it
1923 		 * should not be compressed at the end of this function.
1924 		 */
1925 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1926 
1927 		/*
1928 		 * Try copying the data from another buf which already has a
1929 		 * decompressed version. If that's not possible, it's time to
1930 		 * bite the bullet and decompress the data from the hdr.
1931 		 */
1932 		if (arc_buf_try_copy_decompressed_data(buf)) {
1933 			/* Skip byteswapping and checksumming (already done) */
1934 			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1935 			return (0);
1936 		} else {
1937 			int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1938 			    hdr->b_l1hdr.b_pabd, buf->b_data,
1939 			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1940 
1941 			/*
1942 			 * Absent hardware errors or software bugs, this should
1943 			 * be impossible, but log it anyway so we can debug it.
1944 			 */
1945 			if (error != 0) {
1946 				zfs_dbgmsg(
1947 				    "hdr %p, compress %d, psize %d, lsize %d",
1948 				    hdr, HDR_GET_COMPRESS(hdr),
1949 				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1950 				return (SET_ERROR(EIO));
1951 			}
1952 		}
1953 	}
1954 
1955 	/* Byteswap the buf's data if necessary */
1956 	if (bswap != DMU_BSWAP_NUMFUNCS) {
1957 		ASSERT(!HDR_SHARED_DATA(hdr));
1958 		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
1959 		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
1960 	}
1961 
1962 	/* Compute the hdr's checksum if necessary */
1963 	arc_cksum_compute(buf);
1964 
1965 	return (0);
1966 }
1967 
1968 int
1969 arc_decompress(arc_buf_t *buf)
1970 {
1971 	return (arc_buf_fill(buf, B_FALSE));
1972 }
1973 
1974 /*
1975  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1976  */
1977 static uint64_t
1978 arc_hdr_size(arc_buf_hdr_t *hdr)
1979 {
1980 	uint64_t size;
1981 
1982 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1983 	    HDR_GET_PSIZE(hdr) > 0) {
1984 		size = HDR_GET_PSIZE(hdr);
1985 	} else {
1986 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1987 		size = HDR_GET_LSIZE(hdr);
1988 	}
1989 	return (size);
1990 }
1991 
1992 /*
1993  * Increment the amount of evictable space in the arc_state_t's refcount.
1994  * We account for the space used by the hdr and the arc buf individually
1995  * so that we can add and remove them from the refcount individually.
1996  */
1997 static void
1998 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
1999 {
2000 	arc_buf_contents_t type = arc_buf_type(hdr);
2001 
2002 	ASSERT(HDR_HAS_L1HDR(hdr));
2003 
2004 	if (GHOST_STATE(state)) {
2005 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2006 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2007 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2008 		(void) refcount_add_many(&state->arcs_esize[type],
2009 		    HDR_GET_LSIZE(hdr), hdr);
2010 		return;
2011 	}
2012 
2013 	ASSERT(!GHOST_STATE(state));
2014 	if (hdr->b_l1hdr.b_pabd != NULL) {
2015 		(void) refcount_add_many(&state->arcs_esize[type],
2016 		    arc_hdr_size(hdr), hdr);
2017 	}
2018 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2019 	    buf = buf->b_next) {
2020 		if (arc_buf_is_shared(buf))
2021 			continue;
2022 		(void) refcount_add_many(&state->arcs_esize[type],
2023 		    arc_buf_size(buf), buf);
2024 	}
2025 }
2026 
2027 /*
2028  * Decrement the amount of evictable space in the arc_state_t's refcount.
2029  * We account for the space used by the hdr and the arc buf individually
2030  * so that we can add and remove them from the refcount individually.
2031  */
2032 static void
2033 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2034 {
2035 	arc_buf_contents_t type = arc_buf_type(hdr);
2036 
2037 	ASSERT(HDR_HAS_L1HDR(hdr));
2038 
2039 	if (GHOST_STATE(state)) {
2040 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2041 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2042 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2043 		(void) refcount_remove_many(&state->arcs_esize[type],
2044 		    HDR_GET_LSIZE(hdr), hdr);
2045 		return;
2046 	}
2047 
2048 	ASSERT(!GHOST_STATE(state));
2049 	if (hdr->b_l1hdr.b_pabd != NULL) {
2050 		(void) refcount_remove_many(&state->arcs_esize[type],
2051 		    arc_hdr_size(hdr), hdr);
2052 	}
2053 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2054 	    buf = buf->b_next) {
2055 		if (arc_buf_is_shared(buf))
2056 			continue;
2057 		(void) refcount_remove_many(&state->arcs_esize[type],
2058 		    arc_buf_size(buf), buf);
2059 	}
2060 }
2061 
2062 /*
2063  * Add a reference to this hdr indicating that someone is actively
2064  * referencing that memory. When the refcount transitions from 0 to 1,
2065  * we remove it from the respective arc_state_t list to indicate that
2066  * it is not evictable.
2067  */
2068 static void
2069 add_reference(arc_buf_hdr_t *hdr, void *tag)
2070 {
2071 	ASSERT(HDR_HAS_L1HDR(hdr));
2072 	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2073 		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2074 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2075 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2076 	}
2077 
2078 	arc_state_t *state = hdr->b_l1hdr.b_state;
2079 
2080 	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2081 	    (state != arc_anon)) {
2082 		/* We don't use the L2-only state list. */
2083 		if (state != arc_l2c_only) {
2084 			multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2085 			    hdr);
2086 			arc_evictable_space_decrement(hdr, state);
2087 		}
2088 		/* remove the prefetch flag if we get a reference */
2089 		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2090 	}
2091 }
2092 
2093 /*
2094  * Remove a reference from this hdr. When the reference transitions from
2095  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2096  * list making it eligible for eviction.
2097  */
2098 static int
2099 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2100 {
2101 	int cnt;
2102 	arc_state_t *state = hdr->b_l1hdr.b_state;
2103 
2104 	ASSERT(HDR_HAS_L1HDR(hdr));
2105 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2106 	ASSERT(!GHOST_STATE(state));
2107 
2108 	/*
2109 	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2110 	 * check to prevent usage of the arc_l2c_only list.
2111 	 */
2112 	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2113 	    (state != arc_anon)) {
2114 		multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2115 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2116 		arc_evictable_space_increment(hdr, state);
2117 	}
2118 	return (cnt);
2119 }
2120 
2121 /*
2122  * Move the supplied buffer to the indicated state. The hash lock
2123  * for the buffer must be held by the caller.
2124  */
2125 static void
2126 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2127     kmutex_t *hash_lock)
2128 {
2129 	arc_state_t *old_state;
2130 	int64_t refcnt;
2131 	uint32_t bufcnt;
2132 	boolean_t update_old, update_new;
2133 	arc_buf_contents_t buftype = arc_buf_type(hdr);
2134 
2135 	/*
2136 	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2137 	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2138 	 * L1 hdr doesn't always exist when we change state to arc_anon before
2139 	 * destroying a header, in which case reallocating to add the L1 hdr is
2140 	 * pointless.
2141 	 */
2142 	if (HDR_HAS_L1HDR(hdr)) {
2143 		old_state = hdr->b_l1hdr.b_state;
2144 		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2145 		bufcnt = hdr->b_l1hdr.b_bufcnt;
2146 		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2147 	} else {
2148 		old_state = arc_l2c_only;
2149 		refcnt = 0;
2150 		bufcnt = 0;
2151 		update_old = B_FALSE;
2152 	}
2153 	update_new = update_old;
2154 
2155 	ASSERT(MUTEX_HELD(hash_lock));
2156 	ASSERT3P(new_state, !=, old_state);
2157 	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2158 	ASSERT(old_state != arc_anon || bufcnt <= 1);
2159 
2160 	/*
2161 	 * If this buffer is evictable, transfer it from the
2162 	 * old state list to the new state list.
2163 	 */
2164 	if (refcnt == 0) {
2165 		if (old_state != arc_anon && old_state != arc_l2c_only) {
2166 			ASSERT(HDR_HAS_L1HDR(hdr));
2167 			multilist_remove(old_state->arcs_list[buftype], hdr);
2168 
2169 			if (GHOST_STATE(old_state)) {
2170 				ASSERT0(bufcnt);
2171 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2172 				update_old = B_TRUE;
2173 			}
2174 			arc_evictable_space_decrement(hdr, old_state);
2175 		}
2176 		if (new_state != arc_anon && new_state != arc_l2c_only) {
2177 
2178 			/*
2179 			 * An L1 header always exists here, since if we're
2180 			 * moving to some L1-cached state (i.e. not l2c_only or
2181 			 * anonymous), we realloc the header to add an L1hdr
2182 			 * beforehand.
2183 			 */
2184 			ASSERT(HDR_HAS_L1HDR(hdr));
2185 			multilist_insert(new_state->arcs_list[buftype], hdr);
2186 
2187 			if (GHOST_STATE(new_state)) {
2188 				ASSERT0(bufcnt);
2189 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2190 				update_new = B_TRUE;
2191 			}
2192 			arc_evictable_space_increment(hdr, new_state);
2193 		}
2194 	}
2195 
2196 	ASSERT(!HDR_EMPTY(hdr));
2197 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2198 		buf_hash_remove(hdr);
2199 
2200 	/* adjust state sizes (ignore arc_l2c_only) */
2201 
2202 	if (update_new && new_state != arc_l2c_only) {
2203 		ASSERT(HDR_HAS_L1HDR(hdr));
2204 		if (GHOST_STATE(new_state)) {
2205 			ASSERT0(bufcnt);
2206 
2207 			/*
2208 			 * When moving a header to a ghost state, we first
2209 			 * remove all arc buffers. Thus, we'll have a
2210 			 * bufcnt of zero, and no arc buffer to use for
2211 			 * the reference. As a result, we use the arc
2212 			 * header pointer for the reference.
2213 			 */
2214 			(void) refcount_add_many(&new_state->arcs_size,
2215 			    HDR_GET_LSIZE(hdr), hdr);
2216 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2217 		} else {
2218 			uint32_t buffers = 0;
2219 
2220 			/*
2221 			 * Each individual buffer holds a unique reference,
2222 			 * thus we must remove each of these references one
2223 			 * at a time.
2224 			 */
2225 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2226 			    buf = buf->b_next) {
2227 				ASSERT3U(bufcnt, !=, 0);
2228 				buffers++;
2229 
2230 				/*
2231 				 * When the arc_buf_t is sharing the data
2232 				 * block with the hdr, the owner of the
2233 				 * reference belongs to the hdr. Only
2234 				 * add to the refcount if the arc_buf_t is
2235 				 * not shared.
2236 				 */
2237 				if (arc_buf_is_shared(buf))
2238 					continue;
2239 
2240 				(void) refcount_add_many(&new_state->arcs_size,
2241 				    arc_buf_size(buf), buf);
2242 			}
2243 			ASSERT3U(bufcnt, ==, buffers);
2244 
2245 			if (hdr->b_l1hdr.b_pabd != NULL) {
2246 				(void) refcount_add_many(&new_state->arcs_size,
2247 				    arc_hdr_size(hdr), hdr);
2248 			} else {
2249 				ASSERT(GHOST_STATE(old_state));
2250 			}
2251 		}
2252 	}
2253 
2254 	if (update_old && old_state != arc_l2c_only) {
2255 		ASSERT(HDR_HAS_L1HDR(hdr));
2256 		if (GHOST_STATE(old_state)) {
2257 			ASSERT0(bufcnt);
2258 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2259 
2260 			/*
2261 			 * When moving a header off of a ghost state,
2262 			 * the header will not contain any arc buffers.
2263 			 * We use the arc header pointer for the reference
2264 			 * which is exactly what we did when we put the
2265 			 * header on the ghost state.
2266 			 */
2267 
2268 			(void) refcount_remove_many(&old_state->arcs_size,
2269 			    HDR_GET_LSIZE(hdr), hdr);
2270 		} else {
2271 			uint32_t buffers = 0;
2272 
2273 			/*
2274 			 * Each individual buffer holds a unique reference,
2275 			 * thus we must remove each of these references one
2276 			 * at a time.
2277 			 */
2278 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2279 			    buf = buf->b_next) {
2280 				ASSERT3U(bufcnt, !=, 0);
2281 				buffers++;
2282 
2283 				/*
2284 				 * When the arc_buf_t is sharing the data
2285 				 * block with the hdr, the owner of the
2286 				 * reference belongs to the hdr. Only
2287 				 * add to the refcount if the arc_buf_t is
2288 				 * not shared.
2289 				 */
2290 				if (arc_buf_is_shared(buf))
2291 					continue;
2292 
2293 				(void) refcount_remove_many(
2294 				    &old_state->arcs_size, arc_buf_size(buf),
2295 				    buf);
2296 			}
2297 			ASSERT3U(bufcnt, ==, buffers);
2298 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2299 			(void) refcount_remove_many(
2300 			    &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2301 		}
2302 	}
2303 
2304 	if (HDR_HAS_L1HDR(hdr))
2305 		hdr->b_l1hdr.b_state = new_state;
2306 
2307 	/*
2308 	 * L2 headers should never be on the L2 state list since they don't
2309 	 * have L1 headers allocated.
2310 	 */
2311 	ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2312 	    multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2313 }
2314 
2315 void
2316 arc_space_consume(uint64_t space, arc_space_type_t type)
2317 {
2318 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2319 
2320 	switch (type) {
2321 	case ARC_SPACE_DATA:
2322 		ARCSTAT_INCR(arcstat_data_size, space);
2323 		break;
2324 	case ARC_SPACE_META:
2325 		ARCSTAT_INCR(arcstat_metadata_size, space);
2326 		break;
2327 	case ARC_SPACE_OTHER:
2328 		ARCSTAT_INCR(arcstat_other_size, space);
2329 		break;
2330 	case ARC_SPACE_HDRS:
2331 		ARCSTAT_INCR(arcstat_hdr_size, space);
2332 		break;
2333 	case ARC_SPACE_L2HDRS:
2334 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2335 		break;
2336 	}
2337 
2338 	if (type != ARC_SPACE_DATA)
2339 		ARCSTAT_INCR(arcstat_meta_used, space);
2340 
2341 	atomic_add_64(&arc_size, space);
2342 }
2343 
2344 void
2345 arc_space_return(uint64_t space, arc_space_type_t type)
2346 {
2347 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2348 
2349 	switch (type) {
2350 	case ARC_SPACE_DATA:
2351 		ARCSTAT_INCR(arcstat_data_size, -space);
2352 		break;
2353 	case ARC_SPACE_META:
2354 		ARCSTAT_INCR(arcstat_metadata_size, -space);
2355 		break;
2356 	case ARC_SPACE_OTHER:
2357 		ARCSTAT_INCR(arcstat_other_size, -space);
2358 		break;
2359 	case ARC_SPACE_HDRS:
2360 		ARCSTAT_INCR(arcstat_hdr_size, -space);
2361 		break;
2362 	case ARC_SPACE_L2HDRS:
2363 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2364 		break;
2365 	}
2366 
2367 	if (type != ARC_SPACE_DATA) {
2368 		ASSERT(arc_meta_used >= space);
2369 		if (arc_meta_max < arc_meta_used)
2370 			arc_meta_max = arc_meta_used;
2371 		ARCSTAT_INCR(arcstat_meta_used, -space);
2372 	}
2373 
2374 	ASSERT(arc_size >= space);
2375 	atomic_add_64(&arc_size, -space);
2376 }
2377 
2378 /*
2379  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2380  * with the hdr's b_pabd.
2381  */
2382 static boolean_t
2383 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2384 {
2385 	/*
2386 	 * The criteria for sharing a hdr's data are:
2387 	 * 1. the hdr's compression matches the buf's compression
2388 	 * 2. the hdr doesn't need to be byteswapped
2389 	 * 3. the hdr isn't already being shared
2390 	 * 4. the buf is either compressed or it is the last buf in the hdr list
2391 	 *
2392 	 * Criterion #4 maintains the invariant that shared uncompressed
2393 	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2394 	 * might ask, "if a compressed buf is allocated first, won't that be the
2395 	 * last thing in the list?", but in that case it's impossible to create
2396 	 * a shared uncompressed buf anyway (because the hdr must be compressed
2397 	 * to have the compressed buf). You might also think that #3 is
2398 	 * sufficient to make this guarantee, however it's possible
2399 	 * (specifically in the rare L2ARC write race mentioned in
2400 	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2401 	 * is sharable, but wasn't at the time of its allocation. Rather than
2402 	 * allow a new shared uncompressed buf to be created and then shuffle
2403 	 * the list around to make it the last element, this simply disallows
2404 	 * sharing if the new buf isn't the first to be added.
2405 	 */
2406 	ASSERT3P(buf->b_hdr, ==, hdr);
2407 	boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2408 	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2409 	return (buf_compressed == hdr_compressed &&
2410 	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2411 	    !HDR_SHARED_DATA(hdr) &&
2412 	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2413 }
2414 
2415 /*
2416  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2417  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2418  * copy was made successfully, or an error code otherwise.
2419  */
2420 static int
2421 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2422     boolean_t fill, arc_buf_t **ret)
2423 {
2424 	arc_buf_t *buf;
2425 
2426 	ASSERT(HDR_HAS_L1HDR(hdr));
2427 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2428 	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2429 	    hdr->b_type == ARC_BUFC_METADATA);
2430 	ASSERT3P(ret, !=, NULL);
2431 	ASSERT3P(*ret, ==, NULL);
2432 
2433 	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2434 	buf->b_hdr = hdr;
2435 	buf->b_data = NULL;
2436 	buf->b_next = hdr->b_l1hdr.b_buf;
2437 	buf->b_flags = 0;
2438 
2439 	add_reference(hdr, tag);
2440 
2441 	/*
2442 	 * We're about to change the hdr's b_flags. We must either
2443 	 * hold the hash_lock or be undiscoverable.
2444 	 */
2445 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2446 
2447 	/*
2448 	 * Only honor requests for compressed bufs if the hdr is actually
2449 	 * compressed.
2450 	 */
2451 	if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2452 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2453 
2454 	/*
2455 	 * If the hdr's data can be shared then we share the data buffer and
2456 	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2457 	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2458 	 * buffer to store the buf's data.
2459 	 *
2460 	 * There are two additional restrictions here because we're sharing
2461 	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2462 	 * actively involved in an L2ARC write, because if this buf is used by
2463 	 * an arc_write() then the hdr's data buffer will be released when the
2464 	 * write completes, even though the L2ARC write might still be using it.
2465 	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2466 	 * need to be ABD-aware.
2467 	 */
2468 	boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2469 	    abd_is_linear(hdr->b_l1hdr.b_pabd);
2470 
2471 	/* Set up b_data and sharing */
2472 	if (can_share) {
2473 		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2474 		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2475 		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2476 	} else {
2477 		buf->b_data =
2478 		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2479 		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2480 	}
2481 	VERIFY3P(buf->b_data, !=, NULL);
2482 
2483 	hdr->b_l1hdr.b_buf = buf;
2484 	hdr->b_l1hdr.b_bufcnt += 1;
2485 
2486 	/*
2487 	 * If the user wants the data from the hdr, we need to either copy or
2488 	 * decompress the data.
2489 	 */
2490 	if (fill) {
2491 		return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2492 	}
2493 
2494 	return (0);
2495 }
2496 
2497 static char *arc_onloan_tag = "onloan";
2498 
2499 static inline void
2500 arc_loaned_bytes_update(int64_t delta)
2501 {
2502 	atomic_add_64(&arc_loaned_bytes, delta);
2503 
2504 	/* assert that it did not wrap around */
2505 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2506 }
2507 
2508 /*
2509  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2510  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2511  * buffers must be returned to the arc before they can be used by the DMU or
2512  * freed.
2513  */
2514 arc_buf_t *
2515 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2516 {
2517 	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2518 	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2519 
2520 	arc_loaned_bytes_update(size);
2521 
2522 	return (buf);
2523 }
2524 
2525 arc_buf_t *
2526 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2527     enum zio_compress compression_type)
2528 {
2529 	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2530 	    psize, lsize, compression_type);
2531 
2532 	arc_loaned_bytes_update(psize);
2533 
2534 	return (buf);
2535 }
2536 
2537 
2538 /*
2539  * Return a loaned arc buffer to the arc.
2540  */
2541 void
2542 arc_return_buf(arc_buf_t *buf, void *tag)
2543 {
2544 	arc_buf_hdr_t *hdr = buf->b_hdr;
2545 
2546 	ASSERT3P(buf->b_data, !=, NULL);
2547 	ASSERT(HDR_HAS_L1HDR(hdr));
2548 	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2549 	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2550 
2551 	arc_loaned_bytes_update(-arc_buf_size(buf));
2552 }
2553 
2554 /* Detach an arc_buf from a dbuf (tag) */
2555 void
2556 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2557 {
2558 	arc_buf_hdr_t *hdr = buf->b_hdr;
2559 
2560 	ASSERT3P(buf->b_data, !=, NULL);
2561 	ASSERT(HDR_HAS_L1HDR(hdr));
2562 	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2563 	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2564 
2565 	arc_loaned_bytes_update(arc_buf_size(buf));
2566 }
2567 
2568 static void
2569 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2570 {
2571 	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2572 
2573 	df->l2df_abd = abd;
2574 	df->l2df_size = size;
2575 	df->l2df_type = type;
2576 	mutex_enter(&l2arc_free_on_write_mtx);
2577 	list_insert_head(l2arc_free_on_write, df);
2578 	mutex_exit(&l2arc_free_on_write_mtx);
2579 }
2580 
2581 static void
2582 arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2583 {
2584 	arc_state_t *state = hdr->b_l1hdr.b_state;
2585 	arc_buf_contents_t type = arc_buf_type(hdr);
2586 	uint64_t size = arc_hdr_size(hdr);
2587 
2588 	/* protected by hash lock, if in the hash table */
2589 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2590 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2591 		ASSERT(state != arc_anon && state != arc_l2c_only);
2592 
2593 		(void) refcount_remove_many(&state->arcs_esize[type],
2594 		    size, hdr);
2595 	}
2596 	(void) refcount_remove_many(&state->arcs_size, size, hdr);
2597 	if (type == ARC_BUFC_METADATA) {
2598 		arc_space_return(size, ARC_SPACE_META);
2599 	} else {
2600 		ASSERT(type == ARC_BUFC_DATA);
2601 		arc_space_return(size, ARC_SPACE_DATA);
2602 	}
2603 
2604 	l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2605 }
2606 
2607 /*
2608  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2609  * data buffer, we transfer the refcount ownership to the hdr and update
2610  * the appropriate kstats.
2611  */
2612 static void
2613 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2614 {
2615 	arc_state_t *state = hdr->b_l1hdr.b_state;
2616 
2617 	ASSERT(arc_can_share(hdr, buf));
2618 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2619 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2620 
2621 	/*
2622 	 * Start sharing the data buffer. We transfer the
2623 	 * refcount ownership to the hdr since it always owns
2624 	 * the refcount whenever an arc_buf_t is shared.
2625 	 */
2626 	refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2627 	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2628 	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2629 	    HDR_ISTYPE_METADATA(hdr));
2630 	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2631 	buf->b_flags |= ARC_BUF_FLAG_SHARED;
2632 
2633 	/*
2634 	 * Since we've transferred ownership to the hdr we need
2635 	 * to increment its compressed and uncompressed kstats and
2636 	 * decrement the overhead size.
2637 	 */
2638 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2639 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2640 	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2641 }
2642 
2643 static void
2644 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2645 {
2646 	arc_state_t *state = hdr->b_l1hdr.b_state;
2647 
2648 	ASSERT(arc_buf_is_shared(buf));
2649 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2650 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2651 
2652 	/*
2653 	 * We are no longer sharing this buffer so we need
2654 	 * to transfer its ownership to the rightful owner.
2655 	 */
2656 	refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2657 	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2658 	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2659 	abd_put(hdr->b_l1hdr.b_pabd);
2660 	hdr->b_l1hdr.b_pabd = NULL;
2661 	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2662 
2663 	/*
2664 	 * Since the buffer is no longer shared between
2665 	 * the arc buf and the hdr, count it as overhead.
2666 	 */
2667 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2668 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2669 	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2670 }
2671 
2672 /*
2673  * Remove an arc_buf_t from the hdr's buf list and return the last
2674  * arc_buf_t on the list. If no buffers remain on the list then return
2675  * NULL.
2676  */
2677 static arc_buf_t *
2678 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2679 {
2680 	ASSERT(HDR_HAS_L1HDR(hdr));
2681 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2682 
2683 	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2684 	arc_buf_t *lastbuf = NULL;
2685 
2686 	/*
2687 	 * Remove the buf from the hdr list and locate the last
2688 	 * remaining buffer on the list.
2689 	 */
2690 	while (*bufp != NULL) {
2691 		if (*bufp == buf)
2692 			*bufp = buf->b_next;
2693 
2694 		/*
2695 		 * If we've removed a buffer in the middle of
2696 		 * the list then update the lastbuf and update
2697 		 * bufp.
2698 		 */
2699 		if (*bufp != NULL) {
2700 			lastbuf = *bufp;
2701 			bufp = &(*bufp)->b_next;
2702 		}
2703 	}
2704 	buf->b_next = NULL;
2705 	ASSERT3P(lastbuf, !=, buf);
2706 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2707 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2708 	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2709 
2710 	return (lastbuf);
2711 }
2712 
2713 /*
2714  * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2715  * list and free it.
2716  */
2717 static void
2718 arc_buf_destroy_impl(arc_buf_t *buf)
2719 {
2720 	arc_buf_hdr_t *hdr = buf->b_hdr;
2721 
2722 	/*
2723 	 * Free up the data associated with the buf but only if we're not
2724 	 * sharing this with the hdr. If we are sharing it with the hdr, the
2725 	 * hdr is responsible for doing the free.
2726 	 */
2727 	if (buf->b_data != NULL) {
2728 		/*
2729 		 * We're about to change the hdr's b_flags. We must either
2730 		 * hold the hash_lock or be undiscoverable.
2731 		 */
2732 		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2733 
2734 		arc_cksum_verify(buf);
2735 		arc_buf_unwatch(buf);
2736 
2737 		if (arc_buf_is_shared(buf)) {
2738 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2739 		} else {
2740 			uint64_t size = arc_buf_size(buf);
2741 			arc_free_data_buf(hdr, buf->b_data, size, buf);
2742 			ARCSTAT_INCR(arcstat_overhead_size, -size);
2743 		}
2744 		buf->b_data = NULL;
2745 
2746 		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2747 		hdr->b_l1hdr.b_bufcnt -= 1;
2748 	}
2749 
2750 	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2751 
2752 	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2753 		/*
2754 		 * If the current arc_buf_t is sharing its data buffer with the
2755 		 * hdr, then reassign the hdr's b_pabd to share it with the new
2756 		 * buffer at the end of the list. The shared buffer is always
2757 		 * the last one on the hdr's buffer list.
2758 		 *
2759 		 * There is an equivalent case for compressed bufs, but since
2760 		 * they aren't guaranteed to be the last buf in the list and
2761 		 * that is an exceedingly rare case, we just allow that space be
2762 		 * wasted temporarily.
2763 		 */
2764 		if (lastbuf != NULL) {
2765 			/* Only one buf can be shared at once */
2766 			VERIFY(!arc_buf_is_shared(lastbuf));
2767 			/* hdr is uncompressed so can't have compressed buf */
2768 			VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2769 
2770 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2771 			arc_hdr_free_pabd(hdr);
2772 
2773 			/*
2774 			 * We must setup a new shared block between the
2775 			 * last buffer and the hdr. The data would have
2776 			 * been allocated by the arc buf so we need to transfer
2777 			 * ownership to the hdr since it's now being shared.
2778 			 */
2779 			arc_share_buf(hdr, lastbuf);
2780 		}
2781 	} else if (HDR_SHARED_DATA(hdr)) {
2782 		/*
2783 		 * Uncompressed shared buffers are always at the end
2784 		 * of the list. Compressed buffers don't have the
2785 		 * same requirements. This makes it hard to
2786 		 * simply assert that the lastbuf is shared so
2787 		 * we rely on the hdr's compression flags to determine
2788 		 * if we have a compressed, shared buffer.
2789 		 */
2790 		ASSERT3P(lastbuf, !=, NULL);
2791 		ASSERT(arc_buf_is_shared(lastbuf) ||
2792 		    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2793 	}
2794 
2795 	/*
2796 	 * Free the checksum if we're removing the last uncompressed buf from
2797 	 * this hdr.
2798 	 */
2799 	if (!arc_hdr_has_uncompressed_buf(hdr)) {
2800 		arc_cksum_free(hdr);
2801 	}
2802 
2803 	/* clean up the buf */
2804 	buf->b_hdr = NULL;
2805 	kmem_cache_free(buf_cache, buf);
2806 }
2807 
2808 static void
2809 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
2810 {
2811 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2812 	ASSERT(HDR_HAS_L1HDR(hdr));
2813 	ASSERT(!HDR_SHARED_DATA(hdr));
2814 
2815 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2816 	hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2817 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2818 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2819 
2820 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2821 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2822 }
2823 
2824 static void
2825 arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
2826 {
2827 	ASSERT(HDR_HAS_L1HDR(hdr));
2828 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2829 
2830 	/*
2831 	 * If the hdr is currently being written to the l2arc then
2832 	 * we defer freeing the data by adding it to the l2arc_free_on_write
2833 	 * list. The l2arc will free the data once it's finished
2834 	 * writing it to the l2arc device.
2835 	 */
2836 	if (HDR_L2_WRITING(hdr)) {
2837 		arc_hdr_free_on_write(hdr);
2838 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2839 	} else {
2840 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2841 		    arc_hdr_size(hdr), hdr);
2842 	}
2843 	hdr->b_l1hdr.b_pabd = NULL;
2844 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2845 
2846 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2847 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2848 }
2849 
2850 static arc_buf_hdr_t *
2851 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2852     enum zio_compress compression_type, arc_buf_contents_t type)
2853 {
2854 	arc_buf_hdr_t *hdr;
2855 
2856 	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2857 
2858 	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2859 	ASSERT(HDR_EMPTY(hdr));
2860 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2861 	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
2862 	HDR_SET_PSIZE(hdr, psize);
2863 	HDR_SET_LSIZE(hdr, lsize);
2864 	hdr->b_spa = spa;
2865 	hdr->b_type = type;
2866 	hdr->b_flags = 0;
2867 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2868 	arc_hdr_set_compress(hdr, compression_type);
2869 
2870 	hdr->b_l1hdr.b_state = arc_anon;
2871 	hdr->b_l1hdr.b_arc_access = 0;
2872 	hdr->b_l1hdr.b_bufcnt = 0;
2873 	hdr->b_l1hdr.b_buf = NULL;
2874 
2875 	/*
2876 	 * Allocate the hdr's buffer. This will contain either
2877 	 * the compressed or uncompressed data depending on the block
2878 	 * it references and compressed arc enablement.
2879 	 */
2880 	arc_hdr_alloc_pabd(hdr);
2881 	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2882 
2883 	return (hdr);
2884 }
2885 
2886 /*
2887  * Transition between the two allocation states for the arc_buf_hdr struct.
2888  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2889  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2890  * version is used when a cache buffer is only in the L2ARC in order to reduce
2891  * memory usage.
2892  */
2893 static arc_buf_hdr_t *
2894 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2895 {
2896 	ASSERT(HDR_HAS_L2HDR(hdr));
2897 
2898 	arc_buf_hdr_t *nhdr;
2899 	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2900 
2901 	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2902 	    (old == hdr_l2only_cache && new == hdr_full_cache));
2903 
2904 	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2905 
2906 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2907 	buf_hash_remove(hdr);
2908 
2909 	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2910 
2911 	if (new == hdr_full_cache) {
2912 		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2913 		/*
2914 		 * arc_access and arc_change_state need to be aware that a
2915 		 * header has just come out of L2ARC, so we set its state to
2916 		 * l2c_only even though it's about to change.
2917 		 */
2918 		nhdr->b_l1hdr.b_state = arc_l2c_only;
2919 
2920 		/* Verify previous threads set to NULL before freeing */
2921 		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
2922 	} else {
2923 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2924 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2925 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2926 
2927 		/*
2928 		 * If we've reached here, We must have been called from
2929 		 * arc_evict_hdr(), as such we should have already been
2930 		 * removed from any ghost list we were previously on
2931 		 * (which protects us from racing with arc_evict_state),
2932 		 * thus no locking is needed during this check.
2933 		 */
2934 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2935 
2936 		/*
2937 		 * A buffer must not be moved into the arc_l2c_only
2938 		 * state if it's not finished being written out to the
2939 		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
2940 		 * might try to be accessed, even though it was removed.
2941 		 */
2942 		VERIFY(!HDR_L2_WRITING(hdr));
2943 		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2944 
2945 #ifdef ZFS_DEBUG
2946 		if (hdr->b_l1hdr.b_thawed != NULL) {
2947 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2948 			hdr->b_l1hdr.b_thawed = NULL;
2949 		}
2950 #endif
2951 
2952 		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2953 	}
2954 	/*
2955 	 * The header has been reallocated so we need to re-insert it into any
2956 	 * lists it was on.
2957 	 */
2958 	(void) buf_hash_insert(nhdr, NULL);
2959 
2960 	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
2961 
2962 	mutex_enter(&dev->l2ad_mtx);
2963 
2964 	/*
2965 	 * We must place the realloc'ed header back into the list at
2966 	 * the same spot. Otherwise, if it's placed earlier in the list,
2967 	 * l2arc_write_buffers() could find it during the function's
2968 	 * write phase, and try to write it out to the l2arc.
2969 	 */
2970 	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
2971 	list_remove(&dev->l2ad_buflist, hdr);
2972 
2973 	mutex_exit(&dev->l2ad_mtx);
2974 
2975 	/*
2976 	 * Since we're using the pointer address as the tag when
2977 	 * incrementing and decrementing the l2ad_alloc refcount, we
2978 	 * must remove the old pointer (that we're about to destroy) and
2979 	 * add the new pointer to the refcount. Otherwise we'd remove
2980 	 * the wrong pointer address when calling arc_hdr_destroy() later.
2981 	 */
2982 
2983 	(void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
2984 	(void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
2985 
2986 	buf_discard_identity(hdr);
2987 	kmem_cache_free(old, hdr);
2988 
2989 	return (nhdr);
2990 }
2991 
2992 /*
2993  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
2994  * The buf is returned thawed since we expect the consumer to modify it.
2995  */
2996 arc_buf_t *
2997 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
2998 {
2999 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3000 	    ZIO_COMPRESS_OFF, type);
3001 	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3002 
3003 	arc_buf_t *buf = NULL;
3004 	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
3005 	arc_buf_thaw(buf);
3006 
3007 	return (buf);
3008 }
3009 
3010 /*
3011  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3012  * for bufs containing metadata.
3013  */
3014 arc_buf_t *
3015 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3016     enum zio_compress compression_type)
3017 {
3018 	ASSERT3U(lsize, >, 0);
3019 	ASSERT3U(lsize, >=, psize);
3020 	ASSERT(compression_type > ZIO_COMPRESS_OFF);
3021 	ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
3022 
3023 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3024 	    compression_type, ARC_BUFC_DATA);
3025 	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3026 
3027 	arc_buf_t *buf = NULL;
3028 	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
3029 	arc_buf_thaw(buf);
3030 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3031 
3032 	if (!arc_buf_is_shared(buf)) {
3033 		/*
3034 		 * To ensure that the hdr has the correct data in it if we call
3035 		 * arc_decompress() on this buf before it's been written to
3036 		 * disk, it's easiest if we just set up sharing between the
3037 		 * buf and the hdr.
3038 		 */
3039 		ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3040 		arc_hdr_free_pabd(hdr);
3041 		arc_share_buf(hdr, buf);
3042 	}
3043 
3044 	return (buf);
3045 }
3046 
3047 static void
3048 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3049 {
3050 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3051 	l2arc_dev_t *dev = l2hdr->b_dev;
3052 	uint64_t psize = arc_hdr_size(hdr);
3053 
3054 	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3055 	ASSERT(HDR_HAS_L2HDR(hdr));
3056 
3057 	list_remove(&dev->l2ad_buflist, hdr);
3058 
3059 	ARCSTAT_INCR(arcstat_l2_psize, -psize);
3060 	ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3061 
3062 	vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3063 
3064 	(void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3065 	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3066 }
3067 
3068 static void
3069 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3070 {
3071 	if (HDR_HAS_L1HDR(hdr)) {
3072 		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3073 		    hdr->b_l1hdr.b_bufcnt > 0);
3074 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3075 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3076 	}
3077 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3078 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3079 
3080 	if (!HDR_EMPTY(hdr))
3081 		buf_discard_identity(hdr);
3082 
3083 	if (HDR_HAS_L2HDR(hdr)) {
3084 		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3085 		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3086 
3087 		if (!buflist_held)
3088 			mutex_enter(&dev->l2ad_mtx);
3089 
3090 		/*
3091 		 * Even though we checked this conditional above, we
3092 		 * need to check this again now that we have the
3093 		 * l2ad_mtx. This is because we could be racing with
3094 		 * another thread calling l2arc_evict() which might have
3095 		 * destroyed this header's L2 portion as we were waiting
3096 		 * to acquire the l2ad_mtx. If that happens, we don't
3097 		 * want to re-destroy the header's L2 portion.
3098 		 */
3099 		if (HDR_HAS_L2HDR(hdr))
3100 			arc_hdr_l2hdr_destroy(hdr);
3101 
3102 		if (!buflist_held)
3103 			mutex_exit(&dev->l2ad_mtx);
3104 	}
3105 
3106 	if (HDR_HAS_L1HDR(hdr)) {
3107 		arc_cksum_free(hdr);
3108 
3109 		while (hdr->b_l1hdr.b_buf != NULL)
3110 			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3111 
3112 #ifdef ZFS_DEBUG
3113 		if (hdr->b_l1hdr.b_thawed != NULL) {
3114 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3115 			hdr->b_l1hdr.b_thawed = NULL;
3116 		}
3117 #endif
3118 
3119 		if (hdr->b_l1hdr.b_pabd != NULL) {
3120 			arc_hdr_free_pabd(hdr);
3121 		}
3122 	}
3123 
3124 	ASSERT3P(hdr->b_hash_next, ==, NULL);
3125 	if (HDR_HAS_L1HDR(hdr)) {
3126 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3127 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3128 		kmem_cache_free(hdr_full_cache, hdr);
3129 	} else {
3130 		kmem_cache_free(hdr_l2only_cache, hdr);
3131 	}
3132 }
3133 
3134 void
3135 arc_buf_destroy(arc_buf_t *buf, void* tag)
3136 {
3137 	arc_buf_hdr_t *hdr = buf->b_hdr;
3138 	kmutex_t *hash_lock = HDR_LOCK(hdr);
3139 
3140 	if (hdr->b_l1hdr.b_state == arc_anon) {
3141 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3142 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3143 		VERIFY0(remove_reference(hdr, NULL, tag));
3144 		arc_hdr_destroy(hdr);
3145 		return;
3146 	}
3147 
3148 	mutex_enter(hash_lock);
3149 	ASSERT3P(hdr, ==, buf->b_hdr);
3150 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3151 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3152 	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3153 	ASSERT3P(buf->b_data, !=, NULL);
3154 
3155 	(void) remove_reference(hdr, hash_lock, tag);
3156 	arc_buf_destroy_impl(buf);
3157 	mutex_exit(hash_lock);
3158 }
3159 
3160 /*
3161  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3162  * state of the header is dependent on it's state prior to entering this
3163  * function. The following transitions are possible:
3164  *
3165  *    - arc_mru -> arc_mru_ghost
3166  *    - arc_mfu -> arc_mfu_ghost
3167  *    - arc_mru_ghost -> arc_l2c_only
3168  *    - arc_mru_ghost -> deleted
3169  *    - arc_mfu_ghost -> arc_l2c_only
3170  *    - arc_mfu_ghost -> deleted
3171  */
3172 static int64_t
3173 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3174 {
3175 	arc_state_t *evicted_state, *state;
3176 	int64_t bytes_evicted = 0;
3177 
3178 	ASSERT(MUTEX_HELD(hash_lock));
3179 	ASSERT(HDR_HAS_L1HDR(hdr));
3180 
3181 	state = hdr->b_l1hdr.b_state;
3182 	if (GHOST_STATE(state)) {
3183 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3184 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3185 
3186 		/*
3187 		 * l2arc_write_buffers() relies on a header's L1 portion
3188 		 * (i.e. its b_pabd field) during it's write phase.
3189 		 * Thus, we cannot push a header onto the arc_l2c_only
3190 		 * state (removing it's L1 piece) until the header is
3191 		 * done being written to the l2arc.
3192 		 */
3193 		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3194 			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3195 			return (bytes_evicted);
3196 		}
3197 
3198 		ARCSTAT_BUMP(arcstat_deleted);
3199 		bytes_evicted += HDR_GET_LSIZE(hdr);
3200 
3201 		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3202 
3203 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3204 		if (HDR_HAS_L2HDR(hdr)) {
3205 			/*
3206 			 * This buffer is cached on the 2nd Level ARC;
3207 			 * don't destroy the header.
3208 			 */
3209 			arc_change_state(arc_l2c_only, hdr, hash_lock);
3210 			/*
3211 			 * dropping from L1+L2 cached to L2-only,
3212 			 * realloc to remove the L1 header.
3213 			 */
3214 			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3215 			    hdr_l2only_cache);
3216 		} else {
3217 			arc_change_state(arc_anon, hdr, hash_lock);
3218 			arc_hdr_destroy(hdr);
3219 		}
3220 		return (bytes_evicted);
3221 	}
3222 
3223 	ASSERT(state == arc_mru || state == arc_mfu);
3224 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3225 
3226 	/* prefetch buffers have a minimum lifespan */
3227 	if (HDR_IO_IN_PROGRESS(hdr) ||
3228 	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3229 	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3230 	    arc_min_prefetch_lifespan)) {
3231 		ARCSTAT_BUMP(arcstat_evict_skip);
3232 		return (bytes_evicted);
3233 	}
3234 
3235 	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3236 	while (hdr->b_l1hdr.b_buf) {
3237 		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3238 		if (!mutex_tryenter(&buf->b_evict_lock)) {
3239 			ARCSTAT_BUMP(arcstat_mutex_miss);
3240 			break;
3241 		}
3242 		if (buf->b_data != NULL)
3243 			bytes_evicted += HDR_GET_LSIZE(hdr);
3244 		mutex_exit(&buf->b_evict_lock);
3245 		arc_buf_destroy_impl(buf);
3246 	}
3247 
3248 	if (HDR_HAS_L2HDR(hdr)) {
3249 		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3250 	} else {
3251 		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3252 			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3253 			    HDR_GET_LSIZE(hdr));
3254 		} else {
3255 			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3256 			    HDR_GET_LSIZE(hdr));
3257 		}
3258 	}
3259 
3260 	if (hdr->b_l1hdr.b_bufcnt == 0) {
3261 		arc_cksum_free(hdr);
3262 
3263 		bytes_evicted += arc_hdr_size(hdr);
3264 
3265 		/*
3266 		 * If this hdr is being evicted and has a compressed
3267 		 * buffer then we discard it here before we change states.
3268 		 * This ensures that the accounting is updated correctly
3269 		 * in arc_free_data_impl().
3270 		 */
3271 		arc_hdr_free_pabd(hdr);
3272 
3273 		arc_change_state(evicted_state, hdr, hash_lock);
3274 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3275 		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3276 		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3277 	}
3278 
3279 	return (bytes_evicted);
3280 }
3281 
3282 static uint64_t
3283 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3284     uint64_t spa, int64_t bytes)
3285 {
3286 	multilist_sublist_t *mls;
3287 	uint64_t bytes_evicted = 0;
3288 	arc_buf_hdr_t *hdr;
3289 	kmutex_t *hash_lock;
3290 	int evict_count = 0;
3291 
3292 	ASSERT3P(marker, !=, NULL);
3293 	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3294 
3295 	mls = multilist_sublist_lock(ml, idx);
3296 
3297 	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3298 	    hdr = multilist_sublist_prev(mls, marker)) {
3299 		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3300 		    (evict_count >= zfs_arc_evict_batch_limit))
3301 			break;
3302 
3303 		/*
3304 		 * To keep our iteration location, move the marker
3305 		 * forward. Since we're not holding hdr's hash lock, we
3306 		 * must be very careful and not remove 'hdr' from the
3307 		 * sublist. Otherwise, other consumers might mistake the
3308 		 * 'hdr' as not being on a sublist when they call the
3309 		 * multilist_link_active() function (they all rely on
3310 		 * the hash lock protecting concurrent insertions and
3311 		 * removals). multilist_sublist_move_forward() was
3312 		 * specifically implemented to ensure this is the case
3313 		 * (only 'marker' will be removed and re-inserted).
3314 		 */
3315 		multilist_sublist_move_forward(mls, marker);
3316 
3317 		/*
3318 		 * The only case where the b_spa field should ever be
3319 		 * zero, is the marker headers inserted by
3320 		 * arc_evict_state(). It's possible for multiple threads
3321 		 * to be calling arc_evict_state() concurrently (e.g.
3322 		 * dsl_pool_close() and zio_inject_fault()), so we must
3323 		 * skip any markers we see from these other threads.
3324 		 */
3325 		if (hdr->b_spa == 0)
3326 			continue;
3327 
3328 		/* we're only interested in evicting buffers of a certain spa */
3329 		if (spa != 0 && hdr->b_spa != spa) {
3330 			ARCSTAT_BUMP(arcstat_evict_skip);
3331 			continue;
3332 		}
3333 
3334 		hash_lock = HDR_LOCK(hdr);
3335 
3336 		/*
3337 		 * We aren't calling this function from any code path
3338 		 * that would already be holding a hash lock, so we're
3339 		 * asserting on this assumption to be defensive in case
3340 		 * this ever changes. Without this check, it would be
3341 		 * possible to incorrectly increment arcstat_mutex_miss
3342 		 * below (e.g. if the code changed such that we called
3343 		 * this function with a hash lock held).
3344 		 */
3345 		ASSERT(!MUTEX_HELD(hash_lock));
3346 
3347 		if (mutex_tryenter(hash_lock)) {
3348 			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3349 			mutex_exit(hash_lock);
3350 
3351 			bytes_evicted += evicted;
3352 
3353 			/*
3354 			 * If evicted is zero, arc_evict_hdr() must have
3355 			 * decided to skip this header, don't increment
3356 			 * evict_count in this case.
3357 			 */
3358 			if (evicted != 0)
3359 				evict_count++;
3360 
3361 			/*
3362 			 * If arc_size isn't overflowing, signal any
3363 			 * threads that might happen to be waiting.
3364 			 *
3365 			 * For each header evicted, we wake up a single
3366 			 * thread. If we used cv_broadcast, we could
3367 			 * wake up "too many" threads causing arc_size
3368 			 * to significantly overflow arc_c; since
3369 			 * arc_get_data_impl() doesn't check for overflow
3370 			 * when it's woken up (it doesn't because it's
3371 			 * possible for the ARC to be overflowing while
3372 			 * full of un-evictable buffers, and the
3373 			 * function should proceed in this case).
3374 			 *
3375 			 * If threads are left sleeping, due to not
3376 			 * using cv_broadcast, they will be woken up
3377 			 * just before arc_reclaim_thread() sleeps.
3378 			 */
3379 			mutex_enter(&arc_reclaim_lock);
3380 			if (!arc_is_overflowing())
3381 				cv_signal(&arc_reclaim_waiters_cv);
3382 			mutex_exit(&arc_reclaim_lock);
3383 		} else {
3384 			ARCSTAT_BUMP(arcstat_mutex_miss);
3385 		}
3386 	}
3387 
3388 	multilist_sublist_unlock(mls);
3389 
3390 	return (bytes_evicted);
3391 }
3392 
3393 /*
3394  * Evict buffers from the given arc state, until we've removed the
3395  * specified number of bytes. Move the removed buffers to the
3396  * appropriate evict state.
3397  *
3398  * This function makes a "best effort". It skips over any buffers
3399  * it can't get a hash_lock on, and so, may not catch all candidates.
3400  * It may also return without evicting as much space as requested.
3401  *
3402  * If bytes is specified using the special value ARC_EVICT_ALL, this
3403  * will evict all available (i.e. unlocked and evictable) buffers from
3404  * the given arc state; which is used by arc_flush().
3405  */
3406 static uint64_t
3407 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3408     arc_buf_contents_t type)
3409 {
3410 	uint64_t total_evicted = 0;
3411 	multilist_t *ml = state->arcs_list[type];
3412 	int num_sublists;
3413 	arc_buf_hdr_t **markers;
3414 
3415 	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3416 
3417 	num_sublists = multilist_get_num_sublists(ml);
3418 
3419 	/*
3420 	 * If we've tried to evict from each sublist, made some
3421 	 * progress, but still have not hit the target number of bytes
3422 	 * to evict, we want to keep trying. The markers allow us to
3423 	 * pick up where we left off for each individual sublist, rather
3424 	 * than starting from the tail each time.
3425 	 */
3426 	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3427 	for (int i = 0; i < num_sublists; i++) {
3428 		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3429 
3430 		/*
3431 		 * A b_spa of 0 is used to indicate that this header is
3432 		 * a marker. This fact is used in arc_adjust_type() and
3433 		 * arc_evict_state_impl().
3434 		 */
3435 		markers[i]->b_spa = 0;
3436 
3437 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3438 		multilist_sublist_insert_tail(mls, markers[i]);
3439 		multilist_sublist_unlock(mls);
3440 	}
3441 
3442 	/*
3443 	 * While we haven't hit our target number of bytes to evict, or
3444 	 * we're evicting all available buffers.
3445 	 */
3446 	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3447 		/*
3448 		 * Start eviction using a randomly selected sublist,
3449 		 * this is to try and evenly balance eviction across all
3450 		 * sublists. Always starting at the same sublist
3451 		 * (e.g. index 0) would cause evictions to favor certain
3452 		 * sublists over others.
3453 		 */
3454 		int sublist_idx = multilist_get_random_index(ml);
3455 		uint64_t scan_evicted = 0;
3456 
3457 		for (int i = 0; i < num_sublists; i++) {
3458 			uint64_t bytes_remaining;
3459 			uint64_t bytes_evicted;
3460 
3461 			if (bytes == ARC_EVICT_ALL)
3462 				bytes_remaining = ARC_EVICT_ALL;
3463 			else if (total_evicted < bytes)
3464 				bytes_remaining = bytes - total_evicted;
3465 			else
3466 				break;
3467 
3468 			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3469 			    markers[sublist_idx], spa, bytes_remaining);
3470 
3471 			scan_evicted += bytes_evicted;
3472 			total_evicted += bytes_evicted;
3473 
3474 			/* we've reached the end, wrap to the beginning */
3475 			if (++sublist_idx >= num_sublists)
3476 				sublist_idx = 0;
3477 		}
3478 
3479 		/*
3480 		 * If we didn't evict anything during this scan, we have
3481 		 * no reason to believe we'll evict more during another
3482 		 * scan, so break the loop.
3483 		 */
3484 		if (scan_evicted == 0) {
3485 			/* This isn't possible, let's make that obvious */
3486 			ASSERT3S(bytes, !=, 0);
3487 
3488 			/*
3489 			 * When bytes is ARC_EVICT_ALL, the only way to
3490 			 * break the loop is when scan_evicted is zero.
3491 			 * In that case, we actually have evicted enough,
3492 			 * so we don't want to increment the kstat.
3493 			 */
3494 			if (bytes != ARC_EVICT_ALL) {
3495 				ASSERT3S(total_evicted, <, bytes);
3496 				ARCSTAT_BUMP(arcstat_evict_not_enough);
3497 			}
3498 
3499 			break;
3500 		}
3501 	}
3502 
3503 	for (int i = 0; i < num_sublists; i++) {
3504 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3505 		multilist_sublist_remove(mls, markers[i]);
3506 		multilist_sublist_unlock(mls);
3507 
3508 		kmem_cache_free(hdr_full_cache, markers[i]);
3509 	}
3510 	kmem_free(markers, sizeof (*markers) * num_sublists);
3511 
3512 	return (total_evicted);
3513 }
3514 
3515 /*
3516  * Flush all "evictable" data of the given type from the arc state
3517  * specified. This will not evict any "active" buffers (i.e. referenced).
3518  *
3519  * When 'retry' is set to B_FALSE, the function will make a single pass
3520  * over the state and evict any buffers that it can. Since it doesn't
3521  * continually retry the eviction, it might end up leaving some buffers
3522  * in the ARC due to lock misses.
3523  *
3524  * When 'retry' is set to B_TRUE, the function will continually retry the
3525  * eviction until *all* evictable buffers have been removed from the
3526  * state. As a result, if concurrent insertions into the state are
3527  * allowed (e.g. if the ARC isn't shutting down), this function might
3528  * wind up in an infinite loop, continually trying to evict buffers.
3529  */
3530 static uint64_t
3531 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3532     boolean_t retry)
3533 {
3534 	uint64_t evicted = 0;
3535 
3536 	while (refcount_count(&state->arcs_esize[type]) != 0) {
3537 		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3538 
3539 		if (!retry)
3540 			break;
3541 	}
3542 
3543 	return (evicted);
3544 }
3545 
3546 /*
3547  * Evict the specified number of bytes from the state specified,
3548  * restricting eviction to the spa and type given. This function
3549  * prevents us from trying to evict more from a state's list than
3550  * is "evictable", and to skip evicting altogether when passed a
3551  * negative value for "bytes". In contrast, arc_evict_state() will
3552  * evict everything it can, when passed a negative value for "bytes".
3553  */
3554 static uint64_t
3555 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3556     arc_buf_contents_t type)
3557 {
3558 	int64_t delta;
3559 
3560 	if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3561 		delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3562 		return (arc_evict_state(state, spa, delta, type));
3563 	}
3564 
3565 	return (0);
3566 }
3567 
3568 /*
3569  * Evict metadata buffers from the cache, such that arc_meta_used is
3570  * capped by the arc_meta_limit tunable.
3571  */
3572 static uint64_t
3573 arc_adjust_meta(void)
3574 {
3575 	uint64_t total_evicted = 0;
3576 	int64_t target;
3577 
3578 	/*
3579 	 * If we're over the meta limit, we want to evict enough
3580 	 * metadata to get back under the meta limit. We don't want to
3581 	 * evict so much that we drop the MRU below arc_p, though. If
3582 	 * we're over the meta limit more than we're over arc_p, we
3583 	 * evict some from the MRU here, and some from the MFU below.
3584 	 */
3585 	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3586 	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3587 	    refcount_count(&arc_mru->arcs_size) - arc_p));
3588 
3589 	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3590 
3591 	/*
3592 	 * Similar to the above, we want to evict enough bytes to get us
3593 	 * below the meta limit, but not so much as to drop us below the
3594 	 * space allotted to the MFU (which is defined as arc_c - arc_p).
3595 	 */
3596 	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3597 	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3598 
3599 	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3600 
3601 	return (total_evicted);
3602 }
3603 
3604 /*
3605  * Return the type of the oldest buffer in the given arc state
3606  *
3607  * This function will select a random sublist of type ARC_BUFC_DATA and
3608  * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3609  * is compared, and the type which contains the "older" buffer will be
3610  * returned.
3611  */
3612 static arc_buf_contents_t
3613 arc_adjust_type(arc_state_t *state)
3614 {
3615 	multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3616 	multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3617 	int data_idx = multilist_get_random_index(data_ml);
3618 	int meta_idx = multilist_get_random_index(meta_ml);
3619 	multilist_sublist_t *data_mls;
3620 	multilist_sublist_t *meta_mls;
3621 	arc_buf_contents_t type;
3622 	arc_buf_hdr_t *data_hdr;
3623 	arc_buf_hdr_t *meta_hdr;
3624 
3625 	/*
3626 	 * We keep the sublist lock until we're finished, to prevent
3627 	 * the headers from being destroyed via arc_evict_state().
3628 	 */
3629 	data_mls = multilist_sublist_lock(data_ml, data_idx);
3630 	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3631 
3632 	/*
3633 	 * These two loops are to ensure we skip any markers that
3634 	 * might be at the tail of the lists due to arc_evict_state().
3635 	 */
3636 
3637 	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3638 	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3639 		if (data_hdr->b_spa != 0)
3640 			break;
3641 	}
3642 
3643 	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3644 	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3645 		if (meta_hdr->b_spa != 0)
3646 			break;
3647 	}
3648 
3649 	if (data_hdr == NULL && meta_hdr == NULL) {
3650 		type = ARC_BUFC_DATA;
3651 	} else if (data_hdr == NULL) {
3652 		ASSERT3P(meta_hdr, !=, NULL);
3653 		type = ARC_BUFC_METADATA;
3654 	} else if (meta_hdr == NULL) {
3655 		ASSERT3P(data_hdr, !=, NULL);
3656 		type = ARC_BUFC_DATA;
3657 	} else {
3658 		ASSERT3P(data_hdr, !=, NULL);
3659 		ASSERT3P(meta_hdr, !=, NULL);
3660 
3661 		/* The headers can't be on the sublist without an L1 header */
3662 		ASSERT(HDR_HAS_L1HDR(data_hdr));
3663 		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3664 
3665 		if (data_hdr->b_l1hdr.b_arc_access <
3666 		    meta_hdr->b_l1hdr.b_arc_access) {
3667 			type = ARC_BUFC_DATA;
3668 		} else {
3669 			type = ARC_BUFC_METADATA;
3670 		}
3671 	}
3672 
3673 	multilist_sublist_unlock(meta_mls);
3674 	multilist_sublist_unlock(data_mls);
3675 
3676 	return (type);
3677 }
3678 
3679 /*
3680  * Evict buffers from the cache, such that arc_size is capped by arc_c.
3681  */
3682 static uint64_t
3683 arc_adjust(void)
3684 {
3685 	uint64_t total_evicted = 0;
3686 	uint64_t bytes;
3687 	int64_t target;
3688 
3689 	/*
3690 	 * If we're over arc_meta_limit, we want to correct that before
3691 	 * potentially evicting data buffers below.
3692 	 */
3693 	total_evicted += arc_adjust_meta();
3694 
3695 	/*
3696 	 * Adjust MRU size
3697 	 *
3698 	 * If we're over the target cache size, we want to evict enough
3699 	 * from the list to get back to our target size. We don't want
3700 	 * to evict too much from the MRU, such that it drops below
3701 	 * arc_p. So, if we're over our target cache size more than
3702 	 * the MRU is over arc_p, we'll evict enough to get back to
3703 	 * arc_p here, and then evict more from the MFU below.
3704 	 */
3705 	target = MIN((int64_t)(arc_size - arc_c),
3706 	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3707 	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3708 
3709 	/*
3710 	 * If we're below arc_meta_min, always prefer to evict data.
3711 	 * Otherwise, try to satisfy the requested number of bytes to
3712 	 * evict from the type which contains older buffers; in an
3713 	 * effort to keep newer buffers in the cache regardless of their
3714 	 * type. If we cannot satisfy the number of bytes from this
3715 	 * type, spill over into the next type.
3716 	 */
3717 	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3718 	    arc_meta_used > arc_meta_min) {
3719 		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3720 		total_evicted += bytes;
3721 
3722 		/*
3723 		 * If we couldn't evict our target number of bytes from
3724 		 * metadata, we try to get the rest from data.
3725 		 */
3726 		target -= bytes;
3727 
3728 		total_evicted +=
3729 		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3730 	} else {
3731 		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3732 		total_evicted += bytes;
3733 
3734 		/*
3735 		 * If we couldn't evict our target number of bytes from
3736 		 * data, we try to get the rest from metadata.
3737 		 */
3738 		target -= bytes;
3739 
3740 		total_evicted +=
3741 		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3742 	}
3743 
3744 	/*
3745 	 * Adjust MFU size
3746 	 *
3747 	 * Now that we've tried to evict enough from the MRU to get its
3748 	 * size back to arc_p, if we're still above the target cache
3749 	 * size, we evict the rest from the MFU.
3750 	 */
3751 	target = arc_size - arc_c;
3752 
3753 	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3754 	    arc_meta_used > arc_meta_min) {
3755 		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3756 		total_evicted += bytes;
3757 
3758 		/*
3759 		 * If we couldn't evict our target number of bytes from
3760 		 * metadata, we try to get the rest from data.
3761 		 */
3762 		target -= bytes;
3763 
3764 		total_evicted +=
3765 		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3766 	} else {
3767 		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3768 		total_evicted += bytes;
3769 
3770 		/*
3771 		 * If we couldn't evict our target number of bytes from
3772 		 * data, we try to get the rest from data.
3773 		 */
3774 		target -= bytes;
3775 
3776 		total_evicted +=
3777 		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3778 	}
3779 
3780 	/*
3781 	 * Adjust ghost lists
3782 	 *
3783 	 * In addition to the above, the ARC also defines target values
3784 	 * for the ghost lists. The sum of the mru list and mru ghost
3785 	 * list should never exceed the target size of the cache, and
3786 	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3787 	 * ghost list should never exceed twice the target size of the
3788 	 * cache. The following logic enforces these limits on the ghost
3789 	 * caches, and evicts from them as needed.
3790 	 */
3791 	target = refcount_count(&arc_mru->arcs_size) +
3792 	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3793 
3794 	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3795 	total_evicted += bytes;
3796 
3797 	target -= bytes;
3798 
3799 	total_evicted +=
3800 	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3801 
3802 	/*
3803 	 * We assume the sum of the mru list and mfu list is less than
3804 	 * or equal to arc_c (we enforced this above), which means we
3805 	 * can use the simpler of the two equations below:
3806 	 *
3807 	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3808 	 *		    mru ghost + mfu ghost <= arc_c
3809 	 */
3810 	target = refcount_count(&arc_mru_ghost->arcs_size) +
3811 	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3812 
3813 	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3814 	total_evicted += bytes;
3815 
3816 	target -= bytes;
3817 
3818 	total_evicted +=
3819 	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3820 
3821 	return (total_evicted);
3822 }
3823 
3824 void
3825 arc_flush(spa_t *spa, boolean_t retry)
3826 {
3827 	uint64_t guid = 0;
3828 
3829 	/*
3830 	 * If retry is B_TRUE, a spa must not be specified since we have
3831 	 * no good way to determine if all of a spa's buffers have been
3832 	 * evicted from an arc state.
3833 	 */
3834 	ASSERT(!retry || spa == 0);
3835 
3836 	if (spa != NULL)
3837 		guid = spa_load_guid(spa);
3838 
3839 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3840 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3841 
3842 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3843 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3844 
3845 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3846 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3847 
3848 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3849 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3850 }
3851 
3852 void
3853 arc_shrink(int64_t to_free)
3854 {
3855 	if (arc_c > arc_c_min) {
3856 
3857 		if (arc_c > arc_c_min + to_free)
3858 			atomic_add_64(&arc_c, -to_free);
3859 		else
3860 			arc_c = arc_c_min;
3861 
3862 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3863 		if (arc_c > arc_size)
3864 			arc_c = MAX(arc_size, arc_c_min);
3865 		if (arc_p > arc_c)
3866 			arc_p = (arc_c >> 1);
3867 		ASSERT(arc_c >= arc_c_min);
3868 		ASSERT((int64_t)arc_p >= 0);
3869 	}
3870 
3871 	if (arc_size > arc_c)
3872 		(void) arc_adjust();
3873 }
3874 
3875 typedef enum free_memory_reason_t {
3876 	FMR_UNKNOWN,
3877 	FMR_NEEDFREE,
3878 	FMR_LOTSFREE,
3879 	FMR_SWAPFS_MINFREE,
3880 	FMR_PAGES_PP_MAXIMUM,
3881 	FMR_HEAP_ARENA,
3882 	FMR_ZIO_ARENA,
3883 } free_memory_reason_t;
3884 
3885 int64_t last_free_memory;
3886 free_memory_reason_t last_free_reason;
3887 
3888 /*
3889  * Additional reserve of pages for pp_reserve.
3890  */
3891 int64_t arc_pages_pp_reserve = 64;
3892 
3893 /*
3894  * Additional reserve of pages for swapfs.
3895  */
3896 int64_t arc_swapfs_reserve = 64;
3897 
3898 /*
3899  * Return the amount of memory that can be consumed before reclaim will be
3900  * needed.  Positive if there is sufficient free memory, negative indicates
3901  * the amount of memory that needs to be freed up.
3902  */
3903 static int64_t
3904 arc_available_memory(void)
3905 {
3906 	int64_t lowest = INT64_MAX;
3907 	int64_t n;
3908 	free_memory_reason_t r = FMR_UNKNOWN;
3909 
3910 #ifdef _KERNEL
3911 	if (needfree > 0) {
3912 		n = PAGESIZE * (-needfree);
3913 		if (n < lowest) {
3914 			lowest = n;
3915 			r = FMR_NEEDFREE;
3916 		}
3917 	}
3918 
3919 	/*
3920 	 * check that we're out of range of the pageout scanner.  It starts to
3921 	 * schedule paging if freemem is less than lotsfree and needfree.
3922 	 * lotsfree is the high-water mark for pageout, and needfree is the
3923 	 * number of needed free pages.  We add extra pages here to make sure
3924 	 * the scanner doesn't start up while we're freeing memory.
3925 	 */
3926 	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3927 	if (n < lowest) {
3928 		lowest = n;
3929 		r = FMR_LOTSFREE;
3930 	}
3931 
3932 	/*
3933 	 * check to make sure that swapfs has enough space so that anon
3934 	 * reservations can still succeed. anon_resvmem() checks that the
3935 	 * availrmem is greater than swapfs_minfree, and the number of reserved
3936 	 * swap pages.  We also add a bit of extra here just to prevent
3937 	 * circumstances from getting really dire.
3938 	 */
3939 	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3940 	    desfree - arc_swapfs_reserve);
3941 	if (n < lowest) {
3942 		lowest = n;
3943 		r = FMR_SWAPFS_MINFREE;
3944 	}
3945 
3946 
3947 	/*
3948 	 * Check that we have enough availrmem that memory locking (e.g., via
3949 	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3950 	 * stores the number of pages that cannot be locked; when availrmem
3951 	 * drops below pages_pp_maximum, page locking mechanisms such as
3952 	 * page_pp_lock() will fail.)
3953 	 */
3954 	n = PAGESIZE * (availrmem - pages_pp_maximum -
3955 	    arc_pages_pp_reserve);
3956 	if (n < lowest) {
3957 		lowest = n;
3958 		r = FMR_PAGES_PP_MAXIMUM;
3959 	}
3960 
3961 #if defined(__i386)
3962 	/*
3963 	 * If we're on an i386 platform, it's possible that we'll exhaust the
3964 	 * kernel heap space before we ever run out of available physical
3965 	 * memory.  Most checks of the size of the heap_area compare against
3966 	 * tune.t_minarmem, which is the minimum available real memory that we
3967 	 * can have in the system.  However, this is generally fixed at 25 pages
3968 	 * which is so low that it's useless.  In this comparison, we seek to
3969 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3970 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3971 	 * free)
3972 	 */
3973 	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3974 	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3975 	if (n < lowest) {
3976 		lowest = n;
3977 		r = FMR_HEAP_ARENA;
3978 	}
3979 #endif
3980 
3981 	/*
3982 	 * If zio data pages are being allocated out of a separate heap segment,
3983 	 * then enforce that the size of available vmem for this arena remains
3984 	 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
3985 	 *
3986 	 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
3987 	 * memory (in the zio_arena) free, which can avoid memory
3988 	 * fragmentation issues.
3989 	 */
3990 	if (zio_arena != NULL) {
3991 		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3992 		    (vmem_size(zio_arena, VMEM_ALLOC) >>
3993 		    arc_zio_arena_free_shift);
3994 		if (n < lowest) {
3995 			lowest = n;
3996 			r = FMR_ZIO_ARENA;
3997 		}
3998 	}
3999 #else
4000 	/* Every 100 calls, free a small amount */
4001 	if (spa_get_random(100) == 0)
4002 		lowest = -1024;
4003 #endif
4004 
4005 	last_free_memory = lowest;
4006 	last_free_reason = r;
4007 
4008 	return (lowest);
4009 }
4010 
4011 
4012 /*
4013  * Determine if the system is under memory pressure and is asking
4014  * to reclaim memory. A return value of B_TRUE indicates that the system
4015  * is under memory pressure and that the arc should adjust accordingly.
4016  */
4017 static boolean_t
4018 arc_reclaim_needed(void)
4019 {
4020 	return (arc_available_memory() < 0);
4021 }
4022 
4023 static void
4024 arc_kmem_reap_now(void)
4025 {
4026 	size_t			i;
4027 	kmem_cache_t		*prev_cache = NULL;
4028 	kmem_cache_t		*prev_data_cache = NULL;
4029 	extern kmem_cache_t	*zio_buf_cache[];
4030 	extern kmem_cache_t	*zio_data_buf_cache[];
4031 	extern kmem_cache_t	*range_seg_cache;
4032 	extern kmem_cache_t	*abd_chunk_cache;
4033 
4034 #ifdef _KERNEL
4035 	if (arc_meta_used >= arc_meta_limit) {
4036 		/*
4037 		 * We are exceeding our meta-data cache limit.
4038 		 * Purge some DNLC entries to release holds on meta-data.
4039 		 */
4040 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4041 	}
4042 #if defined(__i386)
4043 	/*
4044 	 * Reclaim unused memory from all kmem caches.
4045 	 */
4046 	kmem_reap();
4047 #endif
4048 #endif
4049 
4050 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4051 		if (zio_buf_cache[i] != prev_cache) {
4052 			prev_cache = zio_buf_cache[i];
4053 			kmem_cache_reap_now(zio_buf_cache[i]);
4054 		}
4055 		if (zio_data_buf_cache[i] != prev_data_cache) {
4056 			prev_data_cache = zio_data_buf_cache[i];
4057 			kmem_cache_reap_now(zio_data_buf_cache[i]);
4058 		}
4059 	}
4060 	kmem_cache_reap_now(abd_chunk_cache);
4061 	kmem_cache_reap_now(buf_cache);
4062 	kmem_cache_reap_now(hdr_full_cache);
4063 	kmem_cache_reap_now(hdr_l2only_cache);
4064 	kmem_cache_reap_now(range_seg_cache);
4065 
4066 	if (zio_arena != NULL) {
4067 		/*
4068 		 * Ask the vmem arena to reclaim unused memory from its
4069 		 * quantum caches.
4070 		 */
4071 		vmem_qcache_reap(zio_arena);
4072 	}
4073 }
4074 
4075 /*
4076  * Threads can block in arc_get_data_impl() waiting for this thread to evict
4077  * enough data and signal them to proceed. When this happens, the threads in
4078  * arc_get_data_impl() are sleeping while holding the hash lock for their
4079  * particular arc header. Thus, we must be careful to never sleep on a
4080  * hash lock in this thread. This is to prevent the following deadlock:
4081  *
4082  *  - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4083  *    waiting for the reclaim thread to signal it.
4084  *
4085  *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4086  *    fails, and goes to sleep forever.
4087  *
4088  * This possible deadlock is avoided by always acquiring a hash lock
4089  * using mutex_tryenter() from arc_reclaim_thread().
4090  */
4091 /* ARGSUSED */
4092 static void
4093 arc_reclaim_thread(void *unused)
4094 {
4095 	hrtime_t		growtime = 0;
4096 	callb_cpr_t		cpr;
4097 
4098 	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4099 
4100 	mutex_enter(&arc_reclaim_lock);
4101 	while (!arc_reclaim_thread_exit) {
4102 		uint64_t evicted = 0;
4103 
4104 		/*
4105 		 * This is necessary in order for the mdb ::arc dcmd to
4106 		 * show up to date information. Since the ::arc command
4107 		 * does not call the kstat's update function, without
4108 		 * this call, the command may show stale stats for the
4109 		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4110 		 * with this change, the data might be up to 1 second
4111 		 * out of date; but that should suffice. The arc_state_t
4112 		 * structures can be queried directly if more accurate
4113 		 * information is needed.
4114 		 */
4115 		if (arc_ksp != NULL)
4116 			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4117 
4118 		mutex_exit(&arc_reclaim_lock);
4119 
4120 		/*
4121 		 * We call arc_adjust() before (possibly) calling
4122 		 * arc_kmem_reap_now(), so that we can wake up
4123 		 * arc_get_data_impl() sooner.
4124 		 */
4125 		evicted = arc_adjust();
4126 
4127 		int64_t free_memory = arc_available_memory();
4128 		if (free_memory < 0) {
4129 
4130 			arc_no_grow = B_TRUE;
4131 			arc_warm = B_TRUE;
4132 
4133 			/*
4134 			 * Wait at least zfs_grow_retry (default 60) seconds
4135 			 * before considering growing.
4136 			 */
4137 			growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4138 
4139 			arc_kmem_reap_now();
4140 
4141 			/*
4142 			 * If we are still low on memory, shrink the ARC
4143 			 * so that we have arc_shrink_min free space.
4144 			 */
4145 			free_memory = arc_available_memory();
4146 
4147 			int64_t to_free =
4148 			    (arc_c >> arc_shrink_shift) - free_memory;
4149 			if (to_free > 0) {
4150 #ifdef _KERNEL
4151 				to_free = MAX(to_free, ptob(needfree));
4152 #endif
4153 				arc_shrink(to_free);
4154 			}
4155 		} else if (free_memory < arc_c >> arc_no_grow_shift) {
4156 			arc_no_grow = B_TRUE;
4157 		} else if (gethrtime() >= growtime) {
4158 			arc_no_grow = B_FALSE;
4159 		}
4160 
4161 		mutex_enter(&arc_reclaim_lock);
4162 
4163 		/*
4164 		 * If evicted is zero, we couldn't evict anything via
4165 		 * arc_adjust(). This could be due to hash lock
4166 		 * collisions, but more likely due to the majority of
4167 		 * arc buffers being unevictable. Therefore, even if
4168 		 * arc_size is above arc_c, another pass is unlikely to
4169 		 * be helpful and could potentially cause us to enter an
4170 		 * infinite loop.
4171 		 */
4172 		if (arc_size <= arc_c || evicted == 0) {
4173 			/*
4174 			 * We're either no longer overflowing, or we
4175 			 * can't evict anything more, so we should wake
4176 			 * up any threads before we go to sleep.
4177 			 */
4178 			cv_broadcast(&arc_reclaim_waiters_cv);
4179 
4180 			/*
4181 			 * Block until signaled, or after one second (we
4182 			 * might need to perform arc_kmem_reap_now()
4183 			 * even if we aren't being signalled)
4184 			 */
4185 			CALLB_CPR_SAFE_BEGIN(&cpr);
4186 			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
4187 			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4188 			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4189 		}
4190 	}
4191 
4192 	arc_reclaim_thread_exit = B_FALSE;
4193 	cv_broadcast(&arc_reclaim_thread_cv);
4194 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
4195 	thread_exit();
4196 }
4197 
4198 /*
4199  * Adapt arc info given the number of bytes we are trying to add and
4200  * the state that we are comming from.  This function is only called
4201  * when we are adding new content to the cache.
4202  */
4203 static void
4204 arc_adapt(int bytes, arc_state_t *state)
4205 {
4206 	int mult;
4207 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4208 	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4209 	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4210 
4211 	if (state == arc_l2c_only)
4212 		return;
4213 
4214 	ASSERT(bytes > 0);
4215 	/*
4216 	 * Adapt the target size of the MRU list:
4217 	 *	- if we just hit in the MRU ghost list, then increase
4218 	 *	  the target size of the MRU list.
4219 	 *	- if we just hit in the MFU ghost list, then increase
4220 	 *	  the target size of the MFU list by decreasing the
4221 	 *	  target size of the MRU list.
4222 	 */
4223 	if (state == arc_mru_ghost) {
4224 		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4225 		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4226 
4227 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4228 	} else if (state == arc_mfu_ghost) {
4229 		uint64_t delta;
4230 
4231 		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4232 		mult = MIN(mult, 10);
4233 
4234 		delta = MIN(bytes * mult, arc_p);
4235 		arc_p = MAX(arc_p_min, arc_p - delta);
4236 	}
4237 	ASSERT((int64_t)arc_p >= 0);
4238 
4239 	if (arc_reclaim_needed()) {
4240 		cv_signal(&arc_reclaim_thread_cv);
4241 		return;
4242 	}
4243 
4244 	if (arc_no_grow)
4245 		return;
4246 
4247 	if (arc_c >= arc_c_max)
4248 		return;
4249 
4250 	/*
4251 	 * If we're within (2 * maxblocksize) bytes of the target
4252 	 * cache size, increment the target cache size
4253 	 */
4254 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4255 		atomic_add_64(&arc_c, (int64_t)bytes);
4256 		if (arc_c > arc_c_max)
4257 			arc_c = arc_c_max;
4258 		else if (state == arc_anon)
4259 			atomic_add_64(&arc_p, (int64_t)bytes);
4260 		if (arc_p > arc_c)
4261 			arc_p = arc_c;
4262 	}
4263 	ASSERT((int64_t)arc_p >= 0);
4264 }
4265 
4266 /*
4267  * Check if arc_size has grown past our upper threshold, determined by
4268  * zfs_arc_overflow_shift.
4269  */
4270 static boolean_t
4271 arc_is_overflowing(void)
4272 {
4273 	/* Always allow at least one block of overflow */
4274 	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4275 	    arc_c >> zfs_arc_overflow_shift);
4276 
4277 	return (arc_size >= arc_c + overflow);
4278 }
4279 
4280 static abd_t *
4281 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4282 {
4283 	arc_buf_contents_t type = arc_buf_type(hdr);
4284 
4285 	arc_get_data_impl(hdr, size, tag);
4286 	if (type == ARC_BUFC_METADATA) {
4287 		return (abd_alloc(size, B_TRUE));
4288 	} else {
4289 		ASSERT(type == ARC_BUFC_DATA);
4290 		return (abd_alloc(size, B_FALSE));
4291 	}
4292 }
4293 
4294 static void *
4295 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4296 {
4297 	arc_buf_contents_t type = arc_buf_type(hdr);
4298 
4299 	arc_get_data_impl(hdr, size, tag);
4300 	if (type == ARC_BUFC_METADATA) {
4301 		return (zio_buf_alloc(size));
4302 	} else {
4303 		ASSERT(type == ARC_BUFC_DATA);
4304 		return (zio_data_buf_alloc(size));
4305 	}
4306 }
4307 
4308 /*
4309  * Allocate a block and return it to the caller. If we are hitting the
4310  * hard limit for the cache size, we must sleep, waiting for the eviction
4311  * thread to catch up. If we're past the target size but below the hard
4312  * limit, we'll only signal the reclaim thread and continue on.
4313  */
4314 static void
4315 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4316 {
4317 	arc_state_t *state = hdr->b_l1hdr.b_state;
4318 	arc_buf_contents_t type = arc_buf_type(hdr);
4319 
4320 	arc_adapt(size, state);
4321 
4322 	/*
4323 	 * If arc_size is currently overflowing, and has grown past our
4324 	 * upper limit, we must be adding data faster than the evict
4325 	 * thread can evict. Thus, to ensure we don't compound the
4326 	 * problem by adding more data and forcing arc_size to grow even
4327 	 * further past it's target size, we halt and wait for the
4328 	 * eviction thread to catch up.
4329 	 *
4330 	 * It's also possible that the reclaim thread is unable to evict
4331 	 * enough buffers to get arc_size below the overflow limit (e.g.
4332 	 * due to buffers being un-evictable, or hash lock collisions).
4333 	 * In this case, we want to proceed regardless if we're
4334 	 * overflowing; thus we don't use a while loop here.
4335 	 */
4336 	if (arc_is_overflowing()) {
4337 		mutex_enter(&arc_reclaim_lock);
4338 
4339 		/*
4340 		 * Now that we've acquired the lock, we may no longer be
4341 		 * over the overflow limit, lets check.
4342 		 *
4343 		 * We're ignoring the case of spurious wake ups. If that
4344 		 * were to happen, it'd let this thread consume an ARC
4345 		 * buffer before it should have (i.e. before we're under
4346 		 * the overflow limit and were signalled by the reclaim
4347 		 * thread). As long as that is a rare occurrence, it
4348 		 * shouldn't cause any harm.
4349 		 */
4350 		if (arc_is_overflowing()) {
4351 			cv_signal(&arc_reclaim_thread_cv);
4352 			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4353 		}
4354 
4355 		mutex_exit(&arc_reclaim_lock);
4356 	}
4357 
4358 	VERIFY3U(hdr->b_type, ==, type);
4359 	if (type == ARC_BUFC_METADATA) {
4360 		arc_space_consume(size, ARC_SPACE_META);
4361 	} else {
4362 		arc_space_consume(size, ARC_SPACE_DATA);
4363 	}
4364 
4365 	/*
4366 	 * Update the state size.  Note that ghost states have a
4367 	 * "ghost size" and so don't need to be updated.
4368 	 */
4369 	if (!GHOST_STATE(state)) {
4370 
4371 		(void) refcount_add_many(&state->arcs_size, size, tag);
4372 
4373 		/*
4374 		 * If this is reached via arc_read, the link is
4375 		 * protected by the hash lock. If reached via
4376 		 * arc_buf_alloc, the header should not be accessed by
4377 		 * any other thread. And, if reached via arc_read_done,
4378 		 * the hash lock will protect it if it's found in the
4379 		 * hash table; otherwise no other thread should be
4380 		 * trying to [add|remove]_reference it.
4381 		 */
4382 		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4383 			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4384 			(void) refcount_add_many(&state->arcs_esize[type],
4385 			    size, tag);
4386 		}
4387 
4388 		/*
4389 		 * If we are growing the cache, and we are adding anonymous
4390 		 * data, and we have outgrown arc_p, update arc_p
4391 		 */
4392 		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4393 		    (refcount_count(&arc_anon->arcs_size) +
4394 		    refcount_count(&arc_mru->arcs_size) > arc_p))
4395 			arc_p = MIN(arc_c, arc_p + size);
4396 	}
4397 }
4398 
4399 static void
4400 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4401 {
4402 	arc_free_data_impl(hdr, size, tag);
4403 	abd_free(abd);
4404 }
4405 
4406 static void
4407 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4408 {
4409 	arc_buf_contents_t type = arc_buf_type(hdr);
4410 
4411 	arc_free_data_impl(hdr, size, tag);
4412 	if (type == ARC_BUFC_METADATA) {
4413 		zio_buf_free(buf, size);
4414 	} else {
4415 		ASSERT(type == ARC_BUFC_DATA);
4416 		zio_data_buf_free(buf, size);
4417 	}
4418 }
4419 
4420 /*
4421  * Free the arc data buffer.
4422  */
4423 static void
4424 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4425 {
4426 	arc_state_t *state = hdr->b_l1hdr.b_state;
4427 	arc_buf_contents_t type = arc_buf_type(hdr);
4428 
4429 	/* protected by hash lock, if in the hash table */
4430 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4431 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4432 		ASSERT(state != arc_anon && state != arc_l2c_only);
4433 
4434 		(void) refcount_remove_many(&state->arcs_esize[type],
4435 		    size, tag);
4436 	}
4437 	(void) refcount_remove_many(&state->arcs_size, size, tag);
4438 
4439 	VERIFY3U(hdr->b_type, ==, type);
4440 	if (type == ARC_BUFC_METADATA) {
4441 		arc_space_return(size, ARC_SPACE_META);
4442 	} else {
4443 		ASSERT(type == ARC_BUFC_DATA);
4444 		arc_space_return(size, ARC_SPACE_DATA);
4445 	}
4446 }
4447 
4448 /*
4449  * This routine is called whenever a buffer is accessed.
4450  * NOTE: the hash lock is dropped in this function.
4451  */
4452 static void
4453 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4454 {
4455 	clock_t now;
4456 
4457 	ASSERT(MUTEX_HELD(hash_lock));
4458 	ASSERT(HDR_HAS_L1HDR(hdr));
4459 
4460 	if (hdr->b_l1hdr.b_state == arc_anon) {
4461 		/*
4462 		 * This buffer is not in the cache, and does not
4463 		 * appear in our "ghost" list.  Add the new buffer
4464 		 * to the MRU state.
4465 		 */
4466 
4467 		ASSERT0(hdr->b_l1hdr.b_arc_access);
4468 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4469 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4470 		arc_change_state(arc_mru, hdr, hash_lock);
4471 
4472 	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4473 		now = ddi_get_lbolt();
4474 
4475 		/*
4476 		 * If this buffer is here because of a prefetch, then either:
4477 		 * - clear the flag if this is a "referencing" read
4478 		 *   (any subsequent access will bump this into the MFU state).
4479 		 * or
4480 		 * - move the buffer to the head of the list if this is
4481 		 *   another prefetch (to make it less likely to be evicted).
4482 		 */
4483 		if (HDR_PREFETCH(hdr)) {
4484 			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4485 				/* link protected by hash lock */
4486 				ASSERT(multilist_link_active(
4487 				    &hdr->b_l1hdr.b_arc_node));
4488 			} else {
4489 				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4490 				ARCSTAT_BUMP(arcstat_mru_hits);
4491 			}
4492 			hdr->b_l1hdr.b_arc_access = now;
4493 			return;
4494 		}
4495 
4496 		/*
4497 		 * This buffer has been "accessed" only once so far,
4498 		 * but it is still in the cache. Move it to the MFU
4499 		 * state.
4500 		 */
4501 		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4502 			/*
4503 			 * More than 125ms have passed since we
4504 			 * instantiated this buffer.  Move it to the
4505 			 * most frequently used state.
4506 			 */
4507 			hdr->b_l1hdr.b_arc_access = now;
4508 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4509 			arc_change_state(arc_mfu, hdr, hash_lock);
4510 		}
4511 		ARCSTAT_BUMP(arcstat_mru_hits);
4512 	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4513 		arc_state_t	*new_state;
4514 		/*
4515 		 * This buffer has been "accessed" recently, but
4516 		 * was evicted from the cache.  Move it to the
4517 		 * MFU state.
4518 		 */
4519 
4520 		if (HDR_PREFETCH(hdr)) {
4521 			new_state = arc_mru;
4522 			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4523 				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4524 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4525 		} else {
4526 			new_state = arc_mfu;
4527 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4528 		}
4529 
4530 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4531 		arc_change_state(new_state, hdr, hash_lock);
4532 
4533 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4534 	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4535 		/*
4536 		 * This buffer has been accessed more than once and is
4537 		 * still in the cache.  Keep it in the MFU state.
4538 		 *
4539 		 * NOTE: an add_reference() that occurred when we did
4540 		 * the arc_read() will have kicked this off the list.
4541 		 * If it was a prefetch, we will explicitly move it to
4542 		 * the head of the list now.
4543 		 */
4544 		if ((HDR_PREFETCH(hdr)) != 0) {
4545 			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4546 			/* link protected by hash_lock */
4547 			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4548 		}
4549 		ARCSTAT_BUMP(arcstat_mfu_hits);
4550 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4551 	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4552 		arc_state_t	*new_state = arc_mfu;
4553 		/*
4554 		 * This buffer has been accessed more than once but has
4555 		 * been evicted from the cache.  Move it back to the
4556 		 * MFU state.
4557 		 */
4558 
4559 		if (HDR_PREFETCH(hdr)) {
4560 			/*
4561 			 * This is a prefetch access...
4562 			 * move this block back to the MRU state.
4563 			 */
4564 			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4565 			new_state = arc_mru;
4566 		}
4567 
4568 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4569 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4570 		arc_change_state(new_state, hdr, hash_lock);
4571 
4572 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4573 	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4574 		/*
4575 		 * This buffer is on the 2nd Level ARC.
4576 		 */
4577 
4578 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4579 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4580 		arc_change_state(arc_mfu, hdr, hash_lock);
4581 	} else {
4582 		ASSERT(!"invalid arc state");
4583 	}
4584 }
4585 
4586 /* a generic arc_done_func_t which you can use */
4587 /* ARGSUSED */
4588 void
4589 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4590 {
4591 	if (zio == NULL || zio->io_error == 0)
4592 		bcopy(buf->b_data, arg, arc_buf_size(buf));
4593 	arc_buf_destroy(buf, arg);
4594 }
4595 
4596 /* a generic arc_done_func_t */
4597 void
4598 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4599 {
4600 	arc_buf_t **bufp = arg;
4601 	if (zio && zio->io_error) {
4602 		arc_buf_destroy(buf, arg);
4603 		*bufp = NULL;
4604 	} else {
4605 		*bufp = buf;
4606 		ASSERT(buf->b_data);
4607 	}
4608 }
4609 
4610 static void
4611 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4612 {
4613 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4614 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4615 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4616 	} else {
4617 		if (HDR_COMPRESSION_ENABLED(hdr)) {
4618 			ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4619 			    BP_GET_COMPRESS(bp));
4620 		}
4621 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4622 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4623 	}
4624 }
4625 
4626 static void
4627 arc_read_done(zio_t *zio)
4628 {
4629 	arc_buf_hdr_t	*hdr = zio->io_private;
4630 	kmutex_t	*hash_lock = NULL;
4631 	arc_callback_t	*callback_list;
4632 	arc_callback_t	*acb;
4633 	boolean_t	freeable = B_FALSE;
4634 	boolean_t	no_zio_error = (zio->io_error == 0);
4635 
4636 	/*
4637 	 * The hdr was inserted into hash-table and removed from lists
4638 	 * prior to starting I/O.  We should find this header, since
4639 	 * it's in the hash table, and it should be legit since it's
4640 	 * not possible to evict it during the I/O.  The only possible
4641 	 * reason for it not to be found is if we were freed during the
4642 	 * read.
4643 	 */
4644 	if (HDR_IN_HASH_TABLE(hdr)) {
4645 		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4646 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4647 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4648 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4649 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4650 
4651 		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4652 		    &hash_lock);
4653 
4654 		ASSERT((found == hdr &&
4655 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4656 		    (found == hdr && HDR_L2_READING(hdr)));
4657 		ASSERT3P(hash_lock, !=, NULL);
4658 	}
4659 
4660 	if (no_zio_error) {
4661 		/* byteswap if necessary */
4662 		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4663 			if (BP_GET_LEVEL(zio->io_bp) > 0) {
4664 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4665 			} else {
4666 				hdr->b_l1hdr.b_byteswap =
4667 				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4668 			}
4669 		} else {
4670 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4671 		}
4672 	}
4673 
4674 	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4675 	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4676 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4677 
4678 	callback_list = hdr->b_l1hdr.b_acb;
4679 	ASSERT3P(callback_list, !=, NULL);
4680 
4681 	if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
4682 		/*
4683 		 * Only call arc_access on anonymous buffers.  This is because
4684 		 * if we've issued an I/O for an evicted buffer, we've already
4685 		 * called arc_access (to prevent any simultaneous readers from
4686 		 * getting confused).
4687 		 */
4688 		arc_access(hdr, hash_lock);
4689 	}
4690 
4691 	/*
4692 	 * If a read request has a callback (i.e. acb_done is not NULL), then we
4693 	 * make a buf containing the data according to the parameters which were
4694 	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
4695 	 * aren't needlessly decompressing the data multiple times.
4696 	 */
4697 	int callback_cnt = 0;
4698 	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
4699 		if (!acb->acb_done)
4700 			continue;
4701 
4702 		/* This is a demand read since prefetches don't use callbacks */
4703 		callback_cnt++;
4704 
4705 		int error = arc_buf_alloc_impl(hdr, acb->acb_private,
4706 		    acb->acb_compressed, no_zio_error, &acb->acb_buf);
4707 		if (no_zio_error) {
4708 			zio->io_error = error;
4709 		}
4710 	}
4711 	hdr->b_l1hdr.b_acb = NULL;
4712 	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4713 	if (callback_cnt == 0) {
4714 		ASSERT(HDR_PREFETCH(hdr));
4715 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
4716 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
4717 	}
4718 
4719 	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4720 	    callback_list != NULL);
4721 
4722 	if (no_zio_error) {
4723 		arc_hdr_verify(hdr, zio->io_bp);
4724 	} else {
4725 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
4726 		if (hdr->b_l1hdr.b_state != arc_anon)
4727 			arc_change_state(arc_anon, hdr, hash_lock);
4728 		if (HDR_IN_HASH_TABLE(hdr))
4729 			buf_hash_remove(hdr);
4730 		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4731 	}
4732 
4733 	/*
4734 	 * Broadcast before we drop the hash_lock to avoid the possibility
4735 	 * that the hdr (and hence the cv) might be freed before we get to
4736 	 * the cv_broadcast().
4737 	 */
4738 	cv_broadcast(&hdr->b_l1hdr.b_cv);
4739 
4740 	if (hash_lock != NULL) {
4741 		mutex_exit(hash_lock);
4742 	} else {
4743 		/*
4744 		 * This block was freed while we waited for the read to
4745 		 * complete.  It has been removed from the hash table and
4746 		 * moved to the anonymous state (so that it won't show up
4747 		 * in the cache).
4748 		 */
4749 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4750 		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4751 	}
4752 
4753 	/* execute each callback and free its structure */
4754 	while ((acb = callback_list) != NULL) {
4755 		if (acb->acb_done)
4756 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4757 
4758 		if (acb->acb_zio_dummy != NULL) {
4759 			acb->acb_zio_dummy->io_error = zio->io_error;
4760 			zio_nowait(acb->acb_zio_dummy);
4761 		}
4762 
4763 		callback_list = acb->acb_next;
4764 		kmem_free(acb, sizeof (arc_callback_t));
4765 	}
4766 
4767 	if (freeable)
4768 		arc_hdr_destroy(hdr);
4769 }
4770 
4771 /*
4772  * "Read" the block at the specified DVA (in bp) via the
4773  * cache.  If the block is found in the cache, invoke the provided
4774  * callback immediately and return.  Note that the `zio' parameter
4775  * in the callback will be NULL in this case, since no IO was
4776  * required.  If the block is not in the cache pass the read request
4777  * on to the spa with a substitute callback function, so that the
4778  * requested block will be added to the cache.
4779  *
4780  * If a read request arrives for a block that has a read in-progress,
4781  * either wait for the in-progress read to complete (and return the
4782  * results); or, if this is a read with a "done" func, add a record
4783  * to the read to invoke the "done" func when the read completes,
4784  * and return; or just return.
4785  *
4786  * arc_read_done() will invoke all the requested "done" functions
4787  * for readers of this block.
4788  */
4789 int
4790 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4791     void *private, zio_priority_t priority, int zio_flags,
4792     arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4793 {
4794 	arc_buf_hdr_t *hdr = NULL;
4795 	kmutex_t *hash_lock = NULL;
4796 	zio_t *rzio;
4797 	uint64_t guid = spa_load_guid(spa);
4798 	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
4799 
4800 	ASSERT(!BP_IS_EMBEDDED(bp) ||
4801 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4802 
4803 top:
4804 	if (!BP_IS_EMBEDDED(bp)) {
4805 		/*
4806 		 * Embedded BP's have no DVA and require no I/O to "read".
4807 		 * Create an anonymous arc buf to back it.
4808 		 */
4809 		hdr = buf_hash_find(guid, bp, &hash_lock);
4810 	}
4811 
4812 	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
4813 		arc_buf_t *buf = NULL;
4814 		*arc_flags |= ARC_FLAG_CACHED;
4815 
4816 		if (HDR_IO_IN_PROGRESS(hdr)) {
4817 
4818 			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4819 			    priority == ZIO_PRIORITY_SYNC_READ) {
4820 				/*
4821 				 * This sync read must wait for an
4822 				 * in-progress async read (e.g. a predictive
4823 				 * prefetch).  Async reads are queued
4824 				 * separately at the vdev_queue layer, so
4825 				 * this is a form of priority inversion.
4826 				 * Ideally, we would "inherit" the demand
4827 				 * i/o's priority by moving the i/o from
4828 				 * the async queue to the synchronous queue,
4829 				 * but there is currently no mechanism to do
4830 				 * so.  Track this so that we can evaluate
4831 				 * the magnitude of this potential performance
4832 				 * problem.
4833 				 *
4834 				 * Note that if the prefetch i/o is already
4835 				 * active (has been issued to the device),
4836 				 * the prefetch improved performance, because
4837 				 * we issued it sooner than we would have
4838 				 * without the prefetch.
4839 				 */
4840 				DTRACE_PROBE1(arc__sync__wait__for__async,
4841 				    arc_buf_hdr_t *, hdr);
4842 				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4843 			}
4844 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4845 				arc_hdr_clear_flags(hdr,
4846 				    ARC_FLAG_PREDICTIVE_PREFETCH);
4847 			}
4848 
4849 			if (*arc_flags & ARC_FLAG_WAIT) {
4850 				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4851 				mutex_exit(hash_lock);
4852 				goto top;
4853 			}
4854 			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4855 
4856 			if (done) {
4857 				arc_callback_t *acb = NULL;
4858 
4859 				acb = kmem_zalloc(sizeof (arc_callback_t),
4860 				    KM_SLEEP);
4861 				acb->acb_done = done;
4862 				acb->acb_private = private;
4863 				acb->acb_compressed = compressed_read;
4864 				if (pio != NULL)
4865 					acb->acb_zio_dummy = zio_null(pio,
4866 					    spa, NULL, NULL, NULL, zio_flags);
4867 
4868 				ASSERT3P(acb->acb_done, !=, NULL);
4869 				acb->acb_next = hdr->b_l1hdr.b_acb;
4870 				hdr->b_l1hdr.b_acb = acb;
4871 				mutex_exit(hash_lock);
4872 				return (0);
4873 			}
4874 			mutex_exit(hash_lock);
4875 			return (0);
4876 		}
4877 
4878 		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4879 		    hdr->b_l1hdr.b_state == arc_mfu);
4880 
4881 		if (done) {
4882 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4883 				/*
4884 				 * This is a demand read which does not have to
4885 				 * wait for i/o because we did a predictive
4886 				 * prefetch i/o for it, which has completed.
4887 				 */
4888 				DTRACE_PROBE1(
4889 				    arc__demand__hit__predictive__prefetch,
4890 				    arc_buf_hdr_t *, hdr);
4891 				ARCSTAT_BUMP(
4892 				    arcstat_demand_hit_predictive_prefetch);
4893 				arc_hdr_clear_flags(hdr,
4894 				    ARC_FLAG_PREDICTIVE_PREFETCH);
4895 			}
4896 			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
4897 
4898 			/* Get a buf with the desired data in it. */
4899 			VERIFY0(arc_buf_alloc_impl(hdr, private,
4900 			    compressed_read, B_TRUE, &buf));
4901 		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4902 		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4903 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4904 		}
4905 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4906 		arc_access(hdr, hash_lock);
4907 		if (*arc_flags & ARC_FLAG_L2CACHE)
4908 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4909 		mutex_exit(hash_lock);
4910 		ARCSTAT_BUMP(arcstat_hits);
4911 		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4912 		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4913 		    data, metadata, hits);
4914 
4915 		if (done)
4916 			done(NULL, buf, private);
4917 	} else {
4918 		uint64_t lsize = BP_GET_LSIZE(bp);
4919 		uint64_t psize = BP_GET_PSIZE(bp);
4920 		arc_callback_t *acb;
4921 		vdev_t *vd = NULL;
4922 		uint64_t addr = 0;
4923 		boolean_t devw = B_FALSE;
4924 		uint64_t size;
4925 
4926 		if (hdr == NULL) {
4927 			/* this block is not in the cache */
4928 			arc_buf_hdr_t *exists = NULL;
4929 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4930 			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
4931 			    BP_GET_COMPRESS(bp), type);
4932 
4933 			if (!BP_IS_EMBEDDED(bp)) {
4934 				hdr->b_dva = *BP_IDENTITY(bp);
4935 				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4936 				exists = buf_hash_insert(hdr, &hash_lock);
4937 			}
4938 			if (exists != NULL) {
4939 				/* somebody beat us to the hash insert */
4940 				mutex_exit(hash_lock);
4941 				buf_discard_identity(hdr);
4942 				arc_hdr_destroy(hdr);
4943 				goto top; /* restart the IO request */
4944 			}
4945 		} else {
4946 			/*
4947 			 * This block is in the ghost cache. If it was L2-only
4948 			 * (and thus didn't have an L1 hdr), we realloc the
4949 			 * header to add an L1 hdr.
4950 			 */
4951 			if (!HDR_HAS_L1HDR(hdr)) {
4952 				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4953 				    hdr_full_cache);
4954 			}
4955 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
4956 			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4957 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4958 			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4959 			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4960 			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
4961 
4962 			/*
4963 			 * This is a delicate dance that we play here.
4964 			 * This hdr is in the ghost list so we access it
4965 			 * to move it out of the ghost list before we
4966 			 * initiate the read. If it's a prefetch then
4967 			 * it won't have a callback so we'll remove the
4968 			 * reference that arc_buf_alloc_impl() created. We
4969 			 * do this after we've called arc_access() to
4970 			 * avoid hitting an assert in remove_reference().
4971 			 */
4972 			arc_access(hdr, hash_lock);
4973 			arc_hdr_alloc_pabd(hdr);
4974 		}
4975 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
4976 		size = arc_hdr_size(hdr);
4977 
4978 		/*
4979 		 * If compression is enabled on the hdr, then will do
4980 		 * RAW I/O and will store the compressed data in the hdr's
4981 		 * data block. Otherwise, the hdr's data block will contain
4982 		 * the uncompressed data.
4983 		 */
4984 		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
4985 			zio_flags |= ZIO_FLAG_RAW;
4986 		}
4987 
4988 		if (*arc_flags & ARC_FLAG_PREFETCH)
4989 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4990 		if (*arc_flags & ARC_FLAG_L2CACHE)
4991 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4992 		if (BP_GET_LEVEL(bp) > 0)
4993 			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
4994 		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4995 			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
4996 		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4997 
4998 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4999 		acb->acb_done = done;
5000 		acb->acb_private = private;
5001 		acb->acb_compressed = compressed_read;
5002 
5003 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5004 		hdr->b_l1hdr.b_acb = acb;
5005 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5006 
5007 		if (HDR_HAS_L2HDR(hdr) &&
5008 		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5009 			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5010 			addr = hdr->b_l2hdr.b_daddr;
5011 			/*
5012 			 * Lock out L2ARC device removal.
5013 			 */
5014 			if (vdev_is_dead(vd) ||
5015 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5016 				vd = NULL;
5017 		}
5018 
5019 		if (priority == ZIO_PRIORITY_ASYNC_READ)
5020 			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5021 		else
5022 			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5023 
5024 		if (hash_lock != NULL)
5025 			mutex_exit(hash_lock);
5026 
5027 		/*
5028 		 * At this point, we have a level 1 cache miss.  Try again in
5029 		 * L2ARC if possible.
5030 		 */
5031 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5032 
5033 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5034 		    uint64_t, lsize, zbookmark_phys_t *, zb);
5035 		ARCSTAT_BUMP(arcstat_misses);
5036 		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5037 		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5038 		    data, metadata, misses);
5039 
5040 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5041 			/*
5042 			 * Read from the L2ARC if the following are true:
5043 			 * 1. The L2ARC vdev was previously cached.
5044 			 * 2. This buffer still has L2ARC metadata.
5045 			 * 3. This buffer isn't currently writing to the L2ARC.
5046 			 * 4. The L2ARC entry wasn't evicted, which may
5047 			 *    also have invalidated the vdev.
5048 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
5049 			 */
5050 			if (HDR_HAS_L2HDR(hdr) &&
5051 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5052 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5053 				l2arc_read_callback_t *cb;
5054 				abd_t *abd;
5055 				uint64_t asize;
5056 
5057 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5058 				ARCSTAT_BUMP(arcstat_l2_hits);
5059 
5060 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5061 				    KM_SLEEP);
5062 				cb->l2rcb_hdr = hdr;
5063 				cb->l2rcb_bp = *bp;
5064 				cb->l2rcb_zb = *zb;
5065 				cb->l2rcb_flags = zio_flags;
5066 
5067 				asize = vdev_psize_to_asize(vd, size);
5068 				if (asize != size) {
5069 					abd = abd_alloc_for_io(asize,
5070 					    HDR_ISTYPE_METADATA(hdr));
5071 					cb->l2rcb_abd = abd;
5072 				} else {
5073 					abd = hdr->b_l1hdr.b_pabd;
5074 				}
5075 
5076 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5077 				    addr + asize <= vd->vdev_psize -
5078 				    VDEV_LABEL_END_SIZE);
5079 
5080 				/*
5081 				 * l2arc read.  The SCL_L2ARC lock will be
5082 				 * released by l2arc_read_done().
5083 				 * Issue a null zio if the underlying buffer
5084 				 * was squashed to zero size by compression.
5085 				 */
5086 				ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5087 				    ZIO_COMPRESS_EMPTY);
5088 				rzio = zio_read_phys(pio, vd, addr,
5089 				    asize, abd,
5090 				    ZIO_CHECKSUM_OFF,
5091 				    l2arc_read_done, cb, priority,
5092 				    zio_flags | ZIO_FLAG_DONT_CACHE |
5093 				    ZIO_FLAG_CANFAIL |
5094 				    ZIO_FLAG_DONT_PROPAGATE |
5095 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5096 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5097 				    zio_t *, rzio);
5098 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5099 
5100 				if (*arc_flags & ARC_FLAG_NOWAIT) {
5101 					zio_nowait(rzio);
5102 					return (0);
5103 				}
5104 
5105 				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5106 				if (zio_wait(rzio) == 0)
5107 					return (0);
5108 
5109 				/* l2arc read error; goto zio_read() */
5110 			} else {
5111 				DTRACE_PROBE1(l2arc__miss,
5112 				    arc_buf_hdr_t *, hdr);
5113 				ARCSTAT_BUMP(arcstat_l2_misses);
5114 				if (HDR_L2_WRITING(hdr))
5115 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5116 				spa_config_exit(spa, SCL_L2ARC, vd);
5117 			}
5118 		} else {
5119 			if (vd != NULL)
5120 				spa_config_exit(spa, SCL_L2ARC, vd);
5121 			if (l2arc_ndev != 0) {
5122 				DTRACE_PROBE1(l2arc__miss,
5123 				    arc_buf_hdr_t *, hdr);
5124 				ARCSTAT_BUMP(arcstat_l2_misses);
5125 			}
5126 		}
5127 
5128 		rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5129 		    arc_read_done, hdr, priority, zio_flags, zb);
5130 
5131 		if (*arc_flags & ARC_FLAG_WAIT)
5132 			return (zio_wait(rzio));
5133 
5134 		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5135 		zio_nowait(rzio);
5136 	}
5137 	return (0);
5138 }
5139 
5140 /*
5141  * Notify the arc that a block was freed, and thus will never be used again.
5142  */
5143 void
5144 arc_freed(spa_t *spa, const blkptr_t *bp)
5145 {
5146 	arc_buf_hdr_t *hdr;
5147 	kmutex_t *hash_lock;
5148 	uint64_t guid = spa_load_guid(spa);
5149 
5150 	ASSERT(!BP_IS_EMBEDDED(bp));
5151 
5152 	hdr = buf_hash_find(guid, bp, &hash_lock);
5153 	if (hdr == NULL)
5154 		return;
5155 
5156 	/*
5157 	 * We might be trying to free a block that is still doing I/O
5158 	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5159 	 * dmu_sync-ed block). If this block is being prefetched, then it
5160 	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5161 	 * until the I/O completes. A block may also have a reference if it is
5162 	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5163 	 * have written the new block to its final resting place on disk but
5164 	 * without the dedup flag set. This would have left the hdr in the MRU
5165 	 * state and discoverable. When the txg finally syncs it detects that
5166 	 * the block was overridden in open context and issues an override I/O.
5167 	 * Since this is a dedup block, the override I/O will determine if the
5168 	 * block is already in the DDT. If so, then it will replace the io_bp
5169 	 * with the bp from the DDT and allow the I/O to finish. When the I/O
5170 	 * reaches the done callback, dbuf_write_override_done, it will
5171 	 * check to see if the io_bp and io_bp_override are identical.
5172 	 * If they are not, then it indicates that the bp was replaced with
5173 	 * the bp in the DDT and the override bp is freed. This allows
5174 	 * us to arrive here with a reference on a block that is being
5175 	 * freed. So if we have an I/O in progress, or a reference to
5176 	 * this hdr, then we don't destroy the hdr.
5177 	 */
5178 	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5179 	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5180 		arc_change_state(arc_anon, hdr, hash_lock);
5181 		arc_hdr_destroy(hdr);
5182 		mutex_exit(hash_lock);
5183 	} else {
5184 		mutex_exit(hash_lock);
5185 	}
5186 
5187 }
5188 
5189 /*
5190  * Release this buffer from the cache, making it an anonymous buffer.  This
5191  * must be done after a read and prior to modifying the buffer contents.
5192  * If the buffer has more than one reference, we must make
5193  * a new hdr for the buffer.
5194  */
5195 void
5196 arc_release(arc_buf_t *buf, void *tag)
5197 {
5198 	arc_buf_hdr_t *hdr = buf->b_hdr;
5199 
5200 	/*
5201 	 * It would be nice to assert that if it's DMU metadata (level >
5202 	 * 0 || it's the dnode file), then it must be syncing context.
5203 	 * But we don't know that information at this level.
5204 	 */
5205 
5206 	mutex_enter(&buf->b_evict_lock);
5207 
5208 	ASSERT(HDR_HAS_L1HDR(hdr));
5209 
5210 	/*
5211 	 * We don't grab the hash lock prior to this check, because if
5212 	 * the buffer's header is in the arc_anon state, it won't be
5213 	 * linked into the hash table.
5214 	 */
5215 	if (hdr->b_l1hdr.b_state == arc_anon) {
5216 		mutex_exit(&buf->b_evict_lock);
5217 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5218 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
5219 		ASSERT(!HDR_HAS_L2HDR(hdr));
5220 		ASSERT(HDR_EMPTY(hdr));
5221 
5222 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5223 		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5224 		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5225 
5226 		hdr->b_l1hdr.b_arc_access = 0;
5227 
5228 		/*
5229 		 * If the buf is being overridden then it may already
5230 		 * have a hdr that is not empty.
5231 		 */
5232 		buf_discard_identity(hdr);
5233 		arc_buf_thaw(buf);
5234 
5235 		return;
5236 	}
5237 
5238 	kmutex_t *hash_lock = HDR_LOCK(hdr);
5239 	mutex_enter(hash_lock);
5240 
5241 	/*
5242 	 * This assignment is only valid as long as the hash_lock is
5243 	 * held, we must be careful not to reference state or the
5244 	 * b_state field after dropping the lock.
5245 	 */
5246 	arc_state_t *state = hdr->b_l1hdr.b_state;
5247 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5248 	ASSERT3P(state, !=, arc_anon);
5249 
5250 	/* this buffer is not on any list */
5251 	ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5252 
5253 	if (HDR_HAS_L2HDR(hdr)) {
5254 		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5255 
5256 		/*
5257 		 * We have to recheck this conditional again now that
5258 		 * we're holding the l2ad_mtx to prevent a race with
5259 		 * another thread which might be concurrently calling
5260 		 * l2arc_evict(). In that case, l2arc_evict() might have
5261 		 * destroyed the header's L2 portion as we were waiting
5262 		 * to acquire the l2ad_mtx.
5263 		 */
5264 		if (HDR_HAS_L2HDR(hdr))
5265 			arc_hdr_l2hdr_destroy(hdr);
5266 
5267 		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5268 	}
5269 
5270 	/*
5271 	 * Do we have more than one buf?
5272 	 */
5273 	if (hdr->b_l1hdr.b_bufcnt > 1) {
5274 		arc_buf_hdr_t *nhdr;
5275 		uint64_t spa = hdr->b_spa;
5276 		uint64_t psize = HDR_GET_PSIZE(hdr);
5277 		uint64_t lsize = HDR_GET_LSIZE(hdr);
5278 		enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5279 		arc_buf_contents_t type = arc_buf_type(hdr);
5280 		VERIFY3U(hdr->b_type, ==, type);
5281 
5282 		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5283 		(void) remove_reference(hdr, hash_lock, tag);
5284 
5285 		if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5286 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5287 			ASSERT(ARC_BUF_LAST(buf));
5288 		}
5289 
5290 		/*
5291 		 * Pull the data off of this hdr and attach it to
5292 		 * a new anonymous hdr. Also find the last buffer
5293 		 * in the hdr's buffer list.
5294 		 */
5295 		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5296 		ASSERT3P(lastbuf, !=, NULL);
5297 
5298 		/*
5299 		 * If the current arc_buf_t and the hdr are sharing their data
5300 		 * buffer, then we must stop sharing that block.
5301 		 */
5302 		if (arc_buf_is_shared(buf)) {
5303 			VERIFY(!arc_buf_is_shared(lastbuf));
5304 
5305 			/*
5306 			 * First, sever the block sharing relationship between
5307 			 * buf and the arc_buf_hdr_t.
5308 			 */
5309 			arc_unshare_buf(hdr, buf);
5310 
5311 			/*
5312 			 * Now we need to recreate the hdr's b_pabd. Since we
5313 			 * have lastbuf handy, we try to share with it, but if
5314 			 * we can't then we allocate a new b_pabd and copy the
5315 			 * data from buf into it.
5316 			 */
5317 			if (arc_can_share(hdr, lastbuf)) {
5318 				arc_share_buf(hdr, lastbuf);
5319 			} else {
5320 				arc_hdr_alloc_pabd(hdr);
5321 				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5322 				    buf->b_data, psize);
5323 			}
5324 			VERIFY3P(lastbuf->b_data, !=, NULL);
5325 		} else if (HDR_SHARED_DATA(hdr)) {
5326 			/*
5327 			 * Uncompressed shared buffers are always at the end
5328 			 * of the list. Compressed buffers don't have the
5329 			 * same requirements. This makes it hard to
5330 			 * simply assert that the lastbuf is shared so
5331 			 * we rely on the hdr's compression flags to determine
5332 			 * if we have a compressed, shared buffer.
5333 			 */
5334 			ASSERT(arc_buf_is_shared(lastbuf) ||
5335 			    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5336 			ASSERT(!ARC_BUF_SHARED(buf));
5337 		}
5338 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5339 		ASSERT3P(state, !=, arc_l2c_only);
5340 
5341 		(void) refcount_remove_many(&state->arcs_size,
5342 		    arc_buf_size(buf), buf);
5343 
5344 		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5345 			ASSERT3P(state, !=, arc_l2c_only);
5346 			(void) refcount_remove_many(&state->arcs_esize[type],
5347 			    arc_buf_size(buf), buf);
5348 		}
5349 
5350 		hdr->b_l1hdr.b_bufcnt -= 1;
5351 		arc_cksum_verify(buf);
5352 		arc_buf_unwatch(buf);
5353 
5354 		mutex_exit(hash_lock);
5355 
5356 		/*
5357 		 * Allocate a new hdr. The new hdr will contain a b_pabd
5358 		 * buffer which will be freed in arc_write().
5359 		 */
5360 		nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5361 		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5362 		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5363 		ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5364 		VERIFY3U(nhdr->b_type, ==, type);
5365 		ASSERT(!HDR_SHARED_DATA(nhdr));
5366 
5367 		nhdr->b_l1hdr.b_buf = buf;
5368 		nhdr->b_l1hdr.b_bufcnt = 1;
5369 		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5370 		buf->b_hdr = nhdr;
5371 
5372 		mutex_exit(&buf->b_evict_lock);
5373 		(void) refcount_add_many(&arc_anon->arcs_size,
5374 		    arc_buf_size(buf), buf);
5375 	} else {
5376 		mutex_exit(&buf->b_evict_lock);
5377 		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5378 		/* protected by hash lock, or hdr is on arc_anon */
5379 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5380 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5381 		arc_change_state(arc_anon, hdr, hash_lock);
5382 		hdr->b_l1hdr.b_arc_access = 0;
5383 		mutex_exit(hash_lock);
5384 
5385 		buf_discard_identity(hdr);
5386 		arc_buf_thaw(buf);
5387 	}
5388 }
5389 
5390 int
5391 arc_released(arc_buf_t *buf)
5392 {
5393 	int released;
5394 
5395 	mutex_enter(&buf->b_evict_lock);
5396 	released = (buf->b_data != NULL &&
5397 	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5398 	mutex_exit(&buf->b_evict_lock);
5399 	return (released);
5400 }
5401 
5402 #ifdef ZFS_DEBUG
5403 int
5404 arc_referenced(arc_buf_t *buf)
5405 {
5406 	int referenced;
5407 
5408 	mutex_enter(&buf->b_evict_lock);
5409 	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5410 	mutex_exit(&buf->b_evict_lock);
5411 	return (referenced);
5412 }
5413 #endif
5414 
5415 static void
5416 arc_write_ready(zio_t *zio)
5417 {
5418 	arc_write_callback_t *callback = zio->io_private;
5419 	arc_buf_t *buf = callback->awcb_buf;
5420 	arc_buf_hdr_t *hdr = buf->b_hdr;
5421 	uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5422 
5423 	ASSERT(HDR_HAS_L1HDR(hdr));
5424 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5425 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5426 
5427 	/*
5428 	 * If we're reexecuting this zio because the pool suspended, then
5429 	 * cleanup any state that was previously set the first time the
5430 	 * callback was invoked.
5431 	 */
5432 	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5433 		arc_cksum_free(hdr);
5434 		arc_buf_unwatch(buf);
5435 		if (hdr->b_l1hdr.b_pabd != NULL) {
5436 			if (arc_buf_is_shared(buf)) {
5437 				arc_unshare_buf(hdr, buf);
5438 			} else {
5439 				arc_hdr_free_pabd(hdr);
5440 			}
5441 		}
5442 	}
5443 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5444 	ASSERT(!HDR_SHARED_DATA(hdr));
5445 	ASSERT(!arc_buf_is_shared(buf));
5446 
5447 	callback->awcb_ready(zio, buf, callback->awcb_private);
5448 
5449 	if (HDR_IO_IN_PROGRESS(hdr))
5450 		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5451 
5452 	arc_cksum_compute(buf);
5453 	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5454 
5455 	enum zio_compress compress;
5456 	if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5457 		compress = ZIO_COMPRESS_OFF;
5458 	} else {
5459 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5460 		compress = BP_GET_COMPRESS(zio->io_bp);
5461 	}
5462 	HDR_SET_PSIZE(hdr, psize);
5463 	arc_hdr_set_compress(hdr, compress);
5464 
5465 
5466 	/*
5467 	 * Fill the hdr with data. If the hdr is compressed, the data we want
5468 	 * is available from the zio, otherwise we can take it from the buf.
5469 	 *
5470 	 * We might be able to share the buf's data with the hdr here. However,
5471 	 * doing so would cause the ARC to be full of linear ABDs if we write a
5472 	 * lot of shareable data. As a compromise, we check whether scattered
5473 	 * ABDs are allowed, and assume that if they are then the user wants
5474 	 * the ARC to be primarily filled with them regardless of the data being
5475 	 * written. Therefore, if they're allowed then we allocate one and copy
5476 	 * the data into it; otherwise, we share the data directly if we can.
5477 	 */
5478 	if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5479 		arc_hdr_alloc_pabd(hdr);
5480 
5481 		/*
5482 		 * Ideally, we would always copy the io_abd into b_pabd, but the
5483 		 * user may have disabled compressed ARC, thus we must check the
5484 		 * hdr's compression setting rather than the io_bp's.
5485 		 */
5486 		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5487 			ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5488 			    ZIO_COMPRESS_OFF);
5489 			ASSERT3U(psize, >, 0);
5490 
5491 			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5492 		} else {
5493 			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5494 
5495 			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5496 			    arc_buf_size(buf));
5497 		}
5498 	} else {
5499 		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
5500 		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5501 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5502 
5503 		arc_share_buf(hdr, buf);
5504 	}
5505 
5506 	arc_hdr_verify(hdr, zio->io_bp);
5507 }
5508 
5509 static void
5510 arc_write_children_ready(zio_t *zio)
5511 {
5512 	arc_write_callback_t *callback = zio->io_private;
5513 	arc_buf_t *buf = callback->awcb_buf;
5514 
5515 	callback->awcb_children_ready(zio, buf, callback->awcb_private);
5516 }
5517 
5518 /*
5519  * The SPA calls this callback for each physical write that happens on behalf
5520  * of a logical write.  See the comment in dbuf_write_physdone() for details.
5521  */
5522 static void
5523 arc_write_physdone(zio_t *zio)
5524 {
5525 	arc_write_callback_t *cb = zio->io_private;
5526 	if (cb->awcb_physdone != NULL)
5527 		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5528 }
5529 
5530 static void
5531 arc_write_done(zio_t *zio)
5532 {
5533 	arc_write_callback_t *callback = zio->io_private;
5534 	arc_buf_t *buf = callback->awcb_buf;
5535 	arc_buf_hdr_t *hdr = buf->b_hdr;
5536 
5537 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5538 
5539 	if (zio->io_error == 0) {
5540 		arc_hdr_verify(hdr, zio->io_bp);
5541 
5542 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5543 			buf_discard_identity(hdr);
5544 		} else {
5545 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5546 			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5547 		}
5548 	} else {
5549 		ASSERT(HDR_EMPTY(hdr));
5550 	}
5551 
5552 	/*
5553 	 * If the block to be written was all-zero or compressed enough to be
5554 	 * embedded in the BP, no write was performed so there will be no
5555 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5556 	 * (and uncached).
5557 	 */
5558 	if (!HDR_EMPTY(hdr)) {
5559 		arc_buf_hdr_t *exists;
5560 		kmutex_t *hash_lock;
5561 
5562 		ASSERT3U(zio->io_error, ==, 0);
5563 
5564 		arc_cksum_verify(buf);
5565 
5566 		exists = buf_hash_insert(hdr, &hash_lock);
5567 		if (exists != NULL) {
5568 			/*
5569 			 * This can only happen if we overwrite for
5570 			 * sync-to-convergence, because we remove
5571 			 * buffers from the hash table when we arc_free().
5572 			 */
5573 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5574 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5575 					panic("bad overwrite, hdr=%p exists=%p",
5576 					    (void *)hdr, (void *)exists);
5577 				ASSERT(refcount_is_zero(
5578 				    &exists->b_l1hdr.b_refcnt));
5579 				arc_change_state(arc_anon, exists, hash_lock);
5580 				mutex_exit(hash_lock);
5581 				arc_hdr_destroy(exists);
5582 				exists = buf_hash_insert(hdr, &hash_lock);
5583 				ASSERT3P(exists, ==, NULL);
5584 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5585 				/* nopwrite */
5586 				ASSERT(zio->io_prop.zp_nopwrite);
5587 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5588 					panic("bad nopwrite, hdr=%p exists=%p",
5589 					    (void *)hdr, (void *)exists);
5590 			} else {
5591 				/* Dedup */
5592 				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5593 				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5594 				ASSERT(BP_GET_DEDUP(zio->io_bp));
5595 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5596 			}
5597 		}
5598 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5599 		/* if it's not anon, we are doing a scrub */
5600 		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5601 			arc_access(hdr, hash_lock);
5602 		mutex_exit(hash_lock);
5603 	} else {
5604 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5605 	}
5606 
5607 	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5608 	callback->awcb_done(zio, buf, callback->awcb_private);
5609 
5610 	abd_put(zio->io_abd);
5611 	kmem_free(callback, sizeof (arc_write_callback_t));
5612 }
5613 
5614 zio_t *
5615 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
5616     boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
5617     arc_done_func_t *children_ready, arc_done_func_t *physdone,
5618     arc_done_func_t *done, void *private, zio_priority_t priority,
5619     int zio_flags, const zbookmark_phys_t *zb)
5620 {
5621 	arc_buf_hdr_t *hdr = buf->b_hdr;
5622 	arc_write_callback_t *callback;
5623 	zio_t *zio;
5624 	zio_prop_t localprop = *zp;
5625 
5626 	ASSERT3P(ready, !=, NULL);
5627 	ASSERT3P(done, !=, NULL);
5628 	ASSERT(!HDR_IO_ERROR(hdr));
5629 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5630 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5631 	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5632 	if (l2arc)
5633 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5634 	if (ARC_BUF_COMPRESSED(buf)) {
5635 		/*
5636 		 * We're writing a pre-compressed buffer.  Make the
5637 		 * compression algorithm requested by the zio_prop_t match
5638 		 * the pre-compressed buffer's compression algorithm.
5639 		 */
5640 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
5641 
5642 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
5643 		zio_flags |= ZIO_FLAG_RAW;
5644 	}
5645 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5646 	callback->awcb_ready = ready;
5647 	callback->awcb_children_ready = children_ready;
5648 	callback->awcb_physdone = physdone;
5649 	callback->awcb_done = done;
5650 	callback->awcb_private = private;
5651 	callback->awcb_buf = buf;
5652 
5653 	/*
5654 	 * The hdr's b_pabd is now stale, free it now. A new data block
5655 	 * will be allocated when the zio pipeline calls arc_write_ready().
5656 	 */
5657 	if (hdr->b_l1hdr.b_pabd != NULL) {
5658 		/*
5659 		 * If the buf is currently sharing the data block with
5660 		 * the hdr then we need to break that relationship here.
5661 		 * The hdr will remain with a NULL data pointer and the
5662 		 * buf will take sole ownership of the block.
5663 		 */
5664 		if (arc_buf_is_shared(buf)) {
5665 			arc_unshare_buf(hdr, buf);
5666 		} else {
5667 			arc_hdr_free_pabd(hdr);
5668 		}
5669 		VERIFY3P(buf->b_data, !=, NULL);
5670 		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
5671 	}
5672 	ASSERT(!arc_buf_is_shared(buf));
5673 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5674 
5675 	zio = zio_write(pio, spa, txg, bp,
5676 	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
5677 	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
5678 	    (children_ready != NULL) ? arc_write_children_ready : NULL,
5679 	    arc_write_physdone, arc_write_done, callback,
5680 	    priority, zio_flags, zb);
5681 
5682 	return (zio);
5683 }
5684 
5685 static int
5686 arc_memory_throttle(uint64_t reserve, uint64_t txg)
5687 {
5688 #ifdef _KERNEL
5689 	uint64_t available_memory = ptob(freemem);
5690 	static uint64_t page_load = 0;
5691 	static uint64_t last_txg = 0;
5692 
5693 #if defined(__i386)
5694 	available_memory =
5695 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
5696 #endif
5697 
5698 	if (freemem > physmem * arc_lotsfree_percent / 100)
5699 		return (0);
5700 
5701 	if (txg > last_txg) {
5702 		last_txg = txg;
5703 		page_load = 0;
5704 	}
5705 	/*
5706 	 * If we are in pageout, we know that memory is already tight,
5707 	 * the arc is already going to be evicting, so we just want to
5708 	 * continue to let page writes occur as quickly as possible.
5709 	 */
5710 	if (curproc == proc_pageout) {
5711 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5712 			return (SET_ERROR(ERESTART));
5713 		/* Note: reserve is inflated, so we deflate */
5714 		page_load += reserve / 8;
5715 		return (0);
5716 	} else if (page_load > 0 && arc_reclaim_needed()) {
5717 		/* memory is low, delay before restarting */
5718 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5719 		return (SET_ERROR(EAGAIN));
5720 	}
5721 	page_load = 0;
5722 #endif
5723 	return (0);
5724 }
5725 
5726 void
5727 arc_tempreserve_clear(uint64_t reserve)
5728 {
5729 	atomic_add_64(&arc_tempreserve, -reserve);
5730 	ASSERT((int64_t)arc_tempreserve >= 0);
5731 }
5732 
5733 int
5734 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5735 {
5736 	int error;
5737 	uint64_t anon_size;
5738 
5739 	if (reserve > arc_c/4 && !arc_no_grow)
5740 		arc_c = MIN(arc_c_max, reserve * 4);
5741 	if (reserve > arc_c)
5742 		return (SET_ERROR(ENOMEM));
5743 
5744 	/*
5745 	 * Don't count loaned bufs as in flight dirty data to prevent long
5746 	 * network delays from blocking transactions that are ready to be
5747 	 * assigned to a txg.
5748 	 */
5749 
5750 	/* assert that it has not wrapped around */
5751 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
5752 
5753 	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5754 	    arc_loaned_bytes), 0);
5755 
5756 	/*
5757 	 * Writes will, almost always, require additional memory allocations
5758 	 * in order to compress/encrypt/etc the data.  We therefore need to
5759 	 * make sure that there is sufficient available memory for this.
5760 	 */
5761 	error = arc_memory_throttle(reserve, txg);
5762 	if (error != 0)
5763 		return (error);
5764 
5765 	/*
5766 	 * Throttle writes when the amount of dirty data in the cache
5767 	 * gets too large.  We try to keep the cache less than half full
5768 	 * of dirty blocks so that our sync times don't grow too large.
5769 	 * Note: if two requests come in concurrently, we might let them
5770 	 * both succeed, when one of them should fail.  Not a huge deal.
5771 	 */
5772 
5773 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5774 	    anon_size > arc_c / 4) {
5775 		uint64_t meta_esize =
5776 		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5777 		uint64_t data_esize =
5778 		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5779 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5780 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5781 		    arc_tempreserve >> 10, meta_esize >> 10,
5782 		    data_esize >> 10, reserve >> 10, arc_c >> 10);
5783 		return (SET_ERROR(ERESTART));
5784 	}
5785 	atomic_add_64(&arc_tempreserve, reserve);
5786 	return (0);
5787 }
5788 
5789 static void
5790 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5791     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5792 {
5793 	size->value.ui64 = refcount_count(&state->arcs_size);
5794 	evict_data->value.ui64 =
5795 	    refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
5796 	evict_metadata->value.ui64 =
5797 	    refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
5798 }
5799 
5800 static int
5801 arc_kstat_update(kstat_t *ksp, int rw)
5802 {
5803 	arc_stats_t *as = ksp->ks_data;
5804 
5805 	if (rw == KSTAT_WRITE) {
5806 		return (EACCES);
5807 	} else {
5808 		arc_kstat_update_state(arc_anon,
5809 		    &as->arcstat_anon_size,
5810 		    &as->arcstat_anon_evictable_data,
5811 		    &as->arcstat_anon_evictable_metadata);
5812 		arc_kstat_update_state(arc_mru,
5813 		    &as->arcstat_mru_size,
5814 		    &as->arcstat_mru_evictable_data,
5815 		    &as->arcstat_mru_evictable_metadata);
5816 		arc_kstat_update_state(arc_mru_ghost,
5817 		    &as->arcstat_mru_ghost_size,
5818 		    &as->arcstat_mru_ghost_evictable_data,
5819 		    &as->arcstat_mru_ghost_evictable_metadata);
5820 		arc_kstat_update_state(arc_mfu,
5821 		    &as->arcstat_mfu_size,
5822 		    &as->arcstat_mfu_evictable_data,
5823 		    &as->arcstat_mfu_evictable_metadata);
5824 		arc_kstat_update_state(arc_mfu_ghost,
5825 		    &as->arcstat_mfu_ghost_size,
5826 		    &as->arcstat_mfu_ghost_evictable_data,
5827 		    &as->arcstat_mfu_ghost_evictable_metadata);
5828 	}
5829 
5830 	return (0);
5831 }
5832 
5833 /*
5834  * This function *must* return indices evenly distributed between all
5835  * sublists of the multilist. This is needed due to how the ARC eviction
5836  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5837  * distributed between all sublists and uses this assumption when
5838  * deciding which sublist to evict from and how much to evict from it.
5839  */
5840 unsigned int
5841 arc_state_multilist_index_func(multilist_t *ml, void *obj)
5842 {
5843 	arc_buf_hdr_t *hdr = obj;
5844 
5845 	/*
5846 	 * We rely on b_dva to generate evenly distributed index
5847 	 * numbers using buf_hash below. So, as an added precaution,
5848 	 * let's make sure we never add empty buffers to the arc lists.
5849 	 */
5850 	ASSERT(!HDR_EMPTY(hdr));
5851 
5852 	/*
5853 	 * The assumption here, is the hash value for a given
5854 	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5855 	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5856 	 * Thus, we don't need to store the header's sublist index
5857 	 * on insertion, as this index can be recalculated on removal.
5858 	 *
5859 	 * Also, the low order bits of the hash value are thought to be
5860 	 * distributed evenly. Otherwise, in the case that the multilist
5861 	 * has a power of two number of sublists, each sublists' usage
5862 	 * would not be evenly distributed.
5863 	 */
5864 	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5865 	    multilist_get_num_sublists(ml));
5866 }
5867 
5868 static void
5869 arc_state_init(void)
5870 {
5871 	arc_anon = &ARC_anon;
5872 	arc_mru = &ARC_mru;
5873 	arc_mru_ghost = &ARC_mru_ghost;
5874 	arc_mfu = &ARC_mfu;
5875 	arc_mfu_ghost = &ARC_mfu_ghost;
5876 	arc_l2c_only = &ARC_l2c_only;
5877 
5878 	arc_mru->arcs_list[ARC_BUFC_METADATA] =
5879 	    multilist_create(sizeof (arc_buf_hdr_t),
5880 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5881 	    arc_state_multilist_index_func);
5882 	arc_mru->arcs_list[ARC_BUFC_DATA] =
5883 	    multilist_create(sizeof (arc_buf_hdr_t),
5884 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5885 	    arc_state_multilist_index_func);
5886 	arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
5887 	    multilist_create(sizeof (arc_buf_hdr_t),
5888 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5889 	    arc_state_multilist_index_func);
5890 	arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
5891 	    multilist_create(sizeof (arc_buf_hdr_t),
5892 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5893 	    arc_state_multilist_index_func);
5894 	arc_mfu->arcs_list[ARC_BUFC_METADATA] =
5895 	    multilist_create(sizeof (arc_buf_hdr_t),
5896 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5897 	    arc_state_multilist_index_func);
5898 	arc_mfu->arcs_list[ARC_BUFC_DATA] =
5899 	    multilist_create(sizeof (arc_buf_hdr_t),
5900 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5901 	    arc_state_multilist_index_func);
5902 	arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
5903 	    multilist_create(sizeof (arc_buf_hdr_t),
5904 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5905 	    arc_state_multilist_index_func);
5906 	arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
5907 	    multilist_create(sizeof (arc_buf_hdr_t),
5908 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5909 	    arc_state_multilist_index_func);
5910 	arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
5911 	    multilist_create(sizeof (arc_buf_hdr_t),
5912 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5913 	    arc_state_multilist_index_func);
5914 	arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
5915 	    multilist_create(sizeof (arc_buf_hdr_t),
5916 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5917 	    arc_state_multilist_index_func);
5918 
5919 	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5920 	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5921 	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5922 	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5923 	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5924 	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5925 	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5926 	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5927 	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5928 	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5929 	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5930 	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5931 
5932 	refcount_create(&arc_anon->arcs_size);
5933 	refcount_create(&arc_mru->arcs_size);
5934 	refcount_create(&arc_mru_ghost->arcs_size);
5935 	refcount_create(&arc_mfu->arcs_size);
5936 	refcount_create(&arc_mfu_ghost->arcs_size);
5937 	refcount_create(&arc_l2c_only->arcs_size);
5938 }
5939 
5940 static void
5941 arc_state_fini(void)
5942 {
5943 	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5944 	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5945 	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5946 	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5947 	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5948 	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5949 	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5950 	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5951 	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5952 	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5953 	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5954 	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5955 
5956 	refcount_destroy(&arc_anon->arcs_size);
5957 	refcount_destroy(&arc_mru->arcs_size);
5958 	refcount_destroy(&arc_mru_ghost->arcs_size);
5959 	refcount_destroy(&arc_mfu->arcs_size);
5960 	refcount_destroy(&arc_mfu_ghost->arcs_size);
5961 	refcount_destroy(&arc_l2c_only->arcs_size);
5962 
5963 	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
5964 	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5965 	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5966 	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5967 	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
5968 	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5969 	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
5970 	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5971 }
5972 
5973 uint64_t
5974 arc_max_bytes(void)
5975 {
5976 	return (arc_c_max);
5977 }
5978 
5979 void
5980 arc_init(void)
5981 {
5982 	/*
5983 	 * allmem is "all memory that we could possibly use".
5984 	 */
5985 #ifdef _KERNEL
5986 	uint64_t allmem = ptob(physmem - swapfs_minfree);
5987 #else
5988 	uint64_t allmem = (physmem * PAGESIZE) / 2;
5989 #endif
5990 
5991 	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5992 	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5993 	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5994 
5995 	/* Convert seconds to clock ticks */
5996 	arc_min_prefetch_lifespan = 1 * hz;
5997 
5998 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
5999 	arc_c_min = MAX(allmem / 32, 64 << 20);
6000 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
6001 	if (allmem >= 1 << 30)
6002 		arc_c_max = allmem - (1 << 30);
6003 	else
6004 		arc_c_max = arc_c_min;
6005 	arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
6006 
6007 	/*
6008 	 * In userland, there's only the memory pressure that we artificially
6009 	 * create (see arc_available_memory()).  Don't let arc_c get too
6010 	 * small, because it can cause transactions to be larger than
6011 	 * arc_c, causing arc_tempreserve_space() to fail.
6012 	 */
6013 #ifndef _KERNEL
6014 	arc_c_min = arc_c_max / 2;
6015 #endif
6016 
6017 	/*
6018 	 * Allow the tunables to override our calculations if they are
6019 	 * reasonable (ie. over 64MB)
6020 	 */
6021 	if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) {
6022 		arc_c_max = zfs_arc_max;
6023 		arc_c_min = MIN(arc_c_min, arc_c_max);
6024 	}
6025 	if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
6026 		arc_c_min = zfs_arc_min;
6027 
6028 	arc_c = arc_c_max;
6029 	arc_p = (arc_c >> 1);
6030 	arc_size = 0;
6031 
6032 	/* limit meta-data to 1/4 of the arc capacity */
6033 	arc_meta_limit = arc_c_max / 4;
6034 
6035 #ifdef _KERNEL
6036 	/*
6037 	 * Metadata is stored in the kernel's heap.  Don't let us
6038 	 * use more than half the heap for the ARC.
6039 	 */
6040 	arc_meta_limit = MIN(arc_meta_limit,
6041 	    vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
6042 #endif
6043 
6044 	/* Allow the tunable to override if it is reasonable */
6045 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6046 		arc_meta_limit = zfs_arc_meta_limit;
6047 
6048 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6049 		arc_c_min = arc_meta_limit / 2;
6050 
6051 	if (zfs_arc_meta_min > 0) {
6052 		arc_meta_min = zfs_arc_meta_min;
6053 	} else {
6054 		arc_meta_min = arc_c_min / 2;
6055 	}
6056 
6057 	if (zfs_arc_grow_retry > 0)
6058 		arc_grow_retry = zfs_arc_grow_retry;
6059 
6060 	if (zfs_arc_shrink_shift > 0)
6061 		arc_shrink_shift = zfs_arc_shrink_shift;
6062 
6063 	/*
6064 	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6065 	 */
6066 	if (arc_no_grow_shift >= arc_shrink_shift)
6067 		arc_no_grow_shift = arc_shrink_shift - 1;
6068 
6069 	if (zfs_arc_p_min_shift > 0)
6070 		arc_p_min_shift = zfs_arc_p_min_shift;
6071 
6072 	/* if kmem_flags are set, lets try to use less memory */
6073 	if (kmem_debugging())
6074 		arc_c = arc_c / 2;
6075 	if (arc_c < arc_c_min)
6076 		arc_c = arc_c_min;
6077 
6078 	arc_state_init();
6079 	buf_init();
6080 
6081 	arc_reclaim_thread_exit = B_FALSE;
6082 
6083 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6084 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6085 
6086 	if (arc_ksp != NULL) {
6087 		arc_ksp->ks_data = &arc_stats;
6088 		arc_ksp->ks_update = arc_kstat_update;
6089 		kstat_install(arc_ksp);
6090 	}
6091 
6092 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6093 	    TS_RUN, minclsyspri);
6094 
6095 	arc_dead = B_FALSE;
6096 	arc_warm = B_FALSE;
6097 
6098 	/*
6099 	 * Calculate maximum amount of dirty data per pool.
6100 	 *
6101 	 * If it has been set by /etc/system, take that.
6102 	 * Otherwise, use a percentage of physical memory defined by
6103 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
6104 	 * zfs_dirty_data_max_max (default 4GB).
6105 	 */
6106 	if (zfs_dirty_data_max == 0) {
6107 		zfs_dirty_data_max = physmem * PAGESIZE *
6108 		    zfs_dirty_data_max_percent / 100;
6109 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6110 		    zfs_dirty_data_max_max);
6111 	}
6112 }
6113 
6114 void
6115 arc_fini(void)
6116 {
6117 	mutex_enter(&arc_reclaim_lock);
6118 	arc_reclaim_thread_exit = B_TRUE;
6119 	/*
6120 	 * The reclaim thread will set arc_reclaim_thread_exit back to
6121 	 * B_FALSE when it is finished exiting; we're waiting for that.
6122 	 */
6123 	while (arc_reclaim_thread_exit) {
6124 		cv_signal(&arc_reclaim_thread_cv);
6125 		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6126 	}
6127 	mutex_exit(&arc_reclaim_lock);
6128 
6129 	/* Use B_TRUE to ensure *all* buffers are evicted */
6130 	arc_flush(NULL, B_TRUE);
6131 
6132 	arc_dead = B_TRUE;
6133 
6134 	if (arc_ksp != NULL) {
6135 		kstat_delete(arc_ksp);
6136 		arc_ksp = NULL;
6137 	}
6138 
6139 	mutex_destroy(&arc_reclaim_lock);
6140 	cv_destroy(&arc_reclaim_thread_cv);
6141 	cv_destroy(&arc_reclaim_waiters_cv);
6142 
6143 	arc_state_fini();
6144 	buf_fini();
6145 
6146 	ASSERT0(arc_loaned_bytes);
6147 }
6148 
6149 /*
6150  * Level 2 ARC
6151  *
6152  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6153  * It uses dedicated storage devices to hold cached data, which are populated
6154  * using large infrequent writes.  The main role of this cache is to boost
6155  * the performance of random read workloads.  The intended L2ARC devices
6156  * include short-stroked disks, solid state disks, and other media with
6157  * substantially faster read latency than disk.
6158  *
6159  *                 +-----------------------+
6160  *                 |         ARC           |
6161  *                 +-----------------------+
6162  *                    |         ^     ^
6163  *                    |         |     |
6164  *      l2arc_feed_thread()    arc_read()
6165  *                    |         |     |
6166  *                    |  l2arc read   |
6167  *                    V         |     |
6168  *               +---------------+    |
6169  *               |     L2ARC     |    |
6170  *               +---------------+    |
6171  *                   |    ^           |
6172  *          l2arc_write() |           |
6173  *                   |    |           |
6174  *                   V    |           |
6175  *                 +-------+      +-------+
6176  *                 | vdev  |      | vdev  |
6177  *                 | cache |      | cache |
6178  *                 +-------+      +-------+
6179  *                 +=========+     .-----.
6180  *                 :  L2ARC  :    |-_____-|
6181  *                 : devices :    | Disks |
6182  *                 +=========+    `-_____-'
6183  *
6184  * Read requests are satisfied from the following sources, in order:
6185  *
6186  *	1) ARC
6187  *	2) vdev cache of L2ARC devices
6188  *	3) L2ARC devices
6189  *	4) vdev cache of disks
6190  *	5) disks
6191  *
6192  * Some L2ARC device types exhibit extremely slow write performance.
6193  * To accommodate for this there are some significant differences between
6194  * the L2ARC and traditional cache design:
6195  *
6196  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6197  * the ARC behave as usual, freeing buffers and placing headers on ghost
6198  * lists.  The ARC does not send buffers to the L2ARC during eviction as
6199  * this would add inflated write latencies for all ARC memory pressure.
6200  *
6201  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6202  * It does this by periodically scanning buffers from the eviction-end of
6203  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6204  * not already there. It scans until a headroom of buffers is satisfied,
6205  * which itself is a buffer for ARC eviction. If a compressible buffer is
6206  * found during scanning and selected for writing to an L2ARC device, we
6207  * temporarily boost scanning headroom during the next scan cycle to make
6208  * sure we adapt to compression effects (which might significantly reduce
6209  * the data volume we write to L2ARC). The thread that does this is
6210  * l2arc_feed_thread(), illustrated below; example sizes are included to
6211  * provide a better sense of ratio than this diagram:
6212  *
6213  *	       head -->                        tail
6214  *	        +---------------------+----------+
6215  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6216  *	        +---------------------+----------+   |   o L2ARC eligible
6217  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6218  *	        +---------------------+----------+   |
6219  *	             15.9 Gbytes      ^ 32 Mbytes    |
6220  *	                           headroom          |
6221  *	                                      l2arc_feed_thread()
6222  *	                                             |
6223  *	                 l2arc write hand <--[oooo]--'
6224  *	                         |           8 Mbyte
6225  *	                         |          write max
6226  *	                         V
6227  *		  +==============================+
6228  *	L2ARC dev |####|#|###|###|    |####| ... |
6229  *	          +==============================+
6230  *	                     32 Gbytes
6231  *
6232  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6233  * evicted, then the L2ARC has cached a buffer much sooner than it probably
6234  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
6235  * safe to say that this is an uncommon case, since buffers at the end of
6236  * the ARC lists have moved there due to inactivity.
6237  *
6238  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6239  * then the L2ARC simply misses copying some buffers.  This serves as a
6240  * pressure valve to prevent heavy read workloads from both stalling the ARC
6241  * with waits and clogging the L2ARC with writes.  This also helps prevent
6242  * the potential for the L2ARC to churn if it attempts to cache content too
6243  * quickly, such as during backups of the entire pool.
6244  *
6245  * 5. After system boot and before the ARC has filled main memory, there are
6246  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6247  * lists can remain mostly static.  Instead of searching from tail of these
6248  * lists as pictured, the l2arc_feed_thread() will search from the list heads
6249  * for eligible buffers, greatly increasing its chance of finding them.
6250  *
6251  * The L2ARC device write speed is also boosted during this time so that
6252  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
6253  * there are no L2ARC reads, and no fear of degrading read performance
6254  * through increased writes.
6255  *
6256  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6257  * the vdev queue can aggregate them into larger and fewer writes.  Each
6258  * device is written to in a rotor fashion, sweeping writes through
6259  * available space then repeating.
6260  *
6261  * 7. The L2ARC does not store dirty content.  It never needs to flush
6262  * write buffers back to disk based storage.
6263  *
6264  * 8. If an ARC buffer is written (and dirtied) which also exists in the
6265  * L2ARC, the now stale L2ARC buffer is immediately dropped.
6266  *
6267  * The performance of the L2ARC can be tweaked by a number of tunables, which
6268  * may be necessary for different workloads:
6269  *
6270  *	l2arc_write_max		max write bytes per interval
6271  *	l2arc_write_boost	extra write bytes during device warmup
6272  *	l2arc_noprefetch	skip caching prefetched buffers
6273  *	l2arc_headroom		number of max device writes to precache
6274  *	l2arc_headroom_boost	when we find compressed buffers during ARC
6275  *				scanning, we multiply headroom by this
6276  *				percentage factor for the next scan cycle,
6277  *				since more compressed buffers are likely to
6278  *				be present
6279  *	l2arc_feed_secs		seconds between L2ARC writing
6280  *
6281  * Tunables may be removed or added as future performance improvements are
6282  * integrated, and also may become zpool properties.
6283  *
6284  * There are three key functions that control how the L2ARC warms up:
6285  *
6286  *	l2arc_write_eligible()	check if a buffer is eligible to cache
6287  *	l2arc_write_size()	calculate how much to write
6288  *	l2arc_write_interval()	calculate sleep delay between writes
6289  *
6290  * These three functions determine what to write, how much, and how quickly
6291  * to send writes.
6292  */
6293 
6294 static boolean_t
6295 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6296 {
6297 	/*
6298 	 * A buffer is *not* eligible for the L2ARC if it:
6299 	 * 1. belongs to a different spa.
6300 	 * 2. is already cached on the L2ARC.
6301 	 * 3. has an I/O in progress (it may be an incomplete read).
6302 	 * 4. is flagged not eligible (zfs property).
6303 	 */
6304 	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
6305 	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
6306 		return (B_FALSE);
6307 
6308 	return (B_TRUE);
6309 }
6310 
6311 static uint64_t
6312 l2arc_write_size(void)
6313 {
6314 	uint64_t size;
6315 
6316 	/*
6317 	 * Make sure our globals have meaningful values in case the user
6318 	 * altered them.
6319 	 */
6320 	size = l2arc_write_max;
6321 	if (size == 0) {
6322 		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6323 		    "be greater than zero, resetting it to the default (%d)",
6324 		    L2ARC_WRITE_SIZE);
6325 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
6326 	}
6327 
6328 	if (arc_warm == B_FALSE)
6329 		size += l2arc_write_boost;
6330 
6331 	return (size);
6332 
6333 }
6334 
6335 static clock_t
6336 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6337 {
6338 	clock_t interval, next, now;
6339 
6340 	/*
6341 	 * If the ARC lists are busy, increase our write rate; if the
6342 	 * lists are stale, idle back.  This is achieved by checking
6343 	 * how much we previously wrote - if it was more than half of
6344 	 * what we wanted, schedule the next write much sooner.
6345 	 */
6346 	if (l2arc_feed_again && wrote > (wanted / 2))
6347 		interval = (hz * l2arc_feed_min_ms) / 1000;
6348 	else
6349 		interval = hz * l2arc_feed_secs;
6350 
6351 	now = ddi_get_lbolt();
6352 	next = MAX(now, MIN(now + interval, began + interval));
6353 
6354 	return (next);
6355 }
6356 
6357 /*
6358  * Cycle through L2ARC devices.  This is how L2ARC load balances.
6359  * If a device is returned, this also returns holding the spa config lock.
6360  */
6361 static l2arc_dev_t *
6362 l2arc_dev_get_next(void)
6363 {
6364 	l2arc_dev_t *first, *next = NULL;
6365 
6366 	/*
6367 	 * Lock out the removal of spas (spa_namespace_lock), then removal
6368 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6369 	 * both locks will be dropped and a spa config lock held instead.
6370 	 */
6371 	mutex_enter(&spa_namespace_lock);
6372 	mutex_enter(&l2arc_dev_mtx);
6373 
6374 	/* if there are no vdevs, there is nothing to do */
6375 	if (l2arc_ndev == 0)
6376 		goto out;
6377 
6378 	first = NULL;
6379 	next = l2arc_dev_last;
6380 	do {
6381 		/* loop around the list looking for a non-faulted vdev */
6382 		if (next == NULL) {
6383 			next = list_head(l2arc_dev_list);
6384 		} else {
6385 			next = list_next(l2arc_dev_list, next);
6386 			if (next == NULL)
6387 				next = list_head(l2arc_dev_list);
6388 		}
6389 
6390 		/* if we have come back to the start, bail out */
6391 		if (first == NULL)
6392 			first = next;
6393 		else if (next == first)
6394 			break;
6395 
6396 	} while (vdev_is_dead(next->l2ad_vdev));
6397 
6398 	/* if we were unable to find any usable vdevs, return NULL */
6399 	if (vdev_is_dead(next->l2ad_vdev))
6400 		next = NULL;
6401 
6402 	l2arc_dev_last = next;
6403 
6404 out:
6405 	mutex_exit(&l2arc_dev_mtx);
6406 
6407 	/*
6408 	 * Grab the config lock to prevent the 'next' device from being
6409 	 * removed while we are writing to it.
6410 	 */
6411 	if (next != NULL)
6412 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6413 	mutex_exit(&spa_namespace_lock);
6414 
6415 	return (next);
6416 }
6417 
6418 /*
6419  * Free buffers that were tagged for destruction.
6420  */
6421 static void
6422 l2arc_do_free_on_write()
6423 {
6424 	list_t *buflist;
6425 	l2arc_data_free_t *df, *df_prev;
6426 
6427 	mutex_enter(&l2arc_free_on_write_mtx);
6428 	buflist = l2arc_free_on_write;
6429 
6430 	for (df = list_tail(buflist); df; df = df_prev) {
6431 		df_prev = list_prev(buflist, df);
6432 		ASSERT3P(df->l2df_abd, !=, NULL);
6433 		abd_free(df->l2df_abd);
6434 		list_remove(buflist, df);
6435 		kmem_free(df, sizeof (l2arc_data_free_t));
6436 	}
6437 
6438 	mutex_exit(&l2arc_free_on_write_mtx);
6439 }
6440 
6441 /*
6442  * A write to a cache device has completed.  Update all headers to allow
6443  * reads from these buffers to begin.
6444  */
6445 static void
6446 l2arc_write_done(zio_t *zio)
6447 {
6448 	l2arc_write_callback_t *cb;
6449 	l2arc_dev_t *dev;
6450 	list_t *buflist;
6451 	arc_buf_hdr_t *head, *hdr, *hdr_prev;
6452 	kmutex_t *hash_lock;
6453 	int64_t bytes_dropped = 0;
6454 
6455 	cb = zio->io_private;
6456 	ASSERT3P(cb, !=, NULL);
6457 	dev = cb->l2wcb_dev;
6458 	ASSERT3P(dev, !=, NULL);
6459 	head = cb->l2wcb_head;
6460 	ASSERT3P(head, !=, NULL);
6461 	buflist = &dev->l2ad_buflist;
6462 	ASSERT3P(buflist, !=, NULL);
6463 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6464 	    l2arc_write_callback_t *, cb);
6465 
6466 	if (zio->io_error != 0)
6467 		ARCSTAT_BUMP(arcstat_l2_writes_error);
6468 
6469 	/*
6470 	 * All writes completed, or an error was hit.
6471 	 */
6472 top:
6473 	mutex_enter(&dev->l2ad_mtx);
6474 	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6475 		hdr_prev = list_prev(buflist, hdr);
6476 
6477 		hash_lock = HDR_LOCK(hdr);
6478 
6479 		/*
6480 		 * We cannot use mutex_enter or else we can deadlock
6481 		 * with l2arc_write_buffers (due to swapping the order
6482 		 * the hash lock and l2ad_mtx are taken).
6483 		 */
6484 		if (!mutex_tryenter(hash_lock)) {
6485 			/*
6486 			 * Missed the hash lock. We must retry so we
6487 			 * don't leave the ARC_FLAG_L2_WRITING bit set.
6488 			 */
6489 			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6490 
6491 			/*
6492 			 * We don't want to rescan the headers we've
6493 			 * already marked as having been written out, so
6494 			 * we reinsert the head node so we can pick up
6495 			 * where we left off.
6496 			 */
6497 			list_remove(buflist, head);
6498 			list_insert_after(buflist, hdr, head);
6499 
6500 			mutex_exit(&dev->l2ad_mtx);
6501 
6502 			/*
6503 			 * We wait for the hash lock to become available
6504 			 * to try and prevent busy waiting, and increase
6505 			 * the chance we'll be able to acquire the lock
6506 			 * the next time around.
6507 			 */
6508 			mutex_enter(hash_lock);
6509 			mutex_exit(hash_lock);
6510 			goto top;
6511 		}
6512 
6513 		/*
6514 		 * We could not have been moved into the arc_l2c_only
6515 		 * state while in-flight due to our ARC_FLAG_L2_WRITING
6516 		 * bit being set. Let's just ensure that's being enforced.
6517 		 */
6518 		ASSERT(HDR_HAS_L1HDR(hdr));
6519 
6520 		if (zio->io_error != 0) {
6521 			/*
6522 			 * Error - drop L2ARC entry.
6523 			 */
6524 			list_remove(buflist, hdr);
6525 			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6526 
6527 			ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
6528 			ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
6529 
6530 			bytes_dropped += arc_hdr_size(hdr);
6531 			(void) refcount_remove_many(&dev->l2ad_alloc,
6532 			    arc_hdr_size(hdr), hdr);
6533 		}
6534 
6535 		/*
6536 		 * Allow ARC to begin reads and ghost list evictions to
6537 		 * this L2ARC entry.
6538 		 */
6539 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6540 
6541 		mutex_exit(hash_lock);
6542 	}
6543 
6544 	atomic_inc_64(&l2arc_writes_done);
6545 	list_remove(buflist, head);
6546 	ASSERT(!HDR_HAS_L1HDR(head));
6547 	kmem_cache_free(hdr_l2only_cache, head);
6548 	mutex_exit(&dev->l2ad_mtx);
6549 
6550 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6551 
6552 	l2arc_do_free_on_write();
6553 
6554 	kmem_free(cb, sizeof (l2arc_write_callback_t));
6555 }
6556 
6557 /*
6558  * A read to a cache device completed.  Validate buffer contents before
6559  * handing over to the regular ARC routines.
6560  */
6561 static void
6562 l2arc_read_done(zio_t *zio)
6563 {
6564 	l2arc_read_callback_t *cb;
6565 	arc_buf_hdr_t *hdr;
6566 	kmutex_t *hash_lock;
6567 	boolean_t valid_cksum;
6568 
6569 	ASSERT3P(zio->io_vd, !=, NULL);
6570 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6571 
6572 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6573 
6574 	cb = zio->io_private;
6575 	ASSERT3P(cb, !=, NULL);
6576 	hdr = cb->l2rcb_hdr;
6577 	ASSERT3P(hdr, !=, NULL);
6578 
6579 	hash_lock = HDR_LOCK(hdr);
6580 	mutex_enter(hash_lock);
6581 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6582 
6583 	/*
6584 	 * If the data was read into a temporary buffer,
6585 	 * move it and free the buffer.
6586 	 */
6587 	if (cb->l2rcb_abd != NULL) {
6588 		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
6589 		if (zio->io_error == 0) {
6590 			abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
6591 			    arc_hdr_size(hdr));
6592 		}
6593 
6594 		/*
6595 		 * The following must be done regardless of whether
6596 		 * there was an error:
6597 		 * - free the temporary buffer
6598 		 * - point zio to the real ARC buffer
6599 		 * - set zio size accordingly
6600 		 * These are required because zio is either re-used for
6601 		 * an I/O of the block in the case of the error
6602 		 * or the zio is passed to arc_read_done() and it
6603 		 * needs real data.
6604 		 */
6605 		abd_free(cb->l2rcb_abd);
6606 		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
6607 		zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
6608 	}
6609 
6610 	ASSERT3P(zio->io_abd, !=, NULL);
6611 
6612 	/*
6613 	 * Check this survived the L2ARC journey.
6614 	 */
6615 	ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
6616 	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6617 	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6618 
6619 	valid_cksum = arc_cksum_is_equal(hdr, zio);
6620 	if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6621 		mutex_exit(hash_lock);
6622 		zio->io_private = hdr;
6623 		arc_read_done(zio);
6624 	} else {
6625 		mutex_exit(hash_lock);
6626 		/*
6627 		 * Buffer didn't survive caching.  Increment stats and
6628 		 * reissue to the original storage device.
6629 		 */
6630 		if (zio->io_error != 0) {
6631 			ARCSTAT_BUMP(arcstat_l2_io_error);
6632 		} else {
6633 			zio->io_error = SET_ERROR(EIO);
6634 		}
6635 		if (!valid_cksum)
6636 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6637 
6638 		/*
6639 		 * If there's no waiter, issue an async i/o to the primary
6640 		 * storage now.  If there *is* a waiter, the caller must
6641 		 * issue the i/o in a context where it's OK to block.
6642 		 */
6643 		if (zio->io_waiter == NULL) {
6644 			zio_t *pio = zio_unique_parent(zio);
6645 
6646 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6647 
6648 			zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
6649 			    hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
6650 			    hdr, zio->io_priority, cb->l2rcb_flags,
6651 			    &cb->l2rcb_zb));
6652 		}
6653 	}
6654 
6655 	kmem_free(cb, sizeof (l2arc_read_callback_t));
6656 }
6657 
6658 /*
6659  * This is the list priority from which the L2ARC will search for pages to
6660  * cache.  This is used within loops (0..3) to cycle through lists in the
6661  * desired order.  This order can have a significant effect on cache
6662  * performance.
6663  *
6664  * Currently the metadata lists are hit first, MFU then MRU, followed by
6665  * the data lists.  This function returns a locked list, and also returns
6666  * the lock pointer.
6667  */
6668 static multilist_sublist_t *
6669 l2arc_sublist_lock(int list_num)
6670 {
6671 	multilist_t *ml = NULL;
6672 	unsigned int idx;
6673 
6674 	ASSERT(list_num >= 0 && list_num <= 3);
6675 
6676 	switch (list_num) {
6677 	case 0:
6678 		ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
6679 		break;
6680 	case 1:
6681 		ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
6682 		break;
6683 	case 2:
6684 		ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
6685 		break;
6686 	case 3:
6687 		ml = arc_mru->arcs_list[ARC_BUFC_DATA];
6688 		break;
6689 	}
6690 
6691 	/*
6692 	 * Return a randomly-selected sublist. This is acceptable
6693 	 * because the caller feeds only a little bit of data for each
6694 	 * call (8MB). Subsequent calls will result in different
6695 	 * sublists being selected.
6696 	 */
6697 	idx = multilist_get_random_index(ml);
6698 	return (multilist_sublist_lock(ml, idx));
6699 }
6700 
6701 /*
6702  * Evict buffers from the device write hand to the distance specified in
6703  * bytes.  This distance may span populated buffers, it may span nothing.
6704  * This is clearing a region on the L2ARC device ready for writing.
6705  * If the 'all' boolean is set, every buffer is evicted.
6706  */
6707 static void
6708 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6709 {
6710 	list_t *buflist;
6711 	arc_buf_hdr_t *hdr, *hdr_prev;
6712 	kmutex_t *hash_lock;
6713 	uint64_t taddr;
6714 
6715 	buflist = &dev->l2ad_buflist;
6716 
6717 	if (!all && dev->l2ad_first) {
6718 		/*
6719 		 * This is the first sweep through the device.  There is
6720 		 * nothing to evict.
6721 		 */
6722 		return;
6723 	}
6724 
6725 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6726 		/*
6727 		 * When nearing the end of the device, evict to the end
6728 		 * before the device write hand jumps to the start.
6729 		 */
6730 		taddr = dev->l2ad_end;
6731 	} else {
6732 		taddr = dev->l2ad_hand + distance;
6733 	}
6734 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6735 	    uint64_t, taddr, boolean_t, all);
6736 
6737 top:
6738 	mutex_enter(&dev->l2ad_mtx);
6739 	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6740 		hdr_prev = list_prev(buflist, hdr);
6741 
6742 		hash_lock = HDR_LOCK(hdr);
6743 
6744 		/*
6745 		 * We cannot use mutex_enter or else we can deadlock
6746 		 * with l2arc_write_buffers (due to swapping the order
6747 		 * the hash lock and l2ad_mtx are taken).
6748 		 */
6749 		if (!mutex_tryenter(hash_lock)) {
6750 			/*
6751 			 * Missed the hash lock.  Retry.
6752 			 */
6753 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6754 			mutex_exit(&dev->l2ad_mtx);
6755 			mutex_enter(hash_lock);
6756 			mutex_exit(hash_lock);
6757 			goto top;
6758 		}
6759 
6760 		/*
6761 		 * A header can't be on this list if it doesn't have L2 header.
6762 		 */
6763 		ASSERT(HDR_HAS_L2HDR(hdr));
6764 
6765 		/* Ensure this header has finished being written. */
6766 		ASSERT(!HDR_L2_WRITING(hdr));
6767 		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
6768 
6769 		if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
6770 		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6771 			/*
6772 			 * We've evicted to the target address,
6773 			 * or the end of the device.
6774 			 */
6775 			mutex_exit(hash_lock);
6776 			break;
6777 		}
6778 
6779 		if (!HDR_HAS_L1HDR(hdr)) {
6780 			ASSERT(!HDR_L2_READING(hdr));
6781 			/*
6782 			 * This doesn't exist in the ARC.  Destroy.
6783 			 * arc_hdr_destroy() will call list_remove()
6784 			 * and decrement arcstat_l2_lsize.
6785 			 */
6786 			arc_change_state(arc_anon, hdr, hash_lock);
6787 			arc_hdr_destroy(hdr);
6788 		} else {
6789 			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6790 			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6791 			/*
6792 			 * Invalidate issued or about to be issued
6793 			 * reads, since we may be about to write
6794 			 * over this location.
6795 			 */
6796 			if (HDR_L2_READING(hdr)) {
6797 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6798 				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
6799 			}
6800 
6801 			arc_hdr_l2hdr_destroy(hdr);
6802 		}
6803 		mutex_exit(hash_lock);
6804 	}
6805 	mutex_exit(&dev->l2ad_mtx);
6806 }
6807 
6808 /*
6809  * Find and write ARC buffers to the L2ARC device.
6810  *
6811  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6812  * for reading until they have completed writing.
6813  * The headroom_boost is an in-out parameter used to maintain headroom boost
6814  * state between calls to this function.
6815  *
6816  * Returns the number of bytes actually written (which may be smaller than
6817  * the delta by which the device hand has changed due to alignment).
6818  */
6819 static uint64_t
6820 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
6821 {
6822 	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6823 	uint64_t write_asize, write_psize, write_lsize, headroom;
6824 	boolean_t full;
6825 	l2arc_write_callback_t *cb;
6826 	zio_t *pio, *wzio;
6827 	uint64_t guid = spa_load_guid(spa);
6828 
6829 	ASSERT3P(dev->l2ad_vdev, !=, NULL);
6830 
6831 	pio = NULL;
6832 	write_lsize = write_asize = write_psize = 0;
6833 	full = B_FALSE;
6834 	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6835 	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
6836 
6837 	/*
6838 	 * Copy buffers for L2ARC writing.
6839 	 */
6840 	for (int try = 0; try <= 3; try++) {
6841 		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6842 		uint64_t passed_sz = 0;
6843 
6844 		/*
6845 		 * L2ARC fast warmup.
6846 		 *
6847 		 * Until the ARC is warm and starts to evict, read from the
6848 		 * head of the ARC lists rather than the tail.
6849 		 */
6850 		if (arc_warm == B_FALSE)
6851 			hdr = multilist_sublist_head(mls);
6852 		else
6853 			hdr = multilist_sublist_tail(mls);
6854 
6855 		headroom = target_sz * l2arc_headroom;
6856 		if (zfs_compressed_arc_enabled)
6857 			headroom = (headroom * l2arc_headroom_boost) / 100;
6858 
6859 		for (; hdr; hdr = hdr_prev) {
6860 			kmutex_t *hash_lock;
6861 
6862 			if (arc_warm == B_FALSE)
6863 				hdr_prev = multilist_sublist_next(mls, hdr);
6864 			else
6865 				hdr_prev = multilist_sublist_prev(mls, hdr);
6866 
6867 			hash_lock = HDR_LOCK(hdr);
6868 			if (!mutex_tryenter(hash_lock)) {
6869 				/*
6870 				 * Skip this buffer rather than waiting.
6871 				 */
6872 				continue;
6873 			}
6874 
6875 			passed_sz += HDR_GET_LSIZE(hdr);
6876 			if (passed_sz > headroom) {
6877 				/*
6878 				 * Searched too far.
6879 				 */
6880 				mutex_exit(hash_lock);
6881 				break;
6882 			}
6883 
6884 			if (!l2arc_write_eligible(guid, hdr)) {
6885 				mutex_exit(hash_lock);
6886 				continue;
6887 			}
6888 
6889 			/*
6890 			 * We rely on the L1 portion of the header below, so
6891 			 * it's invalid for this header to have been evicted out
6892 			 * of the ghost cache, prior to being written out. The
6893 			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6894 			 */
6895 			ASSERT(HDR_HAS_L1HDR(hdr));
6896 
6897 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
6898 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6899 			ASSERT3U(arc_hdr_size(hdr), >, 0);
6900 			uint64_t psize = arc_hdr_size(hdr);
6901 			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
6902 			    psize);
6903 
6904 			if ((write_asize + asize) > target_sz) {
6905 				full = B_TRUE;
6906 				mutex_exit(hash_lock);
6907 				break;
6908 			}
6909 
6910 			if (pio == NULL) {
6911 				/*
6912 				 * Insert a dummy header on the buflist so
6913 				 * l2arc_write_done() can find where the
6914 				 * write buffers begin without searching.
6915 				 */
6916 				mutex_enter(&dev->l2ad_mtx);
6917 				list_insert_head(&dev->l2ad_buflist, head);
6918 				mutex_exit(&dev->l2ad_mtx);
6919 
6920 				cb = kmem_alloc(
6921 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
6922 				cb->l2wcb_dev = dev;
6923 				cb->l2wcb_head = head;
6924 				pio = zio_root(spa, l2arc_write_done, cb,
6925 				    ZIO_FLAG_CANFAIL);
6926 			}
6927 
6928 			hdr->b_l2hdr.b_dev = dev;
6929 			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6930 			arc_hdr_set_flags(hdr,
6931 			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
6932 
6933 			mutex_enter(&dev->l2ad_mtx);
6934 			list_insert_head(&dev->l2ad_buflist, hdr);
6935 			mutex_exit(&dev->l2ad_mtx);
6936 
6937 			(void) refcount_add_many(&dev->l2ad_alloc, psize, hdr);
6938 
6939 			/*
6940 			 * Normally the L2ARC can use the hdr's data, but if
6941 			 * we're sharing data between the hdr and one of its
6942 			 * bufs, L2ARC needs its own copy of the data so that
6943 			 * the ZIO below can't race with the buf consumer.
6944 			 * Another case where we need to create a copy of the
6945 			 * data is when the buffer size is not device-aligned
6946 			 * and we need to pad the block to make it such.
6947 			 * That also keeps the clock hand suitably aligned.
6948 			 *
6949 			 * To ensure that the copy will be available for the
6950 			 * lifetime of the ZIO and be cleaned up afterwards, we
6951 			 * add it to the l2arc_free_on_write queue.
6952 			 */
6953 			abd_t *to_write;
6954 			if (!HDR_SHARED_DATA(hdr) && psize == asize) {
6955 				to_write = hdr->b_l1hdr.b_pabd;
6956 			} else {
6957 				to_write = abd_alloc_for_io(asize,
6958 				    HDR_ISTYPE_METADATA(hdr));
6959 				abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
6960 				if (asize != psize) {
6961 					abd_zero_off(to_write, psize,
6962 					    asize - psize);
6963 				}
6964 				l2arc_free_abd_on_write(to_write, asize,
6965 				    arc_buf_type(hdr));
6966 			}
6967 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
6968 			    hdr->b_l2hdr.b_daddr, asize, to_write,
6969 			    ZIO_CHECKSUM_OFF, NULL, hdr,
6970 			    ZIO_PRIORITY_ASYNC_WRITE,
6971 			    ZIO_FLAG_CANFAIL, B_FALSE);
6972 
6973 			write_lsize += HDR_GET_LSIZE(hdr);
6974 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6975 			    zio_t *, wzio);
6976 
6977 			write_psize += psize;
6978 			write_asize += asize;
6979 			dev->l2ad_hand += asize;
6980 
6981 			mutex_exit(hash_lock);
6982 
6983 			(void) zio_nowait(wzio);
6984 		}
6985 
6986 		multilist_sublist_unlock(mls);
6987 
6988 		if (full == B_TRUE)
6989 			break;
6990 	}
6991 
6992 	/* No buffers selected for writing? */
6993 	if (pio == NULL) {
6994 		ASSERT0(write_lsize);
6995 		ASSERT(!HDR_HAS_L1HDR(head));
6996 		kmem_cache_free(hdr_l2only_cache, head);
6997 		return (0);
6998 	}
6999 
7000 	ASSERT3U(write_asize, <=, target_sz);
7001 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
7002 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
7003 	ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
7004 	ARCSTAT_INCR(arcstat_l2_psize, write_psize);
7005 	vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
7006 
7007 	/*
7008 	 * Bump device hand to the device start if it is approaching the end.
7009 	 * l2arc_evict() will already have evicted ahead for this case.
7010 	 */
7011 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7012 		dev->l2ad_hand = dev->l2ad_start;
7013 		dev->l2ad_first = B_FALSE;
7014 	}
7015 
7016 	dev->l2ad_writing = B_TRUE;
7017 	(void) zio_wait(pio);
7018 	dev->l2ad_writing = B_FALSE;
7019 
7020 	return (write_asize);
7021 }
7022 
7023 /*
7024  * This thread feeds the L2ARC at regular intervals.  This is the beating
7025  * heart of the L2ARC.
7026  */
7027 /* ARGSUSED */
7028 static void
7029 l2arc_feed_thread(void *unused)
7030 {
7031 	callb_cpr_t cpr;
7032 	l2arc_dev_t *dev;
7033 	spa_t *spa;
7034 	uint64_t size, wrote;
7035 	clock_t begin, next = ddi_get_lbolt();
7036 
7037 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7038 
7039 	mutex_enter(&l2arc_feed_thr_lock);
7040 
7041 	while (l2arc_thread_exit == 0) {
7042 		CALLB_CPR_SAFE_BEGIN(&cpr);
7043 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7044 		    next);
7045 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7046 		next = ddi_get_lbolt() + hz;
7047 
7048 		/*
7049 		 * Quick check for L2ARC devices.
7050 		 */
7051 		mutex_enter(&l2arc_dev_mtx);
7052 		if (l2arc_ndev == 0) {
7053 			mutex_exit(&l2arc_dev_mtx);
7054 			continue;
7055 		}
7056 		mutex_exit(&l2arc_dev_mtx);
7057 		begin = ddi_get_lbolt();
7058 
7059 		/*
7060 		 * This selects the next l2arc device to write to, and in
7061 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7062 		 * will return NULL if there are now no l2arc devices or if
7063 		 * they are all faulted.
7064 		 *
7065 		 * If a device is returned, its spa's config lock is also
7066 		 * held to prevent device removal.  l2arc_dev_get_next()
7067 		 * will grab and release l2arc_dev_mtx.
7068 		 */
7069 		if ((dev = l2arc_dev_get_next()) == NULL)
7070 			continue;
7071 
7072 		spa = dev->l2ad_spa;
7073 		ASSERT3P(spa, !=, NULL);
7074 
7075 		/*
7076 		 * If the pool is read-only then force the feed thread to
7077 		 * sleep a little longer.
7078 		 */
7079 		if (!spa_writeable(spa)) {
7080 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7081 			spa_config_exit(spa, SCL_L2ARC, dev);
7082 			continue;
7083 		}
7084 
7085 		/*
7086 		 * Avoid contributing to memory pressure.
7087 		 */
7088 		if (arc_reclaim_needed()) {
7089 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7090 			spa_config_exit(spa, SCL_L2ARC, dev);
7091 			continue;
7092 		}
7093 
7094 		ARCSTAT_BUMP(arcstat_l2_feeds);
7095 
7096 		size = l2arc_write_size();
7097 
7098 		/*
7099 		 * Evict L2ARC buffers that will be overwritten.
7100 		 */
7101 		l2arc_evict(dev, size, B_FALSE);
7102 
7103 		/*
7104 		 * Write ARC buffers.
7105 		 */
7106 		wrote = l2arc_write_buffers(spa, dev, size);
7107 
7108 		/*
7109 		 * Calculate interval between writes.
7110 		 */
7111 		next = l2arc_write_interval(begin, size, wrote);
7112 		spa_config_exit(spa, SCL_L2ARC, dev);
7113 	}
7114 
7115 	l2arc_thread_exit = 0;
7116 	cv_broadcast(&l2arc_feed_thr_cv);
7117 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7118 	thread_exit();
7119 }
7120 
7121 boolean_t
7122 l2arc_vdev_present(vdev_t *vd)
7123 {
7124 	l2arc_dev_t *dev;
7125 
7126 	mutex_enter(&l2arc_dev_mtx);
7127 	for (dev = list_head(l2arc_dev_list); dev != NULL;
7128 	    dev = list_next(l2arc_dev_list, dev)) {
7129 		if (dev->l2ad_vdev == vd)
7130 			break;
7131 	}
7132 	mutex_exit(&l2arc_dev_mtx);
7133 
7134 	return (dev != NULL);
7135 }
7136 
7137 /*
7138  * Add a vdev for use by the L2ARC.  By this point the spa has already
7139  * validated the vdev and opened it.
7140  */
7141 void
7142 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7143 {
7144 	l2arc_dev_t *adddev;
7145 
7146 	ASSERT(!l2arc_vdev_present(vd));
7147 
7148 	/*
7149 	 * Create a new l2arc device entry.
7150 	 */
7151 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7152 	adddev->l2ad_spa = spa;
7153 	adddev->l2ad_vdev = vd;
7154 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7155 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7156 	adddev->l2ad_hand = adddev->l2ad_start;
7157 	adddev->l2ad_first = B_TRUE;
7158 	adddev->l2ad_writing = B_FALSE;
7159 
7160 	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7161 	/*
7162 	 * This is a list of all ARC buffers that are still valid on the
7163 	 * device.
7164 	 */
7165 	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7166 	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7167 
7168 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7169 	refcount_create(&adddev->l2ad_alloc);
7170 
7171 	/*
7172 	 * Add device to global list
7173 	 */
7174 	mutex_enter(&l2arc_dev_mtx);
7175 	list_insert_head(l2arc_dev_list, adddev);
7176 	atomic_inc_64(&l2arc_ndev);
7177 	mutex_exit(&l2arc_dev_mtx);
7178 }
7179 
7180 /*
7181  * Remove a vdev from the L2ARC.
7182  */
7183 void
7184 l2arc_remove_vdev(vdev_t *vd)
7185 {
7186 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7187 
7188 	/*
7189 	 * Find the device by vdev
7190 	 */
7191 	mutex_enter(&l2arc_dev_mtx);
7192 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7193 		nextdev = list_next(l2arc_dev_list, dev);
7194 		if (vd == dev->l2ad_vdev) {
7195 			remdev = dev;
7196 			break;
7197 		}
7198 	}
7199 	ASSERT3P(remdev, !=, NULL);
7200 
7201 	/*
7202 	 * Remove device from global list
7203 	 */
7204 	list_remove(l2arc_dev_list, remdev);
7205 	l2arc_dev_last = NULL;		/* may have been invalidated */
7206 	atomic_dec_64(&l2arc_ndev);
7207 	mutex_exit(&l2arc_dev_mtx);
7208 
7209 	/*
7210 	 * Clear all buflists and ARC references.  L2ARC device flush.
7211 	 */
7212 	l2arc_evict(remdev, 0, B_TRUE);
7213 	list_destroy(&remdev->l2ad_buflist);
7214 	mutex_destroy(&remdev->l2ad_mtx);
7215 	refcount_destroy(&remdev->l2ad_alloc);
7216 	kmem_free(remdev, sizeof (l2arc_dev_t));
7217 }
7218 
7219 void
7220 l2arc_init(void)
7221 {
7222 	l2arc_thread_exit = 0;
7223 	l2arc_ndev = 0;
7224 	l2arc_writes_sent = 0;
7225 	l2arc_writes_done = 0;
7226 
7227 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7228 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7229 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7230 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7231 
7232 	l2arc_dev_list = &L2ARC_dev_list;
7233 	l2arc_free_on_write = &L2ARC_free_on_write;
7234 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7235 	    offsetof(l2arc_dev_t, l2ad_node));
7236 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7237 	    offsetof(l2arc_data_free_t, l2df_list_node));
7238 }
7239 
7240 void
7241 l2arc_fini(void)
7242 {
7243 	/*
7244 	 * This is called from dmu_fini(), which is called from spa_fini();
7245 	 * Because of this, we can assume that all l2arc devices have
7246 	 * already been removed when the pools themselves were removed.
7247 	 */
7248 
7249 	l2arc_do_free_on_write();
7250 
7251 	mutex_destroy(&l2arc_feed_thr_lock);
7252 	cv_destroy(&l2arc_feed_thr_cv);
7253 	mutex_destroy(&l2arc_dev_mtx);
7254 	mutex_destroy(&l2arc_free_on_write_mtx);
7255 
7256 	list_destroy(l2arc_dev_list);
7257 	list_destroy(l2arc_free_on_write);
7258 }
7259 
7260 void
7261 l2arc_start(void)
7262 {
7263 	if (!(spa_mode_global & FWRITE))
7264 		return;
7265 
7266 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7267 	    TS_RUN, minclsyspri);
7268 }
7269 
7270 void
7271 l2arc_stop(void)
7272 {
7273 	if (!(spa_mode_global & FWRITE))
7274 		return;
7275 
7276 	mutex_enter(&l2arc_feed_thr_lock);
7277 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7278 	l2arc_thread_exit = 1;
7279 	while (l2arc_thread_exit != 0)
7280 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7281 	mutex_exit(&l2arc_feed_thr_lock);
7282 }
7283