xref: /illumos-gate/usr/src/uts/common/fs/vnode.c (revision 5a59a8b3d86e67dbe75588879c46e3629f40efec)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/t_lock.h>
45 #include <sys/errno.h>
46 #include <sys/cred.h>
47 #include <sys/user.h>
48 #include <sys/uio.h>
49 #include <sys/file.h>
50 #include <sys/pathname.h>
51 #include <sys/vfs.h>
52 #include <sys/vnode.h>
53 #include <sys/rwstlock.h>
54 #include <sys/fem.h>
55 #include <sys/stat.h>
56 #include <sys/mode.h>
57 #include <sys/conf.h>
58 #include <sys/sysmacros.h>
59 #include <sys/cmn_err.h>
60 #include <sys/systm.h>
61 #include <sys/kmem.h>
62 #include <sys/debug.h>
63 #include <c2/audit.h>
64 #include <sys/acl.h>
65 #include <sys/nbmlock.h>
66 #include <sys/fcntl.h>
67 #include <fs/fs_subr.h>
68 
69 /* Determine if this vnode is a file that is read-only */
70 #define	ISROFILE(vp)	\
71 	((vp)->v_type != VCHR && (vp)->v_type != VBLK && \
72 	    (vp)->v_type != VFIFO && vn_is_readonly(vp))
73 
74 /* Tunable via /etc/system; used only by admin/install */
75 int nfs_global_client_only;
76 
77 /*
78  * Array of vopstats_t for per-FS-type vopstats.  This array has the same
79  * number of entries as and parallel to the vfssw table.  (Arguably, it could
80  * be part of the vfssw table.)  Once it's initialized, it's accessed using
81  * the same fstype index that is used to index into the vfssw table.
82  */
83 vopstats_t **vopstats_fstype;
84 
85 /* vopstats initialization template used for fast initialization via bcopy() */
86 static vopstats_t *vs_templatep;
87 
88 /* Kmem cache handle for vsk_anchor_t allocations */
89 kmem_cache_t *vsk_anchor_cache;
90 
91 /*
92  * Root of AVL tree for the kstats associated with vopstats.  Lock protects
93  * updates to vsktat_tree.
94  */
95 avl_tree_t	vskstat_tree;
96 kmutex_t	vskstat_tree_lock;
97 
98 /* Global variable which enables/disables the vopstats collection */
99 int vopstats_enabled = 1;
100 
101 /*
102  * The following is the common set of actions needed to update the
103  * vopstats structure from a vnode op.  Both VOPSTATS_UPDATE() and
104  * VOPSTATS_UPDATE_IO() do almost the same thing, except for the
105  * recording of the bytes transferred.  Since the code is similar
106  * but small, it is nearly a duplicate.  Consequently any changes
107  * to one may need to be reflected in the other.
108  * Rundown of the variables:
109  * vp - Pointer to the vnode
110  * counter - Partial name structure member to update in vopstats for counts
111  * bytecounter - Partial name structure member to update in vopstats for bytes
112  * bytesval - Value to update in vopstats for bytes
113  * fstype - Index into vsanchor_fstype[], same as index into vfssw[]
114  * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i])
115  */
116 
117 #define	VOPSTATS_UPDATE(vp, counter) {					\
118 	vfs_t *vfsp = (vp)->v_vfsp;					\
119 	if (vfsp && (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \
120 		vopstats_t *vsp = &vfsp->vfs_vopstats;			\
121 		vsp->counter.value.ui64++;				\
122 		if ((vsp = vfsp->vfs_fstypevsp) != NULL) {		\
123 			vsp->counter.value.ui64++;			\
124 		}							\
125 	}								\
126 }
127 
128 #define	VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) {	\
129 	vfs_t *vfsp = (vp)->v_vfsp;					\
130 	if (vfsp && (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \
131 		vopstats_t *vsp = &vfsp->vfs_vopstats;			\
132 		vsp->counter.value.ui64++;				\
133 		vsp->bytecounter.value.ui64 += bytesval;		\
134 		if ((vsp = vfsp->vfs_fstypevsp) != NULL) {		\
135 			vsp->counter.value.ui64++;			\
136 			vsp->bytecounter.value.ui64 += bytesval;	\
137 		}							\
138 	}								\
139 }
140 
141 /*
142  * Convert stat(2) formats to vnode types and vice versa.  (Knows about
143  * numerical order of S_IFMT and vnode types.)
144  */
145 enum vtype iftovt_tab[] = {
146 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
147 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
148 };
149 
150 ushort_t vttoif_tab[] = {
151 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO,
152 	S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0
153 };
154 
155 /*
156  * The system vnode cache.
157  */
158 
159 kmem_cache_t *vn_cache;
160 
161 
162 /*
163  * Vnode operations vector.
164  */
165 
166 static const fs_operation_trans_def_t vn_ops_table[] = {
167 	VOPNAME_OPEN, offsetof(struct vnodeops, vop_open),
168 	    fs_nosys, fs_nosys,
169 
170 	VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close),
171 	    fs_nosys, fs_nosys,
172 
173 	VOPNAME_READ, offsetof(struct vnodeops, vop_read),
174 	    fs_nosys, fs_nosys,
175 
176 	VOPNAME_WRITE, offsetof(struct vnodeops, vop_write),
177 	    fs_nosys, fs_nosys,
178 
179 	VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl),
180 	    fs_nosys, fs_nosys,
181 
182 	VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl),
183 	    fs_setfl, fs_nosys,
184 
185 	VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr),
186 	    fs_nosys, fs_nosys,
187 
188 	VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr),
189 	    fs_nosys, fs_nosys,
190 
191 	VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access),
192 	    fs_nosys, fs_nosys,
193 
194 	VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup),
195 	    fs_nosys, fs_nosys,
196 
197 	VOPNAME_CREATE, offsetof(struct vnodeops, vop_create),
198 	    fs_nosys, fs_nosys,
199 
200 	VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove),
201 	    fs_nosys, fs_nosys,
202 
203 	VOPNAME_LINK, offsetof(struct vnodeops, vop_link),
204 	    fs_nosys, fs_nosys,
205 
206 	VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename),
207 	    fs_nosys, fs_nosys,
208 
209 	VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir),
210 	    fs_nosys, fs_nosys,
211 
212 	VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir),
213 	    fs_nosys, fs_nosys,
214 
215 	VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir),
216 	    fs_nosys, fs_nosys,
217 
218 	VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink),
219 	    fs_nosys, fs_nosys,
220 
221 	VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink),
222 	    fs_nosys, fs_nosys,
223 
224 	VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync),
225 	    fs_nosys, fs_nosys,
226 
227 	VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive),
228 	    fs_nosys, fs_nosys,
229 
230 	VOPNAME_FID, offsetof(struct vnodeops, vop_fid),
231 	    fs_nosys, fs_nosys,
232 
233 	VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock),
234 	    fs_rwlock, fs_rwlock,
235 
236 	VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock),
237 	    (fs_generic_func_p) fs_rwunlock,
238 	    (fs_generic_func_p) fs_rwunlock,	/* no errors allowed */
239 
240 	VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek),
241 	    fs_nosys, fs_nosys,
242 
243 	VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp),
244 	    fs_cmp, fs_cmp,		/* no errors allowed */
245 
246 	VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock),
247 	    fs_frlock, fs_nosys,
248 
249 	VOPNAME_SPACE, offsetof(struct vnodeops, vop_space),
250 	    fs_nosys, fs_nosys,
251 
252 	VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp),
253 	    fs_nosys, fs_nosys,
254 
255 	VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage),
256 	    fs_nosys, fs_nosys,
257 
258 	VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage),
259 	    fs_nosys, fs_nosys,
260 
261 	VOPNAME_MAP, offsetof(struct vnodeops, vop_map),
262 	    (fs_generic_func_p) fs_nosys_map,
263 	    (fs_generic_func_p) fs_nosys_map,
264 
265 	VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap),
266 	    (fs_generic_func_p) fs_nosys_addmap,
267 	    (fs_generic_func_p) fs_nosys_addmap,
268 
269 	VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap),
270 	    fs_nosys, fs_nosys,
271 
272 	VOPNAME_POLL, offsetof(struct vnodeops, vop_poll),
273 	    (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll,
274 
275 	VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump),
276 	    fs_nosys, fs_nosys,
277 
278 	VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf),
279 	    fs_pathconf, fs_nosys,
280 
281 	VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio),
282 	    fs_nosys, fs_nosys,
283 
284 	VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl),
285 	    fs_nosys, fs_nosys,
286 
287 	VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose),
288 	    (fs_generic_func_p) fs_dispose,
289 	    (fs_generic_func_p) fs_nodispose,
290 
291 	VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr),
292 	    fs_nosys, fs_nosys,
293 
294 	VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr),
295 	    fs_fab_acl, fs_nosys,
296 
297 	VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock),
298 	    fs_shrlock, fs_nosys,
299 
300 	VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent),
301 	    (fs_generic_func_p) fs_vnevent_nosupport,
302 	    (fs_generic_func_p) fs_vnevent_nosupport,
303 
304 	NULL, 0, NULL, NULL
305 };
306 
307 /*
308  * Used by the AVL routines to compare two vsk_anchor_t structures in the tree.
309  * We use the f_fsid reported by VFS_STATVFS() since we use that for the
310  * kstat name.
311  */
312 static int
313 vska_compar(const void *n1, const void *n2)
314 {
315 	int ret;
316 	ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid;
317 	ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid;
318 
319 	if (p1 < p2) {
320 		ret = -1;
321 	} else if (p1 > p2) {
322 		ret = 1;
323 	} else {
324 		ret = 0;
325 	}
326 
327 	return (ret);
328 }
329 
330 /*
331  * Used to create a single template which will be bcopy()ed to a newly
332  * allocated vsanchor_combo_t structure in new_vsanchor(), below.
333  */
334 static vopstats_t *
335 create_vopstats_template()
336 {
337 	vopstats_t		*vsp;
338 
339 	vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP);
340 	bzero(vsp, sizeof (*vsp));	/* Start fresh */
341 
342 	/* VOP_OPEN */
343 	kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64);
344 	/* VOP_CLOSE */
345 	kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64);
346 	/* VOP_READ I/O */
347 	kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64);
348 	kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64);
349 	/* VOP_WRITE I/O */
350 	kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64);
351 	kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64);
352 	/* VOP_IOCTL */
353 	kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64);
354 	/* VOP_SETFL */
355 	kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64);
356 	/* VOP_GETATTR */
357 	kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64);
358 	/* VOP_SETATTR */
359 	kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64);
360 	/* VOP_ACCESS */
361 	kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64);
362 	/* VOP_LOOKUP */
363 	kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64);
364 	/* VOP_CREATE */
365 	kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64);
366 	/* VOP_REMOVE */
367 	kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64);
368 	/* VOP_LINK */
369 	kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64);
370 	/* VOP_RENAME */
371 	kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64);
372 	/* VOP_MKDIR */
373 	kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64);
374 	/* VOP_RMDIR */
375 	kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64);
376 	/* VOP_READDIR I/O */
377 	kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64);
378 	kstat_named_init(&vsp->readdir_bytes, "readdir_bytes",
379 	    KSTAT_DATA_UINT64);
380 	/* VOP_SYMLINK */
381 	kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64);
382 	/* VOP_READLINK */
383 	kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64);
384 	/* VOP_FSYNC */
385 	kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64);
386 	/* VOP_INACTIVE */
387 	kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64);
388 	/* VOP_FID */
389 	kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64);
390 	/* VOP_RWLOCK */
391 	kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64);
392 	/* VOP_RWUNLOCK */
393 	kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64);
394 	/* VOP_SEEK */
395 	kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64);
396 	/* VOP_CMP */
397 	kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64);
398 	/* VOP_FRLOCK */
399 	kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64);
400 	/* VOP_SPACE */
401 	kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64);
402 	/* VOP_REALVP */
403 	kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64);
404 	/* VOP_GETPAGE */
405 	kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64);
406 	/* VOP_PUTPAGE */
407 	kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64);
408 	/* VOP_MAP */
409 	kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64);
410 	/* VOP_ADDMAP */
411 	kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64);
412 	/* VOP_DELMAP */
413 	kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64);
414 	/* VOP_POLL */
415 	kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64);
416 	/* VOP_DUMP */
417 	kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64);
418 	/* VOP_PATHCONF */
419 	kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64);
420 	/* VOP_PAGEIO */
421 	kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64);
422 	/* VOP_DUMPCTL */
423 	kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64);
424 	/* VOP_DISPOSE */
425 	kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64);
426 	/* VOP_SETSECATTR */
427 	kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64);
428 	/* VOP_GETSECATTR */
429 	kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64);
430 	/* VOP_SHRLOCK */
431 	kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64);
432 	/* VOP_VNEVENT */
433 	kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64);
434 
435 	return (vsp);
436 }
437 
438 /*
439  * Creates a kstat structure associated with a vopstats structure.
440  */
441 kstat_t *
442 new_vskstat(char *ksname, vopstats_t *vsp)
443 {
444 	kstat_t		*ksp;
445 
446 	if (!vopstats_enabled) {
447 		return (NULL);
448 	}
449 
450 	ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED,
451 	    sizeof (vopstats_t)/sizeof (kstat_named_t),
452 	    KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE);
453 	if (ksp) {
454 		ksp->ks_data = vsp;
455 		kstat_install(ksp);
456 	}
457 
458 	return (ksp);
459 }
460 
461 /*
462  * Called from vfsinit() to initialize the support mechanisms for vopstats
463  */
464 void
465 vopstats_startup()
466 {
467 	if (!vopstats_enabled)
468 		return;
469 
470 	/*
471 	 * Creates the AVL tree which holds per-vfs vopstat anchors.  This
472 	 * is necessary since we need to check if a kstat exists before we
473 	 * attempt to create it.  Also, initialize its lock.
474 	 */
475 	avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t),
476 	    offsetof(vsk_anchor_t, vsk_node));
477 	mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL);
478 
479 	vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache",
480 	    sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL,
481 	    NULL, NULL, 0);
482 
483 	/*
484 	 * Set up the array of pointers for the vopstats-by-FS-type.
485 	 * The entries will be allocated/initialized as each file system
486 	 * goes through modload/mod_installfs.
487 	 */
488 	vopstats_fstype = (vopstats_t **)kmem_zalloc(
489 	    (sizeof (vopstats_t *) * nfstype), KM_SLEEP);
490 
491 	/* Set up the global vopstats initialization template */
492 	vs_templatep = create_vopstats_template();
493 }
494 
495 /*
496  * We need to have the all of the counters zeroed.
497  * The initialization of the vopstats_t includes on the order of
498  * 50 calls to kstat_named_init().  Rather that do that on every call,
499  * we do it once in a template (vs_templatep) then bcopy it over.
500  */
501 void
502 initialize_vopstats(vopstats_t *vsp)
503 {
504 	if (vsp == NULL)
505 		return;
506 
507 	bcopy(vs_templatep, vsp, sizeof (vopstats_t));
508 }
509 
510 /*
511  * Create and initialize the vopstat structure for a vfs. Also, generate
512  * a kstat name, create the kstat structure, and associate it with the
513  * vfs' vopstats.  This must only be called from mount.
514  */
515 void
516 setup_vopstats(vfs_t *vfsp)
517 {
518 	int		fstype = 0;		/* Index into vfssw[] */
519 	char		kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */
520 	statvfs64_t	statvfsbuf;		/* Needed to find f_fsid */
521 	vsk_anchor_t	*vskp;			/* vfs <--> kstat anchor */
522 	vfsops_t	*vfsops;		/* vfs operations vector */
523 	vfssw_t		*vswp;			/* Ptr into vfssw[] table */
524 	kstat_t		*ksp;			/* Ptr to new kstat */
525 	avl_index_t	where;			/* Location in the AVL tree */
526 
527 	if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 ||
528 	    !vopstats_enabled)
529 		return;
530 
531 	initialize_vopstats(&vfsp->vfs_vopstats);
532 
533 	/*
534 	 * Set up the fstype.  We go to so much trouble because all versions
535 	 * of NFS use the same fstype in their vfs even though they have
536 	 * distinct entries in the vfssw[] table.
537 	 */
538 	if (vfsp && (vfsops = vfs_getops(vfsp)) != NULL) {
539 		vswp = vfs_getvfsswbyvfsops(vfsops);
540 		/* A special vfs (e.g., EIO_vfs) may not have an entry */
541 		if (vswp) {
542 			fstype = vswp - vfssw;	/* Gets us the index */
543 			vfs_unrefvfssw(vswp);	/* Must release reference */
544 		}
545 	} else {
546 		fstype = vfsp->vfs_fstype;
547 	}
548 
549 	/*
550 	 * Point to the per-fstype vopstats. The only valid values are
551 	 * non-zero positive values less than the number of vfssw[] table
552 	 * entries.
553 	 */
554 	if (fstype > 0 && fstype < nfstype) {
555 		vfsp->vfs_fstypevsp = vopstats_fstype[fstype];
556 	} else {
557 		/* Otherwise, never attempt to update stats by fstype */
558 		vfsp->vfs_fstypevsp = NULL;
559 	}
560 
561 	/* Need to get the fsid to build a kstat name */
562 	if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) {
563 		/* Create a name for our kstats based on fsid */
564 		(void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx",
565 		    VOPSTATS_STR, statvfsbuf.f_fsid);
566 
567 		/* Allocate and initialize the vsk_anchor_t */
568 		vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP);
569 		bzero(vskp, sizeof (*vskp));
570 		vskp->vsk_fsid = statvfsbuf.f_fsid;
571 		vfsp->vfs_vskap = vskp;
572 
573 		mutex_enter(&vskstat_tree_lock);
574 		if (avl_find(&vskstat_tree, vskp, &where) == NULL) {
575 			avl_insert(&vskstat_tree, vskp, where);
576 			mutex_exit(&vskstat_tree_lock);
577 
578 			/*
579 			 * Now that we've got the anchor in the AVL
580 			 * tree, we can create the kstat.
581 			 */
582 			ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats);
583 			if (ksp) {
584 				vskp->vsk_ksp = ksp;
585 			}
586 		} else {
587 			/* Oops, found one! Release memory and lock. */
588 			mutex_exit(&vskstat_tree_lock);
589 			vfsp->vfs_vskap = NULL;
590 			kmem_cache_free(vsk_anchor_cache, vskp);
591 		}
592 	}
593 }
594 
595 /*
596  * We're in the process of tearing down the vfs and need to cleanup
597  * the data structures associated with the vopstats. Must only be called
598  * from dounmount().
599  */
600 void
601 teardown_vopstats(vfs_t *vfsp)
602 {
603 	vsk_anchor_t	*vskap;
604 	avl_index_t	where;
605 
606 	if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 ||
607 	    !vopstats_enabled)
608 		return;
609 
610 	/* This is a safe check since VFS_STATS must be set (see above) */
611 	if ((vskap = vfsp->vfs_vskap) == NULL)
612 		return;
613 
614 	/* Whack the pointer right away */
615 	vfsp->vfs_vskap = NULL;
616 
617 	/* Lock the tree, remove the node, and delete the kstat */
618 	mutex_enter(&vskstat_tree_lock);
619 	if (avl_find(&vskstat_tree, vskap, &where)) {
620 		avl_remove(&vskstat_tree, vskap);
621 	}
622 
623 	if (vskap->vsk_ksp) {
624 		kstat_delete(vskap->vsk_ksp);
625 	}
626 	mutex_exit(&vskstat_tree_lock);
627 
628 	kmem_cache_free(vsk_anchor_cache, vskap);
629 }
630 
631 /*
632  * Read or write a vnode.  Called from kernel code.
633  */
634 int
635 vn_rdwr(
636 	enum uio_rw rw,
637 	struct vnode *vp,
638 	caddr_t base,
639 	ssize_t len,
640 	offset_t offset,
641 	enum uio_seg seg,
642 	int ioflag,
643 	rlim64_t ulimit,	/* meaningful only if rw is UIO_WRITE */
644 	cred_t *cr,
645 	ssize_t *residp)
646 {
647 	struct uio uio;
648 	struct iovec iov;
649 	int error;
650 	int in_crit = 0;
651 
652 	if (rw == UIO_WRITE && ISROFILE(vp))
653 		return (EROFS);
654 
655 	if (len < 0)
656 		return (EIO);
657 
658 	iov.iov_base = base;
659 	iov.iov_len = len;
660 	uio.uio_iov = &iov;
661 	uio.uio_iovcnt = 1;
662 	uio.uio_loffset = offset;
663 	uio.uio_segflg = (short)seg;
664 	uio.uio_resid = len;
665 	uio.uio_llimit = ulimit;
666 
667 	/*
668 	 * We have to enter the critical region before calling VOP_RWLOCK
669 	 * to avoid a deadlock with ufs.
670 	 */
671 	if (nbl_need_check(vp)) {
672 		int svmand;
673 
674 		nbl_start_crit(vp, RW_READER);
675 		in_crit = 1;
676 		error = nbl_svmand(vp, cr, &svmand);
677 		if (error != 0)
678 			goto done;
679 		if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ,
680 		    uio.uio_offset, uio.uio_resid, svmand)) {
681 			error = EACCES;
682 			goto done;
683 		}
684 	}
685 
686 	(void) VOP_RWLOCK(vp,
687 		rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
688 	if (rw == UIO_WRITE) {
689 		uio.uio_fmode = FWRITE;
690 		uio.uio_extflg = UIO_COPY_DEFAULT;
691 		error = VOP_WRITE(vp, &uio, ioflag, cr, NULL);
692 	} else {
693 		uio.uio_fmode = FREAD;
694 		uio.uio_extflg = UIO_COPY_CACHED;
695 		error = VOP_READ(vp, &uio, ioflag, cr, NULL);
696 	}
697 	VOP_RWUNLOCK(vp, rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE,
698 									NULL);
699 	if (residp)
700 		*residp = uio.uio_resid;
701 	else if (uio.uio_resid)
702 		error = EIO;
703 
704 done:
705 	if (in_crit)
706 		nbl_end_crit(vp);
707 	return (error);
708 }
709 
710 /*
711  * Release a vnode.  Call VOP_INACTIVE on last reference or
712  * decrement reference count.
713  *
714  * To avoid race conditions, the v_count is left at 1 for
715  * the call to VOP_INACTIVE. This prevents another thread
716  * from reclaiming and releasing the vnode *before* the
717  * VOP_INACTIVE routine has a chance to destroy the vnode.
718  * We can't have more than 1 thread calling VOP_INACTIVE
719  * on a vnode.
720  */
721 void
722 vn_rele(vnode_t *vp)
723 {
724 	if (vp->v_count == 0)
725 		cmn_err(CE_PANIC, "vn_rele: vnode ref count 0");
726 	mutex_enter(&vp->v_lock);
727 	if (vp->v_count == 1) {
728 		mutex_exit(&vp->v_lock);
729 		VOP_INACTIVE(vp, CRED());
730 	} else {
731 		vp->v_count--;
732 		mutex_exit(&vp->v_lock);
733 	}
734 }
735 
736 /*
737  * Like vn_rele() except that it clears v_stream under v_lock.
738  * This is used by sockfs when it dismantels the association between
739  * the sockfs node and the vnode in the underlaying file system.
740  * v_lock has to be held to prevent a thread coming through the lookupname
741  * path from accessing a stream head that is going away.
742  */
743 void
744 vn_rele_stream(vnode_t *vp)
745 {
746 	if (vp->v_count == 0)
747 		cmn_err(CE_PANIC, "vn_rele: vnode ref count 0");
748 	mutex_enter(&vp->v_lock);
749 	vp->v_stream = NULL;
750 	if (vp->v_count == 1) {
751 		mutex_exit(&vp->v_lock);
752 		VOP_INACTIVE(vp, CRED());
753 	} else {
754 		vp->v_count--;
755 		mutex_exit(&vp->v_lock);
756 	}
757 }
758 
759 int
760 vn_open(
761 	char *pnamep,
762 	enum uio_seg seg,
763 	int filemode,
764 	int createmode,
765 	struct vnode **vpp,
766 	enum create crwhy,
767 	mode_t umask)
768 {
769 	return (vn_openat(pnamep, seg, filemode,
770 			createmode, vpp, crwhy, umask, NULL));
771 }
772 
773 
774 /*
775  * Open/create a vnode.
776  * This may be callable by the kernel, the only known use
777  * of user context being that the current user credentials
778  * are used for permissions.  crwhy is defined iff filemode & FCREAT.
779  */
780 int
781 vn_openat(
782 	char *pnamep,
783 	enum uio_seg seg,
784 	int filemode,
785 	int createmode,
786 	struct vnode **vpp,
787 	enum create crwhy,
788 	mode_t umask,
789 	struct vnode *startvp)
790 {
791 	struct vnode *vp;
792 	int mode;
793 	int error;
794 	int in_crit = 0;
795 	struct vattr vattr;
796 	enum symfollow follow;
797 
798 	mode = 0;
799 	if (filemode & FREAD)
800 		mode |= VREAD;
801 	if (filemode & (FWRITE|FTRUNC))
802 		mode |= VWRITE;
803 
804 	/* symlink interpretation */
805 	if (filemode & FNOFOLLOW)
806 		follow = NO_FOLLOW;
807 	else
808 		follow = FOLLOW;
809 
810 top:
811 	if (filemode & FCREAT) {
812 		enum vcexcl excl;
813 
814 		/*
815 		 * Wish to create a file.
816 		 */
817 		vattr.va_type = VREG;
818 		vattr.va_mode = createmode;
819 		vattr.va_mask = AT_TYPE|AT_MODE;
820 		if (filemode & FTRUNC) {
821 			vattr.va_size = 0;
822 			vattr.va_mask |= AT_SIZE;
823 		}
824 		if (filemode & FEXCL)
825 			excl = EXCL;
826 		else
827 			excl = NONEXCL;
828 
829 		if (error =
830 		    vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy,
831 					(filemode & ~(FTRUNC|FEXCL)),
832 						umask, startvp))
833 			return (error);
834 	} else {
835 		/*
836 		 * Wish to open a file.  Just look it up.
837 		 */
838 		if (error = lookupnameat(pnamep, seg, follow,
839 		    NULLVPP, &vp, startvp)) {
840 			if (error == ESTALE)
841 				goto top;
842 			return (error);
843 		}
844 
845 		/*
846 		 * Get the attributes to check whether file is large.
847 		 * We do this only if the FOFFMAX flag is not set and
848 		 * only for regular files.
849 		 */
850 
851 		if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) {
852 			vattr.va_mask = AT_SIZE;
853 			if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) {
854 				goto out;
855 			}
856 			if (vattr.va_size > (u_offset_t)MAXOFF32_T) {
857 				/*
858 				 * Large File API - regular open fails
859 				 * if FOFFMAX flag is set in file mode
860 				 */
861 				error = EOVERFLOW;
862 				goto out;
863 			}
864 		}
865 		/*
866 		 * Can't write directories, active texts, or
867 		 * read-only filesystems.  Can't truncate files
868 		 * on which mandatory locking is in effect.
869 		 */
870 		if (filemode & (FWRITE|FTRUNC)) {
871 			/*
872 			 * Allow writable directory if VDIROPEN flag is set.
873 			 */
874 			if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) {
875 				error = EISDIR;
876 				goto out;
877 			}
878 			if (ISROFILE(vp)) {
879 				error = EROFS;
880 				goto out;
881 			}
882 			/*
883 			 * Can't truncate files on which mandatory locking
884 			 * or non-blocking mandatory locking is in effect.
885 			 */
886 			if (filemode & FTRUNC) {
887 				vnode_t *rvp;
888 
889 				if (VOP_REALVP(vp, &rvp) != 0)
890 					rvp = vp;
891 				if (nbl_need_check(vp)) {
892 					nbl_start_crit(vp, RW_READER);
893 					in_crit = 1;
894 					vattr.va_mask = AT_MODE|AT_SIZE;
895 					if ((error = VOP_GETATTR(vp, &vattr, 0,
896 					    CRED())) == 0) {
897 						if (rvp->v_filocks != NULL)
898 							if (MANDLOCK(vp,
899 							    vattr.va_mode))
900 								error = EAGAIN;
901 						if (!error) {
902 							if (nbl_conflict(vp,
903 							    NBL_WRITE, 0,
904 							    vattr.va_size, 0))
905 								error = EACCES;
906 						}
907 					}
908 				} else if (rvp->v_filocks != NULL) {
909 					vattr.va_mask = AT_MODE;
910 					if ((error = VOP_GETATTR(vp, &vattr,
911 					    0, CRED())) == 0 && MANDLOCK(vp,
912 					    vattr.va_mode))
913 						error = EAGAIN;
914 				}
915 			}
916 			if (error)
917 				goto out;
918 		}
919 		/*
920 		 * Check permissions.
921 		 */
922 		if (error = VOP_ACCESS(vp, mode, 0, CRED()))
923 			goto out;
924 	}
925 
926 	/*
927 	 * Do remaining checks for FNOFOLLOW and FNOLINKS.
928 	 */
929 	if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) {
930 		error = EINVAL;
931 		goto out;
932 	}
933 	if (filemode & FNOLINKS) {
934 		vattr.va_mask = AT_NLINK;
935 		if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) {
936 			goto out;
937 		}
938 		if (vattr.va_nlink != 1) {
939 			error = EMLINK;
940 			goto out;
941 		}
942 	}
943 
944 	/*
945 	 * Opening a socket corresponding to the AF_UNIX pathname
946 	 * in the filesystem name space is not supported.
947 	 * However, VSOCK nodes in namefs are supported in order
948 	 * to make fattach work for sockets.
949 	 *
950 	 * XXX This uses VOP_REALVP to distinguish between
951 	 * an unopened namefs node (where VOP_REALVP returns a
952 	 * different VSOCK vnode) and a VSOCK created by vn_create
953 	 * in some file system (where VOP_REALVP would never return
954 	 * a different vnode).
955 	 */
956 	if (vp->v_type == VSOCK) {
957 		struct vnode *nvp;
958 
959 		error = VOP_REALVP(vp, &nvp);
960 		if (error != 0 || nvp == NULL || nvp == vp ||
961 		    nvp->v_type != VSOCK) {
962 			error = EOPNOTSUPP;
963 			goto out;
964 		}
965 	}
966 	/*
967 	 * Do opening protocol.
968 	 */
969 	error = VOP_OPEN(&vp, filemode, CRED());
970 	/*
971 	 * Truncate if required.
972 	 */
973 	if (error == 0 && (filemode & FTRUNC) && !(filemode & FCREAT)) {
974 		vattr.va_size = 0;
975 		vattr.va_mask = AT_SIZE;
976 		if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0)
977 			(void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED());
978 	}
979 out:
980 	ASSERT(vp->v_count > 0);
981 
982 	if (in_crit) {
983 		nbl_end_crit(vp);
984 		in_crit = 0;
985 	}
986 	if (error) {
987 		/*
988 		 * The following clause was added to handle a problem
989 		 * with NFS consistency.  It is possible that a lookup
990 		 * of the file to be opened succeeded, but the file
991 		 * itself doesn't actually exist on the server.  This
992 		 * is chiefly due to the DNLC containing an entry for
993 		 * the file which has been removed on the server.  In
994 		 * this case, we just start over.  If there was some
995 		 * other cause for the ESTALE error, then the lookup
996 		 * of the file will fail and the error will be returned
997 		 * above instead of looping around from here.
998 		 */
999 		VN_RELE(vp);
1000 		if (error == ESTALE)
1001 			goto top;
1002 	} else
1003 		*vpp = vp;
1004 	return (error);
1005 }
1006 
1007 int
1008 vn_create(
1009 	char *pnamep,
1010 	enum uio_seg seg,
1011 	struct vattr *vap,
1012 	enum vcexcl excl,
1013 	int mode,
1014 	struct vnode **vpp,
1015 	enum create why,
1016 	int flag,
1017 	mode_t umask)
1018 {
1019 	return (vn_createat(pnamep, seg, vap, excl, mode, vpp,
1020 			why, flag, umask, NULL));
1021 }
1022 
1023 /*
1024  * Create a vnode (makenode).
1025  */
1026 int
1027 vn_createat(
1028 	char *pnamep,
1029 	enum uio_seg seg,
1030 	struct vattr *vap,
1031 	enum vcexcl excl,
1032 	int mode,
1033 	struct vnode **vpp,
1034 	enum create why,
1035 	int flag,
1036 	mode_t umask,
1037 	struct vnode *startvp)
1038 {
1039 	struct vnode *dvp;	/* ptr to parent dir vnode */
1040 	struct vnode *vp = NULL;
1041 	struct pathname pn;
1042 	int error;
1043 	int in_crit = 0;
1044 	struct vattr vattr;
1045 	enum symfollow follow;
1046 
1047 	ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
1048 
1049 	/* symlink interpretation */
1050 	if ((flag & FNOFOLLOW) || excl == EXCL)
1051 		follow = NO_FOLLOW;
1052 	else
1053 		follow = FOLLOW;
1054 	flag &= ~(FNOFOLLOW|FNOLINKS);
1055 
1056 top:
1057 	/*
1058 	 * Lookup directory.
1059 	 * If new object is a file, call lower level to create it.
1060 	 * Note that it is up to the lower level to enforce exclusive
1061 	 * creation, if the file is already there.
1062 	 * This allows the lower level to do whatever
1063 	 * locking or protocol that is needed to prevent races.
1064 	 * If the new object is directory call lower level to make
1065 	 * the new directory, with "." and "..".
1066 	 */
1067 	if (error = pn_get(pnamep, seg, &pn))
1068 		return (error);
1069 #ifdef  C2_AUDIT
1070 	if (audit_active)
1071 		audit_vncreate_start();
1072 #endif /* C2_AUDIT */
1073 	dvp = NULL;
1074 	*vpp = NULL;
1075 	/*
1076 	 * lookup will find the parent directory for the vnode.
1077 	 * When it is done the pn holds the name of the entry
1078 	 * in the directory.
1079 	 * If this is a non-exclusive create we also find the node itself.
1080 	 */
1081 	error = lookuppnat(&pn, NULL, follow, &dvp,
1082 	    (excl == EXCL) ? NULLVPP : vpp, startvp);
1083 	if (error) {
1084 		pn_free(&pn);
1085 		if (error == ESTALE)
1086 			goto top;
1087 		if (why == CRMKDIR && error == EINVAL)
1088 			error = EEXIST;		/* SVID */
1089 		return (error);
1090 	}
1091 
1092 	if (why != CRMKNOD)
1093 		vap->va_mode &= ~VSVTX;
1094 
1095 	/*
1096 	 * If default ACLs are defined for the directory don't apply the
1097 	 * umask if umask is passed.
1098 	 */
1099 
1100 	if (umask) {
1101 
1102 		vsecattr_t vsec;
1103 
1104 		vsec.vsa_aclcnt = 0;
1105 		vsec.vsa_aclentp = NULL;
1106 		vsec.vsa_dfaclcnt = 0;
1107 		vsec.vsa_dfaclentp = NULL;
1108 		vsec.vsa_mask = VSA_DFACLCNT;
1109 		error =  VOP_GETSECATTR(dvp, &vsec, 0, CRED());
1110 		/*
1111 		 * If error is ENOSYS then treat it as no error
1112 		 * Don't want to force all file systems to support
1113 		 * aclent_t style of ACL's.
1114 		 */
1115 		if (error == ENOSYS)
1116 			error = 0;
1117 		if (error) {
1118 			if (*vpp != NULL)
1119 				VN_RELE(*vpp);
1120 			goto out;
1121 		} else {
1122 			/*
1123 			 * Apply the umask if no default ACLs.
1124 			 */
1125 			if (vsec.vsa_dfaclcnt == 0)
1126 				vap->va_mode &= ~umask;
1127 
1128 			/*
1129 			 * VOP_GETSECATTR() may have allocated memory for
1130 			 * ACLs we didn't request, so double-check and
1131 			 * free it if necessary.
1132 			 */
1133 			if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL)
1134 				kmem_free((caddr_t)vsec.vsa_aclentp,
1135 				    vsec.vsa_aclcnt * sizeof (aclent_t));
1136 			if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL)
1137 				kmem_free((caddr_t)vsec.vsa_dfaclentp,
1138 				    vsec.vsa_dfaclcnt * sizeof (aclent_t));
1139 		}
1140 	}
1141 
1142 	/*
1143 	 * In general we want to generate EROFS if the file system is
1144 	 * readonly.  However, POSIX (IEEE Std. 1003.1) section 5.3.1
1145 	 * documents the open system call, and it says that O_CREAT has no
1146 	 * effect if the file already exists.  Bug 1119649 states
1147 	 * that open(path, O_CREAT, ...) fails when attempting to open an
1148 	 * existing file on a read only file system.  Thus, the first part
1149 	 * of the following if statement has 3 checks:
1150 	 *	if the file exists &&
1151 	 *		it is being open with write access &&
1152 	 *		the file system is read only
1153 	 *	then generate EROFS
1154 	 */
1155 	if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) ||
1156 	    (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
1157 		if (*vpp)
1158 			VN_RELE(*vpp);
1159 		error = EROFS;
1160 	} else if (excl == NONEXCL && *vpp != NULL) {
1161 		vnode_t *rvp;
1162 
1163 		/*
1164 		 * File already exists.  If a mandatory lock has been
1165 		 * applied, return error.
1166 		 */
1167 		vp = *vpp;
1168 		if (VOP_REALVP(vp, &rvp) != 0)
1169 			rvp = vp;
1170 		if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) {
1171 			nbl_start_crit(vp, RW_READER);
1172 			in_crit = 1;
1173 		}
1174 		if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) {
1175 			vattr.va_mask = AT_MODE|AT_SIZE;
1176 			if (error = VOP_GETATTR(vp, &vattr, 0, CRED())) {
1177 				goto out;
1178 			}
1179 			if (MANDLOCK(vp, vattr.va_mode)) {
1180 				error = EAGAIN;
1181 				goto out;
1182 			}
1183 			/*
1184 			 * File cannot be truncated if non-blocking mandatory
1185 			 * locks are currently on the file.
1186 			 */
1187 			if ((vap->va_mask & AT_SIZE) && in_crit) {
1188 				u_offset_t offset;
1189 				ssize_t length;
1190 
1191 				offset = vap->va_size > vattr.va_size ?
1192 						vattr.va_size : vap->va_size;
1193 				length = vap->va_size > vattr.va_size ?
1194 						vap->va_size - vattr.va_size :
1195 						vattr.va_size - vap->va_size;
1196 				if (nbl_conflict(vp, NBL_WRITE, offset,
1197 						length, 0)) {
1198 					error = EACCES;
1199 					goto out;
1200 				}
1201 			}
1202 		}
1203 
1204 		/*
1205 		 * If the file is the root of a VFS, we've crossed a
1206 		 * mount point and the "containing" directory that we
1207 		 * acquired above (dvp) is irrelevant because it's in
1208 		 * a different file system.  We apply VOP_CREATE to the
1209 		 * target itself instead of to the containing directory
1210 		 * and supply a null path name to indicate (conventionally)
1211 		 * the node itself as the "component" of interest.
1212 		 *
1213 		 * The intercession of the file system is necessary to
1214 		 * ensure that the appropriate permission checks are
1215 		 * done.
1216 		 */
1217 		if (vp->v_flag & VROOT) {
1218 			ASSERT(why != CRMKDIR);
1219 			error =
1220 			    VOP_CREATE(vp, "", vap, excl, mode, vpp, CRED(),
1221 				    flag);
1222 			/*
1223 			 * If the create succeeded, it will have created
1224 			 * a new reference to the vnode.  Give up the
1225 			 * original reference.  The assertion should not
1226 			 * get triggered because NBMAND locks only apply to
1227 			 * VREG files.  And if in_crit is non-zero for some
1228 			 * reason, detect that here, rather than when we
1229 			 * deference a null vp.
1230 			 */
1231 			ASSERT(in_crit == 0);
1232 			VN_RELE(vp);
1233 			vp = NULL;
1234 			goto out;
1235 		}
1236 
1237 		/*
1238 		 * Large File API - non-large open (FOFFMAX flag not set)
1239 		 * of regular file fails if the file size exceeds MAXOFF32_T.
1240 		 */
1241 		if (why != CRMKDIR &&
1242 		    !(flag & FOFFMAX) &&
1243 		    (vp->v_type == VREG)) {
1244 			vattr.va_mask = AT_SIZE;
1245 			if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) {
1246 				goto out;
1247 			}
1248 			if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) {
1249 				error = EOVERFLOW;
1250 				goto out;
1251 			}
1252 		}
1253 	}
1254 
1255 	if (error == 0) {
1256 		/*
1257 		 * Call mkdir() if specified, otherwise create().
1258 		 */
1259 		int must_be_dir = pn_fixslash(&pn);	/* trailing '/'? */
1260 
1261 		if (why == CRMKDIR)
1262 			error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED());
1263 		else if (!must_be_dir)
1264 			error = VOP_CREATE(dvp, pn.pn_path, vap,
1265 			    excl, mode, vpp, CRED(), flag);
1266 		else
1267 			error = ENOTDIR;
1268 	}
1269 
1270 out:
1271 
1272 #ifdef C2_AUDIT
1273 	if (audit_active)
1274 		audit_vncreate_finish(*vpp, error);
1275 #endif  /* C2_AUDIT */
1276 	if (in_crit) {
1277 		nbl_end_crit(vp);
1278 		in_crit = 0;
1279 	}
1280 	if (vp != NULL) {
1281 		VN_RELE(vp);
1282 		vp = NULL;
1283 	}
1284 	pn_free(&pn);
1285 	VN_RELE(dvp);
1286 	/*
1287 	 * The following clause was added to handle a problem
1288 	 * with NFS consistency.  It is possible that a lookup
1289 	 * of the file to be created succeeded, but the file
1290 	 * itself doesn't actually exist on the server.  This
1291 	 * is chiefly due to the DNLC containing an entry for
1292 	 * the file which has been removed on the server.  In
1293 	 * this case, we just start over.  If there was some
1294 	 * other cause for the ESTALE error, then the lookup
1295 	 * of the file will fail and the error will be returned
1296 	 * above instead of looping around from here.
1297 	 */
1298 	if (error == ESTALE)
1299 		goto top;
1300 	return (error);
1301 }
1302 
1303 int
1304 vn_link(char *from, char *to, enum uio_seg seg)
1305 {
1306 	struct vnode *fvp;		/* from vnode ptr */
1307 	struct vnode *tdvp;		/* to directory vnode ptr */
1308 	struct pathname pn;
1309 	int error;
1310 	struct vattr vattr;
1311 	dev_t fsid;
1312 
1313 top:
1314 	fvp = tdvp = NULL;
1315 	if (error = pn_get(to, seg, &pn))
1316 		return (error);
1317 	if (error = lookupname(from, seg, NO_FOLLOW, NULLVPP, &fvp))
1318 		goto out;
1319 	if (error = lookuppn(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP))
1320 		goto out;
1321 	/*
1322 	 * Make sure both source vnode and target directory vnode are
1323 	 * in the same vfs and that it is writeable.
1324 	 */
1325 	vattr.va_mask = AT_FSID;
1326 	if (error = VOP_GETATTR(fvp, &vattr, 0, CRED()))
1327 		goto out;
1328 	fsid = vattr.va_fsid;
1329 	vattr.va_mask = AT_FSID;
1330 	if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED()))
1331 		goto out;
1332 	if (fsid != vattr.va_fsid) {
1333 		error = EXDEV;
1334 		goto out;
1335 	}
1336 	if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) {
1337 		error = EROFS;
1338 		goto out;
1339 	}
1340 	/*
1341 	 * Do the link.
1342 	 */
1343 	(void) pn_fixslash(&pn);
1344 	error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED());
1345 out:
1346 	pn_free(&pn);
1347 	if (fvp)
1348 		VN_RELE(fvp);
1349 	if (tdvp)
1350 		VN_RELE(tdvp);
1351 	if (error == ESTALE)
1352 		goto top;
1353 	return (error);
1354 }
1355 
1356 int
1357 vn_rename(char *from, char *to, enum uio_seg seg)
1358 {
1359 	return (vn_renameat(NULL, from, NULL, to, seg));
1360 }
1361 
1362 int
1363 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp,
1364 		char *tname, enum uio_seg seg)
1365 {
1366 	int error;
1367 	struct vattr vattr;
1368 	struct pathname fpn;		/* from pathname */
1369 	struct pathname tpn;		/* to pathname */
1370 	dev_t fsid;
1371 	int in_crit = 0;
1372 	vnode_t *fromvp, *fvp;
1373 	vnode_t *tovp;
1374 
1375 top:
1376 	fvp = fromvp = tovp = NULL;
1377 	/*
1378 	 * Get to and from pathnames.
1379 	 */
1380 	if (error = pn_get(fname, seg, &fpn))
1381 		return (error);
1382 	if (error = pn_get(tname, seg, &tpn)) {
1383 		pn_free(&fpn);
1384 		return (error);
1385 	}
1386 
1387 	/*
1388 	 * First we need to resolve the correct directories
1389 	 * The passed in directories may only be a starting point,
1390 	 * but we need the real directories the file(s) live in.
1391 	 * For example the fname may be something like usr/lib/sparc
1392 	 * and we were passed in the / directory, but we need to
1393 	 * use the lib directory for the rename.
1394 	 */
1395 
1396 #ifdef  C2_AUDIT
1397 	if (audit_active)
1398 		audit_setfsat_path(1);
1399 #endif /* C2_AUDIT */
1400 	/*
1401 	 * Lookup to and from directories.
1402 	 */
1403 	if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) {
1404 		goto out;
1405 	}
1406 
1407 	/*
1408 	 * Make sure there is an entry.
1409 	 */
1410 	if (fvp == NULL) {
1411 		error = ENOENT;
1412 		goto out;
1413 	}
1414 
1415 #ifdef  C2_AUDIT
1416 	if (audit_active)
1417 		audit_setfsat_path(3);
1418 #endif /* C2_AUDIT */
1419 	if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, NULLVPP, tdvp)) {
1420 		goto out;
1421 	}
1422 
1423 	/*
1424 	 * Make sure both the from vnode directory and the to directory
1425 	 * are in the same vfs and the to directory is writable.
1426 	 * We check fsid's, not vfs pointers, so loopback fs works.
1427 	 */
1428 	if (fromvp != tovp) {
1429 		vattr.va_mask = AT_FSID;
1430 		if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED()))
1431 			goto out;
1432 		fsid = vattr.va_fsid;
1433 		vattr.va_mask = AT_FSID;
1434 		if (error = VOP_GETATTR(tovp, &vattr, 0, CRED()))
1435 			goto out;
1436 		if (fsid != vattr.va_fsid) {
1437 			error = EXDEV;
1438 			goto out;
1439 		}
1440 	}
1441 
1442 	if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) {
1443 		error = EROFS;
1444 		goto out;
1445 	}
1446 
1447 	if (nbl_need_check(fvp)) {
1448 		nbl_start_crit(fvp, RW_READER);
1449 		in_crit = 1;
1450 		if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0)) {
1451 			error = EACCES;
1452 			goto out;
1453 		}
1454 	}
1455 
1456 	/*
1457 	 * Do the rename.
1458 	 */
1459 	(void) pn_fixslash(&tpn);
1460 	error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED());
1461 
1462 out:
1463 	pn_free(&fpn);
1464 	pn_free(&tpn);
1465 	if (in_crit) {
1466 		nbl_end_crit(fvp);
1467 		in_crit = 0;
1468 	}
1469 	if (fromvp)
1470 		VN_RELE(fromvp);
1471 	if (tovp)
1472 		VN_RELE(tovp);
1473 	if (fvp)
1474 		VN_RELE(fvp);
1475 	if (error == ESTALE)
1476 		goto top;
1477 	return (error);
1478 }
1479 
1480 /*
1481  * Remove a file or directory.
1482  */
1483 int
1484 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag)
1485 {
1486 	return (vn_removeat(NULL, fnamep, seg, dirflag));
1487 }
1488 
1489 int
1490 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag)
1491 {
1492 	struct vnode *vp;		/* entry vnode */
1493 	struct vnode *dvp;		/* ptr to parent dir vnode */
1494 	struct vnode *coveredvp;
1495 	struct pathname pn;		/* name of entry */
1496 	enum vtype vtype;
1497 	int error;
1498 	struct vfs *vfsp;
1499 	struct vfs *dvfsp;	/* ptr to parent dir vfs */
1500 	int in_crit = 0;
1501 
1502 top:
1503 	if (error = pn_get(fnamep, seg, &pn))
1504 		return (error);
1505 	dvp = vp = NULL;
1506 	if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) {
1507 		pn_free(&pn);
1508 		if (error == ESTALE)
1509 			goto top;
1510 		return (error);
1511 	}
1512 
1513 	/*
1514 	 * Make sure there is an entry.
1515 	 */
1516 	if (vp == NULL) {
1517 		error = ENOENT;
1518 		goto out;
1519 	}
1520 
1521 	vfsp = vp->v_vfsp;
1522 	dvfsp = dvp->v_vfsp;
1523 
1524 	/*
1525 	 * If the named file is the root of a mounted filesystem, fail,
1526 	 * unless it's marked unlinkable.  In that case, unmount the
1527 	 * filesystem and proceed to unlink the covered vnode.  (If the
1528 	 * covered vnode is a directory, use rmdir instead of unlink,
1529 	 * to avoid file system corruption.)
1530 	 */
1531 	if (vp->v_flag & VROOT) {
1532 		if (vfsp->vfs_flag & VFS_UNLINKABLE) {
1533 			if (dirflag == RMDIRECTORY) {
1534 				/*
1535 				 * User called rmdir(2) on a file that has
1536 				 * been namefs mounted on top of.  Since
1537 				 * namefs doesn't allow directories to
1538 				 * be mounted on other files we know
1539 				 * vp is not of type VDIR so fail to operation.
1540 				 */
1541 				error = ENOTDIR;
1542 				goto out;
1543 			}
1544 			coveredvp = vfsp->vfs_vnodecovered;
1545 			VN_HOLD(coveredvp);
1546 			VN_RELE(vp);
1547 			vp = NULL;
1548 			if ((error = vn_vfswlock(coveredvp)) == 0)
1549 				error = dounmount(vfsp, 0, CRED());
1550 			/*
1551 			 * Unmounted the namefs file system; now get
1552 			 * the object it was mounted over.
1553 			 */
1554 			vp = coveredvp;
1555 			/*
1556 			 * If namefs was mounted over a directory, then
1557 			 * we want to use rmdir() instead of unlink().
1558 			 */
1559 			if (vp->v_type == VDIR)
1560 				dirflag = RMDIRECTORY;
1561 		} else
1562 			error = EBUSY;
1563 
1564 		if (error)
1565 			goto out;
1566 	}
1567 
1568 	/*
1569 	 * Make sure filesystem is writeable.
1570 	 * We check the parent directory's vfs in case this is an lofs vnode.
1571 	 */
1572 	if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) {
1573 		error = EROFS;
1574 		goto out;
1575 	}
1576 
1577 	vtype = vp->v_type;
1578 
1579 	/*
1580 	 * If there is the possibility of an nbmand share reservation, make
1581 	 * sure it's okay to remove the file.  Keep a reference to the
1582 	 * vnode, so that we can exit the nbl critical region after
1583 	 * calling VOP_REMOVE.
1584 	 * If there is no possibility of an nbmand share reservation,
1585 	 * release the vnode reference now.  Filesystems like NFS may
1586 	 * behave differently if there is an extra reference, so get rid of
1587 	 * this one.  Fortunately, we can't have nbmand mounts on NFS
1588 	 * filesystems.
1589 	 */
1590 	if (nbl_need_check(vp)) {
1591 		nbl_start_crit(vp, RW_READER);
1592 		in_crit = 1;
1593 		if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0)) {
1594 			error = EACCES;
1595 			goto out;
1596 		}
1597 	} else {
1598 		VN_RELE(vp);
1599 		vp = NULL;
1600 	}
1601 
1602 	if (dirflag == RMDIRECTORY) {
1603 		/*
1604 		 * Caller is using rmdir(2), which can only be applied to
1605 		 * directories.
1606 		 */
1607 		if (vtype != VDIR) {
1608 			error = ENOTDIR;
1609 		} else {
1610 			vnode_t *cwd;
1611 			proc_t *pp = curproc;
1612 
1613 			mutex_enter(&pp->p_lock);
1614 			cwd = PTOU(pp)->u_cdir;
1615 			VN_HOLD(cwd);
1616 			mutex_exit(&pp->p_lock);
1617 			error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED());
1618 			VN_RELE(cwd);
1619 		}
1620 	} else {
1621 		/*
1622 		 * Unlink(2) can be applied to anything.
1623 		 */
1624 		error = VOP_REMOVE(dvp, pn.pn_path, CRED());
1625 	}
1626 
1627 out:
1628 	pn_free(&pn);
1629 	if (in_crit) {
1630 		nbl_end_crit(vp);
1631 		in_crit = 0;
1632 	}
1633 	if (vp != NULL)
1634 		VN_RELE(vp);
1635 	if (dvp != NULL)
1636 		VN_RELE(dvp);
1637 	if (error == ESTALE)
1638 		goto top;
1639 	return (error);
1640 }
1641 
1642 /*
1643  * Utility function to compare equality of vnodes.
1644  * Compare the underlying real vnodes, if there are underlying vnodes.
1645  * This is a more thorough comparison than the VN_CMP() macro provides.
1646  */
1647 int
1648 vn_compare(vnode_t *vp1, vnode_t *vp2)
1649 {
1650 	vnode_t *realvp;
1651 
1652 	if (vp1 != NULL && VOP_REALVP(vp1, &realvp) == 0)
1653 		vp1 = realvp;
1654 	if (vp2 != NULL && VOP_REALVP(vp2, &realvp) == 0)
1655 		vp2 = realvp;
1656 	return (VN_CMP(vp1, vp2));
1657 }
1658 
1659 /*
1660  * The number of locks to hash into.  This value must be a power
1661  * of 2 minus 1 and should probably also be prime.
1662  */
1663 #define	NUM_BUCKETS	1023
1664 
1665 struct  vn_vfslocks_bucket {
1666 	kmutex_t vb_lock;
1667 	vn_vfslocks_entry_t *vb_list;
1668 	char pad[64 - sizeof (kmutex_t) - sizeof (void *)];
1669 };
1670 
1671 /*
1672  * Total number of buckets will be NUM_BUCKETS + 1 .
1673  */
1674 
1675 #pragma	align	64(vn_vfslocks_buckets)
1676 static	struct vn_vfslocks_bucket	vn_vfslocks_buckets[NUM_BUCKETS + 1];
1677 
1678 #define	VN_VFSLOCKS_SHIFT	9
1679 
1680 #define	VN_VFSLOCKS_HASH(vfsvpptr)	\
1681 	((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS)
1682 
1683 /*
1684  * vn_vfslocks_getlock() uses an HASH scheme to generate
1685  * rwstlock using vfs/vnode pointer passed to it.
1686  *
1687  * vn_vfslocks_rele() releases a reference in the
1688  * HASH table which allows the entry allocated by
1689  * vn_vfslocks_getlock() to be freed at a later
1690  * stage when the refcount drops to zero.
1691  */
1692 
1693 vn_vfslocks_entry_t *
1694 vn_vfslocks_getlock(void *vfsvpptr)
1695 {
1696 	struct vn_vfslocks_bucket *bp;
1697 	vn_vfslocks_entry_t *vep;
1698 	vn_vfslocks_entry_t *tvep;
1699 
1700 	ASSERT(vfsvpptr != NULL);
1701 	bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)];
1702 
1703 	mutex_enter(&bp->vb_lock);
1704 	for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
1705 		if (vep->ve_vpvfs == vfsvpptr) {
1706 			vep->ve_refcnt++;
1707 			mutex_exit(&bp->vb_lock);
1708 			return (vep);
1709 		}
1710 	}
1711 	mutex_exit(&bp->vb_lock);
1712 	vep = kmem_alloc(sizeof (*vep), KM_SLEEP);
1713 	rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL);
1714 	vep->ve_vpvfs = (char *)vfsvpptr;
1715 	vep->ve_refcnt = 1;
1716 	mutex_enter(&bp->vb_lock);
1717 	for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) {
1718 		if (tvep->ve_vpvfs == vfsvpptr) {
1719 			tvep->ve_refcnt++;
1720 			mutex_exit(&bp->vb_lock);
1721 
1722 			/*
1723 			 * There is already an entry in the hash
1724 			 * destroy what we just allocated.
1725 			 */
1726 			rwst_destroy(&vep->ve_lock);
1727 			kmem_free(vep, sizeof (*vep));
1728 			return (tvep);
1729 		}
1730 	}
1731 	vep->ve_next = bp->vb_list;
1732 	bp->vb_list = vep;
1733 	mutex_exit(&bp->vb_lock);
1734 	return (vep);
1735 }
1736 
1737 void
1738 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent)
1739 {
1740 	struct vn_vfslocks_bucket *bp;
1741 	vn_vfslocks_entry_t *vep;
1742 	vn_vfslocks_entry_t *pvep;
1743 
1744 	ASSERT(vepent != NULL);
1745 	ASSERT(vepent->ve_vpvfs != NULL);
1746 
1747 	bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)];
1748 
1749 	mutex_enter(&bp->vb_lock);
1750 	vepent->ve_refcnt--;
1751 
1752 	if ((int32_t)vepent->ve_refcnt < 0)
1753 		cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative");
1754 
1755 	if (vepent->ve_refcnt == 0) {
1756 		for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
1757 			if (vep->ve_vpvfs == vepent->ve_vpvfs) {
1758 				if (bp->vb_list == vep)
1759 					bp->vb_list = vep->ve_next;
1760 				else {
1761 					/* LINTED */
1762 					pvep->ve_next = vep->ve_next;
1763 				}
1764 				mutex_exit(&bp->vb_lock);
1765 				rwst_destroy(&vep->ve_lock);
1766 				kmem_free(vep, sizeof (*vep));
1767 				return;
1768 			}
1769 			pvep = vep;
1770 		}
1771 		cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found");
1772 	}
1773 	mutex_exit(&bp->vb_lock);
1774 }
1775 
1776 /*
1777  * vn_vfswlock_wait is used to implement a lock which is logically a writers
1778  * lock protecting the v_vfsmountedhere field.
1779  * vn_vfswlock_wait has been modified to be similar to vn_vfswlock,
1780  * except that it blocks to acquire the lock VVFSLOCK.
1781  *
1782  * traverse() and routines re-implementing part of traverse (e.g. autofs)
1783  * need to hold this lock. mount(), vn_rename(), vn_remove() and so on
1784  * need the non-blocking version of the writers lock i.e. vn_vfswlock
1785  */
1786 int
1787 vn_vfswlock_wait(vnode_t *vp)
1788 {
1789 	int retval;
1790 	vn_vfslocks_entry_t *vpvfsentry;
1791 	ASSERT(vp != NULL);
1792 
1793 	vpvfsentry = vn_vfslocks_getlock(vp);
1794 	retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER);
1795 
1796 	if (retval == EINTR) {
1797 		vn_vfslocks_rele(vpvfsentry);
1798 		return (EINTR);
1799 	}
1800 	return (retval);
1801 }
1802 
1803 int
1804 vn_vfsrlock_wait(vnode_t *vp)
1805 {
1806 	int retval;
1807 	vn_vfslocks_entry_t *vpvfsentry;
1808 	ASSERT(vp != NULL);
1809 
1810 	vpvfsentry = vn_vfslocks_getlock(vp);
1811 	retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER);
1812 
1813 	if (retval == EINTR) {
1814 		vn_vfslocks_rele(vpvfsentry);
1815 		return (EINTR);
1816 	}
1817 
1818 	return (retval);
1819 }
1820 
1821 
1822 /*
1823  * vn_vfswlock is used to implement a lock which is logically a writers lock
1824  * protecting the v_vfsmountedhere field.
1825  */
1826 int
1827 vn_vfswlock(vnode_t *vp)
1828 {
1829 	vn_vfslocks_entry_t *vpvfsentry;
1830 
1831 	/*
1832 	 * If vp is NULL then somebody is trying to lock the covered vnode
1833 	 * of /.  (vfs_vnodecovered is NULL for /).  This situation will
1834 	 * only happen when unmounting /.  Since that operation will fail
1835 	 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
1836 	 */
1837 	if (vp == NULL)
1838 		return (EBUSY);
1839 
1840 	vpvfsentry = vn_vfslocks_getlock(vp);
1841 
1842 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
1843 		return (0);
1844 
1845 	vn_vfslocks_rele(vpvfsentry);
1846 	return (EBUSY);
1847 }
1848 
1849 int
1850 vn_vfsrlock(vnode_t *vp)
1851 {
1852 	vn_vfslocks_entry_t *vpvfsentry;
1853 
1854 	/*
1855 	 * If vp is NULL then somebody is trying to lock the covered vnode
1856 	 * of /.  (vfs_vnodecovered is NULL for /).  This situation will
1857 	 * only happen when unmounting /.  Since that operation will fail
1858 	 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
1859 	 */
1860 	if (vp == NULL)
1861 		return (EBUSY);
1862 
1863 	vpvfsentry = vn_vfslocks_getlock(vp);
1864 
1865 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
1866 		return (0);
1867 
1868 	vn_vfslocks_rele(vpvfsentry);
1869 	return (EBUSY);
1870 }
1871 
1872 void
1873 vn_vfsunlock(vnode_t *vp)
1874 {
1875 	vn_vfslocks_entry_t *vpvfsentry;
1876 
1877 	/*
1878 	 * ve_refcnt needs to be decremented twice.
1879 	 * 1. To release refernce after a call to vn_vfslocks_getlock()
1880 	 * 2. To release the reference from the locking routines like
1881 	 *    vn_vfsrlock/vn_vfswlock etc,.
1882 	 */
1883 	vpvfsentry = vn_vfslocks_getlock(vp);
1884 	vn_vfslocks_rele(vpvfsentry);
1885 
1886 	rwst_exit(&vpvfsentry->ve_lock);
1887 	vn_vfslocks_rele(vpvfsentry);
1888 }
1889 
1890 int
1891 vn_vfswlock_held(vnode_t *vp)
1892 {
1893 	int held;
1894 	vn_vfslocks_entry_t *vpvfsentry;
1895 
1896 	ASSERT(vp != NULL);
1897 
1898 	vpvfsentry = vn_vfslocks_getlock(vp);
1899 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
1900 
1901 	vn_vfslocks_rele(vpvfsentry);
1902 	return (held);
1903 }
1904 
1905 
1906 int
1907 vn_make_ops(
1908 	const char *name,			/* Name of file system */
1909 	const fs_operation_def_t *templ,	/* Operation specification */
1910 	vnodeops_t **actual)			/* Return the vnodeops */
1911 {
1912 	int unused_ops;
1913 	int error;
1914 
1915 	*actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP);
1916 
1917 	(*actual)->vnop_name = name;
1918 
1919 	error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ);
1920 	if (error) {
1921 		kmem_free(*actual, sizeof (vnodeops_t));
1922 	}
1923 
1924 #if DEBUG
1925 	if (unused_ops != 0)
1926 		cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied "
1927 		    "but not used", name, unused_ops);
1928 #endif
1929 
1930 	return (error);
1931 }
1932 
1933 /*
1934  * Free the vnodeops created as a result of vn_make_ops()
1935  */
1936 void
1937 vn_freevnodeops(vnodeops_t *vnops)
1938 {
1939 	kmem_free(vnops, sizeof (vnodeops_t));
1940 }
1941 
1942 /*
1943  * Vnode cache.
1944  */
1945 
1946 /* ARGSUSED */
1947 static int
1948 vn_cache_constructor(void *buf, void *cdrarg, int kmflags)
1949 {
1950 	struct vnode *vp;
1951 
1952 	vp = buf;
1953 
1954 	mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL);
1955 	cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL);
1956 	rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL);
1957 	rw_init(&vp->v_mslock, NULL, RW_DEFAULT, NULL);
1958 
1959 	vp->v_femhead = NULL;	/* Must be done before vn_reinit() */
1960 	vp->v_path = NULL;
1961 	vp->v_mpssdata = NULL;
1962 
1963 	return (0);
1964 }
1965 
1966 /* ARGSUSED */
1967 static void
1968 vn_cache_destructor(void *buf, void *cdrarg)
1969 {
1970 	struct vnode *vp;
1971 
1972 	vp = buf;
1973 
1974 	rw_destroy(&vp->v_mslock);
1975 	rw_destroy(&vp->v_nbllock);
1976 	cv_destroy(&vp->v_cv);
1977 	mutex_destroy(&vp->v_lock);
1978 }
1979 
1980 void
1981 vn_create_cache(void)
1982 {
1983 	vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode), 64,
1984 	    vn_cache_constructor, vn_cache_destructor, NULL, NULL,
1985 	    NULL, 0);
1986 }
1987 
1988 void
1989 vn_destroy_cache(void)
1990 {
1991 	kmem_cache_destroy(vn_cache);
1992 }
1993 
1994 /*
1995  * Used by file systems when fs-specific nodes (e.g., ufs inodes) are
1996  * cached by the file system and vnodes remain associated.
1997  */
1998 void
1999 vn_recycle(vnode_t *vp)
2000 {
2001 	ASSERT(vp->v_pages == NULL);
2002 
2003 	/*
2004 	 * XXX - This really belongs in vn_reinit(), but we have some issues
2005 	 * with the counts.  Best to have it here for clean initialization.
2006 	 */
2007 	vp->v_rdcnt = 0;
2008 	vp->v_wrcnt = 0;
2009 	vp->v_mmap_read = 0;
2010 	vp->v_mmap_write = 0;
2011 
2012 	/*
2013 	 * If FEM was in use, make sure everything gets cleaned up
2014 	 * NOTE: vp->v_femhead is initialized to NULL in the vnode
2015 	 * constructor.
2016 	 */
2017 	if (vp->v_femhead) {
2018 		/* XXX - There should be a free_femhead() that does all this */
2019 		ASSERT(vp->v_femhead->femh_list == NULL);
2020 		mutex_destroy(&vp->v_femhead->femh_lock);
2021 		kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2022 		vp->v_femhead = NULL;
2023 	}
2024 	if (vp->v_path) {
2025 		kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2026 		vp->v_path = NULL;
2027 	}
2028 	vp->v_mpssdata = NULL;
2029 }
2030 
2031 /*
2032  * Used to reset the vnode fields including those that are directly accessible
2033  * as well as those which require an accessor function.
2034  *
2035  * Does not initialize:
2036  *	synchronization objects: v_lock, v_nbllock, v_cv
2037  *	v_data (since FS-nodes and vnodes point to each other and should
2038  *		be updated simultaneously)
2039  *	v_op (in case someone needs to make a VOP call on this object)
2040  */
2041 void
2042 vn_reinit(vnode_t *vp)
2043 {
2044 	vp->v_count = 1;
2045 	vp->v_vfsp = NULL;
2046 	vp->v_stream = NULL;
2047 	vp->v_vfsmountedhere = NULL;
2048 	vp->v_flag = 0;
2049 	vp->v_type = VNON;
2050 	vp->v_rdev = NODEV;
2051 
2052 	vp->v_filocks = NULL;
2053 	vp->v_shrlocks = NULL;
2054 	vp->v_pages = NULL;
2055 	vp->v_npages = 0;
2056 	vp->v_msnpages = 0;
2057 	vp->v_scanfront = NULL;
2058 	vp->v_scanback = NULL;
2059 
2060 	vp->v_locality = NULL;
2061 	vp->v_scantime = 0;
2062 	vp->v_mset = 0;
2063 	vp->v_msflags = 0;
2064 	vp->v_msnext = NULL;
2065 	vp->v_msprev = NULL;
2066 
2067 	/* Handles v_femhead, v_path, and the r/w/map counts */
2068 	vn_recycle(vp);
2069 }
2070 
2071 vnode_t *
2072 vn_alloc(int kmflag)
2073 {
2074 	vnode_t *vp;
2075 
2076 	vp = kmem_cache_alloc(vn_cache, kmflag);
2077 
2078 	if (vp != NULL) {
2079 		vp->v_femhead = NULL;	/* Must be done before vn_reinit() */
2080 		vn_reinit(vp);
2081 	}
2082 
2083 	return (vp);
2084 }
2085 
2086 void
2087 vn_free(vnode_t *vp)
2088 {
2089 	/*
2090 	 * Some file systems call vn_free() with v_count of zero,
2091 	 * some with v_count of 1.  In any case, the value should
2092 	 * never be anything else.
2093 	 */
2094 	ASSERT((vp->v_count == 0) || (vp->v_count == 1));
2095 	if (vp->v_path != NULL) {
2096 		kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2097 		vp->v_path = NULL;
2098 	}
2099 
2100 	/* If FEM was in use, make sure everything gets cleaned up */
2101 	if (vp->v_femhead) {
2102 		/* XXX - There should be a free_femhead() that does all this */
2103 		ASSERT(vp->v_femhead->femh_list == NULL);
2104 		mutex_destroy(&vp->v_femhead->femh_lock);
2105 		kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2106 		vp->v_femhead = NULL;
2107 	}
2108 	vp->v_mpssdata = NULL;
2109 	kmem_cache_free(vn_cache, vp);
2110 }
2111 
2112 /*
2113  * vnode status changes, should define better states than 1, 0.
2114  */
2115 void
2116 vn_reclaim(vnode_t *vp)
2117 {
2118 	vfs_t   *vfsp = vp->v_vfsp;
2119 
2120 	if (vfsp == NULL || vfsp->vfs_femhead == NULL) {
2121 		return;
2122 	}
2123 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED);
2124 }
2125 
2126 void
2127 vn_idle(vnode_t *vp)
2128 {
2129 	vfs_t   *vfsp = vp->v_vfsp;
2130 
2131 	if (vfsp == NULL || vfsp->vfs_femhead == NULL) {
2132 		return;
2133 	}
2134 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED);
2135 }
2136 void
2137 vn_exists(vnode_t *vp)
2138 {
2139 	vfs_t   *vfsp = vp->v_vfsp;
2140 
2141 	if (vfsp == NULL || vfsp->vfs_femhead == NULL) {
2142 		return;
2143 	}
2144 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS);
2145 }
2146 
2147 void
2148 vn_invalid(vnode_t *vp)
2149 {
2150 	vfs_t   *vfsp = vp->v_vfsp;
2151 
2152 	if (vfsp == NULL || vfsp->vfs_femhead == NULL) {
2153 		return;
2154 	}
2155 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED);
2156 }
2157 
2158 /* Vnode event notification */
2159 
2160 int
2161 vnevent_support(vnode_t *vp)
2162 {
2163 	if (vp == NULL)
2164 		return (EINVAL);
2165 
2166 	return (VOP_VNEVENT(vp, VE_SUPPORT));
2167 }
2168 
2169 void
2170 vnevent_rename_src(vnode_t *vp)
2171 {
2172 	if (vp == NULL || vp->v_femhead == NULL) {
2173 		return;
2174 	}
2175 	(void) VOP_VNEVENT(vp, VE_RENAME_SRC);
2176 }
2177 
2178 void
2179 vnevent_rename_dest(vnode_t *vp)
2180 {
2181 	if (vp == NULL || vp->v_femhead == NULL) {
2182 		return;
2183 	}
2184 	(void) VOP_VNEVENT(vp, VE_RENAME_DEST);
2185 }
2186 
2187 void
2188 vnevent_remove(vnode_t *vp)
2189 {
2190 	if (vp == NULL || vp->v_femhead == NULL) {
2191 		return;
2192 	}
2193 	(void) VOP_VNEVENT(vp, VE_REMOVE);
2194 }
2195 
2196 void
2197 vnevent_rmdir(vnode_t *vp)
2198 {
2199 	if (vp == NULL || vp->v_femhead == NULL) {
2200 		return;
2201 	}
2202 	(void) VOP_VNEVENT(vp, VE_RMDIR);
2203 }
2204 
2205 /*
2206  * Vnode accessors.
2207  */
2208 
2209 int
2210 vn_is_readonly(vnode_t *vp)
2211 {
2212 	return (vp->v_vfsp->vfs_flag & VFS_RDONLY);
2213 }
2214 
2215 int
2216 vn_has_flocks(vnode_t *vp)
2217 {
2218 	return (vp->v_filocks != NULL);
2219 }
2220 
2221 int
2222 vn_has_mandatory_locks(vnode_t *vp, int mode)
2223 {
2224 	return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode)));
2225 }
2226 
2227 int
2228 vn_has_cached_data(vnode_t *vp)
2229 {
2230 	return (vp->v_pages != NULL);
2231 }
2232 
2233 /*
2234  * Return 0 if the vnode in question shouldn't be permitted into a zone via
2235  * zone_enter(2).
2236  */
2237 int
2238 vn_can_change_zones(vnode_t *vp)
2239 {
2240 	struct vfssw *vswp;
2241 	int allow = 1;
2242 	vnode_t *rvp;
2243 
2244 	if (nfs_global_client_only != 0)
2245 		return (1);
2246 
2247 	/*
2248 	 * We always want to look at the underlying vnode if there is one.
2249 	 */
2250 	if (VOP_REALVP(vp, &rvp) != 0)
2251 		rvp = vp;
2252 	/*
2253 	 * Some pseudo filesystems (including doorfs) don't actually register
2254 	 * their vfsops_t, so the following may return NULL; we happily let
2255 	 * such vnodes switch zones.
2256 	 */
2257 	vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp));
2258 	if (vswp != NULL) {
2259 		if (vswp->vsw_flag & VSW_NOTZONESAFE)
2260 			allow = 0;
2261 		vfs_unrefvfssw(vswp);
2262 	}
2263 	return (allow);
2264 }
2265 
2266 /*
2267  * Return nonzero if the vnode is a mount point, zero if not.
2268  */
2269 int
2270 vn_ismntpt(vnode_t *vp)
2271 {
2272 	return (vp->v_vfsmountedhere != NULL);
2273 }
2274 
2275 /* Retrieve the vfs (if any) mounted on this vnode */
2276 vfs_t *
2277 vn_mountedvfs(vnode_t *vp)
2278 {
2279 	return (vp->v_vfsmountedhere);
2280 }
2281 
2282 /*
2283  * vn_is_opened() checks whether a particular file is opened and
2284  * whether the open is for read and/or write.
2285  *
2286  * Vnode counts are only kept on regular files (v_type=VREG).
2287  */
2288 int
2289 vn_is_opened(
2290 	vnode_t *vp,
2291 	v_mode_t mode)
2292 {
2293 
2294 	ASSERT(vp != NULL);
2295 
2296 	switch (mode) {
2297 	case V_WRITE:
2298 		if (vp->v_wrcnt)
2299 			return (V_TRUE);
2300 		break;
2301 	case V_RDANDWR:
2302 		if (vp->v_rdcnt && vp->v_wrcnt)
2303 			return (V_TRUE);
2304 		break;
2305 	case V_RDORWR:
2306 		if (vp->v_rdcnt || vp->v_wrcnt)
2307 			return (V_TRUE);
2308 		break;
2309 	case V_READ:
2310 		if (vp->v_rdcnt)
2311 			return (V_TRUE);
2312 		break;
2313 	}
2314 
2315 	return (V_FALSE);
2316 }
2317 
2318 /*
2319  * vn_is_mapped() checks whether a particular file is mapped and whether
2320  * the file is mapped read and/or write.
2321  */
2322 int
2323 vn_is_mapped(
2324 	vnode_t *vp,
2325 	v_mode_t mode)
2326 {
2327 
2328 	ASSERT(vp != NULL);
2329 
2330 #if !defined(_LP64)
2331 	switch (mode) {
2332 	/*
2333 	 * The atomic_add_64_nv functions force atomicity in the
2334 	 * case of 32 bit architectures. Otherwise the 64 bit values
2335 	 * require two fetches. The value of the fields may be
2336 	 * (potentially) changed between the first fetch and the
2337 	 * second
2338 	 */
2339 	case V_WRITE:
2340 		if (atomic_add_64_nv((&(vp->v_mmap_write)), 0))
2341 			return (V_TRUE);
2342 		break;
2343 	case V_RDANDWR:
2344 		if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) &&
2345 		    (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2346 			return (V_TRUE);
2347 		break;
2348 	case V_RDORWR:
2349 		if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) ||
2350 		    (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2351 			return (V_TRUE);
2352 		break;
2353 	case V_READ:
2354 		if (atomic_add_64_nv((&(vp->v_mmap_read)), 0))
2355 			return (V_TRUE);
2356 		break;
2357 	}
2358 #else
2359 	switch (mode) {
2360 	case V_WRITE:
2361 		if (vp->v_mmap_write)
2362 			return (V_TRUE);
2363 		break;
2364 	case V_RDANDWR:
2365 		if (vp->v_mmap_read && vp->v_mmap_write)
2366 			return (V_TRUE);
2367 		break;
2368 	case V_RDORWR:
2369 		if (vp->v_mmap_read || vp->v_mmap_write)
2370 			return (V_TRUE);
2371 		break;
2372 	case V_READ:
2373 		if (vp->v_mmap_read)
2374 			return (V_TRUE);
2375 		break;
2376 	}
2377 #endif
2378 
2379 	return (V_FALSE);
2380 }
2381 
2382 /*
2383  * Set the operations vector for a vnode.
2384  *
2385  * FEM ensures that the v_femhead pointer is filled in before the
2386  * v_op pointer is changed.  This means that if the v_femhead pointer
2387  * is NULL, and the v_op field hasn't changed since before which checked
2388  * the v_femhead pointer; then our update is ok - we are not racing with
2389  * FEM.
2390  */
2391 void
2392 vn_setops(vnode_t *vp, vnodeops_t *vnodeops)
2393 {
2394 	vnodeops_t	*op;
2395 
2396 	ASSERT(vp != NULL);
2397 	ASSERT(vnodeops != NULL);
2398 
2399 	op = vp->v_op;
2400 	membar_consumer();
2401 	/*
2402 	 * If vp->v_femhead == NULL, then we'll call casptr() to do the
2403 	 * compare-and-swap on vp->v_op.  If either fails, then FEM is
2404 	 * in effect on the vnode and we need to have FEM deal with it.
2405 	 */
2406 	if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) {
2407 		fem_setvnops(vp, vnodeops);
2408 	}
2409 }
2410 
2411 /*
2412  * Retrieve the operations vector for a vnode
2413  * As with vn_setops(above); make sure we aren't racing with FEM.
2414  * FEM sets the v_op to a special, internal, vnodeops that wouldn't
2415  * make sense to the callers of this routine.
2416  */
2417 vnodeops_t *
2418 vn_getops(vnode_t *vp)
2419 {
2420 	vnodeops_t	*op;
2421 
2422 	ASSERT(vp != NULL);
2423 
2424 	op = vp->v_op;
2425 	membar_consumer();
2426 	if (vp->v_femhead == NULL && op == vp->v_op) {
2427 		return (op);
2428 	} else {
2429 		return (fem_getvnops(vp));
2430 	}
2431 }
2432 
2433 /*
2434  * Returns non-zero (1) if the vnodeops matches that of the vnode.
2435  * Returns zero (0) if not.
2436  */
2437 int
2438 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops)
2439 {
2440 	return (vn_getops(vp) == vnodeops);
2441 }
2442 
2443 /*
2444  * Returns non-zero (1) if the specified operation matches the
2445  * corresponding operation for that the vnode.
2446  * Returns zero (0) if not.
2447  */
2448 
2449 #define	MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0))
2450 
2451 int
2452 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp)
2453 {
2454 	const fs_operation_trans_def_t *otdp;
2455 	fs_generic_func_p *loc = NULL;
2456 	vnodeops_t	*vop = vn_getops(vp);
2457 
2458 	ASSERT(vopname != NULL);
2459 
2460 	for (otdp = vn_ops_table; otdp->name != NULL; otdp++) {
2461 		if (MATCHNAME(otdp->name, vopname)) {
2462 			loc = (fs_generic_func_p *)((char *)(vop)
2463 							+ otdp->offset);
2464 			break;
2465 		}
2466 	}
2467 
2468 	return ((loc != NULL) && (*loc == funcp));
2469 }
2470 
2471 /*
2472  * fs_new_caller_id() needs to return a unique ID on a given local system.
2473  * The IDs do not need to survive across reboots.  These are primarily
2474  * used so that (FEM) monitors can detect particular callers (such as
2475  * the NFS server) to a given vnode/vfs operation.
2476  */
2477 u_longlong_t
2478 fs_new_caller_id()
2479 {
2480 	static uint64_t next_caller_id = 0LL; /* First call returns 1 */
2481 
2482 	return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1));
2483 }
2484 
2485 /*
2486  * Given a starting vnode and a path, updates the path in the target vnode in
2487  * a safe manner.  If the vnode already has path information embedded, then the
2488  * cached path is left untouched.
2489  */
2490 void
2491 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp,
2492     const char *path, size_t plen)
2493 {
2494 	char	*rpath;
2495 	vnode_t	*base;
2496 	size_t	rpathlen, rpathalloc;
2497 	int	doslash = 1;
2498 
2499 	if (*path == '/') {
2500 		base = rootvp;
2501 		path++;
2502 		plen--;
2503 	} else {
2504 		base = startvp;
2505 	}
2506 
2507 	/*
2508 	 * We cannot grab base->v_lock while we hold vp->v_lock because of
2509 	 * the potential for deadlock.
2510 	 */
2511 	mutex_enter(&base->v_lock);
2512 	if (base->v_path == NULL) {
2513 		mutex_exit(&base->v_lock);
2514 		return;
2515 	}
2516 
2517 	rpathlen = strlen(base->v_path);
2518 	rpathalloc = rpathlen + plen + 1;
2519 	/* Avoid adding a slash if there's already one there */
2520 	if (base->v_path[rpathlen-1] == '/')
2521 		doslash = 0;
2522 	else
2523 		rpathalloc++;
2524 
2525 	/*
2526 	 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held,
2527 	 * so we must do this dance.  If, by chance, something changes the path,
2528 	 * just give up since there is no real harm.
2529 	 */
2530 	mutex_exit(&base->v_lock);
2531 
2532 	rpath = kmem_alloc(rpathalloc, KM_SLEEP);
2533 
2534 	mutex_enter(&base->v_lock);
2535 	if (base->v_path == NULL || strlen(base->v_path) != rpathlen) {
2536 		mutex_exit(&base->v_lock);
2537 		kmem_free(rpath, rpathalloc);
2538 		return;
2539 	}
2540 	bcopy(base->v_path, rpath, rpathlen);
2541 	mutex_exit(&base->v_lock);
2542 
2543 	if (doslash)
2544 		rpath[rpathlen++] = '/';
2545 	bcopy(path, rpath + rpathlen, plen);
2546 	rpath[rpathlen + plen] = '\0';
2547 
2548 	mutex_enter(&vp->v_lock);
2549 	if (vp->v_path != NULL) {
2550 		mutex_exit(&vp->v_lock);
2551 		kmem_free(rpath, rpathalloc);
2552 	} else {
2553 		vp->v_path = rpath;
2554 		mutex_exit(&vp->v_lock);
2555 	}
2556 }
2557 
2558 /*
2559  * Sets the path to the vnode to be the given string, regardless of current
2560  * context.  The string must be a complete path from rootdir.  This is only used
2561  * by fsop_root() for setting the path based on the mountpoint.
2562  */
2563 void
2564 vn_setpath_str(struct vnode *vp, const char *str, size_t len)
2565 {
2566 	char *buf = kmem_alloc(len + 1, KM_SLEEP);
2567 
2568 	mutex_enter(&vp->v_lock);
2569 	if (vp->v_path != NULL) {
2570 		mutex_exit(&vp->v_lock);
2571 		kmem_free(buf, len + 1);
2572 		return;
2573 	}
2574 
2575 	vp->v_path = buf;
2576 	bcopy(str, vp->v_path, len);
2577 	vp->v_path[len] = '\0';
2578 
2579 	mutex_exit(&vp->v_lock);
2580 }
2581 
2582 /*
2583  * Similar to vn_setpath_str(), this function sets the path of the destination
2584  * vnode to the be the same as the source vnode.
2585  */
2586 void
2587 vn_copypath(struct vnode *src, struct vnode *dst)
2588 {
2589 	char *buf;
2590 	int alloc;
2591 
2592 	mutex_enter(&src->v_lock);
2593 	if (src->v_path == NULL) {
2594 		mutex_exit(&src->v_lock);
2595 		return;
2596 	}
2597 	alloc = strlen(src->v_path) + 1;
2598 
2599 	/* avoid kmem_alloc() with lock held */
2600 	mutex_exit(&src->v_lock);
2601 	buf = kmem_alloc(alloc, KM_SLEEP);
2602 	mutex_enter(&src->v_lock);
2603 	if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) {
2604 		mutex_exit(&src->v_lock);
2605 		kmem_free(buf, alloc);
2606 		return;
2607 	}
2608 	bcopy(src->v_path, buf, alloc);
2609 	mutex_exit(&src->v_lock);
2610 
2611 	mutex_enter(&dst->v_lock);
2612 	if (dst->v_path != NULL) {
2613 		mutex_exit(&dst->v_lock);
2614 		kmem_free(buf, alloc);
2615 		return;
2616 	}
2617 	dst->v_path = buf;
2618 	mutex_exit(&dst->v_lock);
2619 }
2620 
2621 /*
2622  * XXX Private interface for segvn routines that handle vnode
2623  * large page segments.
2624  *
2625  * return 1 if vp's file system VOP_PAGEIO() implementation
2626  * can be safely used instead of VOP_GETPAGE() for handling
2627  * pagefaults against regular non swap files. VOP_PAGEIO()
2628  * interface is considered safe here if its implementation
2629  * is very close to VOP_GETPAGE() implementation.
2630  * e.g. It zero's out the part of the page beyond EOF. Doesn't
2631  * panic if there're file holes but instead returns an error.
2632  * Doesn't assume file won't be changed by user writes, etc.
2633  *
2634  * return 0 otherwise.
2635  *
2636  * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs.
2637  */
2638 int
2639 vn_vmpss_usepageio(vnode_t *vp)
2640 {
2641 	vfs_t   *vfsp = vp->v_vfsp;
2642 	char *fsname = vfssw[vfsp->vfs_fstype].vsw_name;
2643 	char *pageio_ok_fss[] = {"ufs", "nfs", NULL};
2644 	char **fsok = pageio_ok_fss;
2645 
2646 	if (fsname == NULL) {
2647 		return (0);
2648 	}
2649 
2650 	for (; *fsok; fsok++) {
2651 		if (strcmp(*fsok, fsname) == 0) {
2652 			return (1);
2653 		}
2654 	}
2655 	return (0);
2656 }
2657 
2658 /* VOP_XXX() macros call the corresponding fop_xxx() function */
2659 
2660 int
2661 fop_open(
2662 	vnode_t **vpp,
2663 	int mode,
2664 	cred_t *cr)
2665 {
2666 	int ret;
2667 	vnode_t *vp = *vpp;
2668 
2669 	VN_HOLD(vp);
2670 	/*
2671 	 * Adding to the vnode counts before calling open
2672 	 * avoids the need for a mutex. It circumvents a race
2673 	 * condition where a query made on the vnode counts results in a
2674 	 * false negative. The inquirer goes away believing the file is
2675 	 * not open when there is an open on the file already under way.
2676 	 *
2677 	 * The counts are meant to prevent NFS from granting a delegation
2678 	 * when it would be dangerous to do so.
2679 	 *
2680 	 * The vnode counts are only kept on regular files
2681 	 */
2682 	if ((*vpp)->v_type == VREG) {
2683 		if (mode & FREAD)
2684 			atomic_add_32(&((*vpp)->v_rdcnt), 1);
2685 		if (mode & FWRITE)
2686 			atomic_add_32(&((*vpp)->v_wrcnt), 1);
2687 	}
2688 
2689 	ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr);
2690 
2691 	if (ret) {
2692 		/*
2693 		 * Use the saved vp just in case the vnode ptr got trashed
2694 		 * by the error.
2695 		 */
2696 		VOPSTATS_UPDATE(vp, nopen);
2697 		if ((vp->v_type == VREG) && (mode & FREAD))
2698 			atomic_add_32(&(vp->v_rdcnt), -1);
2699 		if ((vp->v_type == VREG) && (mode & FWRITE))
2700 			atomic_add_32(&(vp->v_wrcnt), -1);
2701 	} else {
2702 		/*
2703 		 * Some filesystems will return a different vnode,
2704 		 * but the same path was still used to open it.
2705 		 * So if we do change the vnode and need to
2706 		 * copy over the path, do so here, rather than special
2707 		 * casing each filesystem. Adjust the vnode counts to
2708 		 * reflect the vnode switch.
2709 		 */
2710 		VOPSTATS_UPDATE(*vpp, nopen);
2711 		if (*vpp != vp && *vpp != NULL) {
2712 			vn_copypath(vp, *vpp);
2713 			if (((*vpp)->v_type == VREG) && (mode & FREAD))
2714 				atomic_add_32(&((*vpp)->v_rdcnt), 1);
2715 			if ((vp->v_type == VREG) && (mode & FREAD))
2716 				atomic_add_32(&(vp->v_rdcnt), -1);
2717 			if (((*vpp)->v_type == VREG) && (mode & FWRITE))
2718 				atomic_add_32(&((*vpp)->v_wrcnt), 1);
2719 			if ((vp->v_type == VREG) && (mode & FWRITE))
2720 				atomic_add_32(&(vp->v_wrcnt), -1);
2721 		}
2722 	}
2723 	VN_RELE(vp);
2724 	return (ret);
2725 }
2726 
2727 int
2728 fop_close(
2729 	vnode_t *vp,
2730 	int flag,
2731 	int count,
2732 	offset_t offset,
2733 	cred_t *cr)
2734 {
2735 	int err;
2736 
2737 	err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr);
2738 	VOPSTATS_UPDATE(vp, nclose);
2739 	/*
2740 	 * Check passed in count to handle possible dups. Vnode counts are only
2741 	 * kept on regular files
2742 	 */
2743 	if ((vp->v_type == VREG) && (count == 1))  {
2744 		if (flag & FREAD) {
2745 			ASSERT(vp->v_rdcnt > 0);
2746 			atomic_add_32(&(vp->v_rdcnt), -1);
2747 		}
2748 		if (flag & FWRITE) {
2749 			ASSERT(vp->v_wrcnt > 0);
2750 			atomic_add_32(&(vp->v_wrcnt), -1);
2751 		}
2752 	}
2753 	return (err);
2754 }
2755 
2756 int
2757 fop_read(
2758 	vnode_t *vp,
2759 	uio_t *uiop,
2760 	int ioflag,
2761 	cred_t *cr,
2762 	struct caller_context *ct)
2763 {
2764 	int	err;
2765 	ssize_t	resid_start = uiop->uio_resid;
2766 
2767 	err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct);
2768 	VOPSTATS_UPDATE_IO(vp, nread,
2769 	    read_bytes, (resid_start - uiop->uio_resid));
2770 	return (err);
2771 }
2772 
2773 int
2774 fop_write(
2775 	vnode_t *vp,
2776 	uio_t *uiop,
2777 	int ioflag,
2778 	cred_t *cr,
2779 	struct caller_context *ct)
2780 {
2781 	int	err;
2782 	ssize_t	resid_start = uiop->uio_resid;
2783 
2784 	err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct);
2785 	VOPSTATS_UPDATE_IO(vp, nwrite,
2786 	    write_bytes, (resid_start - uiop->uio_resid));
2787 	return (err);
2788 }
2789 
2790 int
2791 fop_ioctl(
2792 	vnode_t *vp,
2793 	int cmd,
2794 	intptr_t arg,
2795 	int flag,
2796 	cred_t *cr,
2797 	int *rvalp)
2798 {
2799 	int	err;
2800 
2801 	err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp);
2802 	VOPSTATS_UPDATE(vp, nioctl);
2803 	return (err);
2804 }
2805 
2806 int
2807 fop_setfl(
2808 	vnode_t *vp,
2809 	int oflags,
2810 	int nflags,
2811 	cred_t *cr)
2812 {
2813 	int	err;
2814 
2815 	err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr);
2816 	VOPSTATS_UPDATE(vp, nsetfl);
2817 	return (err);
2818 }
2819 
2820 int
2821 fop_getattr(
2822 	vnode_t *vp,
2823 	vattr_t *vap,
2824 	int flags,
2825 	cred_t *cr)
2826 {
2827 	int	err;
2828 
2829 	err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr);
2830 	VOPSTATS_UPDATE(vp, ngetattr);
2831 	return (err);
2832 }
2833 
2834 int
2835 fop_setattr(
2836 	vnode_t *vp,
2837 	vattr_t *vap,
2838 	int flags,
2839 	cred_t *cr,
2840 	caller_context_t *ct)
2841 {
2842 	int	err;
2843 
2844 	err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct);
2845 	VOPSTATS_UPDATE(vp, nsetattr);
2846 	return (err);
2847 }
2848 
2849 int
2850 fop_access(
2851 	vnode_t *vp,
2852 	int mode,
2853 	int flags,
2854 	cred_t *cr)
2855 {
2856 	int	err;
2857 
2858 	err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr);
2859 	VOPSTATS_UPDATE(vp, naccess);
2860 	return (err);
2861 }
2862 
2863 int
2864 fop_lookup(
2865 	vnode_t *dvp,
2866 	char *nm,
2867 	vnode_t **vpp,
2868 	pathname_t *pnp,
2869 	int flags,
2870 	vnode_t *rdir,
2871 	cred_t *cr)
2872 {
2873 	int ret;
2874 
2875 	ret = (*(dvp)->v_op->vop_lookup)(dvp, nm, vpp, pnp, flags, rdir, cr);
2876 	if (ret == 0 && *vpp) {
2877 		VOPSTATS_UPDATE(*vpp, nlookup);
2878 		if ((*vpp)->v_path == NULL) {
2879 			vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm));
2880 		}
2881 	}
2882 
2883 	return (ret);
2884 }
2885 
2886 int
2887 fop_create(
2888 	vnode_t *dvp,
2889 	char *name,
2890 	vattr_t *vap,
2891 	vcexcl_t excl,
2892 	int mode,
2893 	vnode_t **vpp,
2894 	cred_t *cr,
2895 	int flag)
2896 {
2897 	int ret;
2898 
2899 	ret = (*(dvp)->v_op->vop_create)
2900 				(dvp, name, vap, excl, mode, vpp, cr, flag);
2901 	if (ret == 0 && *vpp) {
2902 		VOPSTATS_UPDATE(*vpp, ncreate);
2903 		if ((*vpp)->v_path == NULL) {
2904 			vn_setpath(rootdir, dvp, *vpp, name, strlen(name));
2905 		}
2906 	}
2907 
2908 	return (ret);
2909 }
2910 
2911 int
2912 fop_remove(
2913 	vnode_t *dvp,
2914 	char *nm,
2915 	cred_t *cr)
2916 {
2917 	int	err;
2918 
2919 	err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr);
2920 	VOPSTATS_UPDATE(dvp, nremove);
2921 	return (err);
2922 }
2923 
2924 int
2925 fop_link(
2926 	vnode_t *tdvp,
2927 	vnode_t *svp,
2928 	char *tnm,
2929 	cred_t *cr)
2930 {
2931 	int	err;
2932 
2933 	err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr);
2934 	VOPSTATS_UPDATE(tdvp, nlink);
2935 	return (err);
2936 }
2937 
2938 int
2939 fop_rename(
2940 	vnode_t *sdvp,
2941 	char *snm,
2942 	vnode_t *tdvp,
2943 	char *tnm,
2944 	cred_t *cr)
2945 {
2946 	int	err;
2947 
2948 	err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr);
2949 	VOPSTATS_UPDATE(sdvp, nrename);
2950 	return (err);
2951 }
2952 
2953 int
2954 fop_mkdir(
2955 	vnode_t *dvp,
2956 	char *dirname,
2957 	vattr_t *vap,
2958 	vnode_t **vpp,
2959 	cred_t *cr)
2960 {
2961 	int ret;
2962 
2963 	ret = (*(dvp)->v_op->vop_mkdir)(dvp, dirname, vap, vpp, cr);
2964 	if (ret == 0 && *vpp) {
2965 		VOPSTATS_UPDATE(*vpp, nmkdir);
2966 		if ((*vpp)->v_path == NULL) {
2967 			vn_setpath(rootdir, dvp, *vpp, dirname,
2968 			    strlen(dirname));
2969 		}
2970 	}
2971 
2972 	return (ret);
2973 }
2974 
2975 int
2976 fop_rmdir(
2977 	vnode_t *dvp,
2978 	char *nm,
2979 	vnode_t *cdir,
2980 	cred_t *cr)
2981 {
2982 	int	err;
2983 
2984 	err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr);
2985 	VOPSTATS_UPDATE(dvp, nrmdir);
2986 	return (err);
2987 }
2988 
2989 int
2990 fop_readdir(
2991 	vnode_t *vp,
2992 	uio_t *uiop,
2993 	cred_t *cr,
2994 	int *eofp)
2995 {
2996 	int	err;
2997 	ssize_t	resid_start = uiop->uio_resid;
2998 
2999 	err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp);
3000 	VOPSTATS_UPDATE_IO(vp, nreaddir,
3001 	    readdir_bytes, (resid_start - uiop->uio_resid));
3002 	return (err);
3003 }
3004 
3005 int
3006 fop_symlink(
3007 	vnode_t *dvp,
3008 	char *linkname,
3009 	vattr_t *vap,
3010 	char *target,
3011 	cred_t *cr)
3012 {
3013 	int	err;
3014 
3015 	err = (*(dvp)->v_op->vop_symlink) (dvp, linkname, vap, target, cr);
3016 	VOPSTATS_UPDATE(dvp, nsymlink);
3017 	return (err);
3018 }
3019 
3020 int
3021 fop_readlink(
3022 	vnode_t *vp,
3023 	uio_t *uiop,
3024 	cred_t *cr)
3025 {
3026 	int	err;
3027 
3028 	err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr);
3029 	VOPSTATS_UPDATE(vp, nreadlink);
3030 	return (err);
3031 }
3032 
3033 int
3034 fop_fsync(
3035 	vnode_t *vp,
3036 	int syncflag,
3037 	cred_t *cr)
3038 {
3039 	int	err;
3040 
3041 	err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr);
3042 	VOPSTATS_UPDATE(vp, nfsync);
3043 	return (err);
3044 }
3045 
3046 void
3047 fop_inactive(
3048 	vnode_t *vp,
3049 	cred_t *cr)
3050 {
3051 	/* Need to update stats before vop call since we may lose the vnode */
3052 	VOPSTATS_UPDATE(vp, ninactive);
3053 	(*(vp)->v_op->vop_inactive)(vp, cr);
3054 }
3055 
3056 int
3057 fop_fid(
3058 	vnode_t *vp,
3059 	fid_t *fidp)
3060 {
3061 	int	err;
3062 
3063 	err = (*(vp)->v_op->vop_fid)(vp, fidp);
3064 	VOPSTATS_UPDATE(vp, nfid);
3065 	return (err);
3066 }
3067 
3068 int
3069 fop_rwlock(
3070 	vnode_t *vp,
3071 	int write_lock,
3072 	caller_context_t *ct)
3073 {
3074 	int	ret;
3075 
3076 	ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct));
3077 	VOPSTATS_UPDATE(vp, nrwlock);
3078 	return (ret);
3079 }
3080 
3081 void
3082 fop_rwunlock(
3083 	vnode_t *vp,
3084 	int write_lock,
3085 	caller_context_t *ct)
3086 {
3087 	(*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct);
3088 	VOPSTATS_UPDATE(vp, nrwunlock);
3089 }
3090 
3091 int
3092 fop_seek(
3093 	vnode_t *vp,
3094 	offset_t ooff,
3095 	offset_t *noffp)
3096 {
3097 	int	err;
3098 
3099 	err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp);
3100 	VOPSTATS_UPDATE(vp, nseek);
3101 	return (err);
3102 }
3103 
3104 int
3105 fop_cmp(
3106 	vnode_t *vp1,
3107 	vnode_t *vp2)
3108 {
3109 	int	err;
3110 
3111 	err = (*(vp1)->v_op->vop_cmp)(vp1, vp2);
3112 	VOPSTATS_UPDATE(vp1, ncmp);
3113 	return (err);
3114 }
3115 
3116 int
3117 fop_frlock(
3118 	vnode_t *vp,
3119 	int cmd,
3120 	flock64_t *bfp,
3121 	int flag,
3122 	offset_t offset,
3123 	struct flk_callback *flk_cbp,
3124 	cred_t *cr)
3125 {
3126 	int	err;
3127 
3128 	err = (*(vp)->v_op->vop_frlock)
3129 				(vp, cmd, bfp, flag, offset, flk_cbp, cr);
3130 	VOPSTATS_UPDATE(vp, nfrlock);
3131 	return (err);
3132 }
3133 
3134 int
3135 fop_space(
3136 	vnode_t *vp,
3137 	int cmd,
3138 	flock64_t *bfp,
3139 	int flag,
3140 	offset_t offset,
3141 	cred_t *cr,
3142 	caller_context_t *ct)
3143 {
3144 	int	err;
3145 
3146 	err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct);
3147 	VOPSTATS_UPDATE(vp, nspace);
3148 	return (err);
3149 }
3150 
3151 int
3152 fop_realvp(
3153 	vnode_t *vp,
3154 	vnode_t **vpp)
3155 {
3156 	int	err;
3157 
3158 	err = (*(vp)->v_op->vop_realvp)(vp, vpp);
3159 	VOPSTATS_UPDATE(vp, nrealvp);
3160 	return (err);
3161 }
3162 
3163 int
3164 fop_getpage(
3165 	vnode_t *vp,
3166 	offset_t off,
3167 	size_t len,
3168 	uint_t *protp,
3169 	page_t **plarr,
3170 	size_t plsz,
3171 	struct seg *seg,
3172 	caddr_t addr,
3173 	enum seg_rw rw,
3174 	cred_t *cr)
3175 {
3176 	int	err;
3177 
3178 	err = (*(vp)->v_op->vop_getpage)
3179 			(vp, off, len, protp, plarr, plsz, seg, addr, rw, cr);
3180 	VOPSTATS_UPDATE(vp, ngetpage);
3181 	return (err);
3182 }
3183 
3184 int
3185 fop_putpage(
3186 	vnode_t *vp,
3187 	offset_t off,
3188 	size_t len,
3189 	int flags,
3190 	cred_t *cr)
3191 {
3192 	int	err;
3193 
3194 	err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr);
3195 	VOPSTATS_UPDATE(vp, nputpage);
3196 	return (err);
3197 }
3198 
3199 int
3200 fop_map(
3201 	vnode_t *vp,
3202 	offset_t off,
3203 	struct as *as,
3204 	caddr_t *addrp,
3205 	size_t len,
3206 	uchar_t prot,
3207 	uchar_t maxprot,
3208 	uint_t flags,
3209 	cred_t *cr)
3210 {
3211 	int	err;
3212 
3213 	err = (*(vp)->v_op->vop_map)
3214 			(vp, off, as, addrp, len, prot, maxprot, flags, cr);
3215 	VOPSTATS_UPDATE(vp, nmap);
3216 	return (err);
3217 }
3218 
3219 int
3220 fop_addmap(
3221 	vnode_t *vp,
3222 	offset_t off,
3223 	struct as *as,
3224 	caddr_t addr,
3225 	size_t len,
3226 	uchar_t prot,
3227 	uchar_t maxprot,
3228 	uint_t flags,
3229 	cred_t *cr)
3230 {
3231 	int error;
3232 	u_longlong_t delta;
3233 
3234 	error = (*(vp)->v_op->vop_addmap)
3235 			(vp, off, as, addr, len, prot, maxprot, flags, cr);
3236 
3237 	if ((!error) && (vp->v_type == VREG)) {
3238 		delta = (u_longlong_t)btopr(len);
3239 		/*
3240 		 * If file is declared MAP_PRIVATE, it can't be written back
3241 		 * even if open for write. Handle as read.
3242 		 */
3243 		if (flags & MAP_PRIVATE) {
3244 			atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3245 				(int64_t)delta);
3246 		} else {
3247 			/*
3248 			 * atomic_add_64 forces the fetch of a 64 bit value to
3249 			 * be atomic on 32 bit machines
3250 			 */
3251 			if (maxprot & PROT_WRITE)
3252 				atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
3253 					(int64_t)delta);
3254 			if (maxprot & PROT_READ)
3255 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3256 					(int64_t)delta);
3257 			if (maxprot & PROT_EXEC)
3258 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3259 					(int64_t)delta);
3260 		}
3261 	}
3262 	VOPSTATS_UPDATE(vp, naddmap);
3263 	return (error);
3264 }
3265 
3266 int
3267 fop_delmap(
3268 	vnode_t *vp,
3269 	offset_t off,
3270 	struct as *as,
3271 	caddr_t addr,
3272 	size_t len,
3273 	uint_t prot,
3274 	uint_t maxprot,
3275 	uint_t flags,
3276 	cred_t *cr)
3277 {
3278 	int error;
3279 	u_longlong_t delta;
3280 	error = (*(vp)->v_op->vop_delmap)
3281 		(vp, off, as, addr, len, prot, maxprot, flags, cr);
3282 
3283 	/*
3284 	 * NFS calls into delmap twice, the first time
3285 	 * it simply establishes a callback mechanism and returns EAGAIN
3286 	 * while the real work is being done upon the second invocation.
3287 	 * We have to detect this here and only decrement the counts upon
3288 	 * the second delmap request.
3289 	 */
3290 	if ((error != EAGAIN) && (vp->v_type == VREG)) {
3291 
3292 		delta = (u_longlong_t)btopr(len);
3293 
3294 		if (flags & MAP_PRIVATE) {
3295 			atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3296 				(int64_t)(-delta));
3297 		} else {
3298 			/*
3299 			 * atomic_add_64 forces the fetch of a 64 bit value
3300 			 * to be atomic on 32 bit machines
3301 			 */
3302 			if (maxprot & PROT_WRITE)
3303 				atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
3304 					(int64_t)(-delta));
3305 			if (maxprot & PROT_READ)
3306 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3307 					(int64_t)(-delta));
3308 			if (maxprot & PROT_EXEC)
3309 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3310 					(int64_t)(-delta));
3311 		}
3312 	}
3313 	VOPSTATS_UPDATE(vp, ndelmap);
3314 	return (error);
3315 }
3316 
3317 
3318 int
3319 fop_poll(
3320 	vnode_t *vp,
3321 	short events,
3322 	int anyyet,
3323 	short *reventsp,
3324 	struct pollhead **phpp)
3325 {
3326 	int	err;
3327 
3328 	err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp);
3329 	VOPSTATS_UPDATE(vp, npoll);
3330 	return (err);
3331 }
3332 
3333 int
3334 fop_dump(
3335 	vnode_t *vp,
3336 	caddr_t addr,
3337 	int lbdn,
3338 	int dblks)
3339 {
3340 	int	err;
3341 
3342 	err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks);
3343 	VOPSTATS_UPDATE(vp, ndump);
3344 	return (err);
3345 }
3346 
3347 int
3348 fop_pathconf(
3349 	vnode_t *vp,
3350 	int cmd,
3351 	ulong_t *valp,
3352 	cred_t *cr)
3353 {
3354 	int	err;
3355 
3356 	err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr);
3357 	VOPSTATS_UPDATE(vp, npathconf);
3358 	return (err);
3359 }
3360 
3361 int
3362 fop_pageio(
3363 	vnode_t *vp,
3364 	struct page *pp,
3365 	u_offset_t io_off,
3366 	size_t io_len,
3367 	int flags,
3368 	cred_t *cr)
3369 {
3370 	int	err;
3371 
3372 	err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr);
3373 	VOPSTATS_UPDATE(vp, npageio);
3374 	return (err);
3375 }
3376 
3377 int
3378 fop_dumpctl(
3379 	vnode_t *vp,
3380 	int action,
3381 	int *blkp)
3382 {
3383 	int	err;
3384 	err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp);
3385 	VOPSTATS_UPDATE(vp, ndumpctl);
3386 	return (err);
3387 }
3388 
3389 void
3390 fop_dispose(
3391 	vnode_t *vp,
3392 	page_t *pp,
3393 	int flag,
3394 	int dn,
3395 	cred_t *cr)
3396 {
3397 	/* Must do stats first since it's possible to lose the vnode */
3398 	VOPSTATS_UPDATE(vp, ndispose);
3399 	(*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr);
3400 }
3401 
3402 int
3403 fop_setsecattr(
3404 	vnode_t *vp,
3405 	vsecattr_t *vsap,
3406 	int flag,
3407 	cred_t *cr)
3408 {
3409 	int	err;
3410 
3411 	err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr);
3412 	VOPSTATS_UPDATE(vp, nsetsecattr);
3413 	return (err);
3414 }
3415 
3416 int
3417 fop_getsecattr(
3418 	vnode_t *vp,
3419 	vsecattr_t *vsap,
3420 	int flag,
3421 	cred_t *cr)
3422 {
3423 	int	err;
3424 
3425 	err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr);
3426 	VOPSTATS_UPDATE(vp, ngetsecattr);
3427 	return (err);
3428 }
3429 
3430 int
3431 fop_shrlock(
3432 	vnode_t *vp,
3433 	int cmd,
3434 	struct shrlock *shr,
3435 	int flag,
3436 	cred_t *cr)
3437 {
3438 	int	err;
3439 
3440 	err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr);
3441 	VOPSTATS_UPDATE(vp, nshrlock);
3442 	return (err);
3443 }
3444 
3445 int
3446 fop_vnevent(vnode_t *vp, vnevent_t vnevent)
3447 {
3448 	int	err;
3449 
3450 	err = (*(vp)->v_op->vop_vnevent)(vp, vnevent);
3451 	VOPSTATS_UPDATE(vp, nvnevent);
3452 	return (err);
3453 }
3454