xref: /illumos-gate/usr/src/uts/common/fs/vfs.c (revision d6294894f9d15dfb12a0dd3a6acf8bd4a4a65408)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2019, Joyent, Inc.
25  * Copyright 2016 Toomas Soome <tsoome@me.com>
26  * Copyright (c) 2016, 2017 by Delphix. All rights reserved.
27  * Copyright 2016 Nexenta Systems, Inc.
28  * Copyright 2017 RackTop Systems.
29  */
30 
31 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
32 /*	  All Rights Reserved  	*/
33 
34 /*
35  * University Copyright- Copyright (c) 1982, 1986, 1988
36  * The Regents of the University of California
37  * All Rights Reserved
38  *
39  * University Acknowledgment- Portions of this document are derived from
40  * software developed by the University of California, Berkeley, and its
41  * contributors.
42  */
43 
44 #include <sys/types.h>
45 #include <sys/t_lock.h>
46 #include <sys/param.h>
47 #include <sys/errno.h>
48 #include <sys/user.h>
49 #include <sys/fstyp.h>
50 #include <sys/kmem.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/vfs.h>
55 #include <sys/vfs_opreg.h>
56 #include <sys/fem.h>
57 #include <sys/mntent.h>
58 #include <sys/stat.h>
59 #include <sys/statvfs.h>
60 #include <sys/statfs.h>
61 #include <sys/cred.h>
62 #include <sys/vnode.h>
63 #include <sys/rwstlock.h>
64 #include <sys/dnlc.h>
65 #include <sys/file.h>
66 #include <sys/time.h>
67 #include <sys/atomic.h>
68 #include <sys/cmn_err.h>
69 #include <sys/buf.h>
70 #include <sys/swap.h>
71 #include <sys/debug.h>
72 #include <sys/vnode.h>
73 #include <sys/modctl.h>
74 #include <sys/ddi.h>
75 #include <sys/pathname.h>
76 #include <sys/bootconf.h>
77 #include <sys/dumphdr.h>
78 #include <sys/dc_ki.h>
79 #include <sys/poll.h>
80 #include <sys/sunddi.h>
81 #include <sys/sysmacros.h>
82 #include <sys/zone.h>
83 #include <sys/policy.h>
84 #include <sys/ctfs.h>
85 #include <sys/objfs.h>
86 #include <sys/console.h>
87 #include <sys/reboot.h>
88 #include <sys/attr.h>
89 #include <sys/zio.h>
90 #include <sys/spa.h>
91 #include <sys/lofi.h>
92 #include <sys/bootprops.h>
93 
94 #include <vm/page.h>
95 
96 #include <fs/fs_subr.h>
97 /* Private interfaces to create vopstats-related data structures */
98 extern void		initialize_vopstats(vopstats_t *);
99 extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
100 extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
101 
102 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
103 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
104     const char *, int, int);
105 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
106 static void vfs_freemnttab(struct vfs *);
107 static void vfs_freeopt(mntopt_t *);
108 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
109 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
110 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
111 static void vfs_createopttbl_extend(mntopts_t *, const char *,
112     const mntopts_t *);
113 static char **vfs_copycancelopt_extend(char **const, int);
114 static void vfs_freecancelopt(char **);
115 static void getrootfs(char **, char **);
116 static int getmacpath(dev_info_t *, void *);
117 static void vfs_mnttabvp_setup(void);
118 
119 struct ipmnt {
120 	struct ipmnt	*mip_next;
121 	dev_t		mip_dev;
122 	struct vfs	*mip_vfsp;
123 };
124 
125 static kmutex_t		vfs_miplist_mutex;
126 static struct ipmnt	*vfs_miplist = NULL;
127 static struct ipmnt	*vfs_miplist_end = NULL;
128 
129 static kmem_cache_t *vfs_cache;	/* Pointer to VFS kmem cache */
130 
131 /*
132  * VFS global data.
133  */
134 vnode_t *rootdir;		/* pointer to root inode vnode. */
135 vnode_t *devicesdir;		/* pointer to inode of devices root */
136 vnode_t	*devdir;		/* pointer to inode of dev root */
137 
138 char *server_rootpath;		/* root path for diskless clients */
139 char *server_hostname;		/* hostname of diskless server */
140 
141 static struct vfs root;
142 static struct vfs devices;
143 static struct vfs dev;
144 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
145 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
146 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
147 				/* must be power of 2!	*/
148 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
149 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
150 char *vfs_dummyfstype = "\0";
151 struct pollhead vfs_pollhd;	/* for mnttab pollers */
152 struct vnode *vfs_mntdummyvp;	/* to fake mnttab read/write for file events */
153 int	mntfstype;		/* will be set once mnt fs is mounted */
154 
155 /*
156  * Table for generic options recognized in the VFS layer and acted
157  * on at this level before parsing file system specific options.
158  * The nosuid option is stronger than any of the devices and setuid
159  * options, so those are canceled when nosuid is seen.
160  *
161  * All options which are added here need to be added to the
162  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
163  */
164 /*
165  * VFS Mount options table
166  */
167 static char *ro_cancel[] = { MNTOPT_RW, NULL };
168 static char *rw_cancel[] = { MNTOPT_RO, NULL };
169 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
170 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
171     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
172 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
173 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
174 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
175 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
176 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
177 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
178 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
179 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
180 
181 static const mntopt_t mntopts[] = {
182 /*
183  *	option name		cancel options		default arg	flags
184  */
185 	{ MNTOPT_REMOUNT,	NULL,			NULL,
186 		MO_NODISPLAY, (void *)0 },
187 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
188 		(void *)0 },
189 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
190 		(void *)0 },
191 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
192 		(void *)0 },
193 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
194 		(void *)0 },
195 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
196 		(void *)0 },
197 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
198 		(void *)0 },
199 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
200 		(void *)0 },
201 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
202 		(void *)0 },
203 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
204 		(void *)0 },
205 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
206 		(void *)0 },
207 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
208 		(void *)0 },
209 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
210 		(void *)0 },
211 };
212 
213 const mntopts_t vfs_mntopts = {
214 	sizeof (mntopts) / sizeof (mntopt_t),
215 	(mntopt_t *)&mntopts[0]
216 };
217 
218 /*
219  * File system operation dispatch functions.
220  */
221 
222 int
223 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
224 {
225 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
226 }
227 
228 int
229 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
230 {
231 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
232 }
233 
234 int
235 fsop_root(vfs_t *vfsp, vnode_t **vpp)
236 {
237 	refstr_t *mntpt;
238 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
239 	/*
240 	 * Make sure this root has a path.  With lofs, it is possible to have
241 	 * a NULL mountpoint.
242 	 */
243 	if (ret == 0 && vfsp->vfs_mntpt != NULL &&
244 	    (*vpp)->v_path == vn_vpath_empty) {
245 		const char *path;
246 
247 		mntpt = vfs_getmntpoint(vfsp);
248 		path = refstr_value(mntpt);
249 		vn_setpath_str(*vpp, path, strlen(path));
250 		refstr_rele(mntpt);
251 	}
252 
253 	return (ret);
254 }
255 
256 int
257 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
258 {
259 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
260 }
261 
262 int
263 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
264 {
265 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
266 }
267 
268 int
269 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
270 {
271 	/*
272 	 * In order to handle system attribute fids in a manner
273 	 * transparent to the underlying fs, we embed the fid for
274 	 * the sysattr parent object in the sysattr fid and tack on
275 	 * some extra bytes that only the sysattr layer knows about.
276 	 *
277 	 * This guarantees that sysattr fids are larger than other fids
278 	 * for this vfs. If the vfs supports the sysattr view interface
279 	 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
280 	 * collision with XATTR_FIDSZ.
281 	 */
282 	if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
283 	    fidp->fid_len == XATTR_FIDSZ)
284 		return (xattr_dir_vget(vfsp, vpp, fidp));
285 
286 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
287 }
288 
289 int
290 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
291 {
292 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
293 }
294 
295 void
296 fsop_freefs(vfs_t *vfsp)
297 {
298 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
299 }
300 
301 int
302 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
303 {
304 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
305 }
306 
307 int
308 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
309 {
310 	ASSERT((fstype >= 0) && (fstype < nfstype));
311 
312 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
313 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
314 	else
315 		return (ENOTSUP);
316 }
317 
318 /*
319  * File system initialization.  vfs_setfsops() must be called from a file
320  * system's init routine.
321  */
322 
323 static int
324 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
325     int *unused_ops)
326 {
327 	static const fs_operation_trans_def_t vfs_ops_table[] = {
328 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
329 			fs_nosys, fs_nosys,
330 
331 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
332 			fs_nosys, fs_nosys,
333 
334 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
335 			fs_nosys, fs_nosys,
336 
337 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
338 			fs_nosys, fs_nosys,
339 
340 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
341 			(fs_generic_func_p) fs_sync,
342 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
343 
344 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
345 			fs_nosys, fs_nosys,
346 
347 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
348 			fs_nosys, fs_nosys,
349 
350 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
351 			(fs_generic_func_p)fs_freevfs,
352 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
353 
354 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
355 			(fs_generic_func_p)fs_nosys,
356 			(fs_generic_func_p)fs_nosys,
357 
358 		NULL, 0, NULL, NULL
359 	};
360 
361 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
362 }
363 
364 void
365 zfs_boot_init(void)
366 {
367 	if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
368 		spa_boot_init();
369 }
370 
371 int
372 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
373 {
374 	int error;
375 	int unused_ops;
376 
377 	/*
378 	 * Verify that fstype refers to a valid fs.  Note that
379 	 * 0 is valid since it's used to set "stray" ops.
380 	 */
381 	if ((fstype < 0) || (fstype >= nfstype))
382 		return (EINVAL);
383 
384 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
385 		return (EINVAL);
386 
387 	/* Set up the operations vector. */
388 
389 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
390 
391 	if (error != 0)
392 		return (error);
393 
394 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
395 
396 	if (actual != NULL)
397 		*actual = &vfssw[fstype].vsw_vfsops;
398 
399 #if DEBUG
400 	if (unused_ops != 0)
401 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
402 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
403 #endif
404 
405 	return (0);
406 }
407 
408 int
409 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
410 {
411 	int error;
412 	int unused_ops;
413 
414 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
415 
416 	error = fs_copyfsops(template, *actual, &unused_ops);
417 	if (error != 0) {
418 		kmem_free(*actual, sizeof (vfsops_t));
419 		*actual = NULL;
420 		return (error);
421 	}
422 
423 	return (0);
424 }
425 
426 /*
427  * Free a vfsops structure created as a result of vfs_makefsops().
428  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
429  * vfs_freevfsops_by_type().
430  */
431 void
432 vfs_freevfsops(vfsops_t *vfsops)
433 {
434 	kmem_free(vfsops, sizeof (vfsops_t));
435 }
436 
437 /*
438  * Since the vfsops structure is part of the vfssw table and wasn't
439  * really allocated, we're not really freeing anything.  We keep
440  * the name for consistency with vfs_freevfsops().  We do, however,
441  * need to take care of a little bookkeeping.
442  * NOTE: For a vfsops structure created by vfs_setfsops(), use
443  * vfs_freevfsops_by_type().
444  */
445 int
446 vfs_freevfsops_by_type(int fstype)
447 {
448 
449 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
450 	if ((fstype <= 0) || (fstype >= nfstype))
451 		return (EINVAL);
452 
453 	WLOCK_VFSSW();
454 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
455 		WUNLOCK_VFSSW();
456 		return (EINVAL);
457 	}
458 
459 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
460 	WUNLOCK_VFSSW();
461 
462 	return (0);
463 }
464 
465 /* Support routines used to reference vfs_op */
466 
467 /* Set the operations vector for a vfs */
468 void
469 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
470 {
471 	vfsops_t	*op;
472 
473 	ASSERT(vfsp != NULL);
474 	ASSERT(vfsops != NULL);
475 
476 	op = vfsp->vfs_op;
477 	membar_consumer();
478 	if (vfsp->vfs_femhead == NULL &&
479 	    atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
480 		return;
481 	}
482 	fsem_setvfsops(vfsp, vfsops);
483 }
484 
485 /* Retrieve the operations vector for a vfs */
486 vfsops_t *
487 vfs_getops(vfs_t *vfsp)
488 {
489 	vfsops_t	*op;
490 
491 	ASSERT(vfsp != NULL);
492 
493 	op = vfsp->vfs_op;
494 	membar_consumer();
495 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
496 		return (op);
497 	} else {
498 		return (fsem_getvfsops(vfsp));
499 	}
500 }
501 
502 /*
503  * Returns non-zero (1) if the vfsops matches that of the vfs.
504  * Returns zero (0) if not.
505  */
506 int
507 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
508 {
509 	return (vfs_getops(vfsp) == vfsops);
510 }
511 
512 /*
513  * Returns non-zero (1) if the file system has installed a non-default,
514  * non-error vfs_sync routine.  Returns zero (0) otherwise.
515  */
516 int
517 vfs_can_sync(vfs_t *vfsp)
518 {
519 	/* vfs_sync() routine is not the default/error function */
520 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
521 }
522 
523 /*
524  * Initialize a vfs structure.
525  */
526 void
527 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
528 {
529 	/* Other initialization has been moved to vfs_alloc() */
530 	vfsp->vfs_count = 0;
531 	vfsp->vfs_next = vfsp;
532 	vfsp->vfs_prev = vfsp;
533 	vfsp->vfs_zone_next = vfsp;
534 	vfsp->vfs_zone_prev = vfsp;
535 	vfsp->vfs_lofi_id = 0;
536 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
537 	vfsimpl_setup(vfsp);
538 	vfsp->vfs_data = (data);
539 	vfs_setops((vfsp), (op));
540 }
541 
542 /*
543  * Allocate and initialize the vfs implementation private data
544  * structure, vfs_impl_t.
545  */
546 void
547 vfsimpl_setup(vfs_t *vfsp)
548 {
549 	int i;
550 
551 	if (vfsp->vfs_implp != NULL) {
552 		return;
553 	}
554 
555 	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
556 	/* Note that these are #define'd in vfs.h */
557 	vfsp->vfs_vskap = NULL;
558 	vfsp->vfs_fstypevsp = NULL;
559 
560 	/* Set size of counted array, then zero the array */
561 	vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
562 	for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
563 		vfsp->vfs_featureset[i] = 0;
564 	}
565 }
566 
567 /*
568  * Release the vfs_impl_t structure, if it exists. Some unbundled
569  * filesystems may not use the newer version of vfs and thus
570  * would not contain this implementation private data structure.
571  */
572 void
573 vfsimpl_teardown(vfs_t *vfsp)
574 {
575 	vfs_impl_t	*vip = vfsp->vfs_implp;
576 
577 	if (vip == NULL)
578 		return;
579 
580 	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
581 	vfsp->vfs_implp = NULL;
582 }
583 
584 /*
585  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
586  * fstatvfs, and sysfs moved to common/syscall.
587  */
588 
589 /*
590  * Update every mounted file system.  We call the vfs_sync operation of
591  * each file system type, passing it a NULL vfsp to indicate that all
592  * mounted file systems of that type should be updated.
593  */
594 void
595 vfs_sync(int flag)
596 {
597 	struct vfssw *vswp;
598 	RLOCK_VFSSW();
599 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
600 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
601 			vfs_refvfssw(vswp);
602 			RUNLOCK_VFSSW();
603 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
604 			    CRED());
605 			vfs_unrefvfssw(vswp);
606 			RLOCK_VFSSW();
607 		}
608 	}
609 	RUNLOCK_VFSSW();
610 }
611 
612 void
613 sync(void)
614 {
615 	vfs_sync(0);
616 }
617 
618 /*
619  * External routines.
620  */
621 
622 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
623 
624 /*
625  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
626  * but otherwise should be accessed only via vfs_list_lock() and
627  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
628  */
629 static krwlock_t vfslist;
630 
631 /*
632  * Mount devfs on /devices. This is done right after root is mounted
633  * to provide device access support for the system
634  */
635 static void
636 vfs_mountdevices(void)
637 {
638 	struct vfssw *vsw;
639 	struct vnode *mvp;
640 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
641 		NULL,
642 		NULL,
643 		MS_SYSSPACE,
644 		NULL,
645 		NULL,
646 		0,
647 		NULL,
648 		0
649 	};
650 
651 	/*
652 	 * _init devfs module to fill in the vfssw
653 	 */
654 	if (modload("fs", "devfs") == -1)
655 		panic("Cannot _init devfs module");
656 
657 	/*
658 	 * Hold vfs
659 	 */
660 	RLOCK_VFSSW();
661 	vsw = vfs_getvfsswbyname("devfs");
662 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
663 	VFS_HOLD(&devices);
664 
665 	/*
666 	 * Locate mount point
667 	 */
668 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
669 		panic("Cannot find /devices");
670 
671 	/*
672 	 * Perform the mount of /devices
673 	 */
674 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
675 		panic("Cannot mount /devices");
676 
677 	RUNLOCK_VFSSW();
678 
679 	/*
680 	 * Set appropriate members and add to vfs list for mnttab display
681 	 */
682 	vfs_setresource(&devices, "/devices", 0);
683 	vfs_setmntpoint(&devices, "/devices", 0);
684 
685 	/*
686 	 * Hold the root of /devices so it won't go away
687 	 */
688 	if (VFS_ROOT(&devices, &devicesdir))
689 		panic("vfs_mountdevices: not devices root");
690 
691 	if (vfs_lock(&devices) != 0) {
692 		VN_RELE(devicesdir);
693 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
694 		return;
695 	}
696 
697 	if (vn_vfswlock(mvp) != 0) {
698 		vfs_unlock(&devices);
699 		VN_RELE(devicesdir);
700 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
701 		return;
702 	}
703 
704 	vfs_add(mvp, &devices, 0);
705 	vn_vfsunlock(mvp);
706 	vfs_unlock(&devices);
707 	VN_RELE(devicesdir);
708 }
709 
710 /*
711  * mount the first instance of /dev  to root and remain mounted
712  */
713 static void
714 vfs_mountdev1(void)
715 {
716 	struct vfssw *vsw;
717 	struct vnode *mvp;
718 	struct mounta mounta = {	/* fake mounta for sdev_mount() */
719 		NULL,
720 		NULL,
721 		MS_SYSSPACE | MS_OVERLAY,
722 		NULL,
723 		NULL,
724 		0,
725 		NULL,
726 		0
727 	};
728 
729 	/*
730 	 * _init dev module to fill in the vfssw
731 	 */
732 	if (modload("fs", "dev") == -1)
733 		cmn_err(CE_PANIC, "Cannot _init dev module\n");
734 
735 	/*
736 	 * Hold vfs
737 	 */
738 	RLOCK_VFSSW();
739 	vsw = vfs_getvfsswbyname("dev");
740 	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
741 	VFS_HOLD(&dev);
742 
743 	/*
744 	 * Locate mount point
745 	 */
746 	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
747 		cmn_err(CE_PANIC, "Cannot find /dev\n");
748 
749 	/*
750 	 * Perform the mount of /dev
751 	 */
752 	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
753 		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
754 
755 	RUNLOCK_VFSSW();
756 
757 	/*
758 	 * Set appropriate members and add to vfs list for mnttab display
759 	 */
760 	vfs_setresource(&dev, "/dev", 0);
761 	vfs_setmntpoint(&dev, "/dev", 0);
762 
763 	/*
764 	 * Hold the root of /dev so it won't go away
765 	 */
766 	if (VFS_ROOT(&dev, &devdir))
767 		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
768 
769 	if (vfs_lock(&dev) != 0) {
770 		VN_RELE(devdir);
771 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
772 		return;
773 	}
774 
775 	if (vn_vfswlock(mvp) != 0) {
776 		vfs_unlock(&dev);
777 		VN_RELE(devdir);
778 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
779 		return;
780 	}
781 
782 	vfs_add(mvp, &dev, 0);
783 	vn_vfsunlock(mvp);
784 	vfs_unlock(&dev);
785 	VN_RELE(devdir);
786 }
787 
788 /*
789  * Mount required filesystem. This is done right after root is mounted.
790  */
791 static void
792 vfs_mountfs(char *module, char *spec, char *path)
793 {
794 	struct vnode *mvp;
795 	struct mounta mounta;
796 	vfs_t *vfsp;
797 
798 	bzero(&mounta, sizeof (mounta));
799 	mounta.flags = MS_SYSSPACE | MS_DATA;
800 	mounta.fstype = module;
801 	mounta.spec = spec;
802 	mounta.dir = path;
803 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
804 		cmn_err(CE_WARN, "Cannot find %s", path);
805 		return;
806 	}
807 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
808 		cmn_err(CE_WARN, "Cannot mount %s", path);
809 	else
810 		VFS_RELE(vfsp);
811 	VN_RELE(mvp);
812 }
813 
814 /*
815  * vfs_mountroot is called by main() to mount the root filesystem.
816  */
817 void
818 vfs_mountroot(void)
819 {
820 	struct vnode	*rvp = NULL;
821 	char		*path;
822 	size_t		plen;
823 	struct vfssw	*vswp;
824 	proc_t		*p;
825 
826 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
827 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
828 
829 	/*
830 	 * Alloc the vfs hash bucket array and locks
831 	 */
832 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
833 
834 	/*
835 	 * Call machine-dependent routine "rootconf" to choose a root
836 	 * file system type.
837 	 */
838 	if (rootconf())
839 		panic("vfs_mountroot: cannot mount root");
840 	/*
841 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
842 	 * to point to it.  These are used by lookuppn() so that it
843 	 * knows where to start from ('/' or '.').
844 	 */
845 	vfs_setmntpoint(rootvfs, "/", 0);
846 	if (VFS_ROOT(rootvfs, &rootdir))
847 		panic("vfs_mountroot: no root vnode");
848 
849 	/*
850 	 * At this point, the process tree consists of p0 and possibly some
851 	 * direct children of p0.  (i.e. there are no grandchildren)
852 	 *
853 	 * Walk through them all, setting their current directory.
854 	 */
855 	mutex_enter(&pidlock);
856 	for (p = practive; p != NULL; p = p->p_next) {
857 		ASSERT(p == &p0 || p->p_parent == &p0);
858 
859 		PTOU(p)->u_cdir = rootdir;
860 		VN_HOLD(PTOU(p)->u_cdir);
861 		PTOU(p)->u_rdir = NULL;
862 	}
863 	mutex_exit(&pidlock);
864 
865 	/*
866 	 * Setup the global zone's rootvp, now that it exists.
867 	 */
868 	global_zone->zone_rootvp = rootdir;
869 	VN_HOLD(global_zone->zone_rootvp);
870 
871 	/*
872 	 * Notify the module code that it can begin using the
873 	 * root filesystem instead of the boot program's services.
874 	 */
875 	modrootloaded = 1;
876 
877 	/*
878 	 * Special handling for a ZFS root file system.
879 	 */
880 	zfs_boot_init();
881 
882 	/*
883 	 * Set up mnttab information for root
884 	 */
885 	vfs_setresource(rootvfs, rootfs.bo_name, 0);
886 
887 	/*
888 	 * Notify cluster software that the root filesystem is available.
889 	 */
890 	clboot_mountroot();
891 
892 	/* Now that we're all done with the root FS, set up its vopstats */
893 	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
894 		/* Set flag for statistics collection */
895 		if (vswp->vsw_flag & VSW_STATS) {
896 			initialize_vopstats(&rootvfs->vfs_vopstats);
897 			rootvfs->vfs_flag |= VFS_STATS;
898 			rootvfs->vfs_fstypevsp =
899 			    get_fstype_vopstats(rootvfs, vswp);
900 			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
901 		}
902 		vfs_unrefvfssw(vswp);
903 	}
904 
905 	/*
906 	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
907 	 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
908 	 */
909 	vfs_mountdevices();
910 	vfs_mountdev1();
911 
912 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
913 	vfs_mountfs("proc", "/proc", "/proc");
914 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
915 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
916 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
917 	vfs_mountfs("bootfs", "bootfs", "/system/boot");
918 
919 	if (getzoneid() == GLOBAL_ZONEID) {
920 		vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
921 	}
922 
923 	if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
924 		/*
925 		 * Look up the root device via devfs so that a dv_node is
926 		 * created for it. The vnode is never VN_RELE()ed.
927 		 * We allocate more than MAXPATHLEN so that the
928 		 * buffer passed to i_ddi_prompath_to_devfspath() is
929 		 * exactly MAXPATHLEN (the function expects a buffer
930 		 * of that length).
931 		 */
932 		plen = strlen("/devices");
933 		path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
934 		(void) strcpy(path, "/devices");
935 
936 		if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
937 		    != DDI_SUCCESS ||
938 		    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
939 
940 			/* NUL terminate in case "path" has garbage */
941 			path[plen + MAXPATHLEN - 1] = '\0';
942 #ifdef	DEBUG
943 			cmn_err(CE_WARN, "!Cannot lookup root device: %s",
944 			    path);
945 #endif
946 		}
947 		kmem_free(path, plen + MAXPATHLEN);
948 	}
949 
950 	vfs_mnttabvp_setup();
951 }
952 
953 /*
954  * Check to see if our "block device" is actually a file.  If so,
955  * automatically add a lofi device, and keep track of this fact.
956  */
957 static int
958 lofi_add(const char *fsname, struct vfs *vfsp,
959     mntopts_t *mntopts, struct mounta *uap)
960 {
961 	int fromspace = (uap->flags & MS_SYSSPACE) ?
962 	    UIO_SYSSPACE : UIO_USERSPACE;
963 	struct lofi_ioctl *li = NULL;
964 	struct vnode *vp = NULL;
965 	struct pathname	pn = { NULL };
966 	ldi_ident_t ldi_id;
967 	ldi_handle_t ldi_hdl;
968 	vfssw_t *vfssw;
969 	int id;
970 	int err = 0;
971 
972 	if ((vfssw = vfs_getvfssw(fsname)) == NULL)
973 		return (0);
974 
975 	if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
976 		vfs_unrefvfssw(vfssw);
977 		return (0);
978 	}
979 
980 	vfs_unrefvfssw(vfssw);
981 	vfssw = NULL;
982 
983 	if (pn_get(uap->spec, fromspace, &pn) != 0)
984 		return (0);
985 
986 	if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
987 		goto out;
988 
989 	if (vp->v_type != VREG)
990 		goto out;
991 
992 	/* OK, this is a lofi mount. */
993 
994 	if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
995 	    vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
996 	    vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
997 	    vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
998 		err = EINVAL;
999 		goto out;
1000 	}
1001 
1002 	ldi_id = ldi_ident_from_anon();
1003 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1004 	(void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1005 
1006 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1007 	    &ldi_hdl, ldi_id);
1008 
1009 	if (err)
1010 		goto out2;
1011 
1012 	err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1013 	    FREAD | FWRITE | FKIOCTL, kcred, &id);
1014 
1015 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1016 
1017 	if (!err)
1018 		vfsp->vfs_lofi_id = id;
1019 
1020 out2:
1021 	ldi_ident_release(ldi_id);
1022 out:
1023 	if (li != NULL)
1024 		kmem_free(li, sizeof (*li));
1025 	if (vp != NULL)
1026 		VN_RELE(vp);
1027 	pn_free(&pn);
1028 	return (err);
1029 }
1030 
1031 static void
1032 lofi_remove(struct vfs *vfsp)
1033 {
1034 	struct lofi_ioctl *li;
1035 	ldi_ident_t ldi_id;
1036 	ldi_handle_t ldi_hdl;
1037 	int err;
1038 
1039 	if (vfsp->vfs_lofi_id == 0)
1040 		return;
1041 
1042 	ldi_id = ldi_ident_from_anon();
1043 
1044 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1045 	li->li_id = vfsp->vfs_lofi_id;
1046 	li->li_cleanup = B_TRUE;
1047 
1048 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1049 	    &ldi_hdl, ldi_id);
1050 
1051 	if (err)
1052 		goto out;
1053 
1054 	err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1055 	    FREAD | FWRITE | FKIOCTL, kcred, NULL);
1056 
1057 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1058 
1059 	if (!err)
1060 		vfsp->vfs_lofi_id = 0;
1061 
1062 out:
1063 	ldi_ident_release(ldi_id);
1064 	kmem_free(li, sizeof (*li));
1065 }
1066 
1067 /*
1068  * Common mount code.  Called from the system call entry point, from autofs,
1069  * nfsv4 trigger mounts, and from pxfs.
1070  *
1071  * Takes the effective file system type, mount arguments, the mount point
1072  * vnode, flags specifying whether the mount is a remount and whether it
1073  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1074  * parameter with the mounted file system instance's vfs.
1075  *
1076  * Note that the effective file system type is specified as a string.  It may
1077  * be null, in which case it's determined from the mount arguments, and may
1078  * differ from the type specified in the mount arguments; this is a hook to
1079  * allow interposition when instantiating file system instances.
1080  *
1081  * The caller is responsible for releasing its own hold on the mount point
1082  * vp (this routine does its own hold when necessary).
1083  * Also note that for remounts, the mount point vp should be the vnode for
1084  * the root of the file system rather than the vnode that the file system
1085  * is mounted on top of.
1086  */
1087 int
1088 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1089     struct vfs **vfspp)
1090 {
1091 	struct vfssw	*vswp;
1092 	vfsops_t	*vfsops;
1093 	struct vfs	*vfsp;
1094 	struct vnode	*bvp;
1095 	dev_t		bdev = 0;
1096 	mntopts_t	mnt_mntopts;
1097 	int		error = 0;
1098 	int		copyout_error = 0;
1099 	int		ovflags;
1100 	char		*opts = uap->optptr;
1101 	char		*inargs = opts;
1102 	int		optlen = uap->optlen;
1103 	int		remount;
1104 	int		rdonly;
1105 	int		nbmand = 0;
1106 	int		delmip = 0;
1107 	int		addmip = 0;
1108 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
1109 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
1110 	    UIO_SYSSPACE : UIO_USERSPACE;
1111 	char		*resource = NULL, *mountpt = NULL;
1112 	refstr_t	*oldresource, *oldmntpt;
1113 	struct pathname	pn, rpn;
1114 	vsk_anchor_t	*vskap;
1115 	char fstname[FSTYPSZ];
1116 	zone_t		*zone;
1117 
1118 	/*
1119 	 * The v_flag value for the mount point vp is permanently set
1120 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1121 	 * for mount point locking.
1122 	 */
1123 	mutex_enter(&vp->v_lock);
1124 	vp->v_flag |= VVFSLOCK;
1125 	mutex_exit(&vp->v_lock);
1126 
1127 	mnt_mntopts.mo_count = 0;
1128 	/*
1129 	 * Find the ops vector to use to invoke the file system-specific mount
1130 	 * method.  If the fsname argument is non-NULL, use it directly.
1131 	 * Otherwise, dig the file system type information out of the mount
1132 	 * arguments.
1133 	 *
1134 	 * A side effect is to hold the vfssw entry.
1135 	 *
1136 	 * Mount arguments can be specified in several ways, which are
1137 	 * distinguished by flag bit settings.  The preferred way is to set
1138 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1139 	 * type supplied as a character string and the last two arguments
1140 	 * being a pointer to a character buffer and the size of the buffer.
1141 	 * On entry, the buffer holds a null terminated list of options; on
1142 	 * return, the string is the list of options the file system
1143 	 * recognized. If MS_DATA is set arguments five and six point to a
1144 	 * block of binary data which the file system interprets.
1145 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1146 	 * consistently with these conventions.  To handle them, we check to
1147 	 * see whether the pointer to the file system name has a numeric value
1148 	 * less than 256.  If so, we treat it as an index.
1149 	 */
1150 	if (fsname != NULL) {
1151 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1152 			return (EINVAL);
1153 		}
1154 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1155 		size_t n;
1156 		uint_t fstype;
1157 
1158 		fsname = fstname;
1159 
1160 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1161 			RLOCK_VFSSW();
1162 			if (fstype == 0 || fstype >= nfstype ||
1163 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1164 				RUNLOCK_VFSSW();
1165 				return (EINVAL);
1166 			}
1167 			(void) strcpy(fsname, vfssw[fstype].vsw_name);
1168 			RUNLOCK_VFSSW();
1169 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1170 				return (EINVAL);
1171 		} else {
1172 			/*
1173 			 * Handle either kernel or user address space.
1174 			 */
1175 			if (uap->flags & MS_SYSSPACE) {
1176 				error = copystr(uap->fstype, fsname,
1177 				    FSTYPSZ, &n);
1178 			} else {
1179 				error = copyinstr(uap->fstype, fsname,
1180 				    FSTYPSZ, &n);
1181 			}
1182 			if (error) {
1183 				if (error == ENAMETOOLONG)
1184 					return (EINVAL);
1185 				return (error);
1186 			}
1187 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1188 				return (EINVAL);
1189 		}
1190 	} else {
1191 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1192 			return (EINVAL);
1193 		fsname = vswp->vsw_name;
1194 	}
1195 	if (!VFS_INSTALLED(vswp))
1196 		return (EINVAL);
1197 
1198 	if ((error = secpolicy_fs_allowed_mount(fsname)) != 0)  {
1199 		vfs_unrefvfssw(vswp);
1200 		return (error);
1201 	}
1202 
1203 	vfsops = &vswp->vsw_vfsops;
1204 
1205 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1206 	/*
1207 	 * Fetch mount options and parse them for generic vfs options
1208 	 */
1209 	if (uap->flags & MS_OPTIONSTR) {
1210 		/*
1211 		 * Limit the buffer size
1212 		 */
1213 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1214 			error = EINVAL;
1215 			goto errout;
1216 		}
1217 		if ((uap->flags & MS_SYSSPACE) == 0) {
1218 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1219 			inargs[0] = '\0';
1220 			if (optlen) {
1221 				error = copyinstr(opts, inargs, (size_t)optlen,
1222 				    NULL);
1223 				if (error) {
1224 					goto errout;
1225 				}
1226 			}
1227 		}
1228 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1229 	}
1230 	/*
1231 	 * Flag bits override the options string.
1232 	 */
1233 	if (uap->flags & MS_REMOUNT)
1234 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1235 	if (uap->flags & MS_RDONLY)
1236 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1237 	if (uap->flags & MS_NOSUID)
1238 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1239 
1240 	/*
1241 	 * Check if this is a remount; must be set in the option string and
1242 	 * the file system must support a remount option.
1243 	 */
1244 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1245 	    MNTOPT_REMOUNT, NULL)) {
1246 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1247 			error = ENOTSUP;
1248 			goto errout;
1249 		}
1250 		uap->flags |= MS_REMOUNT;
1251 	}
1252 
1253 	/*
1254 	 * uap->flags and vfs_optionisset() should agree.
1255 	 */
1256 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1257 		uap->flags |= MS_RDONLY;
1258 	}
1259 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1260 		uap->flags |= MS_NOSUID;
1261 	}
1262 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1263 	ASSERT(splice || !remount);
1264 	/*
1265 	 * If we are splicing the fs into the namespace,
1266 	 * perform mount point checks.
1267 	 *
1268 	 * We want to resolve the path for the mount point to eliminate
1269 	 * '.' and ".." and symlinks in mount points; we can't do the
1270 	 * same for the resource string, since it would turn
1271 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1272 	 * this before grabbing vn_vfswlock(), because otherwise we
1273 	 * would deadlock with lookuppn().
1274 	 */
1275 	if (splice) {
1276 		ASSERT(vp->v_count > 0);
1277 
1278 		/*
1279 		 * Pick up mount point and device from appropriate space.
1280 		 */
1281 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1282 			resource = kmem_alloc(pn.pn_pathlen + 1,
1283 			    KM_SLEEP);
1284 			(void) strcpy(resource, pn.pn_path);
1285 			pn_free(&pn);
1286 		}
1287 		/*
1288 		 * Do a lookupname prior to taking the
1289 		 * writelock. Mark this as completed if
1290 		 * successful for later cleanup and addition to
1291 		 * the mount in progress table.
1292 		 */
1293 		if ((vswp->vsw_flag & VSW_MOUNTDEV) &&
1294 		    (uap->flags & MS_GLOBAL) == 0 &&
1295 		    lookupname(uap->spec, fromspace,
1296 		    FOLLOW, NULL, &bvp) == 0) {
1297 			addmip = 1;
1298 		}
1299 
1300 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1301 			pathname_t *pnp;
1302 
1303 			if (*pn.pn_path != '/') {
1304 				error = EINVAL;
1305 				pn_free(&pn);
1306 				goto errout;
1307 			}
1308 			pn_alloc(&rpn);
1309 			/*
1310 			 * Kludge to prevent autofs from deadlocking with
1311 			 * itself when it calls domount().
1312 			 *
1313 			 * If autofs is calling, it is because it is doing
1314 			 * (autofs) mounts in the process of an NFS mount.  A
1315 			 * lookuppn() here would cause us to block waiting for
1316 			 * said NFS mount to complete, which can't since this
1317 			 * is the thread that was supposed to doing it.
1318 			 */
1319 			if (fromspace == UIO_USERSPACE) {
1320 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1321 				    NULL)) == 0) {
1322 					pnp = &rpn;
1323 				} else {
1324 					/*
1325 					 * The file disappeared or otherwise
1326 					 * became inaccessible since we opened
1327 					 * it; might as well fail the mount
1328 					 * since the mount point is no longer
1329 					 * accessible.
1330 					 */
1331 					pn_free(&rpn);
1332 					pn_free(&pn);
1333 					goto errout;
1334 				}
1335 			} else {
1336 				pnp = &pn;
1337 			}
1338 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1339 			(void) strcpy(mountpt, pnp->pn_path);
1340 
1341 			/*
1342 			 * If the addition of the zone's rootpath
1343 			 * would push us over a total path length
1344 			 * of MAXPATHLEN, we fail the mount with
1345 			 * ENAMETOOLONG, which is what we would have
1346 			 * gotten if we were trying to perform the same
1347 			 * mount in the global zone.
1348 			 *
1349 			 * strlen() doesn't count the trailing
1350 			 * '\0', but zone_rootpathlen counts both a
1351 			 * trailing '/' and the terminating '\0'.
1352 			 */
1353 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1354 			    strlen(mountpt)) > MAXPATHLEN ||
1355 			    (resource != NULL &&
1356 			    (curproc->p_zone->zone_rootpathlen - 1 +
1357 			    strlen(resource)) > MAXPATHLEN)) {
1358 				error = ENAMETOOLONG;
1359 			}
1360 
1361 			pn_free(&rpn);
1362 			pn_free(&pn);
1363 		}
1364 
1365 		if (error)
1366 			goto errout;
1367 
1368 		/*
1369 		 * Prevent path name resolution from proceeding past
1370 		 * the mount point.
1371 		 */
1372 		if (vn_vfswlock(vp) != 0) {
1373 			error = EBUSY;
1374 			goto errout;
1375 		}
1376 
1377 		/*
1378 		 * Verify that it's legitimate to establish a mount on
1379 		 * the prospective mount point.
1380 		 */
1381 		if (vn_mountedvfs(vp) != NULL) {
1382 			/*
1383 			 * The mount point lock was obtained after some
1384 			 * other thread raced through and established a mount.
1385 			 */
1386 			vn_vfsunlock(vp);
1387 			error = EBUSY;
1388 			goto errout;
1389 		}
1390 		if (vp->v_flag & VNOMOUNT) {
1391 			vn_vfsunlock(vp);
1392 			error = EINVAL;
1393 			goto errout;
1394 		}
1395 	}
1396 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1397 		uap->dataptr = NULL;
1398 		uap->datalen = 0;
1399 	}
1400 
1401 	/*
1402 	 * If this is a remount, we don't want to create a new VFS.
1403 	 * Instead, we pass the existing one with a remount flag.
1404 	 */
1405 	if (remount) {
1406 		/*
1407 		 * Confirm that the mount point is the root vnode of the
1408 		 * file system that is being remounted.
1409 		 * This can happen if the user specifies a different
1410 		 * mount point directory pathname in the (re)mount command.
1411 		 *
1412 		 * Code below can only be reached if splice is true, so it's
1413 		 * safe to do vn_vfsunlock() here.
1414 		 */
1415 		if ((vp->v_flag & VROOT) == 0) {
1416 			vn_vfsunlock(vp);
1417 			error = ENOENT;
1418 			goto errout;
1419 		}
1420 		/*
1421 		 * Disallow making file systems read-only unless file system
1422 		 * explicitly allows it in its vfssw.  Ignore other flags.
1423 		 */
1424 		if (rdonly && vn_is_readonly(vp) == 0 &&
1425 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1426 			vn_vfsunlock(vp);
1427 			error = EINVAL;
1428 			goto errout;
1429 		}
1430 		/*
1431 		 * Disallow changing the NBMAND disposition of the file
1432 		 * system on remounts.
1433 		 */
1434 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1435 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1436 			vn_vfsunlock(vp);
1437 			error = EINVAL;
1438 			goto errout;
1439 		}
1440 		vfsp = vp->v_vfsp;
1441 		ovflags = vfsp->vfs_flag;
1442 		vfsp->vfs_flag |= VFS_REMOUNT;
1443 		vfsp->vfs_flag &= ~VFS_RDONLY;
1444 	} else {
1445 		vfsp = vfs_alloc(KM_SLEEP);
1446 		VFS_INIT(vfsp, vfsops, NULL);
1447 	}
1448 
1449 	VFS_HOLD(vfsp);
1450 
1451 	if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1452 		if (!remount) {
1453 			if (splice)
1454 				vn_vfsunlock(vp);
1455 			vfs_free(vfsp);
1456 		} else {
1457 			vn_vfsunlock(vp);
1458 			VFS_RELE(vfsp);
1459 		}
1460 		goto errout;
1461 	}
1462 
1463 	/*
1464 	 * PRIV_SYS_MOUNT doesn't mean you can become root.
1465 	 */
1466 	if (vfsp->vfs_lofi_id != 0) {
1467 		uap->flags |= MS_NOSUID;
1468 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1469 	}
1470 
1471 	/*
1472 	 * The vfs_reflock is not used anymore the code below explicitly
1473 	 * holds it preventing others accesing it directly.
1474 	 */
1475 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1476 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1477 		cmn_err(CE_WARN,
1478 		    "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1479 
1480 	/*
1481 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1482 	 * failures that happen as a side-effect of fsflush() and other mount
1483 	 * and unmount operations that might be going on simultaneously and
1484 	 * may have locked the vfs currently. To not return EBUSY immediately
1485 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1486 	 */
1487 	if (!remount) {
1488 		if (error = vfs_lock(vfsp)) {
1489 			vfsp->vfs_flag = ovflags;
1490 
1491 			lofi_remove(vfsp);
1492 
1493 			if (splice)
1494 				vn_vfsunlock(vp);
1495 			vfs_free(vfsp);
1496 			goto errout;
1497 		}
1498 	} else {
1499 		vfs_lock_wait(vfsp);
1500 	}
1501 
1502 	/*
1503 	 * Add device to mount in progress table, global mounts require special
1504 	 * handling. It is possible that we have already done the lookupname
1505 	 * on a spliced, non-global fs. If so, we don't want to do it again
1506 	 * since we cannot do a lookupname after taking the
1507 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1508 	 */
1509 	if (!addmip) {
1510 		if ((vswp->vsw_flag & VSW_MOUNTDEV) &&
1511 		    (uap->flags & MS_GLOBAL) == 0 &&
1512 		    lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1513 			addmip = 1;
1514 		}
1515 	}
1516 
1517 	if (addmip) {
1518 		vnode_t *lvp = NULL;
1519 
1520 		error = vfs_get_lofi(vfsp, &lvp);
1521 		if (error > 0) {
1522 			lofi_remove(vfsp);
1523 
1524 			if (splice)
1525 				vn_vfsunlock(vp);
1526 			vfs_unlock(vfsp);
1527 
1528 			if (remount) {
1529 				VFS_RELE(vfsp);
1530 			} else {
1531 				vfs_free(vfsp);
1532 			}
1533 
1534 			goto errout;
1535 		} else if (error == -1) {
1536 			bdev = bvp->v_rdev;
1537 			VN_RELE(bvp);
1538 		} else {
1539 			bdev = lvp->v_rdev;
1540 			VN_RELE(lvp);
1541 			VN_RELE(bvp);
1542 		}
1543 
1544 		vfs_addmip(bdev, vfsp);
1545 		addmip = 0;
1546 		delmip = 1;
1547 	}
1548 	/*
1549 	 * Invalidate cached entry for the mount point.
1550 	 */
1551 	if (splice)
1552 		dnlc_purge_vp(vp);
1553 
1554 	/*
1555 	 * If have an option string but the filesystem doesn't supply a
1556 	 * prototype options table, create a table with the global
1557 	 * options and sufficient room to accept all the options in the
1558 	 * string.  Then parse the passed in option string
1559 	 * accepting all the options in the string.  This gives us an
1560 	 * option table with all the proper cancel properties for the
1561 	 * global options.
1562 	 *
1563 	 * Filesystems that supply a prototype options table are handled
1564 	 * earlier in this function.
1565 	 */
1566 	if (uap->flags & MS_OPTIONSTR) {
1567 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1568 			mntopts_t tmp_mntopts;
1569 
1570 			tmp_mntopts.mo_count = 0;
1571 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1572 			    &mnt_mntopts);
1573 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1574 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1575 			vfs_freeopttbl(&tmp_mntopts);
1576 		}
1577 	}
1578 
1579 	/*
1580 	 * Serialize with zone state transitions.
1581 	 * See vfs_list_add; zone mounted into is:
1582 	 * 	zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1583 	 * not the zone doing the mount (curproc->p_zone), but if we're already
1584 	 * inside a NGZ, then we know what zone we are.
1585 	 */
1586 	if (INGLOBALZONE(curproc)) {
1587 		zone = zone_find_by_path(mountpt);
1588 		ASSERT(zone != NULL);
1589 	} else {
1590 		zone = curproc->p_zone;
1591 		/*
1592 		 * zone_find_by_path does a hold, so do one here too so that
1593 		 * we can do a zone_rele after mount_completed.
1594 		 */
1595 		zone_hold(zone);
1596 	}
1597 	mount_in_progress(zone);
1598 	/*
1599 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1600 	 * splice it into the file system name space.
1601 	 *
1602 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1603 	 * string if necessary (ie, mntfs), and also for a remount to
1604 	 * change the same (necessary when remounting '/' during boot).
1605 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1606 	 * should be, then hand off control to VFS_MOUNT() which can
1607 	 * override this.
1608 	 *
1609 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1610 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1611 	 * never set those fields to NULL. Several bits of code make
1612 	 * assumptions that the fields are always valid.
1613 	 */
1614 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1615 	if (remount) {
1616 		if ((oldresource = vfsp->vfs_resource) != NULL)
1617 			refstr_hold(oldresource);
1618 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1619 			refstr_hold(oldmntpt);
1620 	}
1621 	vfs_setresource(vfsp, resource, 0);
1622 	vfs_setmntpoint(vfsp, mountpt, 0);
1623 
1624 	/*
1625 	 * going to mount on this vnode, so notify.
1626 	 */
1627 	vnevent_mountedover(vp, NULL);
1628 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1629 
1630 	if (uap->flags & MS_RDONLY)
1631 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1632 	if (uap->flags & MS_NOSUID)
1633 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1634 	if (uap->flags & MS_GLOBAL)
1635 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1636 
1637 	if (error) {
1638 		lofi_remove(vfsp);
1639 
1640 		if (remount) {
1641 			/* put back pre-remount options */
1642 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1643 			vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1644 			    VFSSP_VERBATIM);
1645 			if (oldmntpt)
1646 				refstr_rele(oldmntpt);
1647 			vfs_setresource(vfsp, refstr_value(oldresource),
1648 			    VFSSP_VERBATIM);
1649 			if (oldresource)
1650 				refstr_rele(oldresource);
1651 			vfsp->vfs_flag = ovflags;
1652 			vfs_unlock(vfsp);
1653 			VFS_RELE(vfsp);
1654 		} else {
1655 			vfs_unlock(vfsp);
1656 			vfs_freemnttab(vfsp);
1657 			vfs_free(vfsp);
1658 		}
1659 	} else {
1660 		/*
1661 		 * Set the mount time to now
1662 		 */
1663 		vfsp->vfs_mtime = ddi_get_time();
1664 		if (remount) {
1665 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1666 			if (oldresource)
1667 				refstr_rele(oldresource);
1668 			if (oldmntpt)
1669 				refstr_rele(oldmntpt);
1670 		} else if (splice) {
1671 			/*
1672 			 * Link vfsp into the name space at the mount
1673 			 * point. Vfs_add() is responsible for
1674 			 * holding the mount point which will be
1675 			 * released when vfs_remove() is called.
1676 			 */
1677 			vfs_add(vp, vfsp, uap->flags);
1678 		} else {
1679 			/*
1680 			 * Hold the reference to file system which is
1681 			 * not linked into the name space.
1682 			 */
1683 			vfsp->vfs_zone = NULL;
1684 			VFS_HOLD(vfsp);
1685 			vfsp->vfs_vnodecovered = NULL;
1686 		}
1687 		/*
1688 		 * Set flags for global options encountered
1689 		 */
1690 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1691 			vfsp->vfs_flag |= VFS_RDONLY;
1692 		else
1693 			vfsp->vfs_flag &= ~VFS_RDONLY;
1694 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1695 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1696 		} else {
1697 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1698 				vfsp->vfs_flag |= VFS_NODEVICES;
1699 			else
1700 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1701 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1702 				vfsp->vfs_flag |= VFS_NOSETUID;
1703 			else
1704 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1705 		}
1706 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1707 			vfsp->vfs_flag |= VFS_NBMAND;
1708 		else
1709 			vfsp->vfs_flag &= ~VFS_NBMAND;
1710 
1711 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1712 			vfsp->vfs_flag |= VFS_XATTR;
1713 		else
1714 			vfsp->vfs_flag &= ~VFS_XATTR;
1715 
1716 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1717 			vfsp->vfs_flag |= VFS_NOEXEC;
1718 		else
1719 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1720 
1721 		/*
1722 		 * Now construct the output option string of options
1723 		 * we recognized.
1724 		 */
1725 		if (uap->flags & MS_OPTIONSTR) {
1726 			vfs_list_read_lock();
1727 			copyout_error = vfs_buildoptionstr(
1728 			    &vfsp->vfs_mntopts, inargs, optlen);
1729 			vfs_list_unlock();
1730 			if (copyout_error == 0 &&
1731 			    (uap->flags & MS_SYSSPACE) == 0) {
1732 				copyout_error = copyoutstr(inargs, opts,
1733 				    optlen, NULL);
1734 			}
1735 		}
1736 
1737 		/*
1738 		 * If this isn't a remount, set up the vopstats before
1739 		 * anyone can touch this. We only allow spliced file
1740 		 * systems (file systems which are in the namespace) to
1741 		 * have the VFS_STATS flag set.
1742 		 * NOTE: PxFS mounts the underlying file system with
1743 		 * MS_NOSPLICE set and copies those vfs_flags to its private
1744 		 * vfs structure. As a result, PxFS should never have
1745 		 * the VFS_STATS flag or else we might access the vfs
1746 		 * statistics-related fields prior to them being
1747 		 * properly initialized.
1748 		 */
1749 		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1750 			initialize_vopstats(&vfsp->vfs_vopstats);
1751 			/*
1752 			 * We need to set vfs_vskap to NULL because there's
1753 			 * a chance it won't be set below.  This is checked
1754 			 * in teardown_vopstats() so we can't have garbage.
1755 			 */
1756 			vfsp->vfs_vskap = NULL;
1757 			vfsp->vfs_flag |= VFS_STATS;
1758 			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1759 		}
1760 
1761 		if (vswp->vsw_flag & VSW_XID)
1762 			vfsp->vfs_flag |= VFS_XID;
1763 
1764 		vfs_unlock(vfsp);
1765 	}
1766 	mount_completed(zone);
1767 	zone_rele(zone);
1768 	if (splice)
1769 		vn_vfsunlock(vp);
1770 
1771 	if ((error == 0) && (copyout_error == 0)) {
1772 		if (!remount) {
1773 			/*
1774 			 * Don't call get_vskstat_anchor() while holding
1775 			 * locks since it allocates memory and calls
1776 			 * VFS_STATVFS().  For NFS, the latter can generate
1777 			 * an over-the-wire call.
1778 			 */
1779 			vskap = get_vskstat_anchor(vfsp);
1780 			/* Only take the lock if we have something to do */
1781 			if (vskap != NULL) {
1782 				vfs_lock_wait(vfsp);
1783 				if (vfsp->vfs_flag & VFS_STATS) {
1784 					vfsp->vfs_vskap = vskap;
1785 				}
1786 				vfs_unlock(vfsp);
1787 			}
1788 		}
1789 		/* Return vfsp to caller. */
1790 		*vfspp = vfsp;
1791 	}
1792 errout:
1793 	vfs_freeopttbl(&mnt_mntopts);
1794 	if (resource != NULL)
1795 		kmem_free(resource, strlen(resource) + 1);
1796 	if (mountpt != NULL)
1797 		kmem_free(mountpt, strlen(mountpt) + 1);
1798 	/*
1799 	 * It is possible we errored prior to adding to mount in progress
1800 	 * table. Must free vnode we acquired with successful lookupname.
1801 	 */
1802 	if (addmip)
1803 		VN_RELE(bvp);
1804 	if (delmip)
1805 		vfs_delmip(vfsp);
1806 	ASSERT(vswp != NULL);
1807 	vfs_unrefvfssw(vswp);
1808 	if (inargs != opts)
1809 		kmem_free(inargs, MAX_MNTOPT_STR);
1810 	if (copyout_error) {
1811 		lofi_remove(vfsp);
1812 		VFS_RELE(vfsp);
1813 		error = copyout_error;
1814 	}
1815 	return (error);
1816 }
1817 
1818 static void
1819 vfs_setpath(
1820     struct vfs *vfsp,		/* vfs being updated */
1821     refstr_t **refp,		/* Ref-count string to contain the new path */
1822     const char *newpath,	/* Path to add to refp (above) */
1823     uint32_t flag)		/* flag */
1824 {
1825 	size_t len;
1826 	refstr_t *ref;
1827 	zone_t *zone = curproc->p_zone;
1828 	char *sp;
1829 	int have_list_lock = 0;
1830 
1831 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1832 
1833 	/*
1834 	 * New path must be less than MAXPATHLEN because mntfs
1835 	 * will only display up to MAXPATHLEN bytes. This is currently
1836 	 * safe, because domount() uses pn_get(), and other callers
1837 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1838 	 */
1839 
1840 	ASSERT(strlen(newpath) < MAXPATHLEN);
1841 
1842 	/* mntfs requires consistency while vfs list lock is held */
1843 
1844 	if (VFS_ON_LIST(vfsp)) {
1845 		have_list_lock = 1;
1846 		vfs_list_lock();
1847 	}
1848 
1849 	if (*refp != NULL)
1850 		refstr_rele(*refp);
1851 
1852 	/*
1853 	 * If we are in a non-global zone then we prefix the supplied path,
1854 	 * newpath, with the zone's root path, with two exceptions. The first
1855 	 * is where we have been explicitly directed to avoid doing so; this
1856 	 * will be the case following a failed remount, where the path supplied
1857 	 * will be a saved version which must now be restored. The second
1858 	 * exception is where newpath is not a pathname but a descriptive name,
1859 	 * e.g. "procfs".
1860 	 */
1861 	if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1862 		ref = refstr_alloc(newpath);
1863 		goto out;
1864 	}
1865 
1866 	/*
1867 	 * Truncate the trailing '/' in the zoneroot, and merge
1868 	 * in the zone's rootpath with the "newpath" (resource
1869 	 * or mountpoint) passed in.
1870 	 *
1871 	 * The size of the required buffer is thus the size of
1872 	 * the buffer required for the passed-in newpath
1873 	 * (strlen(newpath) + 1), plus the size of the buffer
1874 	 * required to hold zone_rootpath (zone_rootpathlen)
1875 	 * minus one for one of the now-superfluous NUL
1876 	 * terminations, minus one for the trailing '/'.
1877 	 *
1878 	 * That gives us:
1879 	 *
1880 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1881 	 *
1882 	 * Which is what we have below.
1883 	 */
1884 
1885 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1886 	sp = kmem_alloc(len, KM_SLEEP);
1887 
1888 	/*
1889 	 * Copy everything including the trailing slash, which
1890 	 * we then overwrite with the NUL character.
1891 	 */
1892 
1893 	(void) strcpy(sp, zone->zone_rootpath);
1894 	sp[zone->zone_rootpathlen - 2] = '\0';
1895 	(void) strcat(sp, newpath);
1896 
1897 	ref = refstr_alloc(sp);
1898 	kmem_free(sp, len);
1899 out:
1900 	*refp = ref;
1901 
1902 	if (have_list_lock) {
1903 		vfs_mnttab_modtimeupd();
1904 		vfs_list_unlock();
1905 	}
1906 }
1907 
1908 /*
1909  * Record a mounted resource name in a vfs structure.
1910  * If vfsp is already mounted, caller must hold the vfs lock.
1911  */
1912 void
1913 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1914 {
1915 	if (resource == NULL || resource[0] == '\0')
1916 		resource = VFS_NORESOURCE;
1917 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1918 }
1919 
1920 /*
1921  * Record a mount point name in a vfs structure.
1922  * If vfsp is already mounted, caller must hold the vfs lock.
1923  */
1924 void
1925 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1926 {
1927 	if (mntpt == NULL || mntpt[0] == '\0')
1928 		mntpt = VFS_NOMNTPT;
1929 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1930 }
1931 
1932 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1933 
1934 refstr_t *
1935 vfs_getresource(const struct vfs *vfsp)
1936 {
1937 	refstr_t *resource;
1938 
1939 	vfs_list_read_lock();
1940 	resource = vfsp->vfs_resource;
1941 	refstr_hold(resource);
1942 	vfs_list_unlock();
1943 
1944 	return (resource);
1945 }
1946 
1947 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1948 
1949 refstr_t *
1950 vfs_getmntpoint(const struct vfs *vfsp)
1951 {
1952 	refstr_t *mntpt;
1953 
1954 	vfs_list_read_lock();
1955 	mntpt = vfsp->vfs_mntpt;
1956 	refstr_hold(mntpt);
1957 	vfs_list_unlock();
1958 
1959 	return (mntpt);
1960 }
1961 
1962 /*
1963  * Create an empty options table with enough empty slots to hold all
1964  * The options in the options string passed as an argument.
1965  * Potentially prepend another options table.
1966  *
1967  * Note: caller is responsible for locking the vfs list, if needed,
1968  *       to protect mops.
1969  */
1970 static void
1971 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1972     const mntopts_t *mtmpl)
1973 {
1974 	const char *s = opts;
1975 	uint_t count;
1976 
1977 	if (opts == NULL || *opts == '\0') {
1978 		count = 0;
1979 	} else {
1980 		count = 1;
1981 
1982 		/*
1983 		 * Count number of options in the string
1984 		 */
1985 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
1986 			count++;
1987 			s++;
1988 		}
1989 	}
1990 	vfs_copyopttbl_extend(mtmpl, mops, count);
1991 }
1992 
1993 /*
1994  * Create an empty options table with enough empty slots to hold all
1995  * The options in the options string passed as an argument.
1996  *
1997  * This function is *not* for general use by filesystems.
1998  *
1999  * Note: caller is responsible for locking the vfs list, if needed,
2000  *       to protect mops.
2001  */
2002 void
2003 vfs_createopttbl(mntopts_t *mops, const char *opts)
2004 {
2005 	vfs_createopttbl_extend(mops, opts, NULL);
2006 }
2007 
2008 
2009 /*
2010  * Swap two mount options tables
2011  */
2012 static void
2013 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2014 {
2015 	uint_t tmpcnt;
2016 	mntopt_t *tmplist;
2017 
2018 	tmpcnt = optbl2->mo_count;
2019 	tmplist = optbl2->mo_list;
2020 	optbl2->mo_count = optbl1->mo_count;
2021 	optbl2->mo_list = optbl1->mo_list;
2022 	optbl1->mo_count = tmpcnt;
2023 	optbl1->mo_list = tmplist;
2024 }
2025 
2026 static void
2027 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2028 {
2029 	vfs_list_lock();
2030 	vfs_swapopttbl_nolock(optbl1, optbl2);
2031 	vfs_mnttab_modtimeupd();
2032 	vfs_list_unlock();
2033 }
2034 
2035 static char **
2036 vfs_copycancelopt_extend(char **const moc, int extend)
2037 {
2038 	int i = 0;
2039 	int j;
2040 	char **result;
2041 
2042 	if (moc != NULL) {
2043 		for (; moc[i] != NULL; i++)
2044 			/* count number of options to cancel */;
2045 	}
2046 
2047 	if (i + extend == 0)
2048 		return (NULL);
2049 
2050 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2051 
2052 	for (j = 0; j < i; j++) {
2053 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2054 		(void) strcpy(result[j], moc[j]);
2055 	}
2056 	for (; j <= i + extend; j++)
2057 		result[j] = NULL;
2058 
2059 	return (result);
2060 }
2061 
2062 static void
2063 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2064 {
2065 	char *sp, *dp;
2066 
2067 	d->mo_flags = s->mo_flags;
2068 	d->mo_data = s->mo_data;
2069 	sp = s->mo_name;
2070 	if (sp != NULL) {
2071 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2072 		(void) strcpy(dp, sp);
2073 		d->mo_name = dp;
2074 	} else {
2075 		d->mo_name = NULL; /* should never happen */
2076 	}
2077 
2078 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2079 
2080 	sp = s->mo_arg;
2081 	if (sp != NULL) {
2082 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2083 		(void) strcpy(dp, sp);
2084 		d->mo_arg = dp;
2085 	} else {
2086 		d->mo_arg = NULL;
2087 	}
2088 }
2089 
2090 /*
2091  * Copy a mount options table, possibly allocating some spare
2092  * slots at the end.  It is permissible to copy_extend the NULL table.
2093  */
2094 static void
2095 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2096 {
2097 	uint_t i, count;
2098 	mntopt_t *motbl;
2099 
2100 	/*
2101 	 * Clear out any existing stuff in the options table being initialized
2102 	 */
2103 	vfs_freeopttbl(dmo);
2104 	count = (smo == NULL) ? 0 : smo->mo_count;
2105 	if ((count + extra) == 0)	/* nothing to do */
2106 		return;
2107 	dmo->mo_count = count + extra;
2108 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2109 	dmo->mo_list = motbl;
2110 	for (i = 0; i < count; i++) {
2111 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2112 	}
2113 	for (i = count; i < count + extra; i++) {
2114 		motbl[i].mo_flags = MO_EMPTY;
2115 	}
2116 }
2117 
2118 /*
2119  * Copy a mount options table.
2120  *
2121  * This function is *not* for general use by filesystems.
2122  *
2123  * Note: caller is responsible for locking the vfs list, if needed,
2124  *       to protect smo and dmo.
2125  */
2126 void
2127 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2128 {
2129 	vfs_copyopttbl_extend(smo, dmo, 0);
2130 }
2131 
2132 static char **
2133 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2134 {
2135 	int c1 = 0;
2136 	int c2 = 0;
2137 	char **result;
2138 	char **sp1, **sp2, **dp;
2139 
2140 	/*
2141 	 * First we count both lists of cancel options.
2142 	 * If either is NULL or has no elements, we return a copy of
2143 	 * the other.
2144 	 */
2145 	if (mop1->mo_cancel != NULL) {
2146 		for (; mop1->mo_cancel[c1] != NULL; c1++)
2147 			/* count cancel options in mop1 */;
2148 	}
2149 
2150 	if (c1 == 0)
2151 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2152 
2153 	if (mop2->mo_cancel != NULL) {
2154 		for (; mop2->mo_cancel[c2] != NULL; c2++)
2155 			/* count cancel options in mop2 */;
2156 	}
2157 
2158 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2159 
2160 	if (c2 == 0)
2161 		return (result);
2162 
2163 	/*
2164 	 * When we get here, we've got two sets of cancel options;
2165 	 * we need to merge the two sets.  We know that the result
2166 	 * array has "c1+c2+1" entries and in the end we might shrink
2167 	 * it.
2168 	 * Result now has a copy of the c1 entries from mop1; we'll
2169 	 * now lookup all the entries of mop2 in mop1 and copy it if
2170 	 * it is unique.
2171 	 * This operation is O(n^2) but it's only called once per
2172 	 * filesystem per duplicate option.  This is a situation
2173 	 * which doesn't arise with the filesystems in ON and
2174 	 * n is generally 1.
2175 	 */
2176 
2177 	dp = &result[c1];
2178 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2179 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2180 			if (strcmp(*sp1, *sp2) == 0)
2181 				break;
2182 		}
2183 		if (*sp1 == NULL) {
2184 			/*
2185 			 * Option *sp2 not found in mop1, so copy it.
2186 			 * The calls to vfs_copycancelopt_extend()
2187 			 * guarantee that there's enough room.
2188 			 */
2189 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2190 			(void) strcpy(*dp++, *sp2);
2191 		}
2192 	}
2193 	if (dp != &result[c1+c2]) {
2194 		size_t bytes = (dp - result + 1) * sizeof (char *);
2195 		char **nres = kmem_alloc(bytes, KM_SLEEP);
2196 
2197 		bcopy(result, nres, bytes);
2198 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2199 		result = nres;
2200 	}
2201 	return (result);
2202 }
2203 
2204 /*
2205  * Merge two mount option tables (outer and inner) into one.  This is very
2206  * similar to "merging" global variables and automatic variables in C.
2207  *
2208  * This isn't (and doesn't have to be) fast.
2209  *
2210  * This function is *not* for general use by filesystems.
2211  *
2212  * Note: caller is responsible for locking the vfs list, if needed,
2213  *       to protect omo, imo & dmo.
2214  */
2215 void
2216 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2217 {
2218 	uint_t i, count;
2219 	mntopt_t *mop, *motbl;
2220 	uint_t freeidx;
2221 
2222 	/*
2223 	 * First determine how much space we need to allocate.
2224 	 */
2225 	count = omo->mo_count;
2226 	for (i = 0; i < imo->mo_count; i++) {
2227 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2228 			continue;
2229 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2230 			count++;
2231 	}
2232 	ASSERT(count >= omo->mo_count &&
2233 	    count <= omo->mo_count + imo->mo_count);
2234 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2235 	for (i = 0; i < omo->mo_count; i++)
2236 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2237 	freeidx = omo->mo_count;
2238 	for (i = 0; i < imo->mo_count; i++) {
2239 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2240 			continue;
2241 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2242 			char **newcanp;
2243 			uint_t index = mop - omo->mo_list;
2244 
2245 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2246 
2247 			vfs_freeopt(&motbl[index]);
2248 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2249 
2250 			vfs_freecancelopt(motbl[index].mo_cancel);
2251 			motbl[index].mo_cancel = newcanp;
2252 		} else {
2253 			/*
2254 			 * If it's a new option, just copy it over to the first
2255 			 * free location.
2256 			 */
2257 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2258 		}
2259 	}
2260 	dmo->mo_count = count;
2261 	dmo->mo_list = motbl;
2262 }
2263 
2264 /*
2265  * Functions to set and clear mount options in a mount options table.
2266  */
2267 
2268 /*
2269  * Clear a mount option, if it exists.
2270  *
2271  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2272  * the vfs list.
2273  */
2274 static void
2275 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2276 {
2277 	struct mntopt *mop;
2278 	uint_t i, count;
2279 
2280 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2281 
2282 	count = mops->mo_count;
2283 	for (i = 0; i < count; i++) {
2284 		mop = &mops->mo_list[i];
2285 
2286 		if (mop->mo_flags & MO_EMPTY)
2287 			continue;
2288 		if (strcmp(opt, mop->mo_name))
2289 			continue;
2290 		mop->mo_flags &= ~MO_SET;
2291 		if (mop->mo_arg != NULL) {
2292 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2293 		}
2294 		mop->mo_arg = NULL;
2295 		if (update_mnttab)
2296 			vfs_mnttab_modtimeupd();
2297 		break;
2298 	}
2299 }
2300 
2301 void
2302 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2303 {
2304 	int gotlock = 0;
2305 
2306 	if (VFS_ON_LIST(vfsp)) {
2307 		gotlock = 1;
2308 		vfs_list_lock();
2309 	}
2310 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2311 	if (gotlock)
2312 		vfs_list_unlock();
2313 }
2314 
2315 
2316 /*
2317  * Set a mount option on.  If it's not found in the table, it's silently
2318  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2319  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2320  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2321  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2322  * MO_EMPTY set is created as the option passed in.
2323  *
2324  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2325  * the vfs list.
2326  */
2327 static void
2328 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2329     const char *arg, int flags, int update_mnttab)
2330 {
2331 	mntopt_t *mop;
2332 	uint_t i, count;
2333 	char *sp;
2334 
2335 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2336 
2337 	if (flags & VFS_CREATEOPT) {
2338 		if (vfs_hasopt(mops, opt) != NULL) {
2339 			flags &= ~VFS_CREATEOPT;
2340 		}
2341 	}
2342 	count = mops->mo_count;
2343 	for (i = 0; i < count; i++) {
2344 		mop = &mops->mo_list[i];
2345 
2346 		if (mop->mo_flags & MO_EMPTY) {
2347 			if ((flags & VFS_CREATEOPT) == 0)
2348 				continue;
2349 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2350 			(void) strcpy(sp, opt);
2351 			mop->mo_name = sp;
2352 			if (arg != NULL)
2353 				mop->mo_flags = MO_HASVALUE;
2354 			else
2355 				mop->mo_flags = 0;
2356 		} else if (strcmp(opt, mop->mo_name)) {
2357 			continue;
2358 		}
2359 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2360 			break;
2361 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2362 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2363 			(void) strcpy(sp, arg);
2364 		} else {
2365 			sp = NULL;
2366 		}
2367 		if (mop->mo_arg != NULL)
2368 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2369 		mop->mo_arg = sp;
2370 		if (flags & VFS_DISPLAY)
2371 			mop->mo_flags &= ~MO_NODISPLAY;
2372 		if (flags & VFS_NODISPLAY)
2373 			mop->mo_flags |= MO_NODISPLAY;
2374 		mop->mo_flags |= MO_SET;
2375 		if (mop->mo_cancel != NULL) {
2376 			char **cp;
2377 
2378 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2379 				vfs_clearmntopt_nolock(mops, *cp, 0);
2380 		}
2381 		if (update_mnttab)
2382 			vfs_mnttab_modtimeupd();
2383 		break;
2384 	}
2385 }
2386 
2387 void
2388 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2389 {
2390 	int gotlock = 0;
2391 
2392 	if (VFS_ON_LIST(vfsp)) {
2393 		gotlock = 1;
2394 		vfs_list_lock();
2395 	}
2396 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2397 	if (gotlock)
2398 		vfs_list_unlock();
2399 }
2400 
2401 
2402 /*
2403  * Add a "tag" option to a mounted file system's options list.
2404  *
2405  * Note: caller is responsible for locking the vfs list, if needed,
2406  *       to protect mops.
2407  */
2408 static mntopt_t *
2409 vfs_addtag(mntopts_t *mops, const char *tag)
2410 {
2411 	uint_t count;
2412 	mntopt_t *mop, *motbl;
2413 
2414 	count = mops->mo_count + 1;
2415 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2416 	if (mops->mo_count) {
2417 		size_t len = (count - 1) * sizeof (mntopt_t);
2418 
2419 		bcopy(mops->mo_list, motbl, len);
2420 		kmem_free(mops->mo_list, len);
2421 	}
2422 	mops->mo_count = count;
2423 	mops->mo_list = motbl;
2424 	mop = &motbl[count - 1];
2425 	mop->mo_flags = MO_TAG;
2426 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2427 	(void) strcpy(mop->mo_name, tag);
2428 	return (mop);
2429 }
2430 
2431 /*
2432  * Allow users to set arbitrary "tags" in a vfs's mount options.
2433  * Broader use within the kernel is discouraged.
2434  */
2435 int
2436 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2437     cred_t *cr)
2438 {
2439 	vfs_t *vfsp;
2440 	mntopts_t *mops;
2441 	mntopt_t *mop;
2442 	int found = 0;
2443 	dev_t dev = makedevice(major, minor);
2444 	int err = 0;
2445 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2446 
2447 	/*
2448 	 * Find the desired mounted file system
2449 	 */
2450 	vfs_list_lock();
2451 	vfsp = rootvfs;
2452 	do {
2453 		if (vfsp->vfs_dev == dev &&
2454 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2455 			found = 1;
2456 			break;
2457 		}
2458 		vfsp = vfsp->vfs_next;
2459 	} while (vfsp != rootvfs);
2460 
2461 	if (!found) {
2462 		err = EINVAL;
2463 		goto out;
2464 	}
2465 	err = secpolicy_fs_config(cr, vfsp);
2466 	if (err != 0)
2467 		goto out;
2468 
2469 	mops = &vfsp->vfs_mntopts;
2470 	/*
2471 	 * Add tag if it doesn't already exist
2472 	 */
2473 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2474 		int len;
2475 
2476 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2477 		len = strlen(buf);
2478 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2479 			err = ENAMETOOLONG;
2480 			goto out;
2481 		}
2482 		mop = vfs_addtag(mops, tag);
2483 	}
2484 	if ((mop->mo_flags & MO_TAG) == 0) {
2485 		err = EINVAL;
2486 		goto out;
2487 	}
2488 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2489 out:
2490 	vfs_list_unlock();
2491 	kmem_free(buf, MAX_MNTOPT_STR);
2492 	return (err);
2493 }
2494 
2495 /*
2496  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2497  * Broader use within the kernel is discouraged.
2498  */
2499 int
2500 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2501     cred_t *cr)
2502 {
2503 	vfs_t *vfsp;
2504 	mntopt_t *mop;
2505 	int found = 0;
2506 	dev_t dev = makedevice(major, minor);
2507 	int err = 0;
2508 
2509 	/*
2510 	 * Find the desired mounted file system
2511 	 */
2512 	vfs_list_lock();
2513 	vfsp = rootvfs;
2514 	do {
2515 		if (vfsp->vfs_dev == dev &&
2516 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2517 			found = 1;
2518 			break;
2519 		}
2520 		vfsp = vfsp->vfs_next;
2521 	} while (vfsp != rootvfs);
2522 
2523 	if (!found) {
2524 		err = EINVAL;
2525 		goto out;
2526 	}
2527 	err = secpolicy_fs_config(cr, vfsp);
2528 	if (err != 0)
2529 		goto out;
2530 
2531 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2532 		err = EINVAL;
2533 		goto out;
2534 	}
2535 	if ((mop->mo_flags & MO_TAG) == 0) {
2536 		err = EINVAL;
2537 		goto out;
2538 	}
2539 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2540 out:
2541 	vfs_list_unlock();
2542 	return (err);
2543 }
2544 
2545 /*
2546  * Function to parse an option string and fill in a mount options table.
2547  * Unknown options are silently ignored.  The input option string is modified
2548  * by replacing separators with nulls.  If the create flag is set, options
2549  * not found in the table are just added on the fly.  The table must have
2550  * an option slot marked MO_EMPTY to add an option on the fly.
2551  *
2552  * This function is *not* for general use by filesystems.
2553  *
2554  * Note: caller is responsible for locking the vfs list, if needed,
2555  *       to protect mops..
2556  */
2557 void
2558 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2559 {
2560 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2561 	int setflg = VFS_NOFORCEOPT;
2562 
2563 	if (osp == NULL)
2564 		return;
2565 	while (*s != '\0') {
2566 		p = strchr(s, ',');	/* find next option */
2567 		if (p == NULL) {
2568 			cp = NULL;
2569 			p = s + strlen(s);
2570 		} else {
2571 			cp = p;		/* save location of comma */
2572 			*p++ = '\0';	/* mark end and point to next option */
2573 		}
2574 		nextop = p;
2575 		p = strchr(s, '=');	/* look for value */
2576 		if (p == NULL) {
2577 			valp = NULL;	/* no value supplied */
2578 		} else {
2579 			ep = p;		/* save location of equals */
2580 			*p++ = '\0';	/* end option and point to value */
2581 			valp = p;
2582 		}
2583 		/*
2584 		 * set option into options table
2585 		 */
2586 		if (create)
2587 			setflg |= VFS_CREATEOPT;
2588 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2589 		if (cp != NULL)
2590 			*cp = ',';	/* restore the comma */
2591 		if (valp != NULL)
2592 			*ep = '=';	/* restore the equals */
2593 		s = nextop;
2594 	}
2595 }
2596 
2597 /*
2598  * Function to inquire if an option exists in a mount options table.
2599  * Returns a pointer to the option if it exists, else NULL.
2600  *
2601  * This function is *not* for general use by filesystems.
2602  *
2603  * Note: caller is responsible for locking the vfs list, if needed,
2604  *       to protect mops.
2605  */
2606 struct mntopt *
2607 vfs_hasopt(const mntopts_t *mops, const char *opt)
2608 {
2609 	struct mntopt *mop;
2610 	uint_t i, count;
2611 
2612 	count = mops->mo_count;
2613 	for (i = 0; i < count; i++) {
2614 		mop = &mops->mo_list[i];
2615 
2616 		if (mop->mo_flags & MO_EMPTY)
2617 			continue;
2618 		if (strcmp(opt, mop->mo_name) == 0)
2619 			return (mop);
2620 	}
2621 	return (NULL);
2622 }
2623 
2624 /*
2625  * Function to inquire if an option is set in a mount options table.
2626  * Returns non-zero if set and fills in the arg pointer with a pointer to
2627  * the argument string or NULL if there is no argument string.
2628  */
2629 static int
2630 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2631 {
2632 	struct mntopt *mop;
2633 	uint_t i, count;
2634 
2635 	count = mops->mo_count;
2636 	for (i = 0; i < count; i++) {
2637 		mop = &mops->mo_list[i];
2638 
2639 		if (mop->mo_flags & MO_EMPTY)
2640 			continue;
2641 		if (strcmp(opt, mop->mo_name))
2642 			continue;
2643 		if ((mop->mo_flags & MO_SET) == 0)
2644 			return (0);
2645 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2646 			*argp = mop->mo_arg;
2647 		return (1);
2648 	}
2649 	return (0);
2650 }
2651 
2652 
2653 int
2654 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2655 {
2656 	int ret;
2657 
2658 	vfs_list_read_lock();
2659 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2660 	vfs_list_unlock();
2661 	return (ret);
2662 }
2663 
2664 
2665 /*
2666  * Construct a comma separated string of the options set in the given
2667  * mount table, return the string in the given buffer.  Return non-zero if
2668  * the buffer would overflow.
2669  *
2670  * This function is *not* for general use by filesystems.
2671  *
2672  * Note: caller is responsible for locking the vfs list, if needed,
2673  *       to protect mp.
2674  */
2675 int
2676 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2677 {
2678 	char *cp;
2679 	uint_t i;
2680 
2681 	buf[0] = '\0';
2682 	cp = buf;
2683 	for (i = 0; i < mp->mo_count; i++) {
2684 		struct mntopt *mop;
2685 
2686 		mop = &mp->mo_list[i];
2687 		if (mop->mo_flags & MO_SET) {
2688 			int optlen, comma = 0;
2689 
2690 			if (buf[0] != '\0')
2691 				comma = 1;
2692 			optlen = strlen(mop->mo_name);
2693 			if (strlen(buf) + comma + optlen + 1 > len)
2694 				goto err;
2695 			if (comma)
2696 				*cp++ = ',';
2697 			(void) strcpy(cp, mop->mo_name);
2698 			cp += optlen;
2699 			/*
2700 			 * Append option value if there is one
2701 			 */
2702 			if (mop->mo_arg != NULL) {
2703 				int arglen;
2704 
2705 				arglen = strlen(mop->mo_arg);
2706 				if (strlen(buf) + arglen + 2 > len)
2707 					goto err;
2708 				*cp++ = '=';
2709 				(void) strcpy(cp, mop->mo_arg);
2710 				cp += arglen;
2711 			}
2712 		}
2713 	}
2714 	return (0);
2715 err:
2716 	return (EOVERFLOW);
2717 }
2718 
2719 static void
2720 vfs_freecancelopt(char **moc)
2721 {
2722 	if (moc != NULL) {
2723 		int ccnt = 0;
2724 		char **cp;
2725 
2726 		for (cp = moc; *cp != NULL; cp++) {
2727 			kmem_free(*cp, strlen(*cp) + 1);
2728 			ccnt++;
2729 		}
2730 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2731 	}
2732 }
2733 
2734 static void
2735 vfs_freeopt(mntopt_t *mop)
2736 {
2737 	if (mop->mo_name != NULL)
2738 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2739 
2740 	vfs_freecancelopt(mop->mo_cancel);
2741 
2742 	if (mop->mo_arg != NULL)
2743 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2744 }
2745 
2746 /*
2747  * Free a mount options table
2748  *
2749  * This function is *not* for general use by filesystems.
2750  *
2751  * Note: caller is responsible for locking the vfs list, if needed,
2752  *       to protect mp.
2753  */
2754 void
2755 vfs_freeopttbl(mntopts_t *mp)
2756 {
2757 	uint_t i, count;
2758 
2759 	count = mp->mo_count;
2760 	for (i = 0; i < count; i++) {
2761 		vfs_freeopt(&mp->mo_list[i]);
2762 	}
2763 	if (count) {
2764 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2765 		mp->mo_count = 0;
2766 		mp->mo_list = NULL;
2767 	}
2768 }
2769 
2770 
2771 /* ARGSUSED */
2772 static int
2773 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2774     caller_context_t *ct)
2775 {
2776 	return (0);
2777 }
2778 
2779 /* ARGSUSED */
2780 static int
2781 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2782     caller_context_t *ct)
2783 {
2784 	return (0);
2785 }
2786 
2787 /*
2788  * The dummy vnode is currently used only by file events notification
2789  * module which is just interested in the timestamps.
2790  */
2791 /* ARGSUSED */
2792 static int
2793 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2794     caller_context_t *ct)
2795 {
2796 	bzero(vap, sizeof (vattr_t));
2797 	vap->va_type = VREG;
2798 	vap->va_nlink = 1;
2799 	vap->va_ctime = vfs_mnttab_ctime;
2800 	/*
2801 	 * it is ok to just copy mtime as the time will be monotonically
2802 	 * increasing.
2803 	 */
2804 	vap->va_mtime = vfs_mnttab_mtime;
2805 	vap->va_atime = vap->va_mtime;
2806 	return (0);
2807 }
2808 
2809 static void
2810 vfs_mnttabvp_setup(void)
2811 {
2812 	vnode_t *tvp;
2813 	vnodeops_t *vfs_mntdummyvnops;
2814 	const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2815 		VOPNAME_READ, 		{ .vop_read = vfs_mntdummyread },
2816 		VOPNAME_WRITE, 		{ .vop_write = vfs_mntdummywrite },
2817 		VOPNAME_GETATTR,	{ .vop_getattr = vfs_mntdummygetattr },
2818 		VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
2819 		NULL,			NULL
2820 	};
2821 
2822 	if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2823 	    &vfs_mntdummyvnops) != 0) {
2824 		cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2825 		/* Shouldn't happen, but not bad enough to panic */
2826 		return;
2827 	}
2828 
2829 	/*
2830 	 * A global dummy vnode is allocated to represent mntfs files.
2831 	 * The mntfs file (/etc/mnttab) can be monitored for file events
2832 	 * and receive an event when mnttab changes. Dummy VOP calls
2833 	 * will be made on this vnode. The file events notification module
2834 	 * intercepts this vnode and delivers relevant events.
2835 	 */
2836 	tvp = vn_alloc(KM_SLEEP);
2837 	tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2838 	vn_setops(tvp, vfs_mntdummyvnops);
2839 	tvp->v_type = VREG;
2840 	/*
2841 	 * The mnt dummy ops do not reference v_data.
2842 	 * No other module intercepting this vnode should either.
2843 	 * Just set it to point to itself.
2844 	 */
2845 	tvp->v_data = (caddr_t)tvp;
2846 	tvp->v_vfsp = rootvfs;
2847 	vfs_mntdummyvp = tvp;
2848 }
2849 
2850 /*
2851  * performs fake read/write ops
2852  */
2853 static void
2854 vfs_mnttab_rwop(int rw)
2855 {
2856 	struct uio	uio;
2857 	struct iovec	iov;
2858 	char	buf[1];
2859 
2860 	if (vfs_mntdummyvp == NULL)
2861 		return;
2862 
2863 	bzero(&uio, sizeof (uio));
2864 	bzero(&iov, sizeof (iov));
2865 	iov.iov_base = buf;
2866 	iov.iov_len = 0;
2867 	uio.uio_iov = &iov;
2868 	uio.uio_iovcnt = 1;
2869 	uio.uio_loffset = 0;
2870 	uio.uio_segflg = UIO_SYSSPACE;
2871 	uio.uio_resid = 0;
2872 	if (rw) {
2873 		(void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2874 	} else {
2875 		(void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2876 	}
2877 }
2878 
2879 /*
2880  * Generate a write operation.
2881  */
2882 void
2883 vfs_mnttab_writeop(void)
2884 {
2885 	vfs_mnttab_rwop(1);
2886 }
2887 
2888 /*
2889  * Generate a read operation.
2890  */
2891 void
2892 vfs_mnttab_readop(void)
2893 {
2894 	vfs_mnttab_rwop(0);
2895 }
2896 
2897 /*
2898  * Free any mnttab information recorded in the vfs struct.
2899  * The vfs must not be on the vfs list.
2900  */
2901 static void
2902 vfs_freemnttab(struct vfs *vfsp)
2903 {
2904 	ASSERT(!VFS_ON_LIST(vfsp));
2905 
2906 	/*
2907 	 * Free device and mount point information
2908 	 */
2909 	if (vfsp->vfs_mntpt != NULL) {
2910 		refstr_rele(vfsp->vfs_mntpt);
2911 		vfsp->vfs_mntpt = NULL;
2912 	}
2913 	if (vfsp->vfs_resource != NULL) {
2914 		refstr_rele(vfsp->vfs_resource);
2915 		vfsp->vfs_resource = NULL;
2916 	}
2917 	/*
2918 	 * Now free mount options information
2919 	 */
2920 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2921 }
2922 
2923 /*
2924  * Return the last mnttab modification time
2925  */
2926 void
2927 vfs_mnttab_modtime(timespec_t *ts)
2928 {
2929 	ASSERT(RW_LOCK_HELD(&vfslist));
2930 	*ts = vfs_mnttab_mtime;
2931 }
2932 
2933 /*
2934  * See if mnttab is changed
2935  */
2936 void
2937 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2938 {
2939 	int changed;
2940 
2941 	*phpp = (struct pollhead *)NULL;
2942 
2943 	/*
2944 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2945 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2946 	 * to not grab the vfs list lock because tv_sec is monotonically
2947 	 * increasing.
2948 	 */
2949 
2950 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2951 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2952 	if (!changed) {
2953 		*phpp = &vfs_pollhd;
2954 	}
2955 }
2956 
2957 /* Provide a unique and monotonically-increasing timestamp. */
2958 void
2959 vfs_mono_time(timespec_t *ts)
2960 {
2961 	static volatile hrtime_t hrt;		/* The saved time. */
2962 	hrtime_t	newhrt, oldhrt;		/* For effecting the CAS. */
2963 	timespec_t	newts;
2964 
2965 	/*
2966 	 * Try gethrestime() first, but be prepared to fabricate a sensible
2967 	 * answer at the first sign of any trouble.
2968 	 */
2969 	gethrestime(&newts);
2970 	newhrt = ts2hrt(&newts);
2971 	for (;;) {
2972 		oldhrt = hrt;
2973 		if (newhrt <= hrt)
2974 			newhrt = hrt + 1;
2975 		if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
2976 			break;
2977 	}
2978 	hrt2ts(newhrt, ts);
2979 }
2980 
2981 /*
2982  * Update the mnttab modification time and wake up any waiters for
2983  * mnttab changes
2984  */
2985 void
2986 vfs_mnttab_modtimeupd()
2987 {
2988 	hrtime_t oldhrt, newhrt;
2989 
2990 	ASSERT(RW_WRITE_HELD(&vfslist));
2991 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
2992 	gethrestime(&vfs_mnttab_mtime);
2993 	newhrt = ts2hrt(&vfs_mnttab_mtime);
2994 	if (oldhrt == (hrtime_t)0)
2995 		vfs_mnttab_ctime = vfs_mnttab_mtime;
2996 	/*
2997 	 * Attempt to provide unique mtime (like uniqtime but not).
2998 	 */
2999 	if (newhrt == oldhrt) {
3000 		newhrt++;
3001 		hrt2ts(newhrt, &vfs_mnttab_mtime);
3002 	}
3003 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3004 	vfs_mnttab_writeop();
3005 }
3006 
3007 int
3008 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3009 {
3010 	vnode_t *coveredvp;
3011 	int error;
3012 	extern void teardown_vopstats(vfs_t *);
3013 
3014 	/*
3015 	 * Get covered vnode. This will be NULL if the vfs is not linked
3016 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3017 	 */
3018 	coveredvp = vfsp->vfs_vnodecovered;
3019 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3020 
3021 	/*
3022 	 * Purge all dnlc entries for this vfs.
3023 	 */
3024 	(void) dnlc_purge_vfsp(vfsp, 0);
3025 
3026 	/* For forcible umount, skip VFS_SYNC() since it may hang */
3027 	if ((flag & MS_FORCE) == 0)
3028 		(void) VFS_SYNC(vfsp, 0, cr);
3029 
3030 	/*
3031 	 * Lock the vfs to maintain fs status quo during unmount.  This
3032 	 * has to be done after the sync because ufs_update tries to acquire
3033 	 * the vfs_reflock.
3034 	 */
3035 	vfs_lock_wait(vfsp);
3036 
3037 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3038 		vfs_unlock(vfsp);
3039 		if (coveredvp != NULL)
3040 			vn_vfsunlock(coveredvp);
3041 	} else if (coveredvp != NULL) {
3042 		teardown_vopstats(vfsp);
3043 		/*
3044 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3045 		 * when it frees vfsp so we do a VN_HOLD() so we can
3046 		 * continue to use coveredvp afterwards.
3047 		 */
3048 		VN_HOLD(coveredvp);
3049 		vfs_remove(vfsp);
3050 		vn_vfsunlock(coveredvp);
3051 		VN_RELE(coveredvp);
3052 	} else {
3053 		teardown_vopstats(vfsp);
3054 		/*
3055 		 * Release the reference to vfs that is not linked
3056 		 * into the name space.
3057 		 */
3058 		vfs_unlock(vfsp);
3059 		VFS_RELE(vfsp);
3060 	}
3061 	return (error);
3062 }
3063 
3064 
3065 /*
3066  * Vfs_unmountall() is called by uadmin() to unmount all
3067  * mounted file systems (except the root file system) during shutdown.
3068  * It follows the existing locking protocol when traversing the vfs list
3069  * to sync and unmount vfses. Even though there should be no
3070  * other thread running while the system is shutting down, it is prudent
3071  * to still follow the locking protocol.
3072  */
3073 void
3074 vfs_unmountall(void)
3075 {
3076 	struct vfs *vfsp;
3077 	struct vfs *prev_vfsp = NULL;
3078 	int error;
3079 
3080 	/*
3081 	 * Toss all dnlc entries now so that the per-vfs sync
3082 	 * and unmount operations don't have to slog through
3083 	 * a bunch of uninteresting vnodes over and over again.
3084 	 */
3085 	dnlc_purge();
3086 
3087 	vfs_list_lock();
3088 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3089 		prev_vfsp = vfsp->vfs_prev;
3090 
3091 		if (vfs_lock(vfsp) != 0)
3092 			continue;
3093 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
3094 		vfs_unlock(vfsp);
3095 		if (error)
3096 			continue;
3097 
3098 		vfs_list_unlock();
3099 
3100 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3101 		(void) dounmount(vfsp, 0, CRED());
3102 
3103 		/*
3104 		 * Since we dropped the vfslist lock above we must
3105 		 * verify that next_vfsp still exists, else start over.
3106 		 */
3107 		vfs_list_lock();
3108 		for (vfsp = rootvfs->vfs_prev;
3109 		    vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3110 			if (vfsp == prev_vfsp)
3111 				break;
3112 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
3113 			prev_vfsp = rootvfs->vfs_prev;
3114 	}
3115 	vfs_list_unlock();
3116 }
3117 
3118 /*
3119  * Called to add an entry to the end of the vfs mount in progress list
3120  */
3121 void
3122 vfs_addmip(dev_t dev, struct vfs *vfsp)
3123 {
3124 	struct ipmnt *mipp;
3125 
3126 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3127 	mipp->mip_next = NULL;
3128 	mipp->mip_dev = dev;
3129 	mipp->mip_vfsp = vfsp;
3130 	mutex_enter(&vfs_miplist_mutex);
3131 	if (vfs_miplist_end != NULL)
3132 		vfs_miplist_end->mip_next = mipp;
3133 	else
3134 		vfs_miplist = mipp;
3135 	vfs_miplist_end = mipp;
3136 	mutex_exit(&vfs_miplist_mutex);
3137 }
3138 
3139 /*
3140  * Called to remove an entry from the mount in progress list
3141  * Either because the mount completed or it failed.
3142  */
3143 void
3144 vfs_delmip(struct vfs *vfsp)
3145 {
3146 	struct ipmnt *mipp, *mipprev;
3147 
3148 	mutex_enter(&vfs_miplist_mutex);
3149 	mipprev = NULL;
3150 	for (mipp = vfs_miplist;
3151 	    mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3152 		mipprev = mipp;
3153 	}
3154 	if (mipp == NULL)
3155 		return; /* shouldn't happen */
3156 	if (mipp == vfs_miplist_end)
3157 		vfs_miplist_end = mipprev;
3158 	if (mipprev == NULL)
3159 		vfs_miplist = mipp->mip_next;
3160 	else
3161 		mipprev->mip_next = mipp->mip_next;
3162 	mutex_exit(&vfs_miplist_mutex);
3163 	kmem_free(mipp, sizeof (struct ipmnt));
3164 }
3165 
3166 /*
3167  * vfs_add is called by a specific filesystem's mount routine to add
3168  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3169  * The vfs should already have been locked by the caller.
3170  *
3171  * coveredvp is NULL if this is the root.
3172  */
3173 void
3174 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3175 {
3176 	int newflag;
3177 
3178 	ASSERT(vfs_lock_held(vfsp));
3179 	VFS_HOLD(vfsp);
3180 	newflag = vfsp->vfs_flag;
3181 	if (mflag & MS_RDONLY)
3182 		newflag |= VFS_RDONLY;
3183 	else
3184 		newflag &= ~VFS_RDONLY;
3185 	if (mflag & MS_NOSUID)
3186 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3187 	else
3188 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3189 	if (mflag & MS_NOMNTTAB)
3190 		newflag |= VFS_NOMNTTAB;
3191 	else
3192 		newflag &= ~VFS_NOMNTTAB;
3193 
3194 	if (coveredvp != NULL) {
3195 		ASSERT(vn_vfswlock_held(coveredvp));
3196 		coveredvp->v_vfsmountedhere = vfsp;
3197 		VN_HOLD(coveredvp);
3198 	}
3199 	vfsp->vfs_vnodecovered = coveredvp;
3200 	vfsp->vfs_flag = newflag;
3201 
3202 	vfs_list_add(vfsp);
3203 }
3204 
3205 /*
3206  * Remove a vfs from the vfs list, null out the pointer from the
3207  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3208  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3209  * reference to the vfs and to the covered vnode.
3210  *
3211  * Called from dounmount after it's confirmed with the file system
3212  * that the unmount is legal.
3213  */
3214 void
3215 vfs_remove(struct vfs *vfsp)
3216 {
3217 	vnode_t *vp;
3218 
3219 	ASSERT(vfs_lock_held(vfsp));
3220 
3221 	/*
3222 	 * Can't unmount root.  Should never happen because fs will
3223 	 * be busy.
3224 	 */
3225 	if (vfsp == rootvfs)
3226 		panic("vfs_remove: unmounting root");
3227 
3228 	vfs_list_remove(vfsp);
3229 
3230 	/*
3231 	 * Unhook from the file system name space.
3232 	 */
3233 	vp = vfsp->vfs_vnodecovered;
3234 	ASSERT(vn_vfswlock_held(vp));
3235 	vp->v_vfsmountedhere = NULL;
3236 	vfsp->vfs_vnodecovered = NULL;
3237 	VN_RELE(vp);
3238 
3239 	/*
3240 	 * Release lock and wakeup anybody waiting.
3241 	 */
3242 	vfs_unlock(vfsp);
3243 	VFS_RELE(vfsp);
3244 }
3245 
3246 /*
3247  * Lock a filesystem to prevent access to it while mounting,
3248  * unmounting and syncing.  Return EBUSY immediately if lock
3249  * can't be acquired.
3250  */
3251 int
3252 vfs_lock(vfs_t *vfsp)
3253 {
3254 	vn_vfslocks_entry_t *vpvfsentry;
3255 
3256 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3257 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3258 		return (0);
3259 
3260 	vn_vfslocks_rele(vpvfsentry);
3261 	return (EBUSY);
3262 }
3263 
3264 int
3265 vfs_rlock(vfs_t *vfsp)
3266 {
3267 	vn_vfslocks_entry_t *vpvfsentry;
3268 
3269 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3270 
3271 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3272 		return (0);
3273 
3274 	vn_vfslocks_rele(vpvfsentry);
3275 	return (EBUSY);
3276 }
3277 
3278 void
3279 vfs_lock_wait(vfs_t *vfsp)
3280 {
3281 	vn_vfslocks_entry_t *vpvfsentry;
3282 
3283 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3284 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3285 }
3286 
3287 void
3288 vfs_rlock_wait(vfs_t *vfsp)
3289 {
3290 	vn_vfslocks_entry_t *vpvfsentry;
3291 
3292 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3293 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3294 }
3295 
3296 /*
3297  * Unlock a locked filesystem.
3298  */
3299 void
3300 vfs_unlock(vfs_t *vfsp)
3301 {
3302 	vn_vfslocks_entry_t *vpvfsentry;
3303 
3304 	/*
3305 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3306 	 * And these changes should remain for the patch changes as it is.
3307 	 */
3308 	if (panicstr)
3309 		return;
3310 
3311 	/*
3312 	 * ve_refcount needs to be dropped twice here.
3313 	 * 1. To release refernce after a call to vfs_locks_getlock()
3314 	 * 2. To release the reference from the locking routines like
3315 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3316 	 */
3317 
3318 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3319 	vn_vfslocks_rele(vpvfsentry);
3320 
3321 	rwst_exit(&vpvfsentry->ve_lock);
3322 	vn_vfslocks_rele(vpvfsentry);
3323 }
3324 
3325 /*
3326  * Utility routine that allows a filesystem to construct its
3327  * fsid in "the usual way" - by munging some underlying dev_t and
3328  * the filesystem type number into the 64-bit fsid.  Note that
3329  * this implicitly relies on dev_t persistence to make filesystem
3330  * id's persistent.
3331  *
3332  * There's nothing to prevent an individual fs from constructing its
3333  * fsid in a different way, and indeed they should.
3334  *
3335  * Since we want fsids to be 32-bit quantities (so that they can be
3336  * exported identically by either 32-bit or 64-bit APIs, as well as
3337  * the fact that fsid's are "known" to NFS), we compress the device
3338  * number given down to 32-bits, and panic if that isn't possible.
3339  */
3340 void
3341 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3342 {
3343 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3344 		panic("device number too big for fsid!");
3345 	fsi->val[1] = val;
3346 }
3347 
3348 int
3349 vfs_lock_held(vfs_t *vfsp)
3350 {
3351 	int held;
3352 	vn_vfslocks_entry_t *vpvfsentry;
3353 
3354 	/*
3355 	 * vfs_lock_held will mimic sema_held behaviour
3356 	 * if panicstr is set. And these changes should remain
3357 	 * for the patch changes as it is.
3358 	 */
3359 	if (panicstr)
3360 		return (1);
3361 
3362 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3363 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3364 
3365 	vn_vfslocks_rele(vpvfsentry);
3366 	return (held);
3367 }
3368 
3369 struct _kthread *
3370 vfs_lock_owner(vfs_t *vfsp)
3371 {
3372 	struct _kthread *owner;
3373 	vn_vfslocks_entry_t *vpvfsentry;
3374 
3375 	/*
3376 	 * vfs_wlock_held will mimic sema_held behaviour
3377 	 * if panicstr is set. And these changes should remain
3378 	 * for the patch changes as it is.
3379 	 */
3380 	if (panicstr)
3381 		return (NULL);
3382 
3383 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3384 	owner = rwst_owner(&vpvfsentry->ve_lock);
3385 
3386 	vn_vfslocks_rele(vpvfsentry);
3387 	return (owner);
3388 }
3389 
3390 /*
3391  * vfs list locking.
3392  *
3393  * Rather than manipulate the vfslist lock directly, we abstract into lock
3394  * and unlock routines to allow the locking implementation to be changed for
3395  * clustering.
3396  *
3397  * Whenever the vfs list is modified through its hash links, the overall list
3398  * lock must be obtained before locking the relevant hash bucket.  But to see
3399  * whether a given vfs is on the list, it suffices to obtain the lock for the
3400  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3401  */
3402 
3403 void
3404 vfs_list_lock()
3405 {
3406 	rw_enter(&vfslist, RW_WRITER);
3407 }
3408 
3409 void
3410 vfs_list_read_lock()
3411 {
3412 	rw_enter(&vfslist, RW_READER);
3413 }
3414 
3415 void
3416 vfs_list_unlock()
3417 {
3418 	rw_exit(&vfslist);
3419 }
3420 
3421 /*
3422  * Low level worker routines for adding entries to and removing entries from
3423  * the vfs list.
3424  */
3425 
3426 static void
3427 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3428 {
3429 	int vhno;
3430 	struct vfs **hp;
3431 	dev_t dev;
3432 
3433 	ASSERT(RW_WRITE_HELD(&vfslist));
3434 
3435 	dev = expldev(vfsp->vfs_fsid.val[0]);
3436 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3437 
3438 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3439 
3440 	/*
3441 	 * Link into the hash table, inserting it at the end, so that LOFS
3442 	 * with the same fsid as UFS (or other) file systems will not hide the
3443 	 * UFS.
3444 	 */
3445 	if (insert_at_head) {
3446 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3447 		rvfs_list[vhno].rvfs_head = vfsp;
3448 	} else {
3449 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3450 		    hp = &(*hp)->vfs_hash)
3451 			continue;
3452 		/*
3453 		 * hp now contains the address of the pointer to update
3454 		 * to effect the insertion.
3455 		 */
3456 		vfsp->vfs_hash = NULL;
3457 		*hp = vfsp;
3458 	}
3459 
3460 	rvfs_list[vhno].rvfs_len++;
3461 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3462 }
3463 
3464 
3465 static void
3466 vfs_hash_remove(struct vfs *vfsp)
3467 {
3468 	int vhno;
3469 	struct vfs *tvfsp;
3470 	dev_t dev;
3471 
3472 	ASSERT(RW_WRITE_HELD(&vfslist));
3473 
3474 	dev = expldev(vfsp->vfs_fsid.val[0]);
3475 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3476 
3477 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3478 
3479 	/*
3480 	 * Remove from hash.
3481 	 */
3482 	if (rvfs_list[vhno].rvfs_head == vfsp) {
3483 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3484 		rvfs_list[vhno].rvfs_len--;
3485 		goto foundit;
3486 	}
3487 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3488 	    tvfsp = tvfsp->vfs_hash) {
3489 		if (tvfsp->vfs_hash == vfsp) {
3490 			tvfsp->vfs_hash = vfsp->vfs_hash;
3491 			rvfs_list[vhno].rvfs_len--;
3492 			goto foundit;
3493 		}
3494 	}
3495 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3496 
3497 foundit:
3498 
3499 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3500 }
3501 
3502 
3503 void
3504 vfs_list_add(struct vfs *vfsp)
3505 {
3506 	zone_t *zone;
3507 
3508 	/*
3509 	 * Typically, the vfs_t will have been created on behalf of the file
3510 	 * system in vfs_init, where it will have been provided with a
3511 	 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3512 	 * by an unbundled file system. We therefore check for such an example
3513 	 * before stamping the vfs_t with its creation time for the benefit of
3514 	 * mntfs.
3515 	 */
3516 	if (vfsp->vfs_implp == NULL)
3517 		vfsimpl_setup(vfsp);
3518 	vfs_mono_time(&vfsp->vfs_hrctime);
3519 
3520 	/*
3521 	 * The zone that owns the mount is the one that performed the mount.
3522 	 * Note that this isn't necessarily the same as the zone mounted into.
3523 	 * The corresponding zone_rele_ref() will be done when the vfs_t
3524 	 * is being free'd.
3525 	 */
3526 	vfsp->vfs_zone = curproc->p_zone;
3527 	zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3528 	zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3529 	    ZONE_REF_VFS);
3530 
3531 	/*
3532 	 * Find the zone mounted into, and put this mount on its vfs list.
3533 	 */
3534 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3535 	ASSERT(zone != NULL);
3536 	/*
3537 	 * Special casing for the root vfs.  This structure is allocated
3538 	 * statically and hooked onto rootvfs at link time.  During the
3539 	 * vfs_mountroot call at system startup time, the root file system's
3540 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3541 	 * as argument.  The code below must detect and handle this special
3542 	 * case.  The only apparent justification for this special casing is
3543 	 * to ensure that the root file system appears at the head of the
3544 	 * list.
3545 	 *
3546 	 * XXX:	I'm assuming that it's ok to do normal list locking when
3547 	 *	adding the entry for the root file system (this used to be
3548 	 *	done with no locks held).
3549 	 */
3550 	vfs_list_lock();
3551 	/*
3552 	 * Link into the vfs list proper.
3553 	 */
3554 	if (vfsp == &root) {
3555 		/*
3556 		 * Assert: This vfs is already on the list as its first entry.
3557 		 * Thus, there's nothing to do.
3558 		 */
3559 		ASSERT(rootvfs == vfsp);
3560 		/*
3561 		 * Add it to the head of the global zone's vfslist.
3562 		 */
3563 		ASSERT(zone == global_zone);
3564 		ASSERT(zone->zone_vfslist == NULL);
3565 		zone->zone_vfslist = vfsp;
3566 	} else {
3567 		/*
3568 		 * Link to end of list using vfs_prev (as rootvfs is now a
3569 		 * doubly linked circular list) so list is in mount order for
3570 		 * mnttab use.
3571 		 */
3572 		rootvfs->vfs_prev->vfs_next = vfsp;
3573 		vfsp->vfs_prev = rootvfs->vfs_prev;
3574 		rootvfs->vfs_prev = vfsp;
3575 		vfsp->vfs_next = rootvfs;
3576 
3577 		/*
3578 		 * Do it again for the zone-private list (which may be NULL).
3579 		 */
3580 		if (zone->zone_vfslist == NULL) {
3581 			ASSERT(zone != global_zone);
3582 			zone->zone_vfslist = vfsp;
3583 		} else {
3584 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3585 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3586 			zone->zone_vfslist->vfs_zone_prev = vfsp;
3587 			vfsp->vfs_zone_next = zone->zone_vfslist;
3588 		}
3589 	}
3590 
3591 	/*
3592 	 * Link into the hash table, inserting it at the end, so that LOFS
3593 	 * with the same fsid as UFS (or other) file systems will not hide
3594 	 * the UFS.
3595 	 */
3596 	vfs_hash_add(vfsp, 0);
3597 
3598 	/*
3599 	 * update the mnttab modification time
3600 	 */
3601 	vfs_mnttab_modtimeupd();
3602 	vfs_list_unlock();
3603 	zone_rele(zone);
3604 }
3605 
3606 void
3607 vfs_list_remove(struct vfs *vfsp)
3608 {
3609 	zone_t *zone;
3610 
3611 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3612 	ASSERT(zone != NULL);
3613 	/*
3614 	 * Callers are responsible for preventing attempts to unmount the
3615 	 * root.
3616 	 */
3617 	ASSERT(vfsp != rootvfs);
3618 
3619 	vfs_list_lock();
3620 
3621 	/*
3622 	 * Remove from hash.
3623 	 */
3624 	vfs_hash_remove(vfsp);
3625 
3626 	/*
3627 	 * Remove from vfs list.
3628 	 */
3629 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3630 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3631 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3632 
3633 	/*
3634 	 * Remove from zone-specific vfs list.
3635 	 */
3636 	if (zone->zone_vfslist == vfsp)
3637 		zone->zone_vfslist = vfsp->vfs_zone_next;
3638 
3639 	if (vfsp->vfs_zone_next == vfsp) {
3640 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3641 		ASSERT(zone->zone_vfslist == vfsp);
3642 		zone->zone_vfslist = NULL;
3643 	}
3644 
3645 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3646 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3647 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3648 
3649 	/*
3650 	 * update the mnttab modification time
3651 	 */
3652 	vfs_mnttab_modtimeupd();
3653 	vfs_list_unlock();
3654 	zone_rele(zone);
3655 }
3656 
3657 struct vfs *
3658 getvfs(fsid_t *fsid)
3659 {
3660 	struct vfs *vfsp;
3661 	int val0 = fsid->val[0];
3662 	int val1 = fsid->val[1];
3663 	dev_t dev = expldev(val0);
3664 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3665 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3666 
3667 	mutex_enter(hmp);
3668 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3669 		if (vfsp->vfs_fsid.val[0] == val0 &&
3670 		    vfsp->vfs_fsid.val[1] == val1) {
3671 			VFS_HOLD(vfsp);
3672 			mutex_exit(hmp);
3673 			return (vfsp);
3674 		}
3675 	}
3676 	mutex_exit(hmp);
3677 	return (NULL);
3678 }
3679 
3680 /*
3681  * Search the vfs mount in progress list for a specified device/vfs entry.
3682  * Returns 0 if the first entry in the list that the device matches has the
3683  * given vfs pointer as well.  If the device matches but a different vfs
3684  * pointer is encountered in the list before the given vfs pointer then
3685  * a 1 is returned.
3686  */
3687 
3688 int
3689 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3690 {
3691 	int retval = 0;
3692 	struct ipmnt *mipp;
3693 
3694 	mutex_enter(&vfs_miplist_mutex);
3695 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3696 		if (mipp->mip_dev == dev) {
3697 			if (mipp->mip_vfsp != vfsp)
3698 				retval = 1;
3699 			break;
3700 		}
3701 	}
3702 	mutex_exit(&vfs_miplist_mutex);
3703 	return (retval);
3704 }
3705 
3706 /*
3707  * Search the vfs list for a specified device.  Returns 1, if entry is found
3708  * or 0 if no suitable entry is found.
3709  */
3710 
3711 int
3712 vfs_devismounted(dev_t dev)
3713 {
3714 	struct vfs *vfsp;
3715 	int found;
3716 
3717 	vfs_list_read_lock();
3718 	vfsp = rootvfs;
3719 	found = 0;
3720 	do {
3721 		if (vfsp->vfs_dev == dev) {
3722 			found = 1;
3723 			break;
3724 		}
3725 		vfsp = vfsp->vfs_next;
3726 	} while (vfsp != rootvfs);
3727 
3728 	vfs_list_unlock();
3729 	return (found);
3730 }
3731 
3732 /*
3733  * Search the vfs list for a specified device.  Returns a pointer to it
3734  * or NULL if no suitable entry is found. The caller of this routine
3735  * is responsible for releasing the returned vfs pointer.
3736  */
3737 struct vfs *
3738 vfs_dev2vfsp(dev_t dev)
3739 {
3740 	struct vfs *vfsp;
3741 	int found;
3742 
3743 	vfs_list_read_lock();
3744 	vfsp = rootvfs;
3745 	found = 0;
3746 	do {
3747 		/*
3748 		 * The following could be made more efficient by making
3749 		 * the entire loop use vfs_zone_next if the call is from
3750 		 * a zone.  The only callers, however, ustat(2) and
3751 		 * umount2(2), don't seem to justify the added
3752 		 * complexity at present.
3753 		 */
3754 		if (vfsp->vfs_dev == dev &&
3755 		    ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3756 		    curproc->p_zone)) {
3757 			VFS_HOLD(vfsp);
3758 			found = 1;
3759 			break;
3760 		}
3761 		vfsp = vfsp->vfs_next;
3762 	} while (vfsp != rootvfs);
3763 	vfs_list_unlock();
3764 	return (found ? vfsp: NULL);
3765 }
3766 
3767 /*
3768  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3769  * or NULL if no suitable entry is found. The caller of this routine
3770  * is responsible for releasing the returned vfs pointer.
3771  *
3772  * Note that if multiple mntpoints match, the last one matching is
3773  * returned in an attempt to return the "top" mount when overlay
3774  * mounts are covering the same mount point.  This is accomplished by starting
3775  * at the end of the list and working our way backwards, stopping at the first
3776  * matching mount.
3777  */
3778 struct vfs *
3779 vfs_mntpoint2vfsp(const char *mp)
3780 {
3781 	struct vfs *vfsp;
3782 	struct vfs *retvfsp = NULL;
3783 	zone_t *zone = curproc->p_zone;
3784 	struct vfs *list;
3785 
3786 	vfs_list_read_lock();
3787 	if (getzoneid() == GLOBAL_ZONEID) {
3788 		/*
3789 		 * The global zone may see filesystems in any zone.
3790 		 */
3791 		vfsp = rootvfs->vfs_prev;
3792 		do {
3793 			if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3794 				retvfsp = vfsp;
3795 				break;
3796 			}
3797 			vfsp = vfsp->vfs_prev;
3798 		} while (vfsp != rootvfs->vfs_prev);
3799 	} else if ((list = zone->zone_vfslist) != NULL) {
3800 		const char *mntpt;
3801 
3802 		vfsp = list->vfs_zone_prev;
3803 		do {
3804 			mntpt = refstr_value(vfsp->vfs_mntpt);
3805 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3806 			if (strcmp(mntpt, mp) == 0) {
3807 				retvfsp = vfsp;
3808 				break;
3809 			}
3810 			vfsp = vfsp->vfs_zone_prev;
3811 		} while (vfsp != list->vfs_zone_prev);
3812 	}
3813 	if (retvfsp)
3814 		VFS_HOLD(retvfsp);
3815 	vfs_list_unlock();
3816 	return (retvfsp);
3817 }
3818 
3819 /*
3820  * Search the vfs list for a specified vfsops.
3821  * if vfs entry is found then return 1, else 0.
3822  */
3823 int
3824 vfs_opsinuse(vfsops_t *ops)
3825 {
3826 	struct vfs *vfsp;
3827 	int found;
3828 
3829 	vfs_list_read_lock();
3830 	vfsp = rootvfs;
3831 	found = 0;
3832 	do {
3833 		if (vfs_getops(vfsp) == ops) {
3834 			found = 1;
3835 			break;
3836 		}
3837 		vfsp = vfsp->vfs_next;
3838 	} while (vfsp != rootvfs);
3839 	vfs_list_unlock();
3840 	return (found);
3841 }
3842 
3843 /*
3844  * Allocate an entry in vfssw for a file system type
3845  */
3846 struct vfssw *
3847 allocate_vfssw(const char *type)
3848 {
3849 	struct vfssw *vswp;
3850 
3851 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3852 		/*
3853 		 * The vfssw table uses the empty string to identify an
3854 		 * available entry; we cannot add any type which has
3855 		 * a leading NUL. The string length is limited to
3856 		 * the size of the st_fstype array in struct stat.
3857 		 */
3858 		return (NULL);
3859 	}
3860 
3861 	ASSERT(VFSSW_WRITE_LOCKED());
3862 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3863 		if (!ALLOCATED_VFSSW(vswp)) {
3864 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3865 			(void) strcpy(vswp->vsw_name, type);
3866 			ASSERT(vswp->vsw_count == 0);
3867 			vswp->vsw_count = 1;
3868 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3869 			return (vswp);
3870 		}
3871 	return (NULL);
3872 }
3873 
3874 /*
3875  * Impose additional layer of translation between vfstype names
3876  * and module names in the filesystem.
3877  */
3878 static const char *
3879 vfs_to_modname(const char *vfstype)
3880 {
3881 	if (strcmp(vfstype, "proc") == 0) {
3882 		vfstype = "procfs";
3883 	} else if (strcmp(vfstype, "fd") == 0) {
3884 		vfstype = "fdfs";
3885 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3886 		vfstype = "nfs";
3887 	}
3888 
3889 	return (vfstype);
3890 }
3891 
3892 /*
3893  * Find a vfssw entry given a file system type name.
3894  * Try to autoload the filesystem if it's not found.
3895  * If it's installed, return the vfssw locked to prevent unloading.
3896  */
3897 struct vfssw *
3898 vfs_getvfssw(const char *type)
3899 {
3900 	struct vfssw *vswp;
3901 	const char *modname;
3902 
3903 	RLOCK_VFSSW();
3904 	vswp = vfs_getvfsswbyname(type);
3905 	modname = vfs_to_modname(type);
3906 
3907 	if (rootdir == NULL) {
3908 		/*
3909 		 * If we haven't yet loaded the root file system, then our
3910 		 * _init won't be called until later. Allocate vfssw entry,
3911 		 * because mod_installfs won't be called.
3912 		 */
3913 		if (vswp == NULL) {
3914 			RUNLOCK_VFSSW();
3915 			WLOCK_VFSSW();
3916 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3917 				if ((vswp = allocate_vfssw(type)) == NULL) {
3918 					WUNLOCK_VFSSW();
3919 					return (NULL);
3920 				}
3921 			}
3922 			WUNLOCK_VFSSW();
3923 			RLOCK_VFSSW();
3924 		}
3925 		if (!VFS_INSTALLED(vswp)) {
3926 			RUNLOCK_VFSSW();
3927 			(void) modloadonly("fs", modname);
3928 		} else
3929 			RUNLOCK_VFSSW();
3930 		return (vswp);
3931 	}
3932 
3933 	/*
3934 	 * Try to load the filesystem.  Before calling modload(), we drop
3935 	 * our lock on the VFS switch table, and pick it up after the
3936 	 * module is loaded.  However, there is a potential race:  the
3937 	 * module could be unloaded after the call to modload() completes
3938 	 * but before we pick up the lock and drive on.  Therefore,
3939 	 * we keep reloading the module until we've loaded the module
3940 	 * _and_ we have the lock on the VFS switch table.
3941 	 */
3942 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3943 		RUNLOCK_VFSSW();
3944 		if (modload("fs", modname) == -1)
3945 			return (NULL);
3946 		RLOCK_VFSSW();
3947 		if (vswp == NULL)
3948 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3949 				break;
3950 	}
3951 	RUNLOCK_VFSSW();
3952 
3953 	return (vswp);
3954 }
3955 
3956 /*
3957  * Find a vfssw entry given a file system type name.
3958  */
3959 struct vfssw *
3960 vfs_getvfsswbyname(const char *type)
3961 {
3962 	struct vfssw *vswp;
3963 
3964 	ASSERT(VFSSW_LOCKED());
3965 	if (type == NULL || *type == '\0')
3966 		return (NULL);
3967 
3968 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3969 		if (strcmp(type, vswp->vsw_name) == 0) {
3970 			vfs_refvfssw(vswp);
3971 			return (vswp);
3972 		}
3973 	}
3974 
3975 	return (NULL);
3976 }
3977 
3978 /*
3979  * Find a vfssw entry given a set of vfsops.
3980  */
3981 struct vfssw *
3982 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
3983 {
3984 	struct vfssw *vswp;
3985 
3986 	RLOCK_VFSSW();
3987 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3988 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
3989 			vfs_refvfssw(vswp);
3990 			RUNLOCK_VFSSW();
3991 			return (vswp);
3992 		}
3993 	}
3994 	RUNLOCK_VFSSW();
3995 
3996 	return (NULL);
3997 }
3998 
3999 /*
4000  * Reference a vfssw entry.
4001  */
4002 void
4003 vfs_refvfssw(struct vfssw *vswp)
4004 {
4005 
4006 	mutex_enter(&vswp->vsw_lock);
4007 	vswp->vsw_count++;
4008 	mutex_exit(&vswp->vsw_lock);
4009 }
4010 
4011 /*
4012  * Unreference a vfssw entry.
4013  */
4014 void
4015 vfs_unrefvfssw(struct vfssw *vswp)
4016 {
4017 
4018 	mutex_enter(&vswp->vsw_lock);
4019 	vswp->vsw_count--;
4020 	mutex_exit(&vswp->vsw_lock);
4021 }
4022 
4023 static int sync_retries = 20;	/* number of retries when not making progress */
4024 static int sync_triesleft;	/* portion of sync_retries remaining */
4025 
4026 static pgcnt_t old_pgcnt, new_pgcnt;
4027 static int new_bufcnt, old_bufcnt;
4028 
4029 /*
4030  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4031  * complete.  We wait by counting the number of dirty pages and buffers,
4032  * pushing them out using bio_busy() and page_busy(), and then counting again.
4033  * This routine is used during the uadmin A_SHUTDOWN code.  It should only
4034  * be used after some higher-level mechanism has quiesced the system so that
4035  * new writes are not being initiated while we are waiting for completion.
4036  *
4037  * To ensure finite running time, our algorithm uses sync_triesleft (a progress
4038  * counter used by the vfs_syncall() loop below). It is declared above so
4039  * it can be found easily in the debugger.
4040  *
4041  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4042  * sync_retries consecutive calls to bio_busy() and page_busy() without
4043  * decreasing either the number of dirty buffers or dirty pages below the
4044  * lowest count we have seen so far, we give up and return from vfs_syncall().
4045  *
4046  * Each loop iteration ends with a call to delay() one second to allow time for
4047  * i/o completion and to permit the user time to read our progress messages.
4048  */
4049 void
4050 vfs_syncall(void)
4051 {
4052 	if (rootdir == NULL && !modrootloaded)
4053 		return; /* no filesystems have been loaded yet */
4054 
4055 	printf("syncing file systems...");
4056 	sync();
4057 
4058 	sync_triesleft = sync_retries;
4059 
4060 	old_bufcnt = new_bufcnt = INT_MAX;
4061 	old_pgcnt = new_pgcnt = ULONG_MAX;
4062 
4063 	while (sync_triesleft > 0) {
4064 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4065 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4066 
4067 		new_bufcnt = bio_busy(B_TRUE);
4068 		new_pgcnt = page_busy(B_TRUE);
4069 
4070 		if (new_bufcnt == 0 && new_pgcnt == 0)
4071 			break;
4072 
4073 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4074 			sync_triesleft = sync_retries;
4075 		else
4076 			sync_triesleft--;
4077 
4078 		if (new_bufcnt)
4079 			printf(" [%d]", new_bufcnt);
4080 		if (new_pgcnt)
4081 			printf(" %lu", new_pgcnt);
4082 
4083 		delay(hz);
4084 	}
4085 
4086 	if (new_bufcnt != 0 || new_pgcnt != 0)
4087 		printf(" done (not all i/o completed)\n");
4088 	else
4089 		printf(" done\n");
4090 
4091 	delay(hz);
4092 }
4093 
4094 /*
4095  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4096  * flags at all.
4097  */
4098 uint_t
4099 vf_to_stf(uint_t vf)
4100 {
4101 	uint_t stf = 0;
4102 
4103 	if (vf & VFS_RDONLY)
4104 		stf |= ST_RDONLY;
4105 	if (vf & VFS_NOSETUID)
4106 		stf |= ST_NOSUID;
4107 	if (vf & VFS_NOTRUNC)
4108 		stf |= ST_NOTRUNC;
4109 
4110 	return (stf);
4111 }
4112 
4113 /*
4114  * Entries for (illegal) fstype 0.
4115  */
4116 /* ARGSUSED */
4117 int
4118 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4119 {
4120 	cmn_err(CE_PANIC, "stray vfs operation");
4121 	return (0);
4122 }
4123 
4124 /*
4125  * Entries for (illegal) fstype 0.
4126  */
4127 int
4128 vfsstray(void)
4129 {
4130 	cmn_err(CE_PANIC, "stray vfs operation");
4131 	return (0);
4132 }
4133 
4134 /*
4135  * Support for dealing with forced UFS unmount and its interaction with
4136  * LOFS. Could be used by any filesystem.
4137  * See bug 1203132.
4138  */
4139 int
4140 vfs_EIO(void)
4141 {
4142 	return (EIO);
4143 }
4144 
4145 /*
4146  * We've gotta define the op for sync separately, since the compiler gets
4147  * confused if we mix and match ANSI and normal style prototypes when
4148  * a "short" argument is present and spits out a warning.
4149  */
4150 /*ARGSUSED*/
4151 int
4152 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4153 {
4154 	return (EIO);
4155 }
4156 
4157 vfs_t EIO_vfs;
4158 vfsops_t *EIO_vfsops;
4159 
4160 /*
4161  * Called from startup() to initialize all loaded vfs's
4162  */
4163 void
4164 vfsinit(void)
4165 {
4166 	struct vfssw *vswp;
4167 	int error;
4168 	extern int vopstats_enabled;
4169 	extern void vopstats_startup();
4170 
4171 	static const fs_operation_def_t EIO_vfsops_template[] = {
4172 		VFSNAME_MOUNT,		{ .error = vfs_EIO },
4173 		VFSNAME_UNMOUNT,	{ .error = vfs_EIO },
4174 		VFSNAME_ROOT,		{ .error = vfs_EIO },
4175 		VFSNAME_STATVFS,	{ .error = vfs_EIO },
4176 		VFSNAME_SYNC, 		{ .vfs_sync = vfs_EIO_sync },
4177 		VFSNAME_VGET,		{ .error = vfs_EIO },
4178 		VFSNAME_MOUNTROOT,	{ .error = vfs_EIO },
4179 		VFSNAME_FREEVFS,	{ .error = vfs_EIO },
4180 		VFSNAME_VNSTATE,	{ .error = vfs_EIO },
4181 		NULL, NULL
4182 	};
4183 
4184 	static const fs_operation_def_t stray_vfsops_template[] = {
4185 		VFSNAME_MOUNT,		{ .error = vfsstray },
4186 		VFSNAME_UNMOUNT,	{ .error = vfsstray },
4187 		VFSNAME_ROOT,		{ .error = vfsstray },
4188 		VFSNAME_STATVFS,	{ .error = vfsstray },
4189 		VFSNAME_SYNC, 		{ .vfs_sync = vfsstray_sync },
4190 		VFSNAME_VGET,		{ .error = vfsstray },
4191 		VFSNAME_MOUNTROOT,	{ .error = vfsstray },
4192 		VFSNAME_FREEVFS,	{ .error = vfsstray },
4193 		VFSNAME_VNSTATE,	{ .error = vfsstray },
4194 		NULL, NULL
4195 	};
4196 
4197 	/* Create vfs cache */
4198 	vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4199 	    sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4200 
4201 	/* Initialize the vnode cache (file systems may use it during init). */
4202 	vn_create_cache();
4203 
4204 	/* Setup event monitor framework */
4205 	fem_init();
4206 
4207 	/* Initialize the dummy stray file system type. */
4208 	error = vfs_setfsops(0, stray_vfsops_template, NULL);
4209 
4210 	/* Initialize the dummy EIO file system. */
4211 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4212 	if (error != 0) {
4213 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4214 		/* Shouldn't happen, but not bad enough to panic */
4215 	}
4216 
4217 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4218 
4219 	/*
4220 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4221 	 * on this vfs can immediately notice it's invalid.
4222 	 */
4223 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4224 
4225 	/*
4226 	 * Call the init routines of non-loadable filesystems only.
4227 	 * Filesystems which are loaded as separate modules will be
4228 	 * initialized by the module loading code instead.
4229 	 */
4230 
4231 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4232 		RLOCK_VFSSW();
4233 		if (vswp->vsw_init != NULL)
4234 			(void) (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4235 		RUNLOCK_VFSSW();
4236 	}
4237 
4238 	vopstats_startup();
4239 
4240 	if (vopstats_enabled) {
4241 		/* EIO_vfs can collect stats, but we don't retrieve them */
4242 		initialize_vopstats(&EIO_vfs.vfs_vopstats);
4243 		EIO_vfs.vfs_fstypevsp = NULL;
4244 		EIO_vfs.vfs_vskap = NULL;
4245 		EIO_vfs.vfs_flag |= VFS_STATS;
4246 	}
4247 
4248 	xattr_init();
4249 
4250 	reparse_point_init();
4251 }
4252 
4253 vfs_t *
4254 vfs_alloc(int kmflag)
4255 {
4256 	vfs_t *vfsp;
4257 
4258 	vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4259 
4260 	/*
4261 	 * Do the simplest initialization here.
4262 	 * Everything else gets done in vfs_init()
4263 	 */
4264 	bzero(vfsp, sizeof (vfs_t));
4265 	return (vfsp);
4266 }
4267 
4268 void
4269 vfs_free(vfs_t *vfsp)
4270 {
4271 	/*
4272 	 * One would be tempted to assert that "vfsp->vfs_count == 0".
4273 	 * The problem is that this gets called out of domount() with
4274 	 * a partially initialized vfs and a vfs_count of 1.  This is
4275 	 * also called from vfs_rele() with a vfs_count of 0.  We can't
4276 	 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4277 	 * returned.  This is because VFS_MOUNT() fully initializes the
4278 	 * vfs structure and its associated data.  VFS_RELE() will call
4279 	 * VFS_FREEVFS() which may panic the system if the data structures
4280 	 * aren't fully initialized from a successful VFS_MOUNT()).
4281 	 */
4282 
4283 	/* If FEM was in use, make sure everything gets cleaned up */
4284 	if (vfsp->vfs_femhead) {
4285 		ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4286 		mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4287 		kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4288 		vfsp->vfs_femhead = NULL;
4289 	}
4290 
4291 	if (vfsp->vfs_implp)
4292 		vfsimpl_teardown(vfsp);
4293 	sema_destroy(&vfsp->vfs_reflock);
4294 	kmem_cache_free(vfs_cache, vfsp);
4295 }
4296 
4297 /*
4298  * Increments the vfs reference count by one atomically.
4299  */
4300 void
4301 vfs_hold(vfs_t *vfsp)
4302 {
4303 	atomic_inc_32(&vfsp->vfs_count);
4304 	ASSERT(vfsp->vfs_count != 0);
4305 }
4306 
4307 /*
4308  * Decrements the vfs reference count by one atomically. When
4309  * vfs reference count becomes zero, it calls the file system
4310  * specific vfs_freevfs() to free up the resources.
4311  */
4312 void
4313 vfs_rele(vfs_t *vfsp)
4314 {
4315 	ASSERT(vfsp->vfs_count != 0);
4316 	if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4317 		VFS_FREEVFS(vfsp);
4318 		lofi_remove(vfsp);
4319 		if (vfsp->vfs_zone)
4320 			zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4321 			    ZONE_REF_VFS);
4322 		vfs_freemnttab(vfsp);
4323 		vfs_free(vfsp);
4324 	}
4325 }
4326 
4327 /*
4328  * Generic operations vector support.
4329  *
4330  * This is used to build operations vectors for both the vfs and vnode.
4331  * It's normally called only when a file system is loaded.
4332  *
4333  * There are many possible algorithms for this, including the following:
4334  *
4335  *   (1) scan the list of known operations; for each, see if the file system
4336  *       includes an entry for it, and fill it in as appropriate.
4337  *
4338  *   (2) set up defaults for all known operations.  scan the list of ops
4339  *       supplied by the file system; for each which is both supplied and
4340  *       known, fill it in.
4341  *
4342  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4343  *       in entries as we go.
4344  *
4345  * we choose (1) for simplicity, and because performance isn't critical here.
4346  * note that (2) could be sped up using a precomputed hash table on known ops.
4347  * (3) could be faster than either, but only if the lists were very large or
4348  * supplied in sorted order.
4349  *
4350  */
4351 
4352 int
4353 fs_build_vector(void *vector, int *unused_ops,
4354     const fs_operation_trans_def_t *translation,
4355     const fs_operation_def_t *operations)
4356 {
4357 	int i, num_trans, num_ops, used;
4358 
4359 	/*
4360 	 * Count the number of translations and the number of supplied
4361 	 * operations.
4362 	 */
4363 
4364 	{
4365 		const fs_operation_trans_def_t *p;
4366 
4367 		for (num_trans = 0, p = translation;
4368 		    p->name != NULL;
4369 		    num_trans++, p++)
4370 			;
4371 	}
4372 
4373 	{
4374 		const fs_operation_def_t *p;
4375 
4376 		for (num_ops = 0, p = operations;
4377 		    p->name != NULL;
4378 		    num_ops++, p++)
4379 			;
4380 	}
4381 
4382 	/* Walk through each operation known to our caller.  There will be */
4383 	/* one entry in the supplied "translation table" for each. */
4384 
4385 	used = 0;
4386 
4387 	for (i = 0; i < num_trans; i++) {
4388 		int j, found;
4389 		char *curname;
4390 		fs_generic_func_p result;
4391 		fs_generic_func_p *location;
4392 
4393 		curname = translation[i].name;
4394 
4395 		/* Look for a matching operation in the list supplied by the */
4396 		/* file system. */
4397 
4398 		found = 0;
4399 
4400 		for (j = 0; j < num_ops; j++) {
4401 			if (strcmp(operations[j].name, curname) == 0) {
4402 				used++;
4403 				found = 1;
4404 				break;
4405 			}
4406 		}
4407 
4408 		/*
4409 		 * If the file system is using a "placeholder" for default
4410 		 * or error functions, grab the appropriate function out of
4411 		 * the translation table.  If the file system didn't supply
4412 		 * this operation at all, use the default function.
4413 		 */
4414 
4415 		if (found) {
4416 			result = operations[j].func.fs_generic;
4417 			if (result == fs_default) {
4418 				result = translation[i].defaultFunc;
4419 			} else if (result == fs_error) {
4420 				result = translation[i].errorFunc;
4421 			} else if (result == NULL) {
4422 				/* Null values are PROHIBITED */
4423 				return (EINVAL);
4424 			}
4425 		} else {
4426 			result = translation[i].defaultFunc;
4427 		}
4428 
4429 		/* Now store the function into the operations vector. */
4430 
4431 		location = (fs_generic_func_p *)
4432 		    (((char *)vector) + translation[i].offset);
4433 
4434 		*location = result;
4435 	}
4436 
4437 	*unused_ops = num_ops - used;
4438 
4439 	return (0);
4440 }
4441 
4442 /* Placeholder functions, should never be called. */
4443 
4444 int
4445 fs_error(void)
4446 {
4447 	cmn_err(CE_PANIC, "fs_error called");
4448 	return (0);
4449 }
4450 
4451 int
4452 fs_default(void)
4453 {
4454 	cmn_err(CE_PANIC, "fs_default called");
4455 	return (0);
4456 }
4457 
4458 #ifdef __sparc
4459 
4460 /*
4461  * Part of the implementation of booting off a mirrored root
4462  * involves a change of dev_t for the root device.  To
4463  * accomplish this, first remove the existing hash table
4464  * entry for the root device, convert to the new dev_t,
4465  * then re-insert in the hash table at the head of the list.
4466  */
4467 void
4468 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4469 {
4470 	vfs_list_lock();
4471 
4472 	vfs_hash_remove(vfsp);
4473 
4474 	vfsp->vfs_dev = ndev;
4475 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4476 
4477 	vfs_hash_add(vfsp, 1);
4478 
4479 	vfs_list_unlock();
4480 }
4481 
4482 #else /* x86 NEWBOOT */
4483 
4484 #if defined(__x86)
4485 extern int hvmboot_rootconf();
4486 #endif /* __x86 */
4487 
4488 extern ib_boot_prop_t *iscsiboot_prop;
4489 
4490 int
4491 rootconf()
4492 {
4493 	int error;
4494 	struct vfssw *vsw;
4495 	extern void pm_init();
4496 	char *fstyp, *fsmod;
4497 	int ret = -1;
4498 
4499 	getrootfs(&fstyp, &fsmod);
4500 
4501 #if defined(__x86)
4502 	/*
4503 	 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4504 	 * which lives in /platform/i86hvm, and hence is only available when
4505 	 * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4506 	 * is not available then the modstub for this function will return 0.
4507 	 * If the hvm_bootstrap misc module is available it will be loaded
4508 	 * and hvmboot_rootconf() will be invoked.
4509 	 */
4510 	if (error = hvmboot_rootconf())
4511 		return (error);
4512 #endif /* __x86 */
4513 
4514 	if (error = clboot_rootconf())
4515 		return (error);
4516 
4517 	if (modload("fs", fsmod) == -1)
4518 		panic("Cannot _init %s module", fsmod);
4519 
4520 	RLOCK_VFSSW();
4521 	vsw = vfs_getvfsswbyname(fstyp);
4522 	RUNLOCK_VFSSW();
4523 	if (vsw == NULL) {
4524 		cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4525 		return (ENXIO);
4526 	}
4527 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4528 	VFS_HOLD(rootvfs);
4529 
4530 	/* always mount readonly first */
4531 	rootvfs->vfs_flag |= VFS_RDONLY;
4532 
4533 	pm_init();
4534 
4535 	if (netboot && iscsiboot_prop) {
4536 		cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4537 		    " shouldn't happen in the same time");
4538 		return (EINVAL);
4539 	}
4540 
4541 	if (netboot || iscsiboot_prop) {
4542 		ret = strplumb();
4543 		if (ret != 0) {
4544 			cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4545 			return (EFAULT);
4546 		}
4547 	}
4548 
4549 	if ((ret == 0) && iscsiboot_prop) {
4550 		ret = modload("drv", "iscsi");
4551 		/* -1 indicates fail */
4552 		if (ret == -1) {
4553 			cmn_err(CE_WARN, "Failed to load iscsi module");
4554 			iscsi_boot_prop_free();
4555 			return (EINVAL);
4556 		} else {
4557 			if (!i_ddi_attach_pseudo_node("iscsi")) {
4558 				cmn_err(CE_WARN,
4559 				    "Failed to attach iscsi driver");
4560 				iscsi_boot_prop_free();
4561 				return (ENODEV);
4562 			}
4563 		}
4564 	}
4565 
4566 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4567 	vfs_unrefvfssw(vsw);
4568 	rootdev = rootvfs->vfs_dev;
4569 
4570 	if (error)
4571 		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4572 		    rootfs.bo_name, fstyp);
4573 	else
4574 		cmn_err(CE_CONT, "?root on %s fstype %s\n",
4575 		    rootfs.bo_name, fstyp);
4576 	return (error);
4577 }
4578 
4579 /*
4580  * XXX this is called by nfs only and should probably be removed
4581  * If booted with ASKNAME, prompt on the console for a filesystem
4582  * name and return it.
4583  */
4584 void
4585 getfsname(char *askfor, char *name, size_t namelen)
4586 {
4587 	if (boothowto & RB_ASKNAME) {
4588 		printf("%s name: ", askfor);
4589 		console_gets(name, namelen);
4590 	}
4591 }
4592 
4593 /*
4594  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4595  * property.
4596  *
4597  * Filesystem types starting with the prefix "nfs" are diskless clients;
4598  * init the root filename name (rootfs.bo_name), too.
4599  *
4600  * If we are booting via NFS we currently have these options:
4601  *	nfs -	dynamically choose NFS V2, V3, or V4 (default)
4602  *	nfs2 -	force NFS V2
4603  *	nfs3 -	force NFS V3
4604  *	nfs4 -	force NFS V4
4605  * Because we need to maintain backward compatibility with the naming
4606  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4607  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4608  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4609  * This is only for root filesystems, all other uses will expect
4610  * that "nfs" == NFS V2.
4611  */
4612 static void
4613 getrootfs(char **fstypp, char **fsmodp)
4614 {
4615 	char *propstr = NULL;
4616 
4617 	/*
4618 	 * Check fstype property; for diskless it should be one of "nfs",
4619 	 * "nfs2", "nfs3" or "nfs4".
4620 	 */
4621 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4622 	    DDI_PROP_DONTPASS, "fstype", &propstr)
4623 	    == DDI_SUCCESS) {
4624 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4625 		ddi_prop_free(propstr);
4626 
4627 	/*
4628 	 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4629 	 * assume the type of this root filesystem is 'zfs'.
4630 	 */
4631 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4632 	    DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4633 	    == DDI_SUCCESS) {
4634 		(void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4635 		ddi_prop_free(propstr);
4636 	}
4637 
4638 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4639 		*fstypp = *fsmodp = rootfs.bo_fstype;
4640 		return;
4641 	}
4642 
4643 	++netboot;
4644 
4645 	if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4646 		(void) strcpy(rootfs.bo_fstype, "nfs");
4647 	else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4648 		(void) strcpy(rootfs.bo_fstype, "nfsdyn");
4649 
4650 	/*
4651 	 * check if path to network interface is specified in bootpath
4652 	 * or by a hypervisor domain configuration file.
4653 	 * XXPV - enable strlumb_get_netdev_path()
4654 	 */
4655 	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4656 	    "xpv-nfsroot")) {
4657 		(void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4658 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4659 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4660 	    == DDI_SUCCESS) {
4661 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4662 		ddi_prop_free(propstr);
4663 	} else {
4664 		rootfs.bo_name[0] = '\0';
4665 	}
4666 	*fstypp = rootfs.bo_fstype;
4667 	*fsmodp = "nfs";
4668 }
4669 #endif
4670 
4671 /*
4672  * VFS feature routines
4673  */
4674 
4675 #define	VFTINDEX(feature)	(((feature) >> 32) & 0xFFFFFFFF)
4676 #define	VFTBITS(feature)	((feature) & 0xFFFFFFFFLL)
4677 
4678 /* Register a feature in the vfs */
4679 void
4680 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4681 {
4682 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4683 	if (vfsp->vfs_implp == NULL)
4684 		return;
4685 
4686 	vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4687 }
4688 
4689 void
4690 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4691 {
4692 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4693 	if (vfsp->vfs_implp == NULL)
4694 		return;
4695 	vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4696 }
4697 
4698 /*
4699  * Query a vfs for a feature.
4700  * Returns 1 if feature is present, 0 if not
4701  */
4702 int
4703 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4704 {
4705 	int	ret = 0;
4706 
4707 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4708 	if (vfsp->vfs_implp == NULL)
4709 		return (ret);
4710 
4711 	if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4712 		ret = 1;
4713 
4714 	return (ret);
4715 }
4716 
4717 /*
4718  * Propagate feature set from one vfs to another
4719  */
4720 void
4721 vfs_propagate_features(vfs_t *from, vfs_t *to)
4722 {
4723 	int i;
4724 
4725 	if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4726 		return;
4727 
4728 	for (i = 1; i <= to->vfs_featureset[0]; i++) {
4729 		to->vfs_featureset[i] = from->vfs_featureset[i];
4730 	}
4731 }
4732 
4733 #define	LOFINODE_PATH "/dev/lofi/%d"
4734 
4735 /*
4736  * Return the vnode for the lofi node if there's a lofi mount in place.
4737  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4738  * failure.
4739  */
4740 int
4741 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4742 {
4743 	char *path = NULL;
4744 	int strsize;
4745 	int err;
4746 
4747 	if (vfsp->vfs_lofi_id == 0) {
4748 		*vpp = NULL;
4749 		return (-1);
4750 	}
4751 
4752 	strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id);
4753 	path = kmem_alloc(strsize + 1, KM_SLEEP);
4754 	(void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id);
4755 
4756 	/*
4757 	 * We may be inside a zone, so we need to use the /dev path, but
4758 	 * it's created asynchronously, so we wait here.
4759 	 */
4760 	for (;;) {
4761 		err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4762 
4763 		if (err != ENOENT)
4764 			break;
4765 
4766 		if ((err = delay_sig(hz / 8)) == EINTR)
4767 			break;
4768 	}
4769 
4770 	if (err)
4771 		*vpp = NULL;
4772 
4773 	kmem_free(path, strsize + 1);
4774 	return (err);
4775 }
4776