1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2017 by Delphix. All rights reserved.
26  * Copyright 2019 OmniOS Community Edition (OmniOSce) Association.
27  */
28 
29 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
30 /*	  All Rights Reserved	*/
31 
32 /*
33  * University Copyright- Copyright (c) 1982, 1986, 1988
34  * The Regents of the University of California
35  * All Rights Reserved
36  *
37  * University Acknowledgment- Portions of this document are derived from
38  * software developed by the University of California, Berkeley, and its
39  * contributors.
40  */
41 
42 #include <sys/types.h>
43 #include <sys/thread.h>
44 #include <sys/t_lock.h>
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bitmap.h>
48 #include <sys/buf.h>
49 #include <sys/cmn_err.h>
50 #include <sys/conf.h>
51 #include <sys/ddi.h>
52 #include <sys/debug.h>
53 #include <sys/dkio.h>
54 #include <sys/errno.h>
55 #include <sys/time.h>
56 #include <sys/fcntl.h>
57 #include <sys/flock.h>
58 #include <sys/file.h>
59 #include <sys/kmem.h>
60 #include <sys/mman.h>
61 #include <sys/open.h>
62 #include <sys/swap.h>
63 #include <sys/sysmacros.h>
64 #include <sys/uio.h>
65 #include <sys/vfs.h>
66 #include <sys/vfs_opreg.h>
67 #include <sys/vnode.h>
68 #include <sys/stat.h>
69 #include <sys/poll.h>
70 #include <sys/stream.h>
71 #include <sys/strsubr.h>
72 #include <sys/policy.h>
73 #include <sys/devpolicy.h>
74 
75 #include <sys/proc.h>
76 #include <sys/user.h>
77 #include <sys/session.h>
78 #include <sys/vmsystm.h>
79 #include <sys/vtrace.h>
80 #include <sys/pathname.h>
81 
82 #include <sys/fs/snode.h>
83 
84 #include <vm/seg.h>
85 #include <vm/seg_map.h>
86 #include <vm/page.h>
87 #include <vm/pvn.h>
88 #include <vm/seg_dev.h>
89 #include <vm/seg_vn.h>
90 
91 #include <fs/fs_subr.h>
92 
93 #include <sys/esunddi.h>
94 #include <sys/autoconf.h>
95 #include <sys/sunndi.h>
96 #include <sys/contract/device_impl.h>
97 
98 
99 static int spec_open(struct vnode **, int, struct cred *, caller_context_t *);
100 static int spec_close(struct vnode *, int, int, offset_t, struct cred *,
101 	caller_context_t *);
102 static int spec_read(struct vnode *, struct uio *, int, struct cred *,
103 	caller_context_t *);
104 static int spec_write(struct vnode *, struct uio *, int, struct cred *,
105 	caller_context_t *);
106 static int spec_ioctl(struct vnode *, int, intptr_t, int, struct cred *, int *,
107 	caller_context_t *);
108 static int spec_getattr(struct vnode *, struct vattr *, int, struct cred *,
109 	caller_context_t *);
110 static int spec_setattr(struct vnode *, struct vattr *, int, struct cred *,
111 	caller_context_t *);
112 static int spec_access(struct vnode *, int, int, struct cred *,
113 	caller_context_t *);
114 static int spec_create(struct vnode *, char *, vattr_t *, enum vcexcl, int,
115 	struct vnode **, struct cred *, int, caller_context_t *, vsecattr_t *);
116 static int spec_fsync(struct vnode *, int, struct cred *, caller_context_t *);
117 static void spec_inactive(struct vnode *, struct cred *, caller_context_t *);
118 static int spec_fid(struct vnode *, struct fid *, caller_context_t *);
119 static int spec_seek(struct vnode *, offset_t, offset_t *, caller_context_t *);
120 static int spec_frlock(struct vnode *, int, struct flock64 *, int, offset_t,
121 	struct flk_callback *, struct cred *, caller_context_t *);
122 static int spec_realvp(struct vnode *, struct vnode **, caller_context_t *);
123 
124 static int spec_getpage(struct vnode *, offset_t, size_t, uint_t *, page_t **,
125 	size_t, struct seg *, caddr_t, enum seg_rw, struct cred *,
126 	caller_context_t *);
127 static int spec_putapage(struct vnode *, page_t *, u_offset_t *, size_t *, int,
128 	struct cred *);
129 static struct buf *spec_startio(struct vnode *, page_t *, u_offset_t, size_t,
130 	int);
131 static int spec_getapage(struct vnode *, u_offset_t, size_t, uint_t *,
132 	page_t **, size_t, struct seg *, caddr_t, enum seg_rw, struct cred *);
133 static int spec_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t,
134 	uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
135 static int spec_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
136 	uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
137 static int spec_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
138 	uint_t, uint_t, uint_t, struct cred *, caller_context_t *);
139 
140 static int spec_poll(struct vnode *, short, int, short *, struct pollhead **,
141 	caller_context_t *);
142 static int spec_dump(struct vnode *, caddr_t, offset_t, offset_t,
143     caller_context_t *);
144 static int spec_pageio(struct vnode *, page_t *, u_offset_t, size_t, int,
145     cred_t *, caller_context_t *);
146 
147 static int spec_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
148 	caller_context_t *);
149 static int spec_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
150 	caller_context_t *);
151 static int spec_pathconf(struct	vnode *, int, ulong_t *, struct cred *,
152 	caller_context_t *);
153 
154 #define	SN_HOLD(csp)	{ \
155 	mutex_enter(&csp->s_lock); \
156 	csp->s_count++; \
157 	mutex_exit(&csp->s_lock); \
158 }
159 
160 #define	SN_RELE(csp)	{ \
161 	mutex_enter(&csp->s_lock); \
162 	csp->s_count--; \
163 	ASSERT((csp->s_count > 0) || (csp->s_vnode->v_stream == NULL)); \
164 	mutex_exit(&csp->s_lock); \
165 }
166 
167 #define	S_ISFENCED(sp)	((VTOS((sp)->s_commonvp))->s_flag & SFENCED)
168 
169 struct vnodeops *spec_vnodeops;
170 
171 /*
172  * *PLEASE NOTE*: If you add new entry points to specfs, do
173  * not forget to add support for fencing. A fenced snode
174  * is indicated by the SFENCED flag in the common snode.
175  * If a snode is fenced, determine if your entry point is
176  * a configuration operation (Example: open), a detection
177  * operation (Example: gettattr), an I/O operation (Example: ioctl())
178  * or an unconfiguration operation (Example: close). If it is
179  * a configuration or detection operation, fail the operation
180  * for a fenced snode with an ENXIO or EIO as appropriate. If
181  * it is any other operation, let it through.
182  */
183 
184 const fs_operation_def_t spec_vnodeops_template[] = {
185 	VOPNAME_OPEN,		{ .vop_open = spec_open },
186 	VOPNAME_CLOSE,		{ .vop_close = spec_close },
187 	VOPNAME_READ,		{ .vop_read = spec_read },
188 	VOPNAME_WRITE,		{ .vop_write = spec_write },
189 	VOPNAME_IOCTL,		{ .vop_ioctl = spec_ioctl },
190 	VOPNAME_GETATTR,	{ .vop_getattr = spec_getattr },
191 	VOPNAME_SETATTR,	{ .vop_setattr = spec_setattr },
192 	VOPNAME_ACCESS,		{ .vop_access = spec_access },
193 	VOPNAME_CREATE,		{ .vop_create = spec_create },
194 	VOPNAME_FSYNC,		{ .vop_fsync = spec_fsync },
195 	VOPNAME_INACTIVE,	{ .vop_inactive = spec_inactive },
196 	VOPNAME_FID,		{ .vop_fid = spec_fid },
197 	VOPNAME_SEEK,		{ .vop_seek = spec_seek },
198 	VOPNAME_PATHCONF,	{ .vop_pathconf = spec_pathconf },
199 	VOPNAME_FRLOCK,		{ .vop_frlock = spec_frlock },
200 	VOPNAME_REALVP,		{ .vop_realvp = spec_realvp },
201 	VOPNAME_GETPAGE,	{ .vop_getpage = spec_getpage },
202 	VOPNAME_PUTPAGE,	{ .vop_putpage = spec_putpage },
203 	VOPNAME_MAP,		{ .vop_map = spec_map },
204 	VOPNAME_ADDMAP,		{ .vop_addmap = spec_addmap },
205 	VOPNAME_DELMAP,		{ .vop_delmap = spec_delmap },
206 	VOPNAME_POLL,		{ .vop_poll = spec_poll },
207 	VOPNAME_DUMP,		{ .vop_dump = spec_dump },
208 	VOPNAME_PAGEIO,		{ .vop_pageio = spec_pageio },
209 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = spec_setsecattr },
210 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = spec_getsecattr },
211 	NULL,			NULL
212 };
213 
214 /*
215  * Return address of spec_vnodeops
216  */
217 struct vnodeops *
spec_getvnodeops(void)218 spec_getvnodeops(void)
219 {
220 	return (spec_vnodeops);
221 }
222 
223 extern vnode_t *rconsvp;
224 
225 /*
226  * Acquire the serial lock on the common snode.
227  */
228 #define	LOCK_CSP(csp)			(void) spec_lockcsp(csp, 0, 1, 0)
229 #define	LOCKHOLD_CSP_SIG(csp)		spec_lockcsp(csp, 1, 1, 1)
230 #define	SYNCHOLD_CSP_SIG(csp, intr)	spec_lockcsp(csp, intr, 0, 1)
231 
232 typedef enum {
233 	LOOP,
234 	INTR,
235 	SUCCESS
236 } slock_ret_t;
237 
238 /*
239  * Synchronize with active SLOCKED snode, optionally checking for a signal and
240  * optionally returning with SLOCKED set and SN_HOLD done.  The 'intr'
241  * argument determines if the thread is interruptible by a signal while
242  * waiting, the function returns INTR if interrupted while there is another
243  * thread closing this snonde and LOOP if interrupted otherwise.
244  * When SUCCESS is returned the 'hold' argument determines if the open
245  * count (SN_HOLD) has been incremented and the 'setlock' argument
246  * determines if the function returns with SLOCKED set.
247  */
248 static slock_ret_t
spec_lockcsp(struct snode * csp,int intr,int setlock,int hold)249 spec_lockcsp(struct snode *csp, int intr, int setlock, int hold)
250 {
251 	slock_ret_t ret = SUCCESS;
252 	mutex_enter(&csp->s_lock);
253 	while (csp->s_flag & SLOCKED) {
254 		csp->s_flag |= SWANT;
255 		if (intr) {
256 			if (!cv_wait_sig(&csp->s_cv, &csp->s_lock)) {
257 				if (csp->s_flag & SCLOSING)
258 					ret = INTR;
259 				else
260 					ret = LOOP;
261 				mutex_exit(&csp->s_lock);
262 				return (ret);		/* interrupted */
263 			}
264 		} else {
265 			cv_wait(&csp->s_cv, &csp->s_lock);
266 		}
267 	}
268 	if (setlock)
269 		csp->s_flag |= SLOCKED;
270 	if (hold)
271 		csp->s_count++;		/* one more open reference : SN_HOLD */
272 	mutex_exit(&csp->s_lock);
273 	return (ret);			/* serialized/locked */
274 }
275 
276 /*
277  * Unlock the serial lock on the common snode
278  */
279 #define	UNLOCK_CSP_LOCK_HELD(csp)			\
280 	ASSERT(mutex_owned(&csp->s_lock));		\
281 	if (csp->s_flag & SWANT)			\
282 		cv_broadcast(&csp->s_cv);		\
283 	csp->s_flag &= ~(SWANT|SLOCKED);
284 
285 #define	UNLOCK_CSP(csp)					\
286 	mutex_enter(&csp->s_lock);			\
287 	UNLOCK_CSP_LOCK_HELD(csp);			\
288 	mutex_exit(&csp->s_lock);
289 
290 /*
291  * compute/return the size of the device
292  */
293 #define	SPEC_SIZE(csp)	\
294 	(((csp)->s_flag & SSIZEVALID) ? (csp)->s_size : spec_size(csp))
295 
296 /*
297  * Compute and return the size.  If the size in the common snode is valid then
298  * return it.  If not valid then get the size from the driver and set size in
299  * the common snode.  If the device has not been attached then we don't ask for
300  * an update from the driver- for non-streams SSIZEVALID stays unset until the
301  * device is attached. A stat of a mknod outside /devices (non-devfs) may
302  * report UNKNOWN_SIZE because the device may not be attached yet (SDIPSET not
303  * established in mknod until open time). An stat in /devices will report the
304  * size correctly.  Specfs should always call SPEC_SIZE instead of referring
305  * directly to s_size to initialize/retrieve the size of a device.
306  *
307  * XXX There is an inconsistency between block and raw - "unknown" is
308  * UNKNOWN_SIZE for VBLK and 0 for VCHR(raw).
309  */
310 static u_offset_t
spec_size(struct snode * csp)311 spec_size(struct snode *csp)
312 {
313 	struct vnode	*cvp = STOV(csp);
314 	u_offset_t	size;
315 	int		plen;
316 	uint32_t	size32;
317 	dev_t		dev;
318 	dev_info_t	*devi;
319 	major_t		maj;
320 	uint_t		blksize;
321 	int		blkshift;
322 
323 	ASSERT((csp)->s_commonvp == cvp);	/* must be common node */
324 
325 	/* return cached value */
326 	mutex_enter(&csp->s_lock);
327 	if (csp->s_flag & SSIZEVALID) {
328 		mutex_exit(&csp->s_lock);
329 		return (csp->s_size);
330 	}
331 
332 	/* VOP_GETATTR of mknod has not had devcnt restriction applied */
333 	dev = cvp->v_rdev;
334 	maj = getmajor(dev);
335 	if (maj >= devcnt) {
336 		/* return non-cached UNKNOWN_SIZE */
337 		mutex_exit(&csp->s_lock);
338 		return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE);
339 	}
340 
341 	/* establish cached zero size for streams */
342 	if (STREAMSTAB(maj)) {
343 		csp->s_size = 0;
344 		csp->s_flag |= SSIZEVALID;
345 		mutex_exit(&csp->s_lock);
346 		return (0);
347 	}
348 
349 	/*
350 	 * Return non-cached UNKNOWN_SIZE if not open.
351 	 *
352 	 * NB: This check is bogus, calling prop_op(9E) should be gated by
353 	 * attach, not open. Not having this check however opens up a new
354 	 * context under which a driver's prop_op(9E) could be called. Calling
355 	 * prop_op(9E) in this new context has been shown to expose latent
356 	 * driver bugs (insufficient NULL pointer checks that lead to panic).
357 	 * We are keeping this open check for now to avoid these panics.
358 	 */
359 	if (csp->s_count == 0) {
360 		mutex_exit(&csp->s_lock);
361 		return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE);
362 	}
363 
364 	/* Return non-cached UNKNOWN_SIZE if not attached. */
365 	if (((csp->s_flag & SDIPSET) == 0) || (csp->s_dip == NULL) ||
366 	    !i_ddi_devi_attached(csp->s_dip)) {
367 		mutex_exit(&csp->s_lock);
368 		return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE);
369 	}
370 
371 	devi = csp->s_dip;
372 
373 	/*
374 	 * Established cached size obtained from the attached driver. Since we
375 	 * know the devinfo node, for efficiency we use cdev_prop_op directly
376 	 * instead of [cb]dev_[Ss]size.
377 	 */
378 	if (cvp->v_type == VCHR) {
379 		size = 0;
380 		plen = sizeof (size);
381 		if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF,
382 		    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS |
383 		    DDI_PROP_CONSUMER_TYPED, "Size", (caddr_t)&size,
384 		    &plen) != DDI_PROP_SUCCESS) {
385 			plen = sizeof (size32);
386 			if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF,
387 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
388 			    "size", (caddr_t)&size32, &plen) ==
389 			    DDI_PROP_SUCCESS)
390 				size = size32;
391 		}
392 	} else {
393 		size = UNKNOWN_SIZE;
394 		plen = sizeof (size);
395 		if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF,
396 		    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS |
397 		    DDI_PROP_CONSUMER_TYPED, "Nblocks", (caddr_t)&size,
398 		    &plen) != DDI_PROP_SUCCESS) {
399 			plen = sizeof (size32);
400 			if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF,
401 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
402 			    "nblocks", (caddr_t)&size32, &plen) ==
403 			    DDI_PROP_SUCCESS)
404 				size = size32;
405 		}
406 
407 		if (size != UNKNOWN_SIZE) {
408 			blksize = DEV_BSIZE;		/* default */
409 			plen = sizeof (blksize);
410 
411 			/* try to get dev_t specific "blksize" */
412 			if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF,
413 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
414 			    "blksize", (caddr_t)&blksize, &plen) !=
415 			    DDI_PROP_SUCCESS) {
416 				/*
417 				 * Try for dev_info node "device-blksize".
418 				 * If this fails then blksize will still be
419 				 * DEV_BSIZE default value.
420 				 */
421 				(void) cdev_prop_op(DDI_DEV_T_ANY, devi,
422 				    PROP_LEN_AND_VAL_BUF,
423 				    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
424 				    "device-blksize", (caddr_t)&blksize, &plen);
425 			}
426 
427 			/* blksize must be a power of two */
428 			ASSERT(BIT_ONLYONESET(blksize));
429 			blkshift = highbit(blksize) - 1;
430 
431 			/* convert from block size to byte size */
432 			if (size < (MAXOFFSET_T >> blkshift))
433 				size = size << blkshift;
434 			else
435 				size = UNKNOWN_SIZE;
436 		}
437 	}
438 
439 	csp->s_size = size;
440 	csp->s_flag |= SSIZEVALID;
441 
442 	mutex_exit(&csp->s_lock);
443 	return (size);
444 }
445 
446 /*
447  * This function deals with vnode substitution in the case of
448  * device cloning.
449  */
450 static int
spec_clone(struct vnode ** vpp,dev_t newdev,int vtype,struct stdata * stp)451 spec_clone(struct vnode **vpp, dev_t newdev, int vtype, struct stdata *stp)
452 {
453 	dev_t		dev = (*vpp)->v_rdev;
454 	major_t		maj = getmajor(dev);
455 	major_t		newmaj = getmajor(newdev);
456 	int		sysclone = (maj == clone_major);
457 	int		qassociate_used = 0;
458 	struct snode	*oldsp, *oldcsp;
459 	struct snode	*newsp, *newcsp;
460 	struct vnode	*newvp, *newcvp;
461 	dev_info_t	*dip;
462 	queue_t		*dq;
463 
464 	ASSERT(dev != newdev);
465 
466 	/*
467 	 * Check for cloning across different drivers.
468 	 * We only support this under the system provided clone driver
469 	 */
470 	if ((maj != newmaj) && !sysclone) {
471 		cmn_err(CE_NOTE,
472 		    "unsupported clone open maj = %u, newmaj = %u",
473 		    maj, newmaj);
474 		return (ENXIO);
475 	}
476 
477 	/* old */
478 	oldsp = VTOS(*vpp);
479 	oldcsp = VTOS(oldsp->s_commonvp);
480 
481 	/* new */
482 	newvp = makespecvp(newdev, vtype);
483 	ASSERT(newvp != NULL);
484 	newsp = VTOS(newvp);
485 	newcvp = newsp->s_commonvp;
486 	newcsp = VTOS(newcvp);
487 
488 	/*
489 	 * Clones inherit fsid, realvp, and dip.
490 	 * XXX realvp inherit is not occurring, does fstat of clone work?
491 	 */
492 	newsp->s_fsid = oldsp->s_fsid;
493 	if (sysclone) {
494 		newsp->s_flag |= SCLONE;
495 		dip = NULL;
496 	} else {
497 		newsp->s_flag |= SSELFCLONE;
498 		dip = oldcsp->s_dip;
499 	}
500 
501 	/*
502 	 * If we cloned to an opened newdev that already has called
503 	 * spec_assoc_vp_with_devi (SDIPSET set) then the association is
504 	 * already established.
505 	 */
506 	if (!(newcsp->s_flag & SDIPSET)) {
507 		/*
508 		 * Establish s_dip association for newdev.
509 		 *
510 		 * If we trusted the getinfo(9E) DDI_INFO_DEVT2INSTANCE
511 		 * implementation of all cloning drivers  (SCLONE and SELFCLONE)
512 		 * we would always use e_ddi_hold_devi_by_dev().  We know that
513 		 * many drivers have had (still have?) problems with
514 		 * DDI_INFO_DEVT2INSTANCE, so we try to minimize reliance by
515 		 * detecting drivers that use QASSOCIATE (by looking down the
516 		 * stream) and setting their s_dip association to NULL.
517 		 */
518 		qassociate_used = 0;
519 		if (stp) {
520 			for (dq = stp->sd_wrq; dq; dq = dq->q_next) {
521 				if (_RD(dq)->q_flag & _QASSOCIATED) {
522 					qassociate_used = 1;
523 					dip = NULL;
524 					break;
525 				}
526 			}
527 		}
528 
529 		if (dip || qassociate_used) {
530 			spec_assoc_vp_with_devi(newvp, dip);
531 		} else {
532 			/* derive association from newdev */
533 			dip = e_ddi_hold_devi_by_dev(newdev, 0);
534 			spec_assoc_vp_with_devi(newvp, dip);
535 			if (dip)
536 				ddi_release_devi(dip);
537 		}
538 	}
539 
540 	SN_HOLD(newcsp);
541 
542 	/* deal with stream stuff */
543 	if (stp != NULL) {
544 		LOCK_CSP(newcsp);	/* synchronize stream open/close */
545 		mutex_enter(&newcsp->s_lock);
546 		newcvp->v_stream = newvp->v_stream = stp;
547 		stp->sd_vnode = newcvp;
548 		stp->sd_pvnode = newvp;
549 		stp->sd_strtab = STREAMSTAB(newmaj);
550 		mutex_exit(&newcsp->s_lock);
551 		UNLOCK_CSP(newcsp);
552 	}
553 
554 	/* substitute the vnode */
555 	SN_RELE(oldcsp);
556 	VN_RELE(*vpp);
557 	*vpp = newvp;
558 
559 	return (0);
560 }
561 
562 static int
spec_open(struct vnode ** vpp,int flag,struct cred * cr,caller_context_t * cc)563 spec_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *cc)
564 {
565 	major_t maj;
566 	dev_t dev, newdev;
567 	struct vnode *vp, *cvp;
568 	struct snode *sp, *csp;
569 	struct stdata *stp;
570 	dev_info_t *dip;
571 	int error, type;
572 	contract_t *ct = NULL;
573 	int open_returns_eintr;
574 	slock_ret_t spec_locksp_ret;
575 
576 
577 	flag &= ~FCREAT;		/* paranoia */
578 
579 	vp = *vpp;
580 	sp = VTOS(vp);
581 	ASSERT((vp->v_type == VCHR) || (vp->v_type == VBLK));
582 	if ((vp->v_type != VCHR) && (vp->v_type != VBLK))
583 		return (ENXIO);
584 
585 	/*
586 	 * If the VFS_NODEVICES bit was set for the mount,
587 	 * do not allow opens of special devices.
588 	 */
589 	if (sp->s_realvp && (sp->s_realvp->v_vfsp->vfs_flag & VFS_NODEVICES))
590 		return (ENXIO);
591 
592 	newdev = dev = vp->v_rdev;
593 
594 	/*
595 	 * If we are opening a node that has not had spec_assoc_vp_with_devi
596 	 * called against it (mknod outside /devices or a non-dacf makespecvp
597 	 * node) then SDIPSET will not be set. In this case we call an
598 	 * interface which will reconstruct the path and lookup (drive attach)
599 	 * through devfs (e_ddi_hold_devi_by_dev -> e_ddi_hold_devi_by_path ->
600 	 * devfs_lookupname).  For support of broken drivers that don't call
601 	 * ddi_create_minor_node for all minor nodes in their instance space,
602 	 * we call interfaces that operates at the directory/devinfo
603 	 * (major/instance) level instead of to the leaf/minor node level.
604 	 * After finding and attaching the dip we associate it with the
605 	 * common specfs vnode (s_dip), which sets SDIPSET.  A DL_DETACH_REQ
606 	 * to style-2 stream driver may set s_dip to NULL with SDIPSET set.
607 	 *
608 	 * NOTE: Although e_ddi_hold_devi_by_dev takes a dev_t argument, its
609 	 * implementation operates at the major/instance level since it only
610 	 * need to return a dip.
611 	 */
612 	cvp = sp->s_commonvp;
613 	csp = VTOS(cvp);
614 	if (!(csp->s_flag & SDIPSET)) {
615 		/* try to attach, return error if we fail */
616 		if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
617 			return (ENXIO);
618 
619 		/* associate dip with the common snode s_dip */
620 		spec_assoc_vp_with_devi(vp, dip);
621 		ddi_release_devi(dip);	/* from e_ddi_hold_devi_by_dev */
622 	}
623 
624 	/* check if device fenced off */
625 	if (S_ISFENCED(sp))
626 		return (ENXIO);
627 
628 #ifdef  DEBUG
629 	/* verify attach/open exclusion guarantee */
630 	dip = csp->s_dip;
631 	ASSERT((dip == NULL) || i_ddi_devi_attached(dip));
632 #endif  /* DEBUG */
633 
634 	if ((error = secpolicy_spec_open(cr, vp, flag)) != 0)
635 		return (error);
636 
637 	/* Verify existance of open(9E) implementation. */
638 	maj = getmajor(dev);
639 	if ((maj >= devcnt) ||
640 	    (devopsp[maj]->devo_cb_ops == NULL) ||
641 	    (devopsp[maj]->devo_cb_ops->cb_open == NULL))
642 		return (ENXIO);
643 
644 	/*
645 	 * split STREAMS vs. non-STREAMS
646 	 *
647 	 * If the device is a dual-personality device, then we might want
648 	 * to allow for a regular OTYP_BLK open.  If however it's strictly
649 	 * a pure STREAMS device, the cb_open entry point will be
650 	 * nodev() which returns ENXIO.  This does make this failure path
651 	 * somewhat longer, but such attempts to use OTYP_BLK with STREAMS
652 	 * devices should be exceedingly rare.  (Most of the time they will
653 	 * be due to programmer error.)
654 	 */
655 	if ((vp->v_type == VCHR) && (STREAMSTAB(maj)))
656 		goto streams_open;
657 
658 not_streams:
659 	/*
660 	 * Wait for in progress last close to complete. This guarantees
661 	 * to the driver writer that we will never be in the drivers
662 	 * open and close on the same (dev_t, otype) at the same time.
663 	 * Open count already incremented (SN_HOLD) on non-zero return.
664 	 * The wait is interruptible by a signal if the driver sets the
665 	 * D_OPEN_RETURNS_EINTR cb_ops(9S) cb_flag or sets the
666 	 * ddi-open-returns-eintr(9P) property in its driver.conf.
667 	 */
668 	if ((devopsp[maj]->devo_cb_ops->cb_flag & D_OPEN_RETURNS_EINTR) ||
669 	    (devnamesp[maj].dn_flags & DN_OPEN_RETURNS_EINTR))
670 		open_returns_eintr = 1;
671 	else
672 		open_returns_eintr = 0;
673 	while ((spec_locksp_ret = SYNCHOLD_CSP_SIG(csp, open_returns_eintr)) !=
674 	    SUCCESS) {
675 		if (spec_locksp_ret == INTR)
676 			return (EINTR);
677 	}
678 
679 	/* non streams open */
680 	type = (vp->v_type == VBLK ? OTYP_BLK : OTYP_CHR);
681 	error = dev_open(&newdev, flag, type, cr);
682 
683 	/* deal with clone case */
684 	if (error == 0 && dev != newdev) {
685 		error = spec_clone(vpp, newdev, vp->v_type, NULL);
686 		/*
687 		 * bail on clone failure, further processing
688 		 * results in undefined behaviors.
689 		 */
690 		if (error != 0)
691 			return (error);
692 		sp = VTOS(*vpp);
693 		csp = VTOS(sp->s_commonvp);
694 	}
695 
696 	/*
697 	 * create contracts only for userland opens
698 	 * Successful open and cloning is done at this point.
699 	 */
700 	if (error == 0 && !(flag & FKLYR)) {
701 		int spec_type;
702 		spec_type = (STOV(csp)->v_type == VCHR) ? S_IFCHR : S_IFBLK;
703 		if (contract_device_open(newdev, spec_type, NULL) != 0) {
704 			error = EIO;
705 		}
706 	}
707 
708 	if (error == 0) {
709 		sp->s_size = SPEC_SIZE(csp);
710 
711 		if ((csp->s_flag & SNEEDCLOSE) == 0) {
712 			int nmaj = getmajor(newdev);
713 			mutex_enter(&csp->s_lock);
714 			/* successful open needs a close later */
715 			csp->s_flag |= SNEEDCLOSE;
716 
717 			/*
718 			 * Invalidate possible cached "unknown" size
719 			 * established by a VOP_GETATTR while open was in
720 			 * progress, and the driver might fail prop_op(9E).
721 			 */
722 			if (((cvp->v_type == VCHR) && (csp->s_size == 0)) ||
723 			    ((cvp->v_type == VBLK) &&
724 			    (csp->s_size == UNKNOWN_SIZE)))
725 				csp->s_flag &= ~SSIZEVALID;
726 
727 			if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_64BIT)
728 				csp->s_flag |= SLOFFSET;
729 			if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_U64BIT)
730 				csp->s_flag |= SLOFFSET | SANYOFFSET;
731 			mutex_exit(&csp->s_lock);
732 		}
733 		return (0);
734 	}
735 
736 	/*
737 	 * Open failed. If we missed a close operation because
738 	 * we were trying to get the device open and it is the
739 	 * last in progress open that is failing then call close.
740 	 *
741 	 * NOTE: Only non-streams open has this race condition.
742 	 */
743 	mutex_enter(&csp->s_lock);
744 	csp->s_count--;			/* decrement open count : SN_RELE */
745 	if ((csp->s_count == 0) &&	/* no outstanding open */
746 	    (csp->s_mapcnt == 0) &&	/* no mapping */
747 	    (csp->s_flag & SNEEDCLOSE)) { /* need a close */
748 		csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID);
749 
750 		/* See comment in spec_close() */
751 		if (csp->s_flag & (SCLONE | SSELFCLONE))
752 			csp->s_flag &= ~SDIPSET;
753 
754 		csp->s_flag |= SCLOSING;
755 		mutex_exit(&csp->s_lock);
756 
757 		ASSERT(*vpp != NULL);
758 		(void) device_close(*vpp, flag, cr);
759 
760 		mutex_enter(&csp->s_lock);
761 		csp->s_flag &= ~SCLOSING;
762 		mutex_exit(&csp->s_lock);
763 	} else {
764 		mutex_exit(&csp->s_lock);
765 	}
766 	return (error);
767 
768 streams_open:
769 	/*
770 	 * Lock common snode to prevent any new clone opens on this
771 	 * stream while one is in progress. This is necessary since
772 	 * the stream currently associated with the clone device will
773 	 * not be part of it after the clone open completes. Unfortunately
774 	 * we don't know in advance if this is a clone
775 	 * device so we have to lock all opens.
776 	 *
777 	 * If we fail, it's because of an interrupt - EINTR return is an
778 	 * expected aspect of opening a stream so we don't need to check
779 	 * D_OPEN_RETURNS_EINTR. Open count already incremented (SN_HOLD)
780 	 * on non-zero return.
781 	 */
782 	if (LOCKHOLD_CSP_SIG(csp) != SUCCESS)
783 		return (EINTR);
784 
785 	error = stropen(cvp, &newdev, flag, cr);
786 	stp = cvp->v_stream;
787 
788 	/* deal with the clone case */
789 	if ((error == 0) && (dev != newdev)) {
790 		vp->v_stream = cvp->v_stream = NULL;
791 		UNLOCK_CSP(csp);
792 		error = spec_clone(vpp, newdev, vp->v_type, stp);
793 		/*
794 		 * bail on clone failure, further processing
795 		 * results in undefined behaviors.
796 		 */
797 		if (error != 0)
798 			return (error);
799 		sp = VTOS(*vpp);
800 		csp = VTOS(sp->s_commonvp);
801 	} else if (error == 0) {
802 		vp->v_stream = stp;
803 		UNLOCK_CSP(csp);
804 	}
805 
806 	/*
807 	 * create contracts only for userland opens
808 	 * Successful open and cloning is done at this point.
809 	 */
810 	if (error == 0 && !(flag & FKLYR)) {
811 		/* STREAM is of type S_IFCHR */
812 		if (contract_device_open(newdev, S_IFCHR, &ct) != 0) {
813 			UNLOCK_CSP(csp);
814 			(void) spec_close(vp, flag, 1, 0, cr, cc);
815 			return (EIO);
816 		}
817 	}
818 
819 	if (error == 0) {
820 		/* STREAMS devices don't have a size */
821 		sp->s_size = csp->s_size = 0;
822 
823 		if (!(stp->sd_flag & STRISTTY) || (flag & FNOCTTY))
824 			return (0);
825 
826 		/* try to allocate it as a controlling terminal */
827 		if (strctty(stp) != EINTR)
828 			return (0);
829 
830 		/* strctty() was interrupted by a signal */
831 		if (ct) {
832 			/* we only create contracts for userland opens */
833 			ASSERT(ttoproc(curthread));
834 			(void) contract_abandon(ct, ttoproc(curthread), 0);
835 		}
836 		(void) spec_close(vp, flag, 1, 0, cr, cc);
837 		return (EINTR);
838 	}
839 
840 	/*
841 	 * Deal with stropen failure.
842 	 *
843 	 * sd_flag in the stream head cannot change since the
844 	 * common snode is locked before the call to stropen().
845 	 */
846 	if ((stp != NULL) && (stp->sd_flag & STREOPENFAIL)) {
847 		/*
848 		 * Open failed part way through.
849 		 */
850 		mutex_enter(&stp->sd_lock);
851 		stp->sd_flag &= ~STREOPENFAIL;
852 		mutex_exit(&stp->sd_lock);
853 
854 		UNLOCK_CSP(csp);
855 		(void) spec_close(vp, flag, 1, 0, cr, cc);
856 	} else {
857 		UNLOCK_CSP(csp);
858 		SN_RELE(csp);
859 	}
860 
861 	/*
862 	 * Resolution for STREAMS vs. regular character device: If the
863 	 * STREAMS open(9e) returns ENOSTR, then try an ordinary device
864 	 * open instead.
865 	 */
866 	if (error == ENOSTR) {
867 		goto not_streams;
868 	}
869 	return (error);
870 }
871 
872 /*ARGSUSED2*/
873 static int
spec_close(struct vnode * vp,int flag,int count,offset_t offset,struct cred * cr,caller_context_t * ct)874 spec_close(
875 	struct vnode	*vp,
876 	int		flag,
877 	int		count,
878 	offset_t	offset,
879 	struct cred	*cr,
880 	caller_context_t *ct)
881 {
882 	struct vnode *cvp;
883 	struct snode *sp, *csp;
884 	enum vtype type;
885 	dev_t dev;
886 	int error = 0;
887 	int sysclone;
888 
889 	if (!(flag & FKLYR)) {
890 		/* this only applies to closes of devices from userland */
891 		cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
892 		cleanshares(vp, ttoproc(curthread)->p_pid);
893 		if (vp->v_stream)
894 			strclean(vp);
895 	}
896 	if (count > 1)
897 		return (0);
898 
899 	/* we allow close to succeed even if device is fenced off */
900 	sp = VTOS(vp);
901 	cvp = sp->s_commonvp;
902 
903 	dev = sp->s_dev;
904 	type = vp->v_type;
905 
906 	ASSERT(type == VCHR || type == VBLK);
907 
908 	/*
909 	 * Prevent close/close and close/open races by serializing closes
910 	 * on this common snode. Clone opens are held up until after
911 	 * we have closed this device so the streams linkage is maintained
912 	 */
913 	csp = VTOS(cvp);
914 
915 	LOCK_CSP(csp);
916 	mutex_enter(&csp->s_lock);
917 
918 	csp->s_count--;			/* one fewer open reference : SN_RELE */
919 	sysclone = sp->s_flag & SCLONE;
920 
921 	/*
922 	 * Invalidate size on each close.
923 	 *
924 	 * XXX We do this on each close because we don't have interfaces that
925 	 * allow a driver to invalidate the size.  Since clearing this on each
926 	 * close this causes property overhead we skip /dev/null and
927 	 * /dev/zero to avoid degrading kenbus performance.
928 	 */
929 	if (getmajor(dev) != mm_major)
930 		csp->s_flag &= ~SSIZEVALID;
931 
932 	/*
933 	 * Only call the close routine when the last open reference through
934 	 * any [s, v]node goes away.  This can be checked by looking at
935 	 * s_count on the common vnode.
936 	 */
937 	if ((csp->s_count == 0) && (csp->s_mapcnt == 0)) {
938 		/* we don't need a close */
939 		csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID);
940 
941 		/*
942 		 * A cloning driver may open-clone to the same dev_t that we
943 		 * are closing before spec_inactive destroys the common snode.
944 		 * If this occurs the s_dip association needs to be reevaluated.
945 		 * We clear SDIPSET to force reevaluation in this case.  When
946 		 * reevaluation occurs (by spec_clone after open), if the
947 		 * devinfo association has changed then the old association
948 		 * will be released as the new association is established by
949 		 * spec_assoc_vp_with_devi().
950 		 */
951 		if (csp->s_flag & (SCLONE | SSELFCLONE))
952 			csp->s_flag &= ~SDIPSET;
953 
954 		csp->s_flag |= SCLOSING;
955 		mutex_exit(&csp->s_lock);
956 		error = device_close(vp, flag, cr);
957 
958 		/*
959 		 * Decrement the devops held in clnopen()
960 		 */
961 		if (sysclone) {
962 			ddi_rele_driver(getmajor(dev));
963 		}
964 		mutex_enter(&csp->s_lock);
965 		csp->s_flag &= ~SCLOSING;
966 	}
967 
968 	UNLOCK_CSP_LOCK_HELD(csp);
969 	mutex_exit(&csp->s_lock);
970 
971 	return (error);
972 }
973 
974 /*ARGSUSED2*/
975 static int
spec_read(struct vnode * vp,struct uio * uiop,int ioflag,struct cred * cr,caller_context_t * ct)976 spec_read(
977 	struct vnode	*vp,
978 	struct uio	*uiop,
979 	int		ioflag,
980 	struct cred	*cr,
981 	caller_context_t *ct)
982 {
983 	int error;
984 	struct snode *sp = VTOS(vp);
985 	dev_t dev = sp->s_dev;
986 	size_t n;
987 	ulong_t on;
988 	u_offset_t bdevsize;
989 	offset_t maxoff;
990 	offset_t off;
991 	struct vnode *blkvp;
992 
993 	ASSERT(vp->v_type == VCHR || vp->v_type == VBLK);
994 
995 	if (vp->v_stream) {
996 		ASSERT(vp->v_type == VCHR);
997 		smark(sp, SACC);
998 		return (strread(vp, uiop, cr));
999 	}
1000 
1001 	if (uiop->uio_resid == 0)
1002 		return (0);
1003 
1004 	/*
1005 	 * Plain old character devices that set D_U64BIT can have
1006 	 * unrestricted offsets.
1007 	 */
1008 	maxoff = spec_maxoffset(vp);
1009 	ASSERT(maxoff != -1 || vp->v_type == VCHR);
1010 
1011 	if (maxoff != -1 && (uiop->uio_loffset < 0 ||
1012 	    uiop->uio_loffset + uiop->uio_resid > maxoff))
1013 		return (EINVAL);
1014 
1015 	if (vp->v_type == VCHR) {
1016 		smark(sp, SACC);
1017 		ASSERT(vp->v_stream == NULL);
1018 		return (cdev_read(dev, uiop, cr));
1019 	}
1020 
1021 	/*
1022 	 * Block device.
1023 	 */
1024 	error = 0;
1025 	blkvp = sp->s_commonvp;
1026 	bdevsize = SPEC_SIZE(VTOS(blkvp));
1027 
1028 	do {
1029 		caddr_t base;
1030 		offset_t diff;
1031 
1032 		off = uiop->uio_loffset & (offset_t)MAXBMASK;
1033 		on = (size_t)(uiop->uio_loffset & MAXBOFFSET);
1034 		n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid);
1035 		diff = bdevsize - uiop->uio_loffset;
1036 
1037 		if (diff <= 0)
1038 			break;
1039 		if (diff < n)
1040 			n = (size_t)diff;
1041 
1042 		if (vpm_enable) {
1043 			error = vpm_data_copy(blkvp, (u_offset_t)(off + on),
1044 			    n, uiop, 1, NULL, 0, S_READ);
1045 		} else {
1046 			base = segmap_getmapflt(segkmap, blkvp,
1047 			    (u_offset_t)(off + on), n, 1, S_READ);
1048 
1049 			error = uiomove(base + on, n, UIO_READ, uiop);
1050 		}
1051 		if (!error) {
1052 			int flags = 0;
1053 			/*
1054 			 * If we read a whole block, we won't need this
1055 			 * buffer again soon.
1056 			 */
1057 			if (n + on == MAXBSIZE)
1058 				flags = SM_DONTNEED | SM_FREE;
1059 			if (vpm_enable) {
1060 				error = vpm_sync_pages(blkvp, off, n, flags);
1061 			} else {
1062 				error = segmap_release(segkmap, base, flags);
1063 			}
1064 		} else {
1065 			if (vpm_enable) {
1066 				(void) vpm_sync_pages(blkvp, off, n, 0);
1067 			} else {
1068 				(void) segmap_release(segkmap, base, 0);
1069 			}
1070 			if (bdevsize == UNKNOWN_SIZE) {
1071 				error = 0;
1072 				break;
1073 			}
1074 		}
1075 	} while (error == 0 && uiop->uio_resid > 0 && n != 0);
1076 
1077 	return (error);
1078 }
1079 
1080 /*ARGSUSED*/
1081 static int
spec_write(struct vnode * vp,struct uio * uiop,int ioflag,struct cred * cr,caller_context_t * ct)1082 spec_write(
1083 	struct vnode *vp,
1084 	struct uio *uiop,
1085 	int ioflag,
1086 	struct cred *cr,
1087 	caller_context_t *ct)
1088 {
1089 	int error;
1090 	struct snode *sp = VTOS(vp);
1091 	dev_t dev = sp->s_dev;
1092 	size_t n;
1093 	ulong_t on;
1094 	u_offset_t bdevsize;
1095 	offset_t maxoff;
1096 	offset_t off;
1097 	struct vnode *blkvp;
1098 
1099 	ASSERT(vp->v_type == VCHR || vp->v_type == VBLK);
1100 
1101 	if (vp->v_stream) {
1102 		ASSERT(vp->v_type == VCHR);
1103 		smark(sp, SUPD);
1104 		return (strwrite(vp, uiop, cr));
1105 	}
1106 
1107 	/*
1108 	 * Plain old character devices that set D_U64BIT can have
1109 	 * unrestricted offsets.
1110 	 */
1111 	maxoff = spec_maxoffset(vp);
1112 	ASSERT(maxoff != -1 || vp->v_type == VCHR);
1113 
1114 	if (maxoff != -1 && (uiop->uio_loffset < 0 ||
1115 	    uiop->uio_loffset + uiop->uio_resid > maxoff))
1116 		return (EINVAL);
1117 
1118 	if (vp->v_type == VCHR) {
1119 		smark(sp, SUPD);
1120 		ASSERT(vp->v_stream == NULL);
1121 		return (cdev_write(dev, uiop, cr));
1122 	}
1123 
1124 	if (uiop->uio_resid == 0)
1125 		return (0);
1126 
1127 	error = 0;
1128 	blkvp = sp->s_commonvp;
1129 	bdevsize = SPEC_SIZE(VTOS(blkvp));
1130 
1131 	do {
1132 		int pagecreate;
1133 		int newpage;
1134 		caddr_t base;
1135 		offset_t diff;
1136 
1137 		off = uiop->uio_loffset & (offset_t)MAXBMASK;
1138 		on = (ulong_t)(uiop->uio_loffset & MAXBOFFSET);
1139 		n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid);
1140 		pagecreate = 0;
1141 
1142 		diff = bdevsize - uiop->uio_loffset;
1143 		if (diff <= 0) {
1144 			error = ENXIO;
1145 			break;
1146 		}
1147 		if (diff < n)
1148 			n = (size_t)diff;
1149 
1150 		/*
1151 		 * Check to see if we can skip reading in the page
1152 		 * and just allocate the memory.  We can do this
1153 		 * if we are going to rewrite the entire mapping
1154 		 * or if we are going to write to end of the device
1155 		 * from the beginning of the mapping.
1156 		 */
1157 		if (n == MAXBSIZE || (on == 0 && (off + n) == bdevsize))
1158 			pagecreate = 1;
1159 
1160 		newpage = 0;
1161 
1162 		/*
1163 		 * Touch the page and fault it in if it is not in core
1164 		 * before segmap_getmapflt or vpm_data_copy can lock it.
1165 		 * This is to avoid the deadlock if the buffer is mapped
1166 		 * to the same file through mmap which we want to write.
1167 		 */
1168 		uio_prefaultpages((long)n, uiop);
1169 
1170 		if (vpm_enable) {
1171 			error = vpm_data_copy(blkvp, (u_offset_t)(off + on),
1172 			    n, uiop, !pagecreate, NULL, 0, S_WRITE);
1173 		} else {
1174 			base = segmap_getmapflt(segkmap, blkvp,
1175 			    (u_offset_t)(off + on), n, !pagecreate, S_WRITE);
1176 
1177 			/*
1178 			 * segmap_pagecreate() returns 1 if it calls
1179 			 * page_create_va() to allocate any pages.
1180 			 */
1181 
1182 			if (pagecreate)
1183 				newpage = segmap_pagecreate(segkmap, base + on,
1184 				    n, 0);
1185 
1186 			error = uiomove(base + on, n, UIO_WRITE, uiop);
1187 		}
1188 
1189 		if (!vpm_enable && pagecreate &&
1190 		    uiop->uio_loffset <
1191 		    P2ROUNDUP_TYPED(off + on + n, PAGESIZE, offset_t)) {
1192 			/*
1193 			 * We created pages w/o initializing them completely,
1194 			 * thus we need to zero the part that wasn't set up.
1195 			 * This can happen if we write to the end of the device
1196 			 * or if we had some sort of error during the uiomove.
1197 			 */
1198 			long nzero;
1199 			offset_t nmoved;
1200 
1201 			nmoved = (uiop->uio_loffset - (off + on));
1202 			if (nmoved < 0 || nmoved > n) {
1203 				panic("spec_write: nmoved bogus");
1204 				/*NOTREACHED*/
1205 			}
1206 			nzero = (long)P2ROUNDUP(on + n, PAGESIZE) -
1207 			    (on + nmoved);
1208 			if (nzero < 0 || (on + nmoved + nzero > MAXBSIZE)) {
1209 				panic("spec_write: nzero bogus");
1210 				/*NOTREACHED*/
1211 			}
1212 			(void) kzero(base + on + nmoved, (size_t)nzero);
1213 		}
1214 
1215 		/*
1216 		 * Unlock the pages which have been allocated by
1217 		 * page_create_va() in segmap_pagecreate().
1218 		 */
1219 		if (!vpm_enable && newpage)
1220 			segmap_pageunlock(segkmap, base + on,
1221 			    (size_t)n, S_WRITE);
1222 
1223 		if (error == 0) {
1224 			int flags = 0;
1225 
1226 			/*
1227 			 * Force write back for synchronous write cases.
1228 			 */
1229 			if (ioflag & (FSYNC|FDSYNC))
1230 				flags = SM_WRITE;
1231 			else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) {
1232 				/*
1233 				 * Have written a whole block.
1234 				 * Start an asynchronous write and
1235 				 * mark the buffer to indicate that
1236 				 * it won't be needed again soon.
1237 				 * Push swap files here, since it
1238 				 * won't happen anywhere else.
1239 				 */
1240 				flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
1241 			}
1242 			smark(sp, SUPD|SCHG);
1243 			if (vpm_enable) {
1244 				error = vpm_sync_pages(blkvp, off, n, flags);
1245 			} else {
1246 				error = segmap_release(segkmap, base, flags);
1247 			}
1248 		} else {
1249 			if (vpm_enable) {
1250 				(void) vpm_sync_pages(blkvp, off, n, SM_INVAL);
1251 			} else {
1252 				(void) segmap_release(segkmap, base, SM_INVAL);
1253 			}
1254 		}
1255 
1256 	} while (error == 0 && uiop->uio_resid > 0 && n != 0);
1257 
1258 	return (error);
1259 }
1260 
1261 /*ARGSUSED6*/
1262 static int
spec_ioctl(struct vnode * vp,int cmd,intptr_t arg,int mode,struct cred * cr,int * rvalp,caller_context_t * ct)1263 spec_ioctl(struct vnode *vp, int cmd, intptr_t arg, int mode, struct cred *cr,
1264     int *rvalp, caller_context_t *ct)
1265 {
1266 	struct snode *sp;
1267 	dev_t dev;
1268 	int error;
1269 
1270 	if (vp->v_type != VCHR)
1271 		return (ENOTTY);
1272 
1273 	/*
1274 	 * allow ioctls() to go through even for fenced snodes, as they
1275 	 * may include unconfiguration operation - for example popping of
1276 	 * streams modules.
1277 	 */
1278 
1279 	sp = VTOS(vp);
1280 	dev = sp->s_dev;
1281 	if (vp->v_stream) {
1282 		error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp);
1283 	} else {
1284 		error = cdev_ioctl(dev, cmd, arg, mode, cr, rvalp);
1285 	}
1286 	return (error);
1287 }
1288 
1289 static int
spec_getattr(struct vnode * vp,struct vattr * vap,int flags,struct cred * cr,caller_context_t * ct)1290 spec_getattr(
1291 	struct vnode *vp,
1292 	struct vattr *vap,
1293 	int flags,
1294 	struct cred *cr,
1295 	caller_context_t *ct)
1296 {
1297 	int error;
1298 	struct snode *sp;
1299 	struct vnode *realvp;
1300 
1301 	/* With ATTR_COMM we will not get attributes from realvp */
1302 	if (flags & ATTR_COMM) {
1303 		sp = VTOS(vp);
1304 		vp = sp->s_commonvp;
1305 	}
1306 	sp = VTOS(vp);
1307 
1308 	/* we want stat() to fail with ENXIO if the device is fenced off */
1309 	if (S_ISFENCED(sp))
1310 		return (ENXIO);
1311 
1312 	realvp = sp->s_realvp;
1313 
1314 	if (realvp == NULL) {
1315 		static int snode_shift	= 0;
1316 
1317 		/*
1318 		 * Calculate the amount of bitshift to a snode pointer which
1319 		 * will still keep it unique.  See below.
1320 		 */
1321 		if (snode_shift == 0)
1322 			snode_shift = highbit(sizeof (struct snode));
1323 		ASSERT(snode_shift > 0);
1324 
1325 		/*
1326 		 * No real vnode behind this one.  Fill in the fields
1327 		 * from the snode.
1328 		 *
1329 		 * This code should be refined to return only the
1330 		 * attributes asked for instead of all of them.
1331 		 */
1332 		vap->va_type = vp->v_type;
1333 		vap->va_mode = 0;
1334 		vap->va_uid = vap->va_gid = 0;
1335 		vap->va_fsid = sp->s_fsid;
1336 
1337 		/*
1338 		 * If the va_nodeid is > MAX_USHORT, then i386 stats might
1339 		 * fail. So we shift down the snode pointer to try and get
1340 		 * the most uniqueness into 16-bits.
1341 		 */
1342 		vap->va_nodeid = ((ino64_t)(uintptr_t)sp >> snode_shift) &
1343 		    0xFFFF;
1344 		vap->va_nlink = 0;
1345 		vap->va_rdev = sp->s_dev;
1346 
1347 		/*
1348 		 * va_nblocks is the number of 512 byte blocks used to store
1349 		 * the mknod for the device, not the number of blocks on the
1350 		 * device itself.  This is typically zero since the mknod is
1351 		 * represented directly in the inode itself.
1352 		 */
1353 		vap->va_nblocks = 0;
1354 	} else {
1355 		error = VOP_GETATTR(realvp, vap, flags, cr, ct);
1356 		if (error != 0)
1357 			return (error);
1358 	}
1359 
1360 	/* set the size from the snode */
1361 	vap->va_size = SPEC_SIZE(VTOS(sp->s_commonvp));
1362 	vap->va_blksize = MAXBSIZE;
1363 
1364 	mutex_enter(&sp->s_lock);
1365 	vap->va_atime.tv_sec = sp->s_atime;
1366 	vap->va_mtime.tv_sec = sp->s_mtime;
1367 	vap->va_ctime.tv_sec = sp->s_ctime;
1368 	mutex_exit(&sp->s_lock);
1369 
1370 	vap->va_atime.tv_nsec = 0;
1371 	vap->va_mtime.tv_nsec = 0;
1372 	vap->va_ctime.tv_nsec = 0;
1373 	vap->va_seq = 0;
1374 
1375 	return (0);
1376 }
1377 
1378 static int
spec_setattr(struct vnode * vp,struct vattr * vap,int flags,struct cred * cr,caller_context_t * ct)1379 spec_setattr(
1380 	struct vnode *vp,
1381 	struct vattr *vap,
1382 	int flags,
1383 	struct cred *cr,
1384 	caller_context_t *ct)
1385 {
1386 	struct snode *sp = VTOS(vp);
1387 	struct vnode *realvp;
1388 	int error;
1389 
1390 	/* fail with ENXIO if the device is fenced off */
1391 	if (S_ISFENCED(sp))
1392 		return (ENXIO);
1393 
1394 	if (vp->v_type == VCHR && vp->v_stream && (vap->va_mask & AT_SIZE)) {
1395 		/*
1396 		 * 1135080:	O_TRUNC should have no effect on
1397 		 *		named pipes and terminal devices.
1398 		 */
1399 		ASSERT(vap->va_mask == AT_SIZE);
1400 		return (0);
1401 	}
1402 
1403 	if ((realvp = sp->s_realvp) == NULL)
1404 		error = 0;	/* no real vnode to update */
1405 	else
1406 		error = VOP_SETATTR(realvp, vap, flags, cr, ct);
1407 	if (error == 0) {
1408 		/*
1409 		 * If times were changed, update snode.
1410 		 */
1411 		mutex_enter(&sp->s_lock);
1412 		if (vap->va_mask & AT_ATIME)
1413 			sp->s_atime = vap->va_atime.tv_sec;
1414 		if (vap->va_mask & AT_MTIME) {
1415 			sp->s_mtime = vap->va_mtime.tv_sec;
1416 			sp->s_ctime = gethrestime_sec();
1417 		}
1418 		mutex_exit(&sp->s_lock);
1419 	}
1420 	return (error);
1421 }
1422 
1423 static int
spec_access(struct vnode * vp,int mode,int flags,struct cred * cr,caller_context_t * ct)1424 spec_access(
1425 	struct vnode *vp,
1426 	int mode,
1427 	int flags,
1428 	struct cred *cr,
1429 	caller_context_t *ct)
1430 {
1431 	struct vnode *realvp;
1432 	struct snode *sp = VTOS(vp);
1433 
1434 	/* fail with ENXIO if the device is fenced off */
1435 	if (S_ISFENCED(sp))
1436 		return (ENXIO);
1437 
1438 	if ((realvp = sp->s_realvp) != NULL)
1439 		return (VOP_ACCESS(realvp, mode, flags, cr, ct));
1440 	else
1441 		return (0);	/* Allow all access. */
1442 }
1443 
1444 /*
1445  * This can be called if creat or an open with O_CREAT is done on the root
1446  * of a lofs mount where the mounted entity is a special file.
1447  */
1448 /*ARGSUSED*/
1449 static int
spec_create(struct vnode * dvp,char * name,vattr_t * vap,enum vcexcl excl,int mode,struct vnode ** vpp,struct cred * cr,int flag,caller_context_t * ct,vsecattr_t * vsecp)1450 spec_create(
1451 	struct vnode *dvp,
1452 	char *name,
1453 	vattr_t *vap,
1454 	enum vcexcl excl,
1455 	int mode,
1456 	struct vnode **vpp,
1457 	struct cred *cr,
1458 	int flag,
1459 	caller_context_t *ct,
1460 	vsecattr_t *vsecp)
1461 {
1462 	int error;
1463 	struct snode *sp = VTOS(dvp);
1464 
1465 	/* fail with ENXIO if the device is fenced off */
1466 	if (S_ISFENCED(sp))
1467 		return (ENXIO);
1468 
1469 	ASSERT(dvp && (dvp->v_flag & VROOT) && *name == '\0');
1470 	if (excl == NONEXCL) {
1471 		if (mode && (error = spec_access(dvp, mode, 0, cr, ct)))
1472 			return (error);
1473 		VN_HOLD(dvp);
1474 		return (0);
1475 	}
1476 	return (EEXIST);
1477 }
1478 
1479 /*
1480  * In order to sync out the snode times without multi-client problems,
1481  * make sure the times written out are never earlier than the times
1482  * already set in the vnode.
1483  */
1484 static int
spec_fsync(struct vnode * vp,int syncflag,struct cred * cr,caller_context_t * ct)1485 spec_fsync(
1486 	struct vnode *vp,
1487 	int syncflag,
1488 	struct cred *cr,
1489 	caller_context_t *ct)
1490 {
1491 	struct snode *sp = VTOS(vp);
1492 	struct vnode *realvp;
1493 	struct vnode *cvp;
1494 	struct vattr va, vatmp;
1495 
1496 	/* allow syncing even if device is fenced off */
1497 
1498 	/* If times didn't change, don't flush anything. */
1499 	mutex_enter(&sp->s_lock);
1500 	if ((sp->s_flag & (SACC|SUPD|SCHG)) == 0 && vp->v_type != VBLK) {
1501 		mutex_exit(&sp->s_lock);
1502 		return (0);
1503 	}
1504 	sp->s_flag &= ~(SACC|SUPD|SCHG);
1505 	mutex_exit(&sp->s_lock);
1506 	cvp = sp->s_commonvp;
1507 	realvp = sp->s_realvp;
1508 
1509 	if (vp->v_type == VBLK && cvp != vp && vn_has_cached_data(cvp) &&
1510 	    (cvp->v_flag & VISSWAP) == 0)
1511 		(void) VOP_PUTPAGE(cvp, (offset_t)0, 0, 0, cr, ct);
1512 
1513 	/*
1514 	 * For devices that support it, force write cache to stable storage.
1515 	 * We don't need the lock to check s_flags since we can treat
1516 	 * SNOFLUSH as a hint.
1517 	 */
1518 	if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
1519 	    !(sp->s_flag & SNOFLUSH)) {
1520 		int rval, rc;
1521 		struct dk_callback spec_callback;
1522 
1523 		spec_callback.dkc_flag = FLUSH_VOLATILE;
1524 		spec_callback.dkc_callback = NULL;
1525 
1526 		/* synchronous flush on volatile cache */
1527 		rc = cdev_ioctl(vp->v_rdev, DKIOCFLUSHWRITECACHE,
1528 		    (intptr_t)&spec_callback, FNATIVE|FKIOCTL, cr, &rval);
1529 
1530 		if (rc == ENOTSUP || rc == ENOTTY) {
1531 			mutex_enter(&sp->s_lock);
1532 			sp->s_flag |= SNOFLUSH;
1533 			mutex_exit(&sp->s_lock);
1534 		}
1535 	}
1536 
1537 	/*
1538 	 * If no real vnode to update, don't flush anything.
1539 	 */
1540 	if (realvp == NULL)
1541 		return (0);
1542 
1543 	vatmp.va_mask = AT_ATIME|AT_MTIME;
1544 	if (VOP_GETATTR(realvp, &vatmp, 0, cr, ct) == 0) {
1545 
1546 		mutex_enter(&sp->s_lock);
1547 		if (vatmp.va_atime.tv_sec > sp->s_atime)
1548 			va.va_atime = vatmp.va_atime;
1549 		else {
1550 			va.va_atime.tv_sec = sp->s_atime;
1551 			va.va_atime.tv_nsec = 0;
1552 		}
1553 		if (vatmp.va_mtime.tv_sec > sp->s_mtime)
1554 			va.va_mtime = vatmp.va_mtime;
1555 		else {
1556 			va.va_mtime.tv_sec = sp->s_mtime;
1557 			va.va_mtime.tv_nsec = 0;
1558 		}
1559 		mutex_exit(&sp->s_lock);
1560 
1561 		va.va_mask = AT_ATIME|AT_MTIME;
1562 		(void) VOP_SETATTR(realvp, &va, 0, cr, ct);
1563 	}
1564 	(void) VOP_FSYNC(realvp, syncflag, cr, ct);
1565 	return (0);
1566 }
1567 
1568 /*ARGSUSED*/
1569 static void
spec_inactive(struct vnode * vp,struct cred * cr,caller_context_t * ct)1570 spec_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct)
1571 {
1572 	struct snode *sp = VTOS(vp);
1573 	struct vnode *cvp;
1574 	struct vnode *rvp;
1575 
1576 	/*
1577 	 * If no one has reclaimed the vnode, remove from the
1578 	 * cache now.
1579 	 */
1580 	if (vp->v_count < 1) {
1581 		panic("spec_inactive: Bad v_count");
1582 		/*NOTREACHED*/
1583 	}
1584 	mutex_enter(&stable_lock);
1585 
1586 	mutex_enter(&vp->v_lock);
1587 	VN_RELE_LOCKED(vp);
1588 	if (vp->v_count != 0) {
1589 		mutex_exit(&vp->v_lock);
1590 		mutex_exit(&stable_lock);
1591 		return;
1592 	}
1593 	mutex_exit(&vp->v_lock);
1594 
1595 	sdelete(sp);
1596 	mutex_exit(&stable_lock);
1597 
1598 	/* We are the sole owner of sp now */
1599 	cvp = sp->s_commonvp;
1600 	rvp = sp->s_realvp;
1601 
1602 	if (rvp) {
1603 		/*
1604 		 * If the snode times changed, then update the times
1605 		 * associated with the "realvp".
1606 		 */
1607 		if ((sp->s_flag & (SACC|SUPD|SCHG)) != 0) {
1608 
1609 			struct vattr va, vatmp;
1610 
1611 			mutex_enter(&sp->s_lock);
1612 			sp->s_flag &= ~(SACC|SUPD|SCHG);
1613 			mutex_exit(&sp->s_lock);
1614 			vatmp.va_mask = AT_ATIME|AT_MTIME;
1615 			/*
1616 			 * The user may not own the device, but we
1617 			 * want to update the attributes anyway.
1618 			 */
1619 			if (VOP_GETATTR(rvp, &vatmp, 0, kcred, ct) == 0) {
1620 				if (vatmp.va_atime.tv_sec > sp->s_atime)
1621 					va.va_atime = vatmp.va_atime;
1622 				else {
1623 					va.va_atime.tv_sec = sp->s_atime;
1624 					va.va_atime.tv_nsec = 0;
1625 				}
1626 				if (vatmp.va_mtime.tv_sec > sp->s_mtime)
1627 					va.va_mtime = vatmp.va_mtime;
1628 				else {
1629 					va.va_mtime.tv_sec = sp->s_mtime;
1630 					va.va_mtime.tv_nsec = 0;
1631 				}
1632 
1633 				va.va_mask = AT_ATIME|AT_MTIME;
1634 				(void) VOP_SETATTR(rvp, &va, 0, kcred, ct);
1635 			}
1636 		}
1637 	}
1638 	ASSERT(!vn_has_cached_data(vp));
1639 	vn_invalid(vp);
1640 
1641 	/* if we are sharing another file systems vfs, release it */
1642 	if (vp->v_vfsp && (vp->v_vfsp != &spec_vfs))
1643 		VFS_RELE(vp->v_vfsp);
1644 
1645 	/* if we have a realvp, release the realvp */
1646 	if (rvp)
1647 		VN_RELE(rvp);
1648 
1649 	/* if we have a common, release the common */
1650 	if (cvp && (cvp != vp)) {
1651 		VN_RELE(cvp);
1652 #ifdef DEBUG
1653 	} else if (cvp) {
1654 		/*
1655 		 * if this is the last reference to a common vnode, any
1656 		 * associated stream had better have been closed
1657 		 */
1658 		ASSERT(cvp == vp);
1659 		ASSERT(cvp->v_stream == NULL);
1660 #endif /* DEBUG */
1661 	}
1662 
1663 	/*
1664 	 * if we have a hold on a devinfo node (established by
1665 	 * spec_assoc_vp_with_devi), release the hold
1666 	 */
1667 	if (sp->s_dip)
1668 		ddi_release_devi(sp->s_dip);
1669 
1670 	/*
1671 	 * If we have an associated device policy, release it.
1672 	 */
1673 	if (sp->s_plcy != NULL)
1674 		dpfree(sp->s_plcy);
1675 
1676 	/*
1677 	 * If all holds on the devinfo node are through specfs/devfs
1678 	 * and we just destroyed the last specfs node associated with the
1679 	 * device, then the devinfo node reference count should now be
1680 	 * zero.  We can't check this because there may be other holds
1681 	 * on the node from non file system sources: ddi_hold_devi_by_instance
1682 	 * for example.
1683 	 */
1684 	kmem_cache_free(snode_cache, sp);
1685 }
1686 
1687 static int
spec_fid(struct vnode * vp,struct fid * fidp,caller_context_t * ct)1688 spec_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct)
1689 {
1690 	struct vnode *realvp;
1691 	struct snode *sp = VTOS(vp);
1692 
1693 	if ((realvp = sp->s_realvp) != NULL)
1694 		return (VOP_FID(realvp, fidp, ct));
1695 	else
1696 		return (EINVAL);
1697 }
1698 
1699 /*ARGSUSED1*/
1700 static int
spec_seek(struct vnode * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)1701 spec_seek(
1702 	struct vnode *vp,
1703 	offset_t ooff,
1704 	offset_t *noffp,
1705 	caller_context_t *ct)
1706 {
1707 	offset_t maxoff = spec_maxoffset(vp);
1708 
1709 	if (maxoff == -1 || *noffp <= maxoff)
1710 		return (0);
1711 	else
1712 		return (EINVAL);
1713 }
1714 
1715 static int
spec_frlock(struct vnode * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,struct flk_callback * flk_cbp,struct cred * cr,caller_context_t * ct)1716 spec_frlock(
1717 	struct vnode *vp,
1718 	int		cmd,
1719 	struct flock64	*bfp,
1720 	int		flag,
1721 	offset_t	offset,
1722 	struct flk_callback *flk_cbp,
1723 	struct cred	*cr,
1724 	caller_context_t *ct)
1725 {
1726 	struct snode *sp = VTOS(vp);
1727 	struct snode *csp;
1728 
1729 	csp = VTOS(sp->s_commonvp);
1730 	/*
1731 	 * If file is being mapped, disallow frlock.
1732 	 */
1733 	if (csp->s_mapcnt > 0)
1734 		return (EAGAIN);
1735 
1736 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
1737 }
1738 
1739 static int
spec_realvp(struct vnode * vp,struct vnode ** vpp,caller_context_t * ct)1740 spec_realvp(struct vnode *vp, struct vnode **vpp, caller_context_t *ct)
1741 {
1742 	struct vnode *rvp;
1743 
1744 	if ((rvp = VTOS(vp)->s_realvp) != NULL) {
1745 		vp = rvp;
1746 		if (VOP_REALVP(vp, &rvp, ct) == 0)
1747 			vp = rvp;
1748 	}
1749 
1750 	*vpp = vp;
1751 	return (0);
1752 }
1753 
1754 /*
1755  * Return all the pages from [off..off + len] in block
1756  * or character device.
1757  */
1758 /*ARGSUSED*/
1759 static int
spec_getpage(struct vnode * vp,offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,struct cred * cr,caller_context_t * ct)1760 spec_getpage(
1761 	struct vnode	*vp,
1762 	offset_t	off,
1763 	size_t		len,
1764 	uint_t		*protp,
1765 	page_t		*pl[],
1766 	size_t		plsz,
1767 	struct seg	*seg,
1768 	caddr_t		addr,
1769 	enum seg_rw	rw,
1770 	struct cred	*cr,
1771 	caller_context_t *ct)
1772 {
1773 	struct snode *sp = VTOS(vp);
1774 	int err;
1775 
1776 	ASSERT(sp->s_commonvp == vp);
1777 
1778 	/*
1779 	 * XXX	Given the above assertion, this might not do
1780 	 *	what is wanted here.
1781 	 */
1782 	if (vp->v_flag & VNOMAP)
1783 		return (ENOSYS);
1784 	TRACE_4(TR_FAC_SPECFS, TR_SPECFS_GETPAGE,
1785 	    "specfs getpage:vp %p off %llx len %ld snode %p",
1786 	    vp, off, len, sp);
1787 
1788 	switch (vp->v_type) {
1789 	case VBLK:
1790 		if (protp != NULL)
1791 			*protp = PROT_ALL;
1792 
1793 		if (((u_offset_t)off + len) > (SPEC_SIZE(sp) + PAGEOFFSET))
1794 			return (EFAULT);	/* beyond EOF */
1795 
1796 		err = pvn_getpages(spec_getapage, vp, (u_offset_t)off, len,
1797 		    protp, pl, plsz, seg, addr, rw, cr);
1798 		break;
1799 
1800 	case VCHR:
1801 		cmn_err(CE_NOTE, "spec_getpage called for character device. "
1802 		    "Check any non-ON consolidation drivers");
1803 		err = 0;
1804 		pl[0] = (page_t *)0;
1805 		break;
1806 
1807 	default:
1808 		panic("spec_getpage: bad v_type 0x%x", vp->v_type);
1809 		/*NOTREACHED*/
1810 	}
1811 
1812 	return (err);
1813 }
1814 
1815 extern int klustsize;	/* set in machdep.c */
1816 
1817 int spec_ra = 1;
1818 int spec_lostpage;	/* number of times we lost original page */
1819 
1820 /*ARGSUSED2*/
1821 static int
spec_getapage(struct vnode * vp,u_offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,struct cred * cr)1822 spec_getapage(
1823 	struct vnode *vp,
1824 	u_offset_t	off,
1825 	size_t		len,
1826 	uint_t		*protp,
1827 	page_t		*pl[],
1828 	size_t		plsz,
1829 	struct seg	*seg,
1830 	caddr_t		addr,
1831 	enum seg_rw	rw,
1832 	struct cred	*cr)
1833 {
1834 	struct snode *sp;
1835 	struct buf *bp;
1836 	page_t *pp, *pp2;
1837 	u_offset_t io_off1, io_off2;
1838 	size_t io_len1;
1839 	size_t io_len2;
1840 	size_t blksz;
1841 	u_offset_t blkoff;
1842 	int dora, err;
1843 	page_t *pagefound;
1844 	uint_t xlen;
1845 	size_t adj_klustsize;
1846 	u_offset_t size;
1847 	u_offset_t tmpoff;
1848 
1849 	sp = VTOS(vp);
1850 	TRACE_3(TR_FAC_SPECFS, TR_SPECFS_GETAPAGE,
1851 	    "specfs getapage:vp %p off %llx snode %p", vp, off, sp);
1852 reread:
1853 
1854 	err = 0;
1855 	bp = NULL;
1856 	pp = NULL;
1857 	pp2 = NULL;
1858 
1859 	if (pl != NULL)
1860 		pl[0] = NULL;
1861 
1862 	size = SPEC_SIZE(VTOS(sp->s_commonvp));
1863 
1864 	if (spec_ra && sp->s_nextr == off)
1865 		dora = 1;
1866 	else
1867 		dora = 0;
1868 
1869 	if (size == UNKNOWN_SIZE) {
1870 		dora = 0;
1871 		adj_klustsize = PAGESIZE;
1872 	} else {
1873 		adj_klustsize = dora ? klustsize : PAGESIZE;
1874 	}
1875 
1876 again:
1877 	if ((pagefound = page_exists(vp, off)) == NULL) {
1878 		if (rw == S_CREATE) {
1879 			/*
1880 			 * We're allocating a swap slot and it's
1881 			 * associated page was not found, so allocate
1882 			 * and return it.
1883 			 */
1884 			if ((pp = page_create_va(vp, off,
1885 			    PAGESIZE, PG_WAIT, seg, addr)) == NULL) {
1886 				panic("spec_getapage: page_create");
1887 				/*NOTREACHED*/
1888 			}
1889 			io_len1 = PAGESIZE;
1890 			sp->s_nextr = off + PAGESIZE;
1891 		} else {
1892 			/*
1893 			 * Need to really do disk I/O to get the page(s).
1894 			 */
1895 			blkoff = (off / adj_klustsize) * adj_klustsize;
1896 			if (size == UNKNOWN_SIZE) {
1897 				blksz = PAGESIZE;
1898 			} else {
1899 				if (blkoff + adj_klustsize <= size)
1900 					blksz = adj_klustsize;
1901 				else
1902 					blksz =
1903 					    MIN(size - blkoff, adj_klustsize);
1904 			}
1905 
1906 			pp = pvn_read_kluster(vp, off, seg, addr, &tmpoff,
1907 			    &io_len1, blkoff, blksz, 0);
1908 			io_off1 = tmpoff;
1909 			/*
1910 			 * Make sure the page didn't sneek into the
1911 			 * cache while we blocked in pvn_read_kluster.
1912 			 */
1913 			if (pp == NULL)
1914 				goto again;
1915 
1916 			/*
1917 			 * Zero part of page which we are not
1918 			 * going to be reading from disk now.
1919 			 */
1920 			xlen = (uint_t)(io_len1 & PAGEOFFSET);
1921 			if (xlen != 0)
1922 				pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
1923 
1924 			bp = spec_startio(vp, pp, io_off1, io_len1,
1925 			    pl == NULL ? (B_ASYNC | B_READ) : B_READ);
1926 			sp->s_nextr = io_off1 + io_len1;
1927 		}
1928 	}
1929 
1930 	if (dora && rw != S_CREATE) {
1931 		u_offset_t off2;
1932 		caddr_t addr2;
1933 
1934 		off2 = ((off / adj_klustsize) + 1) * adj_klustsize;
1935 		addr2 = addr + (off2 - off);
1936 
1937 		pp2 = NULL;
1938 		/*
1939 		 * If we are past EOF then don't bother trying
1940 		 * with read-ahead.
1941 		 */
1942 		if (off2 >= size)
1943 			pp2 = NULL;
1944 		else {
1945 			if (off2 + adj_klustsize <= size)
1946 				blksz = adj_klustsize;
1947 			else
1948 				blksz = MIN(size - off2, adj_klustsize);
1949 
1950 			pp2 = pvn_read_kluster(vp, off2, seg, addr2, &tmpoff,
1951 			    &io_len2, off2, blksz, 1);
1952 			io_off2 = tmpoff;
1953 		}
1954 
1955 		if (pp2 != NULL) {
1956 			/*
1957 			 * Zero part of page which we are not
1958 			 * going to be reading from disk now.
1959 			 */
1960 			xlen = (uint_t)(io_len2 & PAGEOFFSET);
1961 			if (xlen != 0)
1962 				pagezero(pp2->p_prev, xlen, PAGESIZE - xlen);
1963 
1964 			(void) spec_startio(vp, pp2, io_off2, io_len2,
1965 			    B_READ | B_ASYNC);
1966 		}
1967 	}
1968 
1969 	if (pl == NULL)
1970 		return (err);
1971 
1972 	if (bp != NULL) {
1973 		err = biowait(bp);
1974 		pageio_done(bp);
1975 
1976 		if (err) {
1977 			if (pp != NULL)
1978 				pvn_read_done(pp, B_ERROR);
1979 			return (err);
1980 		}
1981 	}
1982 
1983 	if (pagefound) {
1984 		se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
1985 		/*
1986 		 * Page exists in the cache, acquire the appropriate
1987 		 * lock.  If this fails, start all over again.
1988 		 */
1989 
1990 		if ((pp = page_lookup(vp, off, se)) == NULL) {
1991 			spec_lostpage++;
1992 			goto reread;
1993 		}
1994 		pl[0] = pp;
1995 		pl[1] = NULL;
1996 
1997 		sp->s_nextr = off + PAGESIZE;
1998 		return (0);
1999 	}
2000 
2001 	if (pp != NULL)
2002 		pvn_plist_init(pp, pl, plsz, off, io_len1, rw);
2003 	return (0);
2004 }
2005 
2006 /*
2007  * Flags are composed of {B_INVAL, B_DIRTY B_FREE, B_DONTNEED, B_FORCE}.
2008  * If len == 0, do from off to EOF.
2009  *
2010  * The normal cases should be len == 0 & off == 0 (entire vp list),
2011  * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
2012  * (from pageout).
2013  */
2014 /*ARGSUSED5*/
2015 int
spec_putpage(struct vnode * vp,offset_t off,size_t len,int flags,struct cred * cr,caller_context_t * ct)2016 spec_putpage(
2017 	struct vnode *vp,
2018 	offset_t	off,
2019 	size_t		len,
2020 	int		flags,
2021 	struct cred	*cr,
2022 	caller_context_t *ct)
2023 {
2024 	struct snode *sp = VTOS(vp);
2025 	struct vnode *cvp;
2026 	page_t *pp;
2027 	u_offset_t io_off;
2028 	size_t io_len = 0;	/* for lint */
2029 	int err = 0;
2030 	u_offset_t size;
2031 	u_offset_t tmpoff;
2032 
2033 	ASSERT(vp->v_count != 0);
2034 
2035 	if (vp->v_flag & VNOMAP)
2036 		return (ENOSYS);
2037 
2038 	cvp = sp->s_commonvp;
2039 	size = SPEC_SIZE(VTOS(cvp));
2040 
2041 	if (!vn_has_cached_data(vp) || off >= size)
2042 		return (0);
2043 
2044 	ASSERT(vp->v_type == VBLK && cvp == vp);
2045 	TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTPAGE,
2046 	    "specfs putpage:vp %p off %llx len %ld snode %p",
2047 	    vp, off, len, sp);
2048 
2049 	if (len == 0) {
2050 		/*
2051 		 * Search the entire vp list for pages >= off.
2052 		 */
2053 		err = pvn_vplist_dirty(vp, off, spec_putapage,
2054 		    flags, cr);
2055 	} else {
2056 		u_offset_t eoff;
2057 
2058 		/*
2059 		 * Loop over all offsets in the range [off...off + len]
2060 		 * looking for pages to deal with.  We set limits so
2061 		 * that we kluster to klustsize boundaries.
2062 		 */
2063 		eoff = off + len;
2064 		for (io_off = off; io_off < eoff && io_off < size;
2065 		    io_off += io_len) {
2066 			/*
2067 			 * If we are not invalidating, synchronously
2068 			 * freeing or writing pages use the routine
2069 			 * page_lookup_nowait() to prevent reclaiming
2070 			 * them from the free list.
2071 			 */
2072 			if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
2073 				pp = page_lookup(vp, io_off,
2074 				    (flags & (B_INVAL | B_FREE)) ?
2075 				    SE_EXCL : SE_SHARED);
2076 			} else {
2077 				pp = page_lookup_nowait(vp, io_off,
2078 				    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2079 			}
2080 
2081 			if (pp == NULL || pvn_getdirty(pp, flags) == 0)
2082 				io_len = PAGESIZE;
2083 			else {
2084 				err = spec_putapage(vp, pp, &tmpoff, &io_len,
2085 				    flags, cr);
2086 				io_off = tmpoff;
2087 				if (err != 0)
2088 					break;
2089 				/*
2090 				 * "io_off" and "io_len" are returned as
2091 				 * the range of pages we actually wrote.
2092 				 * This allows us to skip ahead more quickly
2093 				 * since several pages may've been dealt
2094 				 * with by this iteration of the loop.
2095 				 */
2096 			}
2097 		}
2098 	}
2099 	return (err);
2100 }
2101 
2102 
2103 /*
2104  * Write out a single page, possibly klustering adjacent
2105  * dirty pages.
2106  */
2107 /*ARGSUSED5*/
2108 static int
spec_putapage(struct vnode * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,struct cred * cr)2109 spec_putapage(
2110 	struct vnode	*vp,
2111 	page_t		*pp,
2112 	u_offset_t	*offp,		/* return value */
2113 	size_t		*lenp,		/* return value */
2114 	int		flags,
2115 	struct cred	*cr)
2116 {
2117 	struct snode *sp = VTOS(vp);
2118 	u_offset_t io_off;
2119 	size_t io_len;
2120 	size_t blksz;
2121 	u_offset_t blkoff;
2122 	int err = 0;
2123 	struct buf *bp;
2124 	u_offset_t size;
2125 	size_t adj_klustsize;
2126 	u_offset_t tmpoff;
2127 
2128 	/*
2129 	 * Destroy read ahead value since we are really going to write.
2130 	 */
2131 	sp->s_nextr = 0;
2132 	size = SPEC_SIZE(VTOS(sp->s_commonvp));
2133 
2134 	adj_klustsize = klustsize;
2135 
2136 	blkoff = (pp->p_offset / adj_klustsize) * adj_klustsize;
2137 
2138 	if (blkoff + adj_klustsize <= size)
2139 		blksz = adj_klustsize;
2140 	else
2141 		blksz = size - blkoff;
2142 
2143 	/*
2144 	 * Find a kluster that fits in one contiguous chunk.
2145 	 */
2146 	pp = pvn_write_kluster(vp, pp, &tmpoff, &io_len, blkoff,
2147 	    blksz, flags);
2148 	io_off = tmpoff;
2149 
2150 	/*
2151 	 * Check for page length rounding problems
2152 	 * XXX - Is this necessary?
2153 	 */
2154 	if (io_off + io_len > size) {
2155 		ASSERT((io_off + io_len) - size < PAGESIZE);
2156 		io_len = size - io_off;
2157 	}
2158 
2159 	bp = spec_startio(vp, pp, io_off, io_len, B_WRITE | flags);
2160 
2161 	/*
2162 	 * Wait for i/o to complete if the request is not B_ASYNC.
2163 	 */
2164 	if ((flags & B_ASYNC) == 0) {
2165 		err = biowait(bp);
2166 		pageio_done(bp);
2167 		pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags);
2168 	}
2169 
2170 	if (offp)
2171 		*offp = io_off;
2172 	if (lenp)
2173 		*lenp = io_len;
2174 	TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTAPAGE,
2175 	    "specfs putapage:vp %p offp %p snode %p err %d",
2176 	    vp, offp, sp, err);
2177 	return (err);
2178 }
2179 
2180 /*
2181  * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
2182  */
2183 static struct buf *
spec_startio(struct vnode * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags)2184 spec_startio(
2185 	struct vnode *vp,
2186 	page_t		*pp,
2187 	u_offset_t	io_off,
2188 	size_t		io_len,
2189 	int		flags)
2190 {
2191 	struct buf *bp;
2192 
2193 	bp = pageio_setup(pp, io_len, vp, flags);
2194 
2195 	bp->b_edev = vp->v_rdev;
2196 	bp->b_dev = cmpdev(vp->v_rdev);
2197 	bp->b_blkno = btodt(io_off);
2198 	bp->b_un.b_addr = (caddr_t)0;
2199 
2200 	(void) bdev_strategy(bp);
2201 
2202 	if (flags & B_READ)
2203 		lwp_stat_update(LWP_STAT_INBLK, 1);
2204 	else
2205 		lwp_stat_update(LWP_STAT_OUBLK, 1);
2206 
2207 	return (bp);
2208 }
2209 
2210 static int
spec_poll(struct vnode * vp,short events,int anyyet,short * reventsp,struct pollhead ** phpp,caller_context_t * ct)2211 spec_poll(
2212 	struct vnode	*vp,
2213 	short		events,
2214 	int		anyyet,
2215 	short		*reventsp,
2216 	struct pollhead **phpp,
2217 	caller_context_t *ct)
2218 {
2219 	dev_t dev;
2220 	int error;
2221 
2222 	if (vp->v_type == VBLK)
2223 		error = fs_poll(vp, events, anyyet, reventsp, phpp, ct);
2224 	else {
2225 		ASSERT(vp->v_type == VCHR);
2226 		dev = vp->v_rdev;
2227 		if (vp->v_stream) {
2228 			ASSERT(vp->v_stream != NULL);
2229 			error = strpoll(vp->v_stream, events, anyyet,
2230 			    reventsp, phpp);
2231 		} else if (devopsp[getmajor(dev)]->devo_cb_ops->cb_chpoll) {
2232 			error = cdev_poll(dev, events, anyyet, reventsp, phpp);
2233 		} else {
2234 			error = fs_poll(vp, events, anyyet, reventsp, phpp, ct);
2235 		}
2236 	}
2237 	return (error);
2238 }
2239 
2240 /*
2241  * This routine is called through the cdevsw[] table to handle
2242  * traditional mmap'able devices that support a d_mmap function.
2243  */
2244 /*ARGSUSED8*/
2245 int
spec_segmap(dev_t dev,off_t off,struct as * as,caddr_t * addrp,off_t len,uint_t prot,uint_t maxprot,uint_t flags,struct cred * cred)2246 spec_segmap(
2247 	dev_t dev,
2248 	off_t off,
2249 	struct as *as,
2250 	caddr_t *addrp,
2251 	off_t len,
2252 	uint_t prot,
2253 	uint_t maxprot,
2254 	uint_t flags,
2255 	struct cred *cred)
2256 {
2257 	struct segdev_crargs dev_a;
2258 	int (*mapfunc)(dev_t dev, off_t off, int prot);
2259 	size_t i;
2260 	int	error;
2261 
2262 	if ((mapfunc = devopsp[getmajor(dev)]->devo_cb_ops->cb_mmap) == nodev)
2263 		return (ENODEV);
2264 	TRACE_4(TR_FAC_SPECFS, TR_SPECFS_SEGMAP,
2265 	    "specfs segmap:dev %x as %p len %lx prot %x",
2266 	    dev, as, len, prot);
2267 
2268 	/*
2269 	 * Character devices that support the d_mmap
2270 	 * interface can only be mmap'ed shared.
2271 	 */
2272 	if ((flags & MAP_TYPE) != MAP_SHARED)
2273 		return (EINVAL);
2274 
2275 	/*
2276 	 * Check to ensure that the entire range is
2277 	 * legal and we are not trying to map in
2278 	 * more than the device will let us.
2279 	 */
2280 	for (i = 0; i < len; i += PAGESIZE) {
2281 		if (cdev_mmap(mapfunc, dev, off + i, maxprot) == -1)
2282 			return (ENXIO);
2283 	}
2284 
2285 	as_rangelock(as);
2286 	/* Pick an address w/o worrying about any vac alignment constraints. */
2287 	error = choose_addr(as, addrp, len, off, ADDR_NOVACALIGN, flags);
2288 	if (error != 0) {
2289 		as_rangeunlock(as);
2290 		return (error);
2291 	}
2292 
2293 	dev_a.mapfunc = mapfunc;
2294 	dev_a.dev = dev;
2295 	dev_a.offset = off;
2296 	dev_a.prot = (uchar_t)prot;
2297 	dev_a.maxprot = (uchar_t)maxprot;
2298 	dev_a.hat_flags = 0;
2299 	dev_a.hat_attr = 0;
2300 	dev_a.devmap_data = NULL;
2301 
2302 	error = as_map(as, *addrp, len, segdev_create, &dev_a);
2303 	as_rangeunlock(as);
2304 	return (error);
2305 }
2306 
2307 int
spec_char_map(dev_t dev,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,struct cred * cred)2308 spec_char_map(
2309 	dev_t dev,
2310 	offset_t off,
2311 	struct as *as,
2312 	caddr_t *addrp,
2313 	size_t len,
2314 	uchar_t prot,
2315 	uchar_t maxprot,
2316 	uint_t flags,
2317 	struct cred *cred)
2318 {
2319 	int error = 0;
2320 	major_t maj = getmajor(dev);
2321 	int map_flag;
2322 	int (*segmap)(dev_t, off_t, struct as *,
2323 	    caddr_t *, off_t, uint_t, uint_t, uint_t, cred_t *);
2324 	int (*devmap)(dev_t, devmap_cookie_t, offset_t,
2325 	    size_t, size_t *, uint_t);
2326 	int (*mmap)(dev_t dev, off_t off, int prot);
2327 
2328 	/*
2329 	 * Character device: let the device driver
2330 	 * pick the appropriate segment driver.
2331 	 *
2332 	 * 4.x compat.: allow 'NULL' cb_segmap => spec_segmap
2333 	 * Kindness: allow 'nulldev' cb_segmap => spec_segmap
2334 	 */
2335 	segmap = devopsp[maj]->devo_cb_ops->cb_segmap;
2336 	if (segmap == NULL || segmap == nulldev || segmap == nodev) {
2337 		mmap = devopsp[maj]->devo_cb_ops->cb_mmap;
2338 		map_flag = devopsp[maj]->devo_cb_ops->cb_flag;
2339 
2340 		/*
2341 		 * Use old mmap framework if the driver has both mmap
2342 		 * and devmap entry points.  This is to prevent the
2343 		 * system from calling invalid devmap entry point
2344 		 * for some drivers that might have put garbage in the
2345 		 * devmap entry point.
2346 		 */
2347 		if ((map_flag & D_DEVMAP) || mmap == NULL ||
2348 		    mmap == nulldev || mmap == nodev) {
2349 			devmap = devopsp[maj]->devo_cb_ops->cb_devmap;
2350 
2351 			/*
2352 			 * If driver provides devmap entry point in
2353 			 * cb_ops but not xx_segmap(9E), call
2354 			 * devmap_setup with default settings
2355 			 * (NULL) for callback_ops and driver
2356 			 * callback private data
2357 			 */
2358 			if (devmap == nodev || devmap == NULL ||
2359 			    devmap == nulldev)
2360 				return (ENODEV);
2361 
2362 			error = devmap_setup(dev, off, as, addrp,
2363 			    len, prot, maxprot, flags, cred);
2364 
2365 			return (error);
2366 		} else
2367 			segmap = spec_segmap;
2368 	} else
2369 		segmap = cdev_segmap;
2370 
2371 	return ((*segmap)(dev, (off_t)off, as, addrp, len, prot,
2372 	    maxprot, flags, cred));
2373 }
2374 
2375 /*ARGSUSED9*/
2376 static int
spec_map(struct vnode * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,struct cred * cred,caller_context_t * ct)2377 spec_map(
2378 	struct vnode *vp,
2379 	offset_t off,
2380 	struct as *as,
2381 	caddr_t *addrp,
2382 	size_t len,
2383 	uchar_t prot,
2384 	uchar_t maxprot,
2385 	uint_t flags,
2386 	struct cred *cred,
2387 	caller_context_t *ct)
2388 {
2389 	int error = 0;
2390 	struct snode *sp = VTOS(vp);
2391 
2392 	if (vp->v_flag & VNOMAP)
2393 		return (ENOSYS);
2394 
2395 	/* fail map with ENXIO if the device is fenced off */
2396 	if (S_ISFENCED(sp))
2397 		return (ENXIO);
2398 
2399 	/*
2400 	 * If file is locked, fail mapping attempt.
2401 	 */
2402 	if (vn_has_flocks(vp))
2403 		return (EAGAIN);
2404 
2405 	if (vp->v_type == VCHR) {
2406 		return (spec_char_map(vp->v_rdev, off, as, addrp, len, prot,
2407 		    maxprot, flags, cred));
2408 	} else if (vp->v_type == VBLK) {
2409 		struct segvn_crargs vn_a;
2410 		struct vnode *cvp;
2411 		struct snode *sp;
2412 
2413 		/*
2414 		 * Block device, use segvn mapping to the underlying commonvp
2415 		 * for pages.
2416 		 */
2417 		if (off > spec_maxoffset(vp))
2418 			return (ENXIO);
2419 
2420 		sp = VTOS(vp);
2421 		cvp = sp->s_commonvp;
2422 		ASSERT(cvp != NULL);
2423 
2424 		if (off < 0 || ((offset_t)(off + len) < 0))
2425 			return (ENXIO);
2426 
2427 		as_rangelock(as);
2428 		error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
2429 		if (error != 0) {
2430 			as_rangeunlock(as);
2431 			return (error);
2432 		}
2433 
2434 		vn_a.vp = cvp;
2435 		vn_a.offset = off;
2436 		vn_a.type = flags & MAP_TYPE;
2437 		vn_a.prot = (uchar_t)prot;
2438 		vn_a.maxprot = (uchar_t)maxprot;
2439 		vn_a.flags = flags & ~MAP_TYPE;
2440 		vn_a.cred = cred;
2441 		vn_a.amp = NULL;
2442 		vn_a.szc = 0;
2443 		vn_a.lgrp_mem_policy_flags = 0;
2444 
2445 		error = as_map(as, *addrp, len, segvn_create, &vn_a);
2446 		as_rangeunlock(as);
2447 	} else
2448 		return (ENODEV);
2449 
2450 	return (error);
2451 }
2452 
2453 /*ARGSUSED1*/
2454 static int
spec_addmap(struct vnode * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,struct cred * cred,caller_context_t * ct)2455 spec_addmap(
2456 	struct vnode *vp,	/* the common vnode */
2457 	offset_t off,
2458 	struct as *as,
2459 	caddr_t addr,
2460 	size_t len,		/* how many bytes to add */
2461 	uchar_t prot,
2462 	uchar_t maxprot,
2463 	uint_t flags,
2464 	struct cred *cred,
2465 	caller_context_t *ct)
2466 {
2467 	int error = 0;
2468 	struct snode *csp = VTOS(vp);
2469 	ulong_t npages;
2470 
2471 	ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp);
2472 
2473 	/*
2474 	 * XXX	Given the above assertion, this might not
2475 	 *	be a particularly sensible thing to test.
2476 	 */
2477 	if (vp->v_flag & VNOMAP)
2478 		return (ENOSYS);
2479 
2480 	/* fail with EIO if the device is fenced off */
2481 	if (S_ISFENCED(csp))
2482 		return (EIO);
2483 
2484 	npages = btopr(len);
2485 	LOCK_CSP(csp);
2486 	csp->s_mapcnt += npages;
2487 
2488 	UNLOCK_CSP(csp);
2489 	return (error);
2490 }
2491 
2492 /*ARGSUSED1*/
2493 static int
spec_delmap(struct vnode * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,struct cred * cred,caller_context_t * ct)2494 spec_delmap(
2495 	struct vnode *vp,	/* the common vnode */
2496 	offset_t off,
2497 	struct as *as,
2498 	caddr_t addr,
2499 	size_t len,		/* how many bytes to take away */
2500 	uint_t prot,
2501 	uint_t maxprot,
2502 	uint_t flags,
2503 	struct cred *cred,
2504 	caller_context_t *ct)
2505 {
2506 	struct snode *csp = VTOS(vp);
2507 	ulong_t npages;
2508 	long mcnt;
2509 
2510 	/* segdev passes us the common vp */
2511 
2512 	ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp);
2513 
2514 	/* allow delmap to succeed even if device fenced off */
2515 
2516 	/*
2517 	 * XXX	Given the above assertion, this might not
2518 	 *	be a particularly sensible thing to test..
2519 	 */
2520 	if (vp->v_flag & VNOMAP)
2521 		return (ENOSYS);
2522 
2523 	npages = btopr(len);
2524 
2525 	LOCK_CSP(csp);
2526 	mutex_enter(&csp->s_lock);
2527 	mcnt = (csp->s_mapcnt -= npages);
2528 
2529 	if (mcnt == 0) {
2530 		/*
2531 		 * Call the close routine when the last reference of any
2532 		 * kind through any [s, v]node goes away.  The s_dip hold
2533 		 * on the devinfo node is released when the vnode is
2534 		 * destroyed.
2535 		 */
2536 		if (csp->s_count == 0) {
2537 			csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID);
2538 
2539 			/* See comment in spec_close() */
2540 			if (csp->s_flag & (SCLONE | SSELFCLONE))
2541 				csp->s_flag &= ~SDIPSET;
2542 
2543 			mutex_exit(&csp->s_lock);
2544 
2545 			(void) device_close(vp, 0, cred);
2546 		} else
2547 			mutex_exit(&csp->s_lock);
2548 
2549 		mutex_enter(&csp->s_lock);
2550 	}
2551 	ASSERT(mcnt >= 0);
2552 
2553 	UNLOCK_CSP_LOCK_HELD(csp);
2554 	mutex_exit(&csp->s_lock);
2555 
2556 	return (0);
2557 }
2558 
2559 /*ARGSUSED4*/
2560 static int
spec_dump(struct vnode * vp,caddr_t addr,offset_t bn,offset_t count,caller_context_t * ct)2561 spec_dump(
2562 	struct vnode *vp,
2563 	caddr_t addr,
2564 	offset_t bn,
2565 	offset_t count,
2566 	caller_context_t *ct)
2567 {
2568 	/* allow dump to succeed even if device fenced off */
2569 
2570 	ASSERT(vp->v_type == VBLK);
2571 	return (bdev_dump(vp->v_rdev, addr, (daddr_t)bn, (int)count));
2572 }
2573 
2574 
2575 /*
2576  * Do i/o on the given page list from/to vp, io_off for io_len.
2577  * Flags are composed of:
2578  *	{B_ASYNC, B_INVAL, B_FREE, B_DONTNEED, B_READ, B_WRITE}
2579  * If B_ASYNC is not set i/o is waited for.
2580  */
2581 /*ARGSUSED5*/
2582 static int
spec_pageio(struct vnode * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr,caller_context_t * ct)2583 spec_pageio(
2584 	struct vnode *vp,
2585 	page_t	*pp,
2586 	u_offset_t io_off,
2587 	size_t	io_len,
2588 	int	flags,
2589 	cred_t	*cr,
2590 	caller_context_t *ct)
2591 {
2592 	struct buf *bp = NULL;
2593 	int err = 0;
2594 
2595 	if (pp == NULL)
2596 		return (EINVAL);
2597 
2598 	bp = spec_startio(vp, pp, io_off, io_len, flags);
2599 
2600 	/*
2601 	 * Wait for i/o to complete if the request is not B_ASYNC.
2602 	 */
2603 	if ((flags & B_ASYNC) == 0) {
2604 		err = biowait(bp);
2605 		pageio_done(bp);
2606 	}
2607 	return (err);
2608 }
2609 
2610 /*
2611  * Set ACL on underlying vnode if one exists, or return ENOSYS otherwise.
2612  */
2613 int
spec_setsecattr(struct vnode * vp,vsecattr_t * vsap,int flag,struct cred * cr,caller_context_t * ct)2614 spec_setsecattr(
2615 	struct vnode *vp,
2616 	vsecattr_t *vsap,
2617 	int flag,
2618 	struct cred *cr,
2619 	caller_context_t *ct)
2620 {
2621 	struct vnode *realvp;
2622 	struct snode *sp = VTOS(vp);
2623 	int error;
2624 
2625 	/* fail with ENXIO if the device is fenced off */
2626 	if (S_ISFENCED(sp))
2627 		return (ENXIO);
2628 
2629 	/*
2630 	 * The acl(2) system calls VOP_RWLOCK on the file before setting an
2631 	 * ACL, but since specfs does not serialize reads and writes, this
2632 	 * VOP does not do anything.  However, some backing file systems may
2633 	 * expect the lock to be held before setting an ACL, so it is taken
2634 	 * here privately to avoid serializing specfs reads and writes.
2635 	 */
2636 	if ((realvp = sp->s_realvp) != NULL) {
2637 		(void) VOP_RWLOCK(realvp, V_WRITELOCK_TRUE, ct);
2638 		error = VOP_SETSECATTR(realvp, vsap, flag, cr, ct);
2639 		(void) VOP_RWUNLOCK(realvp, V_WRITELOCK_TRUE, ct);
2640 		return (error);
2641 	} else
2642 		return (fs_nosys());
2643 }
2644 
2645 /*
2646  * Get ACL from underlying vnode if one exists, or fabricate it from
2647  * the permissions returned by spec_getattr() otherwise.
2648  */
2649 int
spec_getsecattr(struct vnode * vp,vsecattr_t * vsap,int flag,struct cred * cr,caller_context_t * ct)2650 spec_getsecattr(
2651 	struct vnode *vp,
2652 	vsecattr_t *vsap,
2653 	int flag,
2654 	struct cred *cr,
2655 	caller_context_t *ct)
2656 {
2657 	struct vnode *realvp;
2658 	struct snode *sp = VTOS(vp);
2659 
2660 	/* fail with ENXIO if the device is fenced off */
2661 	if (S_ISFENCED(sp))
2662 		return (ENXIO);
2663 
2664 	if ((realvp = sp->s_realvp) != NULL)
2665 		return (VOP_GETSECATTR(realvp, vsap, flag, cr, ct));
2666 	else
2667 		return (fs_fab_acl(vp, vsap, flag, cr, ct));
2668 }
2669 
2670 int
spec_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)2671 spec_pathconf(
2672 	vnode_t *vp,
2673 	int cmd,
2674 	ulong_t *valp,
2675 	cred_t *cr,
2676 	caller_context_t *ct)
2677 {
2678 	vnode_t *realvp;
2679 	struct snode *sp = VTOS(vp);
2680 
2681 	/* fail with ENXIO if the device is fenced off */
2682 	if (S_ISFENCED(sp))
2683 		return (ENXIO);
2684 
2685 	if ((realvp = sp->s_realvp) != NULL)
2686 		return (VOP_PATHCONF(realvp, cmd, valp, cr, ct));
2687 	else
2688 		return (fs_pathconf(vp, cmd, valp, cr, ct));
2689 }
2690