xref: /illumos-gate/usr/src/uts/common/fs/sockfs/socksubr.c (revision d865fc92e4b640c73c2957a20b3d82622c741be5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright 2015, Joyent, Inc. All rights reserved.
26  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
27  */
28 
29 #include <sys/types.h>
30 #include <sys/t_lock.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/cred.h>
36 #include <sys/kmem.h>
37 #include <sys/sysmacros.h>
38 #include <sys/vfs.h>
39 #include <sys/vfs_opreg.h>
40 #include <sys/vnode.h>
41 #include <sys/debug.h>
42 #include <sys/errno.h>
43 #include <sys/time.h>
44 #include <sys/file.h>
45 #include <sys/open.h>
46 #include <sys/user.h>
47 #include <sys/termios.h>
48 #include <sys/stream.h>
49 #include <sys/strsubr.h>
50 #include <sys/strsun.h>
51 #include <sys/esunddi.h>
52 #include <sys/flock.h>
53 #include <sys/modctl.h>
54 #include <sys/cmn_err.h>
55 #include <sys/mkdev.h>
56 #include <sys/pathname.h>
57 #include <sys/ddi.h>
58 #include <sys/stat.h>
59 #include <sys/fs/snode.h>
60 #include <sys/fs/dv_node.h>
61 #include <sys/zone.h>
62 
63 #include <sys/socket.h>
64 #include <sys/socketvar.h>
65 #include <netinet/in.h>
66 #include <sys/un.h>
67 #include <sys/ucred.h>
68 
69 #include <sys/tiuser.h>
70 #define	_SUN_TPI_VERSION	2
71 #include <sys/tihdr.h>
72 
73 #include <c2/audit.h>
74 
75 #include <fs/sockfs/nl7c.h>
76 #include <fs/sockfs/sockcommon.h>
77 #include <fs/sockfs/sockfilter_impl.h>
78 #include <fs/sockfs/socktpi.h>
79 #include <fs/sockfs/socktpi_impl.h>
80 #include <fs/sockfs/sodirect.h>
81 
82 /*
83  * Macros that operate on struct cmsghdr.
84  * The CMSG_VALID macro does not assume that the last option buffer is padded.
85  */
86 #define	CMSG_CONTENT(cmsg)	(&((cmsg)[1]))
87 #define	CMSG_CONTENTLEN(cmsg)	((cmsg)->cmsg_len - sizeof (struct cmsghdr))
88 #define	CMSG_VALID(cmsg, start, end)					\
89 	(ISALIGNED_cmsghdr(cmsg) &&					\
90 	((uintptr_t)(cmsg) >= (uintptr_t)(start)) &&			\
91 	((uintptr_t)(cmsg) < (uintptr_t)(end)) &&			\
92 	((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) &&	\
93 	((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
94 #define	SO_LOCK_WAKEUP_TIME	3000	/* Wakeup time in milliseconds */
95 
96 dev_t sockdev;	/* For fsid in getattr */
97 int sockfs_defer_nl7c_init = 0;
98 
99 struct socklist socklist;
100 
101 struct kmem_cache *socket_cache;
102 
103 /*
104  * sockconf_lock protects the socket configuration (socket types and
105  * socket filters) which is changed via the sockconfig system call.
106  */
107 krwlock_t sockconf_lock;
108 
109 static int sockfs_update(kstat_t *, int);
110 static int sockfs_snapshot(kstat_t *, void *, int);
111 extern smod_info_t *sotpi_smod_create(void);
112 
113 extern void sendfile_init();
114 
115 extern void nl7c_init(void);
116 
117 extern int modrootloaded;
118 
119 /*
120  * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
121  * Returns with the vnode held.
122  */
123 int
124 sogetvp(char *devpath, vnode_t **vpp, int uioflag)
125 {
126 	struct snode *csp;
127 	vnode_t *vp, *dvp;
128 	major_t maj;
129 	int error;
130 
131 	ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
132 
133 	/*
134 	 * Lookup the underlying filesystem vnode.
135 	 */
136 	error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
137 	if (error)
138 		return (error);
139 
140 	/* Check that it is the correct vnode */
141 	if (vp->v_type != VCHR) {
142 		VN_RELE(vp);
143 		return (ENOTSOCK);
144 	}
145 
146 	/*
147 	 * If devpath went through devfs, the device should already
148 	 * be configured. If devpath is a mknod file, however, we
149 	 * need to make sure the device is properly configured.
150 	 * To do this, we do something similar to spec_open()
151 	 * except that we resolve to the minor/leaf level since
152 	 * we need to return a vnode.
153 	 */
154 	csp = VTOS(VTOS(vp)->s_commonvp);
155 	if (!(csp->s_flag & SDIPSET)) {
156 		char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
157 		error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
158 		if (error == 0)
159 			error = devfs_lookupname(pathname, NULLVPP, &dvp);
160 		VN_RELE(vp);
161 		kmem_free(pathname, MAXPATHLEN);
162 		if (error != 0)
163 			return (ENXIO);
164 		vp = dvp;	/* use the devfs vp */
165 	}
166 
167 	/* device is configured at this point */
168 	maj = getmajor(vp->v_rdev);
169 	if (!STREAMSTAB(maj)) {
170 		VN_RELE(vp);
171 		return (ENOSTR);
172 	}
173 
174 	*vpp = vp;
175 	return (0);
176 }
177 
178 /*
179  * Update the accessed, updated, or changed times in an sonode
180  * with the current time.
181  *
182  * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
183  * attributes in a fstat call. (They return the current time and 0 for
184  * all timestamps, respectively.) We maintain the current timestamps
185  * here primarily so that should sockmod be popped the resulting
186  * file descriptor will behave like a stream w.r.t. the timestamps.
187  */
188 void
189 so_update_attrs(struct sonode *so, int flag)
190 {
191 	time_t now = gethrestime_sec();
192 
193 	if (SOCK_IS_NONSTR(so))
194 		return;
195 
196 	mutex_enter(&so->so_lock);
197 	so->so_flag |= flag;
198 	if (flag & SOACC)
199 		SOTOTPI(so)->sti_atime = now;
200 	if (flag & SOMOD)
201 		SOTOTPI(so)->sti_mtime = now;
202 	mutex_exit(&so->so_lock);
203 }
204 
205 extern so_create_func_t sock_comm_create_function;
206 extern so_destroy_func_t sock_comm_destroy_function;
207 /*
208  * Init function called when sockfs is loaded.
209  */
210 int
211 sockinit(int fstype, char *name)
212 {
213 	static const fs_operation_def_t sock_vfsops_template[] = {
214 		NULL, NULL
215 	};
216 	int error;
217 	major_t dev;
218 	char *err_str;
219 
220 	error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
221 	if (error != 0) {
222 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
223 		    "sockinit: bad vfs ops template");
224 		return (error);
225 	}
226 
227 	error = vn_make_ops(name, socket_vnodeops_template,
228 	    &socket_vnodeops);
229 	if (error != 0) {
230 		err_str = "sockinit: bad socket vnode ops template";
231 		/* vn_make_ops() does not reset socktpi_vnodeops on failure. */
232 		socket_vnodeops = NULL;
233 		goto failure;
234 	}
235 
236 	socket_cache = kmem_cache_create("socket_cache",
237 	    sizeof (struct sonode), 0, sonode_constructor,
238 	    sonode_destructor, NULL, NULL, NULL, 0);
239 
240 	rw_init(&sockconf_lock, NULL, RW_DEFAULT, NULL);
241 
242 	error = socktpi_init();
243 	if (error != 0) {
244 		err_str = NULL;
245 		goto failure;
246 	}
247 
248 	error = sod_init();
249 	if (error != 0) {
250 		err_str = NULL;
251 		goto failure;
252 	}
253 
254 	/*
255 	 * Set up the default create and destroy functions
256 	 */
257 	sock_comm_create_function = socket_sonode_create;
258 	sock_comm_destroy_function = socket_sonode_destroy;
259 
260 	/*
261 	 * Build initial list mapping socket parameters to vnode.
262 	 */
263 	smod_init();
264 	smod_add(sotpi_smod_create());
265 
266 	sockparams_init();
267 
268 	/*
269 	 * If sockets are needed before init runs /sbin/soconfig
270 	 * it is possible to preload the sockparams list here using
271 	 * calls like:
272 	 *	sockconfig(1,2,3, "/dev/tcp", 0);
273 	 */
274 
275 	/*
276 	 * Create a unique dev_t for use in so_fsid.
277 	 */
278 
279 	if ((dev = getudev()) == (major_t)-1)
280 		dev = 0;
281 	sockdev = makedevice(dev, 0);
282 
283 	mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
284 	sendfile_init();
285 	if (!modrootloaded) {
286 		sockfs_defer_nl7c_init = 1;
287 	} else {
288 		nl7c_init();
289 	}
290 
291 	/* Initialize socket filters */
292 	sof_init();
293 
294 	return (0);
295 
296 failure:
297 	(void) vfs_freevfsops_by_type(fstype);
298 	if (socket_vnodeops != NULL)
299 		vn_freevnodeops(socket_vnodeops);
300 	if (err_str != NULL)
301 		zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
302 	return (error);
303 }
304 
305 /*
306  * Caller must hold the mutex. Used to set SOLOCKED.
307  */
308 void
309 so_lock_single(struct sonode *so)
310 {
311 	ASSERT(MUTEX_HELD(&so->so_lock));
312 
313 	while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
314 		cv_wait_stop(&so->so_single_cv, &so->so_lock,
315 		    SO_LOCK_WAKEUP_TIME);
316 	}
317 	so->so_flag |= SOLOCKED;
318 }
319 
320 /*
321  * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
322  * Used to clear SOLOCKED or SOASYNC_UNBIND.
323  */
324 void
325 so_unlock_single(struct sonode *so, int flag)
326 {
327 	ASSERT(MUTEX_HELD(&so->so_lock));
328 	ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
329 	ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
330 	ASSERT(so->so_flag & flag);
331 	/*
332 	 * Process the T_DISCON_IND on sti_discon_ind_mp.
333 	 *
334 	 * Call to so_drain_discon_ind will result in so_lock
335 	 * being dropped and re-acquired later.
336 	 */
337 	if (!SOCK_IS_NONSTR(so)) {
338 		sotpi_info_t *sti = SOTOTPI(so);
339 
340 		if (sti->sti_discon_ind_mp != NULL)
341 			so_drain_discon_ind(so);
342 	}
343 
344 	cv_signal(&so->so_single_cv);
345 	so->so_flag &= ~flag;
346 }
347 
348 /*
349  * Caller must hold the mutex. Used to set SOREADLOCKED.
350  * If the caller wants nonblocking behavior it should set fmode.
351  */
352 int
353 so_lock_read(struct sonode *so, int fmode)
354 {
355 	ASSERT(MUTEX_HELD(&so->so_lock));
356 
357 	while (so->so_flag & SOREADLOCKED) {
358 		if (fmode & (FNDELAY|FNONBLOCK))
359 			return (EWOULDBLOCK);
360 		cv_wait_stop(&so->so_read_cv, &so->so_lock,
361 		    SO_LOCK_WAKEUP_TIME);
362 	}
363 	so->so_flag |= SOREADLOCKED;
364 	return (0);
365 }
366 
367 /*
368  * Like so_lock_read above but allows signals.
369  */
370 int
371 so_lock_read_intr(struct sonode *so, int fmode)
372 {
373 	ASSERT(MUTEX_HELD(&so->so_lock));
374 
375 	while (so->so_flag & SOREADLOCKED) {
376 		if (fmode & (FNDELAY|FNONBLOCK))
377 			return (EWOULDBLOCK);
378 		if (!cv_wait_sig(&so->so_read_cv, &so->so_lock))
379 			return (EINTR);
380 	}
381 	so->so_flag |= SOREADLOCKED;
382 	return (0);
383 }
384 
385 /*
386  * Caller must hold the mutex. Used to clear SOREADLOCKED,
387  * set in so_lock_read() or so_lock_read_intr().
388  */
389 void
390 so_unlock_read(struct sonode *so)
391 {
392 	ASSERT(MUTEX_HELD(&so->so_lock));
393 	ASSERT(so->so_flag & SOREADLOCKED);
394 
395 	cv_signal(&so->so_read_cv);
396 	so->so_flag &= ~SOREADLOCKED;
397 }
398 
399 /*
400  * Verify that the specified offset falls within the mblk and
401  * that the resulting pointer is aligned.
402  * Returns NULL if not.
403  */
404 void *
405 sogetoff(mblk_t *mp, t_uscalar_t offset,
406     t_uscalar_t length, uint_t align_size)
407 {
408 	uintptr_t ptr1, ptr2;
409 
410 	ASSERT(mp && mp->b_wptr >= mp->b_rptr);
411 	ptr1 = (uintptr_t)mp->b_rptr + offset;
412 	ptr2 = (uintptr_t)ptr1 + length;
413 	if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
414 		eprintline(0);
415 		return (NULL);
416 	}
417 	if ((ptr1 & (align_size - 1)) != 0) {
418 		eprintline(0);
419 		return (NULL);
420 	}
421 	return ((void *)ptr1);
422 }
423 
424 /*
425  * Return the AF_UNIX underlying filesystem vnode matching a given name.
426  * Makes sure the sending and the destination sonodes are compatible.
427  * The vnode is returned held.
428  *
429  * The underlying filesystem VSOCK vnode has a v_stream pointer that
430  * references the actual stream head (hence indirectly the actual sonode).
431  */
432 static int
433 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
434     vnode_t **vpp)
435 {
436 	vnode_t		*vp;	/* Underlying filesystem vnode */
437 	vnode_t		*rvp;	/* real vnode */
438 	vnode_t		*svp;	/* sockfs vnode */
439 	struct sonode	*so2;
440 	int		error;
441 
442 	dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", (void *)so,
443 	    soun->sun_path));
444 
445 	error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
446 	if (error) {
447 		eprintsoline(so, error);
448 		return (error);
449 	}
450 
451 	/*
452 	 * Traverse lofs mounts get the real vnode
453 	 */
454 	if (VOP_REALVP(vp, &rvp, NULL) == 0) {
455 		VN_HOLD(rvp);		/* hold the real vnode */
456 		VN_RELE(vp);		/* release hold from lookup */
457 		vp = rvp;
458 	}
459 
460 	if (vp->v_type != VSOCK) {
461 		error = ENOTSOCK;
462 		eprintsoline(so, error);
463 		goto done2;
464 	}
465 
466 	if (checkaccess) {
467 		/*
468 		 * Check that we have permissions to access the destination
469 		 * vnode. This check is not done in BSD but it is required
470 		 * by X/Open.
471 		 */
472 		if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL)) {
473 			eprintsoline(so, error);
474 			goto done2;
475 		}
476 	}
477 
478 	/*
479 	 * Check if the remote socket has been closed.
480 	 *
481 	 * Synchronize with vn_rele_stream by holding v_lock while traversing
482 	 * v_stream->sd_vnode.
483 	 */
484 	mutex_enter(&vp->v_lock);
485 	if (vp->v_stream == NULL) {
486 		mutex_exit(&vp->v_lock);
487 		if (so->so_type == SOCK_DGRAM)
488 			error = EDESTADDRREQ;
489 		else
490 			error = ECONNREFUSED;
491 
492 		eprintsoline(so, error);
493 		goto done2;
494 	}
495 	ASSERT(vp->v_stream->sd_vnode);
496 	svp = vp->v_stream->sd_vnode;
497 	/*
498 	 * holding v_lock on underlying filesystem vnode and acquiring
499 	 * it on sockfs vnode. Assumes that no code ever attempts to
500 	 * acquire these locks in the reverse order.
501 	 */
502 	VN_HOLD(svp);
503 	mutex_exit(&vp->v_lock);
504 
505 	if (svp->v_type != VSOCK) {
506 		error = ENOTSOCK;
507 		eprintsoline(so, error);
508 		goto done;
509 	}
510 
511 	so2 = VTOSO(svp);
512 
513 	if (so->so_type != so2->so_type) {
514 		error = EPROTOTYPE;
515 		eprintsoline(so, error);
516 		goto done;
517 	}
518 
519 	VN_RELE(svp);
520 	*vpp = vp;
521 	return (0);
522 
523 done:
524 	VN_RELE(svp);
525 done2:
526 	VN_RELE(vp);
527 	return (error);
528 }
529 
530 /*
531  * Verify peer address for connect and sendto/sendmsg.
532  * Since sendto/sendmsg would not get synchronous errors from the transport
533  * provider we have to do these ugly checks in the socket layer to
534  * preserve compatibility with SunOS 4.X.
535  */
536 int
537 so_addr_verify(struct sonode *so, const struct sockaddr *name,
538     socklen_t namelen)
539 {
540 	int		family;
541 
542 	dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n",
543 	    (void *)so, (void *)name, namelen));
544 
545 	ASSERT(name != NULL);
546 
547 	family = so->so_family;
548 	switch (family) {
549 	case AF_INET:
550 		if (name->sa_family != family) {
551 			eprintsoline(so, EAFNOSUPPORT);
552 			return (EAFNOSUPPORT);
553 		}
554 		if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
555 			eprintsoline(so, EINVAL);
556 			return (EINVAL);
557 		}
558 		break;
559 	case AF_INET6: {
560 #ifdef DEBUG
561 		struct sockaddr_in6 *sin6;
562 #endif /* DEBUG */
563 
564 		if (name->sa_family != family) {
565 			eprintsoline(so, EAFNOSUPPORT);
566 			return (EAFNOSUPPORT);
567 		}
568 		if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
569 			eprintsoline(so, EINVAL);
570 			return (EINVAL);
571 		}
572 #ifdef DEBUG
573 		/* Verify that apps don't forget to clear sin6_scope_id etc */
574 		sin6 = (struct sockaddr_in6 *)name;
575 		if (sin6->sin6_scope_id != 0 &&
576 		    !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
577 			zcmn_err(getzoneid(), CE_WARN,
578 			    "connect/send* with uninitialized sin6_scope_id "
579 			    "(%d) on socket. Pid = %d\n",
580 			    (int)sin6->sin6_scope_id, (int)curproc->p_pid);
581 		}
582 #endif /* DEBUG */
583 		break;
584 	}
585 	case AF_UNIX:
586 		if (SOTOTPI(so)->sti_faddr_noxlate) {
587 			return (0);
588 		}
589 		if (namelen < (socklen_t)sizeof (short)) {
590 			eprintsoline(so, ENOENT);
591 			return (ENOENT);
592 		}
593 		if (name->sa_family != family) {
594 			eprintsoline(so, EAFNOSUPPORT);
595 			return (EAFNOSUPPORT);
596 		}
597 		/* MAXPATHLEN + soun_family + nul termination */
598 		if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
599 			eprintsoline(so, ENAMETOOLONG);
600 			return (ENAMETOOLONG);
601 		}
602 
603 		break;
604 
605 	default:
606 		/*
607 		 * Default is don't do any length or sa_family check
608 		 * to allow non-sockaddr style addresses.
609 		 */
610 		break;
611 	}
612 
613 	return (0);
614 }
615 
616 
617 /*
618  * Translate an AF_UNIX sockaddr_un to the transport internal name.
619  * Assumes caller has called so_addr_verify first.  The translated
620  * (internal form) address is stored in sti->sti_ux_taddr.
621  */
622 /*ARGSUSED*/
623 int
624 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
625     socklen_t namelen, int checkaccess,
626     void **addrp, socklen_t *addrlenp)
627 {
628 	int			error;
629 	struct sockaddr_un	*soun;
630 	vnode_t			*vp;
631 	void			*addr;
632 	socklen_t		addrlen;
633 	sotpi_info_t		*sti = SOTOTPI(so);
634 
635 	dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
636 	    (void *)so, (void *)name, namelen, checkaccess));
637 
638 	ASSERT(name != NULL);
639 	ASSERT(so->so_family == AF_UNIX);
640 	ASSERT(!sti->sti_faddr_noxlate);
641 	ASSERT(namelen >= (socklen_t)sizeof (short));
642 	ASSERT(name->sa_family == AF_UNIX);
643 	soun = (struct sockaddr_un *)name;
644 	/*
645 	 * Lookup vnode for the specified path name and verify that
646 	 * it is a socket.
647 	 */
648 	error = so_ux_lookup(so, soun, checkaccess, &vp);
649 	if (error) {
650 		eprintsoline(so, error);
651 		return (error);
652 	}
653 	/*
654 	 * Use the address of the peer vnode as the address to send
655 	 * to. We release the peer vnode here. In case it has been
656 	 * closed by the time the T_CONN_REQ or T_UNITDATA_REQ reaches the
657 	 * transport the message will get an error or be dropped.
658 	 * Note that that soua_vp is never dereferenced; it's just a
659 	 * convenient value by which we can identify the peer.
660 	 */
661 	sti->sti_ux_taddr.soua_vp = vp;
662 	sti->sti_ux_taddr.soua_magic = SOU_MAGIC_EXPLICIT;
663 	addr = &sti->sti_ux_taddr;
664 	addrlen = (socklen_t)sizeof (sti->sti_ux_taddr);
665 	dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n",
666 	    addrlen, (void *)vp));
667 	VN_RELE(vp);
668 	*addrp = addr;
669 	*addrlenp = (socklen_t)addrlen;
670 	return (0);
671 }
672 
673 /*
674  * Esballoc free function for messages that contain SO_FILEP option.
675  * Decrement the reference count on the file pointers using closef.
676  */
677 void
678 fdbuf_free(struct fdbuf *fdbuf)
679 {
680 	int	i;
681 	struct file *fp;
682 
683 	dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
684 	for (i = 0; i < fdbuf->fd_numfd; i++) {
685 		/*
686 		 * We need pointer size alignment for fd_fds. On a LP64
687 		 * kernel, the required alignment is 8 bytes while
688 		 * the option headers and values are only 4 bytes
689 		 * aligned. So its safer to do a bcopy compared to
690 		 * assigning fdbuf->fd_fds[i] to fp.
691 		 */
692 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
693 		dprint(1, ("fdbuf_free: [%d] = %p\n", i, (void *)fp));
694 		(void) closef(fp);
695 	}
696 	if (fdbuf->fd_ebuf != NULL)
697 		kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
698 	kmem_free(fdbuf, fdbuf->fd_size);
699 }
700 
701 /*
702  * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
703  * Waits if memory is not available.
704  */
705 mblk_t *
706 fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
707 {
708 	uchar_t	*buf;
709 	mblk_t	*mp;
710 
711 	dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
712 	buf = kmem_alloc(size, KM_SLEEP);
713 	fdbuf->fd_ebuf = (caddr_t)buf;
714 	fdbuf->fd_ebuflen = size;
715 	fdbuf->fd_frtn.free_func = fdbuf_free;
716 	fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
717 
718 	mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
719 	mp->b_datap->db_type = M_PROTO;
720 	return (mp);
721 }
722 
723 /*
724  * Extract file descriptors from a fdbuf.
725  * Return list in rights/rightslen.
726  */
727 /*ARGSUSED*/
728 static int
729 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen)
730 {
731 	int	i, fd;
732 	int	*rp;
733 	struct file *fp;
734 	int	numfd;
735 
736 	dprint(1, ("fdbuf_extract: %d fds, len %d\n",
737 	    fdbuf->fd_numfd, rightslen));
738 
739 	numfd = fdbuf->fd_numfd;
740 	ASSERT(rightslen == numfd * (int)sizeof (int));
741 
742 	/*
743 	 * Allocate a file descriptor and increment the f_count.
744 	 * The latter is needed since we always call fdbuf_free
745 	 * which performs a closef.
746 	 */
747 	rp = (int *)rights;
748 	for (i = 0; i < numfd; i++) {
749 		if ((fd = ufalloc(0)) == -1)
750 			goto cleanup;
751 		/*
752 		 * We need pointer size alignment for fd_fds. On a LP64
753 		 * kernel, the required alignment is 8 bytes while
754 		 * the option headers and values are only 4 bytes
755 		 * aligned. So its safer to do a bcopy compared to
756 		 * assigning fdbuf->fd_fds[i] to fp.
757 		 */
758 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
759 		mutex_enter(&fp->f_tlock);
760 		fp->f_count++;
761 		mutex_exit(&fp->f_tlock);
762 		setf(fd, fp);
763 		*rp++ = fd;
764 		if (AU_AUDITING())
765 			audit_fdrecv(fd, fp);
766 		dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
767 		    i, fd, (void *)fp, fp->f_count));
768 	}
769 	return (0);
770 
771 cleanup:
772 	/*
773 	 * Undo whatever partial work the loop above has done.
774 	 */
775 	{
776 		int j;
777 
778 		rp = (int *)rights;
779 		for (j = 0; j < i; j++) {
780 			dprint(0,
781 			    ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
782 			(void) closeandsetf(*rp++, NULL);
783 		}
784 	}
785 
786 	return (EMFILE);
787 }
788 
789 /*
790  * Insert file descriptors into an fdbuf.
791  * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
792  * by calling fdbuf_free().
793  */
794 int
795 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
796 {
797 	int		numfd, i;
798 	int		*fds;
799 	struct file	*fp;
800 	struct fdbuf	*fdbuf;
801 	int		fdbufsize;
802 
803 	dprint(1, ("fdbuf_create: len %d\n", rightslen));
804 
805 	numfd = rightslen / (int)sizeof (int);
806 
807 	fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
808 	fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
809 	fdbuf->fd_size = fdbufsize;
810 	fdbuf->fd_numfd = 0;
811 	fdbuf->fd_ebuf = NULL;
812 	fdbuf->fd_ebuflen = 0;
813 	fds = (int *)rights;
814 	for (i = 0; i < numfd; i++) {
815 		if ((fp = getf(fds[i])) == NULL) {
816 			fdbuf_free(fdbuf);
817 			return (EBADF);
818 		}
819 		dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
820 		    i, fds[i], (void *)fp, fp->f_count));
821 		mutex_enter(&fp->f_tlock);
822 		fp->f_count++;
823 		mutex_exit(&fp->f_tlock);
824 		/*
825 		 * The maximum alignment for fdbuf (or any option header
826 		 * and its value) it 4 bytes. On a LP64 kernel, the alignment
827 		 * is not sufficient for pointers (fd_fds in this case). Since
828 		 * we just did a kmem_alloc (we get a double word alignment),
829 		 * we don't need to do anything on the send side (we loose
830 		 * the double word alignment because fdbuf goes after an
831 		 * option header (eg T_unitdata_req) which is only 4 byte
832 		 * aligned). We take care of this when we extract the file
833 		 * descriptor in fdbuf_extract or fdbuf_free.
834 		 */
835 		fdbuf->fd_fds[i] = fp;
836 		fdbuf->fd_numfd++;
837 		releasef(fds[i]);
838 		if (AU_AUDITING())
839 			audit_fdsend(fds[i], fp, 0);
840 	}
841 	*fdbufp = fdbuf;
842 	return (0);
843 }
844 
845 static int
846 fdbuf_optlen(int rightslen)
847 {
848 	int numfd;
849 
850 	numfd = rightslen / (int)sizeof (int);
851 
852 	return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
853 }
854 
855 static t_uscalar_t
856 fdbuf_cmsglen(int fdbuflen)
857 {
858 	return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
859 	    (int)sizeof (struct file *) * (int)sizeof (int));
860 }
861 
862 
863 /*
864  * Return non-zero if the mblk and fdbuf are consistent.
865  */
866 static int
867 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
868 {
869 	if (fdbuflen >= FDBUF_HDRSIZE &&
870 	    fdbuflen == fdbuf->fd_size) {
871 		frtn_t *frp = mp->b_datap->db_frtnp;
872 		/*
873 		 * Check that the SO_FILEP portion of the
874 		 * message has not been modified by
875 		 * the loopback transport. The sending sockfs generates
876 		 * a message that is esballoc'ed with the free function
877 		 * being fdbuf_free() and where free_arg contains the
878 		 * identical information as the SO_FILEP content.
879 		 *
880 		 * If any of these constraints are not satisfied we
881 		 * silently ignore the option.
882 		 */
883 		ASSERT(mp);
884 		if (frp != NULL &&
885 		    frp->free_func == fdbuf_free &&
886 		    frp->free_arg != NULL &&
887 		    bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
888 			dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
889 			    (void *)fdbuf, fdbuflen));
890 			return (1);
891 		} else {
892 			zcmn_err(getzoneid(), CE_WARN,
893 			    "sockfs: mismatched fdbuf content (%p)",
894 			    (void *)mp);
895 			return (0);
896 		}
897 	} else {
898 		zcmn_err(getzoneid(), CE_WARN,
899 		    "sockfs: mismatched fdbuf len %d, %d\n",
900 		    fdbuflen, fdbuf->fd_size);
901 		return (0);
902 	}
903 }
904 
905 /*
906  * When the file descriptors returned by sorecvmsg can not be passed
907  * to the application this routine will cleanup the references on
908  * the files. Start at startoff bytes into the buffer.
909  */
910 static void
911 close_fds(void *fdbuf, int fdbuflen, int startoff)
912 {
913 	int *fds = (int *)fdbuf;
914 	int numfd = fdbuflen / (int)sizeof (int);
915 	int i;
916 
917 	dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
918 
919 	for (i = 0; i < numfd; i++) {
920 		if (startoff < 0)
921 			startoff = 0;
922 		if (startoff < (int)sizeof (int)) {
923 			/*
924 			 * This file descriptor is partially or fully after
925 			 * the offset
926 			 */
927 			dprint(0,
928 			    ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
929 			(void) closeandsetf(fds[i], NULL);
930 		}
931 		startoff -= (int)sizeof (int);
932 	}
933 }
934 
935 /*
936  * Close all file descriptors contained in the control part starting at
937  * the startoffset.
938  */
939 void
940 so_closefds(void *control, t_uscalar_t controllen, int oldflg,
941     int startoff)
942 {
943 	struct cmsghdr *cmsg;
944 
945 	if (control == NULL)
946 		return;
947 
948 	if (oldflg) {
949 		close_fds(control, controllen, startoff);
950 		return;
951 	}
952 	/* Scan control part for file descriptors. */
953 	for (cmsg = (struct cmsghdr *)control;
954 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
955 	    cmsg = CMSG_NEXT(cmsg)) {
956 		if (cmsg->cmsg_level == SOL_SOCKET &&
957 		    cmsg->cmsg_type == SCM_RIGHTS) {
958 			close_fds(CMSG_CONTENT(cmsg),
959 			    (int)CMSG_CONTENTLEN(cmsg),
960 			    startoff - (int)sizeof (struct cmsghdr));
961 		}
962 		startoff -= ROUNDUP_cmsglen(cmsg->cmsg_len);
963 	}
964 }
965 
966 /*
967  * Handle truncation of a cmsg when the receive buffer is not big enough.
968  * Adjust the cmsg_len header field in the last cmsg that will be included in
969  * the buffer to reflect the number of bytes included.
970  */
971 void
972 so_truncatecmsg(void *control, t_uscalar_t controllen, uint_t maxlen)
973 {
974 	struct cmsghdr *cmsg;
975 	uint_t len = 0;
976 
977 	if (control == NULL)
978 		return;
979 
980 	for (cmsg = control;
981 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
982 	    cmsg = CMSG_NEXT(cmsg)) {
983 
984 		len += ROUNDUP_cmsglen(cmsg->cmsg_len);
985 
986 		if (len > maxlen) {
987 			/*
988 			 * This cmsg is the last one that will be included in
989 			 * the truncated buffer.
990 			 */
991 			socklen_t diff = len - maxlen;
992 
993 			if (diff < CMSG_CONTENTLEN(cmsg)) {
994 				dprint(1, ("so_truncatecmsg: %d -> %d\n",
995 				    cmsg->cmsg_len, cmsg->cmsg_len - diff));
996 				cmsg->cmsg_len -= diff;
997 			} else {
998 				cmsg->cmsg_len = sizeof (struct cmsghdr);
999 			}
1000 			break;
1001 		}
1002 	}
1003 }
1004 
1005 /*
1006  * Returns a pointer/length for the file descriptors contained
1007  * in the control buffer. Returns with *fdlenp == -1 if there are no
1008  * file descriptor options present. This is different than there being
1009  * a zero-length file descriptor option.
1010  * Fail if there are multiple SCM_RIGHT cmsgs.
1011  */
1012 int
1013 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
1014     void **fdsp, int *fdlenp)
1015 {
1016 	struct cmsghdr *cmsg;
1017 	void *fds;
1018 	int fdlen;
1019 
1020 	if (control == NULL) {
1021 		*fdsp = NULL;
1022 		*fdlenp = -1;
1023 		return (0);
1024 	}
1025 
1026 	if (oldflg) {
1027 		*fdsp = control;
1028 		if (controllen == 0)
1029 			*fdlenp = -1;
1030 		else
1031 			*fdlenp = controllen;
1032 		dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
1033 		return (0);
1034 	}
1035 
1036 	fds = NULL;
1037 	fdlen = 0;
1038 
1039 	for (cmsg = (struct cmsghdr *)control;
1040 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1041 	    cmsg = CMSG_NEXT(cmsg)) {
1042 		if (cmsg->cmsg_level == SOL_SOCKET &&
1043 		    cmsg->cmsg_type == SCM_RIGHTS) {
1044 			if (fds != NULL)
1045 				return (EINVAL);
1046 			fds = CMSG_CONTENT(cmsg);
1047 			fdlen = (int)CMSG_CONTENTLEN(cmsg);
1048 			dprint(1, ("so_getfdopt: new %lu\n",
1049 			    (size_t)CMSG_CONTENTLEN(cmsg)));
1050 		}
1051 	}
1052 	if (fds == NULL) {
1053 		dprint(1, ("so_getfdopt: NONE\n"));
1054 		*fdlenp = -1;
1055 	} else
1056 		*fdlenp = fdlen;
1057 	*fdsp = fds;
1058 	return (0);
1059 }
1060 
1061 /*
1062  * Return the length of the options including any file descriptor options.
1063  */
1064 t_uscalar_t
1065 so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1066 {
1067 	struct cmsghdr *cmsg;
1068 	t_uscalar_t optlen = 0;
1069 	t_uscalar_t len;
1070 
1071 	if (control == NULL)
1072 		return (0);
1073 
1074 	if (oldflg)
1075 		return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1076 		    fdbuf_optlen(controllen)));
1077 
1078 	for (cmsg = (struct cmsghdr *)control;
1079 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1080 	    cmsg = CMSG_NEXT(cmsg)) {
1081 		if (cmsg->cmsg_level == SOL_SOCKET &&
1082 		    cmsg->cmsg_type == SCM_RIGHTS) {
1083 			len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1084 		} else {
1085 			len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1086 		}
1087 		optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1088 		    sizeof (struct T_opthdr));
1089 	}
1090 	dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1091 	    controllen, oldflg, optlen));
1092 	return (optlen);
1093 }
1094 
1095 /*
1096  * Copy options from control to the mblk. Skip any file descriptor options.
1097  */
1098 void
1099 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1100 {
1101 	struct T_opthdr toh;
1102 	struct cmsghdr *cmsg;
1103 
1104 	if (control == NULL)
1105 		return;
1106 
1107 	if (oldflg) {
1108 		/* No real options - caller has handled file descriptors */
1109 		return;
1110 	}
1111 	for (cmsg = (struct cmsghdr *)control;
1112 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1113 	    cmsg = CMSG_NEXT(cmsg)) {
1114 		/*
1115 		 * Note: The caller handles file descriptors prior
1116 		 * to calling this function.
1117 		 */
1118 		t_uscalar_t len;
1119 
1120 		if (cmsg->cmsg_level == SOL_SOCKET &&
1121 		    cmsg->cmsg_type == SCM_RIGHTS)
1122 			continue;
1123 
1124 		len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1125 		toh.level = cmsg->cmsg_level;
1126 		toh.name = cmsg->cmsg_type;
1127 		toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1128 		toh.status = 0;
1129 
1130 		soappendmsg(mp, &toh, sizeof (toh));
1131 		soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1132 		mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1133 		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1134 	}
1135 }
1136 
1137 /*
1138  * Return the length of the control message derived from the options.
1139  * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1140  * When oldflg is set only include SO_FILEP.
1141  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1142  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1143  * also be checked for any possible impacts.
1144  */
1145 t_uscalar_t
1146 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1147 {
1148 	t_uscalar_t cmsglen = 0;
1149 	struct T_opthdr *tohp;
1150 	t_uscalar_t len;
1151 	t_uscalar_t last_roundup = 0;
1152 
1153 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1154 
1155 	for (tohp = (struct T_opthdr *)opt;
1156 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1157 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1158 		dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1159 		    tohp->level, tohp->name, tohp->len));
1160 		if (tohp->level == SOL_SOCKET &&
1161 		    (tohp->name == SO_SRCADDR ||
1162 		    tohp->name == SO_UNIX_CLOSE)) {
1163 			continue;
1164 		}
1165 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1166 			struct fdbuf *fdbuf;
1167 			int fdbuflen;
1168 
1169 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1170 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1171 
1172 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1173 				continue;
1174 			if (oldflg) {
1175 				cmsglen += fdbuf_cmsglen(fdbuflen);
1176 				continue;
1177 			}
1178 			len = fdbuf_cmsglen(fdbuflen);
1179 		} else if (tohp->level == SOL_SOCKET &&
1180 		    tohp->name == SCM_TIMESTAMP) {
1181 			if (oldflg)
1182 				continue;
1183 
1184 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1185 				len = sizeof (struct timeval);
1186 			} else {
1187 				len = sizeof (struct timeval32);
1188 			}
1189 		} else {
1190 			if (oldflg)
1191 				continue;
1192 			len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1193 		}
1194 		/*
1195 		 * Exclude roundup for last option to not set
1196 		 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1197 		 */
1198 		last_roundup = (t_uscalar_t)
1199 		    (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1200 		    (len + (int)sizeof (struct cmsghdr)));
1201 		cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1202 		    last_roundup;
1203 	}
1204 	cmsglen -= last_roundup;
1205 	dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1206 	    optlen, oldflg, cmsglen));
1207 	return (cmsglen);
1208 }
1209 
1210 /*
1211  * Copy options from options to the control. Convert SO_FILEP to
1212  * file descriptors.
1213  * Returns errno or zero.
1214  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1215  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1216  * also be checked for any possible impacts.
1217  */
1218 int
1219 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg,
1220     void *control, t_uscalar_t controllen)
1221 {
1222 	struct T_opthdr *tohp;
1223 	struct cmsghdr *cmsg;
1224 	struct fdbuf *fdbuf;
1225 	int fdbuflen;
1226 	int error;
1227 #if defined(DEBUG) || defined(__lint)
1228 	struct cmsghdr *cend = (struct cmsghdr *)
1229 	    (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1230 #endif
1231 	cmsg = (struct cmsghdr *)control;
1232 
1233 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1234 
1235 	for (tohp = (struct T_opthdr *)opt;
1236 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1237 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1238 		dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1239 		    tohp->level, tohp->name, tohp->len));
1240 
1241 		if (tohp->level == SOL_SOCKET &&
1242 		    (tohp->name == SO_SRCADDR ||
1243 		    tohp->name == SO_UNIX_CLOSE)) {
1244 			continue;
1245 		}
1246 		ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1247 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1248 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1249 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1250 
1251 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1252 				return (EPROTO);
1253 			if (oldflg) {
1254 				error = fdbuf_extract(fdbuf, control,
1255 				    (int)controllen);
1256 				if (error != 0)
1257 					return (error);
1258 				continue;
1259 			} else {
1260 				int fdlen;
1261 
1262 				fdlen = (int)fdbuf_cmsglen(
1263 				    (int)_TPI_TOPT_DATALEN(tohp));
1264 
1265 				cmsg->cmsg_level = tohp->level;
1266 				cmsg->cmsg_type = SCM_RIGHTS;
1267 				cmsg->cmsg_len = (socklen_t)(fdlen +
1268 				    sizeof (struct cmsghdr));
1269 
1270 				error = fdbuf_extract(fdbuf,
1271 				    CMSG_CONTENT(cmsg), fdlen);
1272 				if (error != 0)
1273 					return (error);
1274 			}
1275 		} else if (tohp->level == SOL_SOCKET &&
1276 		    tohp->name == SCM_TIMESTAMP) {
1277 			timestruc_t *timestamp;
1278 
1279 			if (oldflg)
1280 				continue;
1281 
1282 			cmsg->cmsg_level = tohp->level;
1283 			cmsg->cmsg_type = tohp->name;
1284 
1285 			timestamp =
1286 			    (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1287 			    sizeof (intptr_t));
1288 
1289 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1290 				struct timeval tv;
1291 
1292 				cmsg->cmsg_len = sizeof (struct timeval) +
1293 				    sizeof (struct cmsghdr);
1294 				tv.tv_sec = timestamp->tv_sec;
1295 				tv.tv_usec = timestamp->tv_nsec /
1296 				    (NANOSEC / MICROSEC);
1297 				/*
1298 				 * on LP64 systems, the struct timeval in
1299 				 * the destination will not be 8-byte aligned,
1300 				 * so use bcopy to avoid alignment trouble
1301 				 */
1302 				bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1303 			} else {
1304 				struct timeval32 *time32;
1305 
1306 				cmsg->cmsg_len = sizeof (struct timeval32) +
1307 				    sizeof (struct cmsghdr);
1308 				time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1309 				time32->tv_sec = (time32_t)timestamp->tv_sec;
1310 				time32->tv_usec =
1311 				    (int32_t)(timestamp->tv_nsec /
1312 				    (NANOSEC / MICROSEC));
1313 			}
1314 
1315 		} else {
1316 			if (oldflg)
1317 				continue;
1318 
1319 			cmsg->cmsg_level = tohp->level;
1320 			cmsg->cmsg_type = tohp->name;
1321 			cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) +
1322 			    sizeof (struct cmsghdr));
1323 
1324 			/* copy content to control data part */
1325 			bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1326 			    CMSG_CONTENTLEN(cmsg));
1327 		}
1328 		/* move to next CMSG structure! */
1329 		cmsg = CMSG_NEXT(cmsg);
1330 	}
1331 	dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1332 	    control, controllen, (void *)cend, (void *)cmsg));
1333 	ASSERT(cmsg <= cend);
1334 	return (0);
1335 }
1336 
1337 /*
1338  * Extract the SO_SRCADDR option value if present.
1339  */
1340 void
1341 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1342     t_uscalar_t *srclenp)
1343 {
1344 	struct T_opthdr		*tohp;
1345 
1346 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1347 
1348 	ASSERT(srcp != NULL && srclenp != NULL);
1349 	*srcp = NULL;
1350 	*srclenp = 0;
1351 
1352 	for (tohp = (struct T_opthdr *)opt;
1353 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1354 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1355 		dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1356 		    tohp->level, tohp->name, tohp->len));
1357 		if (tohp->level == SOL_SOCKET &&
1358 		    tohp->name == SO_SRCADDR) {
1359 			*srcp = _TPI_TOPT_DATA(tohp);
1360 			*srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1361 		}
1362 	}
1363 }
1364 
1365 /*
1366  * Verify if the SO_UNIX_CLOSE option is present.
1367  */
1368 int
1369 so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1370 {
1371 	struct T_opthdr		*tohp;
1372 
1373 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1374 
1375 	for (tohp = (struct T_opthdr *)opt;
1376 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1377 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1378 		dprint(1,
1379 		    ("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1380 		    tohp->level, tohp->name, tohp->len));
1381 		if (tohp->level == SOL_SOCKET &&
1382 		    tohp->name == SO_UNIX_CLOSE)
1383 			return (1);
1384 	}
1385 	return (0);
1386 }
1387 
1388 /*
1389  * Allocate an M_PROTO message.
1390  *
1391  * If allocation fails the behavior depends on sleepflg:
1392  *	_ALLOC_NOSLEEP	fail immediately
1393  *	_ALLOC_INTR	sleep for memory until a signal is caught
1394  *	_ALLOC_SLEEP	sleep forever. Don't return NULL.
1395  */
1396 mblk_t *
1397 soallocproto(size_t size, int sleepflg, cred_t *cr)
1398 {
1399 	mblk_t	*mp;
1400 
1401 	/* Round up size for reuse */
1402 	size = MAX(size, 64);
1403 	if (cr != NULL)
1404 		mp = allocb_cred(size, cr, curproc->p_pid);
1405 	else
1406 		mp = allocb(size, BPRI_MED);
1407 
1408 	if (mp == NULL) {
1409 		int error;	/* Dummy - error not returned to caller */
1410 
1411 		switch (sleepflg) {
1412 		case _ALLOC_SLEEP:
1413 			if (cr != NULL) {
1414 				mp = allocb_cred_wait(size, STR_NOSIG, &error,
1415 				    cr, curproc->p_pid);
1416 			} else {
1417 				mp = allocb_wait(size, BPRI_MED, STR_NOSIG,
1418 				    &error);
1419 			}
1420 			ASSERT(mp);
1421 			break;
1422 		case _ALLOC_INTR:
1423 			if (cr != NULL) {
1424 				mp = allocb_cred_wait(size, 0, &error, cr,
1425 				    curproc->p_pid);
1426 			} else {
1427 				mp = allocb_wait(size, BPRI_MED, 0, &error);
1428 			}
1429 			if (mp == NULL) {
1430 				/* Caught signal while sleeping for memory */
1431 				eprintline(ENOBUFS);
1432 				return (NULL);
1433 			}
1434 			break;
1435 		case _ALLOC_NOSLEEP:
1436 		default:
1437 			eprintline(ENOBUFS);
1438 			return (NULL);
1439 		}
1440 	}
1441 	DB_TYPE(mp) = M_PROTO;
1442 	return (mp);
1443 }
1444 
1445 /*
1446  * Allocate an M_PROTO message with a single component.
1447  * len is the length of buf. size is the amount to allocate.
1448  *
1449  * buf can be NULL with a non-zero len.
1450  * This results in a bzero'ed chunk being placed the message.
1451  */
1452 mblk_t *
1453 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg,
1454     cred_t *cr)
1455 {
1456 	mblk_t	*mp;
1457 
1458 	if (size == 0)
1459 		size = len;
1460 
1461 	ASSERT(size >= len);
1462 	/* Round up size for reuse */
1463 	size = MAX(size, 64);
1464 	mp = soallocproto(size, sleepflg, cr);
1465 	if (mp == NULL)
1466 		return (NULL);
1467 	mp->b_datap->db_type = M_PROTO;
1468 	if (len != 0) {
1469 		if (buf != NULL)
1470 			bcopy(buf, mp->b_wptr, len);
1471 		else
1472 			bzero(mp->b_wptr, len);
1473 		mp->b_wptr += len;
1474 	}
1475 	return (mp);
1476 }
1477 
1478 /*
1479  * Append buf/len to mp.
1480  * The caller has to ensure that there is enough room in the mblk.
1481  *
1482  * buf can be NULL with a non-zero len.
1483  * This results in a bzero'ed chunk being placed the message.
1484  */
1485 void
1486 soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1487 {
1488 	ASSERT(mp);
1489 
1490 	if (len != 0) {
1491 		/* Assert for room left */
1492 		ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1493 		if (buf != NULL)
1494 			bcopy(buf, mp->b_wptr, len);
1495 		else
1496 			bzero(mp->b_wptr, len);
1497 	}
1498 	mp->b_wptr += len;
1499 }
1500 
1501 /*
1502  * Create a message using two kernel buffers.
1503  * If size is set that will determine the allocation size (e.g. for future
1504  * soappendmsg calls). If size is zero it is derived from the buffer
1505  * lengths.
1506  */
1507 mblk_t *
1508 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1509     ssize_t size, int sleepflg, cred_t *cr)
1510 {
1511 	mblk_t *mp;
1512 
1513 	if (size == 0)
1514 		size = len1 + len2;
1515 	ASSERT(size >= len1 + len2);
1516 
1517 	mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1518 	if (mp)
1519 		soappendmsg(mp, buf2, len2);
1520 	return (mp);
1521 }
1522 
1523 /*
1524  * Create a message using three kernel buffers.
1525  * If size is set that will determine the allocation size (for future
1526  * soappendmsg calls). If size is zero it is derived from the buffer
1527  * lengths.
1528  */
1529 mblk_t *
1530 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1531     const void *buf3, ssize_t len3, ssize_t size, int sleepflg, cred_t *cr)
1532 {
1533 	mblk_t *mp;
1534 
1535 	if (size == 0)
1536 		size = len1 + len2 +len3;
1537 	ASSERT(size >= len1 + len2 + len3);
1538 
1539 	mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1540 	if (mp != NULL) {
1541 		soappendmsg(mp, buf2, len2);
1542 		soappendmsg(mp, buf3, len3);
1543 	}
1544 	return (mp);
1545 }
1546 
1547 #ifdef DEBUG
1548 char *
1549 pr_state(uint_t state, uint_t mode)
1550 {
1551 	static char buf[1024];
1552 
1553 	buf[0] = 0;
1554 	if (state & SS_ISCONNECTED)
1555 		(void) strcat(buf, "ISCONNECTED ");
1556 	if (state & SS_ISCONNECTING)
1557 		(void) strcat(buf, "ISCONNECTING ");
1558 	if (state & SS_ISDISCONNECTING)
1559 		(void) strcat(buf, "ISDISCONNECTING ");
1560 	if (state & SS_CANTSENDMORE)
1561 		(void) strcat(buf, "CANTSENDMORE ");
1562 
1563 	if (state & SS_CANTRCVMORE)
1564 		(void) strcat(buf, "CANTRCVMORE ");
1565 	if (state & SS_ISBOUND)
1566 		(void) strcat(buf, "ISBOUND ");
1567 	if (state & SS_NDELAY)
1568 		(void) strcat(buf, "NDELAY ");
1569 	if (state & SS_NONBLOCK)
1570 		(void) strcat(buf, "NONBLOCK ");
1571 
1572 	if (state & SS_ASYNC)
1573 		(void) strcat(buf, "ASYNC ");
1574 	if (state & SS_ACCEPTCONN)
1575 		(void) strcat(buf, "ACCEPTCONN ");
1576 	if (state & SS_SAVEDEOR)
1577 		(void) strcat(buf, "SAVEDEOR ");
1578 
1579 	if (state & SS_RCVATMARK)
1580 		(void) strcat(buf, "RCVATMARK ");
1581 	if (state & SS_OOBPEND)
1582 		(void) strcat(buf, "OOBPEND ");
1583 	if (state & SS_HAVEOOBDATA)
1584 		(void) strcat(buf, "HAVEOOBDATA ");
1585 	if (state & SS_HADOOBDATA)
1586 		(void) strcat(buf, "HADOOBDATA ");
1587 
1588 	if (mode & SM_PRIV)
1589 		(void) strcat(buf, "PRIV ");
1590 	if (mode & SM_ATOMIC)
1591 		(void) strcat(buf, "ATOMIC ");
1592 	if (mode & SM_ADDR)
1593 		(void) strcat(buf, "ADDR ");
1594 	if (mode & SM_CONNREQUIRED)
1595 		(void) strcat(buf, "CONNREQUIRED ");
1596 
1597 	if (mode & SM_FDPASSING)
1598 		(void) strcat(buf, "FDPASSING ");
1599 	if (mode & SM_EXDATA)
1600 		(void) strcat(buf, "EXDATA ");
1601 	if (mode & SM_OPTDATA)
1602 		(void) strcat(buf, "OPTDATA ");
1603 	if (mode & SM_BYTESTREAM)
1604 		(void) strcat(buf, "BYTESTREAM ");
1605 	return (buf);
1606 }
1607 
1608 char *
1609 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
1610 {
1611 	static char buf[1024];
1612 
1613 	if (addr == NULL || addrlen == 0) {
1614 		(void) sprintf(buf, "(len %d) %p", addrlen, (void *)addr);
1615 		return (buf);
1616 	}
1617 	switch (family) {
1618 	case AF_INET: {
1619 		struct sockaddr_in sin;
1620 
1621 		bcopy(addr, &sin, sizeof (sin));
1622 
1623 		(void) sprintf(buf, "(len %d) %x/%d",
1624 		    addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port));
1625 		break;
1626 	}
1627 	case AF_INET6: {
1628 		struct sockaddr_in6 sin6;
1629 		uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
1630 
1631 		bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
1632 		(void) sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
1633 		    addrlen,
1634 		    ntohs(piece[0]), ntohs(piece[1]),
1635 		    ntohs(piece[2]), ntohs(piece[3]),
1636 		    ntohs(piece[4]), ntohs(piece[5]),
1637 		    ntohs(piece[6]), ntohs(piece[7]),
1638 		    ntohs(sin6.sin6_port));
1639 		break;
1640 	}
1641 	case AF_UNIX: {
1642 		struct sockaddr_un *soun = (struct sockaddr_un *)addr;
1643 
1644 		(void) sprintf(buf, "(len %d) %s", addrlen,
1645 		    (soun == NULL) ? "(none)" : soun->sun_path);
1646 		break;
1647 	}
1648 	default:
1649 		(void) sprintf(buf, "(unknown af %d)", family);
1650 		break;
1651 	}
1652 	return (buf);
1653 }
1654 
1655 /* The logical equivalence operator (a if-and-only-if b) */
1656 #define	EQUIVALENT(a, b)	(((a) && (b)) || (!(a) && (!(b))))
1657 
1658 /*
1659  * Verify limitations and invariants on oob state.
1660  * Return 1 if OK, otherwise 0 so that it can be used as
1661  *	ASSERT(verify_oobstate(so));
1662  */
1663 int
1664 so_verify_oobstate(struct sonode *so)
1665 {
1666 	boolean_t havemark;
1667 
1668 	ASSERT(MUTEX_HELD(&so->so_lock));
1669 
1670 	/*
1671 	 * The possible state combinations are:
1672 	 *	0
1673 	 *	SS_OOBPEND
1674 	 *	SS_OOBPEND|SS_HAVEOOBDATA
1675 	 *	SS_OOBPEND|SS_HADOOBDATA
1676 	 *	SS_HADOOBDATA
1677 	 */
1678 	switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
1679 	case 0:
1680 	case SS_OOBPEND:
1681 	case SS_OOBPEND|SS_HAVEOOBDATA:
1682 	case SS_OOBPEND|SS_HADOOBDATA:
1683 	case SS_HADOOBDATA:
1684 		break;
1685 	default:
1686 		printf("Bad oob state 1 (%p): state %s\n",
1687 		    (void *)so, pr_state(so->so_state, so->so_mode));
1688 		return (0);
1689 	}
1690 
1691 	/* SS_RCVATMARK should only be set when SS_OOBPEND is set */
1692 	if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
1693 		printf("Bad oob state 2 (%p): state %s\n",
1694 		    (void *)so, pr_state(so->so_state, so->so_mode));
1695 		return (0);
1696 	}
1697 
1698 	/*
1699 	 * (havemark != 0 or SS_RCVATMARK) iff SS_OOBPEND
1700 	 * For TPI, the presence of a "mark" is indicated by sti_oobsigcnt.
1701 	 */
1702 	havemark = (SOCK_IS_NONSTR(so)) ? so->so_oobmark > 0 :
1703 	    SOTOTPI(so)->sti_oobsigcnt > 0;
1704 
1705 	if (!EQUIVALENT(havemark || (so->so_state & SS_RCVATMARK),
1706 	    so->so_state & SS_OOBPEND)) {
1707 		printf("Bad oob state 3 (%p): state %s\n",
1708 		    (void *)so, pr_state(so->so_state, so->so_mode));
1709 		return (0);
1710 	}
1711 
1712 	/*
1713 	 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
1714 	 */
1715 	if (!(so->so_options & SO_OOBINLINE) &&
1716 	    !EQUIVALENT(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
1717 		printf("Bad oob state 4 (%p): state %s\n",
1718 		    (void *)so, pr_state(so->so_state, so->so_mode));
1719 		return (0);
1720 	}
1721 
1722 	if (!SOCK_IS_NONSTR(so) &&
1723 	    SOTOTPI(so)->sti_oobsigcnt < SOTOTPI(so)->sti_oobcnt) {
1724 		printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
1725 		    (void *)so, SOTOTPI(so)->sti_oobsigcnt,
1726 		    SOTOTPI(so)->sti_oobcnt,
1727 		    pr_state(so->so_state, so->so_mode));
1728 		return (0);
1729 	}
1730 
1731 	return (1);
1732 }
1733 #undef	EQUIVALENT
1734 #endif /* DEBUG */
1735 
1736 /* initialize sockfs zone specific kstat related items			*/
1737 void *
1738 sock_kstat_init(zoneid_t zoneid)
1739 {
1740 	kstat_t	*ksp;
1741 
1742 	ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
1743 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
1744 
1745 	if (ksp != NULL) {
1746 		ksp->ks_update = sockfs_update;
1747 		ksp->ks_snapshot = sockfs_snapshot;
1748 		ksp->ks_lock = &socklist.sl_lock;
1749 		ksp->ks_private = (void *)(uintptr_t)zoneid;
1750 		kstat_install(ksp);
1751 	}
1752 
1753 	return (ksp);
1754 }
1755 
1756 /* tear down sockfs zone specific kstat related items			*/
1757 /*ARGSUSED*/
1758 void
1759 sock_kstat_fini(zoneid_t zoneid, void *arg)
1760 {
1761 	kstat_t *ksp = (kstat_t *)arg;
1762 
1763 	if (ksp != NULL) {
1764 		ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
1765 		kstat_delete(ksp);
1766 	}
1767 }
1768 
1769 /*
1770  * Zones:
1771  * Note that nactive is going to be different for each zone.
1772  * This means we require kstat to call sockfs_update and then sockfs_snapshot
1773  * for the same zone, or sockfs_snapshot will be taken into the wrong size
1774  * buffer. This is safe, but if the buffer is too small, user will not be
1775  * given details of all sockets. However, as this kstat has a ks_lock, kstat
1776  * driver will keep it locked between the update and the snapshot, so no
1777  * other process (zone) can currently get inbetween resulting in a wrong size
1778  * buffer allocation.
1779  */
1780 static int
1781 sockfs_update(kstat_t *ksp, int rw)
1782 {
1783 	uint_t	nactive = 0;		/* # of active AF_UNIX sockets	*/
1784 	struct sonode	*so;		/* current sonode on socklist	*/
1785 	zoneid_t	myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1786 
1787 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1788 
1789 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1790 		return (EACCES);
1791 	}
1792 
1793 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1794 		if (so->so_count != 0 && so->so_zoneid == myzoneid) {
1795 			nactive++;
1796 		}
1797 	}
1798 	ksp->ks_ndata = nactive;
1799 	ksp->ks_data_size = nactive * sizeof (struct sockinfo);
1800 
1801 	return (0);
1802 }
1803 
1804 static int
1805 sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
1806 {
1807 	int			ns;	/* # of sonodes we've copied	*/
1808 	struct sonode		*so;	/* current sonode on socklist	*/
1809 	struct sockinfo		*psi;	/* where we put sockinfo data	*/
1810 	t_uscalar_t		sn_len;	/* soa_len			*/
1811 	zoneid_t		myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1812 	sotpi_info_t		*sti;
1813 
1814 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1815 
1816 	ksp->ks_snaptime = gethrtime();
1817 
1818 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1819 		return (EACCES);
1820 	}
1821 
1822 	/*
1823 	 * For each sonode on the socklist, we massage the important
1824 	 * info into buf, in sockinfo format.
1825 	 */
1826 	psi = (struct sockinfo *)buf;
1827 	ns = 0;
1828 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1829 		vattr_t attr;
1830 
1831 		/* only stuff active sonodes and the same zone:		*/
1832 		if (so->so_count == 0 || so->so_zoneid != myzoneid) {
1833 			continue;
1834 		}
1835 
1836 		/*
1837 		 * If the sonode was activated between the update and the
1838 		 * snapshot, we're done - as this is only a snapshot.
1839 		 */
1840 		if ((caddr_t)(psi) >= (caddr_t)buf + ksp->ks_data_size) {
1841 			break;
1842 		}
1843 
1844 		sti = SOTOTPI(so);
1845 		/* copy important info into buf:			*/
1846 		psi->si_size = sizeof (struct sockinfo);
1847 		psi->si_family = so->so_family;
1848 		psi->si_type = so->so_type;
1849 		psi->si_flag = so->so_flag;
1850 		psi->si_state = so->so_state;
1851 		psi->si_serv_type = sti->sti_serv_type;
1852 		psi->si_ux_laddr_sou_magic = sti->sti_ux_laddr.soua_magic;
1853 		psi->si_ux_faddr_sou_magic = sti->sti_ux_faddr.soua_magic;
1854 		psi->si_laddr_soa_len = sti->sti_laddr.soa_len;
1855 		psi->si_faddr_soa_len = sti->sti_faddr.soa_len;
1856 		psi->si_szoneid = so->so_zoneid;
1857 		psi->si_faddr_noxlate = sti->sti_faddr_noxlate;
1858 
1859 		/*
1860 		 * Grab the inode, if possible.
1861 		 * This must be done before entering so_lock as VOP_GETATTR
1862 		 * will acquire it.
1863 		 */
1864 		if (so->so_vnode == NULL ||
1865 		    VOP_GETATTR(so->so_vnode, &attr, 0, CRED(), NULL) != 0)
1866 			attr.va_nodeid = 0;
1867 
1868 		psi->si_inode = attr.va_nodeid;
1869 
1870 		mutex_enter(&so->so_lock);
1871 
1872 		if (sti->sti_laddr_sa != NULL) {
1873 			ASSERT(sti->sti_laddr_sa->sa_data != NULL);
1874 			sn_len = sti->sti_laddr_len;
1875 			ASSERT(sn_len <= sizeof (short) +
1876 			    sizeof (psi->si_laddr_sun_path));
1877 
1878 			psi->si_laddr_family =
1879 			    sti->sti_laddr_sa->sa_family;
1880 			if (sn_len != 0) {
1881 				/* AF_UNIX socket names are NULL terminated */
1882 				(void) strncpy(psi->si_laddr_sun_path,
1883 				    sti->sti_laddr_sa->sa_data,
1884 				    sizeof (psi->si_laddr_sun_path));
1885 				sn_len = strlen(psi->si_laddr_sun_path);
1886 			}
1887 			psi->si_laddr_sun_path[sn_len] = 0;
1888 		}
1889 
1890 		if (sti->sti_faddr_sa != NULL) {
1891 			ASSERT(sti->sti_faddr_sa->sa_data != NULL);
1892 			sn_len = sti->sti_faddr_len;
1893 			ASSERT(sn_len <= sizeof (short) +
1894 			    sizeof (psi->si_faddr_sun_path));
1895 
1896 			psi->si_faddr_family =
1897 			    sti->sti_faddr_sa->sa_family;
1898 			if (sn_len != 0) {
1899 				(void) strncpy(psi->si_faddr_sun_path,
1900 				    sti->sti_faddr_sa->sa_data,
1901 				    sizeof (psi->si_faddr_sun_path));
1902 				sn_len = strlen(psi->si_faddr_sun_path);
1903 			}
1904 			psi->si_faddr_sun_path[sn_len] = 0;
1905 		}
1906 
1907 		mutex_exit(&so->so_lock);
1908 
1909 		(void) snprintf(psi->si_son_straddr,
1910 		    sizeof (psi->si_son_straddr), "%p", (void *)so);
1911 		(void) snprintf(psi->si_lvn_straddr,
1912 		    sizeof (psi->si_lvn_straddr), "%p",
1913 		    (void *)sti->sti_ux_laddr.soua_vp);
1914 		(void) snprintf(psi->si_fvn_straddr,
1915 		    sizeof (psi->si_fvn_straddr), "%p",
1916 		    (void *)sti->sti_ux_faddr.soua_vp);
1917 
1918 		ns++;
1919 		psi++;
1920 	}
1921 
1922 	ksp->ks_ndata = ns;
1923 	return (0);
1924 }
1925 
1926 ssize_t
1927 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
1928 {
1929 	struct uio auio;
1930 	struct iovec aiov[1];
1931 	register vnode_t *vp;
1932 	int ioflag, rwflag;
1933 	ssize_t cnt;
1934 	int error = 0;
1935 	int iovcnt = 0;
1936 	short fflag;
1937 
1938 	vp = fp->f_vnode;
1939 	fflag = fp->f_flag;
1940 
1941 	rwflag = 0;
1942 	aiov[0].iov_base = (caddr_t)buf;
1943 	aiov[0].iov_len = size;
1944 	iovcnt = 1;
1945 	cnt = (ssize_t)size;
1946 	(void) VOP_RWLOCK(vp, rwflag, NULL);
1947 
1948 	auio.uio_loffset = fileoff;
1949 	auio.uio_iov = aiov;
1950 	auio.uio_iovcnt = iovcnt;
1951 	auio.uio_resid = cnt;
1952 	auio.uio_segflg = UIO_SYSSPACE;
1953 	auio.uio_llimit = MAXOFFSET_T;
1954 	auio.uio_fmode = fflag;
1955 	auio.uio_extflg = UIO_COPY_CACHED;
1956 
1957 	ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
1958 
1959 	/* If read sync is not asked for, filter sync flags */
1960 	if ((ioflag & FRSYNC) == 0)
1961 		ioflag &= ~(FSYNC|FDSYNC);
1962 	error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
1963 	cnt -= auio.uio_resid;
1964 
1965 	VOP_RWUNLOCK(vp, rwflag, NULL);
1966 
1967 	if (error == EINTR && cnt != 0)
1968 		error = 0;
1969 out:
1970 	if (error != 0) {
1971 		*err = error;
1972 		return (0);
1973 	} else {
1974 		*err = 0;
1975 		return (cnt);
1976 	}
1977 }
1978 
1979 int
1980 so_copyin(const void *from, void *to, size_t size, int fromkernel)
1981 {
1982 	if (fromkernel) {
1983 		bcopy(from, to, size);
1984 		return (0);
1985 	}
1986 	return (xcopyin(from, to, size));
1987 }
1988 
1989 int
1990 so_copyout(const void *from, void *to, size_t size, int tokernel)
1991 {
1992 	if (tokernel) {
1993 		bcopy(from, to, size);
1994 		return (0);
1995 	}
1996 	return (xcopyout(from, to, size));
1997 }
1998