1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2015, Joyent, Inc. All rights reserved.
26 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
27 */
28
29 #include <sys/types.h>
30 #include <sys/t_lock.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/cred.h>
36 #include <sys/kmem.h>
37 #include <sys/sysmacros.h>
38 #include <sys/vfs.h>
39 #include <sys/vfs_opreg.h>
40 #include <sys/vnode.h>
41 #include <sys/debug.h>
42 #include <sys/errno.h>
43 #include <sys/time.h>
44 #include <sys/file.h>
45 #include <sys/open.h>
46 #include <sys/user.h>
47 #include <sys/termios.h>
48 #include <sys/stream.h>
49 #include <sys/strsubr.h>
50 #include <sys/strsun.h>
51 #include <sys/esunddi.h>
52 #include <sys/flock.h>
53 #include <sys/modctl.h>
54 #include <sys/cmn_err.h>
55 #include <sys/mkdev.h>
56 #include <sys/pathname.h>
57 #include <sys/ddi.h>
58 #include <sys/stat.h>
59 #include <sys/fs/snode.h>
60 #include <sys/fs/dv_node.h>
61 #include <sys/zone.h>
62
63 #include <sys/socket.h>
64 #include <sys/socketvar.h>
65 #include <netinet/in.h>
66 #include <sys/un.h>
67 #include <sys/ucred.h>
68
69 #include <sys/tiuser.h>
70 #define _SUN_TPI_VERSION 2
71 #include <sys/tihdr.h>
72
73 #include <c2/audit.h>
74
75 #include <fs/sockfs/nl7c.h>
76 #include <fs/sockfs/sockcommon.h>
77 #include <fs/sockfs/sockfilter_impl.h>
78 #include <fs/sockfs/socktpi.h>
79 #include <fs/sockfs/socktpi_impl.h>
80 #include <fs/sockfs/sodirect.h>
81
82 /*
83 * Macros that operate on struct cmsghdr.
84 * The CMSG_VALID macro does not assume that the last option buffer is padded.
85 */
86 #define CMSG_CONTENT(cmsg) (&((cmsg)[1]))
87 #define CMSG_CONTENTLEN(cmsg) ((cmsg)->cmsg_len - sizeof (struct cmsghdr))
88 #define CMSG_VALID(cmsg, start, end) \
89 (ISALIGNED_cmsghdr(cmsg) && \
90 ((uintptr_t)(cmsg) >= (uintptr_t)(start)) && \
91 ((uintptr_t)(cmsg) < (uintptr_t)(end)) && \
92 ((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) && \
93 ((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
94 #define SO_LOCK_WAKEUP_TIME 3000 /* Wakeup time in milliseconds */
95
96 dev_t sockdev; /* For fsid in getattr */
97 int sockfs_defer_nl7c_init = 0;
98
99 struct socklist socklist;
100
101 struct kmem_cache *socket_cache;
102
103 /*
104 * sockconf_lock protects the socket configuration (socket types and
105 * socket filters) which is changed via the sockconfig system call.
106 */
107 krwlock_t sockconf_lock;
108
109 static int sockfs_update(kstat_t *, int);
110 static int sockfs_snapshot(kstat_t *, void *, int);
111 extern smod_info_t *sotpi_smod_create(void);
112
113 extern void sendfile_init();
114
115 extern void nl7c_init(void);
116
117 extern int modrootloaded;
118
119 /*
120 * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
121 * Returns with the vnode held.
122 */
123 int
sogetvp(char * devpath,vnode_t ** vpp,int uioflag)124 sogetvp(char *devpath, vnode_t **vpp, int uioflag)
125 {
126 struct snode *csp;
127 vnode_t *vp, *dvp;
128 major_t maj;
129 int error;
130
131 ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
132
133 /*
134 * Lookup the underlying filesystem vnode.
135 */
136 error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
137 if (error)
138 return (error);
139
140 /* Check that it is the correct vnode */
141 if (vp->v_type != VCHR) {
142 VN_RELE(vp);
143 return (ENOTSOCK);
144 }
145
146 /*
147 * If devpath went through devfs, the device should already
148 * be configured. If devpath is a mknod file, however, we
149 * need to make sure the device is properly configured.
150 * To do this, we do something similar to spec_open()
151 * except that we resolve to the minor/leaf level since
152 * we need to return a vnode.
153 */
154 csp = VTOS(VTOS(vp)->s_commonvp);
155 if (!(csp->s_flag & SDIPSET)) {
156 char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
157 error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
158 if (error == 0)
159 error = devfs_lookupname(pathname, NULLVPP, &dvp);
160 VN_RELE(vp);
161 kmem_free(pathname, MAXPATHLEN);
162 if (error != 0)
163 return (ENXIO);
164 vp = dvp; /* use the devfs vp */
165 }
166
167 /* device is configured at this point */
168 maj = getmajor(vp->v_rdev);
169 if (!STREAMSTAB(maj)) {
170 VN_RELE(vp);
171 return (ENOSTR);
172 }
173
174 *vpp = vp;
175 return (0);
176 }
177
178 /*
179 * Update the accessed, updated, or changed times in an sonode
180 * with the current time.
181 *
182 * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
183 * attributes in a fstat call. (They return the current time and 0 for
184 * all timestamps, respectively.) We maintain the current timestamps
185 * here primarily so that should sockmod be popped the resulting
186 * file descriptor will behave like a stream w.r.t. the timestamps.
187 */
188 void
so_update_attrs(struct sonode * so,int flag)189 so_update_attrs(struct sonode *so, int flag)
190 {
191 time_t now = gethrestime_sec();
192
193 if (SOCK_IS_NONSTR(so))
194 return;
195
196 mutex_enter(&so->so_lock);
197 so->so_flag |= flag;
198 if (flag & SOACC)
199 SOTOTPI(so)->sti_atime = now;
200 if (flag & SOMOD)
201 SOTOTPI(so)->sti_mtime = now;
202 mutex_exit(&so->so_lock);
203 }
204
205 extern so_create_func_t sock_comm_create_function;
206 extern so_destroy_func_t sock_comm_destroy_function;
207 /*
208 * Init function called when sockfs is loaded.
209 */
210 int
sockinit(int fstype,char * name)211 sockinit(int fstype, char *name)
212 {
213 static const fs_operation_def_t sock_vfsops_template[] = {
214 NULL, NULL
215 };
216 int error;
217 major_t dev;
218 char *err_str;
219
220 error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
221 if (error != 0) {
222 zcmn_err(GLOBAL_ZONEID, CE_WARN,
223 "sockinit: bad vfs ops template");
224 return (error);
225 }
226
227 error = vn_make_ops(name, socket_vnodeops_template,
228 &socket_vnodeops);
229 if (error != 0) {
230 err_str = "sockinit: bad socket vnode ops template";
231 /* vn_make_ops() does not reset socktpi_vnodeops on failure. */
232 socket_vnodeops = NULL;
233 goto failure;
234 }
235
236 socket_cache = kmem_cache_create("socket_cache",
237 sizeof (struct sonode), 0, sonode_constructor,
238 sonode_destructor, NULL, NULL, NULL, 0);
239
240 rw_init(&sockconf_lock, NULL, RW_DEFAULT, NULL);
241
242 error = socktpi_init();
243 if (error != 0) {
244 err_str = NULL;
245 goto failure;
246 }
247
248 error = sod_init();
249 if (error != 0) {
250 err_str = NULL;
251 goto failure;
252 }
253
254 /*
255 * Set up the default create and destroy functions
256 */
257 sock_comm_create_function = socket_sonode_create;
258 sock_comm_destroy_function = socket_sonode_destroy;
259
260 /*
261 * Build initial list mapping socket parameters to vnode.
262 */
263 smod_init();
264 smod_add(sotpi_smod_create());
265
266 sockparams_init();
267
268 /*
269 * If sockets are needed before init runs /sbin/soconfig
270 * it is possible to preload the sockparams list here using
271 * calls like:
272 * sockconfig(1,2,3, "/dev/tcp", 0);
273 */
274
275 /*
276 * Create a unique dev_t for use in so_fsid.
277 */
278
279 if ((dev = getudev()) == (major_t)-1)
280 dev = 0;
281 sockdev = makedevice(dev, 0);
282
283 mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
284 sendfile_init();
285 if (!modrootloaded) {
286 sockfs_defer_nl7c_init = 1;
287 } else {
288 nl7c_init();
289 }
290
291 /* Initialize socket filters */
292 sof_init();
293
294 return (0);
295
296 failure:
297 (void) vfs_freevfsops_by_type(fstype);
298 if (socket_vnodeops != NULL)
299 vn_freevnodeops(socket_vnodeops);
300 if (err_str != NULL)
301 zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
302 return (error);
303 }
304
305 /*
306 * Caller must hold the mutex. Used to set SOLOCKED.
307 */
308 void
so_lock_single(struct sonode * so)309 so_lock_single(struct sonode *so)
310 {
311 ASSERT(MUTEX_HELD(&so->so_lock));
312
313 while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
314 cv_wait_stop(&so->so_single_cv, &so->so_lock,
315 SO_LOCK_WAKEUP_TIME);
316 }
317 so->so_flag |= SOLOCKED;
318 }
319
320 /*
321 * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
322 * Used to clear SOLOCKED or SOASYNC_UNBIND.
323 */
324 void
so_unlock_single(struct sonode * so,int flag)325 so_unlock_single(struct sonode *so, int flag)
326 {
327 ASSERT(MUTEX_HELD(&so->so_lock));
328 ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
329 ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
330 ASSERT(so->so_flag & flag);
331 /*
332 * Process the T_DISCON_IND on sti_discon_ind_mp.
333 *
334 * Call to so_drain_discon_ind will result in so_lock
335 * being dropped and re-acquired later.
336 */
337 if (!SOCK_IS_NONSTR(so)) {
338 sotpi_info_t *sti = SOTOTPI(so);
339
340 if (sti->sti_discon_ind_mp != NULL)
341 so_drain_discon_ind(so);
342 }
343
344 cv_signal(&so->so_single_cv);
345 so->so_flag &= ~flag;
346 }
347
348 /*
349 * Caller must hold the mutex. Used to set SOREADLOCKED.
350 * If the caller wants nonblocking behavior it should set fmode.
351 */
352 int
so_lock_read(struct sonode * so,int fmode)353 so_lock_read(struct sonode *so, int fmode)
354 {
355 ASSERT(MUTEX_HELD(&so->so_lock));
356
357 while (so->so_flag & SOREADLOCKED) {
358 if (fmode & (FNDELAY|FNONBLOCK))
359 return (EWOULDBLOCK);
360 cv_wait_stop(&so->so_read_cv, &so->so_lock,
361 SO_LOCK_WAKEUP_TIME);
362 }
363 so->so_flag |= SOREADLOCKED;
364 return (0);
365 }
366
367 /*
368 * Like so_lock_read above but allows signals.
369 */
370 int
so_lock_read_intr(struct sonode * so,int fmode)371 so_lock_read_intr(struct sonode *so, int fmode)
372 {
373 ASSERT(MUTEX_HELD(&so->so_lock));
374
375 while (so->so_flag & SOREADLOCKED) {
376 if (fmode & (FNDELAY|FNONBLOCK))
377 return (EWOULDBLOCK);
378 if (!cv_wait_sig(&so->so_read_cv, &so->so_lock))
379 return (EINTR);
380 }
381 so->so_flag |= SOREADLOCKED;
382 return (0);
383 }
384
385 /*
386 * Caller must hold the mutex. Used to clear SOREADLOCKED,
387 * set in so_lock_read() or so_lock_read_intr().
388 */
389 void
so_unlock_read(struct sonode * so)390 so_unlock_read(struct sonode *so)
391 {
392 ASSERT(MUTEX_HELD(&so->so_lock));
393 ASSERT(so->so_flag & SOREADLOCKED);
394
395 cv_signal(&so->so_read_cv);
396 so->so_flag &= ~SOREADLOCKED;
397 }
398
399 /*
400 * Verify that the specified offset falls within the mblk and
401 * that the resulting pointer is aligned.
402 * Returns NULL if not.
403 */
404 void *
sogetoff(mblk_t * mp,t_uscalar_t offset,t_uscalar_t length,uint_t align_size)405 sogetoff(mblk_t *mp, t_uscalar_t offset,
406 t_uscalar_t length, uint_t align_size)
407 {
408 uintptr_t ptr1, ptr2;
409
410 ASSERT(mp && mp->b_wptr >= mp->b_rptr);
411 ptr1 = (uintptr_t)mp->b_rptr + offset;
412 ptr2 = (uintptr_t)ptr1 + length;
413 if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
414 eprintline(0);
415 return (NULL);
416 }
417 if ((ptr1 & (align_size - 1)) != 0) {
418 eprintline(0);
419 return (NULL);
420 }
421 return ((void *)ptr1);
422 }
423
424 /*
425 * Return the AF_UNIX underlying filesystem vnode matching a given name.
426 * Makes sure the sending and the destination sonodes are compatible.
427 * The vnode is returned held.
428 *
429 * The underlying filesystem VSOCK vnode has a v_stream pointer that
430 * references the actual stream head (hence indirectly the actual sonode).
431 */
432 static int
so_ux_lookup(struct sonode * so,struct sockaddr_un * soun,int checkaccess,vnode_t ** vpp)433 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
434 vnode_t **vpp)
435 {
436 vnode_t *vp; /* Underlying filesystem vnode */
437 vnode_t *rvp; /* real vnode */
438 vnode_t *svp; /* sockfs vnode */
439 struct sonode *so2;
440 int error;
441
442 dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", (void *)so,
443 soun->sun_path));
444
445 error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
446 if (error) {
447 eprintsoline(so, error);
448 return (error);
449 }
450
451 /*
452 * Traverse lofs mounts get the real vnode
453 */
454 if (VOP_REALVP(vp, &rvp, NULL) == 0) {
455 VN_HOLD(rvp); /* hold the real vnode */
456 VN_RELE(vp); /* release hold from lookup */
457 vp = rvp;
458 }
459
460 if (vp->v_type != VSOCK) {
461 error = ENOTSOCK;
462 eprintsoline(so, error);
463 goto done2;
464 }
465
466 if (checkaccess) {
467 /*
468 * Check that we have permissions to access the destination
469 * vnode. This check is not done in BSD but it is required
470 * by X/Open.
471 */
472 if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL)) {
473 eprintsoline(so, error);
474 goto done2;
475 }
476 }
477
478 /*
479 * Check if the remote socket has been closed.
480 *
481 * Synchronize with vn_rele_stream by holding v_lock while traversing
482 * v_stream->sd_vnode.
483 */
484 mutex_enter(&vp->v_lock);
485 if (vp->v_stream == NULL) {
486 mutex_exit(&vp->v_lock);
487 if (so->so_type == SOCK_DGRAM)
488 error = EDESTADDRREQ;
489 else
490 error = ECONNREFUSED;
491
492 eprintsoline(so, error);
493 goto done2;
494 }
495 ASSERT(vp->v_stream->sd_vnode);
496 svp = vp->v_stream->sd_vnode;
497 /*
498 * holding v_lock on underlying filesystem vnode and acquiring
499 * it on sockfs vnode. Assumes that no code ever attempts to
500 * acquire these locks in the reverse order.
501 */
502 VN_HOLD(svp);
503 mutex_exit(&vp->v_lock);
504
505 if (svp->v_type != VSOCK) {
506 error = ENOTSOCK;
507 eprintsoline(so, error);
508 goto done;
509 }
510
511 so2 = VTOSO(svp);
512
513 if (so->so_type != so2->so_type) {
514 error = EPROTOTYPE;
515 eprintsoline(so, error);
516 goto done;
517 }
518
519 VN_RELE(svp);
520 *vpp = vp;
521 return (0);
522
523 done:
524 VN_RELE(svp);
525 done2:
526 VN_RELE(vp);
527 return (error);
528 }
529
530 /*
531 * Verify peer address for connect and sendto/sendmsg.
532 * Since sendto/sendmsg would not get synchronous errors from the transport
533 * provider we have to do these ugly checks in the socket layer to
534 * preserve compatibility with SunOS 4.X.
535 */
536 int
so_addr_verify(struct sonode * so,const struct sockaddr * name,socklen_t namelen)537 so_addr_verify(struct sonode *so, const struct sockaddr *name,
538 socklen_t namelen)
539 {
540 int family;
541
542 dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n",
543 (void *)so, (void *)name, namelen));
544
545 ASSERT(name != NULL);
546
547 family = so->so_family;
548 switch (family) {
549 case AF_INET:
550 if (name->sa_family != family) {
551 eprintsoline(so, EAFNOSUPPORT);
552 return (EAFNOSUPPORT);
553 }
554 if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
555 eprintsoline(so, EINVAL);
556 return (EINVAL);
557 }
558 break;
559 case AF_INET6: {
560 #ifdef DEBUG
561 struct sockaddr_in6 *sin6;
562 #endif /* DEBUG */
563
564 if (name->sa_family != family) {
565 eprintsoline(so, EAFNOSUPPORT);
566 return (EAFNOSUPPORT);
567 }
568 if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
569 eprintsoline(so, EINVAL);
570 return (EINVAL);
571 }
572 #ifdef DEBUG
573 /* Verify that apps don't forget to clear sin6_scope_id etc */
574 sin6 = (struct sockaddr_in6 *)name;
575 if (sin6->sin6_scope_id != 0 &&
576 !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
577 zcmn_err(getzoneid(), CE_WARN,
578 "connect/send* with uninitialized sin6_scope_id "
579 "(%d) on socket. Pid = %d\n",
580 (int)sin6->sin6_scope_id, (int)curproc->p_pid);
581 }
582 #endif /* DEBUG */
583 break;
584 }
585 case AF_UNIX:
586 if (SOTOTPI(so)->sti_faddr_noxlate) {
587 return (0);
588 }
589 if (namelen < (socklen_t)sizeof (short)) {
590 eprintsoline(so, ENOENT);
591 return (ENOENT);
592 }
593 if (name->sa_family != family) {
594 eprintsoline(so, EAFNOSUPPORT);
595 return (EAFNOSUPPORT);
596 }
597 /* MAXPATHLEN + soun_family + nul termination */
598 if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
599 eprintsoline(so, ENAMETOOLONG);
600 return (ENAMETOOLONG);
601 }
602
603 break;
604
605 default:
606 /*
607 * Default is don't do any length or sa_family check
608 * to allow non-sockaddr style addresses.
609 */
610 break;
611 }
612
613 return (0);
614 }
615
616
617 /*
618 * Translate an AF_UNIX sockaddr_un to the transport internal name.
619 * Assumes caller has called so_addr_verify first. The translated
620 * (internal form) address is stored in sti->sti_ux_taddr.
621 */
622 /*ARGSUSED*/
623 int
so_ux_addr_xlate(struct sonode * so,struct sockaddr * name,socklen_t namelen,int checkaccess,void ** addrp,socklen_t * addrlenp)624 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
625 socklen_t namelen, int checkaccess,
626 void **addrp, socklen_t *addrlenp)
627 {
628 int error;
629 struct sockaddr_un *soun;
630 vnode_t *vp;
631 void *addr;
632 socklen_t addrlen;
633 sotpi_info_t *sti = SOTOTPI(so);
634
635 dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
636 (void *)so, (void *)name, namelen, checkaccess));
637
638 ASSERT(name != NULL);
639 ASSERT(so->so_family == AF_UNIX);
640 ASSERT(!sti->sti_faddr_noxlate);
641 ASSERT(namelen >= (socklen_t)sizeof (short));
642 ASSERT(name->sa_family == AF_UNIX);
643 soun = (struct sockaddr_un *)name;
644 /*
645 * Lookup vnode for the specified path name and verify that
646 * it is a socket.
647 */
648 error = so_ux_lookup(so, soun, checkaccess, &vp);
649 if (error) {
650 eprintsoline(so, error);
651 return (error);
652 }
653 /*
654 * Use the address of the peer vnode as the address to send
655 * to. We release the peer vnode here. In case it has been
656 * closed by the time the T_CONN_REQ or T_UNITDATA_REQ reaches the
657 * transport the message will get an error or be dropped.
658 * Note that that soua_vp is never dereferenced; it's just a
659 * convenient value by which we can identify the peer.
660 */
661 sti->sti_ux_taddr.soua_vp = vp;
662 sti->sti_ux_taddr.soua_magic = SOU_MAGIC_EXPLICIT;
663 addr = &sti->sti_ux_taddr;
664 addrlen = (socklen_t)sizeof (sti->sti_ux_taddr);
665 dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n",
666 addrlen, (void *)vp));
667 VN_RELE(vp);
668 *addrp = addr;
669 *addrlenp = (socklen_t)addrlen;
670 return (0);
671 }
672
673 /*
674 * Esballoc free function for messages that contain SO_FILEP option.
675 * Decrement the reference count on the file pointers using closef.
676 */
677 void
fdbuf_free(struct fdbuf * fdbuf)678 fdbuf_free(struct fdbuf *fdbuf)
679 {
680 int i;
681 struct file *fp;
682
683 dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
684 for (i = 0; i < fdbuf->fd_numfd; i++) {
685 /*
686 * We need pointer size alignment for fd_fds. On a LP64
687 * kernel, the required alignment is 8 bytes while
688 * the option headers and values are only 4 bytes
689 * aligned. So its safer to do a bcopy compared to
690 * assigning fdbuf->fd_fds[i] to fp.
691 */
692 bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
693 dprint(1, ("fdbuf_free: [%d] = %p\n", i, (void *)fp));
694 (void) closef(fp);
695 }
696 if (fdbuf->fd_ebuf != NULL)
697 kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
698 kmem_free(fdbuf, fdbuf->fd_size);
699 }
700
701 /*
702 * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
703 * Waits if memory is not available.
704 */
705 mblk_t *
fdbuf_allocmsg(int size,struct fdbuf * fdbuf)706 fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
707 {
708 uchar_t *buf;
709 mblk_t *mp;
710
711 dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
712 buf = kmem_alloc(size, KM_SLEEP);
713 fdbuf->fd_ebuf = (caddr_t)buf;
714 fdbuf->fd_ebuflen = size;
715 fdbuf->fd_frtn.free_func = fdbuf_free;
716 fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
717
718 mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
719 mp->b_datap->db_type = M_PROTO;
720 return (mp);
721 }
722
723 /*
724 * Extract file descriptors from a fdbuf.
725 * Return list in rights/rightslen.
726 */
727 /*ARGSUSED*/
728 static int
fdbuf_extract(struct fdbuf * fdbuf,void * rights,int rightslen)729 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen)
730 {
731 int i, fd;
732 int *rp;
733 struct file *fp;
734 int numfd;
735
736 dprint(1, ("fdbuf_extract: %d fds, len %d\n",
737 fdbuf->fd_numfd, rightslen));
738
739 numfd = fdbuf->fd_numfd;
740 ASSERT(rightslen == numfd * (int)sizeof (int));
741
742 /*
743 * Allocate a file descriptor and increment the f_count.
744 * The latter is needed since we always call fdbuf_free
745 * which performs a closef.
746 */
747 rp = (int *)rights;
748 for (i = 0; i < numfd; i++) {
749 if ((fd = ufalloc(0)) == -1)
750 goto cleanup;
751 /*
752 * We need pointer size alignment for fd_fds. On a LP64
753 * kernel, the required alignment is 8 bytes while
754 * the option headers and values are only 4 bytes
755 * aligned. So its safer to do a bcopy compared to
756 * assigning fdbuf->fd_fds[i] to fp.
757 */
758 bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
759 mutex_enter(&fp->f_tlock);
760 fp->f_count++;
761 mutex_exit(&fp->f_tlock);
762 setf(fd, fp);
763 *rp++ = fd;
764 if (AU_AUDITING())
765 audit_fdrecv(fd, fp);
766 dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
767 i, fd, (void *)fp, fp->f_count));
768 }
769 return (0);
770
771 cleanup:
772 /*
773 * Undo whatever partial work the loop above has done.
774 */
775 {
776 int j;
777
778 rp = (int *)rights;
779 for (j = 0; j < i; j++) {
780 dprint(0,
781 ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
782 (void) closeandsetf(*rp++, NULL);
783 }
784 }
785
786 return (EMFILE);
787 }
788
789 /*
790 * Insert file descriptors into an fdbuf.
791 * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
792 * by calling fdbuf_free().
793 */
794 int
fdbuf_create(void * rights,int rightslen,struct fdbuf ** fdbufp)795 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
796 {
797 int numfd, i;
798 int *fds;
799 struct file *fp;
800 struct fdbuf *fdbuf;
801 int fdbufsize;
802
803 dprint(1, ("fdbuf_create: len %d\n", rightslen));
804
805 numfd = rightslen / (int)sizeof (int);
806
807 fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
808 fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
809 fdbuf->fd_size = fdbufsize;
810 fdbuf->fd_numfd = 0;
811 fdbuf->fd_ebuf = NULL;
812 fdbuf->fd_ebuflen = 0;
813 fds = (int *)rights;
814 for (i = 0; i < numfd; i++) {
815 if ((fp = getf(fds[i])) == NULL) {
816 fdbuf_free(fdbuf);
817 return (EBADF);
818 }
819 dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
820 i, fds[i], (void *)fp, fp->f_count));
821 mutex_enter(&fp->f_tlock);
822 fp->f_count++;
823 mutex_exit(&fp->f_tlock);
824 /*
825 * The maximum alignment for fdbuf (or any option header
826 * and its value) it 4 bytes. On a LP64 kernel, the alignment
827 * is not sufficient for pointers (fd_fds in this case). Since
828 * we just did a kmem_alloc (we get a double word alignment),
829 * we don't need to do anything on the send side (we loose
830 * the double word alignment because fdbuf goes after an
831 * option header (eg T_unitdata_req) which is only 4 byte
832 * aligned). We take care of this when we extract the file
833 * descriptor in fdbuf_extract or fdbuf_free.
834 */
835 fdbuf->fd_fds[i] = fp;
836 fdbuf->fd_numfd++;
837 releasef(fds[i]);
838 if (AU_AUDITING())
839 audit_fdsend(fds[i], fp, 0);
840 }
841 *fdbufp = fdbuf;
842 return (0);
843 }
844
845 static int
fdbuf_optlen(int rightslen)846 fdbuf_optlen(int rightslen)
847 {
848 int numfd;
849
850 numfd = rightslen / (int)sizeof (int);
851
852 return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
853 }
854
855 static t_uscalar_t
fdbuf_cmsglen(int fdbuflen)856 fdbuf_cmsglen(int fdbuflen)
857 {
858 return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
859 (int)sizeof (struct file *) * (int)sizeof (int));
860 }
861
862
863 /*
864 * Return non-zero if the mblk and fdbuf are consistent.
865 */
866 static int
fdbuf_verify(mblk_t * mp,struct fdbuf * fdbuf,int fdbuflen)867 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
868 {
869 if (fdbuflen >= FDBUF_HDRSIZE &&
870 fdbuflen == fdbuf->fd_size) {
871 frtn_t *frp = mp->b_datap->db_frtnp;
872 /*
873 * Check that the SO_FILEP portion of the
874 * message has not been modified by
875 * the loopback transport. The sending sockfs generates
876 * a message that is esballoc'ed with the free function
877 * being fdbuf_free() and where free_arg contains the
878 * identical information as the SO_FILEP content.
879 *
880 * If any of these constraints are not satisfied we
881 * silently ignore the option.
882 */
883 ASSERT(mp);
884 if (frp != NULL &&
885 frp->free_func == fdbuf_free &&
886 frp->free_arg != NULL &&
887 bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
888 dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
889 (void *)fdbuf, fdbuflen));
890 return (1);
891 } else {
892 zcmn_err(getzoneid(), CE_WARN,
893 "sockfs: mismatched fdbuf content (%p)",
894 (void *)mp);
895 return (0);
896 }
897 } else {
898 zcmn_err(getzoneid(), CE_WARN,
899 "sockfs: mismatched fdbuf len %d, %d\n",
900 fdbuflen, fdbuf->fd_size);
901 return (0);
902 }
903 }
904
905 /*
906 * When the file descriptors returned by sorecvmsg can not be passed
907 * to the application this routine will cleanup the references on
908 * the files. Start at startoff bytes into the buffer.
909 */
910 static void
close_fds(void * fdbuf,int fdbuflen,int startoff)911 close_fds(void *fdbuf, int fdbuflen, int startoff)
912 {
913 int *fds = (int *)fdbuf;
914 int numfd = fdbuflen / (int)sizeof (int);
915 int i;
916
917 dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
918
919 for (i = 0; i < numfd; i++) {
920 if (startoff < 0)
921 startoff = 0;
922 if (startoff < (int)sizeof (int)) {
923 /*
924 * This file descriptor is partially or fully after
925 * the offset
926 */
927 dprint(0,
928 ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
929 (void) closeandsetf(fds[i], NULL);
930 }
931 startoff -= (int)sizeof (int);
932 }
933 }
934
935 /*
936 * Close all file descriptors contained in the control part starting at
937 * the startoffset.
938 */
939 void
so_closefds(void * control,t_uscalar_t controllen,int oldflg,int startoff)940 so_closefds(void *control, t_uscalar_t controllen, int oldflg,
941 int startoff)
942 {
943 struct cmsghdr *cmsg;
944
945 if (control == NULL)
946 return;
947
948 if (oldflg) {
949 close_fds(control, controllen, startoff);
950 return;
951 }
952 /* Scan control part for file descriptors. */
953 for (cmsg = (struct cmsghdr *)control;
954 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
955 cmsg = CMSG_NEXT(cmsg)) {
956 if (cmsg->cmsg_level == SOL_SOCKET &&
957 cmsg->cmsg_type == SCM_RIGHTS) {
958 close_fds(CMSG_CONTENT(cmsg),
959 (int)CMSG_CONTENTLEN(cmsg),
960 startoff - (int)sizeof (struct cmsghdr));
961 }
962 startoff -= ROUNDUP_cmsglen(cmsg->cmsg_len);
963 }
964 }
965
966 /*
967 * Handle truncation of a cmsg when the receive buffer is not big enough.
968 * Adjust the cmsg_len header field in the last cmsg that will be included in
969 * the buffer to reflect the number of bytes included.
970 */
971 void
so_truncatecmsg(void * control,t_uscalar_t controllen,uint_t maxlen)972 so_truncatecmsg(void *control, t_uscalar_t controllen, uint_t maxlen)
973 {
974 struct cmsghdr *cmsg;
975 uint_t len = 0;
976
977 if (control == NULL)
978 return;
979
980 for (cmsg = control;
981 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
982 cmsg = CMSG_NEXT(cmsg)) {
983
984 len += ROUNDUP_cmsglen(cmsg->cmsg_len);
985
986 if (len > maxlen) {
987 /*
988 * This cmsg is the last one that will be included in
989 * the truncated buffer.
990 */
991 socklen_t diff = len - maxlen;
992
993 if (diff < CMSG_CONTENTLEN(cmsg)) {
994 dprint(1, ("so_truncatecmsg: %d -> %d\n",
995 cmsg->cmsg_len, cmsg->cmsg_len - diff));
996 cmsg->cmsg_len -= diff;
997 } else {
998 cmsg->cmsg_len = sizeof (struct cmsghdr);
999 }
1000 break;
1001 }
1002 }
1003 }
1004
1005 /*
1006 * Returns a pointer/length for the file descriptors contained
1007 * in the control buffer. Returns with *fdlenp == -1 if there are no
1008 * file descriptor options present. This is different than there being
1009 * a zero-length file descriptor option.
1010 * Fail if there are multiple SCM_RIGHT cmsgs.
1011 */
1012 int
so_getfdopt(void * control,t_uscalar_t controllen,int oldflg,void ** fdsp,int * fdlenp)1013 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
1014 void **fdsp, int *fdlenp)
1015 {
1016 struct cmsghdr *cmsg;
1017 void *fds;
1018 int fdlen;
1019
1020 if (control == NULL) {
1021 *fdsp = NULL;
1022 *fdlenp = -1;
1023 return (0);
1024 }
1025
1026 if (oldflg) {
1027 *fdsp = control;
1028 if (controllen == 0)
1029 *fdlenp = -1;
1030 else
1031 *fdlenp = controllen;
1032 dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
1033 return (0);
1034 }
1035
1036 fds = NULL;
1037 fdlen = 0;
1038
1039 for (cmsg = (struct cmsghdr *)control;
1040 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1041 cmsg = CMSG_NEXT(cmsg)) {
1042 if (cmsg->cmsg_level == SOL_SOCKET &&
1043 cmsg->cmsg_type == SCM_RIGHTS) {
1044 if (fds != NULL)
1045 return (EINVAL);
1046 fds = CMSG_CONTENT(cmsg);
1047 fdlen = (int)CMSG_CONTENTLEN(cmsg);
1048 dprint(1, ("so_getfdopt: new %lu\n",
1049 (size_t)CMSG_CONTENTLEN(cmsg)));
1050 }
1051 }
1052 if (fds == NULL) {
1053 dprint(1, ("so_getfdopt: NONE\n"));
1054 *fdlenp = -1;
1055 } else
1056 *fdlenp = fdlen;
1057 *fdsp = fds;
1058 return (0);
1059 }
1060
1061 /*
1062 * Return the length of the options including any file descriptor options.
1063 */
1064 t_uscalar_t
so_optlen(void * control,t_uscalar_t controllen,int oldflg)1065 so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1066 {
1067 struct cmsghdr *cmsg;
1068 t_uscalar_t optlen = 0;
1069 t_uscalar_t len;
1070
1071 if (control == NULL)
1072 return (0);
1073
1074 if (oldflg)
1075 return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1076 fdbuf_optlen(controllen)));
1077
1078 for (cmsg = (struct cmsghdr *)control;
1079 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1080 cmsg = CMSG_NEXT(cmsg)) {
1081 if (cmsg->cmsg_level == SOL_SOCKET &&
1082 cmsg->cmsg_type == SCM_RIGHTS) {
1083 len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1084 } else {
1085 len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1086 }
1087 optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1088 sizeof (struct T_opthdr));
1089 }
1090 dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1091 controllen, oldflg, optlen));
1092 return (optlen);
1093 }
1094
1095 /*
1096 * Copy options from control to the mblk. Skip any file descriptor options.
1097 */
1098 void
so_cmsg2opt(void * control,t_uscalar_t controllen,int oldflg,mblk_t * mp)1099 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1100 {
1101 struct T_opthdr toh;
1102 struct cmsghdr *cmsg;
1103
1104 if (control == NULL)
1105 return;
1106
1107 if (oldflg) {
1108 /* No real options - caller has handled file descriptors */
1109 return;
1110 }
1111 for (cmsg = (struct cmsghdr *)control;
1112 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1113 cmsg = CMSG_NEXT(cmsg)) {
1114 /*
1115 * Note: The caller handles file descriptors prior
1116 * to calling this function.
1117 */
1118 t_uscalar_t len;
1119
1120 if (cmsg->cmsg_level == SOL_SOCKET &&
1121 cmsg->cmsg_type == SCM_RIGHTS)
1122 continue;
1123
1124 len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1125 toh.level = cmsg->cmsg_level;
1126 toh.name = cmsg->cmsg_type;
1127 toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1128 toh.status = 0;
1129
1130 soappendmsg(mp, &toh, sizeof (toh));
1131 soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1132 mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1133 ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1134 }
1135 }
1136
1137 /*
1138 * Return the length of the control message derived from the options.
1139 * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1140 * When oldflg is set only include SO_FILEP.
1141 * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1142 * allocates the space that so_opt2cmsg fills. If one changes, the other should
1143 * also be checked for any possible impacts.
1144 */
1145 t_uscalar_t
so_cmsglen(mblk_t * mp,void * opt,t_uscalar_t optlen,int oldflg)1146 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1147 {
1148 t_uscalar_t cmsglen = 0;
1149 struct T_opthdr *tohp;
1150 t_uscalar_t len;
1151 t_uscalar_t last_roundup = 0;
1152
1153 ASSERT(__TPI_TOPT_ISALIGNED(opt));
1154
1155 for (tohp = (struct T_opthdr *)opt;
1156 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1157 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1158 dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1159 tohp->level, tohp->name, tohp->len));
1160 if (tohp->level == SOL_SOCKET &&
1161 (tohp->name == SO_SRCADDR ||
1162 tohp->name == SO_UNIX_CLOSE)) {
1163 continue;
1164 }
1165 if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1166 struct fdbuf *fdbuf;
1167 int fdbuflen;
1168
1169 fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1170 fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1171
1172 if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1173 continue;
1174 if (oldflg) {
1175 cmsglen += fdbuf_cmsglen(fdbuflen);
1176 continue;
1177 }
1178 len = fdbuf_cmsglen(fdbuflen);
1179 } else if (tohp->level == SOL_SOCKET &&
1180 tohp->name == SCM_TIMESTAMP) {
1181 if (oldflg)
1182 continue;
1183
1184 if (get_udatamodel() == DATAMODEL_NATIVE) {
1185 len = sizeof (struct timeval);
1186 } else {
1187 len = sizeof (struct timeval32);
1188 }
1189 } else {
1190 if (oldflg)
1191 continue;
1192 len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1193 }
1194 /*
1195 * Exclude roundup for last option to not set
1196 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1197 */
1198 last_roundup = (t_uscalar_t)
1199 (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1200 (len + (int)sizeof (struct cmsghdr)));
1201 cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1202 last_roundup;
1203 }
1204 cmsglen -= last_roundup;
1205 dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1206 optlen, oldflg, cmsglen));
1207 return (cmsglen);
1208 }
1209
1210 /*
1211 * Copy options from options to the control. Convert SO_FILEP to
1212 * file descriptors.
1213 * Returns errno or zero.
1214 * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1215 * allocates the space that so_opt2cmsg fills. If one changes, the other should
1216 * also be checked for any possible impacts.
1217 */
1218 int
so_opt2cmsg(mblk_t * mp,void * opt,t_uscalar_t optlen,int oldflg,void * control,t_uscalar_t controllen)1219 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg,
1220 void *control, t_uscalar_t controllen)
1221 {
1222 struct T_opthdr *tohp;
1223 struct cmsghdr *cmsg;
1224 struct fdbuf *fdbuf;
1225 int fdbuflen;
1226 int error;
1227 #if defined(DEBUG) || defined(__lint)
1228 struct cmsghdr *cend = (struct cmsghdr *)
1229 (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1230 #endif
1231 cmsg = (struct cmsghdr *)control;
1232
1233 ASSERT(__TPI_TOPT_ISALIGNED(opt));
1234
1235 for (tohp = (struct T_opthdr *)opt;
1236 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1237 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1238 dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1239 tohp->level, tohp->name, tohp->len));
1240
1241 if (tohp->level == SOL_SOCKET &&
1242 (tohp->name == SO_SRCADDR ||
1243 tohp->name == SO_UNIX_CLOSE)) {
1244 continue;
1245 }
1246 ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1247 if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1248 fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1249 fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1250
1251 if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1252 return (EPROTO);
1253 if (oldflg) {
1254 error = fdbuf_extract(fdbuf, control,
1255 (int)controllen);
1256 if (error != 0)
1257 return (error);
1258 continue;
1259 } else {
1260 int fdlen;
1261
1262 fdlen = (int)fdbuf_cmsglen(
1263 (int)_TPI_TOPT_DATALEN(tohp));
1264
1265 cmsg->cmsg_level = tohp->level;
1266 cmsg->cmsg_type = SCM_RIGHTS;
1267 cmsg->cmsg_len = (socklen_t)(fdlen +
1268 sizeof (struct cmsghdr));
1269
1270 error = fdbuf_extract(fdbuf,
1271 CMSG_CONTENT(cmsg), fdlen);
1272 if (error != 0)
1273 return (error);
1274 }
1275 } else if (tohp->level == SOL_SOCKET &&
1276 tohp->name == SCM_TIMESTAMP) {
1277 timestruc_t *timestamp;
1278
1279 if (oldflg)
1280 continue;
1281
1282 cmsg->cmsg_level = tohp->level;
1283 cmsg->cmsg_type = tohp->name;
1284
1285 timestamp =
1286 (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1287 sizeof (intptr_t));
1288
1289 if (get_udatamodel() == DATAMODEL_NATIVE) {
1290 struct timeval tv;
1291
1292 cmsg->cmsg_len = sizeof (struct timeval) +
1293 sizeof (struct cmsghdr);
1294 tv.tv_sec = timestamp->tv_sec;
1295 tv.tv_usec = timestamp->tv_nsec /
1296 (NANOSEC / MICROSEC);
1297 /*
1298 * on LP64 systems, the struct timeval in
1299 * the destination will not be 8-byte aligned,
1300 * so use bcopy to avoid alignment trouble
1301 */
1302 bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1303 } else {
1304 struct timeval32 *time32;
1305
1306 cmsg->cmsg_len = sizeof (struct timeval32) +
1307 sizeof (struct cmsghdr);
1308 time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1309 time32->tv_sec = (time32_t)timestamp->tv_sec;
1310 time32->tv_usec =
1311 (int32_t)(timestamp->tv_nsec /
1312 (NANOSEC / MICROSEC));
1313 }
1314
1315 } else {
1316 if (oldflg)
1317 continue;
1318
1319 cmsg->cmsg_level = tohp->level;
1320 cmsg->cmsg_type = tohp->name;
1321 cmsg->cmsg_len = (socklen_t)sizeof (struct cmsghdr);
1322 if (tohp->level == IPPROTO_IP &&
1323 (tohp->name == IP_RECVTOS ||
1324 tohp->name == IP_RECVTTL)) {
1325 /*
1326 * The data for these is a uint8_t but, in
1327 * order to maintain alignment for any
1328 * following TPI primitives in the message,
1329 * there will be some trailing padding bytes
1330 * which are included in the TPI_TOPT_DATALEN.
1331 * For these types, we set the cmsg_len
1332 * explicitly to the correct value.
1333 */
1334 cmsg->cmsg_len += (socklen_t)sizeof (uint8_t);
1335 } else {
1336 cmsg->cmsg_len +=
1337 (socklen_t)(_TPI_TOPT_DATALEN(tohp));
1338 }
1339
1340 /* copy content to control data part */
1341 bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1342 CMSG_CONTENTLEN(cmsg));
1343 }
1344 /* move to next CMSG structure! */
1345 cmsg = CMSG_NEXT(cmsg);
1346 }
1347 dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1348 control, controllen, (void *)cend, (void *)cmsg));
1349 ASSERT(cmsg <= cend);
1350 return (0);
1351 }
1352
1353 /*
1354 * Extract the SO_SRCADDR option value if present.
1355 */
1356 void
so_getopt_srcaddr(void * opt,t_uscalar_t optlen,void ** srcp,t_uscalar_t * srclenp)1357 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1358 t_uscalar_t *srclenp)
1359 {
1360 struct T_opthdr *tohp;
1361
1362 ASSERT(__TPI_TOPT_ISALIGNED(opt));
1363
1364 ASSERT(srcp != NULL && srclenp != NULL);
1365 *srcp = NULL;
1366 *srclenp = 0;
1367
1368 for (tohp = (struct T_opthdr *)opt;
1369 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1370 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1371 dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1372 tohp->level, tohp->name, tohp->len));
1373 if (tohp->level == SOL_SOCKET &&
1374 tohp->name == SO_SRCADDR) {
1375 *srcp = _TPI_TOPT_DATA(tohp);
1376 *srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1377 }
1378 }
1379 }
1380
1381 /*
1382 * Verify if the SO_UNIX_CLOSE option is present.
1383 */
1384 int
so_getopt_unix_close(void * opt,t_uscalar_t optlen)1385 so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1386 {
1387 struct T_opthdr *tohp;
1388
1389 ASSERT(__TPI_TOPT_ISALIGNED(opt));
1390
1391 for (tohp = (struct T_opthdr *)opt;
1392 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1393 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1394 dprint(1,
1395 ("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1396 tohp->level, tohp->name, tohp->len));
1397 if (tohp->level == SOL_SOCKET &&
1398 tohp->name == SO_UNIX_CLOSE)
1399 return (1);
1400 }
1401 return (0);
1402 }
1403
1404 /*
1405 * Allocate an M_PROTO message.
1406 *
1407 * If allocation fails the behavior depends on sleepflg:
1408 * _ALLOC_NOSLEEP fail immediately
1409 * _ALLOC_INTR sleep for memory until a signal is caught
1410 * _ALLOC_SLEEP sleep forever. Don't return NULL.
1411 */
1412 mblk_t *
soallocproto(size_t size,int sleepflg,cred_t * cr)1413 soallocproto(size_t size, int sleepflg, cred_t *cr)
1414 {
1415 mblk_t *mp;
1416
1417 /* Round up size for reuse */
1418 size = MAX(size, 64);
1419 if (cr != NULL)
1420 mp = allocb_cred(size, cr, curproc->p_pid);
1421 else
1422 mp = allocb(size, BPRI_MED);
1423
1424 if (mp == NULL) {
1425 int error; /* Dummy - error not returned to caller */
1426
1427 switch (sleepflg) {
1428 case _ALLOC_SLEEP:
1429 if (cr != NULL) {
1430 mp = allocb_cred_wait(size, STR_NOSIG, &error,
1431 cr, curproc->p_pid);
1432 } else {
1433 mp = allocb_wait(size, BPRI_MED, STR_NOSIG,
1434 &error);
1435 }
1436 ASSERT(mp);
1437 break;
1438 case _ALLOC_INTR:
1439 if (cr != NULL) {
1440 mp = allocb_cred_wait(size, 0, &error, cr,
1441 curproc->p_pid);
1442 } else {
1443 mp = allocb_wait(size, BPRI_MED, 0, &error);
1444 }
1445 if (mp == NULL) {
1446 /* Caught signal while sleeping for memory */
1447 eprintline(ENOBUFS);
1448 return (NULL);
1449 }
1450 break;
1451 case _ALLOC_NOSLEEP:
1452 default:
1453 eprintline(ENOBUFS);
1454 return (NULL);
1455 }
1456 }
1457 DB_TYPE(mp) = M_PROTO;
1458 return (mp);
1459 }
1460
1461 /*
1462 * Allocate an M_PROTO message with a single component.
1463 * len is the length of buf. size is the amount to allocate.
1464 *
1465 * buf can be NULL with a non-zero len.
1466 * This results in a bzero'ed chunk being placed the message.
1467 */
1468 mblk_t *
soallocproto1(const void * buf,ssize_t len,ssize_t size,int sleepflg,cred_t * cr)1469 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg,
1470 cred_t *cr)
1471 {
1472 mblk_t *mp;
1473
1474 if (size == 0)
1475 size = len;
1476
1477 ASSERT(size >= len);
1478 /* Round up size for reuse */
1479 size = MAX(size, 64);
1480 mp = soallocproto(size, sleepflg, cr);
1481 if (mp == NULL)
1482 return (NULL);
1483 mp->b_datap->db_type = M_PROTO;
1484 if (len != 0) {
1485 if (buf != NULL)
1486 bcopy(buf, mp->b_wptr, len);
1487 else
1488 bzero(mp->b_wptr, len);
1489 mp->b_wptr += len;
1490 }
1491 return (mp);
1492 }
1493
1494 /*
1495 * Append buf/len to mp.
1496 * The caller has to ensure that there is enough room in the mblk.
1497 *
1498 * buf can be NULL with a non-zero len.
1499 * This results in a bzero'ed chunk being placed the message.
1500 */
1501 void
soappendmsg(mblk_t * mp,const void * buf,ssize_t len)1502 soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1503 {
1504 ASSERT(mp);
1505
1506 if (len != 0) {
1507 /* Assert for room left */
1508 ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1509 if (buf != NULL)
1510 bcopy(buf, mp->b_wptr, len);
1511 else
1512 bzero(mp->b_wptr, len);
1513 }
1514 mp->b_wptr += len;
1515 }
1516
1517 /*
1518 * Create a message using two kernel buffers.
1519 * If size is set that will determine the allocation size (e.g. for future
1520 * soappendmsg calls). If size is zero it is derived from the buffer
1521 * lengths.
1522 */
1523 mblk_t *
soallocproto2(const void * buf1,ssize_t len1,const void * buf2,ssize_t len2,ssize_t size,int sleepflg,cred_t * cr)1524 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1525 ssize_t size, int sleepflg, cred_t *cr)
1526 {
1527 mblk_t *mp;
1528
1529 if (size == 0)
1530 size = len1 + len2;
1531 ASSERT(size >= len1 + len2);
1532
1533 mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1534 if (mp)
1535 soappendmsg(mp, buf2, len2);
1536 return (mp);
1537 }
1538
1539 /*
1540 * Create a message using three kernel buffers.
1541 * If size is set that will determine the allocation size (for future
1542 * soappendmsg calls). If size is zero it is derived from the buffer
1543 * lengths.
1544 */
1545 mblk_t *
soallocproto3(const void * buf1,ssize_t len1,const void * buf2,ssize_t len2,const void * buf3,ssize_t len3,ssize_t size,int sleepflg,cred_t * cr)1546 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1547 const void *buf3, ssize_t len3, ssize_t size, int sleepflg, cred_t *cr)
1548 {
1549 mblk_t *mp;
1550
1551 if (size == 0)
1552 size = len1 + len2 +len3;
1553 ASSERT(size >= len1 + len2 + len3);
1554
1555 mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1556 if (mp != NULL) {
1557 soappendmsg(mp, buf2, len2);
1558 soappendmsg(mp, buf3, len3);
1559 }
1560 return (mp);
1561 }
1562
1563 #ifdef DEBUG
1564 char *
pr_state(uint_t state,uint_t mode)1565 pr_state(uint_t state, uint_t mode)
1566 {
1567 static char buf[1024];
1568
1569 buf[0] = 0;
1570 if (state & SS_ISCONNECTED)
1571 (void) strcat(buf, "ISCONNECTED ");
1572 if (state & SS_ISCONNECTING)
1573 (void) strcat(buf, "ISCONNECTING ");
1574 if (state & SS_ISDISCONNECTING)
1575 (void) strcat(buf, "ISDISCONNECTING ");
1576 if (state & SS_CANTSENDMORE)
1577 (void) strcat(buf, "CANTSENDMORE ");
1578
1579 if (state & SS_CANTRCVMORE)
1580 (void) strcat(buf, "CANTRCVMORE ");
1581 if (state & SS_ISBOUND)
1582 (void) strcat(buf, "ISBOUND ");
1583 if (state & SS_NDELAY)
1584 (void) strcat(buf, "NDELAY ");
1585 if (state & SS_NONBLOCK)
1586 (void) strcat(buf, "NONBLOCK ");
1587
1588 if (state & SS_ASYNC)
1589 (void) strcat(buf, "ASYNC ");
1590 if (state & SS_ACCEPTCONN)
1591 (void) strcat(buf, "ACCEPTCONN ");
1592 if (state & SS_SAVEDEOR)
1593 (void) strcat(buf, "SAVEDEOR ");
1594
1595 if (state & SS_RCVATMARK)
1596 (void) strcat(buf, "RCVATMARK ");
1597 if (state & SS_OOBPEND)
1598 (void) strcat(buf, "OOBPEND ");
1599 if (state & SS_HAVEOOBDATA)
1600 (void) strcat(buf, "HAVEOOBDATA ");
1601 if (state & SS_HADOOBDATA)
1602 (void) strcat(buf, "HADOOBDATA ");
1603
1604 if (mode & SM_PRIV)
1605 (void) strcat(buf, "PRIV ");
1606 if (mode & SM_ATOMIC)
1607 (void) strcat(buf, "ATOMIC ");
1608 if (mode & SM_ADDR)
1609 (void) strcat(buf, "ADDR ");
1610 if (mode & SM_CONNREQUIRED)
1611 (void) strcat(buf, "CONNREQUIRED ");
1612
1613 if (mode & SM_FDPASSING)
1614 (void) strcat(buf, "FDPASSING ");
1615 if (mode & SM_EXDATA)
1616 (void) strcat(buf, "EXDATA ");
1617 if (mode & SM_OPTDATA)
1618 (void) strcat(buf, "OPTDATA ");
1619 if (mode & SM_BYTESTREAM)
1620 (void) strcat(buf, "BYTESTREAM ");
1621 return (buf);
1622 }
1623
1624 char *
pr_addr(int family,struct sockaddr * addr,t_uscalar_t addrlen)1625 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
1626 {
1627 static char buf[1024];
1628
1629 if (addr == NULL || addrlen == 0) {
1630 (void) sprintf(buf, "(len %d) %p", addrlen, (void *)addr);
1631 return (buf);
1632 }
1633 switch (family) {
1634 case AF_INET: {
1635 struct sockaddr_in sin;
1636
1637 bcopy(addr, &sin, sizeof (sin));
1638
1639 (void) sprintf(buf, "(len %d) %x/%d",
1640 addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port));
1641 break;
1642 }
1643 case AF_INET6: {
1644 struct sockaddr_in6 sin6;
1645 uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
1646
1647 bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
1648 (void) sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
1649 addrlen,
1650 ntohs(piece[0]), ntohs(piece[1]),
1651 ntohs(piece[2]), ntohs(piece[3]),
1652 ntohs(piece[4]), ntohs(piece[5]),
1653 ntohs(piece[6]), ntohs(piece[7]),
1654 ntohs(sin6.sin6_port));
1655 break;
1656 }
1657 case AF_UNIX: {
1658 struct sockaddr_un *soun = (struct sockaddr_un *)addr;
1659
1660 (void) sprintf(buf, "(len %d) %s", addrlen,
1661 (soun == NULL) ? "(none)" : soun->sun_path);
1662 break;
1663 }
1664 default:
1665 (void) sprintf(buf, "(unknown af %d)", family);
1666 break;
1667 }
1668 return (buf);
1669 }
1670
1671 /* The logical equivalence operator (a if-and-only-if b) */
1672 #define EQUIVALENT(a, b) (((a) && (b)) || (!(a) && (!(b))))
1673
1674 /*
1675 * Verify limitations and invariants on oob state.
1676 * Return 1 if OK, otherwise 0 so that it can be used as
1677 * ASSERT(verify_oobstate(so));
1678 */
1679 int
so_verify_oobstate(struct sonode * so)1680 so_verify_oobstate(struct sonode *so)
1681 {
1682 boolean_t havemark;
1683
1684 ASSERT(MUTEX_HELD(&so->so_lock));
1685
1686 /*
1687 * The possible state combinations are:
1688 * 0
1689 * SS_OOBPEND
1690 * SS_OOBPEND|SS_HAVEOOBDATA
1691 * SS_OOBPEND|SS_HADOOBDATA
1692 * SS_HADOOBDATA
1693 */
1694 switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
1695 case 0:
1696 case SS_OOBPEND:
1697 case SS_OOBPEND|SS_HAVEOOBDATA:
1698 case SS_OOBPEND|SS_HADOOBDATA:
1699 case SS_HADOOBDATA:
1700 break;
1701 default:
1702 printf("Bad oob state 1 (%p): state %s\n",
1703 (void *)so, pr_state(so->so_state, so->so_mode));
1704 return (0);
1705 }
1706
1707 /* SS_RCVATMARK should only be set when SS_OOBPEND is set */
1708 if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
1709 printf("Bad oob state 2 (%p): state %s\n",
1710 (void *)so, pr_state(so->so_state, so->so_mode));
1711 return (0);
1712 }
1713
1714 /*
1715 * (havemark != 0 or SS_RCVATMARK) iff SS_OOBPEND
1716 * For TPI, the presence of a "mark" is indicated by sti_oobsigcnt.
1717 */
1718 havemark = (SOCK_IS_NONSTR(so)) ? so->so_oobmark > 0 :
1719 SOTOTPI(so)->sti_oobsigcnt > 0;
1720
1721 if (!EQUIVALENT(havemark || (so->so_state & SS_RCVATMARK),
1722 so->so_state & SS_OOBPEND)) {
1723 printf("Bad oob state 3 (%p): state %s\n",
1724 (void *)so, pr_state(so->so_state, so->so_mode));
1725 return (0);
1726 }
1727
1728 /*
1729 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
1730 */
1731 if (!(so->so_options & SO_OOBINLINE) &&
1732 !EQUIVALENT(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
1733 printf("Bad oob state 4 (%p): state %s\n",
1734 (void *)so, pr_state(so->so_state, so->so_mode));
1735 return (0);
1736 }
1737
1738 if (!SOCK_IS_NONSTR(so) &&
1739 SOTOTPI(so)->sti_oobsigcnt < SOTOTPI(so)->sti_oobcnt) {
1740 printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
1741 (void *)so, SOTOTPI(so)->sti_oobsigcnt,
1742 SOTOTPI(so)->sti_oobcnt,
1743 pr_state(so->so_state, so->so_mode));
1744 return (0);
1745 }
1746
1747 return (1);
1748 }
1749 #undef EQUIVALENT
1750 #endif /* DEBUG */
1751
1752 /* initialize sockfs zone specific kstat related items */
1753 void *
sock_kstat_init(zoneid_t zoneid)1754 sock_kstat_init(zoneid_t zoneid)
1755 {
1756 kstat_t *ksp;
1757
1758 ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
1759 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
1760
1761 if (ksp != NULL) {
1762 ksp->ks_update = sockfs_update;
1763 ksp->ks_snapshot = sockfs_snapshot;
1764 ksp->ks_lock = &socklist.sl_lock;
1765 ksp->ks_private = (void *)(uintptr_t)zoneid;
1766 kstat_install(ksp);
1767 }
1768
1769 return (ksp);
1770 }
1771
1772 /* tear down sockfs zone specific kstat related items */
1773 /*ARGSUSED*/
1774 void
sock_kstat_fini(zoneid_t zoneid,void * arg)1775 sock_kstat_fini(zoneid_t zoneid, void *arg)
1776 {
1777 kstat_t *ksp = (kstat_t *)arg;
1778
1779 if (ksp != NULL) {
1780 ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
1781 kstat_delete(ksp);
1782 }
1783 }
1784
1785 /*
1786 * Zones:
1787 * Note that nactive is going to be different for each zone.
1788 * This means we require kstat to call sockfs_update and then sockfs_snapshot
1789 * for the same zone, or sockfs_snapshot will be taken into the wrong size
1790 * buffer. This is safe, but if the buffer is too small, user will not be
1791 * given details of all sockets. However, as this kstat has a ks_lock, kstat
1792 * driver will keep it locked between the update and the snapshot, so no
1793 * other process (zone) can currently get inbetween resulting in a wrong size
1794 * buffer allocation.
1795 */
1796 static int
sockfs_update(kstat_t * ksp,int rw)1797 sockfs_update(kstat_t *ksp, int rw)
1798 {
1799 uint_t nactive = 0; /* # of active AF_UNIX sockets */
1800 struct sonode *so; /* current sonode on socklist */
1801 zoneid_t myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1802
1803 ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1804
1805 if (rw == KSTAT_WRITE) { /* bounce all writes */
1806 return (EACCES);
1807 }
1808
1809 for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1810 if (so->so_count != 0 && so->so_zoneid == myzoneid) {
1811 nactive++;
1812 }
1813 }
1814 ksp->ks_ndata = nactive;
1815 ksp->ks_data_size = nactive * sizeof (struct sockinfo);
1816
1817 return (0);
1818 }
1819
1820 static int
sockfs_snapshot(kstat_t * ksp,void * buf,int rw)1821 sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
1822 {
1823 int ns; /* # of sonodes we've copied */
1824 struct sonode *so; /* current sonode on socklist */
1825 struct sockinfo *psi; /* where we put sockinfo data */
1826 t_uscalar_t sn_len; /* soa_len */
1827 zoneid_t myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1828 sotpi_info_t *sti;
1829
1830 ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1831
1832 ksp->ks_snaptime = gethrtime();
1833
1834 if (rw == KSTAT_WRITE) { /* bounce all writes */
1835 return (EACCES);
1836 }
1837
1838 /*
1839 * For each sonode on the socklist, we massage the important
1840 * info into buf, in sockinfo format.
1841 */
1842 psi = (struct sockinfo *)buf;
1843 ns = 0;
1844 for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1845 vattr_t attr;
1846
1847 /* only stuff active sonodes and the same zone: */
1848 if (so->so_count == 0 || so->so_zoneid != myzoneid) {
1849 continue;
1850 }
1851
1852 /*
1853 * If the sonode was activated between the update and the
1854 * snapshot, we're done - as this is only a snapshot.
1855 */
1856 if ((caddr_t)(psi) >= (caddr_t)buf + ksp->ks_data_size) {
1857 break;
1858 }
1859
1860 sti = SOTOTPI(so);
1861 /* copy important info into buf: */
1862 psi->si_size = sizeof (struct sockinfo);
1863 psi->si_family = so->so_family;
1864 psi->si_type = so->so_type;
1865 psi->si_flag = so->so_flag;
1866 psi->si_state = so->so_state;
1867 psi->si_serv_type = sti->sti_serv_type;
1868 psi->si_ux_laddr_sou_magic = sti->sti_ux_laddr.soua_magic;
1869 psi->si_ux_faddr_sou_magic = sti->sti_ux_faddr.soua_magic;
1870 psi->si_laddr_soa_len = sti->sti_laddr.soa_len;
1871 psi->si_faddr_soa_len = sti->sti_faddr.soa_len;
1872 psi->si_szoneid = so->so_zoneid;
1873 psi->si_faddr_noxlate = sti->sti_faddr_noxlate;
1874
1875 /*
1876 * Grab the inode, if possible.
1877 * This must be done before entering so_lock as VOP_GETATTR
1878 * will acquire it.
1879 */
1880 if (so->so_vnode == NULL ||
1881 VOP_GETATTR(so->so_vnode, &attr, 0, CRED(), NULL) != 0)
1882 attr.va_nodeid = 0;
1883
1884 psi->si_inode = attr.va_nodeid;
1885
1886 mutex_enter(&so->so_lock);
1887
1888 if (sti->sti_laddr_sa != NULL) {
1889 ASSERT(sti->sti_laddr_sa->sa_data != NULL);
1890 sn_len = sti->sti_laddr_len;
1891 ASSERT(sn_len <= sizeof (short) +
1892 sizeof (psi->si_laddr_sun_path));
1893
1894 psi->si_laddr_family =
1895 sti->sti_laddr_sa->sa_family;
1896 if (sn_len != 0) {
1897 /* AF_UNIX socket names are NULL terminated */
1898 (void) strncpy(psi->si_laddr_sun_path,
1899 sti->sti_laddr_sa->sa_data,
1900 sizeof (psi->si_laddr_sun_path));
1901 sn_len = strlen(psi->si_laddr_sun_path);
1902 }
1903 psi->si_laddr_sun_path[sn_len] = 0;
1904 }
1905
1906 if (sti->sti_faddr_sa != NULL) {
1907 ASSERT(sti->sti_faddr_sa->sa_data != NULL);
1908 sn_len = sti->sti_faddr_len;
1909 ASSERT(sn_len <= sizeof (short) +
1910 sizeof (psi->si_faddr_sun_path));
1911
1912 psi->si_faddr_family =
1913 sti->sti_faddr_sa->sa_family;
1914 if (sn_len != 0) {
1915 (void) strncpy(psi->si_faddr_sun_path,
1916 sti->sti_faddr_sa->sa_data,
1917 sizeof (psi->si_faddr_sun_path));
1918 sn_len = strlen(psi->si_faddr_sun_path);
1919 }
1920 psi->si_faddr_sun_path[sn_len] = 0;
1921 }
1922
1923 mutex_exit(&so->so_lock);
1924
1925 (void) snprintf(psi->si_son_straddr,
1926 sizeof (psi->si_son_straddr), "%p", (void *)so);
1927 (void) snprintf(psi->si_lvn_straddr,
1928 sizeof (psi->si_lvn_straddr), "%p",
1929 (void *)sti->sti_ux_laddr.soua_vp);
1930 (void) snprintf(psi->si_fvn_straddr,
1931 sizeof (psi->si_fvn_straddr), "%p",
1932 (void *)sti->sti_ux_faddr.soua_vp);
1933
1934 ns++;
1935 psi++;
1936 }
1937
1938 ksp->ks_ndata = ns;
1939 return (0);
1940 }
1941
1942 ssize_t
soreadfile(file_t * fp,uchar_t * buf,u_offset_t fileoff,int * err,size_t size)1943 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
1944 {
1945 struct uio auio;
1946 struct iovec aiov[1];
1947 register vnode_t *vp;
1948 int ioflag, rwflag;
1949 ssize_t cnt;
1950 int error = 0;
1951 int iovcnt = 0;
1952 short fflag;
1953
1954 vp = fp->f_vnode;
1955 fflag = fp->f_flag;
1956
1957 rwflag = 0;
1958 aiov[0].iov_base = (caddr_t)buf;
1959 aiov[0].iov_len = size;
1960 iovcnt = 1;
1961 cnt = (ssize_t)size;
1962 (void) VOP_RWLOCK(vp, rwflag, NULL);
1963
1964 auio.uio_loffset = fileoff;
1965 auio.uio_iov = aiov;
1966 auio.uio_iovcnt = iovcnt;
1967 auio.uio_resid = cnt;
1968 auio.uio_segflg = UIO_SYSSPACE;
1969 auio.uio_llimit = MAXOFFSET_T;
1970 auio.uio_fmode = fflag;
1971 auio.uio_extflg = UIO_COPY_CACHED;
1972
1973 ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
1974
1975 /* If read sync is not asked for, filter sync flags */
1976 if ((ioflag & FRSYNC) == 0)
1977 ioflag &= ~(FSYNC|FDSYNC);
1978 error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
1979 cnt -= auio.uio_resid;
1980
1981 VOP_RWUNLOCK(vp, rwflag, NULL);
1982
1983 if (error == EINTR && cnt != 0)
1984 error = 0;
1985 out:
1986 if (error != 0) {
1987 *err = error;
1988 return (0);
1989 } else {
1990 *err = 0;
1991 return (cnt);
1992 }
1993 }
1994
1995 int
so_copyin(const void * from,void * to,size_t size,int fromkernel)1996 so_copyin(const void *from, void *to, size_t size, int fromkernel)
1997 {
1998 if (fromkernel) {
1999 bcopy(from, to, size);
2000 return (0);
2001 }
2002 return (xcopyin(from, to, size));
2003 }
2004
2005 int
so_copyout(const void * from,void * to,size_t size,int tokernel)2006 so_copyout(const void *from, void *to, size_t size, int tokernel)
2007 {
2008 if (tokernel) {
2009 bcopy(from, to, size);
2010 return (0);
2011 }
2012 return (xcopyout(from, to, size));
2013 }
2014