1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Bayard G. Bell. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2017 Joyent Inc
26 * Copyright 2019 Nexenta by DDN, Inc.
27 */
28
29 /*
30 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
31 * All rights reserved.
32 * Use is subject to license terms.
33 */
34
35 #include <sys/param.h>
36 #include <sys/types.h>
37 #include <sys/systm.h>
38 #include <sys/cred.h>
39 #include <sys/proc.h>
40 #include <sys/user.h>
41 #include <sys/buf.h>
42 #include <sys/vfs.h>
43 #include <sys/vnode.h>
44 #include <sys/pathname.h>
45 #include <sys/uio.h>
46 #include <sys/file.h>
47 #include <sys/stat.h>
48 #include <sys/errno.h>
49 #include <sys/socket.h>
50 #include <sys/sysmacros.h>
51 #include <sys/siginfo.h>
52 #include <sys/tiuser.h>
53 #include <sys/statvfs.h>
54 #include <sys/stream.h>
55 #include <sys/strsun.h>
56 #include <sys/strsubr.h>
57 #include <sys/stropts.h>
58 #include <sys/timod.h>
59 #include <sys/t_kuser.h>
60 #include <sys/kmem.h>
61 #include <sys/kstat.h>
62 #include <sys/dirent.h>
63 #include <sys/cmn_err.h>
64 #include <sys/debug.h>
65 #include <sys/unistd.h>
66 #include <sys/vtrace.h>
67 #include <sys/mode.h>
68 #include <sys/acl.h>
69 #include <sys/sdt.h>
70 #include <sys/debug.h>
71
72 #include <rpc/types.h>
73 #include <rpc/auth.h>
74 #include <rpc/auth_unix.h>
75 #include <rpc/auth_des.h>
76 #include <rpc/svc.h>
77 #include <rpc/xdr.h>
78 #include <rpc/rpc_rdma.h>
79
80 #include <nfs/nfs.h>
81 #include <nfs/export.h>
82 #include <nfs/nfssys.h>
83 #include <nfs/nfs_clnt.h>
84 #include <nfs/nfs_acl.h>
85 #include <nfs/nfs_log.h>
86 #include <nfs/lm.h>
87 #include <nfs/nfs_dispatch.h>
88 #include <nfs/nfs4_drc.h>
89
90 #include <sys/modctl.h>
91 #include <sys/cladm.h>
92 #include <sys/clconf.h>
93
94 #include <sys/tsol/label.h>
95
96 #define MAXHOST 32
97 const char *kinet_ntop6(uchar_t *, char *, size_t);
98
99 /*
100 * Module linkage information.
101 */
102
103 static struct modlmisc modlmisc = {
104 &mod_miscops, "NFS server module"
105 };
106
107 static struct modlinkage modlinkage = {
108 MODREV_1, (void *)&modlmisc, NULL
109 };
110
111 zone_key_t nfssrv_zone_key;
112 list_t nfssrv_globals_list;
113 krwlock_t nfssrv_globals_rwl;
114
115 kmem_cache_t *nfs_xuio_cache;
116 int nfs_loaned_buffers = 0;
117
118 /* array of paths passed-in from nfsd command-line; stored in nvlist */
119 char **rfs4_dss_newpaths;
120 uint_t rfs4_dss_numnewpaths;
121
122 /* nvlists of all DSS paths: current, and before last warmstart */
123 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths;
124
125 int
_init(void)126 _init(void)
127 {
128 int status;
129
130 nfs_srvinit();
131
132 status = mod_install((struct modlinkage *)&modlinkage);
133 if (status != 0) {
134 /*
135 * Could not load module, cleanup previous
136 * initialization work.
137 */
138 nfs_srvfini();
139
140 return (status);
141 }
142
143 /*
144 * Initialise some placeholders for nfssys() calls. These have
145 * to be declared by the nfs module, since that handles nfssys()
146 * calls - also used by NFS clients - but are provided by this
147 * nfssrv module. These also then serve as confirmation to the
148 * relevant code in nfs that nfssrv has been loaded, as they're
149 * initially NULL.
150 */
151 nfs_srv_quiesce_func = nfs_srv_quiesce_all;
152 nfs_srv_dss_func = rfs4_dss_setpaths;
153
154 /* setup DSS paths here; must be done before initial server startup */
155 rfs4_dss_paths = rfs4_dss_oldpaths = NULL;
156
157 /* initialize the copy reduction caches */
158
159 nfs_xuio_cache = kmem_cache_create("nfs_xuio_cache",
160 sizeof (nfs_xuio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
161
162 return (status);
163 }
164
165 int
_fini()166 _fini()
167 {
168 return (EBUSY);
169 }
170
171 int
_info(struct modinfo * modinfop)172 _info(struct modinfo *modinfop)
173 {
174 return (mod_info(&modlinkage, modinfop));
175 }
176
177 /*
178 * PUBLICFH_CHECK() checks if the dispatch routine supports
179 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the
180 * incoming request is using the public filehandle. The check duplicates
181 * the exportmatch() call done in checkexport(), and we should consider
182 * modifying those routines to avoid the duplication. For now, we optimize
183 * by calling exportmatch() only after checking that the dispatch routine
184 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported
185 * public (i.e., not the placeholder).
186 */
187 #define PUBLICFH_CHECK(ne, disp, exi, fsid, xfid) \
188 ((disp->dis_flags & RPC_PUBLICFH_OK) && \
189 ((exi->exi_export.ex_flags & EX_PUBLIC) || \
190 (exi == ne->exi_public && exportmatch(ne->exi_root, \
191 fsid, xfid))))
192
193 static void nfs_srv_shutdown_all(int);
194 static void rfs4_server_start(nfs_globals_t *, int);
195 static void nullfree(void);
196 static void rfs_dispatch(struct svc_req *, SVCXPRT *);
197 static void acl_dispatch(struct svc_req *, SVCXPRT *);
198 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int,
199 bool_t, bool_t *);
200 static char *client_name(struct svc_req *req);
201 static char *client_addr(struct svc_req *req, char *buf);
202 extern int sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *);
203 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *);
204 static void *nfs_server_zone_init(zoneid_t);
205 static void nfs_server_zone_fini(zoneid_t, void *);
206 static void nfs_server_zone_shutdown(zoneid_t, void *);
207
208 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \
209 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \
210 (nb)->len = (xprt)->xp_rtaddr.len; \
211 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \
212 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \
213 }
214
215 /*
216 * Public Filehandle common nfs routines
217 */
218 static int MCLpath(char **);
219 static void URLparse(char *);
220
221 /*
222 * NFS callout table.
223 * This table is used by svc_getreq() to dispatch a request with
224 * a given prog/vers pair to an appropriate service provider
225 * dispatch routine.
226 *
227 * NOTE: ordering is relied upon below when resetting the version min/max
228 * for NFS_PROGRAM. Careful, if this is ever changed.
229 */
230 static SVC_CALLOUT __nfs_sc_clts[] = {
231 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
232 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
233 };
234
235 static SVC_CALLOUT_TABLE nfs_sct_clts = {
236 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE,
237 __nfs_sc_clts
238 };
239
240 static SVC_CALLOUT __nfs_sc_cots[] = {
241 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
242 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
243 };
244
245 static SVC_CALLOUT_TABLE nfs_sct_cots = {
246 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots
247 };
248
249 static SVC_CALLOUT __nfs_sc_rdma[] = {
250 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
251 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
252 };
253
254 static SVC_CALLOUT_TABLE nfs_sct_rdma = {
255 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma
256 };
257
258 /*
259 * DSS: distributed stable storage
260 * lists of all DSS paths: current, and before last warmstart
261 */
262 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths;
263
264 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *);
265 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *);
266
267 /*
268 * Stash NFS zone globals in TSD to avoid some lock contention
269 * from frequent zone_getspecific calls.
270 */
271 static uint_t nfs_server_tsd_key;
272
273 nfs_globals_t *
nfs_srv_getzg(void)274 nfs_srv_getzg(void)
275 {
276 nfs_globals_t *ng;
277
278 ng = tsd_get(nfs_server_tsd_key);
279 if (ng == NULL) {
280 ng = zone_getspecific(nfssrv_zone_key, curzone);
281 (void) tsd_set(nfs_server_tsd_key, ng);
282 }
283
284 return (ng);
285 }
286
287 /*
288 * Will be called at the point the server pool is being unregistered
289 * from the pool list. From that point onwards, the pool is waiting
290 * to be drained and as such the server state is stale and pertains
291 * to the old instantiation of the NFS server pool.
292 */
293 void
nfs_srv_offline(void)294 nfs_srv_offline(void)
295 {
296 nfs_globals_t *ng;
297
298 ng = nfs_srv_getzg();
299
300 mutex_enter(&ng->nfs_server_upordown_lock);
301 if (ng->nfs_server_upordown == NFS_SERVER_RUNNING) {
302 ng->nfs_server_upordown = NFS_SERVER_OFFLINE;
303 }
304 mutex_exit(&ng->nfs_server_upordown_lock);
305 }
306
307 /*
308 * Will be called at the point the server pool is being destroyed so
309 * all transports have been closed and no service threads are in
310 * existence.
311 *
312 * If we quiesce the server, we're shutting it down without destroying the
313 * server state. This allows it to warm start subsequently.
314 */
315 void
nfs_srv_stop_all(void)316 nfs_srv_stop_all(void)
317 {
318 int quiesce = 0;
319 nfs_srv_shutdown_all(quiesce);
320 }
321
322 /*
323 * This alternative shutdown routine can be requested via nfssys()
324 */
325 void
nfs_srv_quiesce_all(void)326 nfs_srv_quiesce_all(void)
327 {
328 int quiesce = 1;
329 nfs_srv_shutdown_all(quiesce);
330 }
331
332 static void
nfs_srv_shutdown_all(int quiesce)333 nfs_srv_shutdown_all(int quiesce)
334 {
335 nfs_globals_t *ng = nfs_srv_getzg();
336
337 mutex_enter(&ng->nfs_server_upordown_lock);
338 if (quiesce) {
339 if (ng->nfs_server_upordown == NFS_SERVER_RUNNING ||
340 ng->nfs_server_upordown == NFS_SERVER_OFFLINE) {
341 ng->nfs_server_upordown = NFS_SERVER_QUIESCED;
342 cv_signal(&ng->nfs_server_upordown_cv);
343
344 /* reset DSS state */
345 rfs4_dss_numnewpaths = 0;
346 rfs4_dss_newpaths = NULL;
347
348 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; "
349 "NFSv4 state has been preserved");
350 }
351 } else {
352 if (ng->nfs_server_upordown == NFS_SERVER_OFFLINE) {
353 ng->nfs_server_upordown = NFS_SERVER_STOPPING;
354 mutex_exit(&ng->nfs_server_upordown_lock);
355 rfs4_state_zone_fini();
356 rfs4_fini_drc();
357 mutex_enter(&ng->nfs_server_upordown_lock);
358 ng->nfs_server_upordown = NFS_SERVER_STOPPED;
359
360 /* reset DSS state */
361 rfs4_dss_numnewpaths = 0;
362 rfs4_dss_newpaths = NULL;
363
364 cv_signal(&ng->nfs_server_upordown_cv);
365 }
366 }
367 mutex_exit(&ng->nfs_server_upordown_lock);
368 }
369
370 static int
nfs_srv_set_sc_versions(struct file * fp,SVC_CALLOUT_TABLE ** sctpp,rpcvers_t versmin,rpcvers_t versmax)371 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp,
372 rpcvers_t versmin, rpcvers_t versmax)
373 {
374 struct strioctl strioc;
375 struct T_info_ack tinfo;
376 int error, retval;
377
378 /*
379 * Find out what type of transport this is.
380 */
381 strioc.ic_cmd = TI_GETINFO;
382 strioc.ic_timout = -1;
383 strioc.ic_len = sizeof (tinfo);
384 strioc.ic_dp = (char *)&tinfo;
385 tinfo.PRIM_type = T_INFO_REQ;
386
387 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K,
388 CRED(), &retval);
389 if (error || retval)
390 return (error);
391
392 /*
393 * Based on our query of the transport type...
394 *
395 * Reset the min/max versions based on the caller's request
396 * NOTE: This assumes that NFS_PROGRAM is first in the array!!
397 * And the second entry is the NFS_ACL_PROGRAM.
398 */
399 switch (tinfo.SERV_type) {
400 case T_CLTS:
401 if (versmax == NFS_V4)
402 return (EINVAL);
403 __nfs_sc_clts[0].sc_versmin = versmin;
404 __nfs_sc_clts[0].sc_versmax = versmax;
405 __nfs_sc_clts[1].sc_versmin = versmin;
406 __nfs_sc_clts[1].sc_versmax = versmax;
407 *sctpp = &nfs_sct_clts;
408 break;
409 case T_COTS:
410 case T_COTS_ORD:
411 __nfs_sc_cots[0].sc_versmin = versmin;
412 __nfs_sc_cots[0].sc_versmax = versmax;
413 /* For the NFS_ACL program, check the max version */
414 if (versmax > NFS_ACL_VERSMAX)
415 versmax = NFS_ACL_VERSMAX;
416 __nfs_sc_cots[1].sc_versmin = versmin;
417 __nfs_sc_cots[1].sc_versmax = versmax;
418 *sctpp = &nfs_sct_cots;
419 break;
420 default:
421 error = EINVAL;
422 }
423
424 return (error);
425 }
426
427 /*
428 * NFS Server system call.
429 * Does all of the work of running a NFS server.
430 * uap->fd is the fd of an open transport provider
431 */
432 int
nfs_svc(struct nfs_svc_args * arg,model_t model)433 nfs_svc(struct nfs_svc_args *arg, model_t model)
434 {
435 nfs_globals_t *ng;
436 file_t *fp;
437 SVCMASTERXPRT *xprt;
438 int error;
439 int readsize;
440 char buf[KNC_STRSIZE];
441 size_t len;
442 STRUCT_HANDLE(nfs_svc_args, uap);
443 struct netbuf addrmask;
444 SVC_CALLOUT_TABLE *sctp = NULL;
445
446 #ifdef lint
447 model = model; /* STRUCT macros don't always refer to it */
448 #endif
449
450 ng = nfs_srv_getzg();
451 STRUCT_SET_HANDLE(uap, model, arg);
452
453 /* Check privileges in nfssys() */
454
455 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL)
456 return (EBADF);
457
458 /* Setup global file handle in nfs_export */
459 if ((error = nfs_export_get_rootfh(ng)) != 0)
460 return (error);
461
462 /*
463 * Set read buffer size to rsize
464 * and add room for RPC headers.
465 */
466 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA);
467 if (readsize < RPC_MAXDATASIZE)
468 readsize = RPC_MAXDATASIZE;
469
470 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf,
471 KNC_STRSIZE, &len);
472 if (error) {
473 releasef(STRUCT_FGET(uap, fd));
474 return (error);
475 }
476
477 addrmask.len = STRUCT_FGET(uap, addrmask.len);
478 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen);
479 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP);
480 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf,
481 addrmask.len);
482 if (error) {
483 releasef(STRUCT_FGET(uap, fd));
484 kmem_free(addrmask.buf, addrmask.maxlen);
485 return (error);
486 }
487
488 ng->nfs_versmin = STRUCT_FGET(uap, versmin);
489 ng->nfs_versmax = STRUCT_FGET(uap, versmax);
490
491 /* Double check the vers min/max ranges */
492 if ((ng->nfs_versmin > ng->nfs_versmax) ||
493 (ng->nfs_versmin < NFS_VERSMIN) ||
494 (ng->nfs_versmax > NFS_VERSMAX)) {
495 ng->nfs_versmin = NFS_VERSMIN_DEFAULT;
496 ng->nfs_versmax = NFS_VERSMAX_DEFAULT;
497 }
498
499 if (error = nfs_srv_set_sc_versions(fp, &sctp, ng->nfs_versmin,
500 ng->nfs_versmax)) {
501 releasef(STRUCT_FGET(uap, fd));
502 kmem_free(addrmask.buf, addrmask.maxlen);
503 return (error);
504 }
505
506 /* Initialize nfsv4 server */
507 if (ng->nfs_versmax == (rpcvers_t)NFS_V4)
508 rfs4_server_start(ng, STRUCT_FGET(uap, delegation));
509
510 /* Create a transport handle. */
511 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt,
512 sctp, NULL, NFS_SVCPOOL_ID, TRUE);
513
514 if (error)
515 kmem_free(addrmask.buf, addrmask.maxlen);
516
517 releasef(STRUCT_FGET(uap, fd));
518
519 /* HA-NFSv4: save the cluster nodeid */
520 if (cluster_bootflags & CLUSTER_BOOTED)
521 lm_global_nlmid = clconf_get_nodeid();
522
523 return (error);
524 }
525
526 static void
rfs4_server_start(nfs_globals_t * ng,int nfs4_srv_delegation)527 rfs4_server_start(nfs_globals_t *ng, int nfs4_srv_delegation)
528 {
529 /*
530 * Determine if the server has previously been "started" and
531 * if not, do the per instance initialization
532 */
533 mutex_enter(&ng->nfs_server_upordown_lock);
534
535 if (ng->nfs_server_upordown != NFS_SERVER_RUNNING) {
536 /* Do we need to stop and wait on the previous server? */
537 while (ng->nfs_server_upordown == NFS_SERVER_STOPPING ||
538 ng->nfs_server_upordown == NFS_SERVER_OFFLINE)
539 cv_wait(&ng->nfs_server_upordown_cv,
540 &ng->nfs_server_upordown_lock);
541
542 if (ng->nfs_server_upordown != NFS_SERVER_RUNNING) {
543 (void) svc_pool_control(NFS_SVCPOOL_ID,
544 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline);
545 (void) svc_pool_control(NFS_SVCPOOL_ID,
546 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all);
547
548 rfs4_do_server_start(ng->nfs_server_upordown,
549 nfs4_srv_delegation,
550 cluster_bootflags & CLUSTER_BOOTED);
551
552 ng->nfs_server_upordown = NFS_SERVER_RUNNING;
553 }
554 cv_signal(&ng->nfs_server_upordown_cv);
555 }
556 mutex_exit(&ng->nfs_server_upordown_lock);
557 }
558
559 /*
560 * If RDMA device available,
561 * start RDMA listener.
562 */
563 int
rdma_start(struct rdma_svc_args * rsa)564 rdma_start(struct rdma_svc_args *rsa)
565 {
566 nfs_globals_t *ng;
567 int error;
568 rdma_xprt_group_t started_rdma_xprts;
569 rdma_stat stat;
570 int svc_state = 0;
571
572 /* Double check the vers min/max ranges */
573 if ((rsa->nfs_versmin > rsa->nfs_versmax) ||
574 (rsa->nfs_versmin < NFS_VERSMIN) ||
575 (rsa->nfs_versmax > NFS_VERSMAX)) {
576 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT;
577 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT;
578 }
579
580 ng = nfs_srv_getzg();
581 ng->nfs_versmin = rsa->nfs_versmin;
582 ng->nfs_versmax = rsa->nfs_versmax;
583
584 /* Set the versions in the callout table */
585 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin;
586 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax;
587 /* For the NFS_ACL program, check the max version */
588 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin;
589 if (rsa->nfs_versmax > NFS_ACL_VERSMAX)
590 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX;
591 else
592 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax;
593
594 /* Initialize nfsv4 server */
595 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4)
596 rfs4_server_start(ng, rsa->delegation);
597
598 started_rdma_xprts.rtg_count = 0;
599 started_rdma_xprts.rtg_listhead = NULL;
600 started_rdma_xprts.rtg_poolid = rsa->poolid;
601
602 restart:
603 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid,
604 &started_rdma_xprts);
605
606 svc_state = !error;
607
608 while (!error) {
609
610 /*
611 * wait till either interrupted by a signal on
612 * nfs service stop/restart or signalled by a
613 * rdma attach/detatch.
614 */
615
616 stat = rdma_kwait();
617
618 /*
619 * stop services if running -- either on a HCA detach event
620 * or if the nfs service is stopped/restarted.
621 */
622
623 if ((stat == RDMA_HCA_DETACH || stat == RDMA_INTR) &&
624 svc_state) {
625 rdma_stop(&started_rdma_xprts);
626 svc_state = 0;
627 }
628
629 /*
630 * nfs service stop/restart, break out of the
631 * wait loop and return;
632 */
633 if (stat == RDMA_INTR)
634 return (0);
635
636 /*
637 * restart stopped services on a HCA attach event
638 * (if not already running)
639 */
640
641 if ((stat == RDMA_HCA_ATTACH) && (svc_state == 0))
642 goto restart;
643
644 /*
645 * loop until a nfs service stop/restart
646 */
647 }
648
649 return (error);
650 }
651
652 /* ARGSUSED */
653 void
rpc_null(caddr_t * argp,caddr_t * resp,struct exportinfo * exi,struct svc_req * req,cred_t * cr,bool_t ro)654 rpc_null(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
655 struct svc_req *req, cred_t *cr, bool_t ro)
656 {
657 }
658
659 /* ARGSUSED */
660 void
rpc_null_v3(caddr_t * argp,caddr_t * resp,struct exportinfo * exi,struct svc_req * req,cred_t * cr,bool_t ro)661 rpc_null_v3(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
662 struct svc_req *req, cred_t *cr, bool_t ro)
663 {
664 DTRACE_NFSV3_4(op__null__start, struct svc_req *, req,
665 cred_t *, cr, vnode_t *, NULL, struct exportinfo *, exi);
666 DTRACE_NFSV3_4(op__null__done, struct svc_req *, req,
667 cred_t *, cr, vnode_t *, NULL, struct exportinfo *, exi);
668 }
669
670 /* ARGSUSED */
671 static void
rfs_error(caddr_t * argp,caddr_t * resp,struct exportinfo * exi,struct svc_req * req,cred_t * cr,bool_t ro)672 rfs_error(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
673 struct svc_req *req, cred_t *cr, bool_t ro)
674 {
675 /* return (EOPNOTSUPP); */
676 }
677
678 static void
nullfree(void)679 nullfree(void)
680 {
681 }
682
683 static char *rfscallnames_v2[] = {
684 "RFS2_NULL",
685 "RFS2_GETATTR",
686 "RFS2_SETATTR",
687 "RFS2_ROOT",
688 "RFS2_LOOKUP",
689 "RFS2_READLINK",
690 "RFS2_READ",
691 "RFS2_WRITECACHE",
692 "RFS2_WRITE",
693 "RFS2_CREATE",
694 "RFS2_REMOVE",
695 "RFS2_RENAME",
696 "RFS2_LINK",
697 "RFS2_SYMLINK",
698 "RFS2_MKDIR",
699 "RFS2_RMDIR",
700 "RFS2_READDIR",
701 "RFS2_STATFS"
702 };
703
704 static struct rpcdisp rfsdisptab_v2[] = {
705 /*
706 * NFS VERSION 2
707 */
708
709 /* RFS_NULL = 0 */
710 {rpc_null,
711 xdr_void, NULL_xdrproc_t, 0,
712 xdr_void, NULL_xdrproc_t, 0,
713 nullfree, RPC_IDEMPOTENT,
714 0},
715
716 /* RFS_GETATTR = 1 */
717 {rfs_getattr,
718 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
719 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
720 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
721 rfs_getattr_getfh},
722
723 /* RFS_SETATTR = 2 */
724 {rfs_setattr,
725 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs),
726 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
727 nullfree, RPC_MAPRESP,
728 rfs_setattr_getfh},
729
730 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
731 {rfs_error,
732 xdr_void, NULL_xdrproc_t, 0,
733 xdr_void, NULL_xdrproc_t, 0,
734 nullfree, RPC_IDEMPOTENT,
735 0},
736
737 /* RFS_LOOKUP = 4 */
738 {rfs_lookup,
739 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
740 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
741 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK,
742 rfs_lookup_getfh},
743
744 /* RFS_READLINK = 5 */
745 {rfs_readlink,
746 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
747 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres),
748 rfs_rlfree, RPC_IDEMPOTENT,
749 rfs_readlink_getfh},
750
751 /* RFS_READ = 6 */
752 {rfs_read,
753 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs),
754 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult),
755 rfs_rdfree, RPC_IDEMPOTENT,
756 rfs_read_getfh},
757
758 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
759 {rfs_error,
760 xdr_void, NULL_xdrproc_t, 0,
761 xdr_void, NULL_xdrproc_t, 0,
762 nullfree, RPC_IDEMPOTENT,
763 0},
764
765 /* RFS_WRITE = 8 */
766 {rfs_write,
767 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs),
768 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
769 nullfree, RPC_MAPRESP,
770 rfs_write_getfh},
771
772 /* RFS_CREATE = 9 */
773 {rfs_create,
774 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs),
775 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
776 nullfree, RPC_MAPRESP,
777 rfs_create_getfh},
778
779 /* RFS_REMOVE = 10 */
780 {rfs_remove,
781 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
782 #ifdef _LITTLE_ENDIAN
783 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
784 #else
785 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
786 #endif
787 nullfree, RPC_MAPRESP,
788 rfs_remove_getfh},
789
790 /* RFS_RENAME = 11 */
791 {rfs_rename,
792 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs),
793 #ifdef _LITTLE_ENDIAN
794 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
795 #else
796 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
797 #endif
798 nullfree, RPC_MAPRESP,
799 rfs_rename_getfh},
800
801 /* RFS_LINK = 12 */
802 {rfs_link,
803 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs),
804 #ifdef _LITTLE_ENDIAN
805 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
806 #else
807 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
808 #endif
809 nullfree, RPC_MAPRESP,
810 rfs_link_getfh},
811
812 /* RFS_SYMLINK = 13 */
813 {rfs_symlink,
814 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs),
815 #ifdef _LITTLE_ENDIAN
816 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
817 #else
818 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
819 #endif
820 nullfree, RPC_MAPRESP,
821 rfs_symlink_getfh},
822
823 /* RFS_MKDIR = 14 */
824 {rfs_mkdir,
825 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs),
826 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
827 nullfree, RPC_MAPRESP,
828 rfs_mkdir_getfh},
829
830 /* RFS_RMDIR = 15 */
831 {rfs_rmdir,
832 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
833 #ifdef _LITTLE_ENDIAN
834 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
835 #else
836 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
837 #endif
838 nullfree, RPC_MAPRESP,
839 rfs_rmdir_getfh},
840
841 /* RFS_READDIR = 16 */
842 {rfs_readdir,
843 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs),
844 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres),
845 rfs_rddirfree, RPC_IDEMPOTENT,
846 rfs_readdir_getfh},
847
848 /* RFS_STATFS = 17 */
849 {rfs_statfs,
850 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
851 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs),
852 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
853 rfs_statfs_getfh},
854 };
855
856 static char *rfscallnames_v3[] = {
857 "RFS3_NULL",
858 "RFS3_GETATTR",
859 "RFS3_SETATTR",
860 "RFS3_LOOKUP",
861 "RFS3_ACCESS",
862 "RFS3_READLINK",
863 "RFS3_READ",
864 "RFS3_WRITE",
865 "RFS3_CREATE",
866 "RFS3_MKDIR",
867 "RFS3_SYMLINK",
868 "RFS3_MKNOD",
869 "RFS3_REMOVE",
870 "RFS3_RMDIR",
871 "RFS3_RENAME",
872 "RFS3_LINK",
873 "RFS3_READDIR",
874 "RFS3_READDIRPLUS",
875 "RFS3_FSSTAT",
876 "RFS3_FSINFO",
877 "RFS3_PATHCONF",
878 "RFS3_COMMIT"
879 };
880
881 static struct rpcdisp rfsdisptab_v3[] = {
882 /*
883 * NFS VERSION 3
884 */
885
886 /* RFS_NULL = 0 */
887 {rpc_null_v3,
888 xdr_void, NULL_xdrproc_t, 0,
889 xdr_void, NULL_xdrproc_t, 0,
890 nullfree, RPC_IDEMPOTENT,
891 0},
892
893 /* RFS3_GETATTR = 1 */
894 {rfs3_getattr,
895 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args),
896 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res),
897 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON),
898 rfs3_getattr_getfh},
899
900 /* RFS3_SETATTR = 2 */
901 {rfs3_setattr,
902 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args),
903 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res),
904 nullfree, 0,
905 rfs3_setattr_getfh},
906
907 /* RFS3_LOOKUP = 3 */
908 {rfs3_lookup,
909 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args),
910 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res),
911 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK),
912 rfs3_lookup_getfh},
913
914 /* RFS3_ACCESS = 4 */
915 {rfs3_access,
916 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args),
917 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res),
918 nullfree, RPC_IDEMPOTENT,
919 rfs3_access_getfh},
920
921 /* RFS3_READLINK = 5 */
922 {rfs3_readlink,
923 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args),
924 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res),
925 rfs3_readlink_free, RPC_IDEMPOTENT,
926 rfs3_readlink_getfh},
927
928 /* RFS3_READ = 6 */
929 {rfs3_read,
930 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args),
931 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res),
932 rfs3_read_free, RPC_IDEMPOTENT,
933 rfs3_read_getfh},
934
935 /* RFS3_WRITE = 7 */
936 {rfs3_write,
937 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args),
938 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res),
939 nullfree, 0,
940 rfs3_write_getfh},
941
942 /* RFS3_CREATE = 8 */
943 {rfs3_create,
944 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args),
945 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res),
946 nullfree, 0,
947 rfs3_create_getfh},
948
949 /* RFS3_MKDIR = 9 */
950 {rfs3_mkdir,
951 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args),
952 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res),
953 nullfree, 0,
954 rfs3_mkdir_getfh},
955
956 /* RFS3_SYMLINK = 10 */
957 {rfs3_symlink,
958 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args),
959 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res),
960 nullfree, 0,
961 rfs3_symlink_getfh},
962
963 /* RFS3_MKNOD = 11 */
964 {rfs3_mknod,
965 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args),
966 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res),
967 nullfree, 0,
968 rfs3_mknod_getfh},
969
970 /* RFS3_REMOVE = 12 */
971 {rfs3_remove,
972 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args),
973 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res),
974 nullfree, 0,
975 rfs3_remove_getfh},
976
977 /* RFS3_RMDIR = 13 */
978 {rfs3_rmdir,
979 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args),
980 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res),
981 nullfree, 0,
982 rfs3_rmdir_getfh},
983
984 /* RFS3_RENAME = 14 */
985 {rfs3_rename,
986 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args),
987 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res),
988 nullfree, 0,
989 rfs3_rename_getfh},
990
991 /* RFS3_LINK = 15 */
992 {rfs3_link,
993 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args),
994 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res),
995 nullfree, 0,
996 rfs3_link_getfh},
997
998 /* RFS3_READDIR = 16 */
999 {rfs3_readdir,
1000 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args),
1001 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res),
1002 rfs3_readdir_free, RPC_IDEMPOTENT,
1003 rfs3_readdir_getfh},
1004
1005 /* RFS3_READDIRPLUS = 17 */
1006 {rfs3_readdirplus,
1007 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args),
1008 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res),
1009 rfs3_readdirplus_free, RPC_AVOIDWORK,
1010 rfs3_readdirplus_getfh},
1011
1012 /* RFS3_FSSTAT = 18 */
1013 {rfs3_fsstat,
1014 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args),
1015 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res),
1016 nullfree, RPC_IDEMPOTENT,
1017 rfs3_fsstat_getfh},
1018
1019 /* RFS3_FSINFO = 19 */
1020 {rfs3_fsinfo,
1021 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args),
1022 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res),
1023 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON,
1024 rfs3_fsinfo_getfh},
1025
1026 /* RFS3_PATHCONF = 20 */
1027 {rfs3_pathconf,
1028 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args),
1029 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res),
1030 nullfree, RPC_IDEMPOTENT,
1031 rfs3_pathconf_getfh},
1032
1033 /* RFS3_COMMIT = 21 */
1034 {rfs3_commit,
1035 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args),
1036 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res),
1037 nullfree, RPC_IDEMPOTENT,
1038 rfs3_commit_getfh},
1039 };
1040
1041 static char *rfscallnames_v4[] = {
1042 "RFS4_NULL",
1043 "RFS4_COMPOUND",
1044 "RFS4_NULL",
1045 "RFS4_NULL",
1046 "RFS4_NULL",
1047 "RFS4_NULL",
1048 "RFS4_NULL",
1049 "RFS4_NULL",
1050 "RFS4_CREATE"
1051 };
1052
1053 static struct rpcdisp rfsdisptab_v4[] = {
1054 /*
1055 * NFS VERSION 4
1056 */
1057
1058 /* RFS_NULL = 0 */
1059 {rpc_null,
1060 xdr_void, NULL_xdrproc_t, 0,
1061 xdr_void, NULL_xdrproc_t, 0,
1062 nullfree, RPC_IDEMPOTENT, 0},
1063
1064 /* RFS4_compound = 1 */
1065 {rfs4_compound,
1066 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args),
1067 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res),
1068 rfs4_compound_free, 0, 0},
1069 };
1070
1071 union rfs_args {
1072 /*
1073 * NFS VERSION 2
1074 */
1075
1076 /* RFS_NULL = 0 */
1077
1078 /* RFS_GETATTR = 1 */
1079 fhandle_t nfs2_getattr_args;
1080
1081 /* RFS_SETATTR = 2 */
1082 struct nfssaargs nfs2_setattr_args;
1083
1084 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
1085
1086 /* RFS_LOOKUP = 4 */
1087 struct nfsdiropargs nfs2_lookup_args;
1088
1089 /* RFS_READLINK = 5 */
1090 fhandle_t nfs2_readlink_args;
1091
1092 /* RFS_READ = 6 */
1093 struct nfsreadargs nfs2_read_args;
1094
1095 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
1096
1097 /* RFS_WRITE = 8 */
1098 struct nfswriteargs nfs2_write_args;
1099
1100 /* RFS_CREATE = 9 */
1101 struct nfscreatargs nfs2_create_args;
1102
1103 /* RFS_REMOVE = 10 */
1104 struct nfsdiropargs nfs2_remove_args;
1105
1106 /* RFS_RENAME = 11 */
1107 struct nfsrnmargs nfs2_rename_args;
1108
1109 /* RFS_LINK = 12 */
1110 struct nfslinkargs nfs2_link_args;
1111
1112 /* RFS_SYMLINK = 13 */
1113 struct nfsslargs nfs2_symlink_args;
1114
1115 /* RFS_MKDIR = 14 */
1116 struct nfscreatargs nfs2_mkdir_args;
1117
1118 /* RFS_RMDIR = 15 */
1119 struct nfsdiropargs nfs2_rmdir_args;
1120
1121 /* RFS_READDIR = 16 */
1122 struct nfsrddirargs nfs2_readdir_args;
1123
1124 /* RFS_STATFS = 17 */
1125 fhandle_t nfs2_statfs_args;
1126
1127 /*
1128 * NFS VERSION 3
1129 */
1130
1131 /* RFS_NULL = 0 */
1132
1133 /* RFS3_GETATTR = 1 */
1134 GETATTR3args nfs3_getattr_args;
1135
1136 /* RFS3_SETATTR = 2 */
1137 SETATTR3args nfs3_setattr_args;
1138
1139 /* RFS3_LOOKUP = 3 */
1140 LOOKUP3args nfs3_lookup_args;
1141
1142 /* RFS3_ACCESS = 4 */
1143 ACCESS3args nfs3_access_args;
1144
1145 /* RFS3_READLINK = 5 */
1146 READLINK3args nfs3_readlink_args;
1147
1148 /* RFS3_READ = 6 */
1149 READ3args nfs3_read_args;
1150
1151 /* RFS3_WRITE = 7 */
1152 WRITE3args nfs3_write_args;
1153
1154 /* RFS3_CREATE = 8 */
1155 CREATE3args nfs3_create_args;
1156
1157 /* RFS3_MKDIR = 9 */
1158 MKDIR3args nfs3_mkdir_args;
1159
1160 /* RFS3_SYMLINK = 10 */
1161 SYMLINK3args nfs3_symlink_args;
1162
1163 /* RFS3_MKNOD = 11 */
1164 MKNOD3args nfs3_mknod_args;
1165
1166 /* RFS3_REMOVE = 12 */
1167 REMOVE3args nfs3_remove_args;
1168
1169 /* RFS3_RMDIR = 13 */
1170 RMDIR3args nfs3_rmdir_args;
1171
1172 /* RFS3_RENAME = 14 */
1173 RENAME3args nfs3_rename_args;
1174
1175 /* RFS3_LINK = 15 */
1176 LINK3args nfs3_link_args;
1177
1178 /* RFS3_READDIR = 16 */
1179 READDIR3args nfs3_readdir_args;
1180
1181 /* RFS3_READDIRPLUS = 17 */
1182 READDIRPLUS3args nfs3_readdirplus_args;
1183
1184 /* RFS3_FSSTAT = 18 */
1185 FSSTAT3args nfs3_fsstat_args;
1186
1187 /* RFS3_FSINFO = 19 */
1188 FSINFO3args nfs3_fsinfo_args;
1189
1190 /* RFS3_PATHCONF = 20 */
1191 PATHCONF3args nfs3_pathconf_args;
1192
1193 /* RFS3_COMMIT = 21 */
1194 COMMIT3args nfs3_commit_args;
1195
1196 /*
1197 * NFS VERSION 4
1198 */
1199
1200 /* RFS_NULL = 0 */
1201
1202 /* COMPUND = 1 */
1203 COMPOUND4args nfs4_compound_args;
1204 };
1205
1206 union rfs_res {
1207 /*
1208 * NFS VERSION 2
1209 */
1210
1211 /* RFS_NULL = 0 */
1212
1213 /* RFS_GETATTR = 1 */
1214 struct nfsattrstat nfs2_getattr_res;
1215
1216 /* RFS_SETATTR = 2 */
1217 struct nfsattrstat nfs2_setattr_res;
1218
1219 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
1220
1221 /* RFS_LOOKUP = 4 */
1222 struct nfsdiropres nfs2_lookup_res;
1223
1224 /* RFS_READLINK = 5 */
1225 struct nfsrdlnres nfs2_readlink_res;
1226
1227 /* RFS_READ = 6 */
1228 struct nfsrdresult nfs2_read_res;
1229
1230 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
1231
1232 /* RFS_WRITE = 8 */
1233 struct nfsattrstat nfs2_write_res;
1234
1235 /* RFS_CREATE = 9 */
1236 struct nfsdiropres nfs2_create_res;
1237
1238 /* RFS_REMOVE = 10 */
1239 enum nfsstat nfs2_remove_res;
1240
1241 /* RFS_RENAME = 11 */
1242 enum nfsstat nfs2_rename_res;
1243
1244 /* RFS_LINK = 12 */
1245 enum nfsstat nfs2_link_res;
1246
1247 /* RFS_SYMLINK = 13 */
1248 enum nfsstat nfs2_symlink_res;
1249
1250 /* RFS_MKDIR = 14 */
1251 struct nfsdiropres nfs2_mkdir_res;
1252
1253 /* RFS_RMDIR = 15 */
1254 enum nfsstat nfs2_rmdir_res;
1255
1256 /* RFS_READDIR = 16 */
1257 struct nfsrddirres nfs2_readdir_res;
1258
1259 /* RFS_STATFS = 17 */
1260 struct nfsstatfs nfs2_statfs_res;
1261
1262 /*
1263 * NFS VERSION 3
1264 */
1265
1266 /* RFS_NULL = 0 */
1267
1268 /* RFS3_GETATTR = 1 */
1269 GETATTR3res nfs3_getattr_res;
1270
1271 /* RFS3_SETATTR = 2 */
1272 SETATTR3res nfs3_setattr_res;
1273
1274 /* RFS3_LOOKUP = 3 */
1275 LOOKUP3res nfs3_lookup_res;
1276
1277 /* RFS3_ACCESS = 4 */
1278 ACCESS3res nfs3_access_res;
1279
1280 /* RFS3_READLINK = 5 */
1281 READLINK3res nfs3_readlink_res;
1282
1283 /* RFS3_READ = 6 */
1284 READ3res nfs3_read_res;
1285
1286 /* RFS3_WRITE = 7 */
1287 WRITE3res nfs3_write_res;
1288
1289 /* RFS3_CREATE = 8 */
1290 CREATE3res nfs3_create_res;
1291
1292 /* RFS3_MKDIR = 9 */
1293 MKDIR3res nfs3_mkdir_res;
1294
1295 /* RFS3_SYMLINK = 10 */
1296 SYMLINK3res nfs3_symlink_res;
1297
1298 /* RFS3_MKNOD = 11 */
1299 MKNOD3res nfs3_mknod_res;
1300
1301 /* RFS3_REMOVE = 12 */
1302 REMOVE3res nfs3_remove_res;
1303
1304 /* RFS3_RMDIR = 13 */
1305 RMDIR3res nfs3_rmdir_res;
1306
1307 /* RFS3_RENAME = 14 */
1308 RENAME3res nfs3_rename_res;
1309
1310 /* RFS3_LINK = 15 */
1311 LINK3res nfs3_link_res;
1312
1313 /* RFS3_READDIR = 16 */
1314 READDIR3res nfs3_readdir_res;
1315
1316 /* RFS3_READDIRPLUS = 17 */
1317 READDIRPLUS3res nfs3_readdirplus_res;
1318
1319 /* RFS3_FSSTAT = 18 */
1320 FSSTAT3res nfs3_fsstat_res;
1321
1322 /* RFS3_FSINFO = 19 */
1323 FSINFO3res nfs3_fsinfo_res;
1324
1325 /* RFS3_PATHCONF = 20 */
1326 PATHCONF3res nfs3_pathconf_res;
1327
1328 /* RFS3_COMMIT = 21 */
1329 COMMIT3res nfs3_commit_res;
1330
1331 /*
1332 * NFS VERSION 4
1333 */
1334
1335 /* RFS_NULL = 0 */
1336
1337 /* RFS4_COMPOUND = 1 */
1338 COMPOUND4res nfs4_compound_res;
1339
1340 };
1341
1342 static struct rpc_disptable rfs_disptable[] = {
1343 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]),
1344 rfscallnames_v2,
1345 rfsdisptab_v2},
1346 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]),
1347 rfscallnames_v3,
1348 rfsdisptab_v3},
1349 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]),
1350 rfscallnames_v4,
1351 rfsdisptab_v4},
1352 };
1353
1354 /*
1355 * If nfs_portmon is set, then clients are required to use privileged
1356 * ports (ports < IPPORT_RESERVED) in order to get NFS services.
1357 *
1358 * N.B.: this attempt to carry forward the already ill-conceived notion
1359 * of privileged ports for TCP/UDP is really quite ineffectual. Not only
1360 * is it transport-dependent, it's laughably easy to spoof. If you're
1361 * really interested in security, you must start with secure RPC instead.
1362 */
1363 static int nfs_portmon = 0;
1364
1365 #ifdef DEBUG
1366 static int cred_hits = 0;
1367 static int cred_misses = 0;
1368 #endif
1369
1370 #ifdef DEBUG
1371 /*
1372 * Debug code to allow disabling of rfs_dispatch() use of
1373 * fastxdrargs() and fastxdrres() calls for testing purposes.
1374 */
1375 static int rfs_no_fast_xdrargs = 0;
1376 static int rfs_no_fast_xdrres = 0;
1377 #endif
1378
1379 union acl_args {
1380 /*
1381 * ACL VERSION 2
1382 */
1383
1384 /* ACL2_NULL = 0 */
1385
1386 /* ACL2_GETACL = 1 */
1387 GETACL2args acl2_getacl_args;
1388
1389 /* ACL2_SETACL = 2 */
1390 SETACL2args acl2_setacl_args;
1391
1392 /* ACL2_GETATTR = 3 */
1393 GETATTR2args acl2_getattr_args;
1394
1395 /* ACL2_ACCESS = 4 */
1396 ACCESS2args acl2_access_args;
1397
1398 /* ACL2_GETXATTRDIR = 5 */
1399 GETXATTRDIR2args acl2_getxattrdir_args;
1400
1401 /*
1402 * ACL VERSION 3
1403 */
1404
1405 /* ACL3_NULL = 0 */
1406
1407 /* ACL3_GETACL = 1 */
1408 GETACL3args acl3_getacl_args;
1409
1410 /* ACL3_SETACL = 2 */
1411 SETACL3args acl3_setacl;
1412
1413 /* ACL3_GETXATTRDIR = 3 */
1414 GETXATTRDIR3args acl3_getxattrdir_args;
1415
1416 };
1417
1418 union acl_res {
1419 /*
1420 * ACL VERSION 2
1421 */
1422
1423 /* ACL2_NULL = 0 */
1424
1425 /* ACL2_GETACL = 1 */
1426 GETACL2res acl2_getacl_res;
1427
1428 /* ACL2_SETACL = 2 */
1429 SETACL2res acl2_setacl_res;
1430
1431 /* ACL2_GETATTR = 3 */
1432 GETATTR2res acl2_getattr_res;
1433
1434 /* ACL2_ACCESS = 4 */
1435 ACCESS2res acl2_access_res;
1436
1437 /* ACL2_GETXATTRDIR = 5 */
1438 GETXATTRDIR2args acl2_getxattrdir_res;
1439
1440 /*
1441 * ACL VERSION 3
1442 */
1443
1444 /* ACL3_NULL = 0 */
1445
1446 /* ACL3_GETACL = 1 */
1447 GETACL3res acl3_getacl_res;
1448
1449 /* ACL3_SETACL = 2 */
1450 SETACL3res acl3_setacl_res;
1451
1452 /* ACL3_GETXATTRDIR = 3 */
1453 GETXATTRDIR3res acl3_getxattrdir_res;
1454
1455 };
1456
1457 static bool_t
auth_tooweak(struct svc_req * req,char * res)1458 auth_tooweak(struct svc_req *req, char *res)
1459 {
1460
1461 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) {
1462 struct nfsdiropres *dr = (struct nfsdiropres *)res;
1463 if ((enum wnfsstat)dr->dr_status == WNFSERR_CLNT_FLAVOR)
1464 return (TRUE);
1465 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) {
1466 LOOKUP3res *resp = (LOOKUP3res *)res;
1467 if ((enum wnfsstat)resp->status == WNFSERR_CLNT_FLAVOR)
1468 return (TRUE);
1469 }
1470 return (FALSE);
1471 }
1472
1473 static void
common_dispatch(struct svc_req * req,SVCXPRT * xprt,rpcvers_t min_vers,rpcvers_t max_vers,char * pgmname,struct rpc_disptable * disptable)1474 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers,
1475 rpcvers_t max_vers, char *pgmname, struct rpc_disptable *disptable)
1476 {
1477 int which;
1478 rpcvers_t vers;
1479 char *args;
1480 union {
1481 union rfs_args ra;
1482 union acl_args aa;
1483 } args_buf;
1484 char *res;
1485 union {
1486 union rfs_res rr;
1487 union acl_res ar;
1488 } res_buf;
1489 struct rpcdisp *disp = NULL;
1490 int dis_flags = 0;
1491 cred_t *cr;
1492 int error = 0;
1493 int anon_ok;
1494 struct exportinfo *exi = NULL;
1495 unsigned int nfslog_rec_id;
1496 int dupstat;
1497 struct dupreq *dr;
1498 int authres;
1499 bool_t publicfh_ok = FALSE;
1500 enum_t auth_flavor;
1501 bool_t dupcached = FALSE;
1502 struct netbuf nb;
1503 bool_t logging_enabled = FALSE;
1504 struct exportinfo *nfslog_exi = NULL;
1505 char **procnames;
1506 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */
1507 bool_t ro = FALSE;
1508 nfs_globals_t *ng = nfs_srv_getzg();
1509 nfs_export_t *ne = ng->nfs_export;
1510 kstat_named_t *svstat, *procstat;
1511
1512 ASSERT(req->rq_prog == NFS_PROGRAM || req->rq_prog == NFS_ACL_PROGRAM);
1513
1514 vers = req->rq_vers;
1515
1516 svstat = ng->svstat[req->rq_vers];
1517 procstat = (req->rq_prog == NFS_PROGRAM) ?
1518 ng->rfsproccnt[vers] : ng->aclproccnt[vers];
1519
1520 if (vers < min_vers || vers > max_vers) {
1521 svcerr_progvers(req->rq_xprt, min_vers, max_vers);
1522 error++;
1523 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers);
1524 goto done;
1525 }
1526 vers -= min_vers;
1527
1528 which = req->rq_proc;
1529 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) {
1530 svcerr_noproc(req->rq_xprt);
1531 error++;
1532 goto done;
1533 }
1534
1535 procstat[which].value.ui64++;
1536
1537 disp = &disptable[(int)vers].dis_table[which];
1538 procnames = disptable[(int)vers].dis_procnames;
1539
1540 auth_flavor = req->rq_cred.oa_flavor;
1541
1542 /*
1543 * Deserialize into the args struct.
1544 */
1545 args = (char *)&args_buf;
1546
1547 #ifdef DEBUG
1548 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) ||
1549 disp->dis_fastxdrargs == NULL_xdrproc_t ||
1550 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args))
1551 #else
1552 if ((auth_flavor == RPCSEC_GSS) ||
1553 disp->dis_fastxdrargs == NULL_xdrproc_t ||
1554 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args))
1555 #endif
1556 {
1557 bzero(args, disp->dis_argsz);
1558 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) {
1559 error++;
1560 /*
1561 * Check if we are outside our capabilities.
1562 */
1563 if (rfs4_minorvers_mismatch(req, xprt, (void *)args))
1564 goto done;
1565
1566 svcerr_decode(xprt);
1567 cmn_err(CE_NOTE,
1568 "Failed to decode arguments for %s version %u "
1569 "procedure %s client %s%s",
1570 pgmname, vers + min_vers, procnames[which],
1571 client_name(req), client_addr(req, cbuf));
1572 goto done;
1573 }
1574 }
1575
1576 /*
1577 * If Version 4 use that specific dispatch function.
1578 */
1579 if (req->rq_vers == 4) {
1580 error += rfs4_dispatch(disp, req, xprt, args);
1581 goto done;
1582 }
1583
1584 dis_flags = disp->dis_flags;
1585
1586 /*
1587 * Find export information and check authentication,
1588 * setting the credential if everything is ok.
1589 */
1590 if (disp->dis_getfh != NULL) {
1591 void *fh;
1592 fsid_t *fsid;
1593 fid_t *fid, *xfid;
1594 fhandle_t *fh2;
1595 nfs_fh3 *fh3;
1596
1597 fh = (*disp->dis_getfh)(args);
1598 switch (req->rq_vers) {
1599 case NFS_VERSION:
1600 fh2 = (fhandle_t *)fh;
1601 fsid = &fh2->fh_fsid;
1602 fid = (fid_t *)&fh2->fh_len;
1603 xfid = (fid_t *)&fh2->fh_xlen;
1604 break;
1605 case NFS_V3:
1606 fh3 = (nfs_fh3 *)fh;
1607 fsid = &fh3->fh3_fsid;
1608 fid = FH3TOFIDP(fh3);
1609 xfid = FH3TOXFIDP(fh3);
1610 break;
1611 }
1612
1613 /*
1614 * Fix for bug 1038302 - corbin
1615 * There is a problem here if anonymous access is
1616 * disallowed. If the current request is part of the
1617 * client's mount process for the requested filesystem,
1618 * then it will carry root (uid 0) credentials on it, and
1619 * will be denied by checkauth if that client does not
1620 * have explicit root=0 permission. This will cause the
1621 * client's mount operation to fail. As a work-around,
1622 * we check here to see if the request is a getattr or
1623 * statfs operation on the exported vnode itself, and
1624 * pass a flag to checkauth with the result of this test.
1625 *
1626 * The filehandle refers to the mountpoint itself if
1627 * the fh_data and fh_xdata portions of the filehandle
1628 * are equal.
1629 *
1630 * Added anon_ok argument to checkauth().
1631 */
1632
1633 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid))
1634 anon_ok = 1;
1635 else
1636 anon_ok = 0;
1637
1638 cr = xprt->xp_cred;
1639 ASSERT(cr != NULL);
1640 #ifdef DEBUG
1641 {
1642 if (crgetref(cr) != 1) {
1643 crfree(cr);
1644 cr = crget();
1645 xprt->xp_cred = cr;
1646 cred_misses++;
1647 } else
1648 cred_hits++;
1649 }
1650 #else
1651 if (crgetref(cr) != 1) {
1652 crfree(cr);
1653 cr = crget();
1654 xprt->xp_cred = cr;
1655 }
1656 #endif
1657
1658 exi = checkexport(fsid, xfid);
1659
1660 if (exi != NULL) {
1661 publicfh_ok = PUBLICFH_CHECK(ne, disp, exi, fsid, xfid);
1662
1663 /*
1664 * Don't allow non-V4 clients access
1665 * to pseudo exports
1666 */
1667 if (PSEUDO(exi)) {
1668 svcerr_weakauth(xprt);
1669 error++;
1670 goto done;
1671 }
1672
1673 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok,
1674 &ro);
1675 /*
1676 * authres > 0: authentication OK - proceed
1677 * authres == 0: authentication weak - return error
1678 * authres < 0: authentication timeout - drop
1679 */
1680 if (authres <= 0) {
1681 if (authres == 0) {
1682 svcerr_weakauth(xprt);
1683 error++;
1684 }
1685 goto done;
1686 }
1687 }
1688 } else
1689 cr = NULL;
1690
1691 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) {
1692 res = (char *)SVC_GETRES(xprt, disp->dis_ressz);
1693 if (res == NULL)
1694 res = (char *)&res_buf;
1695 } else
1696 res = (char *)&res_buf;
1697
1698 if (!(dis_flags & RPC_IDEMPOTENT)) {
1699 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr,
1700 &dupcached);
1701
1702 switch (dupstat) {
1703 case DUP_ERROR:
1704 svcerr_systemerr(xprt);
1705 error++;
1706 goto done;
1707 /* NOTREACHED */
1708 case DUP_INPROGRESS:
1709 if (res != (char *)&res_buf)
1710 SVC_FREERES(xprt);
1711 error++;
1712 goto done;
1713 /* NOTREACHED */
1714 case DUP_NEW:
1715 case DUP_DROP:
1716 curthread->t_flag |= T_DONTPEND;
1717
1718 (*disp->dis_proc)(args, res, exi, req, cr, ro);
1719
1720 curthread->t_flag &= ~T_DONTPEND;
1721 if (curthread->t_flag & T_WOULDBLOCK) {
1722 curthread->t_flag &= ~T_WOULDBLOCK;
1723 SVC_DUPDONE_EXT(xprt, dr, res, NULL,
1724 disp->dis_ressz, DUP_DROP);
1725 if (res != (char *)&res_buf)
1726 SVC_FREERES(xprt);
1727 error++;
1728 goto done;
1729 }
1730 if (dis_flags & RPC_AVOIDWORK) {
1731 SVC_DUPDONE_EXT(xprt, dr, res, NULL,
1732 disp->dis_ressz, DUP_DROP);
1733 } else {
1734 SVC_DUPDONE_EXT(xprt, dr, res,
1735 disp->dis_resfree == nullfree ? NULL :
1736 disp->dis_resfree,
1737 disp->dis_ressz, DUP_DONE);
1738 dupcached = TRUE;
1739 }
1740 break;
1741 case DUP_DONE:
1742 break;
1743 }
1744
1745 } else {
1746 curthread->t_flag |= T_DONTPEND;
1747
1748 (*disp->dis_proc)(args, res, exi, req, cr, ro);
1749
1750 curthread->t_flag &= ~T_DONTPEND;
1751 if (curthread->t_flag & T_WOULDBLOCK) {
1752 curthread->t_flag &= ~T_WOULDBLOCK;
1753 if (res != (char *)&res_buf)
1754 SVC_FREERES(xprt);
1755 error++;
1756 goto done;
1757 }
1758 }
1759
1760 if (auth_tooweak(req, res)) {
1761 svcerr_weakauth(xprt);
1762 error++;
1763 goto done;
1764 }
1765
1766 /*
1767 * Check to see if logging has been enabled on the server.
1768 * If so, then obtain the export info struct to be used for
1769 * the later writing of the log record. This is done for
1770 * the case that a lookup is done across a non-logged public
1771 * file system.
1772 */
1773 if (nfslog_buffer_list != NULL) {
1774 nfslog_exi = nfslog_get_exi(ne, exi, req, res, &nfslog_rec_id);
1775 /*
1776 * Is logging enabled?
1777 */
1778 logging_enabled = (nfslog_exi != NULL);
1779
1780 /*
1781 * Copy the netbuf for logging purposes, before it is
1782 * freed by svc_sendreply().
1783 */
1784 if (logging_enabled) {
1785 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb);
1786 /*
1787 * If RPC_MAPRESP flag set (i.e. in V2 ops) the
1788 * res gets copied directly into the mbuf and
1789 * may be freed soon after the sendreply. So we
1790 * must copy it here to a safe place...
1791 */
1792 if (res != (char *)&res_buf) {
1793 bcopy(res, (char *)&res_buf, disp->dis_ressz);
1794 }
1795 }
1796 }
1797
1798 /*
1799 * Serialize and send results struct
1800 */
1801 #ifdef DEBUG
1802 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf)
1803 #else
1804 if (res != (char *)&res_buf)
1805 #endif
1806 {
1807 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) {
1808 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname);
1809 svcerr_systemerr(xprt);
1810 error++;
1811 }
1812 } else {
1813 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) {
1814 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname);
1815 svcerr_systemerr(xprt);
1816 error++;
1817 }
1818 }
1819
1820 /*
1821 * Log if needed
1822 */
1823 if (logging_enabled) {
1824 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf,
1825 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER);
1826 exi_rele(nfslog_exi);
1827 kmem_free((&nb)->buf, (&nb)->len);
1828 }
1829
1830 /*
1831 * Free results struct. With the addition of NFS V4 we can
1832 * have non-idempotent procedures with functions.
1833 */
1834 if (disp->dis_resfree != nullfree && dupcached == FALSE) {
1835 (*disp->dis_resfree)(res);
1836 }
1837
1838 done:
1839 /*
1840 * Free arguments struct
1841 */
1842 if (disp) {
1843 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) {
1844 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname);
1845 error++;
1846 }
1847 } else {
1848 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) {
1849 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname);
1850 error++;
1851 }
1852 }
1853
1854 if (exi != NULL)
1855 exi_rele(exi);
1856
1857 svstat[NFS_BADCALLS].value.ui64 += error;
1858 svstat[NFS_CALLS].value.ui64++;
1859 }
1860
1861 static void
rfs_dispatch(struct svc_req * req,SVCXPRT * xprt)1862 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt)
1863 {
1864 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX,
1865 "NFS", rfs_disptable);
1866 }
1867
1868 static char *aclcallnames_v2[] = {
1869 "ACL2_NULL",
1870 "ACL2_GETACL",
1871 "ACL2_SETACL",
1872 "ACL2_GETATTR",
1873 "ACL2_ACCESS",
1874 "ACL2_GETXATTRDIR"
1875 };
1876
1877 static struct rpcdisp acldisptab_v2[] = {
1878 /*
1879 * ACL VERSION 2
1880 */
1881
1882 /* ACL2_NULL = 0 */
1883 {rpc_null,
1884 xdr_void, NULL_xdrproc_t, 0,
1885 xdr_void, NULL_xdrproc_t, 0,
1886 nullfree, RPC_IDEMPOTENT,
1887 0},
1888
1889 /* ACL2_GETACL = 1 */
1890 {acl2_getacl,
1891 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args),
1892 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res),
1893 acl2_getacl_free, RPC_IDEMPOTENT,
1894 acl2_getacl_getfh},
1895
1896 /* ACL2_SETACL = 2 */
1897 {acl2_setacl,
1898 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args),
1899 #ifdef _LITTLE_ENDIAN
1900 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res),
1901 #else
1902 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res),
1903 #endif
1904 nullfree, RPC_MAPRESP,
1905 acl2_setacl_getfh},
1906
1907 /* ACL2_GETATTR = 3 */
1908 {acl2_getattr,
1909 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args),
1910 #ifdef _LITTLE_ENDIAN
1911 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res),
1912 #else
1913 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res),
1914 #endif
1915 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
1916 acl2_getattr_getfh},
1917
1918 /* ACL2_ACCESS = 4 */
1919 {acl2_access,
1920 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args),
1921 #ifdef _LITTLE_ENDIAN
1922 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res),
1923 #else
1924 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res),
1925 #endif
1926 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP,
1927 acl2_access_getfh},
1928
1929 /* ACL2_GETXATTRDIR = 5 */
1930 {acl2_getxattrdir,
1931 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args),
1932 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res),
1933 nullfree, RPC_IDEMPOTENT,
1934 acl2_getxattrdir_getfh},
1935 };
1936
1937 static char *aclcallnames_v3[] = {
1938 "ACL3_NULL",
1939 "ACL3_GETACL",
1940 "ACL3_SETACL",
1941 "ACL3_GETXATTRDIR"
1942 };
1943
1944 static struct rpcdisp acldisptab_v3[] = {
1945 /*
1946 * ACL VERSION 3
1947 */
1948
1949 /* ACL3_NULL = 0 */
1950 {rpc_null,
1951 xdr_void, NULL_xdrproc_t, 0,
1952 xdr_void, NULL_xdrproc_t, 0,
1953 nullfree, RPC_IDEMPOTENT,
1954 0},
1955
1956 /* ACL3_GETACL = 1 */
1957 {acl3_getacl,
1958 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args),
1959 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res),
1960 acl3_getacl_free, RPC_IDEMPOTENT,
1961 acl3_getacl_getfh},
1962
1963 /* ACL3_SETACL = 2 */
1964 {acl3_setacl,
1965 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args),
1966 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res),
1967 nullfree, 0,
1968 acl3_setacl_getfh},
1969
1970 /* ACL3_GETXATTRDIR = 3 */
1971 {acl3_getxattrdir,
1972 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args),
1973 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res),
1974 nullfree, RPC_IDEMPOTENT,
1975 acl3_getxattrdir_getfh},
1976 };
1977
1978 static struct rpc_disptable acl_disptable[] = {
1979 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]),
1980 aclcallnames_v2,
1981 acldisptab_v2},
1982 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]),
1983 aclcallnames_v3,
1984 acldisptab_v3},
1985 };
1986
1987 static void
acl_dispatch(struct svc_req * req,SVCXPRT * xprt)1988 acl_dispatch(struct svc_req *req, SVCXPRT *xprt)
1989 {
1990 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX,
1991 "ACL", acl_disptable);
1992 }
1993
1994 int
checkwin(int flavor,int window,struct svc_req * req)1995 checkwin(int flavor, int window, struct svc_req *req)
1996 {
1997 struct authdes_cred *adc;
1998
1999 switch (flavor) {
2000 case AUTH_DES:
2001 adc = (struct authdes_cred *)req->rq_clntcred;
2002 CTASSERT(sizeof (struct authdes_cred) <= RQCRED_SIZE);
2003 if (adc->adc_fullname.window > window)
2004 return (0);
2005 break;
2006
2007 default:
2008 break;
2009 }
2010 return (1);
2011 }
2012
2013
2014 /*
2015 * checkauth() will check the access permission against the export
2016 * information. Then map root uid/gid to appropriate uid/gid.
2017 *
2018 * This routine is used by NFS V3 and V2 code.
2019 */
2020 static int
checkauth(struct exportinfo * exi,struct svc_req * req,cred_t * cr,int anon_ok,bool_t publicfh_ok,bool_t * ro)2021 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok,
2022 bool_t publicfh_ok, bool_t *ro)
2023 {
2024 int i, nfsflavor, rpcflavor, stat, access;
2025 struct secinfo *secp;
2026 caddr_t principal;
2027 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */
2028 int anon_res = 0;
2029
2030 uid_t uid;
2031 gid_t gid;
2032 uint_t ngids;
2033 gid_t *gids;
2034
2035 /*
2036 * Check for privileged port number
2037 * N.B.: this assumes that we know the format of a netbuf.
2038 */
2039 if (nfs_portmon) {
2040 struct sockaddr *ca;
2041 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2042
2043 if (ca == NULL)
2044 return (0);
2045
2046 if ((ca->sa_family == AF_INET &&
2047 ntohs(((struct sockaddr_in *)ca)->sin_port) >=
2048 IPPORT_RESERVED) ||
2049 (ca->sa_family == AF_INET6 &&
2050 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >=
2051 IPPORT_RESERVED)) {
2052 cmn_err(CE_NOTE,
2053 "nfs_server: client %s%ssent NFS request from "
2054 "unprivileged port",
2055 client_name(req), client_addr(req, buf));
2056 return (0);
2057 }
2058 }
2059
2060 /*
2061 * return 1 on success or 0 on failure
2062 */
2063 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor);
2064
2065 /*
2066 * A failed AUTH_UNIX sec_svc_getcred() implies we couldn't set
2067 * the credentials; below we map that to anonymous.
2068 */
2069 if (!stat && nfsflavor != AUTH_UNIX) {
2070 cmn_err(CE_NOTE,
2071 "nfs_server: couldn't get unix cred for %s",
2072 client_name(req));
2073 return (0);
2074 }
2075
2076 /*
2077 * Short circuit checkauth() on operations that support the
2078 * public filehandle, and if the request for that operation
2079 * is using the public filehandle. Note that we must call
2080 * sec_svc_getcred() first so that xp_cookie is set to the
2081 * right value. Normally xp_cookie is just the RPC flavor
2082 * of the the request, but in the case of RPCSEC_GSS it
2083 * could be a pseudo flavor.
2084 */
2085 if (publicfh_ok)
2086 return (1);
2087
2088 rpcflavor = req->rq_cred.oa_flavor;
2089 /*
2090 * Check if the auth flavor is valid for this export
2091 */
2092 access = nfsauth_access(exi, req, cr, &uid, &gid, &ngids, &gids);
2093 if (access & NFSAUTH_DROP)
2094 return (-1); /* drop the request */
2095
2096 if (access & NFSAUTH_RO)
2097 *ro = TRUE;
2098
2099 if (access & NFSAUTH_DENIED) {
2100 /*
2101 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was
2102 * probably due to the flavor not matching during
2103 * the mount attempt. So map the flavor to AUTH_NONE
2104 * so that the credentials get mapped to the anonymous
2105 * user.
2106 */
2107 if (anon_ok == 1)
2108 rpcflavor = AUTH_NONE;
2109 else
2110 return (0); /* deny access */
2111
2112 } else if (access & NFSAUTH_MAPNONE) {
2113 /*
2114 * Access was granted even though the flavor mismatched
2115 * because AUTH_NONE was one of the exported flavors.
2116 */
2117 rpcflavor = AUTH_NONE;
2118
2119 } else if (access & NFSAUTH_WRONGSEC) {
2120 /*
2121 * NFSAUTH_WRONGSEC is used for NFSv4. If we get here,
2122 * it means a client ignored the list of allowed flavors
2123 * returned via the MOUNT protocol. So we just disallow it!
2124 */
2125 return (0);
2126 }
2127
2128 if (rpcflavor != AUTH_SYS)
2129 kmem_free(gids, ngids * sizeof (gid_t));
2130
2131 switch (rpcflavor) {
2132 case AUTH_NONE:
2133 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2134 exi->exi_export.ex_anon);
2135 (void) crsetgroups(cr, 0, NULL);
2136 break;
2137
2138 case AUTH_UNIX:
2139 if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_UIDMAP)) {
2140 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2141 exi->exi_export.ex_anon);
2142 (void) crsetgroups(cr, 0, NULL);
2143 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) {
2144 /*
2145 * It is root, so apply rootid to get real UID
2146 * Find the secinfo structure. We should be able
2147 * to find it by the time we reach here.
2148 * nfsauth_access() has done the checking.
2149 */
2150 secp = NULL;
2151 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2152 struct secinfo *sptr;
2153 sptr = &exi->exi_export.ex_secinfo[i];
2154 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) {
2155 secp = sptr;
2156 break;
2157 }
2158 }
2159 if (secp != NULL) {
2160 (void) crsetugid(cr, secp->s_rootid,
2161 secp->s_rootid);
2162 (void) crsetgroups(cr, 0, NULL);
2163 }
2164 } else if (crgetuid(cr) != uid || crgetgid(cr) != gid) {
2165 if (crsetugid(cr, uid, gid) != 0)
2166 anon_res = crsetugid(cr,
2167 exi->exi_export.ex_anon,
2168 exi->exi_export.ex_anon);
2169 (void) crsetgroups(cr, 0, NULL);
2170 } else if (access & NFSAUTH_GROUPS) {
2171 (void) crsetgroups(cr, ngids, gids);
2172 }
2173
2174 kmem_free(gids, ngids * sizeof (gid_t));
2175
2176 break;
2177
2178 case AUTH_DES:
2179 case RPCSEC_GSS:
2180 /*
2181 * Find the secinfo structure. We should be able
2182 * to find it by the time we reach here.
2183 * nfsauth_access() has done the checking.
2184 */
2185 secp = NULL;
2186 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2187 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum ==
2188 nfsflavor) {
2189 secp = &exi->exi_export.ex_secinfo[i];
2190 break;
2191 }
2192 }
2193
2194 if (!secp) {
2195 cmn_err(CE_NOTE, "nfs_server: client %s%shad "
2196 "no secinfo data for flavor %d",
2197 client_name(req), client_addr(req, buf),
2198 nfsflavor);
2199 return (0);
2200 }
2201
2202 if (!checkwin(rpcflavor, secp->s_window, req)) {
2203 cmn_err(CE_NOTE,
2204 "nfs_server: client %s%sused invalid "
2205 "auth window value",
2206 client_name(req), client_addr(req, buf));
2207 return (0);
2208 }
2209
2210 /*
2211 * Map root principals listed in the share's root= list to root,
2212 * and map any others principals that were mapped to root by RPC
2213 * to anon.
2214 */
2215 if (principal && sec_svc_inrootlist(rpcflavor, principal,
2216 secp->s_rootcnt, secp->s_rootnames)) {
2217 if (crgetuid(cr) == 0 && secp->s_rootid == 0)
2218 return (1);
2219
2220
2221 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid);
2222
2223 /*
2224 * NOTE: If and when kernel-land privilege tracing is
2225 * added this may have to be replaced with code that
2226 * retrieves root's supplementary groups (e.g., using
2227 * kgss_get_group_info(). In the meantime principals
2228 * mapped to uid 0 get all privileges, so setting cr's
2229 * supplementary groups for them does nothing.
2230 */
2231 (void) crsetgroups(cr, 0, NULL);
2232
2233 return (1);
2234 }
2235
2236 /*
2237 * Not a root princ, or not in root list, map UID 0/nobody to
2238 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to
2239 * UID_NOBODY and GID_NOBODY, respectively.)
2240 */
2241 if (crgetuid(cr) != 0 &&
2242 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY))
2243 return (1);
2244
2245 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2246 exi->exi_export.ex_anon);
2247 (void) crsetgroups(cr, 0, NULL);
2248 break;
2249 default:
2250 return (0);
2251 } /* switch on rpcflavor */
2252
2253 /*
2254 * Even if anon access is disallowed via ex_anon == -1, we allow
2255 * this access if anon_ok is set. So set creds to the default
2256 * "nobody" id.
2257 */
2258 if (anon_res != 0) {
2259 if (anon_ok == 0) {
2260 cmn_err(CE_NOTE,
2261 "nfs_server: client %s%ssent wrong "
2262 "authentication for %s",
2263 client_name(req), client_addr(req, buf),
2264 exi->exi_export.ex_path ?
2265 exi->exi_export.ex_path : "?");
2266 return (0);
2267 }
2268
2269 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0)
2270 return (0);
2271 }
2272
2273 return (1);
2274 }
2275
2276 /*
2277 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor,
2278 * and 1 on success
2279 */
2280 int
checkauth4(struct compound_state * cs,struct svc_req * req)2281 checkauth4(struct compound_state *cs, struct svc_req *req)
2282 {
2283 int i, rpcflavor, access;
2284 struct secinfo *secp;
2285 char buf[MAXHOST + 1];
2286 int anon_res = 0, nfsflavor;
2287 struct exportinfo *exi;
2288 cred_t *cr;
2289 caddr_t principal;
2290
2291 uid_t uid;
2292 gid_t gid;
2293 uint_t ngids;
2294 gid_t *gids;
2295
2296 exi = cs->exi;
2297 cr = cs->cr;
2298 principal = cs->principal;
2299 nfsflavor = cs->nfsflavor;
2300
2301 ASSERT(cr != NULL);
2302
2303 rpcflavor = req->rq_cred.oa_flavor;
2304 cs->access &= ~CS_ACCESS_LIMITED;
2305
2306 /*
2307 * Check for privileged port number
2308 * N.B.: this assumes that we know the format of a netbuf.
2309 */
2310 if (nfs_portmon) {
2311 struct sockaddr *ca;
2312 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2313
2314 if (ca == NULL)
2315 return (0);
2316
2317 if ((ca->sa_family == AF_INET &&
2318 ntohs(((struct sockaddr_in *)ca)->sin_port) >=
2319 IPPORT_RESERVED) ||
2320 (ca->sa_family == AF_INET6 &&
2321 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >=
2322 IPPORT_RESERVED)) {
2323 cmn_err(CE_NOTE,
2324 "nfs_server: client %s%ssent NFSv4 request from "
2325 "unprivileged port",
2326 client_name(req), client_addr(req, buf));
2327 return (0);
2328 }
2329 }
2330
2331 /*
2332 * Check the access right per auth flavor on the vnode of
2333 * this export for the given request.
2334 */
2335 access = nfsauth4_access(cs->exi, cs->vp, req, cr, &uid, &gid, &ngids,
2336 &gids);
2337
2338 if (access & NFSAUTH_WRONGSEC)
2339 return (-2); /* no access for this security flavor */
2340
2341 if (access & NFSAUTH_DROP)
2342 return (-1); /* drop the request */
2343
2344 if (access & NFSAUTH_DENIED) {
2345
2346 if (exi->exi_export.ex_seccnt > 0)
2347 return (0); /* deny access */
2348
2349 } else if (access & NFSAUTH_LIMITED) {
2350
2351 cs->access |= CS_ACCESS_LIMITED;
2352
2353 } else if (access & NFSAUTH_MAPNONE) {
2354 /*
2355 * Access was granted even though the flavor mismatched
2356 * because AUTH_NONE was one of the exported flavors.
2357 */
2358 rpcflavor = AUTH_NONE;
2359 }
2360
2361 /*
2362 * XXX probably need to redo some of it for nfsv4?
2363 * return 1 on success or 0 on failure
2364 */
2365
2366 if (rpcflavor != AUTH_SYS)
2367 kmem_free(gids, ngids * sizeof (gid_t));
2368
2369 switch (rpcflavor) {
2370 case AUTH_NONE:
2371 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2372 exi->exi_export.ex_anon);
2373 (void) crsetgroups(cr, 0, NULL);
2374 break;
2375
2376 case AUTH_UNIX:
2377 if (crgetuid(cr) == 0 && !(access & NFSAUTH_UIDMAP)) {
2378 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2379 exi->exi_export.ex_anon);
2380 (void) crsetgroups(cr, 0, NULL);
2381 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) {
2382 /*
2383 * It is root, so apply rootid to get real UID
2384 * Find the secinfo structure. We should be able
2385 * to find it by the time we reach here.
2386 * nfsauth_access() has done the checking.
2387 */
2388 secp = NULL;
2389 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2390 struct secinfo *sptr;
2391 sptr = &exi->exi_export.ex_secinfo[i];
2392 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) {
2393 secp = &exi->exi_export.ex_secinfo[i];
2394 break;
2395 }
2396 }
2397 if (secp != NULL) {
2398 (void) crsetugid(cr, secp->s_rootid,
2399 secp->s_rootid);
2400 (void) crsetgroups(cr, 0, NULL);
2401 }
2402 } else if (crgetuid(cr) != uid || crgetgid(cr) != gid) {
2403 if (crsetugid(cr, uid, gid) != 0)
2404 anon_res = crsetugid(cr,
2405 exi->exi_export.ex_anon,
2406 exi->exi_export.ex_anon);
2407 (void) crsetgroups(cr, 0, NULL);
2408 } if (access & NFSAUTH_GROUPS) {
2409 (void) crsetgroups(cr, ngids, gids);
2410 }
2411
2412 kmem_free(gids, ngids * sizeof (gid_t));
2413
2414 break;
2415
2416 default:
2417 /*
2418 * Find the secinfo structure. We should be able
2419 * to find it by the time we reach here.
2420 * nfsauth_access() has done the checking.
2421 */
2422 secp = NULL;
2423 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2424 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum ==
2425 nfsflavor) {
2426 secp = &exi->exi_export.ex_secinfo[i];
2427 break;
2428 }
2429 }
2430
2431 if (!secp) {
2432 cmn_err(CE_NOTE, "nfs_server: client %s%shad "
2433 "no secinfo data for flavor %d",
2434 client_name(req), client_addr(req, buf),
2435 nfsflavor);
2436 return (0);
2437 }
2438
2439 if (!checkwin(rpcflavor, secp->s_window, req)) {
2440 cmn_err(CE_NOTE,
2441 "nfs_server: client %s%sused invalid "
2442 "auth window value",
2443 client_name(req), client_addr(req, buf));
2444 return (0);
2445 }
2446
2447 /*
2448 * Map root principals listed in the share's root= list to root,
2449 * and map any others principals that were mapped to root by RPC
2450 * to anon. If not going to anon, set to rootid (root_mapping).
2451 */
2452 if (principal && sec_svc_inrootlist(rpcflavor, principal,
2453 secp->s_rootcnt, secp->s_rootnames)) {
2454 if (crgetuid(cr) == 0 && secp->s_rootid == 0)
2455 return (1);
2456
2457 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid);
2458
2459 /*
2460 * NOTE: If and when kernel-land privilege tracing is
2461 * added this may have to be replaced with code that
2462 * retrieves root's supplementary groups (e.g., using
2463 * kgss_get_group_info(). In the meantime principals
2464 * mapped to uid 0 get all privileges, so setting cr's
2465 * supplementary groups for them does nothing.
2466 */
2467 (void) crsetgroups(cr, 0, NULL);
2468
2469 return (1);
2470 }
2471
2472 /*
2473 * Not a root princ, or not in root list, map UID 0/nobody to
2474 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to
2475 * UID_NOBODY and GID_NOBODY, respectively.)
2476 */
2477 if (crgetuid(cr) != 0 &&
2478 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY))
2479 return (1);
2480
2481 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2482 exi->exi_export.ex_anon);
2483 (void) crsetgroups(cr, 0, NULL);
2484 break;
2485 } /* switch on rpcflavor */
2486
2487 /*
2488 * Even if anon access is disallowed via ex_anon == -1, we allow
2489 * this access if anon_ok is set. So set creds to the default
2490 * "nobody" id.
2491 */
2492
2493 if (anon_res != 0) {
2494 cmn_err(CE_NOTE,
2495 "nfs_server: client %s%ssent wrong "
2496 "authentication for %s",
2497 client_name(req), client_addr(req, buf),
2498 exi->exi_export.ex_path ?
2499 exi->exi_export.ex_path : "?");
2500 return (0);
2501 }
2502
2503 return (1);
2504 }
2505
2506
2507 static char *
client_name(struct svc_req * req)2508 client_name(struct svc_req *req)
2509 {
2510 char *hostname = NULL;
2511
2512 /*
2513 * If it's a Unix cred then use the
2514 * hostname from the credential.
2515 */
2516 if (req->rq_cred.oa_flavor == AUTH_UNIX) {
2517 hostname = ((struct authunix_parms *)
2518 req->rq_clntcred)->aup_machname;
2519 }
2520 if (hostname == NULL)
2521 hostname = "";
2522
2523 return (hostname);
2524 }
2525
2526 static char *
client_addr(struct svc_req * req,char * buf)2527 client_addr(struct svc_req *req, char *buf)
2528 {
2529 struct sockaddr *ca;
2530 uchar_t *b;
2531 char *frontspace = "";
2532
2533 /*
2534 * We assume we are called in tandem with client_name and the
2535 * format string looks like "...client %s%sblah blah..."
2536 *
2537 * If it's a Unix cred then client_name returned
2538 * a host name, so we need insert a space between host name
2539 * and IP address.
2540 */
2541 if (req->rq_cred.oa_flavor == AUTH_UNIX)
2542 frontspace = " ";
2543
2544 /*
2545 * Convert the caller's IP address to a dotted string
2546 */
2547 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2548
2549 if (ca->sa_family == AF_INET) {
2550 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr;
2551 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace,
2552 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF);
2553 } else if (ca->sa_family == AF_INET6) {
2554 struct sockaddr_in6 *sin6;
2555 sin6 = (struct sockaddr_in6 *)ca;
2556 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr,
2557 buf, INET6_ADDRSTRLEN);
2558
2559 } else {
2560
2561 /*
2562 * No IP address to print. If there was a host name
2563 * printed, then we print a space.
2564 */
2565 (void) sprintf(buf, frontspace);
2566 }
2567
2568 return (buf);
2569 }
2570
2571 /*
2572 * NFS Server initialization routine. This routine should only be called
2573 * once. It performs the following tasks:
2574 * - Call sub-initialization routines (localize access to variables)
2575 * - Initialize all locks
2576 * - initialize the version 3 write verifier
2577 */
2578 void
nfs_srvinit(void)2579 nfs_srvinit(void)
2580 {
2581
2582 /* Truly global stuff in this module (not per zone) */
2583 rw_init(&nfssrv_globals_rwl, NULL, RW_DEFAULT, NULL);
2584 list_create(&nfssrv_globals_list, sizeof (nfs_globals_t),
2585 offsetof(nfs_globals_t, nfs_g_link));
2586 tsd_create(&nfs_server_tsd_key, NULL);
2587
2588 /* The order here is important */
2589 nfs_exportinit();
2590 rfs_srvrinit();
2591 rfs3_srvrinit();
2592 rfs4_srvrinit();
2593 nfsauth_init();
2594
2595 /*
2596 * NFS server zone-specific global variables
2597 * Note the zone_init is called for the GZ here.
2598 */
2599 zone_key_create(&nfssrv_zone_key, nfs_server_zone_init,
2600 nfs_server_zone_shutdown, nfs_server_zone_fini);
2601 }
2602
2603 /*
2604 * NFS Server finalization routine. This routine is called to cleanup the
2605 * initialization work previously performed if the NFS server module could
2606 * not be loaded correctly.
2607 */
2608 void
nfs_srvfini(void)2609 nfs_srvfini(void)
2610 {
2611
2612 /*
2613 * NFS server zone-specific global variables
2614 * Note the zone_fini is called for the GZ here.
2615 */
2616 (void) zone_key_delete(nfssrv_zone_key);
2617
2618 /* The order here is important (reverse of init) */
2619 nfsauth_fini();
2620 rfs4_srvrfini();
2621 rfs3_srvrfini();
2622 rfs_srvrfini();
2623 nfs_exportfini();
2624
2625 /* Truly global stuff in this module (not per zone) */
2626 tsd_destroy(&nfs_server_tsd_key);
2627 list_destroy(&nfssrv_globals_list);
2628 rw_destroy(&nfssrv_globals_rwl);
2629 }
2630
2631 /*
2632 * Zone init, shutdown, fini functions for the NFS server
2633 *
2634 * This design is careful to create the entire hierarhcy of
2635 * NFS server "globals" (including those created by various
2636 * per-module *_zone_init functions, etc.) so that all these
2637 * objects have exactly the same lifetime.
2638 *
2639 * These objects are also kept on a list for two reasons:
2640 * 1: It makes finding these in mdb _much_ easier.
2641 * 2: It allows operating across all zone globals for
2642 * functions like nfs_auth.c:exi_cache_reclaim
2643 */
2644 static void *
nfs_server_zone_init(zoneid_t zoneid)2645 nfs_server_zone_init(zoneid_t zoneid)
2646 {
2647 nfs_globals_t *ng;
2648
2649 ng = kmem_zalloc(sizeof (*ng), KM_SLEEP);
2650
2651 ng->nfs_versmin = NFS_VERSMIN_DEFAULT;
2652 ng->nfs_versmax = NFS_VERSMAX_DEFAULT;
2653
2654 /* Init the stuff to control start/stop */
2655 ng->nfs_server_upordown = NFS_SERVER_STOPPED;
2656 mutex_init(&ng->nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL);
2657 cv_init(&ng->nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL);
2658 mutex_init(&ng->rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL);
2659 cv_init(&ng->rdma_wait_cv, NULL, CV_DEFAULT, NULL);
2660
2661 ng->nfs_zoneid = zoneid;
2662
2663 /*
2664 * Order here is important.
2665 * export init must precede srv init calls.
2666 */
2667 nfs_export_zone_init(ng);
2668 rfs_stat_zone_init(ng);
2669 rfs_srv_zone_init(ng);
2670 rfs3_srv_zone_init(ng);
2671 rfs4_srv_zone_init(ng);
2672 nfsauth_zone_init(ng);
2673
2674 rw_enter(&nfssrv_globals_rwl, RW_WRITER);
2675 list_insert_tail(&nfssrv_globals_list, ng);
2676 rw_exit(&nfssrv_globals_rwl);
2677
2678 return (ng);
2679 }
2680
2681 /* ARGSUSED */
2682 static void
nfs_server_zone_shutdown(zoneid_t zoneid,void * data)2683 nfs_server_zone_shutdown(zoneid_t zoneid, void *data)
2684 {
2685 nfs_globals_t *ng;
2686
2687 ng = (nfs_globals_t *)data;
2688
2689 /*
2690 * Order is like _fini, but only
2691 * some modules need this hook.
2692 */
2693 nfsauth_zone_shutdown(ng);
2694 nfs_export_zone_shutdown(ng);
2695 }
2696
2697 /* ARGSUSED */
2698 static void
nfs_server_zone_fini(zoneid_t zoneid,void * data)2699 nfs_server_zone_fini(zoneid_t zoneid, void *data)
2700 {
2701 nfs_globals_t *ng;
2702
2703 ng = (nfs_globals_t *)data;
2704
2705 rw_enter(&nfssrv_globals_rwl, RW_WRITER);
2706 list_remove(&nfssrv_globals_list, ng);
2707 rw_exit(&nfssrv_globals_rwl);
2708
2709 /*
2710 * Order here is important.
2711 * reverse order from init
2712 */
2713 nfsauth_zone_fini(ng);
2714 rfs4_srv_zone_fini(ng);
2715 rfs3_srv_zone_fini(ng);
2716 rfs_srv_zone_fini(ng);
2717 rfs_stat_zone_fini(ng);
2718 nfs_export_zone_fini(ng);
2719
2720 mutex_destroy(&ng->nfs_server_upordown_lock);
2721 cv_destroy(&ng->nfs_server_upordown_cv);
2722 mutex_destroy(&ng->rdma_wait_mutex);
2723 cv_destroy(&ng->rdma_wait_cv);
2724
2725 kmem_free(ng, sizeof (*ng));
2726 }
2727
2728 /*
2729 * Set up an iovec array of up to cnt pointers.
2730 */
2731 void
mblk_to_iov(mblk_t * m,int cnt,struct iovec * iovp)2732 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp)
2733 {
2734 while (m != NULL && cnt-- > 0) {
2735 iovp->iov_base = (caddr_t)m->b_rptr;
2736 iovp->iov_len = (m->b_wptr - m->b_rptr);
2737 iovp++;
2738 m = m->b_cont;
2739 }
2740 }
2741
2742 /*
2743 * Common code between NFS Version 2 and NFS Version 3 for the public
2744 * filehandle multicomponent lookups.
2745 */
2746
2747 /*
2748 * Public filehandle evaluation of a multi-component lookup, following
2749 * symbolic links, if necessary. This may result in a vnode in another
2750 * filesystem, which is OK as long as the other filesystem is exported.
2751 *
2752 * Note that the exi will be set either to NULL or a new reference to the
2753 * exportinfo struct that corresponds to the vnode of the multi-component path.
2754 * It is the callers responsibility to release this reference.
2755 */
2756 int
rfs_publicfh_mclookup(char * p,vnode_t * dvp,cred_t * cr,vnode_t ** vpp,struct exportinfo ** exi,struct sec_ol * sec)2757 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp,
2758 struct exportinfo **exi, struct sec_ol *sec)
2759 {
2760 int pathflag;
2761 vnode_t *mc_dvp = NULL;
2762 vnode_t *realvp;
2763 int error;
2764
2765 *exi = NULL;
2766
2767 /*
2768 * check if the given path is a url or native path. Since p is
2769 * modified by MCLpath(), it may be empty after returning from
2770 * there, and should be checked.
2771 */
2772 if ((pathflag = MCLpath(&p)) == -1)
2773 return (EIO);
2774
2775 /*
2776 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit
2777 * on in sec->sec_flags. This bit will later serve as an
2778 * indication in makefh_ol() or makefh3_ol() to overload the
2779 * filehandle to contain the sec modes used by the server for
2780 * the path.
2781 */
2782 if (pathflag == SECURITY_QUERY) {
2783 if ((sec->sec_index = (uint_t)(*p)) > 0) {
2784 sec->sec_flags |= SEC_QUERY;
2785 p++;
2786 if ((pathflag = MCLpath(&p)) == -1)
2787 return (EIO);
2788 } else {
2789 cmn_err(CE_NOTE,
2790 "nfs_server: invalid security index %d, "
2791 "violating WebNFS SNEGO protocol.", sec->sec_index);
2792 return (EIO);
2793 }
2794 }
2795
2796 if (p[0] == '\0') {
2797 error = ENOENT;
2798 goto publicfh_done;
2799 }
2800
2801 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag);
2802
2803 /*
2804 * If name resolves to "/" we get EINVAL since we asked for
2805 * the vnode of the directory that the file is in. Try again
2806 * with NULL directory vnode.
2807 */
2808 if (error == EINVAL) {
2809 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag);
2810 if (!error) {
2811 ASSERT(*vpp != NULL);
2812 if ((*vpp)->v_type == VDIR) {
2813 VN_HOLD(*vpp);
2814 mc_dvp = *vpp;
2815 } else {
2816 /*
2817 * This should not happen, the filesystem is
2818 * in an inconsistent state. Fail the lookup
2819 * at this point.
2820 */
2821 VN_RELE(*vpp);
2822 error = EINVAL;
2823 }
2824 }
2825 }
2826
2827 if (error)
2828 goto publicfh_done;
2829
2830 if (*vpp == NULL) {
2831 error = ENOENT;
2832 goto publicfh_done;
2833 }
2834
2835 ASSERT(mc_dvp != NULL);
2836 ASSERT(*vpp != NULL);
2837
2838 if ((*vpp)->v_type == VDIR) {
2839 do {
2840 /*
2841 * *vpp may be an AutoFS node, so we perform
2842 * a VOP_ACCESS() to trigger the mount of the intended
2843 * filesystem, so we can perform the lookup in the
2844 * intended filesystem.
2845 */
2846 (void) VOP_ACCESS(*vpp, 0, 0, cr, NULL);
2847
2848 /*
2849 * If vnode is covered, get the
2850 * the topmost vnode.
2851 */
2852 if (vn_mountedvfs(*vpp) != NULL) {
2853 error = traverse(vpp);
2854 if (error) {
2855 VN_RELE(*vpp);
2856 goto publicfh_done;
2857 }
2858 }
2859
2860 if (VOP_REALVP(*vpp, &realvp, NULL) == 0 &&
2861 realvp != *vpp) {
2862 /*
2863 * If realvp is different from *vpp
2864 * then release our reference on *vpp, so that
2865 * the export access check be performed on the
2866 * real filesystem instead.
2867 */
2868 VN_HOLD(realvp);
2869 VN_RELE(*vpp);
2870 *vpp = realvp;
2871 } else {
2872 break;
2873 }
2874 /* LINTED */
2875 } while (TRUE);
2876
2877 /*
2878 * Let nfs_vptexi() figure what the real parent is.
2879 */
2880 VN_RELE(mc_dvp);
2881 mc_dvp = NULL;
2882
2883 } else {
2884 /*
2885 * If vnode is covered, get the
2886 * the topmost vnode.
2887 */
2888 if (vn_mountedvfs(mc_dvp) != NULL) {
2889 error = traverse(&mc_dvp);
2890 if (error) {
2891 VN_RELE(*vpp);
2892 goto publicfh_done;
2893 }
2894 }
2895
2896 if (VOP_REALVP(mc_dvp, &realvp, NULL) == 0 &&
2897 realvp != mc_dvp) {
2898 /*
2899 * *vpp is a file, obtain realvp of the parent
2900 * directory vnode.
2901 */
2902 VN_HOLD(realvp);
2903 VN_RELE(mc_dvp);
2904 mc_dvp = realvp;
2905 }
2906 }
2907
2908 /*
2909 * The pathname may take us from the public filesystem to another.
2910 * If that's the case then just set the exportinfo to the new export
2911 * and build filehandle for it. Thanks to per-access checking there's
2912 * no security issues with doing this. If the client is not allowed
2913 * access to this new export then it will get an access error when it
2914 * tries to use the filehandle
2915 */
2916 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) {
2917 VN_RELE(*vpp);
2918 goto publicfh_done;
2919 }
2920
2921 /*
2922 * Not allowed access to pseudo exports.
2923 */
2924 if (PSEUDO(*exi)) {
2925 error = ENOENT;
2926 VN_RELE(*vpp);
2927 goto publicfh_done;
2928 }
2929
2930 /*
2931 * Do a lookup for the index file. We know the index option doesn't
2932 * allow paths through handling in the share command, so mc_dvp will
2933 * be the parent for the index file vnode, if its present. Use
2934 * temporary pointers to preserve and reuse the vnode pointers of the
2935 * original directory in case there's no index file. Note that the
2936 * index file is a native path, and should not be interpreted by
2937 * the URL parser in rfs_pathname()
2938 */
2939 if (((*exi)->exi_export.ex_flags & EX_INDEX) &&
2940 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) {
2941 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */
2942
2943 tmc_dvp = mc_dvp;
2944 mc_dvp = tvp = *vpp;
2945
2946 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp,
2947 mc_dvp, cr, NATIVEPATH);
2948
2949 if (error == ENOENT) {
2950 *vpp = tvp;
2951 mc_dvp = tmc_dvp;
2952 error = 0;
2953 } else { /* ok or error other than ENOENT */
2954 if (tmc_dvp)
2955 VN_RELE(tmc_dvp);
2956 if (error)
2957 goto publicfh_done;
2958
2959 /*
2960 * Found a valid vp for index "filename". Sanity check
2961 * for odd case where a directory is provided as index
2962 * option argument and leads us to another filesystem
2963 */
2964
2965 /* Release the reference on the old exi value */
2966 ASSERT(*exi != NULL);
2967 exi_rele(*exi);
2968 *exi = NULL;
2969
2970 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) {
2971 VN_RELE(*vpp);
2972 goto publicfh_done;
2973 }
2974 /* Have a new *exi */
2975 }
2976 }
2977
2978 publicfh_done:
2979 if (mc_dvp)
2980 VN_RELE(mc_dvp);
2981
2982 return (error);
2983 }
2984
2985 /*
2986 * Evaluate a multi-component path
2987 */
2988 int
rfs_pathname(char * path,vnode_t ** dirvpp,vnode_t ** compvpp,vnode_t * startdvp,cred_t * cr,int pathflag)2989 rfs_pathname(
2990 char *path, /* pathname to evaluate */
2991 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */
2992 vnode_t **compvpp, /* ret for ptr to component vnode */
2993 vnode_t *startdvp, /* starting vnode */
2994 cred_t *cr, /* user's credential */
2995 int pathflag) /* flag to identify path, e.g. URL */
2996 {
2997 char namebuf[TYPICALMAXPATHLEN];
2998 struct pathname pn;
2999 int error;
3000
3001 ASSERT3U(crgetzoneid(cr), ==, curzone->zone_id);
3002
3003 /*
3004 * If pathname starts with '/', then set startdvp to root.
3005 */
3006 if (*path == '/') {
3007 while (*path == '/')
3008 path++;
3009
3010 startdvp = ZONE_ROOTVP();
3011 }
3012
3013 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf));
3014 if (error == 0) {
3015 /*
3016 * Call the URL parser for URL paths to modify the original
3017 * string to handle any '%' encoded characters that exist.
3018 * Done here to avoid an extra bcopy in the lookup.
3019 * We need to be careful about pathlen's. We know that
3020 * rfs_pathname() is called with a non-empty path. However,
3021 * it could be emptied due to the path simply being all /'s,
3022 * which is valid to proceed with the lookup, or due to the
3023 * URL parser finding an encoded null character at the
3024 * beginning of path which should not proceed with the lookup.
3025 */
3026 if (pn.pn_pathlen != 0 && pathflag == URLPATH) {
3027 URLparse(pn.pn_path);
3028 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0)
3029 return (ENOENT);
3030 }
3031 VN_HOLD(startdvp);
3032 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp,
3033 ZONE_ROOTVP(), startdvp, cr);
3034 }
3035 if (error == ENAMETOOLONG) {
3036 /*
3037 * This thread used a pathname > TYPICALMAXPATHLEN bytes long.
3038 */
3039 if (error = pn_get(path, UIO_SYSSPACE, &pn))
3040 return (error);
3041 if (pn.pn_pathlen != 0 && pathflag == URLPATH) {
3042 URLparse(pn.pn_path);
3043 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) {
3044 pn_free(&pn);
3045 return (ENOENT);
3046 }
3047 }
3048 VN_HOLD(startdvp);
3049 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp,
3050 ZONE_ROOTVP(), startdvp, cr);
3051 pn_free(&pn);
3052 }
3053
3054 return (error);
3055 }
3056
3057 /*
3058 * Adapt the multicomponent lookup path depending on the pathtype
3059 */
3060 static int
MCLpath(char ** path)3061 MCLpath(char **path)
3062 {
3063 unsigned char c = (unsigned char)**path;
3064
3065 /*
3066 * If the MCL path is between 0x20 and 0x7E (graphic printable
3067 * character of the US-ASCII coded character set), its a URL path,
3068 * per RFC 1738.
3069 */
3070 if (c >= 0x20 && c <= 0x7E)
3071 return (URLPATH);
3072
3073 /*
3074 * If the first octet of the MCL path is not an ASCII character
3075 * then it must be interpreted as a tag value that describes the
3076 * format of the remaining octets of the MCL path.
3077 *
3078 * If the first octet of the MCL path is 0x81 it is a query
3079 * for the security info.
3080 */
3081 switch (c) {
3082 case 0x80: /* native path, i.e. MCL via mount protocol */
3083 (*path)++;
3084 return (NATIVEPATH);
3085 case 0x81: /* security query */
3086 (*path)++;
3087 return (SECURITY_QUERY);
3088 default:
3089 return (-1);
3090 }
3091 }
3092
3093 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \
3094 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\
3095 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0)))
3096
3097 /*
3098 * The implementation of URLparse guarantees that the final string will
3099 * fit in the original one. Replaces '%' occurrences followed by 2 characters
3100 * with its corresponding hexadecimal character.
3101 */
3102 static void
URLparse(char * str)3103 URLparse(char *str)
3104 {
3105 char *p, *q;
3106
3107 p = q = str;
3108 while (*p) {
3109 *q = *p;
3110 if (*p++ == '%') {
3111 if (*p) {
3112 *q = fromhex(*p) * 16;
3113 p++;
3114 if (*p) {
3115 *q += fromhex(*p);
3116 p++;
3117 }
3118 }
3119 }
3120 q++;
3121 }
3122 *q = '\0';
3123 }
3124
3125
3126 /*
3127 * Get the export information for the lookup vnode, and verify its
3128 * useable.
3129 */
3130 int
nfs_check_vpexi(vnode_t * mc_dvp,vnode_t * vp,cred_t * cr,struct exportinfo ** exi)3131 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr,
3132 struct exportinfo **exi)
3133 {
3134 int walk;
3135 int error = 0;
3136
3137 *exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE);
3138 if (*exi == NULL)
3139 error = EACCES;
3140 else {
3141 /*
3142 * If nosub is set for this export then
3143 * a lookup relative to the public fh
3144 * must not terminate below the
3145 * exported directory.
3146 */
3147 if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0)
3148 error = EACCES;
3149 }
3150
3151 return (error);
3152 }
3153
3154 /*
3155 * Used by NFSv3 and NFSv4 server to query label of
3156 * a pathname component during lookup/access ops.
3157 */
3158 ts_label_t *
nfs_getflabel(vnode_t * vp,struct exportinfo * exi)3159 nfs_getflabel(vnode_t *vp, struct exportinfo *exi)
3160 {
3161 zone_t *zone;
3162 ts_label_t *zone_label;
3163 char *path;
3164
3165 mutex_enter(&vp->v_lock);
3166 if (vp->v_path != vn_vpath_empty) {
3167 zone = zone_find_by_any_path(vp->v_path, B_FALSE);
3168 mutex_exit(&vp->v_lock);
3169 } else {
3170 /*
3171 * v_path not cached. Fall back on pathname of exported
3172 * file system as we rely on pathname from which we can
3173 * derive a label. The exported file system portion of
3174 * path is sufficient to obtain a label.
3175 */
3176 path = exi->exi_export.ex_path;
3177 if (path == NULL) {
3178 mutex_exit(&vp->v_lock);
3179 return (NULL);
3180 }
3181 zone = zone_find_by_any_path(path, B_FALSE);
3182 mutex_exit(&vp->v_lock);
3183 }
3184 /*
3185 * Caller has verified that the file is either
3186 * exported or visible. So if the path falls in
3187 * global zone, admin_low is returned; otherwise
3188 * the zone's label is returned.
3189 */
3190 zone_label = zone->zone_slabel;
3191 label_hold(zone_label);
3192 zone_rele(zone);
3193 return (zone_label);
3194 }
3195
3196 /*
3197 * TX NFS routine used by NFSv3 and NFSv4 to do label check
3198 * on client label and server's file object lable.
3199 */
3200 boolean_t
do_rfs_label_check(bslabel_t * clabel,vnode_t * vp,int flag,struct exportinfo * exi)3201 do_rfs_label_check(bslabel_t *clabel, vnode_t *vp, int flag,
3202 struct exportinfo *exi)
3203 {
3204 bslabel_t *slabel;
3205 ts_label_t *tslabel;
3206 boolean_t result;
3207
3208 if ((tslabel = nfs_getflabel(vp, exi)) == NULL) {
3209 return (B_FALSE);
3210 }
3211 slabel = label2bslabel(tslabel);
3212 DTRACE_PROBE4(tx__rfs__log__info__labelcheck, char *,
3213 "comparing server's file label(1) with client label(2) (vp(3))",
3214 bslabel_t *, slabel, bslabel_t *, clabel, vnode_t *, vp);
3215
3216 if (flag == EQUALITY_CHECK)
3217 result = blequal(clabel, slabel);
3218 else
3219 result = bldominates(clabel, slabel);
3220 label_rele(tslabel);
3221 return (result);
3222 }
3223
3224 /*
3225 * Callback function to return the loaned buffers.
3226 * Calls VOP_RETZCBUF() only after all uio_iov[]
3227 * buffers are returned. nu_ref maintains the count.
3228 */
3229 void
rfs_free_xuio(void * free_arg)3230 rfs_free_xuio(void *free_arg)
3231 {
3232 uint_t ref;
3233 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)free_arg;
3234
3235 ref = atomic_dec_uint_nv(&nfsuiop->nu_ref);
3236
3237 /*
3238 * Call VOP_RETZCBUF() only when all the iov buffers
3239 * are sent OTW.
3240 */
3241 if (ref != 0)
3242 return;
3243
3244 if (((uio_t *)nfsuiop)->uio_extflg & UIO_XUIO) {
3245 (void) VOP_RETZCBUF(nfsuiop->nu_vp, (xuio_t *)free_arg, NULL,
3246 NULL);
3247 VN_RELE(nfsuiop->nu_vp);
3248 }
3249
3250 kmem_cache_free(nfs_xuio_cache, free_arg);
3251 }
3252
3253 xuio_t *
rfs_setup_xuio(vnode_t * vp)3254 rfs_setup_xuio(vnode_t *vp)
3255 {
3256 nfs_xuio_t *nfsuiop;
3257
3258 nfsuiop = kmem_cache_alloc(nfs_xuio_cache, KM_SLEEP);
3259
3260 bzero(nfsuiop, sizeof (nfs_xuio_t));
3261 nfsuiop->nu_vp = vp;
3262
3263 /*
3264 * ref count set to 1. more may be added
3265 * if multiple mblks refer to multiple iov's.
3266 * This is done in uio_to_mblk().
3267 */
3268
3269 nfsuiop->nu_ref = 1;
3270
3271 nfsuiop->nu_frtn.free_func = rfs_free_xuio;
3272 nfsuiop->nu_frtn.free_arg = (char *)nfsuiop;
3273
3274 nfsuiop->nu_uio.xu_type = UIOTYPE_ZEROCOPY;
3275
3276 return (&nfsuiop->nu_uio);
3277 }
3278
3279 mblk_t *
uio_to_mblk(uio_t * uiop)3280 uio_to_mblk(uio_t *uiop)
3281 {
3282 struct iovec *iovp;
3283 int i;
3284 mblk_t *mp, *mp1;
3285 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)uiop;
3286
3287 if (uiop->uio_iovcnt == 0)
3288 return (NULL);
3289
3290 iovp = uiop->uio_iov;
3291 mp = mp1 = esballoca((uchar_t *)iovp->iov_base, iovp->iov_len,
3292 BPRI_MED, &nfsuiop->nu_frtn);
3293 ASSERT(mp != NULL);
3294
3295 mp->b_wptr += iovp->iov_len;
3296 mp->b_datap->db_type = M_DATA;
3297
3298 for (i = 1; i < uiop->uio_iovcnt; i++) {
3299 iovp = (uiop->uio_iov + i);
3300
3301 mp1->b_cont = esballoca(
3302 (uchar_t *)iovp->iov_base, iovp->iov_len, BPRI_MED,
3303 &nfsuiop->nu_frtn);
3304
3305 mp1 = mp1->b_cont;
3306 ASSERT(mp1 != NULL);
3307 mp1->b_wptr += iovp->iov_len;
3308 mp1->b_datap->db_type = M_DATA;
3309 }
3310
3311 nfsuiop->nu_ref = uiop->uio_iovcnt;
3312
3313 return (mp);
3314 }
3315
3316 /*
3317 * Allocate memory to hold data for a read request of len bytes.
3318 *
3319 * We don't allocate buffers greater than kmem_max_cached in size to avoid
3320 * allocating memory from the kmem_oversized arena. If we allocate oversized
3321 * buffers, we incur heavy cross-call activity when freeing these large buffers
3322 * in the TCP receive path. Note that we can't set b_wptr here since the
3323 * length of the data returned may differ from the length requested when
3324 * reading the end of a file; we set b_wptr in rfs_rndup_mblks() once the
3325 * length of the read is known.
3326 */
3327 mblk_t *
rfs_read_alloc(uint_t len,struct iovec ** iov,int * iovcnt)3328 rfs_read_alloc(uint_t len, struct iovec **iov, int *iovcnt)
3329 {
3330 struct iovec *iovarr;
3331 mblk_t *mp, **mpp = ∓
3332 size_t mpsize;
3333 uint_t remain = len;
3334 int i, err = 0;
3335
3336 *iovcnt = howmany(len, kmem_max_cached);
3337
3338 iovarr = kmem_alloc(*iovcnt * sizeof (struct iovec), KM_SLEEP);
3339 *iov = iovarr;
3340
3341 for (i = 0; i < *iovcnt; remain -= mpsize, i++) {
3342 ASSERT(remain <= len);
3343 /*
3344 * We roundup the size we allocate to a multiple of
3345 * BYTES_PER_XDR_UNIT (4 bytes) so that the call to
3346 * xdrmblk_putmblk() never fails.
3347 */
3348 ASSERT(kmem_max_cached % BYTES_PER_XDR_UNIT == 0);
3349 mpsize = MIN(kmem_max_cached, remain);
3350 *mpp = allocb_wait(RNDUP(mpsize), BPRI_MED, STR_NOSIG, &err);
3351 ASSERT(*mpp != NULL);
3352 ASSERT(err == 0);
3353
3354 iovarr[i].iov_base = (caddr_t)(*mpp)->b_rptr;
3355 iovarr[i].iov_len = mpsize;
3356 mpp = &(*mpp)->b_cont;
3357 }
3358 return (mp);
3359 }
3360
3361 void
rfs_rndup_mblks(mblk_t * mp,uint_t len,int buf_loaned)3362 rfs_rndup_mblks(mblk_t *mp, uint_t len, int buf_loaned)
3363 {
3364 int i;
3365 int alloc_err = 0;
3366 mblk_t *rmp;
3367 uint_t mpsize, remainder;
3368
3369 remainder = P2NPHASE(len, BYTES_PER_XDR_UNIT);
3370
3371 /*
3372 * Non copy-reduction case. This function assumes that blocks were
3373 * allocated in multiples of BYTES_PER_XDR_UNIT bytes, which makes this
3374 * padding safe without bounds checking.
3375 */
3376 if (!buf_loaned) {
3377 /*
3378 * Set the size of each mblk in the chain until we've consumed
3379 * the specified length for all but the last one.
3380 */
3381 while ((mpsize = MBLKSIZE(mp)) < len) {
3382 ASSERT(mpsize % BYTES_PER_XDR_UNIT == 0);
3383 mp->b_wptr += mpsize;
3384 len -= mpsize;
3385 mp = mp->b_cont;
3386 ASSERT(mp != NULL);
3387 }
3388
3389 ASSERT(len + remainder <= mpsize);
3390 mp->b_wptr += len;
3391 for (i = 0; i < remainder; i++)
3392 *mp->b_wptr++ = '\0';
3393 return;
3394 }
3395
3396 /*
3397 * No remainder mblk required.
3398 */
3399 if (remainder == 0)
3400 return;
3401
3402 /*
3403 * Get to the last mblk in the chain.
3404 */
3405 while (mp->b_cont != NULL)
3406 mp = mp->b_cont;
3407
3408 /*
3409 * In case of copy-reduction mblks, the size of the mblks are fixed
3410 * and are of the size of the loaned buffers. Allocate a remainder
3411 * mblk and chain it to the data buffers. This is sub-optimal, but not
3412 * expected to happen commonly.
3413 */
3414 rmp = allocb_wait(remainder, BPRI_MED, STR_NOSIG, &alloc_err);
3415 ASSERT(rmp != NULL);
3416 ASSERT(alloc_err == 0);
3417
3418 for (i = 0; i < remainder; i++)
3419 *rmp->b_wptr++ = '\0';
3420
3421 rmp->b_datap->db_type = M_DATA;
3422 mp->b_cont = rmp;
3423 }
3424