xref: /illumos-gate/usr/src/uts/common/fs/nfs/nfs_auth.c (revision d15801816cc716b56ada92df72ee04b7b891291c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2015 by Delphix. All rights reserved.
26  * Copyright (c) 2015 Joyent, Inc.  All rights reserved.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/errno.h>
31 #include <sys/vfs.h>
32 #include <sys/vnode.h>
33 #include <sys/cred.h>
34 #include <sys/cmn_err.h>
35 #include <sys/systm.h>
36 #include <sys/kmem.h>
37 #include <sys/pathname.h>
38 #include <sys/utsname.h>
39 #include <sys/debug.h>
40 #include <sys/door.h>
41 #include <sys/sdt.h>
42 #include <sys/thread.h>
43 #include <sys/avl.h>
44 
45 #include <rpc/types.h>
46 #include <rpc/auth.h>
47 #include <rpc/clnt.h>
48 
49 #include <nfs/nfs.h>
50 #include <nfs/export.h>
51 #include <nfs/nfs_clnt.h>
52 #include <nfs/auth.h>
53 
54 static struct kmem_cache *exi_cache_handle;
55 static void exi_cache_reclaim(void *);
56 static void exi_cache_trim(struct exportinfo *exi);
57 
58 extern pri_t minclsyspri;
59 
60 volatile uint_t nfsauth_cache_hit;
61 volatile uint_t nfsauth_cache_miss;
62 volatile uint_t nfsauth_cache_refresh;
63 volatile uint_t nfsauth_cache_reclaim;
64 volatile uint_t exi_cache_auth_reclaim_failed;
65 volatile uint_t exi_cache_clnt_reclaim_failed;
66 
67 /*
68  * The lifetime of an auth cache entry:
69  * ------------------------------------
70  *
71  * An auth cache entry is created with both the auth_time
72  * and auth_freshness times set to the current time.
73  *
74  * Upon every client access which results in a hit, the
75  * auth_time will be updated.
76  *
77  * If a client access determines that the auth_freshness
78  * indicates that the entry is STALE, then it will be
79  * refreshed. Note that this will explicitly reset
80  * auth_time.
81  *
82  * When the REFRESH successfully occurs, then the
83  * auth_freshness is updated.
84  *
85  * There are two ways for an entry to leave the cache:
86  *
87  * 1) Purged by an action on the export (remove or changed)
88  * 2) Memory backpressure from the kernel (check against NFSAUTH_CACHE_TRIM)
89  *
90  * For 2) we check the timeout value against auth_time.
91  */
92 
93 /*
94  * Number of seconds until we mark for refresh an auth cache entry.
95  */
96 #define	NFSAUTH_CACHE_REFRESH 600
97 
98 /*
99  * Number of idle seconds until we yield to backpressure
100  * to trim a cache entry.
101  */
102 #define	NFSAUTH_CACHE_TRIM 3600
103 
104 /*
105  * While we could encapuslate the exi_list inside the
106  * exi structure, we can't do that for the auth_list.
107  * So, to keep things looking clean, we keep them both
108  * in these external lists.
109  */
110 typedef struct refreshq_exi_node {
111 	struct exportinfo	*ren_exi;
112 	list_t			ren_authlist;
113 	list_node_t		ren_node;
114 } refreshq_exi_node_t;
115 
116 typedef struct refreshq_auth_node {
117 	struct auth_cache	*ran_auth;
118 	char			*ran_netid;
119 	list_node_t		ran_node;
120 } refreshq_auth_node_t;
121 
122 /*
123  * Used to manipulate things on the refreshq_queue.
124  * Note that the refresh thread will effectively
125  * pop a node off of the queue, at which point it
126  * will no longer need to hold the mutex.
127  */
128 static kmutex_t refreshq_lock;
129 static list_t refreshq_queue;
130 static kcondvar_t refreshq_cv;
131 
132 /*
133  * If there is ever a problem with loading the
134  * module, then nfsauth_fini() needs to be called
135  * to remove state. In that event, since the
136  * refreshq thread has been started, they need to
137  * work together to get rid of state.
138  */
139 typedef enum nfsauth_refreshq_thread_state {
140 	REFRESHQ_THREAD_RUNNING,
141 	REFRESHQ_THREAD_FINI_REQ,
142 	REFRESHQ_THREAD_HALTED
143 } nfsauth_refreshq_thread_state_t;
144 
145 nfsauth_refreshq_thread_state_t
146 refreshq_thread_state = REFRESHQ_THREAD_HALTED;
147 
148 static void nfsauth_free_node(struct auth_cache *);
149 static void nfsauth_refresh_thread(void);
150 
151 static int nfsauth_cache_compar(const void *, const void *);
152 
153 /*
154  * mountd is a server-side only daemon. This will need to be
155  * revisited if the NFS server is ever made zones-aware.
156  */
157 kmutex_t	mountd_lock;
158 door_handle_t   mountd_dh;
159 
160 void
161 mountd_args(uint_t did)
162 {
163 	mutex_enter(&mountd_lock);
164 	if (mountd_dh != NULL)
165 		door_ki_rele(mountd_dh);
166 	mountd_dh = door_ki_lookup(did);
167 	mutex_exit(&mountd_lock);
168 }
169 
170 void
171 nfsauth_init(void)
172 {
173 	/*
174 	 * mountd can be restarted by smf(5). We need to make sure
175 	 * the updated door handle will safely make it to mountd_dh
176 	 */
177 	mutex_init(&mountd_lock, NULL, MUTEX_DEFAULT, NULL);
178 
179 	mutex_init(&refreshq_lock, NULL, MUTEX_DEFAULT, NULL);
180 	list_create(&refreshq_queue, sizeof (refreshq_exi_node_t),
181 	    offsetof(refreshq_exi_node_t, ren_node));
182 
183 	cv_init(&refreshq_cv, NULL, CV_DEFAULT, NULL);
184 
185 	/*
186 	 * Allocate nfsauth cache handle
187 	 */
188 	exi_cache_handle = kmem_cache_create("exi_cache_handle",
189 	    sizeof (struct auth_cache), 0, NULL, NULL,
190 	    exi_cache_reclaim, NULL, NULL, 0);
191 
192 	refreshq_thread_state = REFRESHQ_THREAD_RUNNING;
193 	(void) zthread_create(NULL, 0, nfsauth_refresh_thread,
194 	    NULL, 0, minclsyspri);
195 }
196 
197 /*
198  * Finalization routine for nfsauth. It is important to call this routine
199  * before destroying the exported_lock.
200  */
201 void
202 nfsauth_fini(void)
203 {
204 	refreshq_exi_node_t	*ren;
205 
206 	/*
207 	 * Prevent the nfsauth_refresh_thread from getting new
208 	 * work.
209 	 */
210 	mutex_enter(&refreshq_lock);
211 	if (refreshq_thread_state != REFRESHQ_THREAD_HALTED) {
212 		refreshq_thread_state = REFRESHQ_THREAD_FINI_REQ;
213 		cv_broadcast(&refreshq_cv);
214 
215 		/*
216 		 * Also, wait for nfsauth_refresh_thread() to exit.
217 		 */
218 		while (refreshq_thread_state != REFRESHQ_THREAD_HALTED) {
219 			cv_wait(&refreshq_cv, &refreshq_lock);
220 		}
221 	}
222 	mutex_exit(&refreshq_lock);
223 
224 	/*
225 	 * Walk the exi_list and in turn, walk the auth_lists and free all
226 	 * lists.  In addition, free INVALID auth_cache entries.
227 	 */
228 	while ((ren = list_remove_head(&refreshq_queue))) {
229 		refreshq_auth_node_t *ran;
230 
231 		while ((ran = list_remove_head(&ren->ren_authlist)) != NULL) {
232 			struct auth_cache *p = ran->ran_auth;
233 			if (p->auth_state == NFS_AUTH_INVALID)
234 				nfsauth_free_node(p);
235 			strfree(ran->ran_netid);
236 			kmem_free(ran, sizeof (refreshq_auth_node_t));
237 		}
238 
239 		list_destroy(&ren->ren_authlist);
240 		exi_rele(ren->ren_exi);
241 		kmem_free(ren, sizeof (refreshq_exi_node_t));
242 	}
243 	list_destroy(&refreshq_queue);
244 
245 	cv_destroy(&refreshq_cv);
246 	mutex_destroy(&refreshq_lock);
247 
248 	mutex_destroy(&mountd_lock);
249 
250 	/*
251 	 * Deallocate nfsauth cache handle
252 	 */
253 	kmem_cache_destroy(exi_cache_handle);
254 }
255 
256 /*
257  * Convert the address in a netbuf to
258  * a hash index for the auth_cache table.
259  */
260 static int
261 hash(struct netbuf *a)
262 {
263 	int i, h = 0;
264 
265 	for (i = 0; i < a->len; i++)
266 		h ^= a->buf[i];
267 
268 	return (h & (AUTH_TABLESIZE - 1));
269 }
270 
271 /*
272  * Mask out the components of an
273  * address that do not identify
274  * a host. For socket addresses the
275  * masking gets rid of the port number.
276  */
277 static void
278 addrmask(struct netbuf *addr, struct netbuf *mask)
279 {
280 	int i;
281 
282 	for (i = 0; i < addr->len; i++)
283 		addr->buf[i] &= mask->buf[i];
284 }
285 
286 /*
287  * nfsauth4_access is used for NFS V4 auth checking. Besides doing
288  * the common nfsauth_access(), it will check if the client can
289  * have a limited access to this vnode even if the security flavor
290  * used does not meet the policy.
291  */
292 int
293 nfsauth4_access(struct exportinfo *exi, vnode_t *vp, struct svc_req *req,
294     cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
295 {
296 	int access;
297 
298 	access = nfsauth_access(exi, req, cr, uid, gid, ngids, gids);
299 
300 	/*
301 	 * There are cases that the server needs to allow the client
302 	 * to have a limited view.
303 	 *
304 	 * e.g.
305 	 * /export is shared as "sec=sys,rw=dfs-test-4,sec=krb5,rw"
306 	 * /export/home is shared as "sec=sys,rw"
307 	 *
308 	 * When the client mounts /export with sec=sys, the client
309 	 * would get a limited view with RO access on /export to see
310 	 * "home" only because the client is allowed to access
311 	 * /export/home with auth_sys.
312 	 */
313 	if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
314 		/*
315 		 * Allow ro permission with LIMITED view if there is a
316 		 * sub-dir exported under vp.
317 		 */
318 		if (has_visible(exi, vp))
319 			return (NFSAUTH_LIMITED);
320 	}
321 
322 	return (access);
323 }
324 
325 static void
326 sys_log(const char *msg)
327 {
328 	static time_t	tstamp = 0;
329 	time_t		now;
330 
331 	/*
332 	 * msg is shown (at most) once per minute
333 	 */
334 	now = gethrestime_sec();
335 	if ((tstamp + 60) < now) {
336 		tstamp = now;
337 		cmn_err(CE_WARN, msg);
338 	}
339 }
340 
341 /*
342  * Callup to the mountd to get access information in the kernel.
343  */
344 static bool_t
345 nfsauth_retrieve(struct exportinfo *exi, char *req_netid, int flavor,
346     struct netbuf *addr, int *access, cred_t *clnt_cred, uid_t *srv_uid,
347     gid_t *srv_gid, uint_t *srv_gids_cnt, gid_t **srv_gids)
348 {
349 	varg_t			  varg = {0};
350 	nfsauth_res_t		  res = {0};
351 	XDR			  xdrs;
352 	size_t			  absz;
353 	caddr_t			  abuf;
354 	int			  last = 0;
355 	door_arg_t		  da;
356 	door_info_t		  di;
357 	door_handle_t		  dh;
358 	uint_t			  ntries = 0;
359 
360 	/*
361 	 * No entry in the cache for this client/flavor
362 	 * so we need to call the nfsauth service in the
363 	 * mount daemon.
364 	 */
365 
366 	varg.vers = V_PROTO;
367 	varg.arg_u.arg.cmd = NFSAUTH_ACCESS;
368 	varg.arg_u.arg.areq.req_client.n_len = addr->len;
369 	varg.arg_u.arg.areq.req_client.n_bytes = addr->buf;
370 	varg.arg_u.arg.areq.req_netid = req_netid;
371 	varg.arg_u.arg.areq.req_path = exi->exi_export.ex_path;
372 	varg.arg_u.arg.areq.req_flavor = flavor;
373 	varg.arg_u.arg.areq.req_clnt_uid = crgetuid(clnt_cred);
374 	varg.arg_u.arg.areq.req_clnt_gid = crgetgid(clnt_cred);
375 	varg.arg_u.arg.areq.req_clnt_gids.len = crgetngroups(clnt_cred);
376 	varg.arg_u.arg.areq.req_clnt_gids.val = (gid_t *)crgetgroups(clnt_cred);
377 
378 	DTRACE_PROBE1(nfsserv__func__nfsauth__varg, varg_t *, &varg);
379 
380 	/*
381 	 * Setup the XDR stream for encoding the arguments. Notice that
382 	 * in addition to the args having variable fields (req_netid and
383 	 * req_path), the argument data structure is itself versioned,
384 	 * so we need to make sure we can size the arguments buffer
385 	 * appropriately to encode all the args. If we can't get sizing
386 	 * info _or_ properly encode the arguments, there's really no
387 	 * point in continuting, so we fail the request.
388 	 */
389 	if ((absz = xdr_sizeof(xdr_varg, &varg)) == 0) {
390 		*access = NFSAUTH_DENIED;
391 		return (FALSE);
392 	}
393 
394 	abuf = (caddr_t)kmem_alloc(absz, KM_SLEEP);
395 	xdrmem_create(&xdrs, abuf, absz, XDR_ENCODE);
396 	if (!xdr_varg(&xdrs, &varg)) {
397 		XDR_DESTROY(&xdrs);
398 		goto fail;
399 	}
400 	XDR_DESTROY(&xdrs);
401 
402 	/*
403 	 * Prepare the door arguments
404 	 *
405 	 * We don't know the size of the message the daemon
406 	 * will pass back to us.  By setting rbuf to NULL,
407 	 * we force the door code to allocate a buf of the
408 	 * appropriate size.  We must set rsize > 0, however,
409 	 * else the door code acts as if no response was
410 	 * expected and doesn't pass the data to us.
411 	 */
412 	da.data_ptr = (char *)abuf;
413 	da.data_size = absz;
414 	da.desc_ptr = NULL;
415 	da.desc_num = 0;
416 	da.rbuf = NULL;
417 	da.rsize = 1;
418 
419 retry:
420 	mutex_enter(&mountd_lock);
421 	dh = mountd_dh;
422 	if (dh != NULL)
423 		door_ki_hold(dh);
424 	mutex_exit(&mountd_lock);
425 
426 	if (dh == NULL) {
427 		/*
428 		 * The rendezvous point has not been established yet!
429 		 * This could mean that either mountd(1m) has not yet
430 		 * been started or that _this_ routine nuked the door
431 		 * handle after receiving an EINTR for a REVOKED door.
432 		 *
433 		 * Returning NFSAUTH_DROP will cause the NFS client
434 		 * to retransmit the request, so let's try to be more
435 		 * rescillient and attempt for ntries before we bail.
436 		 */
437 		if (++ntries % NFSAUTH_DR_TRYCNT) {
438 			delay(hz);
439 			goto retry;
440 		}
441 
442 		kmem_free(abuf, absz);
443 
444 		sys_log("nfsauth: mountd has not established door");
445 		*access = NFSAUTH_DROP;
446 		return (FALSE);
447 	}
448 
449 	ntries = 0;
450 
451 	/*
452 	 * Now that we've got what we need, place the call.
453 	 */
454 	switch (door_ki_upcall_limited(dh, &da, NULL, SIZE_MAX, 0)) {
455 	case 0:				/* Success */
456 		door_ki_rele(dh);
457 
458 		if (da.data_ptr == NULL && da.data_size == 0) {
459 			/*
460 			 * The door_return that contained the data
461 			 * failed! We're here because of the 2nd
462 			 * door_return (w/o data) such that we can
463 			 * get control of the thread (and exit
464 			 * gracefully).
465 			 */
466 			DTRACE_PROBE1(nfsserv__func__nfsauth__door__nil,
467 			    door_arg_t *, &da);
468 			goto fail;
469 		}
470 
471 		break;
472 
473 	case EAGAIN:
474 		/*
475 		 * Server out of resources; back off for a bit
476 		 */
477 		door_ki_rele(dh);
478 		delay(hz);
479 		goto retry;
480 		/* NOTREACHED */
481 
482 	case EINTR:
483 		if (!door_ki_info(dh, &di)) {
484 			door_ki_rele(dh);
485 
486 			if (di.di_attributes & DOOR_REVOKED) {
487 				/*
488 				 * The server barfed and revoked
489 				 * the (existing) door on us; we
490 				 * want to wait to give smf(5) a
491 				 * chance to restart mountd(1m)
492 				 * and establish a new door handle.
493 				 */
494 				mutex_enter(&mountd_lock);
495 				if (dh == mountd_dh) {
496 					door_ki_rele(mountd_dh);
497 					mountd_dh = NULL;
498 				}
499 				mutex_exit(&mountd_lock);
500 				delay(hz);
501 				goto retry;
502 			}
503 			/*
504 			 * If the door was _not_ revoked on us,
505 			 * then more than likely we took an INTR,
506 			 * so we need to fail the operation.
507 			 */
508 			goto fail;
509 		}
510 		/*
511 		 * The only failure that can occur from getting
512 		 * the door info is EINVAL, so we let the code
513 		 * below handle it.
514 		 */
515 		/* FALLTHROUGH */
516 
517 	case EBADF:
518 	case EINVAL:
519 	default:
520 		/*
521 		 * If we have a stale door handle, give smf a last
522 		 * chance to start it by sleeping for a little bit.
523 		 * If we're still hosed, we'll fail the call.
524 		 *
525 		 * Since we're going to reacquire the door handle
526 		 * upon the retry, we opt to sleep for a bit and
527 		 * _not_ to clear mountd_dh. If mountd restarted
528 		 * and was able to set mountd_dh, we should see
529 		 * the new instance; if not, we won't get caught
530 		 * up in the retry/DELAY loop.
531 		 */
532 		door_ki_rele(dh);
533 		if (!last) {
534 			delay(hz);
535 			last++;
536 			goto retry;
537 		}
538 		sys_log("nfsauth: stale mountd door handle");
539 		goto fail;
540 	}
541 
542 	ASSERT(da.rbuf != NULL);
543 
544 	/*
545 	 * No door errors encountered; setup the XDR stream for decoding
546 	 * the results. If we fail to decode the results, we've got no
547 	 * other recourse than to fail the request.
548 	 */
549 	xdrmem_create(&xdrs, da.rbuf, da.rsize, XDR_DECODE);
550 	if (!xdr_nfsauth_res(&xdrs, &res)) {
551 		xdr_free(xdr_nfsauth_res, (char *)&res);
552 		XDR_DESTROY(&xdrs);
553 		kmem_free(da.rbuf, da.rsize);
554 		goto fail;
555 	}
556 	XDR_DESTROY(&xdrs);
557 	kmem_free(da.rbuf, da.rsize);
558 
559 	DTRACE_PROBE1(nfsserv__func__nfsauth__results, nfsauth_res_t *, &res);
560 	switch (res.stat) {
561 		case NFSAUTH_DR_OKAY:
562 			*access = res.ares.auth_perm;
563 			*srv_uid = res.ares.auth_srv_uid;
564 			*srv_gid = res.ares.auth_srv_gid;
565 
566 			if ((*srv_gids_cnt = res.ares.auth_srv_gids.len) != 0) {
567 				*srv_gids = kmem_alloc(*srv_gids_cnt *
568 				    sizeof (gid_t), KM_SLEEP);
569 				bcopy(res.ares.auth_srv_gids.val, *srv_gids,
570 				    *srv_gids_cnt * sizeof (gid_t));
571 			} else {
572 				*srv_gids = NULL;
573 			}
574 
575 			break;
576 
577 		case NFSAUTH_DR_EFAIL:
578 		case NFSAUTH_DR_DECERR:
579 		case NFSAUTH_DR_BADCMD:
580 		default:
581 			xdr_free(xdr_nfsauth_res, (char *)&res);
582 fail:
583 			*access = NFSAUTH_DENIED;
584 			kmem_free(abuf, absz);
585 			return (FALSE);
586 			/* NOTREACHED */
587 	}
588 
589 	xdr_free(xdr_nfsauth_res, (char *)&res);
590 	kmem_free(abuf, absz);
591 
592 	return (TRUE);
593 }
594 
595 static void
596 nfsauth_refresh_thread(void)
597 {
598 	refreshq_exi_node_t	*ren;
599 	refreshq_auth_node_t	*ran;
600 
601 	struct exportinfo	*exi;
602 
603 	int			access;
604 	bool_t			retrieval;
605 
606 	callb_cpr_t		cprinfo;
607 
608 	CALLB_CPR_INIT(&cprinfo, &refreshq_lock, callb_generic_cpr,
609 	    "nfsauth_refresh");
610 
611 	for (;;) {
612 		mutex_enter(&refreshq_lock);
613 		if (refreshq_thread_state != REFRESHQ_THREAD_RUNNING) {
614 			/* Keep the hold on the lock! */
615 			break;
616 		}
617 
618 		ren = list_remove_head(&refreshq_queue);
619 		if (ren == NULL) {
620 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
621 			cv_wait(&refreshq_cv, &refreshq_lock);
622 			CALLB_CPR_SAFE_END(&cprinfo, &refreshq_lock);
623 			mutex_exit(&refreshq_lock);
624 			continue;
625 		}
626 		mutex_exit(&refreshq_lock);
627 
628 		exi = ren->ren_exi;
629 		ASSERT(exi != NULL);
630 
631 		/*
632 		 * Since the ren was removed from the refreshq_queue above,
633 		 * this is the only thread aware about the ren existence, so we
634 		 * have the exclusive ownership of it and we do not need to
635 		 * protect it by any lock.
636 		 */
637 		while ((ran = list_remove_head(&ren->ren_authlist))) {
638 			uid_t uid;
639 			gid_t gid;
640 			uint_t ngids;
641 			gid_t *gids;
642 			struct auth_cache *p = ran->ran_auth;
643 			char *netid = ran->ran_netid;
644 
645 			ASSERT(p != NULL);
646 			ASSERT(netid != NULL);
647 
648 			kmem_free(ran, sizeof (refreshq_auth_node_t));
649 
650 			mutex_enter(&p->auth_lock);
651 
652 			/*
653 			 * Once the entry goes INVALID, it can not change
654 			 * state.
655 			 *
656 			 * No need to refresh entries also in a case we are
657 			 * just shutting down.
658 			 *
659 			 * In general, there is no need to hold the
660 			 * refreshq_lock to test the refreshq_thread_state.  We
661 			 * do hold it at other places because there is some
662 			 * related thread synchronization (or some other tasks)
663 			 * close to the refreshq_thread_state check.
664 			 *
665 			 * The check for the refreshq_thread_state value here
666 			 * is purely advisory to allow the faster
667 			 * nfsauth_refresh_thread() shutdown.  In a case we
668 			 * will miss such advisory, nothing catastrophic
669 			 * happens: we will just spin longer here before the
670 			 * shutdown.
671 			 */
672 			if (p->auth_state == NFS_AUTH_INVALID ||
673 			    refreshq_thread_state != REFRESHQ_THREAD_RUNNING) {
674 				mutex_exit(&p->auth_lock);
675 
676 				if (p->auth_state == NFS_AUTH_INVALID)
677 					nfsauth_free_node(p);
678 
679 				strfree(netid);
680 
681 				continue;
682 			}
683 
684 			/*
685 			 * Make sure the state is valid.  Note that once we
686 			 * change the state to NFS_AUTH_REFRESHING, no other
687 			 * thread will be able to work on this entry.
688 			 */
689 			ASSERT(p->auth_state == NFS_AUTH_STALE);
690 
691 			p->auth_state = NFS_AUTH_REFRESHING;
692 			mutex_exit(&p->auth_lock);
693 
694 			DTRACE_PROBE2(nfsauth__debug__cache__refresh,
695 			    struct exportinfo *, exi,
696 			    struct auth_cache *, p);
697 
698 			/*
699 			 * The first caching of the access rights
700 			 * is done with the netid pulled out of the
701 			 * request from the client. All subsequent
702 			 * users of the cache may or may not have
703 			 * the same netid. It doesn't matter. So
704 			 * when we refresh, we simply use the netid
705 			 * of the request which triggered the
706 			 * refresh attempt.
707 			 */
708 			retrieval = nfsauth_retrieve(exi, netid,
709 			    p->auth_flavor, &p->auth_clnt->authc_addr, &access,
710 			    p->auth_clnt_cred, &uid, &gid, &ngids, &gids);
711 
712 			/*
713 			 * This can only be set in one other place
714 			 * and the state has to be NFS_AUTH_FRESH.
715 			 */
716 			strfree(netid);
717 
718 			mutex_enter(&p->auth_lock);
719 			if (p->auth_state == NFS_AUTH_INVALID) {
720 				mutex_exit(&p->auth_lock);
721 				nfsauth_free_node(p);
722 				if (retrieval == TRUE)
723 					kmem_free(gids, ngids * sizeof (gid_t));
724 			} else {
725 				/*
726 				 * If we got an error, do not reset the
727 				 * time. This will cause the next access
728 				 * check for the client to reschedule this
729 				 * node.
730 				 */
731 				if (retrieval == TRUE) {
732 					p->auth_access = access;
733 
734 					p->auth_srv_uid = uid;
735 					p->auth_srv_gid = gid;
736 					kmem_free(p->auth_srv_gids,
737 					    p->auth_srv_ngids * sizeof (gid_t));
738 					p->auth_srv_ngids = ngids;
739 					p->auth_srv_gids = gids;
740 
741 					p->auth_freshness = gethrestime_sec();
742 				}
743 				p->auth_state = NFS_AUTH_FRESH;
744 
745 				cv_broadcast(&p->auth_cv);
746 				mutex_exit(&p->auth_lock);
747 			}
748 		}
749 
750 		list_destroy(&ren->ren_authlist);
751 		exi_rele(ren->ren_exi);
752 		kmem_free(ren, sizeof (refreshq_exi_node_t));
753 	}
754 
755 	refreshq_thread_state = REFRESHQ_THREAD_HALTED;
756 	cv_broadcast(&refreshq_cv);
757 	CALLB_CPR_EXIT(&cprinfo);
758 	zthread_exit();
759 }
760 
761 int
762 nfsauth_cache_clnt_compar(const void *v1, const void *v2)
763 {
764 	int c;
765 
766 	const struct auth_cache_clnt *a1 = (const struct auth_cache_clnt *)v1;
767 	const struct auth_cache_clnt *a2 = (const struct auth_cache_clnt *)v2;
768 
769 	if (a1->authc_addr.len < a2->authc_addr.len)
770 		return (-1);
771 	if (a1->authc_addr.len > a2->authc_addr.len)
772 		return (1);
773 
774 	c = memcmp(a1->authc_addr.buf, a2->authc_addr.buf, a1->authc_addr.len);
775 	if (c < 0)
776 		return (-1);
777 	if (c > 0)
778 		return (1);
779 
780 	return (0);
781 }
782 
783 static int
784 nfsauth_cache_compar(const void *v1, const void *v2)
785 {
786 	int c;
787 
788 	const struct auth_cache *a1 = (const struct auth_cache *)v1;
789 	const struct auth_cache *a2 = (const struct auth_cache *)v2;
790 
791 	if (a1->auth_flavor < a2->auth_flavor)
792 		return (-1);
793 	if (a1->auth_flavor > a2->auth_flavor)
794 		return (1);
795 
796 	if (crgetuid(a1->auth_clnt_cred) < crgetuid(a2->auth_clnt_cred))
797 		return (-1);
798 	if (crgetuid(a1->auth_clnt_cred) > crgetuid(a2->auth_clnt_cred))
799 		return (1);
800 
801 	if (crgetgid(a1->auth_clnt_cred) < crgetgid(a2->auth_clnt_cred))
802 		return (-1);
803 	if (crgetgid(a1->auth_clnt_cred) > crgetgid(a2->auth_clnt_cred))
804 		return (1);
805 
806 	if (crgetngroups(a1->auth_clnt_cred) < crgetngroups(a2->auth_clnt_cred))
807 		return (-1);
808 	if (crgetngroups(a1->auth_clnt_cred) > crgetngroups(a2->auth_clnt_cred))
809 		return (1);
810 
811 	c = memcmp(crgetgroups(a1->auth_clnt_cred),
812 	    crgetgroups(a2->auth_clnt_cred), crgetngroups(a1->auth_clnt_cred));
813 	if (c < 0)
814 		return (-1);
815 	if (c > 0)
816 		return (1);
817 
818 	return (0);
819 }
820 
821 /*
822  * Get the access information from the cache or callup to the mountd
823  * to get and cache the access information in the kernel.
824  */
825 static int
826 nfsauth_cache_get(struct exportinfo *exi, struct svc_req *req, int flavor,
827     cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
828 {
829 	struct netbuf		*taddrmask;
830 	struct netbuf		addr;	/* temporary copy of client's address */
831 	const struct netbuf	*claddr;
832 	avl_tree_t		*tree;
833 	struct auth_cache	ac;	/* used as a template for avl_find() */
834 	struct auth_cache_clnt	*c;
835 	struct auth_cache_clnt	acc;	/* used as a template for avl_find() */
836 	struct auth_cache	*p = NULL;
837 	int			access;
838 
839 	uid_t			tmpuid;
840 	gid_t			tmpgid;
841 	uint_t			tmpngids;
842 	gid_t			*tmpgids;
843 
844 	avl_index_t		where;	/* used for avl_find()/avl_insert() */
845 
846 	ASSERT(cr != NULL);
847 
848 	/*
849 	 * Now check whether this client already
850 	 * has an entry for this flavor in the cache
851 	 * for this export.
852 	 * Get the caller's address, mask off the
853 	 * parts of the address that do not identify
854 	 * the host (port number, etc), and then hash
855 	 * it to find the chain of cache entries.
856 	 */
857 
858 	claddr = svc_getrpccaller(req->rq_xprt);
859 	addr = *claddr;
860 	addr.buf = kmem_alloc(addr.maxlen, KM_SLEEP);
861 	bcopy(claddr->buf, addr.buf, claddr->len);
862 
863 	SVC_GETADDRMASK(req->rq_xprt, SVC_TATTR_ADDRMASK, (void **)&taddrmask);
864 	ASSERT(taddrmask != NULL);
865 	addrmask(&addr, taddrmask);
866 
867 	ac.auth_flavor = flavor;
868 	ac.auth_clnt_cred = crdup(cr);
869 
870 	acc.authc_addr = addr;
871 
872 	tree = exi->exi_cache[hash(&addr)];
873 
874 	rw_enter(&exi->exi_cache_lock, RW_READER);
875 	c = (struct auth_cache_clnt *)avl_find(tree, &acc, NULL);
876 
877 	if (c == NULL) {
878 		struct auth_cache_clnt *nc;
879 
880 		rw_exit(&exi->exi_cache_lock);
881 
882 		nc = kmem_alloc(sizeof (*nc), KM_NOSLEEP | KM_NORMALPRI);
883 		if (nc == NULL)
884 			goto retrieve;
885 
886 		/*
887 		 * Initialize the new auth_cache_clnt
888 		 */
889 		nc->authc_addr = addr;
890 		nc->authc_addr.buf = kmem_alloc(addr.maxlen,
891 		    KM_NOSLEEP | KM_NORMALPRI);
892 		if (addr.maxlen != 0 && nc->authc_addr.buf == NULL) {
893 			kmem_free(nc, sizeof (*nc));
894 			goto retrieve;
895 		}
896 		bcopy(addr.buf, nc->authc_addr.buf, addr.len);
897 		rw_init(&nc->authc_lock, NULL, RW_DEFAULT, NULL);
898 		avl_create(&nc->authc_tree, nfsauth_cache_compar,
899 		    sizeof (struct auth_cache),
900 		    offsetof(struct auth_cache, auth_link));
901 
902 		rw_enter(&exi->exi_cache_lock, RW_WRITER);
903 		c = (struct auth_cache_clnt *)avl_find(tree, &acc, &where);
904 		if (c == NULL) {
905 			avl_insert(tree, nc, where);
906 			rw_downgrade(&exi->exi_cache_lock);
907 			c = nc;
908 		} else {
909 			rw_downgrade(&exi->exi_cache_lock);
910 
911 			avl_destroy(&nc->authc_tree);
912 			rw_destroy(&nc->authc_lock);
913 			kmem_free(nc->authc_addr.buf, nc->authc_addr.maxlen);
914 			kmem_free(nc, sizeof (*nc));
915 		}
916 	}
917 
918 	ASSERT(c != NULL);
919 
920 	rw_enter(&c->authc_lock, RW_READER);
921 	p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, NULL);
922 
923 	if (p == NULL) {
924 		struct auth_cache *np;
925 
926 		rw_exit(&c->authc_lock);
927 
928 		np = kmem_cache_alloc(exi_cache_handle,
929 		    KM_NOSLEEP | KM_NORMALPRI);
930 		if (np == NULL) {
931 			rw_exit(&exi->exi_cache_lock);
932 			goto retrieve;
933 		}
934 
935 		/*
936 		 * Initialize the new auth_cache
937 		 */
938 		np->auth_clnt = c;
939 		np->auth_flavor = flavor;
940 		np->auth_clnt_cred = ac.auth_clnt_cred;
941 		np->auth_srv_ngids = 0;
942 		np->auth_srv_gids = NULL;
943 		np->auth_time = np->auth_freshness = gethrestime_sec();
944 		np->auth_state = NFS_AUTH_NEW;
945 		mutex_init(&np->auth_lock, NULL, MUTEX_DEFAULT, NULL);
946 		cv_init(&np->auth_cv, NULL, CV_DEFAULT, NULL);
947 
948 		rw_enter(&c->authc_lock, RW_WRITER);
949 		rw_exit(&exi->exi_cache_lock);
950 
951 		p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, &where);
952 		if (p == NULL) {
953 			avl_insert(&c->authc_tree, np, where);
954 			rw_downgrade(&c->authc_lock);
955 			p = np;
956 		} else {
957 			rw_downgrade(&c->authc_lock);
958 
959 			cv_destroy(&np->auth_cv);
960 			mutex_destroy(&np->auth_lock);
961 			crfree(ac.auth_clnt_cred);
962 			kmem_cache_free(exi_cache_handle, np);
963 		}
964 	} else {
965 		rw_exit(&exi->exi_cache_lock);
966 		crfree(ac.auth_clnt_cred);
967 	}
968 
969 	mutex_enter(&p->auth_lock);
970 	rw_exit(&c->authc_lock);
971 
972 	/*
973 	 * If the entry is in the WAITING state then some other thread is just
974 	 * retrieving the required info.  The entry was either NEW, or the list
975 	 * of client's supplemental groups is going to be changed (either by
976 	 * this thread, or by some other thread).  We need to wait until the
977 	 * nfsauth_retrieve() is done.
978 	 */
979 	while (p->auth_state == NFS_AUTH_WAITING)
980 		cv_wait(&p->auth_cv, &p->auth_lock);
981 
982 	/*
983 	 * Here the entry cannot be in WAITING or INVALID state.
984 	 */
985 	ASSERT(p->auth_state != NFS_AUTH_WAITING);
986 	ASSERT(p->auth_state != NFS_AUTH_INVALID);
987 
988 	/*
989 	 * If the cache entry is not valid yet, we need to retrieve the
990 	 * info ourselves.
991 	 */
992 	if (p->auth_state == NFS_AUTH_NEW) {
993 		bool_t res;
994 		/*
995 		 * NFS_AUTH_NEW is the default output auth_state value in a
996 		 * case we failed somewhere below.
997 		 */
998 		auth_state_t state = NFS_AUTH_NEW;
999 
1000 		p->auth_state = NFS_AUTH_WAITING;
1001 		mutex_exit(&p->auth_lock);
1002 		kmem_free(addr.buf, addr.maxlen);
1003 		addr = p->auth_clnt->authc_addr;
1004 
1005 		atomic_inc_uint(&nfsauth_cache_miss);
1006 
1007 		res = nfsauth_retrieve(exi, svc_getnetid(req->rq_xprt), flavor,
1008 		    &addr, &access, cr, &tmpuid, &tmpgid, &tmpngids, &tmpgids);
1009 
1010 		p->auth_access = access;
1011 		p->auth_time = p->auth_freshness = gethrestime_sec();
1012 
1013 		if (res == TRUE) {
1014 			if (uid != NULL)
1015 				*uid = tmpuid;
1016 			if (gid != NULL)
1017 				*gid = tmpgid;
1018 			if (ngids != NULL && gids != NULL) {
1019 				*ngids = tmpngids;
1020 				*gids = tmpgids;
1021 
1022 				/*
1023 				 * We need a copy of gids for the
1024 				 * auth_cache entry
1025 				 */
1026 				tmpgids = kmem_alloc(tmpngids * sizeof (gid_t),
1027 				    KM_NOSLEEP | KM_NORMALPRI);
1028 				if (tmpgids != NULL)
1029 					bcopy(*gids, tmpgids,
1030 					    tmpngids * sizeof (gid_t));
1031 			}
1032 
1033 			if (tmpgids != NULL || tmpngids == 0) {
1034 				p->auth_srv_uid = tmpuid;
1035 				p->auth_srv_gid = tmpgid;
1036 				p->auth_srv_ngids = tmpngids;
1037 				p->auth_srv_gids = tmpgids;
1038 
1039 				state = NFS_AUTH_FRESH;
1040 			}
1041 		}
1042 
1043 		/*
1044 		 * Set the auth_state and notify waiters.
1045 		 */
1046 		mutex_enter(&p->auth_lock);
1047 		p->auth_state = state;
1048 		cv_broadcast(&p->auth_cv);
1049 		mutex_exit(&p->auth_lock);
1050 	} else {
1051 		uint_t nach;
1052 		time_t refresh;
1053 
1054 		refresh = gethrestime_sec() - p->auth_freshness;
1055 
1056 		p->auth_time = gethrestime_sec();
1057 
1058 		if (uid != NULL)
1059 			*uid = p->auth_srv_uid;
1060 		if (gid != NULL)
1061 			*gid = p->auth_srv_gid;
1062 		if (ngids != NULL && gids != NULL) {
1063 			if ((*ngids = p->auth_srv_ngids) != 0) {
1064 				size_t sz = *ngids * sizeof (gid_t);
1065 				*gids = kmem_alloc(sz, KM_SLEEP);
1066 				bcopy(p->auth_srv_gids, *gids, sz);
1067 			} else {
1068 				*gids = NULL;
1069 			}
1070 		}
1071 
1072 		access = p->auth_access;
1073 
1074 		if ((refresh > NFSAUTH_CACHE_REFRESH) &&
1075 		    p->auth_state == NFS_AUTH_FRESH) {
1076 			refreshq_auth_node_t *ran;
1077 			uint_t nacr;
1078 
1079 			p->auth_state = NFS_AUTH_STALE;
1080 			mutex_exit(&p->auth_lock);
1081 
1082 			nacr = atomic_inc_uint_nv(&nfsauth_cache_refresh);
1083 			DTRACE_PROBE3(nfsauth__debug__cache__stale,
1084 			    struct exportinfo *, exi,
1085 			    struct auth_cache *, p,
1086 			    uint_t, nacr);
1087 
1088 			ran = kmem_alloc(sizeof (refreshq_auth_node_t),
1089 			    KM_SLEEP);
1090 			ran->ran_auth = p;
1091 			ran->ran_netid = strdup(svc_getnetid(req->rq_xprt));
1092 
1093 			mutex_enter(&refreshq_lock);
1094 			/*
1095 			 * We should not add a work queue
1096 			 * item if the thread is not
1097 			 * accepting them.
1098 			 */
1099 			if (refreshq_thread_state == REFRESHQ_THREAD_RUNNING) {
1100 				refreshq_exi_node_t *ren;
1101 
1102 				/*
1103 				 * Is there an existing exi_list?
1104 				 */
1105 				for (ren = list_head(&refreshq_queue);
1106 				    ren != NULL;
1107 				    ren = list_next(&refreshq_queue, ren)) {
1108 					if (ren->ren_exi == exi) {
1109 						list_insert_tail(
1110 						    &ren->ren_authlist, ran);
1111 						break;
1112 					}
1113 				}
1114 
1115 				if (ren == NULL) {
1116 					ren = kmem_alloc(
1117 					    sizeof (refreshq_exi_node_t),
1118 					    KM_SLEEP);
1119 
1120 					exi_hold(exi);
1121 					ren->ren_exi = exi;
1122 
1123 					list_create(&ren->ren_authlist,
1124 					    sizeof (refreshq_auth_node_t),
1125 					    offsetof(refreshq_auth_node_t,
1126 					    ran_node));
1127 
1128 					list_insert_tail(&ren->ren_authlist,
1129 					    ran);
1130 					list_insert_tail(&refreshq_queue, ren);
1131 				}
1132 
1133 				cv_broadcast(&refreshq_cv);
1134 			} else {
1135 				strfree(ran->ran_netid);
1136 				kmem_free(ran, sizeof (refreshq_auth_node_t));
1137 			}
1138 
1139 			mutex_exit(&refreshq_lock);
1140 		} else {
1141 			mutex_exit(&p->auth_lock);
1142 		}
1143 
1144 		nach = atomic_inc_uint_nv(&nfsauth_cache_hit);
1145 		DTRACE_PROBE2(nfsauth__debug__cache__hit,
1146 		    uint_t, nach,
1147 		    time_t, refresh);
1148 
1149 		kmem_free(addr.buf, addr.maxlen);
1150 	}
1151 
1152 	return (access);
1153 
1154 retrieve:
1155 	crfree(ac.auth_clnt_cred);
1156 
1157 	/*
1158 	 * Retrieve the required data without caching.
1159 	 */
1160 
1161 	ASSERT(p == NULL);
1162 
1163 	atomic_inc_uint(&nfsauth_cache_miss);
1164 
1165 	if (nfsauth_retrieve(exi, svc_getnetid(req->rq_xprt), flavor, &addr,
1166 	    &access, cr, &tmpuid, &tmpgid, &tmpngids, &tmpgids)) {
1167 		if (uid != NULL)
1168 			*uid = tmpuid;
1169 		if (gid != NULL)
1170 			*gid = tmpgid;
1171 		if (ngids != NULL && gids != NULL) {
1172 			*ngids = tmpngids;
1173 			*gids = tmpgids;
1174 		} else {
1175 			kmem_free(tmpgids, tmpngids * sizeof (gid_t));
1176 		}
1177 	}
1178 
1179 	kmem_free(addr.buf, addr.maxlen);
1180 
1181 	return (access);
1182 }
1183 
1184 /*
1185  * Check if the requesting client has access to the filesystem with
1186  * a given nfs flavor number which is an explicitly shared flavor.
1187  */
1188 int
1189 nfsauth4_secinfo_access(struct exportinfo *exi, struct svc_req *req,
1190     int flavor, int perm, cred_t *cr)
1191 {
1192 	int access;
1193 
1194 	if (! (perm & M_4SEC_EXPORTED)) {
1195 		return (NFSAUTH_DENIED);
1196 	}
1197 
1198 	/*
1199 	 * Optimize if there are no lists
1200 	 */
1201 	if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0) {
1202 		perm &= ~M_4SEC_EXPORTED;
1203 		if (perm == M_RO)
1204 			return (NFSAUTH_RO);
1205 		if (perm == M_RW)
1206 			return (NFSAUTH_RW);
1207 	}
1208 
1209 	access = nfsauth_cache_get(exi, req, flavor, cr, NULL, NULL, NULL,
1210 	    NULL);
1211 
1212 	return (access);
1213 }
1214 
1215 int
1216 nfsauth_access(struct exportinfo *exi, struct svc_req *req, cred_t *cr,
1217     uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
1218 {
1219 	int access, mapaccess;
1220 	struct secinfo *sp;
1221 	int i, flavor, perm;
1222 	int authnone_entry = -1;
1223 
1224 	/*
1225 	 * By default root is mapped to anonymous user.
1226 	 * This might get overriden later in nfsauth_cache_get().
1227 	 */
1228 	if (crgetuid(cr) == 0) {
1229 		if (uid != NULL)
1230 			*uid = exi->exi_export.ex_anon;
1231 		if (gid != NULL)
1232 			*gid = exi->exi_export.ex_anon;
1233 	} else {
1234 		if (uid != NULL)
1235 			*uid = crgetuid(cr);
1236 		if (gid != NULL)
1237 			*gid = crgetgid(cr);
1238 	}
1239 
1240 	if (ngids != NULL)
1241 		*ngids = 0;
1242 	if (gids != NULL)
1243 		*gids = NULL;
1244 
1245 	/*
1246 	 *  Get the nfs flavor number from xprt.
1247 	 */
1248 	flavor = (int)(uintptr_t)req->rq_xprt->xp_cookie;
1249 
1250 	/*
1251 	 * First check the access restrictions on the filesystem.  If
1252 	 * there are no lists associated with this flavor then there's no
1253 	 * need to make an expensive call to the nfsauth service or to
1254 	 * cache anything.
1255 	 */
1256 
1257 	sp = exi->exi_export.ex_secinfo;
1258 	for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
1259 		if (flavor != sp[i].s_secinfo.sc_nfsnum) {
1260 			if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE)
1261 				authnone_entry = i;
1262 			continue;
1263 		}
1264 		break;
1265 	}
1266 
1267 	mapaccess = 0;
1268 
1269 	if (i >= exi->exi_export.ex_seccnt) {
1270 		/*
1271 		 * Flavor not found, but use AUTH_NONE if it exists
1272 		 */
1273 		if (authnone_entry == -1)
1274 			return (NFSAUTH_DENIED);
1275 		flavor = AUTH_NONE;
1276 		mapaccess = NFSAUTH_MAPNONE;
1277 		i = authnone_entry;
1278 	}
1279 
1280 	/*
1281 	 * If the flavor is in the ex_secinfo list, but not an explicitly
1282 	 * shared flavor by the user, it is a result of the nfsv4 server
1283 	 * namespace setup. We will grant an RO permission similar for
1284 	 * a pseudo node except that this node is a shared one.
1285 	 *
1286 	 * e.g. flavor in (flavor) indicates that it is not explictly
1287 	 *	shared by the user:
1288 	 *
1289 	 *		/	(sys, krb5)
1290 	 *		|
1291 	 *		export  #share -o sec=sys (krb5)
1292 	 *		|
1293 	 *		secure  #share -o sec=krb5
1294 	 *
1295 	 *	In this case, when a krb5 request coming in to access
1296 	 *	/export, RO permission is granted.
1297 	 */
1298 	if (!(sp[i].s_flags & M_4SEC_EXPORTED))
1299 		return (mapaccess | NFSAUTH_RO);
1300 
1301 	/*
1302 	 * Optimize if there are no lists.
1303 	 * We cannot optimize for AUTH_SYS with NGRPS (16) supplemental groups.
1304 	 */
1305 	perm = sp[i].s_flags;
1306 	if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0 && (ngroups_max <= NGRPS ||
1307 	    flavor != AUTH_SYS || crgetngroups(cr) < NGRPS)) {
1308 		perm &= ~M_4SEC_EXPORTED;
1309 		if (perm == M_RO)
1310 			return (mapaccess | NFSAUTH_RO);
1311 		if (perm == M_RW)
1312 			return (mapaccess | NFSAUTH_RW);
1313 	}
1314 
1315 	access = nfsauth_cache_get(exi, req, flavor, cr, uid, gid, ngids, gids);
1316 
1317 	/*
1318 	 * For both NFSAUTH_DENIED and NFSAUTH_WRONGSEC we do not care about
1319 	 * the supplemental groups.
1320 	 */
1321 	if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
1322 		if (ngids != NULL && gids != NULL) {
1323 			kmem_free(*gids, *ngids * sizeof (gid_t));
1324 			*ngids = 0;
1325 			*gids = NULL;
1326 		}
1327 	}
1328 
1329 	/*
1330 	 * Client's security flavor doesn't match with "ro" or
1331 	 * "rw" list. Try again using AUTH_NONE if present.
1332 	 */
1333 	if ((access & NFSAUTH_WRONGSEC) && (flavor != AUTH_NONE)) {
1334 		/*
1335 		 * Have we already encountered AUTH_NONE ?
1336 		 */
1337 		if (authnone_entry != -1) {
1338 			mapaccess = NFSAUTH_MAPNONE;
1339 			access = nfsauth_cache_get(exi, req, AUTH_NONE, cr,
1340 			    NULL, NULL, NULL, NULL);
1341 		} else {
1342 			/*
1343 			 * Check for AUTH_NONE presence.
1344 			 */
1345 			for (; i < exi->exi_export.ex_seccnt; i++) {
1346 				if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) {
1347 					mapaccess = NFSAUTH_MAPNONE;
1348 					access = nfsauth_cache_get(exi, req,
1349 					    AUTH_NONE, cr, NULL, NULL, NULL,
1350 					    NULL);
1351 					break;
1352 				}
1353 			}
1354 		}
1355 	}
1356 
1357 	if (access & NFSAUTH_DENIED)
1358 		access = NFSAUTH_DENIED;
1359 
1360 	return (access | mapaccess);
1361 }
1362 
1363 static void
1364 nfsauth_free_clnt_node(struct auth_cache_clnt *p)
1365 {
1366 	void *cookie = NULL;
1367 	struct auth_cache *node;
1368 
1369 	while ((node = avl_destroy_nodes(&p->authc_tree, &cookie)) != NULL)
1370 		nfsauth_free_node(node);
1371 	avl_destroy(&p->authc_tree);
1372 
1373 	kmem_free(p->authc_addr.buf, p->authc_addr.maxlen);
1374 	rw_destroy(&p->authc_lock);
1375 
1376 	kmem_free(p, sizeof (*p));
1377 }
1378 
1379 static void
1380 nfsauth_free_node(struct auth_cache *p)
1381 {
1382 	crfree(p->auth_clnt_cred);
1383 	kmem_free(p->auth_srv_gids, p->auth_srv_ngids * sizeof (gid_t));
1384 	mutex_destroy(&p->auth_lock);
1385 	cv_destroy(&p->auth_cv);
1386 	kmem_cache_free(exi_cache_handle, p);
1387 }
1388 
1389 /*
1390  * Free the nfsauth cache for a given export
1391  */
1392 void
1393 nfsauth_cache_free(struct exportinfo *exi)
1394 {
1395 	int i;
1396 
1397 	/*
1398 	 * The only way we got here was with an exi_rele, which means that no
1399 	 * auth cache entry is being refreshed.
1400 	 */
1401 
1402 	for (i = 0; i < AUTH_TABLESIZE; i++) {
1403 		avl_tree_t *tree = exi->exi_cache[i];
1404 		void *cookie = NULL;
1405 		struct auth_cache_clnt *node;
1406 
1407 		while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
1408 			nfsauth_free_clnt_node(node);
1409 	}
1410 }
1411 
1412 /*
1413  * Called by the kernel memory allocator when
1414  * memory is low. Free unused cache entries.
1415  * If that's not enough, the VM system will
1416  * call again for some more.
1417  */
1418 /*ARGSUSED*/
1419 void
1420 exi_cache_reclaim(void *cdrarg)
1421 {
1422 	int i;
1423 	struct exportinfo *exi;
1424 
1425 	rw_enter(&exported_lock, RW_READER);
1426 
1427 	for (i = 0; i < EXPTABLESIZE; i++) {
1428 		for (exi = exptable[i]; exi; exi = exi->fid_hash.next) {
1429 			exi_cache_trim(exi);
1430 		}
1431 	}
1432 
1433 	rw_exit(&exported_lock);
1434 
1435 	atomic_inc_uint(&nfsauth_cache_reclaim);
1436 }
1437 
1438 void
1439 exi_cache_trim(struct exportinfo *exi)
1440 {
1441 	struct auth_cache_clnt *c;
1442 	struct auth_cache_clnt *nextc;
1443 	struct auth_cache *p;
1444 	struct auth_cache *next;
1445 	int i;
1446 	time_t stale_time;
1447 	avl_tree_t *tree;
1448 
1449 	for (i = 0; i < AUTH_TABLESIZE; i++) {
1450 		tree = exi->exi_cache[i];
1451 		stale_time = gethrestime_sec() - NFSAUTH_CACHE_TRIM;
1452 		rw_enter(&exi->exi_cache_lock, RW_READER);
1453 
1454 		/*
1455 		 * Free entries that have not been
1456 		 * used for NFSAUTH_CACHE_TRIM seconds.
1457 		 */
1458 		for (c = avl_first(tree); c != NULL; c = AVL_NEXT(tree, c)) {
1459 			/*
1460 			 * We are being called by the kmem subsystem to reclaim
1461 			 * memory so don't block if we can't get the lock.
1462 			 */
1463 			if (rw_tryenter(&c->authc_lock, RW_WRITER) == 0) {
1464 				exi_cache_auth_reclaim_failed++;
1465 				rw_exit(&exi->exi_cache_lock);
1466 				return;
1467 			}
1468 
1469 			for (p = avl_first(&c->authc_tree); p != NULL;
1470 			    p = next) {
1471 				next = AVL_NEXT(&c->authc_tree, p);
1472 
1473 				ASSERT(p->auth_state != NFS_AUTH_INVALID);
1474 
1475 				mutex_enter(&p->auth_lock);
1476 
1477 				/*
1478 				 * We won't trim recently used and/or WAITING
1479 				 * entries.
1480 				 */
1481 				if (p->auth_time > stale_time ||
1482 				    p->auth_state == NFS_AUTH_WAITING) {
1483 					mutex_exit(&p->auth_lock);
1484 					continue;
1485 				}
1486 
1487 				DTRACE_PROBE1(nfsauth__debug__trim__state,
1488 				    auth_state_t, p->auth_state);
1489 
1490 				/*
1491 				 * STALE and REFRESHING entries needs to be
1492 				 * marked INVALID only because they are
1493 				 * referenced by some other structures or
1494 				 * threads.  They will be freed later.
1495 				 */
1496 				if (p->auth_state == NFS_AUTH_STALE ||
1497 				    p->auth_state == NFS_AUTH_REFRESHING) {
1498 					p->auth_state = NFS_AUTH_INVALID;
1499 					mutex_exit(&p->auth_lock);
1500 
1501 					avl_remove(&c->authc_tree, p);
1502 				} else {
1503 					mutex_exit(&p->auth_lock);
1504 
1505 					avl_remove(&c->authc_tree, p);
1506 					nfsauth_free_node(p);
1507 				}
1508 			}
1509 			rw_exit(&c->authc_lock);
1510 		}
1511 
1512 		if (rw_tryupgrade(&exi->exi_cache_lock) == 0) {
1513 			rw_exit(&exi->exi_cache_lock);
1514 			exi_cache_clnt_reclaim_failed++;
1515 			continue;
1516 		}
1517 
1518 		for (c = avl_first(tree); c != NULL; c = nextc) {
1519 			nextc = AVL_NEXT(tree, c);
1520 
1521 			if (avl_is_empty(&c->authc_tree) == B_FALSE)
1522 				continue;
1523 
1524 			avl_remove(tree, c);
1525 
1526 			nfsauth_free_clnt_node(c);
1527 		}
1528 
1529 		rw_exit(&exi->exi_cache_lock);
1530 	}
1531 }
1532