xref: /illumos-gate/usr/src/uts/common/dtrace/dtrace.c (revision f7ecc608dd732e7b1f2760725ded79c8afba20bd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2018, Joyent, Inc.
25  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26  */
27 
28 /*
29  * DTrace - Dynamic Tracing for Solaris
30  *
31  * This is the implementation of the Solaris Dynamic Tracing framework
32  * (DTrace).  The user-visible interface to DTrace is described at length in
33  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
34  * library, the in-kernel DTrace framework, and the DTrace providers are
35  * described in the block comments in the <sys/dtrace.h> header file.  The
36  * internal architecture of DTrace is described in the block comments in the
37  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
38  * implementation very much assume mastery of all of these sources; if one has
39  * an unanswered question about the implementation, one should consult them
40  * first.
41  *
42  * The functions here are ordered roughly as follows:
43  *
44  *   - Probe context functions
45  *   - Probe hashing functions
46  *   - Non-probe context utility functions
47  *   - Matching functions
48  *   - Provider-to-Framework API functions
49  *   - Probe management functions
50  *   - DIF object functions
51  *   - Format functions
52  *   - Predicate functions
53  *   - ECB functions
54  *   - Buffer functions
55  *   - Enabling functions
56  *   - DOF functions
57  *   - Anonymous enabling functions
58  *   - Consumer state functions
59  *   - Helper functions
60  *   - Hook functions
61  *   - Driver cookbook functions
62  *
63  * Each group of functions begins with a block comment labelled the "DTrace
64  * [Group] Functions", allowing one to find each block by searching forward
65  * on capital-f functions.
66  */
67 #include <sys/errno.h>
68 #include <sys/stat.h>
69 #include <sys/modctl.h>
70 #include <sys/conf.h>
71 #include <sys/systm.h>
72 #include <sys/ddi.h>
73 #include <sys/sunddi.h>
74 #include <sys/cpuvar.h>
75 #include <sys/kmem.h>
76 #include <sys/strsubr.h>
77 #include <sys/sysmacros.h>
78 #include <sys/dtrace_impl.h>
79 #include <sys/atomic.h>
80 #include <sys/cmn_err.h>
81 #include <sys/mutex_impl.h>
82 #include <sys/rwlock_impl.h>
83 #include <sys/ctf_api.h>
84 #include <sys/panic.h>
85 #include <sys/priv_impl.h>
86 #include <sys/policy.h>
87 #include <sys/cred_impl.h>
88 #include <sys/procfs_isa.h>
89 #include <sys/taskq.h>
90 #include <sys/mkdev.h>
91 #include <sys/kdi.h>
92 #include <sys/zone.h>
93 #include <sys/socket.h>
94 #include <netinet/in.h>
95 #include "strtolctype.h"
96 
97 /*
98  * DTrace Tunable Variables
99  *
100  * The following variables may be tuned by adding a line to /etc/system that
101  * includes both the name of the DTrace module ("dtrace") and the name of the
102  * variable.  For example:
103  *
104  *   set dtrace:dtrace_destructive_disallow = 1
105  *
106  * In general, the only variables that one should be tuning this way are those
107  * that affect system-wide DTrace behavior, and for which the default behavior
108  * is undesirable.  Most of these variables are tunable on a per-consumer
109  * basis using DTrace options, and need not be tuned on a system-wide basis.
110  * When tuning these variables, avoid pathological values; while some attempt
111  * is made to verify the integrity of these variables, they are not considered
112  * part of the supported interface to DTrace, and they are therefore not
113  * checked comprehensively.  Further, these variables should not be tuned
114  * dynamically via "mdb -kw" or other means; they should only be tuned via
115  * /etc/system.
116  */
117 int		dtrace_destructive_disallow = 0;
118 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
119 size_t		dtrace_difo_maxsize = (256 * 1024);
120 dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
121 size_t		dtrace_statvar_maxsize = (16 * 1024);
122 size_t		dtrace_actions_max = (16 * 1024);
123 size_t		dtrace_retain_max = 1024;
124 dtrace_optval_t	dtrace_helper_actions_max = 1024;
125 dtrace_optval_t	dtrace_helper_providers_max = 32;
126 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
127 size_t		dtrace_strsize_default = 256;
128 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
129 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
130 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
131 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
132 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
134 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
135 dtrace_optval_t	dtrace_nspec_default = 1;
136 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
137 dtrace_optval_t dtrace_stackframes_default = 20;
138 dtrace_optval_t dtrace_ustackframes_default = 20;
139 dtrace_optval_t dtrace_jstackframes_default = 50;
140 dtrace_optval_t dtrace_jstackstrsize_default = 512;
141 int		dtrace_msgdsize_max = 128;
142 hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
143 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
144 int		dtrace_devdepth_max = 32;
145 int		dtrace_err_verbose;
146 hrtime_t	dtrace_deadman_interval = NANOSEC;
147 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
148 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
149 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
150 
151 /*
152  * DTrace External Variables
153  *
154  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
155  * available to DTrace consumers via the backtick (`) syntax.  One of these,
156  * dtrace_zero, is made deliberately so:  it is provided as a source of
157  * well-known, zero-filled memory.  While this variable is not documented,
158  * it is used by some translators as an implementation detail.
159  */
160 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
161 
162 /*
163  * DTrace Internal Variables
164  */
165 static dev_info_t	*dtrace_devi;		/* device info */
166 static vmem_t		*dtrace_arena;		/* probe ID arena */
167 static vmem_t		*dtrace_minor;		/* minor number arena */
168 static taskq_t		*dtrace_taskq;		/* task queue */
169 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
170 static int		dtrace_nprobes;		/* number of probes */
171 static dtrace_provider_t *dtrace_provider;	/* provider list */
172 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
173 static int		dtrace_opens;		/* number of opens */
174 static int		dtrace_helpers;		/* number of helpers */
175 static int		dtrace_getf;		/* number of unpriv getf()s */
176 static void		*dtrace_softstate;	/* softstate pointer */
177 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
178 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
179 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
180 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
181 static int		dtrace_toxranges;	/* number of toxic ranges */
182 static int		dtrace_toxranges_max;	/* size of toxic range array */
183 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
184 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
185 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
186 static kthread_t	*dtrace_panicked;	/* panicking thread */
187 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
188 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
189 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
190 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
191 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
192 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
193 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
194 
195 /*
196  * DTrace Locking
197  * DTrace is protected by three (relatively coarse-grained) locks:
198  *
199  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
200  *     including enabling state, probes, ECBs, consumer state, helper state,
201  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
202  *     probe context is lock-free -- synchronization is handled via the
203  *     dtrace_sync() cross call mechanism.
204  *
205  * (2) dtrace_provider_lock is required when manipulating provider state, or
206  *     when provider state must be held constant.
207  *
208  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
209  *     when meta provider state must be held constant.
210  *
211  * The lock ordering between these three locks is dtrace_meta_lock before
212  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
213  * several places where dtrace_provider_lock is held by the framework as it
214  * calls into the providers -- which then call back into the framework,
215  * grabbing dtrace_lock.)
216  *
217  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
218  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
219  * role as a coarse-grained lock; it is acquired before both of these locks.
220  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
221  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
222  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
223  * acquired _between_ dtrace_provider_lock and dtrace_lock.
224  */
225 static kmutex_t		dtrace_lock;		/* probe state lock */
226 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
227 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
228 
229 /*
230  * DTrace Provider Variables
231  *
232  * These are the variables relating to DTrace as a provider (that is, the
233  * provider of the BEGIN, END, and ERROR probes).
234  */
235 static dtrace_pattr_t	dtrace_provider_attr = {
236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
241 };
242 
243 static void
244 dtrace_nullop(void)
245 {}
246 
247 static int
248 dtrace_enable_nullop(void)
249 {
250 	return (0);
251 }
252 
253 static dtrace_pops_t	dtrace_provider_ops = {
254 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
255 	(void (*)(void *, struct modctl *))dtrace_nullop,
256 	(int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
257 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
258 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
259 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
260 	NULL,
261 	NULL,
262 	NULL,
263 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
264 };
265 
266 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
267 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
268 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
269 
270 /*
271  * DTrace Helper Tracing Variables
272  *
273  * These variables should be set dynamically to enable helper tracing.  The
274  * only variables that should be set are dtrace_helptrace_enable (which should
275  * be set to a non-zero value to allocate helper tracing buffers on the next
276  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
277  * non-zero value to deallocate helper tracing buffers on the next close of
278  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
279  * buffer size may also be set via dtrace_helptrace_bufsize.
280  */
281 int			dtrace_helptrace_enable = 0;
282 int			dtrace_helptrace_disable = 0;
283 int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
284 uint32_t		dtrace_helptrace_nlocals;
285 static dtrace_helptrace_t *dtrace_helptrace_buffer;
286 static uint32_t		dtrace_helptrace_next = 0;
287 static int		dtrace_helptrace_wrapped = 0;
288 
289 /*
290  * DTrace Error Hashing
291  *
292  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
293  * table.  This is very useful for checking coverage of tests that are
294  * expected to induce DIF or DOF processing errors, and may be useful for
295  * debugging problems in the DIF code generator or in DOF generation .  The
296  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
297  */
298 #ifdef DEBUG
299 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
300 static const char *dtrace_errlast;
301 static kthread_t *dtrace_errthread;
302 static kmutex_t dtrace_errlock;
303 #endif
304 
305 /*
306  * DTrace Macros and Constants
307  *
308  * These are various macros that are useful in various spots in the
309  * implementation, along with a few random constants that have no meaning
310  * outside of the implementation.  There is no real structure to this cpp
311  * mishmash -- but is there ever?
312  */
313 #define	DTRACE_HASHSTR(hash, probe)	\
314 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
315 
316 #define	DTRACE_HASHNEXT(hash, probe)	\
317 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
318 
319 #define	DTRACE_HASHPREV(hash, probe)	\
320 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
321 
322 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
323 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
324 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
325 
326 #define	DTRACE_AGGHASHSIZE_SLEW		17
327 
328 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
329 
330 /*
331  * The key for a thread-local variable consists of the lower 61 bits of the
332  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
333  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
334  * equal to a variable identifier.  This is necessary (but not sufficient) to
335  * assure that global associative arrays never collide with thread-local
336  * variables.  To guarantee that they cannot collide, we must also define the
337  * order for keying dynamic variables.  That order is:
338  *
339  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
340  *
341  * Because the variable-key and the tls-key are in orthogonal spaces, there is
342  * no way for a global variable key signature to match a thread-local key
343  * signature.
344  */
345 #define	DTRACE_TLS_THRKEY(where) { \
346 	uint_t intr = 0; \
347 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
348 	for (; actv; actv >>= 1) \
349 		intr++; \
350 	ASSERT(intr < (1 << 3)); \
351 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
352 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
353 }
354 
355 #define	DT_BSWAP_8(x)	((x) & 0xff)
356 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
357 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
358 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
359 
360 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
361 
362 #define	DTRACE_STORE(type, tomax, offset, what) \
363 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
364 
365 #ifndef __x86
366 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
367 	if (addr & (size - 1)) {					\
368 		*flags |= CPU_DTRACE_BADALIGN;				\
369 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
370 		return (0);						\
371 	}
372 #else
373 #define	DTRACE_ALIGNCHECK(addr, size, flags)
374 #endif
375 
376 /*
377  * Test whether a range of memory starting at testaddr of size testsz falls
378  * within the range of memory described by addr, sz.  We take care to avoid
379  * problems with overflow and underflow of the unsigned quantities, and
380  * disallow all negative sizes.  Ranges of size 0 are allowed.
381  */
382 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
383 	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
384 	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
385 	(testaddr) + (testsz) >= (testaddr))
386 
387 #define	DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz)		\
388 do {									\
389 	if ((remp) != NULL) {						\
390 		*(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr);	\
391 	}								\
392 _NOTE(CONSTCOND) } while (0)
393 
394 
395 /*
396  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
397  * alloc_sz on the righthand side of the comparison in order to avoid overflow
398  * or underflow in the comparison with it.  This is simpler than the INRANGE
399  * check above, because we know that the dtms_scratch_ptr is valid in the
400  * range.  Allocations of size zero are allowed.
401  */
402 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
403 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
404 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
405 
406 #define	DTRACE_LOADFUNC(bits)						\
407 /*CSTYLED*/								\
408 uint##bits##_t								\
409 dtrace_load##bits(uintptr_t addr)					\
410 {									\
411 	size_t size = bits / NBBY;					\
412 	/*CSTYLED*/							\
413 	uint##bits##_t rval;						\
414 	int i;								\
415 	volatile uint16_t *flags = (volatile uint16_t *)		\
416 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
417 									\
418 	DTRACE_ALIGNCHECK(addr, size, flags);				\
419 									\
420 	for (i = 0; i < dtrace_toxranges; i++) {			\
421 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
422 			continue;					\
423 									\
424 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
425 			continue;					\
426 									\
427 		/*							\
428 		 * This address falls within a toxic region; return 0.	\
429 		 */							\
430 		*flags |= CPU_DTRACE_BADADDR;				\
431 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
432 		return (0);						\
433 	}								\
434 									\
435 	*flags |= CPU_DTRACE_NOFAULT;					\
436 	/*CSTYLED*/							\
437 	rval = *((volatile uint##bits##_t *)addr);			\
438 	*flags &= ~CPU_DTRACE_NOFAULT;					\
439 									\
440 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
441 }
442 
443 #ifdef _LP64
444 #define	dtrace_loadptr	dtrace_load64
445 #else
446 #define	dtrace_loadptr	dtrace_load32
447 #endif
448 
449 #define	DTRACE_DYNHASH_FREE	0
450 #define	DTRACE_DYNHASH_SINK	1
451 #define	DTRACE_DYNHASH_VALID	2
452 
453 #define	DTRACE_MATCH_FAIL	-1
454 #define	DTRACE_MATCH_NEXT	0
455 #define	DTRACE_MATCH_DONE	1
456 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
457 #define	DTRACE_STATE_ALIGN	64
458 
459 #define	DTRACE_FLAGS2FLT(flags)						\
460 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
461 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
462 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
463 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
464 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
465 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
466 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
467 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
468 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
469 	DTRACEFLT_UNKNOWN)
470 
471 #define	DTRACEACT_ISSTRING(act)						\
472 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
473 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
474 
475 static size_t dtrace_strlen(const char *, size_t);
476 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
477 static void dtrace_enabling_provide(dtrace_provider_t *);
478 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
479 static void dtrace_enabling_matchall(void);
480 static void dtrace_enabling_reap(void);
481 static dtrace_state_t *dtrace_anon_grab(void);
482 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
483     dtrace_state_t *, uint64_t, uint64_t);
484 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
485 static void dtrace_buffer_drop(dtrace_buffer_t *);
486 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
487 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
488     dtrace_state_t *, dtrace_mstate_t *);
489 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
490     dtrace_optval_t);
491 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
492 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
493 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
494 static void dtrace_getf_barrier(void);
495 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
496     dtrace_mstate_t *, dtrace_vstate_t *);
497 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
498     dtrace_mstate_t *, dtrace_vstate_t *);
499 
500 /*
501  * DTrace Probe Context Functions
502  *
503  * These functions are called from probe context.  Because probe context is
504  * any context in which C may be called, arbitrarily locks may be held,
505  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
506  * As a result, functions called from probe context may only call other DTrace
507  * support functions -- they may not interact at all with the system at large.
508  * (Note that the ASSERT macro is made probe-context safe by redefining it in
509  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
510  * loads are to be performed from probe context, they _must_ be in terms of
511  * the safe dtrace_load*() variants.
512  *
513  * Some functions in this block are not actually called from probe context;
514  * for these functions, there will be a comment above the function reading
515  * "Note:  not called from probe context."
516  */
517 void
518 dtrace_panic(const char *format, ...)
519 {
520 	va_list alist;
521 
522 	va_start(alist, format);
523 	dtrace_vpanic(format, alist);
524 	va_end(alist);
525 }
526 
527 int
528 dtrace_assfail(const char *a, const char *f, int l)
529 {
530 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
531 
532 	/*
533 	 * We just need something here that even the most clever compiler
534 	 * cannot optimize away.
535 	 */
536 	return (a[(uintptr_t)f]);
537 }
538 
539 /*
540  * Atomically increment a specified error counter from probe context.
541  */
542 static void
543 dtrace_error(uint32_t *counter)
544 {
545 	/*
546 	 * Most counters stored to in probe context are per-CPU counters.
547 	 * However, there are some error conditions that are sufficiently
548 	 * arcane that they don't merit per-CPU storage.  If these counters
549 	 * are incremented concurrently on different CPUs, scalability will be
550 	 * adversely affected -- but we don't expect them to be white-hot in a
551 	 * correctly constructed enabling...
552 	 */
553 	uint32_t oval, nval;
554 
555 	do {
556 		oval = *counter;
557 
558 		if ((nval = oval + 1) == 0) {
559 			/*
560 			 * If the counter would wrap, set it to 1 -- assuring
561 			 * that the counter is never zero when we have seen
562 			 * errors.  (The counter must be 32-bits because we
563 			 * aren't guaranteed a 64-bit compare&swap operation.)
564 			 * To save this code both the infamy of being fingered
565 			 * by a priggish news story and the indignity of being
566 			 * the target of a neo-puritan witch trial, we're
567 			 * carefully avoiding any colorful description of the
568 			 * likelihood of this condition -- but suffice it to
569 			 * say that it is only slightly more likely than the
570 			 * overflow of predicate cache IDs, as discussed in
571 			 * dtrace_predicate_create().
572 			 */
573 			nval = 1;
574 		}
575 	} while (dtrace_cas32(counter, oval, nval) != oval);
576 }
577 
578 /*
579  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
580  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
581  */
582 /* BEGIN CSTYLED */
583 DTRACE_LOADFUNC(8)
584 DTRACE_LOADFUNC(16)
585 DTRACE_LOADFUNC(32)
586 DTRACE_LOADFUNC(64)
587 /* END CSTYLED */
588 
589 static int
590 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
591 {
592 	if (dest < mstate->dtms_scratch_base)
593 		return (0);
594 
595 	if (dest + size < dest)
596 		return (0);
597 
598 	if (dest + size > mstate->dtms_scratch_ptr)
599 		return (0);
600 
601 	return (1);
602 }
603 
604 static int
605 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
606     dtrace_statvar_t **svars, int nsvars)
607 {
608 	int i;
609 	size_t maxglobalsize, maxlocalsize;
610 
611 	if (nsvars == 0)
612 		return (0);
613 
614 	maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
615 	maxlocalsize = maxglobalsize * NCPU;
616 
617 	for (i = 0; i < nsvars; i++) {
618 		dtrace_statvar_t *svar = svars[i];
619 		uint8_t scope;
620 		size_t size;
621 
622 		if (svar == NULL || (size = svar->dtsv_size) == 0)
623 			continue;
624 
625 		scope = svar->dtsv_var.dtdv_scope;
626 
627 		/*
628 		 * We verify that our size is valid in the spirit of providing
629 		 * defense in depth:  we want to prevent attackers from using
630 		 * DTrace to escalate an orthogonal kernel heap corruption bug
631 		 * into the ability to store to arbitrary locations in memory.
632 		 */
633 		VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
634 		    (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
635 
636 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
637 		    svar->dtsv_size)) {
638 			DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
639 			    svar->dtsv_size);
640 			return (1);
641 		}
642 	}
643 
644 	return (0);
645 }
646 
647 /*
648  * Check to see if the address is within a memory region to which a store may
649  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
650  * region.  The caller of dtrace_canstore() is responsible for performing any
651  * alignment checks that are needed before stores are actually executed.
652  */
653 static int
654 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
655     dtrace_vstate_t *vstate)
656 {
657 	return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
658 }
659 
660 /*
661  * Implementation of dtrace_canstore which communicates the upper bound of the
662  * allowed memory region.
663  */
664 static int
665 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
666     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
667 {
668 	/*
669 	 * First, check to see if the address is in scratch space...
670 	 */
671 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
672 	    mstate->dtms_scratch_size)) {
673 		DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
674 		    mstate->dtms_scratch_size);
675 		return (1);
676 	}
677 
678 	/*
679 	 * Now check to see if it's a dynamic variable.  This check will pick
680 	 * up both thread-local variables and any global dynamically-allocated
681 	 * variables.
682 	 */
683 	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
684 	    vstate->dtvs_dynvars.dtds_size)) {
685 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
686 		uintptr_t base = (uintptr_t)dstate->dtds_base +
687 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
688 		uintptr_t chunkoffs;
689 		dtrace_dynvar_t *dvar;
690 
691 		/*
692 		 * Before we assume that we can store here, we need to make
693 		 * sure that it isn't in our metadata -- storing to our
694 		 * dynamic variable metadata would corrupt our state.  For
695 		 * the range to not include any dynamic variable metadata,
696 		 * it must:
697 		 *
698 		 *	(1) Start above the hash table that is at the base of
699 		 *	the dynamic variable space
700 		 *
701 		 *	(2) Have a starting chunk offset that is beyond the
702 		 *	dtrace_dynvar_t that is at the base of every chunk
703 		 *
704 		 *	(3) Not span a chunk boundary
705 		 *
706 		 *	(4) Not be in the tuple space of a dynamic variable
707 		 *
708 		 */
709 		if (addr < base)
710 			return (0);
711 
712 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
713 
714 		if (chunkoffs < sizeof (dtrace_dynvar_t))
715 			return (0);
716 
717 		if (chunkoffs + sz > dstate->dtds_chunksize)
718 			return (0);
719 
720 		dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
721 
722 		if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
723 			return (0);
724 
725 		if (chunkoffs < sizeof (dtrace_dynvar_t) +
726 		    ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
727 			return (0);
728 
729 		DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
730 		return (1);
731 	}
732 
733 	/*
734 	 * Finally, check the static local and global variables.  These checks
735 	 * take the longest, so we perform them last.
736 	 */
737 	if (dtrace_canstore_statvar(addr, sz, remain,
738 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
739 		return (1);
740 
741 	if (dtrace_canstore_statvar(addr, sz, remain,
742 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
743 		return (1);
744 
745 	return (0);
746 }
747 
748 
749 /*
750  * Convenience routine to check to see if the address is within a memory
751  * region in which a load may be issued given the user's privilege level;
752  * if not, it sets the appropriate error flags and loads 'addr' into the
753  * illegal value slot.
754  *
755  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
756  * appropriate memory access protection.
757  */
758 static int
759 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
760     dtrace_vstate_t *vstate)
761 {
762 	return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
763 }
764 
765 /*
766  * Implementation of dtrace_canload which communicates the upper bound of the
767  * allowed memory region.
768  */
769 static int
770 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
771     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
772 {
773 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
774 	file_t *fp;
775 
776 	/*
777 	 * If we hold the privilege to read from kernel memory, then
778 	 * everything is readable.
779 	 */
780 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
781 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
782 		return (1);
783 	}
784 
785 	/*
786 	 * You can obviously read that which you can store.
787 	 */
788 	if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
789 		return (1);
790 
791 	/*
792 	 * We're allowed to read from our own string table.
793 	 */
794 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
795 	    mstate->dtms_difo->dtdo_strlen)) {
796 		DTRACE_RANGE_REMAIN(remain, addr,
797 		    mstate->dtms_difo->dtdo_strtab,
798 		    mstate->dtms_difo->dtdo_strlen);
799 		return (1);
800 	}
801 
802 	if (vstate->dtvs_state != NULL &&
803 	    dtrace_priv_proc(vstate->dtvs_state, mstate)) {
804 		proc_t *p;
805 
806 		/*
807 		 * When we have privileges to the current process, there are
808 		 * several context-related kernel structures that are safe to
809 		 * read, even absent the privilege to read from kernel memory.
810 		 * These reads are safe because these structures contain only
811 		 * state that (1) we're permitted to read, (2) is harmless or
812 		 * (3) contains pointers to additional kernel state that we're
813 		 * not permitted to read (and as such, do not present an
814 		 * opportunity for privilege escalation).  Finally (and
815 		 * critically), because of the nature of their relation with
816 		 * the current thread context, the memory associated with these
817 		 * structures cannot change over the duration of probe context,
818 		 * and it is therefore impossible for this memory to be
819 		 * deallocated and reallocated as something else while it's
820 		 * being operated upon.
821 		 */
822 		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
823 			DTRACE_RANGE_REMAIN(remain, addr, curthread,
824 			    sizeof (kthread_t));
825 			return (1);
826 		}
827 
828 		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
829 		    sz, curthread->t_procp, sizeof (proc_t))) {
830 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
831 			    sizeof (proc_t));
832 			return (1);
833 		}
834 
835 		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
836 		    curthread->t_cred, sizeof (cred_t))) {
837 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
838 			    sizeof (cred_t));
839 			return (1);
840 		}
841 
842 		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
843 		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
844 			DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
845 			    sizeof (pid_t));
846 			return (1);
847 		}
848 
849 		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
850 		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
851 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
852 			    offsetof(cpu_t, cpu_pause_thread));
853 			return (1);
854 		}
855 	}
856 
857 	if ((fp = mstate->dtms_getf) != NULL) {
858 		uintptr_t psz = sizeof (void *);
859 		vnode_t *vp;
860 		vnodeops_t *op;
861 
862 		/*
863 		 * When getf() returns a file_t, the enabling is implicitly
864 		 * granted the (transient) right to read the returned file_t
865 		 * as well as the v_path and v_op->vnop_name of the underlying
866 		 * vnode.  These accesses are allowed after a successful
867 		 * getf() because the members that they refer to cannot change
868 		 * once set -- and the barrier logic in the kernel's closef()
869 		 * path assures that the file_t and its referenced vode_t
870 		 * cannot themselves be stale (that is, it impossible for
871 		 * either dtms_getf itself or its f_vnode member to reference
872 		 * freed memory).
873 		 */
874 		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
875 			DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
876 			return (1);
877 		}
878 
879 		if ((vp = fp->f_vnode) != NULL) {
880 			size_t slen;
881 
882 			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
883 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
884 				    psz);
885 				return (1);
886 			}
887 
888 			slen = strlen(vp->v_path) + 1;
889 			if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
890 				DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
891 				    slen);
892 				return (1);
893 			}
894 
895 			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
896 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
897 				    psz);
898 				return (1);
899 			}
900 
901 			if ((op = vp->v_op) != NULL &&
902 			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
903 				DTRACE_RANGE_REMAIN(remain, addr,
904 				    &op->vnop_name, psz);
905 				return (1);
906 			}
907 
908 			if (op != NULL && op->vnop_name != NULL &&
909 			    DTRACE_INRANGE(addr, sz, op->vnop_name,
910 			    (slen = strlen(op->vnop_name) + 1))) {
911 				DTRACE_RANGE_REMAIN(remain, addr,
912 				    op->vnop_name, slen);
913 				return (1);
914 			}
915 		}
916 	}
917 
918 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
919 	*illval = addr;
920 	return (0);
921 }
922 
923 /*
924  * Convenience routine to check to see if a given string is within a memory
925  * region in which a load may be issued given the user's privilege level;
926  * this exists so that we don't need to issue unnecessary dtrace_strlen()
927  * calls in the event that the user has all privileges.
928  */
929 static int
930 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
931     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
932 {
933 	size_t rsize;
934 
935 	/*
936 	 * If we hold the privilege to read from kernel memory, then
937 	 * everything is readable.
938 	 */
939 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
940 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
941 		return (1);
942 	}
943 
944 	/*
945 	 * Even if the caller is uninterested in querying the remaining valid
946 	 * range, it is required to ensure that the access is allowed.
947 	 */
948 	if (remain == NULL) {
949 		remain = &rsize;
950 	}
951 	if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
952 		size_t strsz;
953 		/*
954 		 * Perform the strlen after determining the length of the
955 		 * memory region which is accessible.  This prevents timing
956 		 * information from being used to find NULs in memory which is
957 		 * not accessible to the caller.
958 		 */
959 		strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
960 		    MIN(sz, *remain));
961 		if (strsz <= *remain) {
962 			return (1);
963 		}
964 	}
965 
966 	return (0);
967 }
968 
969 /*
970  * Convenience routine to check to see if a given variable is within a memory
971  * region in which a load may be issued given the user's privilege level.
972  */
973 static int
974 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
975     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
976 {
977 	size_t sz;
978 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
979 
980 	/*
981 	 * Calculate the max size before performing any checks since even
982 	 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
983 	 * return the max length via 'remain'.
984 	 */
985 	if (type->dtdt_kind == DIF_TYPE_STRING) {
986 		dtrace_state_t *state = vstate->dtvs_state;
987 
988 		if (state != NULL) {
989 			sz = state->dts_options[DTRACEOPT_STRSIZE];
990 		} else {
991 			/*
992 			 * In helper context, we have a NULL state; fall back
993 			 * to using the system-wide default for the string size
994 			 * in this case.
995 			 */
996 			sz = dtrace_strsize_default;
997 		}
998 	} else {
999 		sz = type->dtdt_size;
1000 	}
1001 
1002 	/*
1003 	 * If we hold the privilege to read from kernel memory, then
1004 	 * everything is readable.
1005 	 */
1006 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1007 		DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1008 		return (1);
1009 	}
1010 
1011 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1012 		return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1013 		    vstate));
1014 	}
1015 	return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1016 	    vstate));
1017 }
1018 
1019 /*
1020  * Convert a string to a signed integer using safe loads.
1021  *
1022  * NOTE: This function uses various macros from strtolctype.h to manipulate
1023  * digit values, etc -- these have all been checked to ensure they make
1024  * no additional function calls.
1025  */
1026 static int64_t
1027 dtrace_strtoll(char *input, int base, size_t limit)
1028 {
1029 	uintptr_t pos = (uintptr_t)input;
1030 	int64_t val = 0;
1031 	int x;
1032 	boolean_t neg = B_FALSE;
1033 	char c, cc, ccc;
1034 	uintptr_t end = pos + limit;
1035 
1036 	/*
1037 	 * Consume any whitespace preceding digits.
1038 	 */
1039 	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1040 		pos++;
1041 
1042 	/*
1043 	 * Handle an explicit sign if one is present.
1044 	 */
1045 	if (c == '-' || c == '+') {
1046 		if (c == '-')
1047 			neg = B_TRUE;
1048 		c = dtrace_load8(++pos);
1049 	}
1050 
1051 	/*
1052 	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1053 	 * if present.
1054 	 */
1055 	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1056 	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1057 		pos += 2;
1058 		c = ccc;
1059 	}
1060 
1061 	/*
1062 	 * Read in contiguous digits until the first non-digit character.
1063 	 */
1064 	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1065 	    c = dtrace_load8(++pos))
1066 		val = val * base + x;
1067 
1068 	return (neg ? -val : val);
1069 }
1070 
1071 /*
1072  * Compare two strings using safe loads.
1073  */
1074 static int
1075 dtrace_strncmp(char *s1, char *s2, size_t limit)
1076 {
1077 	uint8_t c1, c2;
1078 	volatile uint16_t *flags;
1079 
1080 	if (s1 == s2 || limit == 0)
1081 		return (0);
1082 
1083 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1084 
1085 	do {
1086 		if (s1 == NULL) {
1087 			c1 = '\0';
1088 		} else {
1089 			c1 = dtrace_load8((uintptr_t)s1++);
1090 		}
1091 
1092 		if (s2 == NULL) {
1093 			c2 = '\0';
1094 		} else {
1095 			c2 = dtrace_load8((uintptr_t)s2++);
1096 		}
1097 
1098 		if (c1 != c2)
1099 			return (c1 - c2);
1100 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1101 
1102 	return (0);
1103 }
1104 
1105 /*
1106  * Compute strlen(s) for a string using safe memory accesses.  The additional
1107  * len parameter is used to specify a maximum length to ensure completion.
1108  */
1109 static size_t
1110 dtrace_strlen(const char *s, size_t lim)
1111 {
1112 	uint_t len;
1113 
1114 	for (len = 0; len != lim; len++) {
1115 		if (dtrace_load8((uintptr_t)s++) == '\0')
1116 			break;
1117 	}
1118 
1119 	return (len);
1120 }
1121 
1122 /*
1123  * Check if an address falls within a toxic region.
1124  */
1125 static int
1126 dtrace_istoxic(uintptr_t kaddr, size_t size)
1127 {
1128 	uintptr_t taddr, tsize;
1129 	int i;
1130 
1131 	for (i = 0; i < dtrace_toxranges; i++) {
1132 		taddr = dtrace_toxrange[i].dtt_base;
1133 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1134 
1135 		if (kaddr - taddr < tsize) {
1136 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1137 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
1138 			return (1);
1139 		}
1140 
1141 		if (taddr - kaddr < size) {
1142 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1143 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
1144 			return (1);
1145 		}
1146 	}
1147 
1148 	return (0);
1149 }
1150 
1151 /*
1152  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1153  * memory specified by the DIF program.  The dst is assumed to be safe memory
1154  * that we can store to directly because it is managed by DTrace.  As with
1155  * standard bcopy, overlapping copies are handled properly.
1156  */
1157 static void
1158 dtrace_bcopy(const void *src, void *dst, size_t len)
1159 {
1160 	if (len != 0) {
1161 		uint8_t *s1 = dst;
1162 		const uint8_t *s2 = src;
1163 
1164 		if (s1 <= s2) {
1165 			do {
1166 				*s1++ = dtrace_load8((uintptr_t)s2++);
1167 			} while (--len != 0);
1168 		} else {
1169 			s2 += len;
1170 			s1 += len;
1171 
1172 			do {
1173 				*--s1 = dtrace_load8((uintptr_t)--s2);
1174 			} while (--len != 0);
1175 		}
1176 	}
1177 }
1178 
1179 /*
1180  * Copy src to dst using safe memory accesses, up to either the specified
1181  * length, or the point that a nul byte is encountered.  The src is assumed to
1182  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1183  * safe memory that we can store to directly because it is managed by DTrace.
1184  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1185  */
1186 static void
1187 dtrace_strcpy(const void *src, void *dst, size_t len)
1188 {
1189 	if (len != 0) {
1190 		uint8_t *s1 = dst, c;
1191 		const uint8_t *s2 = src;
1192 
1193 		do {
1194 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1195 		} while (--len != 0 && c != '\0');
1196 	}
1197 }
1198 
1199 /*
1200  * Copy src to dst, deriving the size and type from the specified (BYREF)
1201  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1202  * program.  The dst is assumed to be DTrace variable memory that is of the
1203  * specified type; we assume that we can store to directly.
1204  */
1205 static void
1206 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1207 {
1208 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1209 
1210 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1211 		dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1212 	} else {
1213 		dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1214 	}
1215 }
1216 
1217 /*
1218  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1219  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1220  * safe memory that we can access directly because it is managed by DTrace.
1221  */
1222 static int
1223 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1224 {
1225 	volatile uint16_t *flags;
1226 
1227 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1228 
1229 	if (s1 == s2)
1230 		return (0);
1231 
1232 	if (s1 == NULL || s2 == NULL)
1233 		return (1);
1234 
1235 	if (s1 != s2 && len != 0) {
1236 		const uint8_t *ps1 = s1;
1237 		const uint8_t *ps2 = s2;
1238 
1239 		do {
1240 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1241 				return (1);
1242 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1243 	}
1244 	return (0);
1245 }
1246 
1247 /*
1248  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1249  * is for safe DTrace-managed memory only.
1250  */
1251 static void
1252 dtrace_bzero(void *dst, size_t len)
1253 {
1254 	uchar_t *cp;
1255 
1256 	for (cp = dst; len != 0; len--)
1257 		*cp++ = 0;
1258 }
1259 
1260 static void
1261 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1262 {
1263 	uint64_t result[2];
1264 
1265 	result[0] = addend1[0] + addend2[0];
1266 	result[1] = addend1[1] + addend2[1] +
1267 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1268 
1269 	sum[0] = result[0];
1270 	sum[1] = result[1];
1271 }
1272 
1273 /*
1274  * Shift the 128-bit value in a by b. If b is positive, shift left.
1275  * If b is negative, shift right.
1276  */
1277 static void
1278 dtrace_shift_128(uint64_t *a, int b)
1279 {
1280 	uint64_t mask;
1281 
1282 	if (b == 0)
1283 		return;
1284 
1285 	if (b < 0) {
1286 		b = -b;
1287 		if (b >= 64) {
1288 			a[0] = a[1] >> (b - 64);
1289 			a[1] = 0;
1290 		} else {
1291 			a[0] >>= b;
1292 			mask = 1LL << (64 - b);
1293 			mask -= 1;
1294 			a[0] |= ((a[1] & mask) << (64 - b));
1295 			a[1] >>= b;
1296 		}
1297 	} else {
1298 		if (b >= 64) {
1299 			a[1] = a[0] << (b - 64);
1300 			a[0] = 0;
1301 		} else {
1302 			a[1] <<= b;
1303 			mask = a[0] >> (64 - b);
1304 			a[1] |= mask;
1305 			a[0] <<= b;
1306 		}
1307 	}
1308 }
1309 
1310 /*
1311  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1312  * use native multiplication on those, and then re-combine into the
1313  * resulting 128-bit value.
1314  *
1315  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1316  *     hi1 * hi2 << 64 +
1317  *     hi1 * lo2 << 32 +
1318  *     hi2 * lo1 << 32 +
1319  *     lo1 * lo2
1320  */
1321 static void
1322 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1323 {
1324 	uint64_t hi1, hi2, lo1, lo2;
1325 	uint64_t tmp[2];
1326 
1327 	hi1 = factor1 >> 32;
1328 	hi2 = factor2 >> 32;
1329 
1330 	lo1 = factor1 & DT_MASK_LO;
1331 	lo2 = factor2 & DT_MASK_LO;
1332 
1333 	product[0] = lo1 * lo2;
1334 	product[1] = hi1 * hi2;
1335 
1336 	tmp[0] = hi1 * lo2;
1337 	tmp[1] = 0;
1338 	dtrace_shift_128(tmp, 32);
1339 	dtrace_add_128(product, tmp, product);
1340 
1341 	tmp[0] = hi2 * lo1;
1342 	tmp[1] = 0;
1343 	dtrace_shift_128(tmp, 32);
1344 	dtrace_add_128(product, tmp, product);
1345 }
1346 
1347 /*
1348  * This privilege check should be used by actions and subroutines to
1349  * verify that the user credentials of the process that enabled the
1350  * invoking ECB match the target credentials
1351  */
1352 static int
1353 dtrace_priv_proc_common_user(dtrace_state_t *state)
1354 {
1355 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1356 
1357 	/*
1358 	 * We should always have a non-NULL state cred here, since if cred
1359 	 * is null (anonymous tracing), we fast-path bypass this routine.
1360 	 */
1361 	ASSERT(s_cr != NULL);
1362 
1363 	if ((cr = CRED()) != NULL &&
1364 	    s_cr->cr_uid == cr->cr_uid &&
1365 	    s_cr->cr_uid == cr->cr_ruid &&
1366 	    s_cr->cr_uid == cr->cr_suid &&
1367 	    s_cr->cr_gid == cr->cr_gid &&
1368 	    s_cr->cr_gid == cr->cr_rgid &&
1369 	    s_cr->cr_gid == cr->cr_sgid)
1370 		return (1);
1371 
1372 	return (0);
1373 }
1374 
1375 /*
1376  * This privilege check should be used by actions and subroutines to
1377  * verify that the zone of the process that enabled the invoking ECB
1378  * matches the target credentials
1379  */
1380 static int
1381 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1382 {
1383 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1384 
1385 	/*
1386 	 * We should always have a non-NULL state cred here, since if cred
1387 	 * is null (anonymous tracing), we fast-path bypass this routine.
1388 	 */
1389 	ASSERT(s_cr != NULL);
1390 
1391 	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1392 		return (1);
1393 
1394 	return (0);
1395 }
1396 
1397 /*
1398  * This privilege check should be used by actions and subroutines to
1399  * verify that the process has not setuid or changed credentials.
1400  */
1401 static int
1402 dtrace_priv_proc_common_nocd()
1403 {
1404 	proc_t *proc;
1405 
1406 	if ((proc = ttoproc(curthread)) != NULL &&
1407 	    !(proc->p_flag & SNOCD))
1408 		return (1);
1409 
1410 	return (0);
1411 }
1412 
1413 static int
1414 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1415 {
1416 	int action = state->dts_cred.dcr_action;
1417 
1418 	if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1419 		goto bad;
1420 
1421 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1422 	    dtrace_priv_proc_common_zone(state) == 0)
1423 		goto bad;
1424 
1425 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1426 	    dtrace_priv_proc_common_user(state) == 0)
1427 		goto bad;
1428 
1429 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1430 	    dtrace_priv_proc_common_nocd() == 0)
1431 		goto bad;
1432 
1433 	return (1);
1434 
1435 bad:
1436 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1437 
1438 	return (0);
1439 }
1440 
1441 static int
1442 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1443 {
1444 	if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1445 		if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1446 			return (1);
1447 
1448 		if (dtrace_priv_proc_common_zone(state) &&
1449 		    dtrace_priv_proc_common_user(state) &&
1450 		    dtrace_priv_proc_common_nocd())
1451 			return (1);
1452 	}
1453 
1454 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1455 
1456 	return (0);
1457 }
1458 
1459 static int
1460 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1461 {
1462 	if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1463 	    (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1464 		return (1);
1465 
1466 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1467 
1468 	return (0);
1469 }
1470 
1471 static int
1472 dtrace_priv_kernel(dtrace_state_t *state)
1473 {
1474 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1475 		return (1);
1476 
1477 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1478 
1479 	return (0);
1480 }
1481 
1482 static int
1483 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1484 {
1485 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1486 		return (1);
1487 
1488 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1489 
1490 	return (0);
1491 }
1492 
1493 /*
1494  * Determine if the dte_cond of the specified ECB allows for processing of
1495  * the current probe to continue.  Note that this routine may allow continued
1496  * processing, but with access(es) stripped from the mstate's dtms_access
1497  * field.
1498  */
1499 static int
1500 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1501     dtrace_ecb_t *ecb)
1502 {
1503 	dtrace_probe_t *probe = ecb->dte_probe;
1504 	dtrace_provider_t *prov = probe->dtpr_provider;
1505 	dtrace_pops_t *pops = &prov->dtpv_pops;
1506 	int mode = DTRACE_MODE_NOPRIV_DROP;
1507 
1508 	ASSERT(ecb->dte_cond);
1509 
1510 	if (pops->dtps_mode != NULL) {
1511 		mode = pops->dtps_mode(prov->dtpv_arg,
1512 		    probe->dtpr_id, probe->dtpr_arg);
1513 
1514 		ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1515 		ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1516 		    DTRACE_MODE_NOPRIV_DROP));
1517 	}
1518 
1519 	/*
1520 	 * If the dte_cond bits indicate that this consumer is only allowed to
1521 	 * see user-mode firings of this probe, check that the probe was fired
1522 	 * while in a user context.  If that's not the case, use the policy
1523 	 * specified by the provider to determine if we drop the probe or
1524 	 * merely restrict operation.
1525 	 */
1526 	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1527 		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1528 
1529 		if (!(mode & DTRACE_MODE_USER)) {
1530 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1531 				return (0);
1532 
1533 			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1534 		}
1535 	}
1536 
1537 	/*
1538 	 * This is more subtle than it looks. We have to be absolutely certain
1539 	 * that CRED() isn't going to change out from under us so it's only
1540 	 * legit to examine that structure if we're in constrained situations.
1541 	 * Currently, the only times we'll this check is if a non-super-user
1542 	 * has enabled the profile or syscall providers -- providers that
1543 	 * allow visibility of all processes. For the profile case, the check
1544 	 * above will ensure that we're examining a user context.
1545 	 */
1546 	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1547 		cred_t *cr;
1548 		cred_t *s_cr = state->dts_cred.dcr_cred;
1549 		proc_t *proc;
1550 
1551 		ASSERT(s_cr != NULL);
1552 
1553 		if ((cr = CRED()) == NULL ||
1554 		    s_cr->cr_uid != cr->cr_uid ||
1555 		    s_cr->cr_uid != cr->cr_ruid ||
1556 		    s_cr->cr_uid != cr->cr_suid ||
1557 		    s_cr->cr_gid != cr->cr_gid ||
1558 		    s_cr->cr_gid != cr->cr_rgid ||
1559 		    s_cr->cr_gid != cr->cr_sgid ||
1560 		    (proc = ttoproc(curthread)) == NULL ||
1561 		    (proc->p_flag & SNOCD)) {
1562 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1563 				return (0);
1564 
1565 			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1566 		}
1567 	}
1568 
1569 	/*
1570 	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1571 	 * in our zone, check to see if our mode policy is to restrict rather
1572 	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1573 	 * and DTRACE_ACCESS_ARGS
1574 	 */
1575 	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1576 		cred_t *cr;
1577 		cred_t *s_cr = state->dts_cred.dcr_cred;
1578 
1579 		ASSERT(s_cr != NULL);
1580 
1581 		if ((cr = CRED()) == NULL ||
1582 		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1583 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1584 				return (0);
1585 
1586 			mstate->dtms_access &=
1587 			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1588 		}
1589 	}
1590 
1591 	/*
1592 	 * By merits of being in this code path at all, we have limited
1593 	 * privileges.  If the provider has indicated that limited privileges
1594 	 * are to denote restricted operation, strip off the ability to access
1595 	 * arguments.
1596 	 */
1597 	if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)
1598 		mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1599 
1600 	return (1);
1601 }
1602 
1603 /*
1604  * Note:  not called from probe context.  This function is called
1605  * asynchronously (and at a regular interval) from outside of probe context to
1606  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1607  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1608  */
1609 void
1610 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1611 {
1612 	dtrace_dynvar_t *dirty;
1613 	dtrace_dstate_percpu_t *dcpu;
1614 	dtrace_dynvar_t **rinsep;
1615 	int i, j, work = 0;
1616 
1617 	for (i = 0; i < NCPU; i++) {
1618 		dcpu = &dstate->dtds_percpu[i];
1619 		rinsep = &dcpu->dtdsc_rinsing;
1620 
1621 		/*
1622 		 * If the dirty list is NULL, there is no dirty work to do.
1623 		 */
1624 		if (dcpu->dtdsc_dirty == NULL)
1625 			continue;
1626 
1627 		if (dcpu->dtdsc_rinsing != NULL) {
1628 			/*
1629 			 * If the rinsing list is non-NULL, then it is because
1630 			 * this CPU was selected to accept another CPU's
1631 			 * dirty list -- and since that time, dirty buffers
1632 			 * have accumulated.  This is a highly unlikely
1633 			 * condition, but we choose to ignore the dirty
1634 			 * buffers -- they'll be picked up a future cleanse.
1635 			 */
1636 			continue;
1637 		}
1638 
1639 		if (dcpu->dtdsc_clean != NULL) {
1640 			/*
1641 			 * If the clean list is non-NULL, then we're in a
1642 			 * situation where a CPU has done deallocations (we
1643 			 * have a non-NULL dirty list) but no allocations (we
1644 			 * also have a non-NULL clean list).  We can't simply
1645 			 * move the dirty list into the clean list on this
1646 			 * CPU, yet we also don't want to allow this condition
1647 			 * to persist, lest a short clean list prevent a
1648 			 * massive dirty list from being cleaned (which in
1649 			 * turn could lead to otherwise avoidable dynamic
1650 			 * drops).  To deal with this, we look for some CPU
1651 			 * with a NULL clean list, NULL dirty list, and NULL
1652 			 * rinsing list -- and then we borrow this CPU to
1653 			 * rinse our dirty list.
1654 			 */
1655 			for (j = 0; j < NCPU; j++) {
1656 				dtrace_dstate_percpu_t *rinser;
1657 
1658 				rinser = &dstate->dtds_percpu[j];
1659 
1660 				if (rinser->dtdsc_rinsing != NULL)
1661 					continue;
1662 
1663 				if (rinser->dtdsc_dirty != NULL)
1664 					continue;
1665 
1666 				if (rinser->dtdsc_clean != NULL)
1667 					continue;
1668 
1669 				rinsep = &rinser->dtdsc_rinsing;
1670 				break;
1671 			}
1672 
1673 			if (j == NCPU) {
1674 				/*
1675 				 * We were unable to find another CPU that
1676 				 * could accept this dirty list -- we are
1677 				 * therefore unable to clean it now.
1678 				 */
1679 				dtrace_dynvar_failclean++;
1680 				continue;
1681 			}
1682 		}
1683 
1684 		work = 1;
1685 
1686 		/*
1687 		 * Atomically move the dirty list aside.
1688 		 */
1689 		do {
1690 			dirty = dcpu->dtdsc_dirty;
1691 
1692 			/*
1693 			 * Before we zap the dirty list, set the rinsing list.
1694 			 * (This allows for a potential assertion in
1695 			 * dtrace_dynvar():  if a free dynamic variable appears
1696 			 * on a hash chain, either the dirty list or the
1697 			 * rinsing list for some CPU must be non-NULL.)
1698 			 */
1699 			*rinsep = dirty;
1700 			dtrace_membar_producer();
1701 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1702 		    dirty, NULL) != dirty);
1703 	}
1704 
1705 	if (!work) {
1706 		/*
1707 		 * We have no work to do; we can simply return.
1708 		 */
1709 		return;
1710 	}
1711 
1712 	dtrace_sync();
1713 
1714 	for (i = 0; i < NCPU; i++) {
1715 		dcpu = &dstate->dtds_percpu[i];
1716 
1717 		if (dcpu->dtdsc_rinsing == NULL)
1718 			continue;
1719 
1720 		/*
1721 		 * We are now guaranteed that no hash chain contains a pointer
1722 		 * into this dirty list; we can make it clean.
1723 		 */
1724 		ASSERT(dcpu->dtdsc_clean == NULL);
1725 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1726 		dcpu->dtdsc_rinsing = NULL;
1727 	}
1728 
1729 	/*
1730 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1731 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1732 	 * This prevents a race whereby a CPU incorrectly decides that
1733 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1734 	 * after dtrace_dynvar_clean() has completed.
1735 	 */
1736 	dtrace_sync();
1737 
1738 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1739 }
1740 
1741 /*
1742  * Depending on the value of the op parameter, this function looks-up,
1743  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1744  * allocation is requested, this function will return a pointer to a
1745  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1746  * variable can be allocated.  If NULL is returned, the appropriate counter
1747  * will be incremented.
1748  */
1749 dtrace_dynvar_t *
1750 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1751     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1752     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1753 {
1754 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1755 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1756 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1757 	processorid_t me = CPU->cpu_id, cpu = me;
1758 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1759 	size_t bucket, ksize;
1760 	size_t chunksize = dstate->dtds_chunksize;
1761 	uintptr_t kdata, lock, nstate;
1762 	uint_t i;
1763 
1764 	ASSERT(nkeys != 0);
1765 
1766 	/*
1767 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1768 	 * algorithm.  For the by-value portions, we perform the algorithm in
1769 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1770 	 * bit, and seems to have only a minute effect on distribution.  For
1771 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1772 	 * over each referenced byte.  It's painful to do this, but it's much
1773 	 * better than pathological hash distribution.  The efficacy of the
1774 	 * hashing algorithm (and a comparison with other algorithms) may be
1775 	 * found by running the ::dtrace_dynstat MDB dcmd.
1776 	 */
1777 	for (i = 0; i < nkeys; i++) {
1778 		if (key[i].dttk_size == 0) {
1779 			uint64_t val = key[i].dttk_value;
1780 
1781 			hashval += (val >> 48) & 0xffff;
1782 			hashval += (hashval << 10);
1783 			hashval ^= (hashval >> 6);
1784 
1785 			hashval += (val >> 32) & 0xffff;
1786 			hashval += (hashval << 10);
1787 			hashval ^= (hashval >> 6);
1788 
1789 			hashval += (val >> 16) & 0xffff;
1790 			hashval += (hashval << 10);
1791 			hashval ^= (hashval >> 6);
1792 
1793 			hashval += val & 0xffff;
1794 			hashval += (hashval << 10);
1795 			hashval ^= (hashval >> 6);
1796 		} else {
1797 			/*
1798 			 * This is incredibly painful, but it beats the hell
1799 			 * out of the alternative.
1800 			 */
1801 			uint64_t j, size = key[i].dttk_size;
1802 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1803 
1804 			if (!dtrace_canload(base, size, mstate, vstate))
1805 				break;
1806 
1807 			for (j = 0; j < size; j++) {
1808 				hashval += dtrace_load8(base + j);
1809 				hashval += (hashval << 10);
1810 				hashval ^= (hashval >> 6);
1811 			}
1812 		}
1813 	}
1814 
1815 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1816 		return (NULL);
1817 
1818 	hashval += (hashval << 3);
1819 	hashval ^= (hashval >> 11);
1820 	hashval += (hashval << 15);
1821 
1822 	/*
1823 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1824 	 * comes out to be one of our two sentinel hash values.  If this
1825 	 * actually happens, we set the hashval to be a value known to be a
1826 	 * non-sentinel value.
1827 	 */
1828 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1829 		hashval = DTRACE_DYNHASH_VALID;
1830 
1831 	/*
1832 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1833 	 * important here, tricks can be pulled to reduce it.  (However, it's
1834 	 * critical that hash collisions be kept to an absolute minimum;
1835 	 * they're much more painful than a divide.)  It's better to have a
1836 	 * solution that generates few collisions and still keeps things
1837 	 * relatively simple.
1838 	 */
1839 	bucket = hashval % dstate->dtds_hashsize;
1840 
1841 	if (op == DTRACE_DYNVAR_DEALLOC) {
1842 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1843 
1844 		for (;;) {
1845 			while ((lock = *lockp) & 1)
1846 				continue;
1847 
1848 			if (dtrace_casptr((void *)lockp,
1849 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1850 				break;
1851 		}
1852 
1853 		dtrace_membar_producer();
1854 	}
1855 
1856 top:
1857 	prev = NULL;
1858 	lock = hash[bucket].dtdh_lock;
1859 
1860 	dtrace_membar_consumer();
1861 
1862 	start = hash[bucket].dtdh_chain;
1863 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1864 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1865 	    op != DTRACE_DYNVAR_DEALLOC));
1866 
1867 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1868 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1869 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1870 
1871 		if (dvar->dtdv_hashval != hashval) {
1872 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1873 				/*
1874 				 * We've reached the sink, and therefore the
1875 				 * end of the hash chain; we can kick out of
1876 				 * the loop knowing that we have seen a valid
1877 				 * snapshot of state.
1878 				 */
1879 				ASSERT(dvar->dtdv_next == NULL);
1880 				ASSERT(dvar == &dtrace_dynhash_sink);
1881 				break;
1882 			}
1883 
1884 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1885 				/*
1886 				 * We've gone off the rails:  somewhere along
1887 				 * the line, one of the members of this hash
1888 				 * chain was deleted.  Note that we could also
1889 				 * detect this by simply letting this loop run
1890 				 * to completion, as we would eventually hit
1891 				 * the end of the dirty list.  However, we
1892 				 * want to avoid running the length of the
1893 				 * dirty list unnecessarily (it might be quite
1894 				 * long), so we catch this as early as
1895 				 * possible by detecting the hash marker.  In
1896 				 * this case, we simply set dvar to NULL and
1897 				 * break; the conditional after the loop will
1898 				 * send us back to top.
1899 				 */
1900 				dvar = NULL;
1901 				break;
1902 			}
1903 
1904 			goto next;
1905 		}
1906 
1907 		if (dtuple->dtt_nkeys != nkeys)
1908 			goto next;
1909 
1910 		for (i = 0; i < nkeys; i++, dkey++) {
1911 			if (dkey->dttk_size != key[i].dttk_size)
1912 				goto next; /* size or type mismatch */
1913 
1914 			if (dkey->dttk_size != 0) {
1915 				if (dtrace_bcmp(
1916 				    (void *)(uintptr_t)key[i].dttk_value,
1917 				    (void *)(uintptr_t)dkey->dttk_value,
1918 				    dkey->dttk_size))
1919 					goto next;
1920 			} else {
1921 				if (dkey->dttk_value != key[i].dttk_value)
1922 					goto next;
1923 			}
1924 		}
1925 
1926 		if (op != DTRACE_DYNVAR_DEALLOC)
1927 			return (dvar);
1928 
1929 		ASSERT(dvar->dtdv_next == NULL ||
1930 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1931 
1932 		if (prev != NULL) {
1933 			ASSERT(hash[bucket].dtdh_chain != dvar);
1934 			ASSERT(start != dvar);
1935 			ASSERT(prev->dtdv_next == dvar);
1936 			prev->dtdv_next = dvar->dtdv_next;
1937 		} else {
1938 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1939 			    start, dvar->dtdv_next) != start) {
1940 				/*
1941 				 * We have failed to atomically swing the
1942 				 * hash table head pointer, presumably because
1943 				 * of a conflicting allocation on another CPU.
1944 				 * We need to reread the hash chain and try
1945 				 * again.
1946 				 */
1947 				goto top;
1948 			}
1949 		}
1950 
1951 		dtrace_membar_producer();
1952 
1953 		/*
1954 		 * Now set the hash value to indicate that it's free.
1955 		 */
1956 		ASSERT(hash[bucket].dtdh_chain != dvar);
1957 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1958 
1959 		dtrace_membar_producer();
1960 
1961 		/*
1962 		 * Set the next pointer to point at the dirty list, and
1963 		 * atomically swing the dirty pointer to the newly freed dvar.
1964 		 */
1965 		do {
1966 			next = dcpu->dtdsc_dirty;
1967 			dvar->dtdv_next = next;
1968 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1969 
1970 		/*
1971 		 * Finally, unlock this hash bucket.
1972 		 */
1973 		ASSERT(hash[bucket].dtdh_lock == lock);
1974 		ASSERT(lock & 1);
1975 		hash[bucket].dtdh_lock++;
1976 
1977 		return (NULL);
1978 next:
1979 		prev = dvar;
1980 		continue;
1981 	}
1982 
1983 	if (dvar == NULL) {
1984 		/*
1985 		 * If dvar is NULL, it is because we went off the rails:
1986 		 * one of the elements that we traversed in the hash chain
1987 		 * was deleted while we were traversing it.  In this case,
1988 		 * we assert that we aren't doing a dealloc (deallocs lock
1989 		 * the hash bucket to prevent themselves from racing with
1990 		 * one another), and retry the hash chain traversal.
1991 		 */
1992 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1993 		goto top;
1994 	}
1995 
1996 	if (op != DTRACE_DYNVAR_ALLOC) {
1997 		/*
1998 		 * If we are not to allocate a new variable, we want to
1999 		 * return NULL now.  Before we return, check that the value
2000 		 * of the lock word hasn't changed.  If it has, we may have
2001 		 * seen an inconsistent snapshot.
2002 		 */
2003 		if (op == DTRACE_DYNVAR_NOALLOC) {
2004 			if (hash[bucket].dtdh_lock != lock)
2005 				goto top;
2006 		} else {
2007 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2008 			ASSERT(hash[bucket].dtdh_lock == lock);
2009 			ASSERT(lock & 1);
2010 			hash[bucket].dtdh_lock++;
2011 		}
2012 
2013 		return (NULL);
2014 	}
2015 
2016 	/*
2017 	 * We need to allocate a new dynamic variable.  The size we need is the
2018 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2019 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2020 	 * the size of any referred-to data (dsize).  We then round the final
2021 	 * size up to the chunksize for allocation.
2022 	 */
2023 	for (ksize = 0, i = 0; i < nkeys; i++)
2024 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2025 
2026 	/*
2027 	 * This should be pretty much impossible, but could happen if, say,
2028 	 * strange DIF specified the tuple.  Ideally, this should be an
2029 	 * assertion and not an error condition -- but that requires that the
2030 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2031 	 * bullet-proof.  (That is, it must not be able to be fooled by
2032 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
2033 	 * solving this would presumably not amount to solving the Halting
2034 	 * Problem -- but it still seems awfully hard.
2035 	 */
2036 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2037 	    ksize + dsize > chunksize) {
2038 		dcpu->dtdsc_drops++;
2039 		return (NULL);
2040 	}
2041 
2042 	nstate = DTRACE_DSTATE_EMPTY;
2043 
2044 	do {
2045 retry:
2046 		free = dcpu->dtdsc_free;
2047 
2048 		if (free == NULL) {
2049 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2050 			void *rval;
2051 
2052 			if (clean == NULL) {
2053 				/*
2054 				 * We're out of dynamic variable space on
2055 				 * this CPU.  Unless we have tried all CPUs,
2056 				 * we'll try to allocate from a different
2057 				 * CPU.
2058 				 */
2059 				switch (dstate->dtds_state) {
2060 				case DTRACE_DSTATE_CLEAN: {
2061 					void *sp = &dstate->dtds_state;
2062 
2063 					if (++cpu >= NCPU)
2064 						cpu = 0;
2065 
2066 					if (dcpu->dtdsc_dirty != NULL &&
2067 					    nstate == DTRACE_DSTATE_EMPTY)
2068 						nstate = DTRACE_DSTATE_DIRTY;
2069 
2070 					if (dcpu->dtdsc_rinsing != NULL)
2071 						nstate = DTRACE_DSTATE_RINSING;
2072 
2073 					dcpu = &dstate->dtds_percpu[cpu];
2074 
2075 					if (cpu != me)
2076 						goto retry;
2077 
2078 					(void) dtrace_cas32(sp,
2079 					    DTRACE_DSTATE_CLEAN, nstate);
2080 
2081 					/*
2082 					 * To increment the correct bean
2083 					 * counter, take another lap.
2084 					 */
2085 					goto retry;
2086 				}
2087 
2088 				case DTRACE_DSTATE_DIRTY:
2089 					dcpu->dtdsc_dirty_drops++;
2090 					break;
2091 
2092 				case DTRACE_DSTATE_RINSING:
2093 					dcpu->dtdsc_rinsing_drops++;
2094 					break;
2095 
2096 				case DTRACE_DSTATE_EMPTY:
2097 					dcpu->dtdsc_drops++;
2098 					break;
2099 				}
2100 
2101 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2102 				return (NULL);
2103 			}
2104 
2105 			/*
2106 			 * The clean list appears to be non-empty.  We want to
2107 			 * move the clean list to the free list; we start by
2108 			 * moving the clean pointer aside.
2109 			 */
2110 			if (dtrace_casptr(&dcpu->dtdsc_clean,
2111 			    clean, NULL) != clean) {
2112 				/*
2113 				 * We are in one of two situations:
2114 				 *
2115 				 *  (a)	The clean list was switched to the
2116 				 *	free list by another CPU.
2117 				 *
2118 				 *  (b)	The clean list was added to by the
2119 				 *	cleansing cyclic.
2120 				 *
2121 				 * In either of these situations, we can
2122 				 * just reattempt the free list allocation.
2123 				 */
2124 				goto retry;
2125 			}
2126 
2127 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2128 
2129 			/*
2130 			 * Now we'll move the clean list to our free list.
2131 			 * It's impossible for this to fail:  the only way
2132 			 * the free list can be updated is through this
2133 			 * code path, and only one CPU can own the clean list.
2134 			 * Thus, it would only be possible for this to fail if
2135 			 * this code were racing with dtrace_dynvar_clean().
2136 			 * (That is, if dtrace_dynvar_clean() updated the clean
2137 			 * list, and we ended up racing to update the free
2138 			 * list.)  This race is prevented by the dtrace_sync()
2139 			 * in dtrace_dynvar_clean() -- which flushes the
2140 			 * owners of the clean lists out before resetting
2141 			 * the clean lists.
2142 			 */
2143 			dcpu = &dstate->dtds_percpu[me];
2144 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2145 			ASSERT(rval == NULL);
2146 			goto retry;
2147 		}
2148 
2149 		dvar = free;
2150 		new_free = dvar->dtdv_next;
2151 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2152 
2153 	/*
2154 	 * We have now allocated a new chunk.  We copy the tuple keys into the
2155 	 * tuple array and copy any referenced key data into the data space
2156 	 * following the tuple array.  As we do this, we relocate dttk_value
2157 	 * in the final tuple to point to the key data address in the chunk.
2158 	 */
2159 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2160 	dvar->dtdv_data = (void *)(kdata + ksize);
2161 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2162 
2163 	for (i = 0; i < nkeys; i++) {
2164 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2165 		size_t kesize = key[i].dttk_size;
2166 
2167 		if (kesize != 0) {
2168 			dtrace_bcopy(
2169 			    (const void *)(uintptr_t)key[i].dttk_value,
2170 			    (void *)kdata, kesize);
2171 			dkey->dttk_value = kdata;
2172 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2173 		} else {
2174 			dkey->dttk_value = key[i].dttk_value;
2175 		}
2176 
2177 		dkey->dttk_size = kesize;
2178 	}
2179 
2180 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2181 	dvar->dtdv_hashval = hashval;
2182 	dvar->dtdv_next = start;
2183 
2184 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2185 		return (dvar);
2186 
2187 	/*
2188 	 * The cas has failed.  Either another CPU is adding an element to
2189 	 * this hash chain, or another CPU is deleting an element from this
2190 	 * hash chain.  The simplest way to deal with both of these cases
2191 	 * (though not necessarily the most efficient) is to free our
2192 	 * allocated block and re-attempt it all.  Note that the free is
2193 	 * to the dirty list and _not_ to the free list.  This is to prevent
2194 	 * races with allocators, above.
2195 	 */
2196 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2197 
2198 	dtrace_membar_producer();
2199 
2200 	do {
2201 		free = dcpu->dtdsc_dirty;
2202 		dvar->dtdv_next = free;
2203 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2204 
2205 	goto top;
2206 }
2207 
2208 /*ARGSUSED*/
2209 static void
2210 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2211 {
2212 	if ((int64_t)nval < (int64_t)*oval)
2213 		*oval = nval;
2214 }
2215 
2216 /*ARGSUSED*/
2217 static void
2218 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2219 {
2220 	if ((int64_t)nval > (int64_t)*oval)
2221 		*oval = nval;
2222 }
2223 
2224 static void
2225 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2226 {
2227 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2228 	int64_t val = (int64_t)nval;
2229 
2230 	if (val < 0) {
2231 		for (i = 0; i < zero; i++) {
2232 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2233 				quanta[i] += incr;
2234 				return;
2235 			}
2236 		}
2237 	} else {
2238 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2239 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2240 				quanta[i - 1] += incr;
2241 				return;
2242 			}
2243 		}
2244 
2245 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2246 		return;
2247 	}
2248 
2249 	ASSERT(0);
2250 }
2251 
2252 static void
2253 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2254 {
2255 	uint64_t arg = *lquanta++;
2256 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2257 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2258 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2259 	int32_t val = (int32_t)nval, level;
2260 
2261 	ASSERT(step != 0);
2262 	ASSERT(levels != 0);
2263 
2264 	if (val < base) {
2265 		/*
2266 		 * This is an underflow.
2267 		 */
2268 		lquanta[0] += incr;
2269 		return;
2270 	}
2271 
2272 	level = (val - base) / step;
2273 
2274 	if (level < levels) {
2275 		lquanta[level + 1] += incr;
2276 		return;
2277 	}
2278 
2279 	/*
2280 	 * This is an overflow.
2281 	 */
2282 	lquanta[levels + 1] += incr;
2283 }
2284 
2285 static int
2286 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2287     uint16_t high, uint16_t nsteps, int64_t value)
2288 {
2289 	int64_t this = 1, last, next;
2290 	int base = 1, order;
2291 
2292 	ASSERT(factor <= nsteps);
2293 	ASSERT(nsteps % factor == 0);
2294 
2295 	for (order = 0; order < low; order++)
2296 		this *= factor;
2297 
2298 	/*
2299 	 * If our value is less than our factor taken to the power of the
2300 	 * low order of magnitude, it goes into the zeroth bucket.
2301 	 */
2302 	if (value < (last = this))
2303 		return (0);
2304 
2305 	for (this *= factor; order <= high; order++) {
2306 		int nbuckets = this > nsteps ? nsteps : this;
2307 
2308 		if ((next = this * factor) < this) {
2309 			/*
2310 			 * We should not generally get log/linear quantizations
2311 			 * with a high magnitude that allows 64-bits to
2312 			 * overflow, but we nonetheless protect against this
2313 			 * by explicitly checking for overflow, and clamping
2314 			 * our value accordingly.
2315 			 */
2316 			value = this - 1;
2317 		}
2318 
2319 		if (value < this) {
2320 			/*
2321 			 * If our value lies within this order of magnitude,
2322 			 * determine its position by taking the offset within
2323 			 * the order of magnitude, dividing by the bucket
2324 			 * width, and adding to our (accumulated) base.
2325 			 */
2326 			return (base + (value - last) / (this / nbuckets));
2327 		}
2328 
2329 		base += nbuckets - (nbuckets / factor);
2330 		last = this;
2331 		this = next;
2332 	}
2333 
2334 	/*
2335 	 * Our value is greater than or equal to our factor taken to the
2336 	 * power of one plus the high magnitude -- return the top bucket.
2337 	 */
2338 	return (base);
2339 }
2340 
2341 static void
2342 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2343 {
2344 	uint64_t arg = *llquanta++;
2345 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2346 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2347 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2348 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2349 
2350 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2351 	    low, high, nsteps, nval)] += incr;
2352 }
2353 
2354 /*ARGSUSED*/
2355 static void
2356 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2357 {
2358 	data[0]++;
2359 	data[1] += nval;
2360 }
2361 
2362 /*ARGSUSED*/
2363 static void
2364 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2365 {
2366 	int64_t snval = (int64_t)nval;
2367 	uint64_t tmp[2];
2368 
2369 	data[0]++;
2370 	data[1] += nval;
2371 
2372 	/*
2373 	 * What we want to say here is:
2374 	 *
2375 	 * data[2] += nval * nval;
2376 	 *
2377 	 * But given that nval is 64-bit, we could easily overflow, so
2378 	 * we do this as 128-bit arithmetic.
2379 	 */
2380 	if (snval < 0)
2381 		snval = -snval;
2382 
2383 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2384 	dtrace_add_128(data + 2, tmp, data + 2);
2385 }
2386 
2387 /*ARGSUSED*/
2388 static void
2389 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2390 {
2391 	*oval = *oval + 1;
2392 }
2393 
2394 /*ARGSUSED*/
2395 static void
2396 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2397 {
2398 	*oval += nval;
2399 }
2400 
2401 /*
2402  * Aggregate given the tuple in the principal data buffer, and the aggregating
2403  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2404  * buffer is specified as the buf parameter.  This routine does not return
2405  * failure; if there is no space in the aggregation buffer, the data will be
2406  * dropped, and a corresponding counter incremented.
2407  */
2408 static void
2409 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2410     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2411 {
2412 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2413 	uint32_t i, ndx, size, fsize;
2414 	uint32_t align = sizeof (uint64_t) - 1;
2415 	dtrace_aggbuffer_t *agb;
2416 	dtrace_aggkey_t *key;
2417 	uint32_t hashval = 0, limit, isstr;
2418 	caddr_t tomax, data, kdata;
2419 	dtrace_actkind_t action;
2420 	dtrace_action_t *act;
2421 	uintptr_t offs;
2422 
2423 	if (buf == NULL)
2424 		return;
2425 
2426 	if (!agg->dtag_hasarg) {
2427 		/*
2428 		 * Currently, only quantize() and lquantize() take additional
2429 		 * arguments, and they have the same semantics:  an increment
2430 		 * value that defaults to 1 when not present.  If additional
2431 		 * aggregating actions take arguments, the setting of the
2432 		 * default argument value will presumably have to become more
2433 		 * sophisticated...
2434 		 */
2435 		arg = 1;
2436 	}
2437 
2438 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2439 	size = rec->dtrd_offset - agg->dtag_base;
2440 	fsize = size + rec->dtrd_size;
2441 
2442 	ASSERT(dbuf->dtb_tomax != NULL);
2443 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2444 
2445 	if ((tomax = buf->dtb_tomax) == NULL) {
2446 		dtrace_buffer_drop(buf);
2447 		return;
2448 	}
2449 
2450 	/*
2451 	 * The metastructure is always at the bottom of the buffer.
2452 	 */
2453 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2454 	    sizeof (dtrace_aggbuffer_t));
2455 
2456 	if (buf->dtb_offset == 0) {
2457 		/*
2458 		 * We just kludge up approximately 1/8th of the size to be
2459 		 * buckets.  If this guess ends up being routinely
2460 		 * off-the-mark, we may need to dynamically readjust this
2461 		 * based on past performance.
2462 		 */
2463 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2464 
2465 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2466 		    (uintptr_t)tomax || hashsize == 0) {
2467 			/*
2468 			 * We've been given a ludicrously small buffer;
2469 			 * increment our drop count and leave.
2470 			 */
2471 			dtrace_buffer_drop(buf);
2472 			return;
2473 		}
2474 
2475 		/*
2476 		 * And now, a pathetic attempt to try to get a an odd (or
2477 		 * perchance, a prime) hash size for better hash distribution.
2478 		 */
2479 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2480 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2481 
2482 		agb->dtagb_hashsize = hashsize;
2483 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2484 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2485 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2486 
2487 		for (i = 0; i < agb->dtagb_hashsize; i++)
2488 			agb->dtagb_hash[i] = NULL;
2489 	}
2490 
2491 	ASSERT(agg->dtag_first != NULL);
2492 	ASSERT(agg->dtag_first->dta_intuple);
2493 
2494 	/*
2495 	 * Calculate the hash value based on the key.  Note that we _don't_
2496 	 * include the aggid in the hashing (but we will store it as part of
2497 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2498 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2499 	 * gets good distribution in practice.  The efficacy of the hashing
2500 	 * algorithm (and a comparison with other algorithms) may be found by
2501 	 * running the ::dtrace_aggstat MDB dcmd.
2502 	 */
2503 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2504 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2505 		limit = i + act->dta_rec.dtrd_size;
2506 		ASSERT(limit <= size);
2507 		isstr = DTRACEACT_ISSTRING(act);
2508 
2509 		for (; i < limit; i++) {
2510 			hashval += data[i];
2511 			hashval += (hashval << 10);
2512 			hashval ^= (hashval >> 6);
2513 
2514 			if (isstr && data[i] == '\0')
2515 				break;
2516 		}
2517 	}
2518 
2519 	hashval += (hashval << 3);
2520 	hashval ^= (hashval >> 11);
2521 	hashval += (hashval << 15);
2522 
2523 	/*
2524 	 * Yes, the divide here is expensive -- but it's generally the least
2525 	 * of the performance issues given the amount of data that we iterate
2526 	 * over to compute hash values, compare data, etc.
2527 	 */
2528 	ndx = hashval % agb->dtagb_hashsize;
2529 
2530 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2531 		ASSERT((caddr_t)key >= tomax);
2532 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2533 
2534 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2535 			continue;
2536 
2537 		kdata = key->dtak_data;
2538 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2539 
2540 		for (act = agg->dtag_first; act->dta_intuple;
2541 		    act = act->dta_next) {
2542 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2543 			limit = i + act->dta_rec.dtrd_size;
2544 			ASSERT(limit <= size);
2545 			isstr = DTRACEACT_ISSTRING(act);
2546 
2547 			for (; i < limit; i++) {
2548 				if (kdata[i] != data[i])
2549 					goto next;
2550 
2551 				if (isstr && data[i] == '\0')
2552 					break;
2553 			}
2554 		}
2555 
2556 		if (action != key->dtak_action) {
2557 			/*
2558 			 * We are aggregating on the same value in the same
2559 			 * aggregation with two different aggregating actions.
2560 			 * (This should have been picked up in the compiler,
2561 			 * so we may be dealing with errant or devious DIF.)
2562 			 * This is an error condition; we indicate as much,
2563 			 * and return.
2564 			 */
2565 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2566 			return;
2567 		}
2568 
2569 		/*
2570 		 * This is a hit:  we need to apply the aggregator to
2571 		 * the value at this key.
2572 		 */
2573 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2574 		return;
2575 next:
2576 		continue;
2577 	}
2578 
2579 	/*
2580 	 * We didn't find it.  We need to allocate some zero-filled space,
2581 	 * link it into the hash table appropriately, and apply the aggregator
2582 	 * to the (zero-filled) value.
2583 	 */
2584 	offs = buf->dtb_offset;
2585 	while (offs & (align - 1))
2586 		offs += sizeof (uint32_t);
2587 
2588 	/*
2589 	 * If we don't have enough room to both allocate a new key _and_
2590 	 * its associated data, increment the drop count and return.
2591 	 */
2592 	if ((uintptr_t)tomax + offs + fsize >
2593 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2594 		dtrace_buffer_drop(buf);
2595 		return;
2596 	}
2597 
2598 	/*CONSTCOND*/
2599 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2600 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2601 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2602 
2603 	key->dtak_data = kdata = tomax + offs;
2604 	buf->dtb_offset = offs + fsize;
2605 
2606 	/*
2607 	 * Now copy the data across.
2608 	 */
2609 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2610 
2611 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2612 		kdata[i] = data[i];
2613 
2614 	/*
2615 	 * Because strings are not zeroed out by default, we need to iterate
2616 	 * looking for actions that store strings, and we need to explicitly
2617 	 * pad these strings out with zeroes.
2618 	 */
2619 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2620 		int nul;
2621 
2622 		if (!DTRACEACT_ISSTRING(act))
2623 			continue;
2624 
2625 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2626 		limit = i + act->dta_rec.dtrd_size;
2627 		ASSERT(limit <= size);
2628 
2629 		for (nul = 0; i < limit; i++) {
2630 			if (nul) {
2631 				kdata[i] = '\0';
2632 				continue;
2633 			}
2634 
2635 			if (data[i] != '\0')
2636 				continue;
2637 
2638 			nul = 1;
2639 		}
2640 	}
2641 
2642 	for (i = size; i < fsize; i++)
2643 		kdata[i] = 0;
2644 
2645 	key->dtak_hashval = hashval;
2646 	key->dtak_size = size;
2647 	key->dtak_action = action;
2648 	key->dtak_next = agb->dtagb_hash[ndx];
2649 	agb->dtagb_hash[ndx] = key;
2650 
2651 	/*
2652 	 * Finally, apply the aggregator.
2653 	 */
2654 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2655 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2656 }
2657 
2658 /*
2659  * Given consumer state, this routine finds a speculation in the INACTIVE
2660  * state and transitions it into the ACTIVE state.  If there is no speculation
2661  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2662  * incremented -- it is up to the caller to take appropriate action.
2663  */
2664 static int
2665 dtrace_speculation(dtrace_state_t *state)
2666 {
2667 	int i = 0;
2668 	dtrace_speculation_state_t current;
2669 	uint32_t *stat = &state->dts_speculations_unavail, count;
2670 
2671 	while (i < state->dts_nspeculations) {
2672 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2673 
2674 		current = spec->dtsp_state;
2675 
2676 		if (current != DTRACESPEC_INACTIVE) {
2677 			if (current == DTRACESPEC_COMMITTINGMANY ||
2678 			    current == DTRACESPEC_COMMITTING ||
2679 			    current == DTRACESPEC_DISCARDING)
2680 				stat = &state->dts_speculations_busy;
2681 			i++;
2682 			continue;
2683 		}
2684 
2685 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2686 		    current, DTRACESPEC_ACTIVE) == current)
2687 			return (i + 1);
2688 	}
2689 
2690 	/*
2691 	 * We couldn't find a speculation.  If we found as much as a single
2692 	 * busy speculation buffer, we'll attribute this failure as "busy"
2693 	 * instead of "unavail".
2694 	 */
2695 	do {
2696 		count = *stat;
2697 	} while (dtrace_cas32(stat, count, count + 1) != count);
2698 
2699 	return (0);
2700 }
2701 
2702 /*
2703  * This routine commits an active speculation.  If the specified speculation
2704  * is not in a valid state to perform a commit(), this routine will silently do
2705  * nothing.  The state of the specified speculation is transitioned according
2706  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2707  */
2708 static void
2709 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2710     dtrace_specid_t which)
2711 {
2712 	dtrace_speculation_t *spec;
2713 	dtrace_buffer_t *src, *dest;
2714 	uintptr_t daddr, saddr, dlimit, slimit;
2715 	dtrace_speculation_state_t current, new;
2716 	intptr_t offs;
2717 	uint64_t timestamp;
2718 
2719 	if (which == 0)
2720 		return;
2721 
2722 	if (which > state->dts_nspeculations) {
2723 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2724 		return;
2725 	}
2726 
2727 	spec = &state->dts_speculations[which - 1];
2728 	src = &spec->dtsp_buffer[cpu];
2729 	dest = &state->dts_buffer[cpu];
2730 
2731 	do {
2732 		current = spec->dtsp_state;
2733 
2734 		if (current == DTRACESPEC_COMMITTINGMANY)
2735 			break;
2736 
2737 		switch (current) {
2738 		case DTRACESPEC_INACTIVE:
2739 		case DTRACESPEC_DISCARDING:
2740 			return;
2741 
2742 		case DTRACESPEC_COMMITTING:
2743 			/*
2744 			 * This is only possible if we are (a) commit()'ing
2745 			 * without having done a prior speculate() on this CPU
2746 			 * and (b) racing with another commit() on a different
2747 			 * CPU.  There's nothing to do -- we just assert that
2748 			 * our offset is 0.
2749 			 */
2750 			ASSERT(src->dtb_offset == 0);
2751 			return;
2752 
2753 		case DTRACESPEC_ACTIVE:
2754 			new = DTRACESPEC_COMMITTING;
2755 			break;
2756 
2757 		case DTRACESPEC_ACTIVEONE:
2758 			/*
2759 			 * This speculation is active on one CPU.  If our
2760 			 * buffer offset is non-zero, we know that the one CPU
2761 			 * must be us.  Otherwise, we are committing on a
2762 			 * different CPU from the speculate(), and we must
2763 			 * rely on being asynchronously cleaned.
2764 			 */
2765 			if (src->dtb_offset != 0) {
2766 				new = DTRACESPEC_COMMITTING;
2767 				break;
2768 			}
2769 			/*FALLTHROUGH*/
2770 
2771 		case DTRACESPEC_ACTIVEMANY:
2772 			new = DTRACESPEC_COMMITTINGMANY;
2773 			break;
2774 
2775 		default:
2776 			ASSERT(0);
2777 		}
2778 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2779 	    current, new) != current);
2780 
2781 	/*
2782 	 * We have set the state to indicate that we are committing this
2783 	 * speculation.  Now reserve the necessary space in the destination
2784 	 * buffer.
2785 	 */
2786 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2787 	    sizeof (uint64_t), state, NULL)) < 0) {
2788 		dtrace_buffer_drop(dest);
2789 		goto out;
2790 	}
2791 
2792 	/*
2793 	 * We have sufficient space to copy the speculative buffer into the
2794 	 * primary buffer.  First, modify the speculative buffer, filling
2795 	 * in the timestamp of all entries with the current time.  The data
2796 	 * must have the commit() time rather than the time it was traced,
2797 	 * so that all entries in the primary buffer are in timestamp order.
2798 	 */
2799 	timestamp = dtrace_gethrtime();
2800 	saddr = (uintptr_t)src->dtb_tomax;
2801 	slimit = saddr + src->dtb_offset;
2802 	while (saddr < slimit) {
2803 		size_t size;
2804 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2805 
2806 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2807 			saddr += sizeof (dtrace_epid_t);
2808 			continue;
2809 		}
2810 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2811 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2812 
2813 		ASSERT3U(saddr + size, <=, slimit);
2814 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2815 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2816 
2817 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2818 
2819 		saddr += size;
2820 	}
2821 
2822 	/*
2823 	 * Copy the buffer across.  (Note that this is a
2824 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2825 	 * a serious performance issue, a high-performance DTrace-specific
2826 	 * bcopy() should obviously be invented.)
2827 	 */
2828 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2829 	dlimit = daddr + src->dtb_offset;
2830 	saddr = (uintptr_t)src->dtb_tomax;
2831 
2832 	/*
2833 	 * First, the aligned portion.
2834 	 */
2835 	while (dlimit - daddr >= sizeof (uint64_t)) {
2836 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2837 
2838 		daddr += sizeof (uint64_t);
2839 		saddr += sizeof (uint64_t);
2840 	}
2841 
2842 	/*
2843 	 * Now any left-over bit...
2844 	 */
2845 	while (dlimit - daddr)
2846 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2847 
2848 	/*
2849 	 * Finally, commit the reserved space in the destination buffer.
2850 	 */
2851 	dest->dtb_offset = offs + src->dtb_offset;
2852 
2853 out:
2854 	/*
2855 	 * If we're lucky enough to be the only active CPU on this speculation
2856 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2857 	 */
2858 	if (current == DTRACESPEC_ACTIVE ||
2859 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2860 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2861 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2862 
2863 		ASSERT(rval == DTRACESPEC_COMMITTING);
2864 	}
2865 
2866 	src->dtb_offset = 0;
2867 	src->dtb_xamot_drops += src->dtb_drops;
2868 	src->dtb_drops = 0;
2869 }
2870 
2871 /*
2872  * This routine discards an active speculation.  If the specified speculation
2873  * is not in a valid state to perform a discard(), this routine will silently
2874  * do nothing.  The state of the specified speculation is transitioned
2875  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2876  */
2877 static void
2878 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2879     dtrace_specid_t which)
2880 {
2881 	dtrace_speculation_t *spec;
2882 	dtrace_speculation_state_t current, new;
2883 	dtrace_buffer_t *buf;
2884 
2885 	if (which == 0)
2886 		return;
2887 
2888 	if (which > state->dts_nspeculations) {
2889 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2890 		return;
2891 	}
2892 
2893 	spec = &state->dts_speculations[which - 1];
2894 	buf = &spec->dtsp_buffer[cpu];
2895 
2896 	do {
2897 		current = spec->dtsp_state;
2898 
2899 		switch (current) {
2900 		case DTRACESPEC_INACTIVE:
2901 		case DTRACESPEC_COMMITTINGMANY:
2902 		case DTRACESPEC_COMMITTING:
2903 		case DTRACESPEC_DISCARDING:
2904 			return;
2905 
2906 		case DTRACESPEC_ACTIVE:
2907 		case DTRACESPEC_ACTIVEMANY:
2908 			new = DTRACESPEC_DISCARDING;
2909 			break;
2910 
2911 		case DTRACESPEC_ACTIVEONE:
2912 			if (buf->dtb_offset != 0) {
2913 				new = DTRACESPEC_INACTIVE;
2914 			} else {
2915 				new = DTRACESPEC_DISCARDING;
2916 			}
2917 			break;
2918 
2919 		default:
2920 			ASSERT(0);
2921 		}
2922 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2923 	    current, new) != current);
2924 
2925 	buf->dtb_offset = 0;
2926 	buf->dtb_drops = 0;
2927 }
2928 
2929 /*
2930  * Note:  not called from probe context.  This function is called
2931  * asynchronously from cross call context to clean any speculations that are
2932  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2933  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2934  * speculation.
2935  */
2936 static void
2937 dtrace_speculation_clean_here(dtrace_state_t *state)
2938 {
2939 	dtrace_icookie_t cookie;
2940 	processorid_t cpu = CPU->cpu_id;
2941 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2942 	dtrace_specid_t i;
2943 
2944 	cookie = dtrace_interrupt_disable();
2945 
2946 	if (dest->dtb_tomax == NULL) {
2947 		dtrace_interrupt_enable(cookie);
2948 		return;
2949 	}
2950 
2951 	for (i = 0; i < state->dts_nspeculations; i++) {
2952 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2953 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2954 
2955 		if (src->dtb_tomax == NULL)
2956 			continue;
2957 
2958 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2959 			src->dtb_offset = 0;
2960 			continue;
2961 		}
2962 
2963 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2964 			continue;
2965 
2966 		if (src->dtb_offset == 0)
2967 			continue;
2968 
2969 		dtrace_speculation_commit(state, cpu, i + 1);
2970 	}
2971 
2972 	dtrace_interrupt_enable(cookie);
2973 }
2974 
2975 /*
2976  * Note:  not called from probe context.  This function is called
2977  * asynchronously (and at a regular interval) to clean any speculations that
2978  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2979  * is work to be done, it cross calls all CPUs to perform that work;
2980  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2981  * INACTIVE state until they have been cleaned by all CPUs.
2982  */
2983 static void
2984 dtrace_speculation_clean(dtrace_state_t *state)
2985 {
2986 	int work = 0, rv;
2987 	dtrace_specid_t i;
2988 
2989 	for (i = 0; i < state->dts_nspeculations; i++) {
2990 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2991 
2992 		ASSERT(!spec->dtsp_cleaning);
2993 
2994 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2995 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2996 			continue;
2997 
2998 		work++;
2999 		spec->dtsp_cleaning = 1;
3000 	}
3001 
3002 	if (!work)
3003 		return;
3004 
3005 	dtrace_xcall(DTRACE_CPUALL,
3006 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3007 
3008 	/*
3009 	 * We now know that all CPUs have committed or discarded their
3010 	 * speculation buffers, as appropriate.  We can now set the state
3011 	 * to inactive.
3012 	 */
3013 	for (i = 0; i < state->dts_nspeculations; i++) {
3014 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3015 		dtrace_speculation_state_t current, new;
3016 
3017 		if (!spec->dtsp_cleaning)
3018 			continue;
3019 
3020 		current = spec->dtsp_state;
3021 		ASSERT(current == DTRACESPEC_DISCARDING ||
3022 		    current == DTRACESPEC_COMMITTINGMANY);
3023 
3024 		new = DTRACESPEC_INACTIVE;
3025 
3026 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
3027 		ASSERT(rv == current);
3028 		spec->dtsp_cleaning = 0;
3029 	}
3030 }
3031 
3032 /*
3033  * Called as part of a speculate() to get the speculative buffer associated
3034  * with a given speculation.  Returns NULL if the specified speculation is not
3035  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
3036  * the active CPU is not the specified CPU -- the speculation will be
3037  * atomically transitioned into the ACTIVEMANY state.
3038  */
3039 static dtrace_buffer_t *
3040 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3041     dtrace_specid_t which)
3042 {
3043 	dtrace_speculation_t *spec;
3044 	dtrace_speculation_state_t current, new;
3045 	dtrace_buffer_t *buf;
3046 
3047 	if (which == 0)
3048 		return (NULL);
3049 
3050 	if (which > state->dts_nspeculations) {
3051 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3052 		return (NULL);
3053 	}
3054 
3055 	spec = &state->dts_speculations[which - 1];
3056 	buf = &spec->dtsp_buffer[cpuid];
3057 
3058 	do {
3059 		current = spec->dtsp_state;
3060 
3061 		switch (current) {
3062 		case DTRACESPEC_INACTIVE:
3063 		case DTRACESPEC_COMMITTINGMANY:
3064 		case DTRACESPEC_DISCARDING:
3065 			return (NULL);
3066 
3067 		case DTRACESPEC_COMMITTING:
3068 			ASSERT(buf->dtb_offset == 0);
3069 			return (NULL);
3070 
3071 		case DTRACESPEC_ACTIVEONE:
3072 			/*
3073 			 * This speculation is currently active on one CPU.
3074 			 * Check the offset in the buffer; if it's non-zero,
3075 			 * that CPU must be us (and we leave the state alone).
3076 			 * If it's zero, assume that we're starting on a new
3077 			 * CPU -- and change the state to indicate that the
3078 			 * speculation is active on more than one CPU.
3079 			 */
3080 			if (buf->dtb_offset != 0)
3081 				return (buf);
3082 
3083 			new = DTRACESPEC_ACTIVEMANY;
3084 			break;
3085 
3086 		case DTRACESPEC_ACTIVEMANY:
3087 			return (buf);
3088 
3089 		case DTRACESPEC_ACTIVE:
3090 			new = DTRACESPEC_ACTIVEONE;
3091 			break;
3092 
3093 		default:
3094 			ASSERT(0);
3095 		}
3096 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3097 	    current, new) != current);
3098 
3099 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3100 	return (buf);
3101 }
3102 
3103 /*
3104  * Return a string.  In the event that the user lacks the privilege to access
3105  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3106  * don't fail access checking.
3107  *
3108  * dtrace_dif_variable() uses this routine as a helper for various
3109  * builtin values such as 'execname' and 'probefunc.'
3110  */
3111 uintptr_t
3112 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3113     dtrace_mstate_t *mstate)
3114 {
3115 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3116 	uintptr_t ret;
3117 	size_t strsz;
3118 
3119 	/*
3120 	 * The easy case: this probe is allowed to read all of memory, so
3121 	 * we can just return this as a vanilla pointer.
3122 	 */
3123 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3124 		return (addr);
3125 
3126 	/*
3127 	 * This is the tougher case: we copy the string in question from
3128 	 * kernel memory into scratch memory and return it that way: this
3129 	 * ensures that we won't trip up when access checking tests the
3130 	 * BYREF return value.
3131 	 */
3132 	strsz = dtrace_strlen((char *)addr, size) + 1;
3133 
3134 	if (mstate->dtms_scratch_ptr + strsz >
3135 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3136 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3137 		return (0);
3138 	}
3139 
3140 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3141 	    strsz);
3142 	ret = mstate->dtms_scratch_ptr;
3143 	mstate->dtms_scratch_ptr += strsz;
3144 	return (ret);
3145 }
3146 
3147 /*
3148  * This function implements the DIF emulator's variable lookups.  The emulator
3149  * passes a reserved variable identifier and optional built-in array index.
3150  */
3151 static uint64_t
3152 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3153     uint64_t ndx)
3154 {
3155 	/*
3156 	 * If we're accessing one of the uncached arguments, we'll turn this
3157 	 * into a reference in the args array.
3158 	 */
3159 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3160 		ndx = v - DIF_VAR_ARG0;
3161 		v = DIF_VAR_ARGS;
3162 	}
3163 
3164 	switch (v) {
3165 	case DIF_VAR_ARGS:
3166 		if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
3167 			cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
3168 			    CPU_DTRACE_KPRIV;
3169 			return (0);
3170 		}
3171 
3172 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3173 		if (ndx >= sizeof (mstate->dtms_arg) /
3174 		    sizeof (mstate->dtms_arg[0])) {
3175 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3176 			dtrace_provider_t *pv;
3177 			uint64_t val;
3178 
3179 			pv = mstate->dtms_probe->dtpr_provider;
3180 			if (pv->dtpv_pops.dtps_getargval != NULL)
3181 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3182 				    mstate->dtms_probe->dtpr_id,
3183 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3184 			else
3185 				val = dtrace_getarg(ndx, aframes);
3186 
3187 			/*
3188 			 * This is regrettably required to keep the compiler
3189 			 * from tail-optimizing the call to dtrace_getarg().
3190 			 * The condition always evaluates to true, but the
3191 			 * compiler has no way of figuring that out a priori.
3192 			 * (None of this would be necessary if the compiler
3193 			 * could be relied upon to _always_ tail-optimize
3194 			 * the call to dtrace_getarg() -- but it can't.)
3195 			 */
3196 			if (mstate->dtms_probe != NULL)
3197 				return (val);
3198 
3199 			ASSERT(0);
3200 		}
3201 
3202 		return (mstate->dtms_arg[ndx]);
3203 
3204 	case DIF_VAR_UREGS: {
3205 		klwp_t *lwp;
3206 
3207 		if (!dtrace_priv_proc(state, mstate))
3208 			return (0);
3209 
3210 		if ((lwp = curthread->t_lwp) == NULL) {
3211 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3212 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0;
3213 			return (0);
3214 		}
3215 
3216 		return (dtrace_getreg(lwp->lwp_regs, ndx));
3217 	}
3218 
3219 	case DIF_VAR_VMREGS: {
3220 		uint64_t rval;
3221 
3222 		if (!dtrace_priv_kernel(state))
3223 			return (0);
3224 
3225 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3226 
3227 		rval = dtrace_getvmreg(ndx,
3228 		    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
3229 
3230 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3231 
3232 		return (rval);
3233 	}
3234 
3235 	case DIF_VAR_CURTHREAD:
3236 		if (!dtrace_priv_proc(state, mstate))
3237 			return (0);
3238 		return ((uint64_t)(uintptr_t)curthread);
3239 
3240 	case DIF_VAR_TIMESTAMP:
3241 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3242 			mstate->dtms_timestamp = dtrace_gethrtime();
3243 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3244 		}
3245 		return (mstate->dtms_timestamp);
3246 
3247 	case DIF_VAR_VTIMESTAMP:
3248 		ASSERT(dtrace_vtime_references != 0);
3249 		return (curthread->t_dtrace_vtime);
3250 
3251 	case DIF_VAR_WALLTIMESTAMP:
3252 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3253 			mstate->dtms_walltimestamp = dtrace_gethrestime();
3254 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3255 		}
3256 		return (mstate->dtms_walltimestamp);
3257 
3258 	case DIF_VAR_IPL:
3259 		if (!dtrace_priv_kernel(state))
3260 			return (0);
3261 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3262 			mstate->dtms_ipl = dtrace_getipl();
3263 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3264 		}
3265 		return (mstate->dtms_ipl);
3266 
3267 	case DIF_VAR_EPID:
3268 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3269 		return (mstate->dtms_epid);
3270 
3271 	case DIF_VAR_ID:
3272 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3273 		return (mstate->dtms_probe->dtpr_id);
3274 
3275 	case DIF_VAR_STACKDEPTH:
3276 		if (!dtrace_priv_kernel(state))
3277 			return (0);
3278 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3279 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3280 
3281 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3282 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3283 		}
3284 		return (mstate->dtms_stackdepth);
3285 
3286 	case DIF_VAR_USTACKDEPTH:
3287 		if (!dtrace_priv_proc(state, mstate))
3288 			return (0);
3289 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3290 			/*
3291 			 * See comment in DIF_VAR_PID.
3292 			 */
3293 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3294 			    CPU_ON_INTR(CPU)) {
3295 				mstate->dtms_ustackdepth = 0;
3296 			} else {
3297 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3298 				mstate->dtms_ustackdepth =
3299 				    dtrace_getustackdepth();
3300 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3301 			}
3302 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3303 		}
3304 		return (mstate->dtms_ustackdepth);
3305 
3306 	case DIF_VAR_CALLER:
3307 		if (!dtrace_priv_kernel(state))
3308 			return (0);
3309 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3310 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3311 
3312 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3313 				/*
3314 				 * If this is an unanchored probe, we are
3315 				 * required to go through the slow path:
3316 				 * dtrace_caller() only guarantees correct
3317 				 * results for anchored probes.
3318 				 */
3319 				pc_t caller[2];
3320 
3321 				dtrace_getpcstack(caller, 2, aframes,
3322 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3323 				mstate->dtms_caller = caller[1];
3324 			} else if ((mstate->dtms_caller =
3325 			    dtrace_caller(aframes)) == -1) {
3326 				/*
3327 				 * We have failed to do this the quick way;
3328 				 * we must resort to the slower approach of
3329 				 * calling dtrace_getpcstack().
3330 				 */
3331 				pc_t caller;
3332 
3333 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3334 				mstate->dtms_caller = caller;
3335 			}
3336 
3337 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3338 		}
3339 		return (mstate->dtms_caller);
3340 
3341 	case DIF_VAR_UCALLER:
3342 		if (!dtrace_priv_proc(state, mstate))
3343 			return (0);
3344 
3345 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3346 			uint64_t ustack[3];
3347 
3348 			/*
3349 			 * dtrace_getupcstack() fills in the first uint64_t
3350 			 * with the current PID.  The second uint64_t will
3351 			 * be the program counter at user-level.  The third
3352 			 * uint64_t will contain the caller, which is what
3353 			 * we're after.
3354 			 */
3355 			ustack[2] = 0;
3356 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3357 			dtrace_getupcstack(ustack, 3);
3358 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3359 			mstate->dtms_ucaller = ustack[2];
3360 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3361 		}
3362 
3363 		return (mstate->dtms_ucaller);
3364 
3365 	case DIF_VAR_PROBEPROV:
3366 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3367 		return (dtrace_dif_varstr(
3368 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3369 		    state, mstate));
3370 
3371 	case DIF_VAR_PROBEMOD:
3372 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3373 		return (dtrace_dif_varstr(
3374 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3375 		    state, mstate));
3376 
3377 	case DIF_VAR_PROBEFUNC:
3378 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3379 		return (dtrace_dif_varstr(
3380 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3381 		    state, mstate));
3382 
3383 	case DIF_VAR_PROBENAME:
3384 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3385 		return (dtrace_dif_varstr(
3386 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3387 		    state, mstate));
3388 
3389 	case DIF_VAR_PID:
3390 		if (!dtrace_priv_proc(state, mstate))
3391 			return (0);
3392 
3393 		/*
3394 		 * Note that we are assuming that an unanchored probe is
3395 		 * always due to a high-level interrupt.  (And we're assuming
3396 		 * that there is only a single high level interrupt.)
3397 		 */
3398 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3399 			return (pid0.pid_id);
3400 
3401 		/*
3402 		 * It is always safe to dereference one's own t_procp pointer:
3403 		 * it always points to a valid, allocated proc structure.
3404 		 * Further, it is always safe to dereference the p_pidp member
3405 		 * of one's own proc structure.  (These are truisms becuase
3406 		 * threads and processes don't clean up their own state --
3407 		 * they leave that task to whomever reaps them.)
3408 		 */
3409 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3410 
3411 	case DIF_VAR_PPID:
3412 		if (!dtrace_priv_proc(state, mstate))
3413 			return (0);
3414 
3415 		/*
3416 		 * See comment in DIF_VAR_PID.
3417 		 */
3418 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3419 			return (pid0.pid_id);
3420 
3421 		/*
3422 		 * It is always safe to dereference one's own t_procp pointer:
3423 		 * it always points to a valid, allocated proc structure.
3424 		 * (This is true because threads don't clean up their own
3425 		 * state -- they leave that task to whomever reaps them.)
3426 		 */
3427 		return ((uint64_t)curthread->t_procp->p_ppid);
3428 
3429 	case DIF_VAR_TID:
3430 		/*
3431 		 * See comment in DIF_VAR_PID.
3432 		 */
3433 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3434 			return (0);
3435 
3436 		return ((uint64_t)curthread->t_tid);
3437 
3438 	case DIF_VAR_EXECNAME:
3439 		if (!dtrace_priv_proc(state, mstate))
3440 			return (0);
3441 
3442 		/*
3443 		 * See comment in DIF_VAR_PID.
3444 		 */
3445 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3446 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3447 
3448 		/*
3449 		 * It is always safe to dereference one's own t_procp pointer:
3450 		 * it always points to a valid, allocated proc structure.
3451 		 * (This is true because threads don't clean up their own
3452 		 * state -- they leave that task to whomever reaps them.)
3453 		 */
3454 		return (dtrace_dif_varstr(
3455 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3456 		    state, mstate));
3457 
3458 	case DIF_VAR_ZONENAME:
3459 		if (!dtrace_priv_proc(state, mstate))
3460 			return (0);
3461 
3462 		/*
3463 		 * See comment in DIF_VAR_PID.
3464 		 */
3465 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3466 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3467 
3468 		/*
3469 		 * It is always safe to dereference one's own t_procp pointer:
3470 		 * it always points to a valid, allocated proc structure.
3471 		 * (This is true because threads don't clean up their own
3472 		 * state -- they leave that task to whomever reaps them.)
3473 		 */
3474 		return (dtrace_dif_varstr(
3475 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3476 		    state, mstate));
3477 
3478 	case DIF_VAR_UID:
3479 		if (!dtrace_priv_proc(state, mstate))
3480 			return (0);
3481 
3482 		/*
3483 		 * See comment in DIF_VAR_PID.
3484 		 */
3485 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3486 			return ((uint64_t)p0.p_cred->cr_uid);
3487 
3488 		/*
3489 		 * It is always safe to dereference one's own t_procp pointer:
3490 		 * it always points to a valid, allocated proc structure.
3491 		 * (This is true because threads don't clean up their own
3492 		 * state -- they leave that task to whomever reaps them.)
3493 		 *
3494 		 * Additionally, it is safe to dereference one's own process
3495 		 * credential, since this is never NULL after process birth.
3496 		 */
3497 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3498 
3499 	case DIF_VAR_GID:
3500 		if (!dtrace_priv_proc(state, mstate))
3501 			return (0);
3502 
3503 		/*
3504 		 * See comment in DIF_VAR_PID.
3505 		 */
3506 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3507 			return ((uint64_t)p0.p_cred->cr_gid);
3508 
3509 		/*
3510 		 * It is always safe to dereference one's own t_procp pointer:
3511 		 * it always points to a valid, allocated proc structure.
3512 		 * (This is true because threads don't clean up their own
3513 		 * state -- they leave that task to whomever reaps them.)
3514 		 *
3515 		 * Additionally, it is safe to dereference one's own process
3516 		 * credential, since this is never NULL after process birth.
3517 		 */
3518 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3519 
3520 	case DIF_VAR_ERRNO: {
3521 		klwp_t *lwp;
3522 		if (!dtrace_priv_proc(state, mstate))
3523 			return (0);
3524 
3525 		/*
3526 		 * See comment in DIF_VAR_PID.
3527 		 */
3528 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3529 			return (0);
3530 
3531 		/*
3532 		 * It is always safe to dereference one's own t_lwp pointer in
3533 		 * the event that this pointer is non-NULL.  (This is true
3534 		 * because threads and lwps don't clean up their own state --
3535 		 * they leave that task to whomever reaps them.)
3536 		 */
3537 		if ((lwp = curthread->t_lwp) == NULL)
3538 			return (0);
3539 
3540 		return ((uint64_t)lwp->lwp_errno);
3541 	}
3542 
3543 	case DIF_VAR_THREADNAME:
3544 		/*
3545 		 * See comment in DIF_VAR_PID.
3546 		 */
3547 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3548 			return (0);
3549 
3550 		if (curthread->t_name == NULL)
3551 			return (0);
3552 
3553 		/*
3554 		 * Once set, ->t_name itself is never changed: any updates are
3555 		 * made to the same buffer that we are pointing out.  So we are
3556 		 * safe to dereference it here.
3557 		 */
3558 		return (dtrace_dif_varstr((uintptr_t)curthread->t_name,
3559 		    state, mstate));
3560 
3561 	default:
3562 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3563 		return (0);
3564 	}
3565 }
3566 
3567 static void
3568 dtrace_dif_variable_write(dtrace_mstate_t *mstate, dtrace_state_t *state,
3569     uint64_t v, uint64_t ndx, uint64_t data)
3570 {
3571 	switch (v) {
3572 	case DIF_VAR_UREGS: {
3573 		klwp_t *lwp;
3574 
3575 		if (dtrace_destructive_disallow ||
3576 		    !dtrace_priv_proc_control(state, mstate)) {
3577 			return;
3578 		}
3579 
3580 		if ((lwp = curthread->t_lwp) == NULL) {
3581 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3582 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0;
3583 			return;
3584 		}
3585 
3586 		dtrace_setreg(lwp->lwp_regs, ndx, data);
3587 		return;
3588 	}
3589 
3590 	default:
3591 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3592 		return;
3593 	}
3594 }
3595 
3596 typedef enum dtrace_json_state {
3597 	DTRACE_JSON_REST = 1,
3598 	DTRACE_JSON_OBJECT,
3599 	DTRACE_JSON_STRING,
3600 	DTRACE_JSON_STRING_ESCAPE,
3601 	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3602 	DTRACE_JSON_COLON,
3603 	DTRACE_JSON_COMMA,
3604 	DTRACE_JSON_VALUE,
3605 	DTRACE_JSON_IDENTIFIER,
3606 	DTRACE_JSON_NUMBER,
3607 	DTRACE_JSON_NUMBER_FRAC,
3608 	DTRACE_JSON_NUMBER_EXP,
3609 	DTRACE_JSON_COLLECT_OBJECT
3610 } dtrace_json_state_t;
3611 
3612 /*
3613  * This function possesses just enough knowledge about JSON to extract a single
3614  * value from a JSON string and store it in the scratch buffer.  It is able
3615  * to extract nested object values, and members of arrays by index.
3616  *
3617  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3618  * be looked up as we descend into the object tree.  e.g.
3619  *
3620  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3621  *       with nelems = 5.
3622  *
3623  * The run time of this function must be bounded above by strsize to limit the
3624  * amount of work done in probe context.  As such, it is implemented as a
3625  * simple state machine, reading one character at a time using safe loads
3626  * until we find the requested element, hit a parsing error or run off the
3627  * end of the object or string.
3628  *
3629  * As there is no way for a subroutine to return an error without interrupting
3630  * clause execution, we simply return NULL in the event of a missing key or any
3631  * other error condition.  Each NULL return in this function is commented with
3632  * the error condition it represents -- parsing or otherwise.
3633  *
3634  * The set of states for the state machine closely matches the JSON
3635  * specification (http://json.org/).  Briefly:
3636  *
3637  *   DTRACE_JSON_REST:
3638  *     Skip whitespace until we find either a top-level Object, moving
3639  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3640  *
3641  *   DTRACE_JSON_OBJECT:
3642  *     Locate the next key String in an Object.  Sets a flag to denote
3643  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3644  *
3645  *   DTRACE_JSON_COLON:
3646  *     Skip whitespace until we find the colon that separates key Strings
3647  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3648  *
3649  *   DTRACE_JSON_VALUE:
3650  *     Detects the type of the next value (String, Number, Identifier, Object
3651  *     or Array) and routes to the states that process that type.  Here we also
3652  *     deal with the element selector list if we are requested to traverse down
3653  *     into the object tree.
3654  *
3655  *   DTRACE_JSON_COMMA:
3656  *     Skip whitespace until we find the comma that separates key-value pairs
3657  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3658  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3659  *     states return to this state at the end of their value, unless otherwise
3660  *     noted.
3661  *
3662  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3663  *     Processes a Number literal from the JSON, including any exponent
3664  *     component that may be present.  Numbers are returned as strings, which
3665  *     may be passed to strtoll() if an integer is required.
3666  *
3667  *   DTRACE_JSON_IDENTIFIER:
3668  *     Processes a "true", "false" or "null" literal in the JSON.
3669  *
3670  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3671  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3672  *     Processes a String literal from the JSON, whether the String denotes
3673  *     a key, a value or part of a larger Object.  Handles all escape sequences
3674  *     present in the specification, including four-digit unicode characters,
3675  *     but merely includes the escape sequence without converting it to the
3676  *     actual escaped character.  If the String is flagged as a key, we
3677  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3678  *
3679  *   DTRACE_JSON_COLLECT_OBJECT:
3680  *     This state collects an entire Object (or Array), correctly handling
3681  *     embedded strings.  If the full element selector list matches this nested
3682  *     object, we return the Object in full as a string.  If not, we use this
3683  *     state to skip to the next value at this level and continue processing.
3684  *
3685  * NOTE: This function uses various macros from strtolctype.h to manipulate
3686  * digit values, etc -- these have all been checked to ensure they make
3687  * no additional function calls.
3688  */
3689 static char *
3690 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3691     char *dest)
3692 {
3693 	dtrace_json_state_t state = DTRACE_JSON_REST;
3694 	int64_t array_elem = INT64_MIN;
3695 	int64_t array_pos = 0;
3696 	uint8_t escape_unicount = 0;
3697 	boolean_t string_is_key = B_FALSE;
3698 	boolean_t collect_object = B_FALSE;
3699 	boolean_t found_key = B_FALSE;
3700 	boolean_t in_array = B_FALSE;
3701 	uint32_t braces = 0, brackets = 0;
3702 	char *elem = elemlist;
3703 	char *dd = dest;
3704 	uintptr_t cur;
3705 
3706 	for (cur = json; cur < json + size; cur++) {
3707 		char cc = dtrace_load8(cur);
3708 		if (cc == '\0')
3709 			return (NULL);
3710 
3711 		switch (state) {
3712 		case DTRACE_JSON_REST:
3713 			if (isspace(cc))
3714 				break;
3715 
3716 			if (cc == '{') {
3717 				state = DTRACE_JSON_OBJECT;
3718 				break;
3719 			}
3720 
3721 			if (cc == '[') {
3722 				in_array = B_TRUE;
3723 				array_pos = 0;
3724 				array_elem = dtrace_strtoll(elem, 10, size);
3725 				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3726 				state = DTRACE_JSON_VALUE;
3727 				break;
3728 			}
3729 
3730 			/*
3731 			 * ERROR: expected to find a top-level object or array.
3732 			 */
3733 			return (NULL);
3734 		case DTRACE_JSON_OBJECT:
3735 			if (isspace(cc))
3736 				break;
3737 
3738 			if (cc == '"') {
3739 				state = DTRACE_JSON_STRING;
3740 				string_is_key = B_TRUE;
3741 				break;
3742 			}
3743 
3744 			/*
3745 			 * ERROR: either the object did not start with a key
3746 			 * string, or we've run off the end of the object
3747 			 * without finding the requested key.
3748 			 */
3749 			return (NULL);
3750 		case DTRACE_JSON_STRING:
3751 			if (cc == '\\') {
3752 				*dd++ = '\\';
3753 				state = DTRACE_JSON_STRING_ESCAPE;
3754 				break;
3755 			}
3756 
3757 			if (cc == '"') {
3758 				if (collect_object) {
3759 					/*
3760 					 * We don't reset the dest here, as
3761 					 * the string is part of a larger
3762 					 * object being collected.
3763 					 */
3764 					*dd++ = cc;
3765 					collect_object = B_FALSE;
3766 					state = DTRACE_JSON_COLLECT_OBJECT;
3767 					break;
3768 				}
3769 				*dd = '\0';
3770 				dd = dest; /* reset string buffer */
3771 				if (string_is_key) {
3772 					if (dtrace_strncmp(dest, elem,
3773 					    size) == 0)
3774 						found_key = B_TRUE;
3775 				} else if (found_key) {
3776 					if (nelems > 1) {
3777 						/*
3778 						 * We expected an object, not
3779 						 * this string.
3780 						 */
3781 						return (NULL);
3782 					}
3783 					return (dest);
3784 				}
3785 				state = string_is_key ? DTRACE_JSON_COLON :
3786 				    DTRACE_JSON_COMMA;
3787 				string_is_key = B_FALSE;
3788 				break;
3789 			}
3790 
3791 			*dd++ = cc;
3792 			break;
3793 		case DTRACE_JSON_STRING_ESCAPE:
3794 			*dd++ = cc;
3795 			if (cc == 'u') {
3796 				escape_unicount = 0;
3797 				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3798 			} else {
3799 				state = DTRACE_JSON_STRING;
3800 			}
3801 			break;
3802 		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3803 			if (!isxdigit(cc)) {
3804 				/*
3805 				 * ERROR: invalid unicode escape, expected
3806 				 * four valid hexidecimal digits.
3807 				 */
3808 				return (NULL);
3809 			}
3810 
3811 			*dd++ = cc;
3812 			if (++escape_unicount == 4)
3813 				state = DTRACE_JSON_STRING;
3814 			break;
3815 		case DTRACE_JSON_COLON:
3816 			if (isspace(cc))
3817 				break;
3818 
3819 			if (cc == ':') {
3820 				state = DTRACE_JSON_VALUE;
3821 				break;
3822 			}
3823 
3824 			/*
3825 			 * ERROR: expected a colon.
3826 			 */
3827 			return (NULL);
3828 		case DTRACE_JSON_COMMA:
3829 			if (isspace(cc))
3830 				break;
3831 
3832 			if (cc == ',') {
3833 				if (in_array) {
3834 					state = DTRACE_JSON_VALUE;
3835 					if (++array_pos == array_elem)
3836 						found_key = B_TRUE;
3837 				} else {
3838 					state = DTRACE_JSON_OBJECT;
3839 				}
3840 				break;
3841 			}
3842 
3843 			/*
3844 			 * ERROR: either we hit an unexpected character, or
3845 			 * we reached the end of the object or array without
3846 			 * finding the requested key.
3847 			 */
3848 			return (NULL);
3849 		case DTRACE_JSON_IDENTIFIER:
3850 			if (islower(cc)) {
3851 				*dd++ = cc;
3852 				break;
3853 			}
3854 
3855 			*dd = '\0';
3856 			dd = dest; /* reset string buffer */
3857 
3858 			if (dtrace_strncmp(dest, "true", 5) == 0 ||
3859 			    dtrace_strncmp(dest, "false", 6) == 0 ||
3860 			    dtrace_strncmp(dest, "null", 5) == 0) {
3861 				if (found_key) {
3862 					if (nelems > 1) {
3863 						/*
3864 						 * ERROR: We expected an object,
3865 						 * not this identifier.
3866 						 */
3867 						return (NULL);
3868 					}
3869 					return (dest);
3870 				} else {
3871 					cur--;
3872 					state = DTRACE_JSON_COMMA;
3873 					break;
3874 				}
3875 			}
3876 
3877 			/*
3878 			 * ERROR: we did not recognise the identifier as one
3879 			 * of those in the JSON specification.
3880 			 */
3881 			return (NULL);
3882 		case DTRACE_JSON_NUMBER:
3883 			if (cc == '.') {
3884 				*dd++ = cc;
3885 				state = DTRACE_JSON_NUMBER_FRAC;
3886 				break;
3887 			}
3888 
3889 			if (cc == 'x' || cc == 'X') {
3890 				/*
3891 				 * ERROR: specification explicitly excludes
3892 				 * hexidecimal or octal numbers.
3893 				 */
3894 				return (NULL);
3895 			}
3896 
3897 			/* FALLTHRU */
3898 		case DTRACE_JSON_NUMBER_FRAC:
3899 			if (cc == 'e' || cc == 'E') {
3900 				*dd++ = cc;
3901 				state = DTRACE_JSON_NUMBER_EXP;
3902 				break;
3903 			}
3904 
3905 			if (cc == '+' || cc == '-') {
3906 				/*
3907 				 * ERROR: expect sign as part of exponent only.
3908 				 */
3909 				return (NULL);
3910 			}
3911 			/* FALLTHRU */
3912 		case DTRACE_JSON_NUMBER_EXP:
3913 			if (isdigit(cc) || cc == '+' || cc == '-') {
3914 				*dd++ = cc;
3915 				break;
3916 			}
3917 
3918 			*dd = '\0';
3919 			dd = dest; /* reset string buffer */
3920 			if (found_key) {
3921 				if (nelems > 1) {
3922 					/*
3923 					 * ERROR: We expected an object, not
3924 					 * this number.
3925 					 */
3926 					return (NULL);
3927 				}
3928 				return (dest);
3929 			}
3930 
3931 			cur--;
3932 			state = DTRACE_JSON_COMMA;
3933 			break;
3934 		case DTRACE_JSON_VALUE:
3935 			if (isspace(cc))
3936 				break;
3937 
3938 			if (cc == '{' || cc == '[') {
3939 				if (nelems > 1 && found_key) {
3940 					in_array = cc == '[' ? B_TRUE : B_FALSE;
3941 					/*
3942 					 * If our element selector directs us
3943 					 * to descend into this nested object,
3944 					 * then move to the next selector
3945 					 * element in the list and restart the
3946 					 * state machine.
3947 					 */
3948 					while (*elem != '\0')
3949 						elem++;
3950 					elem++; /* skip the inter-element NUL */
3951 					nelems--;
3952 					dd = dest;
3953 					if (in_array) {
3954 						state = DTRACE_JSON_VALUE;
3955 						array_pos = 0;
3956 						array_elem = dtrace_strtoll(
3957 						    elem, 10, size);
3958 						found_key = array_elem == 0 ?
3959 						    B_TRUE : B_FALSE;
3960 					} else {
3961 						found_key = B_FALSE;
3962 						state = DTRACE_JSON_OBJECT;
3963 					}
3964 					break;
3965 				}
3966 
3967 				/*
3968 				 * Otherwise, we wish to either skip this
3969 				 * nested object or return it in full.
3970 				 */
3971 				if (cc == '[')
3972 					brackets = 1;
3973 				else
3974 					braces = 1;
3975 				*dd++ = cc;
3976 				state = DTRACE_JSON_COLLECT_OBJECT;
3977 				break;
3978 			}
3979 
3980 			if (cc == '"') {
3981 				state = DTRACE_JSON_STRING;
3982 				break;
3983 			}
3984 
3985 			if (islower(cc)) {
3986 				/*
3987 				 * Here we deal with true, false and null.
3988 				 */
3989 				*dd++ = cc;
3990 				state = DTRACE_JSON_IDENTIFIER;
3991 				break;
3992 			}
3993 
3994 			if (cc == '-' || isdigit(cc)) {
3995 				*dd++ = cc;
3996 				state = DTRACE_JSON_NUMBER;
3997 				break;
3998 			}
3999 
4000 			/*
4001 			 * ERROR: unexpected character at start of value.
4002 			 */
4003 			return (NULL);
4004 		case DTRACE_JSON_COLLECT_OBJECT:
4005 			if (cc == '\0')
4006 				/*
4007 				 * ERROR: unexpected end of input.
4008 				 */
4009 				return (NULL);
4010 
4011 			*dd++ = cc;
4012 			if (cc == '"') {
4013 				collect_object = B_TRUE;
4014 				state = DTRACE_JSON_STRING;
4015 				break;
4016 			}
4017 
4018 			if (cc == ']') {
4019 				if (brackets-- == 0) {
4020 					/*
4021 					 * ERROR: unbalanced brackets.
4022 					 */
4023 					return (NULL);
4024 				}
4025 			} else if (cc == '}') {
4026 				if (braces-- == 0) {
4027 					/*
4028 					 * ERROR: unbalanced braces.
4029 					 */
4030 					return (NULL);
4031 				}
4032 			} else if (cc == '{') {
4033 				braces++;
4034 			} else if (cc == '[') {
4035 				brackets++;
4036 			}
4037 
4038 			if (brackets == 0 && braces == 0) {
4039 				if (found_key) {
4040 					*dd = '\0';
4041 					return (dest);
4042 				}
4043 				dd = dest; /* reset string buffer */
4044 				state = DTRACE_JSON_COMMA;
4045 			}
4046 			break;
4047 		}
4048 	}
4049 	return (NULL);
4050 }
4051 
4052 /*
4053  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4054  * Notice that we don't bother validating the proper number of arguments or
4055  * their types in the tuple stack.  This isn't needed because all argument
4056  * interpretation is safe because of our load safety -- the worst that can
4057  * happen is that a bogus program can obtain bogus results.
4058  */
4059 static void
4060 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4061     dtrace_key_t *tupregs, int nargs,
4062     dtrace_mstate_t *mstate, dtrace_state_t *state)
4063 {
4064 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4065 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4066 	dtrace_vstate_t *vstate = &state->dts_vstate;
4067 
4068 	union {
4069 		mutex_impl_t mi;
4070 		uint64_t mx;
4071 	} m;
4072 
4073 	union {
4074 		krwlock_t ri;
4075 		uintptr_t rw;
4076 	} r;
4077 
4078 	switch (subr) {
4079 	case DIF_SUBR_RAND:
4080 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4081 		break;
4082 
4083 	case DIF_SUBR_MUTEX_OWNED:
4084 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4085 		    mstate, vstate)) {
4086 			regs[rd] = 0;
4087 			break;
4088 		}
4089 
4090 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4091 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4092 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4093 		else
4094 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4095 		break;
4096 
4097 	case DIF_SUBR_MUTEX_OWNER:
4098 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4099 		    mstate, vstate)) {
4100 			regs[rd] = 0;
4101 			break;
4102 		}
4103 
4104 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4105 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4106 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4107 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4108 		else
4109 			regs[rd] = 0;
4110 		break;
4111 
4112 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4113 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4114 		    mstate, vstate)) {
4115 			regs[rd] = 0;
4116 			break;
4117 		}
4118 
4119 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4120 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4121 		break;
4122 
4123 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4124 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4125 		    mstate, vstate)) {
4126 			regs[rd] = 0;
4127 			break;
4128 		}
4129 
4130 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4131 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4132 		break;
4133 
4134 	case DIF_SUBR_RW_READ_HELD: {
4135 		uintptr_t tmp;
4136 
4137 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4138 		    mstate, vstate)) {
4139 			regs[rd] = 0;
4140 			break;
4141 		}
4142 
4143 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4144 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4145 		break;
4146 	}
4147 
4148 	case DIF_SUBR_RW_WRITE_HELD:
4149 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4150 		    mstate, vstate)) {
4151 			regs[rd] = 0;
4152 			break;
4153 		}
4154 
4155 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4156 		regs[rd] = _RW_WRITE_HELD(&r.ri);
4157 		break;
4158 
4159 	case DIF_SUBR_RW_ISWRITER:
4160 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4161 		    mstate, vstate)) {
4162 			regs[rd] = 0;
4163 			break;
4164 		}
4165 
4166 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4167 		regs[rd] = _RW_ISWRITER(&r.ri);
4168 		break;
4169 
4170 	case DIF_SUBR_BCOPY: {
4171 		/*
4172 		 * We need to be sure that the destination is in the scratch
4173 		 * region -- no other region is allowed.
4174 		 */
4175 		uintptr_t src = tupregs[0].dttk_value;
4176 		uintptr_t dest = tupregs[1].dttk_value;
4177 		size_t size = tupregs[2].dttk_value;
4178 
4179 		if (!dtrace_inscratch(dest, size, mstate)) {
4180 			*flags |= CPU_DTRACE_BADADDR;
4181 			*illval = regs[rd];
4182 			break;
4183 		}
4184 
4185 		if (!dtrace_canload(src, size, mstate, vstate)) {
4186 			regs[rd] = 0;
4187 			break;
4188 		}
4189 
4190 		dtrace_bcopy((void *)src, (void *)dest, size);
4191 		break;
4192 	}
4193 
4194 	case DIF_SUBR_ALLOCA:
4195 	case DIF_SUBR_COPYIN: {
4196 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4197 		uint64_t size =
4198 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4199 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4200 
4201 		/*
4202 		 * This action doesn't require any credential checks since
4203 		 * probes will not activate in user contexts to which the
4204 		 * enabling user does not have permissions.
4205 		 */
4206 
4207 		/*
4208 		 * Rounding up the user allocation size could have overflowed
4209 		 * a large, bogus allocation (like -1ULL) to 0.
4210 		 */
4211 		if (scratch_size < size ||
4212 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4213 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4214 			regs[rd] = 0;
4215 			break;
4216 		}
4217 
4218 		if (subr == DIF_SUBR_COPYIN) {
4219 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4220 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4221 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4222 		}
4223 
4224 		mstate->dtms_scratch_ptr += scratch_size;
4225 		regs[rd] = dest;
4226 		break;
4227 	}
4228 
4229 	case DIF_SUBR_COPYINTO: {
4230 		uint64_t size = tupregs[1].dttk_value;
4231 		uintptr_t dest = tupregs[2].dttk_value;
4232 
4233 		/*
4234 		 * This action doesn't require any credential checks since
4235 		 * probes will not activate in user contexts to which the
4236 		 * enabling user does not have permissions.
4237 		 */
4238 		if (!dtrace_inscratch(dest, size, mstate)) {
4239 			*flags |= CPU_DTRACE_BADADDR;
4240 			*illval = regs[rd];
4241 			break;
4242 		}
4243 
4244 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4245 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4246 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4247 		break;
4248 	}
4249 
4250 	case DIF_SUBR_COPYINSTR: {
4251 		uintptr_t dest = mstate->dtms_scratch_ptr;
4252 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4253 
4254 		if (nargs > 1 && tupregs[1].dttk_value < size)
4255 			size = tupregs[1].dttk_value + 1;
4256 
4257 		/*
4258 		 * This action doesn't require any credential checks since
4259 		 * probes will not activate in user contexts to which the
4260 		 * enabling user does not have permissions.
4261 		 */
4262 		if (!DTRACE_INSCRATCH(mstate, size)) {
4263 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4264 			regs[rd] = 0;
4265 			break;
4266 		}
4267 
4268 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4269 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4270 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4271 
4272 		((char *)dest)[size - 1] = '\0';
4273 		mstate->dtms_scratch_ptr += size;
4274 		regs[rd] = dest;
4275 		break;
4276 	}
4277 
4278 	case DIF_SUBR_MSGSIZE:
4279 	case DIF_SUBR_MSGDSIZE: {
4280 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4281 		uintptr_t wptr, rptr;
4282 		size_t count = 0;
4283 		int cont = 0;
4284 
4285 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4286 
4287 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4288 			    vstate)) {
4289 				regs[rd] = 0;
4290 				break;
4291 			}
4292 
4293 			wptr = dtrace_loadptr(baddr +
4294 			    offsetof(mblk_t, b_wptr));
4295 
4296 			rptr = dtrace_loadptr(baddr +
4297 			    offsetof(mblk_t, b_rptr));
4298 
4299 			if (wptr < rptr) {
4300 				*flags |= CPU_DTRACE_BADADDR;
4301 				*illval = tupregs[0].dttk_value;
4302 				break;
4303 			}
4304 
4305 			daddr = dtrace_loadptr(baddr +
4306 			    offsetof(mblk_t, b_datap));
4307 
4308 			baddr = dtrace_loadptr(baddr +
4309 			    offsetof(mblk_t, b_cont));
4310 
4311 			/*
4312 			 * We want to prevent against denial-of-service here,
4313 			 * so we're only going to search the list for
4314 			 * dtrace_msgdsize_max mblks.
4315 			 */
4316 			if (cont++ > dtrace_msgdsize_max) {
4317 				*flags |= CPU_DTRACE_ILLOP;
4318 				break;
4319 			}
4320 
4321 			if (subr == DIF_SUBR_MSGDSIZE) {
4322 				if (dtrace_load8(daddr +
4323 				    offsetof(dblk_t, db_type)) != M_DATA)
4324 					continue;
4325 			}
4326 
4327 			count += wptr - rptr;
4328 		}
4329 
4330 		if (!(*flags & CPU_DTRACE_FAULT))
4331 			regs[rd] = count;
4332 
4333 		break;
4334 	}
4335 
4336 	case DIF_SUBR_PROGENYOF: {
4337 		pid_t pid = tupregs[0].dttk_value;
4338 		proc_t *p;
4339 		int rval = 0;
4340 
4341 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4342 
4343 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4344 			if (p->p_pidp->pid_id == pid) {
4345 				rval = 1;
4346 				break;
4347 			}
4348 		}
4349 
4350 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4351 
4352 		regs[rd] = rval;
4353 		break;
4354 	}
4355 
4356 	case DIF_SUBR_SPECULATION:
4357 		regs[rd] = dtrace_speculation(state);
4358 		break;
4359 
4360 	case DIF_SUBR_COPYOUT: {
4361 		uintptr_t kaddr = tupregs[0].dttk_value;
4362 		uintptr_t uaddr = tupregs[1].dttk_value;
4363 		uint64_t size = tupregs[2].dttk_value;
4364 
4365 		if (!dtrace_destructive_disallow &&
4366 		    dtrace_priv_proc_control(state, mstate) &&
4367 		    !dtrace_istoxic(kaddr, size) &&
4368 		    dtrace_canload(kaddr, size, mstate, vstate)) {
4369 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4370 			dtrace_copyout(kaddr, uaddr, size, flags);
4371 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4372 		}
4373 		break;
4374 	}
4375 
4376 	case DIF_SUBR_COPYOUTSTR: {
4377 		uintptr_t kaddr = tupregs[0].dttk_value;
4378 		uintptr_t uaddr = tupregs[1].dttk_value;
4379 		uint64_t size = tupregs[2].dttk_value;
4380 		size_t lim;
4381 
4382 		if (!dtrace_destructive_disallow &&
4383 		    dtrace_priv_proc_control(state, mstate) &&
4384 		    !dtrace_istoxic(kaddr, size) &&
4385 		    dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4386 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4387 			dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4388 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4389 		}
4390 		break;
4391 	}
4392 
4393 	case DIF_SUBR_STRLEN: {
4394 		size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4395 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4396 		size_t lim;
4397 
4398 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4399 			regs[rd] = 0;
4400 			break;
4401 		}
4402 		regs[rd] = dtrace_strlen((char *)addr, lim);
4403 
4404 		break;
4405 	}
4406 
4407 	case DIF_SUBR_STRCHR:
4408 	case DIF_SUBR_STRRCHR: {
4409 		/*
4410 		 * We're going to iterate over the string looking for the
4411 		 * specified character.  We will iterate until we have reached
4412 		 * the string length or we have found the character.  If this
4413 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4414 		 * of the specified character instead of the first.
4415 		 */
4416 		uintptr_t addr = tupregs[0].dttk_value;
4417 		uintptr_t addr_limit;
4418 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4419 		size_t lim;
4420 		char c, target = (char)tupregs[1].dttk_value;
4421 
4422 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4423 			regs[rd] = 0;
4424 			break;
4425 		}
4426 		addr_limit = addr + lim;
4427 
4428 		for (regs[rd] = 0; addr < addr_limit; addr++) {
4429 			if ((c = dtrace_load8(addr)) == target) {
4430 				regs[rd] = addr;
4431 
4432 				if (subr == DIF_SUBR_STRCHR)
4433 					break;
4434 			}
4435 			if (c == '\0')
4436 				break;
4437 		}
4438 
4439 		break;
4440 	}
4441 
4442 	case DIF_SUBR_STRSTR:
4443 	case DIF_SUBR_INDEX:
4444 	case DIF_SUBR_RINDEX: {
4445 		/*
4446 		 * We're going to iterate over the string looking for the
4447 		 * specified string.  We will iterate until we have reached
4448 		 * the string length or we have found the string.  (Yes, this
4449 		 * is done in the most naive way possible -- but considering
4450 		 * that the string we're searching for is likely to be
4451 		 * relatively short, the complexity of Rabin-Karp or similar
4452 		 * hardly seems merited.)
4453 		 */
4454 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4455 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4456 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4457 		size_t len = dtrace_strlen(addr, size);
4458 		size_t sublen = dtrace_strlen(substr, size);
4459 		char *limit = addr + len, *orig = addr;
4460 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4461 		int inc = 1;
4462 
4463 		regs[rd] = notfound;
4464 
4465 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4466 			regs[rd] = 0;
4467 			break;
4468 		}
4469 
4470 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4471 		    vstate)) {
4472 			regs[rd] = 0;
4473 			break;
4474 		}
4475 
4476 		/*
4477 		 * strstr() and index()/rindex() have similar semantics if
4478 		 * both strings are the empty string: strstr() returns a
4479 		 * pointer to the (empty) string, and index() and rindex()
4480 		 * both return index 0 (regardless of any position argument).
4481 		 */
4482 		if (sublen == 0 && len == 0) {
4483 			if (subr == DIF_SUBR_STRSTR)
4484 				regs[rd] = (uintptr_t)addr;
4485 			else
4486 				regs[rd] = 0;
4487 			break;
4488 		}
4489 
4490 		if (subr != DIF_SUBR_STRSTR) {
4491 			if (subr == DIF_SUBR_RINDEX) {
4492 				limit = orig - 1;
4493 				addr += len;
4494 				inc = -1;
4495 			}
4496 
4497 			/*
4498 			 * Both index() and rindex() take an optional position
4499 			 * argument that denotes the starting position.
4500 			 */
4501 			if (nargs == 3) {
4502 				int64_t pos = (int64_t)tupregs[2].dttk_value;
4503 
4504 				/*
4505 				 * If the position argument to index() is
4506 				 * negative, Perl implicitly clamps it at
4507 				 * zero.  This semantic is a little surprising
4508 				 * given the special meaning of negative
4509 				 * positions to similar Perl functions like
4510 				 * substr(), but it appears to reflect a
4511 				 * notion that index() can start from a
4512 				 * negative index and increment its way up to
4513 				 * the string.  Given this notion, Perl's
4514 				 * rindex() is at least self-consistent in
4515 				 * that it implicitly clamps positions greater
4516 				 * than the string length to be the string
4517 				 * length.  Where Perl completely loses
4518 				 * coherence, however, is when the specified
4519 				 * substring is the empty string ("").  In
4520 				 * this case, even if the position is
4521 				 * negative, rindex() returns 0 -- and even if
4522 				 * the position is greater than the length,
4523 				 * index() returns the string length.  These
4524 				 * semantics violate the notion that index()
4525 				 * should never return a value less than the
4526 				 * specified position and that rindex() should
4527 				 * never return a value greater than the
4528 				 * specified position.  (One assumes that
4529 				 * these semantics are artifacts of Perl's
4530 				 * implementation and not the results of
4531 				 * deliberate design -- it beggars belief that
4532 				 * even Larry Wall could desire such oddness.)
4533 				 * While in the abstract one would wish for
4534 				 * consistent position semantics across
4535 				 * substr(), index() and rindex() -- or at the
4536 				 * very least self-consistent position
4537 				 * semantics for index() and rindex() -- we
4538 				 * instead opt to keep with the extant Perl
4539 				 * semantics, in all their broken glory.  (Do
4540 				 * we have more desire to maintain Perl's
4541 				 * semantics than Perl does?  Probably.)
4542 				 */
4543 				if (subr == DIF_SUBR_RINDEX) {
4544 					if (pos < 0) {
4545 						if (sublen == 0)
4546 							regs[rd] = 0;
4547 						break;
4548 					}
4549 
4550 					if (pos > len)
4551 						pos = len;
4552 				} else {
4553 					if (pos < 0)
4554 						pos = 0;
4555 
4556 					if (pos >= len) {
4557 						if (sublen == 0)
4558 							regs[rd] = len;
4559 						break;
4560 					}
4561 				}
4562 
4563 				addr = orig + pos;
4564 			}
4565 		}
4566 
4567 		for (regs[rd] = notfound; addr != limit; addr += inc) {
4568 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4569 				if (subr != DIF_SUBR_STRSTR) {
4570 					/*
4571 					 * As D index() and rindex() are
4572 					 * modeled on Perl (and not on awk),
4573 					 * we return a zero-based (and not a
4574 					 * one-based) index.  (For you Perl
4575 					 * weenies: no, we're not going to add
4576 					 * $[ -- and shouldn't you be at a con
4577 					 * or something?)
4578 					 */
4579 					regs[rd] = (uintptr_t)(addr - orig);
4580 					break;
4581 				}
4582 
4583 				ASSERT(subr == DIF_SUBR_STRSTR);
4584 				regs[rd] = (uintptr_t)addr;
4585 				break;
4586 			}
4587 		}
4588 
4589 		break;
4590 	}
4591 
4592 	case DIF_SUBR_STRTOK: {
4593 		uintptr_t addr = tupregs[0].dttk_value;
4594 		uintptr_t tokaddr = tupregs[1].dttk_value;
4595 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4596 		uintptr_t limit, toklimit;
4597 		size_t clim;
4598 		uint8_t c, tokmap[32];	 /* 256 / 8 */
4599 		char *dest = (char *)mstate->dtms_scratch_ptr;
4600 		int i;
4601 
4602 		/*
4603 		 * Check both the token buffer and (later) the input buffer,
4604 		 * since both could be non-scratch addresses.
4605 		 */
4606 		if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4607 			regs[rd] = 0;
4608 			break;
4609 		}
4610 		toklimit = tokaddr + clim;
4611 
4612 		if (!DTRACE_INSCRATCH(mstate, size)) {
4613 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4614 			regs[rd] = 0;
4615 			break;
4616 		}
4617 
4618 		if (addr == 0) {
4619 			/*
4620 			 * If the address specified is NULL, we use our saved
4621 			 * strtok pointer from the mstate.  Note that this
4622 			 * means that the saved strtok pointer is _only_
4623 			 * valid within multiple enablings of the same probe --
4624 			 * it behaves like an implicit clause-local variable.
4625 			 */
4626 			addr = mstate->dtms_strtok;
4627 			limit = mstate->dtms_strtok_limit;
4628 		} else {
4629 			/*
4630 			 * If the user-specified address is non-NULL we must
4631 			 * access check it.  This is the only time we have
4632 			 * a chance to do so, since this address may reside
4633 			 * in the string table of this clause-- future calls
4634 			 * (when we fetch addr from mstate->dtms_strtok)
4635 			 * would fail this access check.
4636 			 */
4637 			if (!dtrace_strcanload(addr, size, &clim, mstate,
4638 			    vstate)) {
4639 				regs[rd] = 0;
4640 				break;
4641 			}
4642 			limit = addr + clim;
4643 		}
4644 
4645 		/*
4646 		 * First, zero the token map, and then process the token
4647 		 * string -- setting a bit in the map for every character
4648 		 * found in the token string.
4649 		 */
4650 		for (i = 0; i < sizeof (tokmap); i++)
4651 			tokmap[i] = 0;
4652 
4653 		for (; tokaddr < toklimit; tokaddr++) {
4654 			if ((c = dtrace_load8(tokaddr)) == '\0')
4655 				break;
4656 
4657 			ASSERT((c >> 3) < sizeof (tokmap));
4658 			tokmap[c >> 3] |= (1 << (c & 0x7));
4659 		}
4660 
4661 		for (; addr < limit; addr++) {
4662 			/*
4663 			 * We're looking for a character that is _not_
4664 			 * contained in the token string.
4665 			 */
4666 			if ((c = dtrace_load8(addr)) == '\0')
4667 				break;
4668 
4669 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4670 				break;
4671 		}
4672 
4673 		if (c == '\0') {
4674 			/*
4675 			 * We reached the end of the string without finding
4676 			 * any character that was not in the token string.
4677 			 * We return NULL in this case, and we set the saved
4678 			 * address to NULL as well.
4679 			 */
4680 			regs[rd] = 0;
4681 			mstate->dtms_strtok = 0;
4682 			mstate->dtms_strtok_limit = 0;
4683 			break;
4684 		}
4685 
4686 		/*
4687 		 * From here on, we're copying into the destination string.
4688 		 */
4689 		for (i = 0; addr < limit && i < size - 1; addr++) {
4690 			if ((c = dtrace_load8(addr)) == '\0')
4691 				break;
4692 
4693 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4694 				break;
4695 
4696 			ASSERT(i < size);
4697 			dest[i++] = c;
4698 		}
4699 
4700 		ASSERT(i < size);
4701 		dest[i] = '\0';
4702 		regs[rd] = (uintptr_t)dest;
4703 		mstate->dtms_scratch_ptr += size;
4704 		mstate->dtms_strtok = addr;
4705 		mstate->dtms_strtok_limit = limit;
4706 		break;
4707 	}
4708 
4709 	case DIF_SUBR_SUBSTR: {
4710 		uintptr_t s = tupregs[0].dttk_value;
4711 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4712 		char *d = (char *)mstate->dtms_scratch_ptr;
4713 		int64_t index = (int64_t)tupregs[1].dttk_value;
4714 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4715 		size_t len = dtrace_strlen((char *)s, size);
4716 		int64_t i;
4717 
4718 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4719 			regs[rd] = 0;
4720 			break;
4721 		}
4722 
4723 		if (!DTRACE_INSCRATCH(mstate, size)) {
4724 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4725 			regs[rd] = 0;
4726 			break;
4727 		}
4728 
4729 		if (nargs <= 2)
4730 			remaining = (int64_t)size;
4731 
4732 		if (index < 0) {
4733 			index += len;
4734 
4735 			if (index < 0 && index + remaining > 0) {
4736 				remaining += index;
4737 				index = 0;
4738 			}
4739 		}
4740 
4741 		if (index >= len || index < 0) {
4742 			remaining = 0;
4743 		} else if (remaining < 0) {
4744 			remaining += len - index;
4745 		} else if (index + remaining > size) {
4746 			remaining = size - index;
4747 		}
4748 
4749 		for (i = 0; i < remaining; i++) {
4750 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4751 				break;
4752 		}
4753 
4754 		d[i] = '\0';
4755 
4756 		mstate->dtms_scratch_ptr += size;
4757 		regs[rd] = (uintptr_t)d;
4758 		break;
4759 	}
4760 
4761 	case DIF_SUBR_JSON: {
4762 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4763 		uintptr_t json = tupregs[0].dttk_value;
4764 		size_t jsonlen = dtrace_strlen((char *)json, size);
4765 		uintptr_t elem = tupregs[1].dttk_value;
4766 		size_t elemlen = dtrace_strlen((char *)elem, size);
4767 
4768 		char *dest = (char *)mstate->dtms_scratch_ptr;
4769 		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4770 		char *ee = elemlist;
4771 		int nelems = 1;
4772 		uintptr_t cur;
4773 
4774 		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4775 		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4776 			regs[rd] = 0;
4777 			break;
4778 		}
4779 
4780 		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4781 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4782 			regs[rd] = 0;
4783 			break;
4784 		}
4785 
4786 		/*
4787 		 * Read the element selector and split it up into a packed list
4788 		 * of strings.
4789 		 */
4790 		for (cur = elem; cur < elem + elemlen; cur++) {
4791 			char cc = dtrace_load8(cur);
4792 
4793 			if (cur == elem && cc == '[') {
4794 				/*
4795 				 * If the first element selector key is
4796 				 * actually an array index then ignore the
4797 				 * bracket.
4798 				 */
4799 				continue;
4800 			}
4801 
4802 			if (cc == ']')
4803 				continue;
4804 
4805 			if (cc == '.' || cc == '[') {
4806 				nelems++;
4807 				cc = '\0';
4808 			}
4809 
4810 			*ee++ = cc;
4811 		}
4812 		*ee++ = '\0';
4813 
4814 		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4815 		    nelems, dest)) != 0)
4816 			mstate->dtms_scratch_ptr += jsonlen + 1;
4817 		break;
4818 	}
4819 
4820 	case DIF_SUBR_TOUPPER:
4821 	case DIF_SUBR_TOLOWER: {
4822 		uintptr_t s = tupregs[0].dttk_value;
4823 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4824 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4825 		size_t len = dtrace_strlen((char *)s, size);
4826 		char lower, upper, convert;
4827 		int64_t i;
4828 
4829 		if (subr == DIF_SUBR_TOUPPER) {
4830 			lower = 'a';
4831 			upper = 'z';
4832 			convert = 'A';
4833 		} else {
4834 			lower = 'A';
4835 			upper = 'Z';
4836 			convert = 'a';
4837 		}
4838 
4839 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4840 			regs[rd] = 0;
4841 			break;
4842 		}
4843 
4844 		if (!DTRACE_INSCRATCH(mstate, size)) {
4845 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4846 			regs[rd] = 0;
4847 			break;
4848 		}
4849 
4850 		for (i = 0; i < size - 1; i++) {
4851 			if ((c = dtrace_load8(s + i)) == '\0')
4852 				break;
4853 
4854 			if (c >= lower && c <= upper)
4855 				c = convert + (c - lower);
4856 
4857 			dest[i] = c;
4858 		}
4859 
4860 		ASSERT(i < size);
4861 		dest[i] = '\0';
4862 		regs[rd] = (uintptr_t)dest;
4863 		mstate->dtms_scratch_ptr += size;
4864 		break;
4865 	}
4866 
4867 case DIF_SUBR_GETMAJOR:
4868 #ifdef _LP64
4869 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4870 #else
4871 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4872 #endif
4873 		break;
4874 
4875 	case DIF_SUBR_GETMINOR:
4876 #ifdef _LP64
4877 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4878 #else
4879 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4880 #endif
4881 		break;
4882 
4883 	case DIF_SUBR_DDI_PATHNAME: {
4884 		/*
4885 		 * This one is a galactic mess.  We are going to roughly
4886 		 * emulate ddi_pathname(), but it's made more complicated
4887 		 * by the fact that we (a) want to include the minor name and
4888 		 * (b) must proceed iteratively instead of recursively.
4889 		 */
4890 		uintptr_t dest = mstate->dtms_scratch_ptr;
4891 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4892 		char *start = (char *)dest, *end = start + size - 1;
4893 		uintptr_t daddr = tupregs[0].dttk_value;
4894 		int64_t minor = (int64_t)tupregs[1].dttk_value;
4895 		char *s;
4896 		int i, len, depth = 0;
4897 
4898 		/*
4899 		 * Due to all the pointer jumping we do and context we must
4900 		 * rely upon, we just mandate that the user must have kernel
4901 		 * read privileges to use this routine.
4902 		 */
4903 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4904 			*flags |= CPU_DTRACE_KPRIV;
4905 			*illval = daddr;
4906 			regs[rd] = 0;
4907 		}
4908 
4909 		if (!DTRACE_INSCRATCH(mstate, size)) {
4910 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4911 			regs[rd] = 0;
4912 			break;
4913 		}
4914 
4915 		*end = '\0';
4916 
4917 		/*
4918 		 * We want to have a name for the minor.  In order to do this,
4919 		 * we need to walk the minor list from the devinfo.  We want
4920 		 * to be sure that we don't infinitely walk a circular list,
4921 		 * so we check for circularity by sending a scout pointer
4922 		 * ahead two elements for every element that we iterate over;
4923 		 * if the list is circular, these will ultimately point to the
4924 		 * same element.  You may recognize this little trick as the
4925 		 * answer to a stupid interview question -- one that always
4926 		 * seems to be asked by those who had to have it laboriously
4927 		 * explained to them, and who can't even concisely describe
4928 		 * the conditions under which one would be forced to resort to
4929 		 * this technique.  Needless to say, those conditions are
4930 		 * found here -- and probably only here.  Is this the only use
4931 		 * of this infamous trick in shipping, production code?  If it
4932 		 * isn't, it probably should be...
4933 		 */
4934 		if (minor != -1) {
4935 			uintptr_t maddr = dtrace_loadptr(daddr +
4936 			    offsetof(struct dev_info, devi_minor));
4937 
4938 			uintptr_t next = offsetof(struct ddi_minor_data, next);
4939 			uintptr_t name = offsetof(struct ddi_minor_data,
4940 			    d_minor) + offsetof(struct ddi_minor, name);
4941 			uintptr_t dev = offsetof(struct ddi_minor_data,
4942 			    d_minor) + offsetof(struct ddi_minor, dev);
4943 			uintptr_t scout;
4944 
4945 			if (maddr != 0)
4946 				scout = dtrace_loadptr(maddr + next);
4947 
4948 			while (maddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4949 				uint64_t m;
4950 #ifdef _LP64
4951 				m = dtrace_load64(maddr + dev) & MAXMIN64;
4952 #else
4953 				m = dtrace_load32(maddr + dev) & MAXMIN;
4954 #endif
4955 				if (m != minor) {
4956 					maddr = dtrace_loadptr(maddr + next);
4957 
4958 					if (scout == 0)
4959 						continue;
4960 
4961 					scout = dtrace_loadptr(scout + next);
4962 
4963 					if (scout == 0)
4964 						continue;
4965 
4966 					scout = dtrace_loadptr(scout + next);
4967 
4968 					if (scout == 0)
4969 						continue;
4970 
4971 					if (scout == maddr) {
4972 						*flags |= CPU_DTRACE_ILLOP;
4973 						break;
4974 					}
4975 
4976 					continue;
4977 				}
4978 
4979 				/*
4980 				 * We have the minor data.  Now we need to
4981 				 * copy the minor's name into the end of the
4982 				 * pathname.
4983 				 */
4984 				s = (char *)dtrace_loadptr(maddr + name);
4985 				len = dtrace_strlen(s, size);
4986 
4987 				if (*flags & CPU_DTRACE_FAULT)
4988 					break;
4989 
4990 				if (len != 0) {
4991 					if ((end -= (len + 1)) < start)
4992 						break;
4993 
4994 					*end = ':';
4995 				}
4996 
4997 				for (i = 1; i <= len; i++)
4998 					end[i] = dtrace_load8((uintptr_t)s++);
4999 				break;
5000 			}
5001 		}
5002 
5003 		while (daddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
5004 			ddi_node_state_t devi_state;
5005 
5006 			devi_state = dtrace_load32(daddr +
5007 			    offsetof(struct dev_info, devi_node_state));
5008 
5009 			if (*flags & CPU_DTRACE_FAULT)
5010 				break;
5011 
5012 			if (devi_state >= DS_INITIALIZED) {
5013 				s = (char *)dtrace_loadptr(daddr +
5014 				    offsetof(struct dev_info, devi_addr));
5015 				len = dtrace_strlen(s, size);
5016 
5017 				if (*flags & CPU_DTRACE_FAULT)
5018 					break;
5019 
5020 				if (len != 0) {
5021 					if ((end -= (len + 1)) < start)
5022 						break;
5023 
5024 					*end = '@';
5025 				}
5026 
5027 				for (i = 1; i <= len; i++)
5028 					end[i] = dtrace_load8((uintptr_t)s++);
5029 			}
5030 
5031 			/*
5032 			 * Now for the node name...
5033 			 */
5034 			s = (char *)dtrace_loadptr(daddr +
5035 			    offsetof(struct dev_info, devi_node_name));
5036 
5037 			daddr = dtrace_loadptr(daddr +
5038 			    offsetof(struct dev_info, devi_parent));
5039 
5040 			/*
5041 			 * If our parent is NULL (that is, if we're the root
5042 			 * node), we're going to use the special path
5043 			 * "devices".
5044 			 */
5045 			if (daddr == 0)
5046 				s = "devices";
5047 
5048 			len = dtrace_strlen(s, size);
5049 			if (*flags & CPU_DTRACE_FAULT)
5050 				break;
5051 
5052 			if ((end -= (len + 1)) < start)
5053 				break;
5054 
5055 			for (i = 1; i <= len; i++)
5056 				end[i] = dtrace_load8((uintptr_t)s++);
5057 			*end = '/';
5058 
5059 			if (depth++ > dtrace_devdepth_max) {
5060 				*flags |= CPU_DTRACE_ILLOP;
5061 				break;
5062 			}
5063 		}
5064 
5065 		if (end < start)
5066 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5067 
5068 		if (daddr == 0) {
5069 			regs[rd] = (uintptr_t)end;
5070 			mstate->dtms_scratch_ptr += size;
5071 		}
5072 
5073 		break;
5074 	}
5075 
5076 	case DIF_SUBR_STRJOIN: {
5077 		char *d = (char *)mstate->dtms_scratch_ptr;
5078 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5079 		uintptr_t s1 = tupregs[0].dttk_value;
5080 		uintptr_t s2 = tupregs[1].dttk_value;
5081 		int i = 0, j = 0;
5082 		size_t lim1, lim2;
5083 		char c;
5084 
5085 		if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5086 		    !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5087 			regs[rd] = 0;
5088 			break;
5089 		}
5090 
5091 		if (!DTRACE_INSCRATCH(mstate, size)) {
5092 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5093 			regs[rd] = 0;
5094 			break;
5095 		}
5096 
5097 		for (;;) {
5098 			if (i >= size) {
5099 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5100 				regs[rd] = 0;
5101 				break;
5102 			}
5103 			c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5104 			if ((d[i++] = c) == '\0') {
5105 				i--;
5106 				break;
5107 			}
5108 		}
5109 
5110 		for (;;) {
5111 			if (i >= size) {
5112 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5113 				regs[rd] = 0;
5114 				break;
5115 			}
5116 
5117 			c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5118 			if ((d[i++] = c) == '\0')
5119 				break;
5120 		}
5121 
5122 		if (i < size) {
5123 			mstate->dtms_scratch_ptr += i;
5124 			regs[rd] = (uintptr_t)d;
5125 		}
5126 
5127 		break;
5128 	}
5129 
5130 	case DIF_SUBR_STRTOLL: {
5131 		uintptr_t s = tupregs[0].dttk_value;
5132 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5133 		size_t lim;
5134 		int base = 10;
5135 
5136 		if (nargs > 1) {
5137 			if ((base = tupregs[1].dttk_value) <= 1 ||
5138 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5139 				*flags |= CPU_DTRACE_ILLOP;
5140 				break;
5141 			}
5142 		}
5143 
5144 		if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5145 			regs[rd] = INT64_MIN;
5146 			break;
5147 		}
5148 
5149 		regs[rd] = dtrace_strtoll((char *)s, base, lim);
5150 		break;
5151 	}
5152 
5153 	case DIF_SUBR_LLTOSTR: {
5154 		int64_t i = (int64_t)tupregs[0].dttk_value;
5155 		uint64_t val, digit;
5156 		uint64_t size = 65;	/* enough room for 2^64 in binary */
5157 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5158 		int base = 10;
5159 
5160 		if (nargs > 1) {
5161 			if ((base = tupregs[1].dttk_value) <= 1 ||
5162 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5163 				*flags |= CPU_DTRACE_ILLOP;
5164 				break;
5165 			}
5166 		}
5167 
5168 		val = (base == 10 && i < 0) ? i * -1 : i;
5169 
5170 		if (!DTRACE_INSCRATCH(mstate, size)) {
5171 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5172 			regs[rd] = 0;
5173 			break;
5174 		}
5175 
5176 		for (*end-- = '\0'; val; val /= base) {
5177 			if ((digit = val % base) <= '9' - '0') {
5178 				*end-- = '0' + digit;
5179 			} else {
5180 				*end-- = 'a' + (digit - ('9' - '0') - 1);
5181 			}
5182 		}
5183 
5184 		if (i == 0 && base == 16)
5185 			*end-- = '0';
5186 
5187 		if (base == 16)
5188 			*end-- = 'x';
5189 
5190 		if (i == 0 || base == 8 || base == 16)
5191 			*end-- = '0';
5192 
5193 		if (i < 0 && base == 10)
5194 			*end-- = '-';
5195 
5196 		regs[rd] = (uintptr_t)end + 1;
5197 		mstate->dtms_scratch_ptr += size;
5198 		break;
5199 	}
5200 
5201 	case DIF_SUBR_HTONS:
5202 	case DIF_SUBR_NTOHS:
5203 #ifdef _BIG_ENDIAN
5204 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5205 #else
5206 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5207 #endif
5208 		break;
5209 
5210 
5211 	case DIF_SUBR_HTONL:
5212 	case DIF_SUBR_NTOHL:
5213 #ifdef _BIG_ENDIAN
5214 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5215 #else
5216 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5217 #endif
5218 		break;
5219 
5220 
5221 	case DIF_SUBR_HTONLL:
5222 	case DIF_SUBR_NTOHLL:
5223 #ifdef _BIG_ENDIAN
5224 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5225 #else
5226 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5227 #endif
5228 		break;
5229 
5230 
5231 	case DIF_SUBR_DIRNAME:
5232 	case DIF_SUBR_BASENAME: {
5233 		char *dest = (char *)mstate->dtms_scratch_ptr;
5234 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5235 		uintptr_t src = tupregs[0].dttk_value;
5236 		int i, j, len = dtrace_strlen((char *)src, size);
5237 		int lastbase = -1, firstbase = -1, lastdir = -1;
5238 		int start, end;
5239 
5240 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5241 			regs[rd] = 0;
5242 			break;
5243 		}
5244 
5245 		if (!DTRACE_INSCRATCH(mstate, size)) {
5246 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5247 			regs[rd] = 0;
5248 			break;
5249 		}
5250 
5251 		/*
5252 		 * The basename and dirname for a zero-length string is
5253 		 * defined to be "."
5254 		 */
5255 		if (len == 0) {
5256 			len = 1;
5257 			src = (uintptr_t)".";
5258 		}
5259 
5260 		/*
5261 		 * Start from the back of the string, moving back toward the
5262 		 * front until we see a character that isn't a slash.  That
5263 		 * character is the last character in the basename.
5264 		 */
5265 		for (i = len - 1; i >= 0; i--) {
5266 			if (dtrace_load8(src + i) != '/')
5267 				break;
5268 		}
5269 
5270 		if (i >= 0)
5271 			lastbase = i;
5272 
5273 		/*
5274 		 * Starting from the last character in the basename, move
5275 		 * towards the front until we find a slash.  The character
5276 		 * that we processed immediately before that is the first
5277 		 * character in the basename.
5278 		 */
5279 		for (; i >= 0; i--) {
5280 			if (dtrace_load8(src + i) == '/')
5281 				break;
5282 		}
5283 
5284 		if (i >= 0)
5285 			firstbase = i + 1;
5286 
5287 		/*
5288 		 * Now keep going until we find a non-slash character.  That
5289 		 * character is the last character in the dirname.
5290 		 */
5291 		for (; i >= 0; i--) {
5292 			if (dtrace_load8(src + i) != '/')
5293 				break;
5294 		}
5295 
5296 		if (i >= 0)
5297 			lastdir = i;
5298 
5299 		ASSERT(!(lastbase == -1 && firstbase != -1));
5300 		ASSERT(!(firstbase == -1 && lastdir != -1));
5301 
5302 		if (lastbase == -1) {
5303 			/*
5304 			 * We didn't find a non-slash character.  We know that
5305 			 * the length is non-zero, so the whole string must be
5306 			 * slashes.  In either the dirname or the basename
5307 			 * case, we return '/'.
5308 			 */
5309 			ASSERT(firstbase == -1);
5310 			firstbase = lastbase = lastdir = 0;
5311 		}
5312 
5313 		if (firstbase == -1) {
5314 			/*
5315 			 * The entire string consists only of a basename
5316 			 * component.  If we're looking for dirname, we need
5317 			 * to change our string to be just "."; if we're
5318 			 * looking for a basename, we'll just set the first
5319 			 * character of the basename to be 0.
5320 			 */
5321 			if (subr == DIF_SUBR_DIRNAME) {
5322 				ASSERT(lastdir == -1);
5323 				src = (uintptr_t)".";
5324 				lastdir = 0;
5325 			} else {
5326 				firstbase = 0;
5327 			}
5328 		}
5329 
5330 		if (subr == DIF_SUBR_DIRNAME) {
5331 			if (lastdir == -1) {
5332 				/*
5333 				 * We know that we have a slash in the name --
5334 				 * or lastdir would be set to 0, above.  And
5335 				 * because lastdir is -1, we know that this
5336 				 * slash must be the first character.  (That
5337 				 * is, the full string must be of the form
5338 				 * "/basename".)  In this case, the last
5339 				 * character of the directory name is 0.
5340 				 */
5341 				lastdir = 0;
5342 			}
5343 
5344 			start = 0;
5345 			end = lastdir;
5346 		} else {
5347 			ASSERT(subr == DIF_SUBR_BASENAME);
5348 			ASSERT(firstbase != -1 && lastbase != -1);
5349 			start = firstbase;
5350 			end = lastbase;
5351 		}
5352 
5353 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5354 			dest[j] = dtrace_load8(src + i);
5355 
5356 		dest[j] = '\0';
5357 		regs[rd] = (uintptr_t)dest;
5358 		mstate->dtms_scratch_ptr += size;
5359 		break;
5360 	}
5361 
5362 	case DIF_SUBR_GETF: {
5363 		uintptr_t fd = tupregs[0].dttk_value;
5364 		uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
5365 		file_t *fp;
5366 
5367 		if (!dtrace_priv_proc(state, mstate)) {
5368 			regs[rd] = 0;
5369 			break;
5370 		}
5371 
5372 		/*
5373 		 * This is safe because fi_nfiles only increases, and the
5374 		 * fi_list array is not freed when the array size doubles.
5375 		 * (See the comment in flist_grow() for details on the
5376 		 * management of the u_finfo structure.)
5377 		 */
5378 		fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;
5379 
5380 		mstate->dtms_getf = fp;
5381 		regs[rd] = (uintptr_t)fp;
5382 		break;
5383 	}
5384 
5385 	case DIF_SUBR_CLEANPATH: {
5386 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5387 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5388 		uintptr_t src = tupregs[0].dttk_value;
5389 		size_t lim;
5390 		int i = 0, j = 0;
5391 		zone_t *z;
5392 
5393 		if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5394 			regs[rd] = 0;
5395 			break;
5396 		}
5397 
5398 		if (!DTRACE_INSCRATCH(mstate, size)) {
5399 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5400 			regs[rd] = 0;
5401 			break;
5402 		}
5403 
5404 		/*
5405 		 * Move forward, loading each character.
5406 		 */
5407 		do {
5408 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5409 next:
5410 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5411 				break;
5412 
5413 			if (c != '/') {
5414 				dest[j++] = c;
5415 				continue;
5416 			}
5417 
5418 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5419 
5420 			if (c == '/') {
5421 				/*
5422 				 * We have two slashes -- we can just advance
5423 				 * to the next character.
5424 				 */
5425 				goto next;
5426 			}
5427 
5428 			if (c != '.') {
5429 				/*
5430 				 * This is not "." and it's not ".." -- we can
5431 				 * just store the "/" and this character and
5432 				 * drive on.
5433 				 */
5434 				dest[j++] = '/';
5435 				dest[j++] = c;
5436 				continue;
5437 			}
5438 
5439 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5440 
5441 			if (c == '/') {
5442 				/*
5443 				 * This is a "/./" component.  We're not going
5444 				 * to store anything in the destination buffer;
5445 				 * we're just going to go to the next component.
5446 				 */
5447 				goto next;
5448 			}
5449 
5450 			if (c != '.') {
5451 				/*
5452 				 * This is not ".." -- we can just store the
5453 				 * "/." and this character and continue
5454 				 * processing.
5455 				 */
5456 				dest[j++] = '/';
5457 				dest[j++] = '.';
5458 				dest[j++] = c;
5459 				continue;
5460 			}
5461 
5462 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5463 
5464 			if (c != '/' && c != '\0') {
5465 				/*
5466 				 * This is not ".." -- it's "..[mumble]".
5467 				 * We'll store the "/.." and this character
5468 				 * and continue processing.
5469 				 */
5470 				dest[j++] = '/';
5471 				dest[j++] = '.';
5472 				dest[j++] = '.';
5473 				dest[j++] = c;
5474 				continue;
5475 			}
5476 
5477 			/*
5478 			 * This is "/../" or "/..\0".  We need to back up
5479 			 * our destination pointer until we find a "/".
5480 			 */
5481 			i--;
5482 			while (j != 0 && dest[--j] != '/')
5483 				continue;
5484 
5485 			if (c == '\0')
5486 				dest[++j] = '/';
5487 		} while (c != '\0');
5488 
5489 		dest[j] = '\0';
5490 
5491 		if (mstate->dtms_getf != NULL &&
5492 		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5493 		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5494 			/*
5495 			 * If we've done a getf() as a part of this ECB and we
5496 			 * don't have kernel access (and we're not in the global
5497 			 * zone), check if the path we cleaned up begins with
5498 			 * the zone's root path, and trim it off if so.  Note
5499 			 * that this is an output cleanliness issue, not a
5500 			 * security issue: knowing one's zone root path does
5501 			 * not enable privilege escalation.
5502 			 */
5503 			if (strstr(dest, z->zone_rootpath) == dest)
5504 				dest += strlen(z->zone_rootpath) - 1;
5505 		}
5506 
5507 		regs[rd] = (uintptr_t)dest;
5508 		mstate->dtms_scratch_ptr += size;
5509 		break;
5510 	}
5511 
5512 	case DIF_SUBR_INET_NTOA:
5513 	case DIF_SUBR_INET_NTOA6:
5514 	case DIF_SUBR_INET_NTOP: {
5515 		size_t size;
5516 		int af, argi, i;
5517 		char *base, *end;
5518 
5519 		if (subr == DIF_SUBR_INET_NTOP) {
5520 			af = (int)tupregs[0].dttk_value;
5521 			argi = 1;
5522 		} else {
5523 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5524 			argi = 0;
5525 		}
5526 
5527 		if (af == AF_INET) {
5528 			ipaddr_t ip4;
5529 			uint8_t *ptr8, val;
5530 
5531 			if (!dtrace_canload(tupregs[argi].dttk_value,
5532 			    sizeof (ipaddr_t), mstate, vstate)) {
5533 				regs[rd] = 0;
5534 				break;
5535 			}
5536 
5537 			/*
5538 			 * Safely load the IPv4 address.
5539 			 */
5540 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5541 
5542 			/*
5543 			 * Check an IPv4 string will fit in scratch.
5544 			 */
5545 			size = INET_ADDRSTRLEN;
5546 			if (!DTRACE_INSCRATCH(mstate, size)) {
5547 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5548 				regs[rd] = 0;
5549 				break;
5550 			}
5551 			base = (char *)mstate->dtms_scratch_ptr;
5552 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5553 
5554 			/*
5555 			 * Stringify as a dotted decimal quad.
5556 			 */
5557 			*end-- = '\0';
5558 			ptr8 = (uint8_t *)&ip4;
5559 			for (i = 3; i >= 0; i--) {
5560 				val = ptr8[i];
5561 
5562 				if (val == 0) {
5563 					*end-- = '0';
5564 				} else {
5565 					for (; val; val /= 10) {
5566 						*end-- = '0' + (val % 10);
5567 					}
5568 				}
5569 
5570 				if (i > 0)
5571 					*end-- = '.';
5572 			}
5573 			ASSERT(end + 1 >= base);
5574 
5575 		} else if (af == AF_INET6) {
5576 			struct in6_addr ip6;
5577 			int firstzero, tryzero, numzero, v6end;
5578 			uint16_t val;
5579 			const char digits[] = "0123456789abcdef";
5580 
5581 			/*
5582 			 * Stringify using RFC 1884 convention 2 - 16 bit
5583 			 * hexadecimal values with a zero-run compression.
5584 			 * Lower case hexadecimal digits are used.
5585 			 *	eg, fe80::214:4fff:fe0b:76c8.
5586 			 * The IPv4 embedded form is returned for inet_ntop,
5587 			 * just the IPv4 string is returned for inet_ntoa6.
5588 			 */
5589 
5590 			if (!dtrace_canload(tupregs[argi].dttk_value,
5591 			    sizeof (struct in6_addr), mstate, vstate)) {
5592 				regs[rd] = 0;
5593 				break;
5594 			}
5595 
5596 			/*
5597 			 * Safely load the IPv6 address.
5598 			 */
5599 			dtrace_bcopy(
5600 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5601 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5602 
5603 			/*
5604 			 * Check an IPv6 string will fit in scratch.
5605 			 */
5606 			size = INET6_ADDRSTRLEN;
5607 			if (!DTRACE_INSCRATCH(mstate, size)) {
5608 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5609 				regs[rd] = 0;
5610 				break;
5611 			}
5612 			base = (char *)mstate->dtms_scratch_ptr;
5613 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5614 			*end-- = '\0';
5615 
5616 			/*
5617 			 * Find the longest run of 16 bit zero values
5618 			 * for the single allowed zero compression - "::".
5619 			 */
5620 			firstzero = -1;
5621 			tryzero = -1;
5622 			numzero = 1;
5623 			for (i = 0; i < sizeof (struct in6_addr); i++) {
5624 				if (ip6._S6_un._S6_u8[i] == 0 &&
5625 				    tryzero == -1 && i % 2 == 0) {
5626 					tryzero = i;
5627 					continue;
5628 				}
5629 
5630 				if (tryzero != -1 &&
5631 				    (ip6._S6_un._S6_u8[i] != 0 ||
5632 				    i == sizeof (struct in6_addr) - 1)) {
5633 
5634 					if (i - tryzero <= numzero) {
5635 						tryzero = -1;
5636 						continue;
5637 					}
5638 
5639 					firstzero = tryzero;
5640 					numzero = i - i % 2 - tryzero;
5641 					tryzero = -1;
5642 
5643 					if (ip6._S6_un._S6_u8[i] == 0 &&
5644 					    i == sizeof (struct in6_addr) - 1)
5645 						numzero += 2;
5646 				}
5647 			}
5648 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5649 
5650 			/*
5651 			 * Check for an IPv4 embedded address.
5652 			 */
5653 			v6end = sizeof (struct in6_addr) - 2;
5654 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5655 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5656 				for (i = sizeof (struct in6_addr) - 1;
5657 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5658 					ASSERT(end >= base);
5659 
5660 					val = ip6._S6_un._S6_u8[i];
5661 
5662 					if (val == 0) {
5663 						*end-- = '0';
5664 					} else {
5665 						for (; val; val /= 10) {
5666 							*end-- = '0' + val % 10;
5667 						}
5668 					}
5669 
5670 					if (i > DTRACE_V4MAPPED_OFFSET)
5671 						*end-- = '.';
5672 				}
5673 
5674 				if (subr == DIF_SUBR_INET_NTOA6)
5675 					goto inetout;
5676 
5677 				/*
5678 				 * Set v6end to skip the IPv4 address that
5679 				 * we have already stringified.
5680 				 */
5681 				v6end = 10;
5682 			}
5683 
5684 			/*
5685 			 * Build the IPv6 string by working through the
5686 			 * address in reverse.
5687 			 */
5688 			for (i = v6end; i >= 0; i -= 2) {
5689 				ASSERT(end >= base);
5690 
5691 				if (i == firstzero + numzero - 2) {
5692 					*end-- = ':';
5693 					*end-- = ':';
5694 					i -= numzero - 2;
5695 					continue;
5696 				}
5697 
5698 				if (i < 14 && i != firstzero - 2)
5699 					*end-- = ':';
5700 
5701 				val = (ip6._S6_un._S6_u8[i] << 8) +
5702 				    ip6._S6_un._S6_u8[i + 1];
5703 
5704 				if (val == 0) {
5705 					*end-- = '0';
5706 				} else {
5707 					for (; val; val /= 16) {
5708 						*end-- = digits[val % 16];
5709 					}
5710 				}
5711 			}
5712 			ASSERT(end + 1 >= base);
5713 
5714 		} else {
5715 			/*
5716 			 * The user didn't use AH_INET or AH_INET6.
5717 			 */
5718 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5719 			regs[rd] = 0;
5720 			break;
5721 		}
5722 
5723 inetout:	regs[rd] = (uintptr_t)end + 1;
5724 		mstate->dtms_scratch_ptr += size;
5725 		break;
5726 	}
5727 
5728 	}
5729 }
5730 
5731 /*
5732  * Emulate the execution of DTrace IR instructions specified by the given
5733  * DIF object.  This function is deliberately void of assertions as all of
5734  * the necessary checks are handled by a call to dtrace_difo_validate().
5735  */
5736 static uint64_t
5737 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5738     dtrace_vstate_t *vstate, dtrace_state_t *state)
5739 {
5740 	const dif_instr_t *text = difo->dtdo_buf;
5741 	const uint_t textlen = difo->dtdo_len;
5742 	const char *strtab = difo->dtdo_strtab;
5743 	const uint64_t *inttab = difo->dtdo_inttab;
5744 
5745 	uint64_t rval = 0;
5746 	dtrace_statvar_t *svar;
5747 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5748 	dtrace_difv_t *v;
5749 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5750 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
5751 
5752 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5753 	uint64_t regs[DIF_DIR_NREGS];
5754 	uint64_t *tmp;
5755 
5756 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5757 	int64_t cc_r;
5758 	uint_t pc = 0, id, opc;
5759 	uint8_t ttop = 0;
5760 	dif_instr_t instr;
5761 	uint_t r1, r2, rd;
5762 
5763 	/*
5764 	 * We stash the current DIF object into the machine state: we need it
5765 	 * for subsequent access checking.
5766 	 */
5767 	mstate->dtms_difo = difo;
5768 
5769 	regs[DIF_REG_R0] = 0;		/* %r0 is fixed at zero */
5770 
5771 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5772 		opc = pc;
5773 
5774 		instr = text[pc++];
5775 		r1 = DIF_INSTR_R1(instr);
5776 		r2 = DIF_INSTR_R2(instr);
5777 		rd = DIF_INSTR_RD(instr);
5778 
5779 		switch (DIF_INSTR_OP(instr)) {
5780 		case DIF_OP_OR:
5781 			regs[rd] = regs[r1] | regs[r2];
5782 			break;
5783 		case DIF_OP_XOR:
5784 			regs[rd] = regs[r1] ^ regs[r2];
5785 			break;
5786 		case DIF_OP_AND:
5787 			regs[rd] = regs[r1] & regs[r2];
5788 			break;
5789 		case DIF_OP_SLL:
5790 			regs[rd] = regs[r1] << regs[r2];
5791 			break;
5792 		case DIF_OP_SRL:
5793 			regs[rd] = regs[r1] >> regs[r2];
5794 			break;
5795 		case DIF_OP_SUB:
5796 			regs[rd] = regs[r1] - regs[r2];
5797 			break;
5798 		case DIF_OP_ADD:
5799 			regs[rd] = regs[r1] + regs[r2];
5800 			break;
5801 		case DIF_OP_MUL:
5802 			regs[rd] = regs[r1] * regs[r2];
5803 			break;
5804 		case DIF_OP_SDIV:
5805 			if (regs[r2] == 0) {
5806 				regs[rd] = 0;
5807 				*flags |= CPU_DTRACE_DIVZERO;
5808 			} else {
5809 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5810 				regs[rd] = (int64_t)regs[r1] /
5811 				    (int64_t)regs[r2];
5812 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5813 			}
5814 			break;
5815 
5816 		case DIF_OP_UDIV:
5817 			if (regs[r2] == 0) {
5818 				regs[rd] = 0;
5819 				*flags |= CPU_DTRACE_DIVZERO;
5820 			} else {
5821 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5822 				regs[rd] = regs[r1] / regs[r2];
5823 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5824 			}
5825 			break;
5826 
5827 		case DIF_OP_SREM:
5828 			if (regs[r2] == 0) {
5829 				regs[rd] = 0;
5830 				*flags |= CPU_DTRACE_DIVZERO;
5831 			} else {
5832 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5833 				regs[rd] = (int64_t)regs[r1] %
5834 				    (int64_t)regs[r2];
5835 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5836 			}
5837 			break;
5838 
5839 		case DIF_OP_UREM:
5840 			if (regs[r2] == 0) {
5841 				regs[rd] = 0;
5842 				*flags |= CPU_DTRACE_DIVZERO;
5843 			} else {
5844 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5845 				regs[rd] = regs[r1] % regs[r2];
5846 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5847 			}
5848 			break;
5849 
5850 		case DIF_OP_NOT:
5851 			regs[rd] = ~regs[r1];
5852 			break;
5853 		case DIF_OP_MOV:
5854 			regs[rd] = regs[r1];
5855 			break;
5856 		case DIF_OP_CMP:
5857 			cc_r = regs[r1] - regs[r2];
5858 			cc_n = cc_r < 0;
5859 			cc_z = cc_r == 0;
5860 			cc_v = 0;
5861 			cc_c = regs[r1] < regs[r2];
5862 			break;
5863 		case DIF_OP_TST:
5864 			cc_n = cc_v = cc_c = 0;
5865 			cc_z = regs[r1] == 0;
5866 			break;
5867 		case DIF_OP_BA:
5868 			pc = DIF_INSTR_LABEL(instr);
5869 			break;
5870 		case DIF_OP_BE:
5871 			if (cc_z)
5872 				pc = DIF_INSTR_LABEL(instr);
5873 			break;
5874 		case DIF_OP_BNE:
5875 			if (cc_z == 0)
5876 				pc = DIF_INSTR_LABEL(instr);
5877 			break;
5878 		case DIF_OP_BG:
5879 			if ((cc_z | (cc_n ^ cc_v)) == 0)
5880 				pc = DIF_INSTR_LABEL(instr);
5881 			break;
5882 		case DIF_OP_BGU:
5883 			if ((cc_c | cc_z) == 0)
5884 				pc = DIF_INSTR_LABEL(instr);
5885 			break;
5886 		case DIF_OP_BGE:
5887 			if ((cc_n ^ cc_v) == 0)
5888 				pc = DIF_INSTR_LABEL(instr);
5889 			break;
5890 		case DIF_OP_BGEU:
5891 			if (cc_c == 0)
5892 				pc = DIF_INSTR_LABEL(instr);
5893 			break;
5894 		case DIF_OP_BL:
5895 			if (cc_n ^ cc_v)
5896 				pc = DIF_INSTR_LABEL(instr);
5897 			break;
5898 		case DIF_OP_BLU:
5899 			if (cc_c)
5900 				pc = DIF_INSTR_LABEL(instr);
5901 			break;
5902 		case DIF_OP_BLE:
5903 			if (cc_z | (cc_n ^ cc_v))
5904 				pc = DIF_INSTR_LABEL(instr);
5905 			break;
5906 		case DIF_OP_BLEU:
5907 			if (cc_c | cc_z)
5908 				pc = DIF_INSTR_LABEL(instr);
5909 			break;
5910 		case DIF_OP_RLDSB:
5911 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5912 				break;
5913 			/*FALLTHROUGH*/
5914 		case DIF_OP_LDSB:
5915 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5916 			break;
5917 		case DIF_OP_RLDSH:
5918 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5919 				break;
5920 			/*FALLTHROUGH*/
5921 		case DIF_OP_LDSH:
5922 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5923 			break;
5924 		case DIF_OP_RLDSW:
5925 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5926 				break;
5927 			/*FALLTHROUGH*/
5928 		case DIF_OP_LDSW:
5929 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5930 			break;
5931 		case DIF_OP_RLDUB:
5932 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5933 				break;
5934 			/*FALLTHROUGH*/
5935 		case DIF_OP_LDUB:
5936 			regs[rd] = dtrace_load8(regs[r1]);
5937 			break;
5938 		case DIF_OP_RLDUH:
5939 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5940 				break;
5941 			/*FALLTHROUGH*/
5942 		case DIF_OP_LDUH:
5943 			regs[rd] = dtrace_load16(regs[r1]);
5944 			break;
5945 		case DIF_OP_RLDUW:
5946 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5947 				break;
5948 			/*FALLTHROUGH*/
5949 		case DIF_OP_LDUW:
5950 			regs[rd] = dtrace_load32(regs[r1]);
5951 			break;
5952 		case DIF_OP_RLDX:
5953 			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5954 				break;
5955 			/*FALLTHROUGH*/
5956 		case DIF_OP_LDX:
5957 			regs[rd] = dtrace_load64(regs[r1]);
5958 			break;
5959 		case DIF_OP_ULDSB:
5960 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5961 			regs[rd] = (int8_t)
5962 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5963 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5964 			break;
5965 		case DIF_OP_ULDSH:
5966 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5967 			regs[rd] = (int16_t)
5968 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5969 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5970 			break;
5971 		case DIF_OP_ULDSW:
5972 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5973 			regs[rd] = (int32_t)
5974 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5975 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5976 			break;
5977 		case DIF_OP_ULDUB:
5978 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5979 			regs[rd] =
5980 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5981 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5982 			break;
5983 		case DIF_OP_ULDUH:
5984 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5985 			regs[rd] =
5986 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5987 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5988 			break;
5989 		case DIF_OP_ULDUW:
5990 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5991 			regs[rd] =
5992 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5993 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5994 			break;
5995 		case DIF_OP_ULDX:
5996 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5997 			regs[rd] =
5998 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5999 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6000 			break;
6001 		case DIF_OP_RET:
6002 			rval = regs[rd];
6003 			pc = textlen;
6004 			break;
6005 		case DIF_OP_NOP:
6006 			break;
6007 		case DIF_OP_SETX:
6008 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6009 			break;
6010 		case DIF_OP_SETS:
6011 			regs[rd] = (uint64_t)(uintptr_t)
6012 			    (strtab + DIF_INSTR_STRING(instr));
6013 			break;
6014 		case DIF_OP_SCMP: {
6015 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6016 			uintptr_t s1 = regs[r1];
6017 			uintptr_t s2 = regs[r2];
6018 			size_t lim1, lim2;
6019 
6020 			if (s1 != 0 &&
6021 			    !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6022 				break;
6023 			if (s2 != 0 &&
6024 			    !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6025 				break;
6026 
6027 			cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6028 			    MIN(lim1, lim2));
6029 
6030 			cc_n = cc_r < 0;
6031 			cc_z = cc_r == 0;
6032 			cc_v = cc_c = 0;
6033 			break;
6034 		}
6035 		case DIF_OP_LDGA:
6036 			regs[rd] = dtrace_dif_variable(mstate, state,
6037 			    r1, regs[r2]);
6038 			break;
6039 		case DIF_OP_LDGS:
6040 			id = DIF_INSTR_VAR(instr);
6041 
6042 			if (id >= DIF_VAR_OTHER_UBASE) {
6043 				uintptr_t a;
6044 
6045 				id -= DIF_VAR_OTHER_UBASE;
6046 				svar = vstate->dtvs_globals[id];
6047 				ASSERT(svar != NULL);
6048 				v = &svar->dtsv_var;
6049 
6050 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6051 					regs[rd] = svar->dtsv_data;
6052 					break;
6053 				}
6054 
6055 				a = (uintptr_t)svar->dtsv_data;
6056 
6057 				if (*(uint8_t *)a == UINT8_MAX) {
6058 					/*
6059 					 * If the 0th byte is set to UINT8_MAX
6060 					 * then this is to be treated as a
6061 					 * reference to a NULL variable.
6062 					 */
6063 					regs[rd] = 0;
6064 				} else {
6065 					regs[rd] = a + sizeof (uint64_t);
6066 				}
6067 
6068 				break;
6069 			}
6070 
6071 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6072 			break;
6073 
6074 		case DIF_OP_STGA:
6075 			dtrace_dif_variable_write(mstate, state, r1, regs[r2],
6076 			    regs[rd]);
6077 			break;
6078 
6079 		case DIF_OP_STGS:
6080 			id = DIF_INSTR_VAR(instr);
6081 
6082 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6083 			id -= DIF_VAR_OTHER_UBASE;
6084 
6085 			VERIFY(id < vstate->dtvs_nglobals);
6086 			svar = vstate->dtvs_globals[id];
6087 			ASSERT(svar != NULL);
6088 			v = &svar->dtsv_var;
6089 
6090 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6091 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6092 				size_t lim;
6093 
6094 				ASSERT(a != NULL);
6095 				ASSERT(svar->dtsv_size != 0);
6096 
6097 				if (regs[rd] == 0) {
6098 					*(uint8_t *)a = UINT8_MAX;
6099 					break;
6100 				} else {
6101 					*(uint8_t *)a = 0;
6102 					a += sizeof (uint64_t);
6103 				}
6104 				if (!dtrace_vcanload(
6105 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6106 				    &lim, mstate, vstate))
6107 					break;
6108 
6109 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6110 				    (void *)a, &v->dtdv_type, lim);
6111 				break;
6112 			}
6113 
6114 			svar->dtsv_data = regs[rd];
6115 			break;
6116 
6117 		case DIF_OP_LDTA:
6118 			/*
6119 			 * There are no DTrace built-in thread-local arrays at
6120 			 * present.  This opcode is saved for future work.
6121 			 */
6122 			*flags |= CPU_DTRACE_ILLOP;
6123 			regs[rd] = 0;
6124 			break;
6125 
6126 		case DIF_OP_LDLS:
6127 			id = DIF_INSTR_VAR(instr);
6128 
6129 			if (id < DIF_VAR_OTHER_UBASE) {
6130 				/*
6131 				 * For now, this has no meaning.
6132 				 */
6133 				regs[rd] = 0;
6134 				break;
6135 			}
6136 
6137 			id -= DIF_VAR_OTHER_UBASE;
6138 
6139 			ASSERT(id < vstate->dtvs_nlocals);
6140 			ASSERT(vstate->dtvs_locals != NULL);
6141 
6142 			svar = vstate->dtvs_locals[id];
6143 			ASSERT(svar != NULL);
6144 			v = &svar->dtsv_var;
6145 
6146 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6147 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6148 				size_t sz = v->dtdv_type.dtdt_size;
6149 
6150 				sz += sizeof (uint64_t);
6151 				ASSERT(svar->dtsv_size == NCPU * sz);
6152 				a += CPU->cpu_id * sz;
6153 
6154 				if (*(uint8_t *)a == UINT8_MAX) {
6155 					/*
6156 					 * If the 0th byte is set to UINT8_MAX
6157 					 * then this is to be treated as a
6158 					 * reference to a NULL variable.
6159 					 */
6160 					regs[rd] = 0;
6161 				} else {
6162 					regs[rd] = a + sizeof (uint64_t);
6163 				}
6164 
6165 				break;
6166 			}
6167 
6168 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6169 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6170 			regs[rd] = tmp[CPU->cpu_id];
6171 			break;
6172 
6173 		case DIF_OP_STLS:
6174 			id = DIF_INSTR_VAR(instr);
6175 
6176 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6177 			id -= DIF_VAR_OTHER_UBASE;
6178 			VERIFY(id < vstate->dtvs_nlocals);
6179 
6180 			ASSERT(vstate->dtvs_locals != NULL);
6181 			svar = vstate->dtvs_locals[id];
6182 			ASSERT(svar != NULL);
6183 			v = &svar->dtsv_var;
6184 
6185 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6186 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6187 				size_t sz = v->dtdv_type.dtdt_size;
6188 				size_t lim;
6189 
6190 				sz += sizeof (uint64_t);
6191 				ASSERT(svar->dtsv_size == NCPU * sz);
6192 				a += CPU->cpu_id * sz;
6193 
6194 				if (regs[rd] == 0) {
6195 					*(uint8_t *)a = UINT8_MAX;
6196 					break;
6197 				} else {
6198 					*(uint8_t *)a = 0;
6199 					a += sizeof (uint64_t);
6200 				}
6201 
6202 				if (!dtrace_vcanload(
6203 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6204 				    &lim, mstate, vstate))
6205 					break;
6206 
6207 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6208 				    (void *)a, &v->dtdv_type, lim);
6209 				break;
6210 			}
6211 
6212 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6213 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6214 			tmp[CPU->cpu_id] = regs[rd];
6215 			break;
6216 
6217 		case DIF_OP_LDTS: {
6218 			dtrace_dynvar_t *dvar;
6219 			dtrace_key_t *key;
6220 
6221 			id = DIF_INSTR_VAR(instr);
6222 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6223 			id -= DIF_VAR_OTHER_UBASE;
6224 			v = &vstate->dtvs_tlocals[id];
6225 
6226 			key = &tupregs[DIF_DTR_NREGS];
6227 			key[0].dttk_value = (uint64_t)id;
6228 			key[0].dttk_size = 0;
6229 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6230 			key[1].dttk_size = 0;
6231 
6232 			dvar = dtrace_dynvar(dstate, 2, key,
6233 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6234 			    mstate, vstate);
6235 
6236 			if (dvar == NULL) {
6237 				regs[rd] = 0;
6238 				break;
6239 			}
6240 
6241 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6242 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6243 			} else {
6244 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6245 			}
6246 
6247 			break;
6248 		}
6249 
6250 		case DIF_OP_STTS: {
6251 			dtrace_dynvar_t *dvar;
6252 			dtrace_key_t *key;
6253 
6254 			id = DIF_INSTR_VAR(instr);
6255 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6256 			id -= DIF_VAR_OTHER_UBASE;
6257 			VERIFY(id < vstate->dtvs_ntlocals);
6258 
6259 			key = &tupregs[DIF_DTR_NREGS];
6260 			key[0].dttk_value = (uint64_t)id;
6261 			key[0].dttk_size = 0;
6262 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6263 			key[1].dttk_size = 0;
6264 			v = &vstate->dtvs_tlocals[id];
6265 
6266 			dvar = dtrace_dynvar(dstate, 2, key,
6267 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6268 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6269 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6270 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6271 
6272 			/*
6273 			 * Given that we're storing to thread-local data,
6274 			 * we need to flush our predicate cache.
6275 			 */
6276 			curthread->t_predcache = DTRACE_CACHEIDNONE;
6277 
6278 			if (dvar == NULL)
6279 				break;
6280 
6281 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6282 				size_t lim;
6283 
6284 				if (!dtrace_vcanload(
6285 				    (void *)(uintptr_t)regs[rd],
6286 				    &v->dtdv_type, &lim, mstate, vstate))
6287 					break;
6288 
6289 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6290 				    dvar->dtdv_data, &v->dtdv_type, lim);
6291 			} else {
6292 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6293 			}
6294 
6295 			break;
6296 		}
6297 
6298 		case DIF_OP_SRA:
6299 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6300 			break;
6301 
6302 		case DIF_OP_CALL:
6303 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6304 			    regs, tupregs, ttop, mstate, state);
6305 			break;
6306 
6307 		case DIF_OP_PUSHTR:
6308 			if (ttop == DIF_DTR_NREGS) {
6309 				*flags |= CPU_DTRACE_TUPOFLOW;
6310 				break;
6311 			}
6312 
6313 			if (r1 == DIF_TYPE_STRING) {
6314 				/*
6315 				 * If this is a string type and the size is 0,
6316 				 * we'll use the system-wide default string
6317 				 * size.  Note that we are _not_ looking at
6318 				 * the value of the DTRACEOPT_STRSIZE option;
6319 				 * had this been set, we would expect to have
6320 				 * a non-zero size value in the "pushtr".
6321 				 */
6322 				tupregs[ttop].dttk_size =
6323 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6324 				    regs[r2] ? regs[r2] :
6325 				    dtrace_strsize_default) + 1;
6326 			} else {
6327 				if (regs[r2] > LONG_MAX) {
6328 					*flags |= CPU_DTRACE_ILLOP;
6329 					break;
6330 				}
6331 
6332 				tupregs[ttop].dttk_size = regs[r2];
6333 			}
6334 
6335 			tupregs[ttop++].dttk_value = regs[rd];
6336 			break;
6337 
6338 		case DIF_OP_PUSHTV:
6339 			if (ttop == DIF_DTR_NREGS) {
6340 				*flags |= CPU_DTRACE_TUPOFLOW;
6341 				break;
6342 			}
6343 
6344 			tupregs[ttop].dttk_value = regs[rd];
6345 			tupregs[ttop++].dttk_size = 0;
6346 			break;
6347 
6348 		case DIF_OP_POPTS:
6349 			if (ttop != 0)
6350 				ttop--;
6351 			break;
6352 
6353 		case DIF_OP_FLUSHTS:
6354 			ttop = 0;
6355 			break;
6356 
6357 		case DIF_OP_LDGAA:
6358 		case DIF_OP_LDTAA: {
6359 			dtrace_dynvar_t *dvar;
6360 			dtrace_key_t *key = tupregs;
6361 			uint_t nkeys = ttop;
6362 
6363 			id = DIF_INSTR_VAR(instr);
6364 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6365 			id -= DIF_VAR_OTHER_UBASE;
6366 
6367 			key[nkeys].dttk_value = (uint64_t)id;
6368 			key[nkeys++].dttk_size = 0;
6369 
6370 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6371 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6372 				key[nkeys++].dttk_size = 0;
6373 				VERIFY(id < vstate->dtvs_ntlocals);
6374 				v = &vstate->dtvs_tlocals[id];
6375 			} else {
6376 				VERIFY(id < vstate->dtvs_nglobals);
6377 				v = &vstate->dtvs_globals[id]->dtsv_var;
6378 			}
6379 
6380 			dvar = dtrace_dynvar(dstate, nkeys, key,
6381 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6382 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6383 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6384 
6385 			if (dvar == NULL) {
6386 				regs[rd] = 0;
6387 				break;
6388 			}
6389 
6390 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6391 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6392 			} else {
6393 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6394 			}
6395 
6396 			break;
6397 		}
6398 
6399 		case DIF_OP_STGAA:
6400 		case DIF_OP_STTAA: {
6401 			dtrace_dynvar_t *dvar;
6402 			dtrace_key_t *key = tupregs;
6403 			uint_t nkeys = ttop;
6404 
6405 			id = DIF_INSTR_VAR(instr);
6406 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6407 			id -= DIF_VAR_OTHER_UBASE;
6408 
6409 			key[nkeys].dttk_value = (uint64_t)id;
6410 			key[nkeys++].dttk_size = 0;
6411 
6412 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6413 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6414 				key[nkeys++].dttk_size = 0;
6415 				VERIFY(id < vstate->dtvs_ntlocals);
6416 				v = &vstate->dtvs_tlocals[id];
6417 			} else {
6418 				VERIFY(id < vstate->dtvs_nglobals);
6419 				v = &vstate->dtvs_globals[id]->dtsv_var;
6420 			}
6421 
6422 			dvar = dtrace_dynvar(dstate, nkeys, key,
6423 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6424 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6425 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6426 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6427 
6428 			if (dvar == NULL)
6429 				break;
6430 
6431 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6432 				size_t lim;
6433 
6434 				if (!dtrace_vcanload(
6435 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6436 				    &lim, mstate, vstate))
6437 					break;
6438 
6439 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6440 				    dvar->dtdv_data, &v->dtdv_type, lim);
6441 			} else {
6442 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6443 			}
6444 
6445 			break;
6446 		}
6447 
6448 		case DIF_OP_ALLOCS: {
6449 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6450 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6451 
6452 			/*
6453 			 * Rounding up the user allocation size could have
6454 			 * overflowed large, bogus allocations (like -1ULL) to
6455 			 * 0.
6456 			 */
6457 			if (size < regs[r1] ||
6458 			    !DTRACE_INSCRATCH(mstate, size)) {
6459 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6460 				regs[rd] = 0;
6461 				break;
6462 			}
6463 
6464 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6465 			mstate->dtms_scratch_ptr += size;
6466 			regs[rd] = ptr;
6467 			break;
6468 		}
6469 
6470 		case DIF_OP_COPYS:
6471 			if (!dtrace_canstore(regs[rd], regs[r2],
6472 			    mstate, vstate)) {
6473 				*flags |= CPU_DTRACE_BADADDR;
6474 				*illval = regs[rd];
6475 				break;
6476 			}
6477 
6478 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6479 				break;
6480 
6481 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6482 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6483 			break;
6484 
6485 		case DIF_OP_STB:
6486 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6487 				*flags |= CPU_DTRACE_BADADDR;
6488 				*illval = regs[rd];
6489 				break;
6490 			}
6491 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6492 			break;
6493 
6494 		case DIF_OP_STH:
6495 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6496 				*flags |= CPU_DTRACE_BADADDR;
6497 				*illval = regs[rd];
6498 				break;
6499 			}
6500 			if (regs[rd] & 1) {
6501 				*flags |= CPU_DTRACE_BADALIGN;
6502 				*illval = regs[rd];
6503 				break;
6504 			}
6505 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6506 			break;
6507 
6508 		case DIF_OP_STW:
6509 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6510 				*flags |= CPU_DTRACE_BADADDR;
6511 				*illval = regs[rd];
6512 				break;
6513 			}
6514 			if (regs[rd] & 3) {
6515 				*flags |= CPU_DTRACE_BADALIGN;
6516 				*illval = regs[rd];
6517 				break;
6518 			}
6519 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6520 			break;
6521 
6522 		case DIF_OP_STX:
6523 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6524 				*flags |= CPU_DTRACE_BADADDR;
6525 				*illval = regs[rd];
6526 				break;
6527 			}
6528 			if (regs[rd] & 7) {
6529 				*flags |= CPU_DTRACE_BADALIGN;
6530 				*illval = regs[rd];
6531 				break;
6532 			}
6533 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6534 			break;
6535 		}
6536 	}
6537 
6538 	if (!(*flags & CPU_DTRACE_FAULT))
6539 		return (rval);
6540 
6541 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6542 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6543 
6544 	return (0);
6545 }
6546 
6547 static void
6548 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6549 {
6550 	dtrace_probe_t *probe = ecb->dte_probe;
6551 	dtrace_provider_t *prov = probe->dtpr_provider;
6552 	char c[DTRACE_FULLNAMELEN + 80], *str;
6553 	char *msg = "dtrace: breakpoint action at probe ";
6554 	char *ecbmsg = " (ecb ";
6555 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6556 	uintptr_t val = (uintptr_t)ecb;
6557 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6558 
6559 	if (dtrace_destructive_disallow)
6560 		return;
6561 
6562 	/*
6563 	 * It's impossible to be taking action on the NULL probe.
6564 	 */
6565 	ASSERT(probe != NULL);
6566 
6567 	/*
6568 	 * This is a poor man's (destitute man's?) sprintf():  we want to
6569 	 * print the provider name, module name, function name and name of
6570 	 * the probe, along with the hex address of the ECB with the breakpoint
6571 	 * action -- all of which we must place in the character buffer by
6572 	 * hand.
6573 	 */
6574 	while (*msg != '\0')
6575 		c[i++] = *msg++;
6576 
6577 	for (str = prov->dtpv_name; *str != '\0'; str++)
6578 		c[i++] = *str;
6579 	c[i++] = ':';
6580 
6581 	for (str = probe->dtpr_mod; *str != '\0'; str++)
6582 		c[i++] = *str;
6583 	c[i++] = ':';
6584 
6585 	for (str = probe->dtpr_func; *str != '\0'; str++)
6586 		c[i++] = *str;
6587 	c[i++] = ':';
6588 
6589 	for (str = probe->dtpr_name; *str != '\0'; str++)
6590 		c[i++] = *str;
6591 
6592 	while (*ecbmsg != '\0')
6593 		c[i++] = *ecbmsg++;
6594 
6595 	while (shift >= 0) {
6596 		mask = (uintptr_t)0xf << shift;
6597 
6598 		if (val >= ((uintptr_t)1 << shift))
6599 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6600 		shift -= 4;
6601 	}
6602 
6603 	c[i++] = ')';
6604 	c[i] = '\0';
6605 
6606 	debug_enter(c);
6607 }
6608 
6609 static void
6610 dtrace_action_panic(dtrace_ecb_t *ecb)
6611 {
6612 	dtrace_probe_t *probe = ecb->dte_probe;
6613 
6614 	/*
6615 	 * It's impossible to be taking action on the NULL probe.
6616 	 */
6617 	ASSERT(probe != NULL);
6618 
6619 	if (dtrace_destructive_disallow)
6620 		return;
6621 
6622 	if (dtrace_panicked != NULL)
6623 		return;
6624 
6625 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6626 		return;
6627 
6628 	/*
6629 	 * We won the right to panic.  (We want to be sure that only one
6630 	 * thread calls panic() from dtrace_probe(), and that panic() is
6631 	 * called exactly once.)
6632 	 */
6633 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6634 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6635 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6636 }
6637 
6638 static void
6639 dtrace_action_raise(uint64_t sig)
6640 {
6641 	if (dtrace_destructive_disallow)
6642 		return;
6643 
6644 	if (sig >= NSIG) {
6645 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6646 		return;
6647 	}
6648 
6649 	/*
6650 	 * raise() has a queue depth of 1 -- we ignore all subsequent
6651 	 * invocations of the raise() action.
6652 	 */
6653 	if (curthread->t_dtrace_sig == 0)
6654 		curthread->t_dtrace_sig = (uint8_t)sig;
6655 
6656 	curthread->t_sig_check = 1;
6657 	aston(curthread);
6658 }
6659 
6660 static void
6661 dtrace_action_stop(void)
6662 {
6663 	if (dtrace_destructive_disallow)
6664 		return;
6665 
6666 	if (!curthread->t_dtrace_stop) {
6667 		curthread->t_dtrace_stop = 1;
6668 		curthread->t_sig_check = 1;
6669 		aston(curthread);
6670 	}
6671 }
6672 
6673 static void
6674 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6675 {
6676 	hrtime_t now;
6677 	volatile uint16_t *flags;
6678 	cpu_t *cpu = CPU;
6679 
6680 	if (dtrace_destructive_disallow)
6681 		return;
6682 
6683 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
6684 
6685 	now = dtrace_gethrtime();
6686 
6687 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6688 		/*
6689 		 * We need to advance the mark to the current time.
6690 		 */
6691 		cpu->cpu_dtrace_chillmark = now;
6692 		cpu->cpu_dtrace_chilled = 0;
6693 	}
6694 
6695 	/*
6696 	 * Now check to see if the requested chill time would take us over
6697 	 * the maximum amount of time allowed in the chill interval.  (Or
6698 	 * worse, if the calculation itself induces overflow.)
6699 	 */
6700 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6701 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6702 		*flags |= CPU_DTRACE_ILLOP;
6703 		return;
6704 	}
6705 
6706 	while (dtrace_gethrtime() - now < val)
6707 		continue;
6708 
6709 	/*
6710 	 * Normally, we assure that the value of the variable "timestamp" does
6711 	 * not change within an ECB.  The presence of chill() represents an
6712 	 * exception to this rule, however.
6713 	 */
6714 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6715 	cpu->cpu_dtrace_chilled += val;
6716 }
6717 
6718 static void
6719 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6720     uint64_t *buf, uint64_t arg)
6721 {
6722 	int nframes = DTRACE_USTACK_NFRAMES(arg);
6723 	int strsize = DTRACE_USTACK_STRSIZE(arg);
6724 	uint64_t *pcs = &buf[1], *fps;
6725 	char *str = (char *)&pcs[nframes];
6726 	int size, offs = 0, i, j;
6727 	size_t rem;
6728 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
6729 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6730 	char *sym;
6731 
6732 	/*
6733 	 * Should be taking a faster path if string space has not been
6734 	 * allocated.
6735 	 */
6736 	ASSERT(strsize != 0);
6737 
6738 	/*
6739 	 * We will first allocate some temporary space for the frame pointers.
6740 	 */
6741 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6742 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6743 	    (nframes * sizeof (uint64_t));
6744 
6745 	if (!DTRACE_INSCRATCH(mstate, size)) {
6746 		/*
6747 		 * Not enough room for our frame pointers -- need to indicate
6748 		 * that we ran out of scratch space.
6749 		 */
6750 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6751 		return;
6752 	}
6753 
6754 	mstate->dtms_scratch_ptr += size;
6755 	saved = mstate->dtms_scratch_ptr;
6756 
6757 	/*
6758 	 * Now get a stack with both program counters and frame pointers.
6759 	 */
6760 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6761 	dtrace_getufpstack(buf, fps, nframes + 1);
6762 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6763 
6764 	/*
6765 	 * If that faulted, we're cooked.
6766 	 */
6767 	if (*flags & CPU_DTRACE_FAULT)
6768 		goto out;
6769 
6770 	/*
6771 	 * Now we want to walk up the stack, calling the USTACK helper.  For
6772 	 * each iteration, we restore the scratch pointer.
6773 	 */
6774 	for (i = 0; i < nframes; i++) {
6775 		mstate->dtms_scratch_ptr = saved;
6776 
6777 		if (offs >= strsize)
6778 			break;
6779 
6780 		sym = (char *)(uintptr_t)dtrace_helper(
6781 		    DTRACE_HELPER_ACTION_USTACK,
6782 		    mstate, state, pcs[i], fps[i]);
6783 
6784 		/*
6785 		 * If we faulted while running the helper, we're going to
6786 		 * clear the fault and null out the corresponding string.
6787 		 */
6788 		if (*flags & CPU_DTRACE_FAULT) {
6789 			*flags &= ~CPU_DTRACE_FAULT;
6790 			str[offs++] = '\0';
6791 			continue;
6792 		}
6793 
6794 		if (sym == NULL) {
6795 			str[offs++] = '\0';
6796 			continue;
6797 		}
6798 
6799 		if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
6800 		    &(state->dts_vstate))) {
6801 			str[offs++] = '\0';
6802 			continue;
6803 		}
6804 
6805 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6806 
6807 		/*
6808 		 * Now copy in the string that the helper returned to us.
6809 		 */
6810 		for (j = 0; offs + j < strsize && j < rem; j++) {
6811 			if ((str[offs + j] = sym[j]) == '\0')
6812 				break;
6813 		}
6814 
6815 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6816 
6817 		offs += j + 1;
6818 	}
6819 
6820 	if (offs >= strsize) {
6821 		/*
6822 		 * If we didn't have room for all of the strings, we don't
6823 		 * abort processing -- this needn't be a fatal error -- but we
6824 		 * still want to increment a counter (dts_stkstroverflows) to
6825 		 * allow this condition to be warned about.  (If this is from
6826 		 * a jstack() action, it is easily tuned via jstackstrsize.)
6827 		 */
6828 		dtrace_error(&state->dts_stkstroverflows);
6829 	}
6830 
6831 	while (offs < strsize)
6832 		str[offs++] = '\0';
6833 
6834 out:
6835 	mstate->dtms_scratch_ptr = old;
6836 }
6837 
6838 static void
6839 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6840     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6841 {
6842 	volatile uint16_t *flags;
6843 	uint64_t val = *valp;
6844 	size_t valoffs = *valoffsp;
6845 
6846 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6847 	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6848 
6849 	/*
6850 	 * If this is a string, we're going to only load until we find the zero
6851 	 * byte -- after which we'll store zero bytes.
6852 	 */
6853 	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6854 		char c = '\0' + 1;
6855 		size_t s;
6856 
6857 		for (s = 0; s < size; s++) {
6858 			if (c != '\0' && dtkind == DIF_TF_BYREF) {
6859 				c = dtrace_load8(val++);
6860 			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6861 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6862 				c = dtrace_fuword8((void *)(uintptr_t)val++);
6863 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6864 				if (*flags & CPU_DTRACE_FAULT)
6865 					break;
6866 			}
6867 
6868 			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
6869 
6870 			if (c == '\0' && intuple)
6871 				break;
6872 		}
6873 	} else {
6874 		uint8_t c;
6875 		while (valoffs < end) {
6876 			if (dtkind == DIF_TF_BYREF) {
6877 				c = dtrace_load8(val++);
6878 			} else if (dtkind == DIF_TF_BYUREF) {
6879 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6880 				c = dtrace_fuword8((void *)(uintptr_t)val++);
6881 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6882 				if (*flags & CPU_DTRACE_FAULT)
6883 					break;
6884 			}
6885 
6886 			DTRACE_STORE(uint8_t, tomax,
6887 			    valoffs++, c);
6888 		}
6889 	}
6890 
6891 	*valp = val;
6892 	*valoffsp = valoffs;
6893 }
6894 
6895 /*
6896  * If you're looking for the epicenter of DTrace, you just found it.  This
6897  * is the function called by the provider to fire a probe -- from which all
6898  * subsequent probe-context DTrace activity emanates.
6899  */
6900 void
6901 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6902     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6903 {
6904 	processorid_t cpuid;
6905 	dtrace_icookie_t cookie;
6906 	dtrace_probe_t *probe;
6907 	dtrace_mstate_t mstate;
6908 	dtrace_ecb_t *ecb;
6909 	dtrace_action_t *act;
6910 	intptr_t offs;
6911 	size_t size;
6912 	int vtime, onintr;
6913 	volatile uint16_t *flags;
6914 	hrtime_t now, end;
6915 
6916 	/*
6917 	 * Kick out immediately if this CPU is still being born (in which case
6918 	 * curthread will be set to -1) or the current thread can't allow
6919 	 * probes in its current context.
6920 	 */
6921 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6922 		return;
6923 
6924 	cookie = dtrace_interrupt_disable();
6925 	probe = dtrace_probes[id - 1];
6926 	cpuid = CPU->cpu_id;
6927 	onintr = CPU_ON_INTR(CPU);
6928 
6929 	CPU->cpu_dtrace_probes++;
6930 
6931 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6932 	    probe->dtpr_predcache == curthread->t_predcache) {
6933 		/*
6934 		 * We have hit in the predicate cache; we know that
6935 		 * this predicate would evaluate to be false.
6936 		 */
6937 		dtrace_interrupt_enable(cookie);
6938 		return;
6939 	}
6940 
6941 	if (panic_quiesce) {
6942 		/*
6943 		 * We don't trace anything if we're panicking.
6944 		 */
6945 		dtrace_interrupt_enable(cookie);
6946 		return;
6947 	}
6948 
6949 	now = mstate.dtms_timestamp = dtrace_gethrtime();
6950 	mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6951 	vtime = dtrace_vtime_references != 0;
6952 
6953 	if (vtime && curthread->t_dtrace_start)
6954 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6955 
6956 	mstate.dtms_difo = NULL;
6957 	mstate.dtms_probe = probe;
6958 	mstate.dtms_strtok = 0;
6959 	mstate.dtms_arg[0] = arg0;
6960 	mstate.dtms_arg[1] = arg1;
6961 	mstate.dtms_arg[2] = arg2;
6962 	mstate.dtms_arg[3] = arg3;
6963 	mstate.dtms_arg[4] = arg4;
6964 
6965 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6966 
6967 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6968 		dtrace_predicate_t *pred = ecb->dte_predicate;
6969 		dtrace_state_t *state = ecb->dte_state;
6970 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6971 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6972 		dtrace_vstate_t *vstate = &state->dts_vstate;
6973 		dtrace_provider_t *prov = probe->dtpr_provider;
6974 		uint64_t tracememsize = 0;
6975 		int committed = 0;
6976 		caddr_t tomax;
6977 
6978 		/*
6979 		 * A little subtlety with the following (seemingly innocuous)
6980 		 * declaration of the automatic 'val':  by looking at the
6981 		 * code, you might think that it could be declared in the
6982 		 * action processing loop, below.  (That is, it's only used in
6983 		 * the action processing loop.)  However, it must be declared
6984 		 * out of that scope because in the case of DIF expression
6985 		 * arguments to aggregating actions, one iteration of the
6986 		 * action loop will use the last iteration's value.
6987 		 */
6988 #ifdef lint
6989 		uint64_t val = 0;
6990 #else
6991 		uint64_t val;
6992 #endif
6993 
6994 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6995 		mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
6996 		mstate.dtms_getf = NULL;
6997 
6998 		*flags &= ~CPU_DTRACE_ERROR;
6999 
7000 		if (prov == dtrace_provider) {
7001 			/*
7002 			 * If dtrace itself is the provider of this probe,
7003 			 * we're only going to continue processing the ECB if
7004 			 * arg0 (the dtrace_state_t) is equal to the ECB's
7005 			 * creating state.  (This prevents disjoint consumers
7006 			 * from seeing one another's metaprobes.)
7007 			 */
7008 			if (arg0 != (uint64_t)(uintptr_t)state)
7009 				continue;
7010 		}
7011 
7012 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7013 			/*
7014 			 * We're not currently active.  If our provider isn't
7015 			 * the dtrace pseudo provider, we're not interested.
7016 			 */
7017 			if (prov != dtrace_provider)
7018 				continue;
7019 
7020 			/*
7021 			 * Now we must further check if we are in the BEGIN
7022 			 * probe.  If we are, we will only continue processing
7023 			 * if we're still in WARMUP -- if one BEGIN enabling
7024 			 * has invoked the exit() action, we don't want to
7025 			 * evaluate subsequent BEGIN enablings.
7026 			 */
7027 			if (probe->dtpr_id == dtrace_probeid_begin &&
7028 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7029 				ASSERT(state->dts_activity ==
7030 				    DTRACE_ACTIVITY_DRAINING);
7031 				continue;
7032 			}
7033 		}
7034 
7035 		if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
7036 			continue;
7037 
7038 		if (now - state->dts_alive > dtrace_deadman_timeout) {
7039 			/*
7040 			 * We seem to be dead.  Unless we (a) have kernel
7041 			 * destructive permissions (b) have explicitly enabled
7042 			 * destructive actions and (c) destructive actions have
7043 			 * not been disabled, we're going to transition into
7044 			 * the KILLED state, from which no further processing
7045 			 * on this state will be performed.
7046 			 */
7047 			if (!dtrace_priv_kernel_destructive(state) ||
7048 			    !state->dts_cred.dcr_destructive ||
7049 			    dtrace_destructive_disallow) {
7050 				void *activity = &state->dts_activity;
7051 				dtrace_activity_t current;
7052 
7053 				do {
7054 					current = state->dts_activity;
7055 				} while (dtrace_cas32(activity, current,
7056 				    DTRACE_ACTIVITY_KILLED) != current);
7057 
7058 				continue;
7059 			}
7060 		}
7061 
7062 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7063 		    ecb->dte_alignment, state, &mstate)) < 0)
7064 			continue;
7065 
7066 		tomax = buf->dtb_tomax;
7067 		ASSERT(tomax != NULL);
7068 
7069 		if (ecb->dte_size != 0) {
7070 			dtrace_rechdr_t dtrh;
7071 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7072 				mstate.dtms_timestamp = dtrace_gethrtime();
7073 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7074 			}
7075 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7076 			dtrh.dtrh_epid = ecb->dte_epid;
7077 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7078 			    mstate.dtms_timestamp);
7079 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7080 		}
7081 
7082 		mstate.dtms_epid = ecb->dte_epid;
7083 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7084 
7085 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7086 			mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
7087 
7088 		if (pred != NULL) {
7089 			dtrace_difo_t *dp = pred->dtp_difo;
7090 			int rval;
7091 
7092 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7093 
7094 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7095 				dtrace_cacheid_t cid = probe->dtpr_predcache;
7096 
7097 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7098 					/*
7099 					 * Update the predicate cache...
7100 					 */
7101 					ASSERT(cid == pred->dtp_cacheid);
7102 					curthread->t_predcache = cid;
7103 				}
7104 
7105 				continue;
7106 			}
7107 		}
7108 
7109 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7110 		    act != NULL; act = act->dta_next) {
7111 			size_t valoffs;
7112 			dtrace_difo_t *dp;
7113 			dtrace_recdesc_t *rec = &act->dta_rec;
7114 
7115 			size = rec->dtrd_size;
7116 			valoffs = offs + rec->dtrd_offset;
7117 
7118 			if (DTRACEACT_ISAGG(act->dta_kind)) {
7119 				uint64_t v = 0xbad;
7120 				dtrace_aggregation_t *agg;
7121 
7122 				agg = (dtrace_aggregation_t *)act;
7123 
7124 				if ((dp = act->dta_difo) != NULL)
7125 					v = dtrace_dif_emulate(dp,
7126 					    &mstate, vstate, state);
7127 
7128 				if (*flags & CPU_DTRACE_ERROR)
7129 					continue;
7130 
7131 				/*
7132 				 * Note that we always pass the expression
7133 				 * value from the previous iteration of the
7134 				 * action loop.  This value will only be used
7135 				 * if there is an expression argument to the
7136 				 * aggregating action, denoted by the
7137 				 * dtag_hasarg field.
7138 				 */
7139 				dtrace_aggregate(agg, buf,
7140 				    offs, aggbuf, v, val);
7141 				continue;
7142 			}
7143 
7144 			switch (act->dta_kind) {
7145 			case DTRACEACT_STOP:
7146 				if (dtrace_priv_proc_destructive(state,
7147 				    &mstate))
7148 					dtrace_action_stop();
7149 				continue;
7150 
7151 			case DTRACEACT_BREAKPOINT:
7152 				if (dtrace_priv_kernel_destructive(state))
7153 					dtrace_action_breakpoint(ecb);
7154 				continue;
7155 
7156 			case DTRACEACT_PANIC:
7157 				if (dtrace_priv_kernel_destructive(state))
7158 					dtrace_action_panic(ecb);
7159 				continue;
7160 
7161 			case DTRACEACT_STACK:
7162 				if (!dtrace_priv_kernel(state))
7163 					continue;
7164 
7165 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7166 				    size / sizeof (pc_t), probe->dtpr_aframes,
7167 				    DTRACE_ANCHORED(probe) ? NULL :
7168 				    (uint32_t *)arg0);
7169 
7170 				continue;
7171 
7172 			case DTRACEACT_JSTACK:
7173 			case DTRACEACT_USTACK:
7174 				if (!dtrace_priv_proc(state, &mstate))
7175 					continue;
7176 
7177 				/*
7178 				 * See comment in DIF_VAR_PID.
7179 				 */
7180 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7181 				    CPU_ON_INTR(CPU)) {
7182 					int depth = DTRACE_USTACK_NFRAMES(
7183 					    rec->dtrd_arg) + 1;
7184 
7185 					dtrace_bzero((void *)(tomax + valoffs),
7186 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7187 					    + depth * sizeof (uint64_t));
7188 
7189 					continue;
7190 				}
7191 
7192 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7193 				    curproc->p_dtrace_helpers != NULL) {
7194 					/*
7195 					 * This is the slow path -- we have
7196 					 * allocated string space, and we're
7197 					 * getting the stack of a process that
7198 					 * has helpers.  Call into a separate
7199 					 * routine to perform this processing.
7200 					 */
7201 					dtrace_action_ustack(&mstate, state,
7202 					    (uint64_t *)(tomax + valoffs),
7203 					    rec->dtrd_arg);
7204 					continue;
7205 				}
7206 
7207 				/*
7208 				 * Clear the string space, since there's no
7209 				 * helper to do it for us.
7210 				 */
7211 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
7212 					int depth = DTRACE_USTACK_NFRAMES(
7213 					    rec->dtrd_arg);
7214 					size_t strsize = DTRACE_USTACK_STRSIZE(
7215 					    rec->dtrd_arg);
7216 					uint64_t *buf = (uint64_t *)(tomax +
7217 					    valoffs);
7218 					void *strspace = &buf[depth + 1];
7219 
7220 					dtrace_bzero(strspace,
7221 					    MIN(depth, strsize));
7222 				}
7223 
7224 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7225 				dtrace_getupcstack((uint64_t *)
7226 				    (tomax + valoffs),
7227 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7228 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7229 				continue;
7230 
7231 			default:
7232 				break;
7233 			}
7234 
7235 			dp = act->dta_difo;
7236 			ASSERT(dp != NULL);
7237 
7238 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7239 
7240 			if (*flags & CPU_DTRACE_ERROR)
7241 				continue;
7242 
7243 			switch (act->dta_kind) {
7244 			case DTRACEACT_SPECULATE: {
7245 				dtrace_rechdr_t *dtrh;
7246 
7247 				ASSERT(buf == &state->dts_buffer[cpuid]);
7248 				buf = dtrace_speculation_buffer(state,
7249 				    cpuid, val);
7250 
7251 				if (buf == NULL) {
7252 					*flags |= CPU_DTRACE_DROP;
7253 					continue;
7254 				}
7255 
7256 				offs = dtrace_buffer_reserve(buf,
7257 				    ecb->dte_needed, ecb->dte_alignment,
7258 				    state, NULL);
7259 
7260 				if (offs < 0) {
7261 					*flags |= CPU_DTRACE_DROP;
7262 					continue;
7263 				}
7264 
7265 				tomax = buf->dtb_tomax;
7266 				ASSERT(tomax != NULL);
7267 
7268 				if (ecb->dte_size == 0)
7269 					continue;
7270 
7271 				ASSERT3U(ecb->dte_size, >=,
7272 				    sizeof (dtrace_rechdr_t));
7273 				dtrh = ((void *)(tomax + offs));
7274 				dtrh->dtrh_epid = ecb->dte_epid;
7275 				/*
7276 				 * When the speculation is committed, all of
7277 				 * the records in the speculative buffer will
7278 				 * have their timestamps set to the commit
7279 				 * time.  Until then, it is set to a sentinel
7280 				 * value, for debugability.
7281 				 */
7282 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7283 				continue;
7284 			}
7285 
7286 			case DTRACEACT_CHILL:
7287 				if (dtrace_priv_kernel_destructive(state))
7288 					dtrace_action_chill(&mstate, val);
7289 				continue;
7290 
7291 			case DTRACEACT_RAISE:
7292 				if (dtrace_priv_proc_destructive(state,
7293 				    &mstate))
7294 					dtrace_action_raise(val);
7295 				continue;
7296 
7297 			case DTRACEACT_COMMIT:
7298 				ASSERT(!committed);
7299 
7300 				/*
7301 				 * We need to commit our buffer state.
7302 				 */
7303 				if (ecb->dte_size)
7304 					buf->dtb_offset = offs + ecb->dte_size;
7305 				buf = &state->dts_buffer[cpuid];
7306 				dtrace_speculation_commit(state, cpuid, val);
7307 				committed = 1;
7308 				continue;
7309 
7310 			case DTRACEACT_DISCARD:
7311 				dtrace_speculation_discard(state, cpuid, val);
7312 				continue;
7313 
7314 			case DTRACEACT_DIFEXPR:
7315 			case DTRACEACT_LIBACT:
7316 			case DTRACEACT_PRINTF:
7317 			case DTRACEACT_PRINTA:
7318 			case DTRACEACT_SYSTEM:
7319 			case DTRACEACT_FREOPEN:
7320 			case DTRACEACT_TRACEMEM:
7321 				break;
7322 
7323 			case DTRACEACT_TRACEMEM_DYNSIZE:
7324 				tracememsize = val;
7325 				break;
7326 
7327 			case DTRACEACT_SYM:
7328 			case DTRACEACT_MOD:
7329 				if (!dtrace_priv_kernel(state))
7330 					continue;
7331 				break;
7332 
7333 			case DTRACEACT_USYM:
7334 			case DTRACEACT_UMOD:
7335 			case DTRACEACT_UADDR: {
7336 				struct pid *pid = curthread->t_procp->p_pidp;
7337 
7338 				if (!dtrace_priv_proc(state, &mstate))
7339 					continue;
7340 
7341 				DTRACE_STORE(uint64_t, tomax,
7342 				    valoffs, (uint64_t)pid->pid_id);
7343 				DTRACE_STORE(uint64_t, tomax,
7344 				    valoffs + sizeof (uint64_t), val);
7345 
7346 				continue;
7347 			}
7348 
7349 			case DTRACEACT_EXIT: {
7350 				/*
7351 				 * For the exit action, we are going to attempt
7352 				 * to atomically set our activity to be
7353 				 * draining.  If this fails (either because
7354 				 * another CPU has beat us to the exit action,
7355 				 * or because our current activity is something
7356 				 * other than ACTIVE or WARMUP), we will
7357 				 * continue.  This assures that the exit action
7358 				 * can be successfully recorded at most once
7359 				 * when we're in the ACTIVE state.  If we're
7360 				 * encountering the exit() action while in
7361 				 * COOLDOWN, however, we want to honor the new
7362 				 * status code.  (We know that we're the only
7363 				 * thread in COOLDOWN, so there is no race.)
7364 				 */
7365 				void *activity = &state->dts_activity;
7366 				dtrace_activity_t current = state->dts_activity;
7367 
7368 				if (current == DTRACE_ACTIVITY_COOLDOWN)
7369 					break;
7370 
7371 				if (current != DTRACE_ACTIVITY_WARMUP)
7372 					current = DTRACE_ACTIVITY_ACTIVE;
7373 
7374 				if (dtrace_cas32(activity, current,
7375 				    DTRACE_ACTIVITY_DRAINING) != current) {
7376 					*flags |= CPU_DTRACE_DROP;
7377 					continue;
7378 				}
7379 
7380 				break;
7381 			}
7382 
7383 			default:
7384 				ASSERT(0);
7385 			}
7386 
7387 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7388 			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7389 				uintptr_t end = valoffs + size;
7390 
7391 				if (tracememsize != 0 &&
7392 				    valoffs + tracememsize < end) {
7393 					end = valoffs + tracememsize;
7394 					tracememsize = 0;
7395 				}
7396 
7397 				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7398 				    !dtrace_vcanload((void *)(uintptr_t)val,
7399 				    &dp->dtdo_rtype, NULL, &mstate, vstate))
7400 					continue;
7401 
7402 				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7403 				    &val, end, act->dta_intuple,
7404 				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7405 				    DIF_TF_BYREF: DIF_TF_BYUREF);
7406 				continue;
7407 			}
7408 
7409 			switch (size) {
7410 			case 0:
7411 				break;
7412 
7413 			case sizeof (uint8_t):
7414 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7415 				break;
7416 			case sizeof (uint16_t):
7417 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7418 				break;
7419 			case sizeof (uint32_t):
7420 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7421 				break;
7422 			case sizeof (uint64_t):
7423 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7424 				break;
7425 			default:
7426 				/*
7427 				 * Any other size should have been returned by
7428 				 * reference, not by value.
7429 				 */
7430 				ASSERT(0);
7431 				break;
7432 			}
7433 		}
7434 
7435 		if (*flags & CPU_DTRACE_DROP)
7436 			continue;
7437 
7438 		if (*flags & CPU_DTRACE_FAULT) {
7439 			int ndx;
7440 			dtrace_action_t *err;
7441 
7442 			buf->dtb_errors++;
7443 
7444 			if (probe->dtpr_id == dtrace_probeid_error) {
7445 				/*
7446 				 * There's nothing we can do -- we had an
7447 				 * error on the error probe.  We bump an
7448 				 * error counter to at least indicate that
7449 				 * this condition happened.
7450 				 */
7451 				dtrace_error(&state->dts_dblerrors);
7452 				continue;
7453 			}
7454 
7455 			if (vtime) {
7456 				/*
7457 				 * Before recursing on dtrace_probe(), we
7458 				 * need to explicitly clear out our start
7459 				 * time to prevent it from being accumulated
7460 				 * into t_dtrace_vtime.
7461 				 */
7462 				curthread->t_dtrace_start = 0;
7463 			}
7464 
7465 			/*
7466 			 * Iterate over the actions to figure out which action
7467 			 * we were processing when we experienced the error.
7468 			 * Note that act points _past_ the faulting action; if
7469 			 * act is ecb->dte_action, the fault was in the
7470 			 * predicate, if it's ecb->dte_action->dta_next it's
7471 			 * in action #1, and so on.
7472 			 */
7473 			for (err = ecb->dte_action, ndx = 0;
7474 			    err != act; err = err->dta_next, ndx++)
7475 				continue;
7476 
7477 			dtrace_probe_error(state, ecb->dte_epid, ndx,
7478 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7479 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7480 			    cpu_core[cpuid].cpuc_dtrace_illval);
7481 
7482 			continue;
7483 		}
7484 
7485 		if (!committed)
7486 			buf->dtb_offset = offs + ecb->dte_size;
7487 	}
7488 
7489 	end = dtrace_gethrtime();
7490 	if (vtime)
7491 		curthread->t_dtrace_start = end;
7492 
7493 	CPU->cpu_dtrace_nsec += end - now;
7494 
7495 	dtrace_interrupt_enable(cookie);
7496 }
7497 
7498 /*
7499  * DTrace Probe Hashing Functions
7500  *
7501  * The functions in this section (and indeed, the functions in remaining
7502  * sections) are not _called_ from probe context.  (Any exceptions to this are
7503  * marked with a "Note:".)  Rather, they are called from elsewhere in the
7504  * DTrace framework to look-up probes in, add probes to and remove probes from
7505  * the DTrace probe hashes.  (Each probe is hashed by each element of the
7506  * probe tuple -- allowing for fast lookups, regardless of what was
7507  * specified.)
7508  */
7509 static uint_t
7510 dtrace_hash_str(char *p)
7511 {
7512 	unsigned int g;
7513 	uint_t hval = 0;
7514 
7515 	while (*p) {
7516 		hval = (hval << 4) + *p++;
7517 		if ((g = (hval & 0xf0000000)) != 0)
7518 			hval ^= g >> 24;
7519 		hval &= ~g;
7520 	}
7521 	return (hval);
7522 }
7523 
7524 static dtrace_hash_t *
7525 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7526 {
7527 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7528 
7529 	hash->dth_stroffs = stroffs;
7530 	hash->dth_nextoffs = nextoffs;
7531 	hash->dth_prevoffs = prevoffs;
7532 
7533 	hash->dth_size = 1;
7534 	hash->dth_mask = hash->dth_size - 1;
7535 
7536 	hash->dth_tab = kmem_zalloc(hash->dth_size *
7537 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7538 
7539 	return (hash);
7540 }
7541 
7542 static void
7543 dtrace_hash_destroy(dtrace_hash_t *hash)
7544 {
7545 #ifdef DEBUG
7546 	int i;
7547 
7548 	for (i = 0; i < hash->dth_size; i++)
7549 		ASSERT(hash->dth_tab[i] == NULL);
7550 #endif
7551 
7552 	kmem_free(hash->dth_tab,
7553 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
7554 	kmem_free(hash, sizeof (dtrace_hash_t));
7555 }
7556 
7557 static void
7558 dtrace_hash_resize(dtrace_hash_t *hash)
7559 {
7560 	int size = hash->dth_size, i, ndx;
7561 	int new_size = hash->dth_size << 1;
7562 	int new_mask = new_size - 1;
7563 	dtrace_hashbucket_t **new_tab, *bucket, *next;
7564 
7565 	ASSERT((new_size & new_mask) == 0);
7566 
7567 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7568 
7569 	for (i = 0; i < size; i++) {
7570 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7571 			dtrace_probe_t *probe = bucket->dthb_chain;
7572 
7573 			ASSERT(probe != NULL);
7574 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7575 
7576 			next = bucket->dthb_next;
7577 			bucket->dthb_next = new_tab[ndx];
7578 			new_tab[ndx] = bucket;
7579 		}
7580 	}
7581 
7582 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7583 	hash->dth_tab = new_tab;
7584 	hash->dth_size = new_size;
7585 	hash->dth_mask = new_mask;
7586 }
7587 
7588 static void
7589 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7590 {
7591 	int hashval = DTRACE_HASHSTR(hash, new);
7592 	int ndx = hashval & hash->dth_mask;
7593 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7594 	dtrace_probe_t **nextp, **prevp;
7595 
7596 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7597 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7598 			goto add;
7599 	}
7600 
7601 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7602 		dtrace_hash_resize(hash);
7603 		dtrace_hash_add(hash, new);
7604 		return;
7605 	}
7606 
7607 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7608 	bucket->dthb_next = hash->dth_tab[ndx];
7609 	hash->dth_tab[ndx] = bucket;
7610 	hash->dth_nbuckets++;
7611 
7612 add:
7613 	nextp = DTRACE_HASHNEXT(hash, new);
7614 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7615 	*nextp = bucket->dthb_chain;
7616 
7617 	if (bucket->dthb_chain != NULL) {
7618 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7619 		ASSERT(*prevp == NULL);
7620 		*prevp = new;
7621 	}
7622 
7623 	bucket->dthb_chain = new;
7624 	bucket->dthb_len++;
7625 }
7626 
7627 static dtrace_probe_t *
7628 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7629 {
7630 	int hashval = DTRACE_HASHSTR(hash, template);
7631 	int ndx = hashval & hash->dth_mask;
7632 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7633 
7634 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7635 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7636 			return (bucket->dthb_chain);
7637 	}
7638 
7639 	return (NULL);
7640 }
7641 
7642 static int
7643 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7644 {
7645 	int hashval = DTRACE_HASHSTR(hash, template);
7646 	int ndx = hashval & hash->dth_mask;
7647 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7648 
7649 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7650 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7651 			return (bucket->dthb_len);
7652 	}
7653 
7654 	return (0);
7655 }
7656 
7657 static void
7658 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7659 {
7660 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7661 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7662 
7663 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7664 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7665 
7666 	/*
7667 	 * Find the bucket that we're removing this probe from.
7668 	 */
7669 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7670 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7671 			break;
7672 	}
7673 
7674 	ASSERT(bucket != NULL);
7675 
7676 	if (*prevp == NULL) {
7677 		if (*nextp == NULL) {
7678 			/*
7679 			 * The removed probe was the only probe on this
7680 			 * bucket; we need to remove the bucket.
7681 			 */
7682 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7683 
7684 			ASSERT(bucket->dthb_chain == probe);
7685 			ASSERT(b != NULL);
7686 
7687 			if (b == bucket) {
7688 				hash->dth_tab[ndx] = bucket->dthb_next;
7689 			} else {
7690 				while (b->dthb_next != bucket)
7691 					b = b->dthb_next;
7692 				b->dthb_next = bucket->dthb_next;
7693 			}
7694 
7695 			ASSERT(hash->dth_nbuckets > 0);
7696 			hash->dth_nbuckets--;
7697 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7698 			return;
7699 		}
7700 
7701 		bucket->dthb_chain = *nextp;
7702 	} else {
7703 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7704 	}
7705 
7706 	if (*nextp != NULL)
7707 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7708 }
7709 
7710 /*
7711  * DTrace Utility Functions
7712  *
7713  * These are random utility functions that are _not_ called from probe context.
7714  */
7715 static int
7716 dtrace_badattr(const dtrace_attribute_t *a)
7717 {
7718 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
7719 	    a->dtat_data > DTRACE_STABILITY_MAX ||
7720 	    a->dtat_class > DTRACE_CLASS_MAX);
7721 }
7722 
7723 /*
7724  * Return a duplicate copy of a string.  If the specified string is NULL,
7725  * this function returns a zero-length string.
7726  */
7727 static char *
7728 dtrace_strdup(const char *str)
7729 {
7730 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7731 
7732 	if (str != NULL)
7733 		(void) strcpy(new, str);
7734 
7735 	return (new);
7736 }
7737 
7738 #define	DTRACE_ISALPHA(c)	\
7739 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7740 
7741 static int
7742 dtrace_badname(const char *s)
7743 {
7744 	char c;
7745 
7746 	if (s == NULL || (c = *s++) == '\0')
7747 		return (0);
7748 
7749 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7750 		return (1);
7751 
7752 	while ((c = *s++) != '\0') {
7753 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7754 		    c != '-' && c != '_' && c != '.' && c != '`')
7755 			return (1);
7756 	}
7757 
7758 	return (0);
7759 }
7760 
7761 static void
7762 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7763 {
7764 	uint32_t priv;
7765 
7766 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7767 		/*
7768 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7769 		 */
7770 		priv = DTRACE_PRIV_ALL;
7771 	} else {
7772 		*uidp = crgetuid(cr);
7773 		*zoneidp = crgetzoneid(cr);
7774 
7775 		priv = 0;
7776 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7777 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7778 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7779 			priv |= DTRACE_PRIV_USER;
7780 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7781 			priv |= DTRACE_PRIV_PROC;
7782 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7783 			priv |= DTRACE_PRIV_OWNER;
7784 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7785 			priv |= DTRACE_PRIV_ZONEOWNER;
7786 	}
7787 
7788 	*privp = priv;
7789 }
7790 
7791 #ifdef DTRACE_ERRDEBUG
7792 static void
7793 dtrace_errdebug(const char *str)
7794 {
7795 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
7796 	int occupied = 0;
7797 
7798 	mutex_enter(&dtrace_errlock);
7799 	dtrace_errlast = str;
7800 	dtrace_errthread = curthread;
7801 
7802 	while (occupied++ < DTRACE_ERRHASHSZ) {
7803 		if (dtrace_errhash[hval].dter_msg == str) {
7804 			dtrace_errhash[hval].dter_count++;
7805 			goto out;
7806 		}
7807 
7808 		if (dtrace_errhash[hval].dter_msg != NULL) {
7809 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
7810 			continue;
7811 		}
7812 
7813 		dtrace_errhash[hval].dter_msg = str;
7814 		dtrace_errhash[hval].dter_count = 1;
7815 		goto out;
7816 	}
7817 
7818 	panic("dtrace: undersized error hash");
7819 out:
7820 	mutex_exit(&dtrace_errlock);
7821 }
7822 #endif
7823 
7824 /*
7825  * DTrace Matching Functions
7826  *
7827  * These functions are used to match groups of probes, given some elements of
7828  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7829  */
7830 static int
7831 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7832     zoneid_t zoneid)
7833 {
7834 	if (priv != DTRACE_PRIV_ALL) {
7835 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7836 		uint32_t match = priv & ppriv;
7837 
7838 		/*
7839 		 * No PRIV_DTRACE_* privileges...
7840 		 */
7841 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7842 		    DTRACE_PRIV_KERNEL)) == 0)
7843 			return (0);
7844 
7845 		/*
7846 		 * No matching bits, but there were bits to match...
7847 		 */
7848 		if (match == 0 && ppriv != 0)
7849 			return (0);
7850 
7851 		/*
7852 		 * Need to have permissions to the process, but don't...
7853 		 */
7854 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7855 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7856 			return (0);
7857 		}
7858 
7859 		/*
7860 		 * Need to be in the same zone unless we possess the
7861 		 * privilege to examine all zones.
7862 		 */
7863 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7864 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7865 			return (0);
7866 		}
7867 	}
7868 
7869 	return (1);
7870 }
7871 
7872 /*
7873  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7874  * consists of input pattern strings and an ops-vector to evaluate them.
7875  * This function returns >0 for match, 0 for no match, and <0 for error.
7876  */
7877 static int
7878 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7879     uint32_t priv, uid_t uid, zoneid_t zoneid)
7880 {
7881 	dtrace_provider_t *pvp = prp->dtpr_provider;
7882 	int rv;
7883 
7884 	if (pvp->dtpv_defunct)
7885 		return (0);
7886 
7887 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7888 		return (rv);
7889 
7890 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7891 		return (rv);
7892 
7893 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7894 		return (rv);
7895 
7896 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7897 		return (rv);
7898 
7899 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7900 		return (0);
7901 
7902 	return (rv);
7903 }
7904 
7905 /*
7906  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7907  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7908  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7909  * In addition, all of the recursion cases except for '*' matching have been
7910  * unwound.  For '*', we still implement recursive evaluation, but a depth
7911  * counter is maintained and matching is aborted if we recurse too deep.
7912  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7913  */
7914 static int
7915 dtrace_match_glob(const char *s, const char *p, int depth)
7916 {
7917 	const char *olds;
7918 	char s1, c;
7919 	int gs;
7920 
7921 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7922 		return (-1);
7923 
7924 	if (s == NULL)
7925 		s = ""; /* treat NULL as empty string */
7926 
7927 top:
7928 	olds = s;
7929 	s1 = *s++;
7930 
7931 	if (p == NULL)
7932 		return (0);
7933 
7934 	if ((c = *p++) == '\0')
7935 		return (s1 == '\0');
7936 
7937 	switch (c) {
7938 	case '[': {
7939 		int ok = 0, notflag = 0;
7940 		char lc = '\0';
7941 
7942 		if (s1 == '\0')
7943 			return (0);
7944 
7945 		if (*p == '!') {
7946 			notflag = 1;
7947 			p++;
7948 		}
7949 
7950 		if ((c = *p++) == '\0')
7951 			return (0);
7952 
7953 		do {
7954 			if (c == '-' && lc != '\0' && *p != ']') {
7955 				if ((c = *p++) == '\0')
7956 					return (0);
7957 				if (c == '\\' && (c = *p++) == '\0')
7958 					return (0);
7959 
7960 				if (notflag) {
7961 					if (s1 < lc || s1 > c)
7962 						ok++;
7963 					else
7964 						return (0);
7965 				} else if (lc <= s1 && s1 <= c)
7966 					ok++;
7967 
7968 			} else if (c == '\\' && (c = *p++) == '\0')
7969 				return (0);
7970 
7971 			lc = c; /* save left-hand 'c' for next iteration */
7972 
7973 			if (notflag) {
7974 				if (s1 != c)
7975 					ok++;
7976 				else
7977 					return (0);
7978 			} else if (s1 == c)
7979 				ok++;
7980 
7981 			if ((c = *p++) == '\0')
7982 				return (0);
7983 
7984 		} while (c != ']');
7985 
7986 		if (ok)
7987 			goto top;
7988 
7989 		return (0);
7990 	}
7991 
7992 	case '\\':
7993 		if ((c = *p++) == '\0')
7994 			return (0);
7995 		/*FALLTHRU*/
7996 
7997 	default:
7998 		if (c != s1)
7999 			return (0);
8000 		/*FALLTHRU*/
8001 
8002 	case '?':
8003 		if (s1 != '\0')
8004 			goto top;
8005 		return (0);
8006 
8007 	case '*':
8008 		while (*p == '*')
8009 			p++; /* consecutive *'s are identical to a single one */
8010 
8011 		if (*p == '\0')
8012 			return (1);
8013 
8014 		for (s = olds; *s != '\0'; s++) {
8015 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8016 				return (gs);
8017 		}
8018 
8019 		return (0);
8020 	}
8021 }
8022 
8023 /*ARGSUSED*/
8024 static int
8025 dtrace_match_string(const char *s, const char *p, int depth)
8026 {
8027 	return (s != NULL && strcmp(s, p) == 0);
8028 }
8029 
8030 /*ARGSUSED*/
8031 static int
8032 dtrace_match_nul(const char *s, const char *p, int depth)
8033 {
8034 	return (1); /* always match the empty pattern */
8035 }
8036 
8037 /*ARGSUSED*/
8038 static int
8039 dtrace_match_nonzero(const char *s, const char *p, int depth)
8040 {
8041 	return (s != NULL && s[0] != '\0');
8042 }
8043 
8044 static int
8045 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8046     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8047 {
8048 	dtrace_probe_t template, *probe;
8049 	dtrace_hash_t *hash = NULL;
8050 	int len, rc, best = INT_MAX, nmatched = 0;
8051 	dtrace_id_t i;
8052 
8053 	ASSERT(MUTEX_HELD(&dtrace_lock));
8054 
8055 	/*
8056 	 * If the probe ID is specified in the key, just lookup by ID and
8057 	 * invoke the match callback once if a matching probe is found.
8058 	 */
8059 	if (pkp->dtpk_id != DTRACE_IDNONE) {
8060 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8061 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8062 			if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
8063 				return (DTRACE_MATCH_FAIL);
8064 			nmatched++;
8065 		}
8066 		return (nmatched);
8067 	}
8068 
8069 	template.dtpr_mod = (char *)pkp->dtpk_mod;
8070 	template.dtpr_func = (char *)pkp->dtpk_func;
8071 	template.dtpr_name = (char *)pkp->dtpk_name;
8072 
8073 	/*
8074 	 * We want to find the most distinct of the module name, function
8075 	 * name, and name.  So for each one that is not a glob pattern or
8076 	 * empty string, we perform a lookup in the corresponding hash and
8077 	 * use the hash table with the fewest collisions to do our search.
8078 	 */
8079 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8080 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8081 		best = len;
8082 		hash = dtrace_bymod;
8083 	}
8084 
8085 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8086 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8087 		best = len;
8088 		hash = dtrace_byfunc;
8089 	}
8090 
8091 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8092 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8093 		best = len;
8094 		hash = dtrace_byname;
8095 	}
8096 
8097 	/*
8098 	 * If we did not select a hash table, iterate over every probe and
8099 	 * invoke our callback for each one that matches our input probe key.
8100 	 */
8101 	if (hash == NULL) {
8102 		for (i = 0; i < dtrace_nprobes; i++) {
8103 			if ((probe = dtrace_probes[i]) == NULL ||
8104 			    dtrace_match_probe(probe, pkp, priv, uid,
8105 			    zoneid) <= 0)
8106 				continue;
8107 
8108 			nmatched++;
8109 
8110 			if ((rc = (*matched)(probe, arg)) !=
8111 			    DTRACE_MATCH_NEXT) {
8112 				if (rc == DTRACE_MATCH_FAIL)
8113 					return (DTRACE_MATCH_FAIL);
8114 				break;
8115 			}
8116 		}
8117 
8118 		return (nmatched);
8119 	}
8120 
8121 	/*
8122 	 * If we selected a hash table, iterate over each probe of the same key
8123 	 * name and invoke the callback for every probe that matches the other
8124 	 * attributes of our input probe key.
8125 	 */
8126 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8127 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8128 
8129 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8130 			continue;
8131 
8132 		nmatched++;
8133 
8134 		if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
8135 			if (rc == DTRACE_MATCH_FAIL)
8136 				return (DTRACE_MATCH_FAIL);
8137 			break;
8138 		}
8139 	}
8140 
8141 	return (nmatched);
8142 }
8143 
8144 /*
8145  * Return the function pointer dtrace_probecmp() should use to compare the
8146  * specified pattern with a string.  For NULL or empty patterns, we select
8147  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8148  * For non-empty non-glob strings, we use dtrace_match_string().
8149  */
8150 static dtrace_probekey_f *
8151 dtrace_probekey_func(const char *p)
8152 {
8153 	char c;
8154 
8155 	if (p == NULL || *p == '\0')
8156 		return (&dtrace_match_nul);
8157 
8158 	while ((c = *p++) != '\0') {
8159 		if (c == '[' || c == '?' || c == '*' || c == '\\')
8160 			return (&dtrace_match_glob);
8161 	}
8162 
8163 	return (&dtrace_match_string);
8164 }
8165 
8166 /*
8167  * Build a probe comparison key for use with dtrace_match_probe() from the
8168  * given probe description.  By convention, a null key only matches anchored
8169  * probes: if each field is the empty string, reset dtpk_fmatch to
8170  * dtrace_match_nonzero().
8171  */
8172 static void
8173 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8174 {
8175 	pkp->dtpk_prov = pdp->dtpd_provider;
8176 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8177 
8178 	pkp->dtpk_mod = pdp->dtpd_mod;
8179 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8180 
8181 	pkp->dtpk_func = pdp->dtpd_func;
8182 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8183 
8184 	pkp->dtpk_name = pdp->dtpd_name;
8185 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8186 
8187 	pkp->dtpk_id = pdp->dtpd_id;
8188 
8189 	if (pkp->dtpk_id == DTRACE_IDNONE &&
8190 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8191 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8192 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8193 	    pkp->dtpk_nmatch == &dtrace_match_nul)
8194 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8195 }
8196 
8197 /*
8198  * DTrace Provider-to-Framework API Functions
8199  *
8200  * These functions implement much of the Provider-to-Framework API, as
8201  * described in <sys/dtrace.h>.  The parts of the API not in this section are
8202  * the functions in the API for probe management (found below), and
8203  * dtrace_probe() itself (found above).
8204  */
8205 
8206 /*
8207  * Register the calling provider with the DTrace framework.  This should
8208  * generally be called by DTrace providers in their attach(9E) entry point.
8209  */
8210 int
8211 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8212     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8213 {
8214 	dtrace_provider_t *provider;
8215 
8216 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8217 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8218 		    "arguments", name ? name : "<NULL>");
8219 		return (EINVAL);
8220 	}
8221 
8222 	if (name[0] == '\0' || dtrace_badname(name)) {
8223 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8224 		    "provider name", name);
8225 		return (EINVAL);
8226 	}
8227 
8228 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8229 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8230 	    pops->dtps_destroy == NULL ||
8231 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8232 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8233 		    "provider ops", name);
8234 		return (EINVAL);
8235 	}
8236 
8237 	if (dtrace_badattr(&pap->dtpa_provider) ||
8238 	    dtrace_badattr(&pap->dtpa_mod) ||
8239 	    dtrace_badattr(&pap->dtpa_func) ||
8240 	    dtrace_badattr(&pap->dtpa_name) ||
8241 	    dtrace_badattr(&pap->dtpa_args)) {
8242 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8243 		    "provider attributes", name);
8244 		return (EINVAL);
8245 	}
8246 
8247 	if (priv & ~DTRACE_PRIV_ALL) {
8248 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8249 		    "privilege attributes", name);
8250 		return (EINVAL);
8251 	}
8252 
8253 	if ((priv & DTRACE_PRIV_KERNEL) &&
8254 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8255 	    pops->dtps_mode == NULL) {
8256 		cmn_err(CE_WARN, "failed to register provider '%s': need "
8257 		    "dtps_mode() op for given privilege attributes", name);
8258 		return (EINVAL);
8259 	}
8260 
8261 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8262 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8263 	(void) strcpy(provider->dtpv_name, name);
8264 
8265 	provider->dtpv_attr = *pap;
8266 	provider->dtpv_priv.dtpp_flags = priv;
8267 	if (cr != NULL) {
8268 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8269 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8270 	}
8271 	provider->dtpv_pops = *pops;
8272 
8273 	if (pops->dtps_provide == NULL) {
8274 		ASSERT(pops->dtps_provide_module != NULL);
8275 		provider->dtpv_pops.dtps_provide =
8276 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
8277 	}
8278 
8279 	if (pops->dtps_provide_module == NULL) {
8280 		ASSERT(pops->dtps_provide != NULL);
8281 		provider->dtpv_pops.dtps_provide_module =
8282 		    (void (*)(void *, struct modctl *))dtrace_nullop;
8283 	}
8284 
8285 	if (pops->dtps_suspend == NULL) {
8286 		ASSERT(pops->dtps_resume == NULL);
8287 		provider->dtpv_pops.dtps_suspend =
8288 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8289 		provider->dtpv_pops.dtps_resume =
8290 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8291 	}
8292 
8293 	provider->dtpv_arg = arg;
8294 	*idp = (dtrace_provider_id_t)provider;
8295 
8296 	if (pops == &dtrace_provider_ops) {
8297 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8298 		ASSERT(MUTEX_HELD(&dtrace_lock));
8299 		ASSERT(dtrace_anon.dta_enabling == NULL);
8300 
8301 		/*
8302 		 * We make sure that the DTrace provider is at the head of
8303 		 * the provider chain.
8304 		 */
8305 		provider->dtpv_next = dtrace_provider;
8306 		dtrace_provider = provider;
8307 		return (0);
8308 	}
8309 
8310 	mutex_enter(&dtrace_provider_lock);
8311 	mutex_enter(&dtrace_lock);
8312 
8313 	/*
8314 	 * If there is at least one provider registered, we'll add this
8315 	 * provider after the first provider.
8316 	 */
8317 	if (dtrace_provider != NULL) {
8318 		provider->dtpv_next = dtrace_provider->dtpv_next;
8319 		dtrace_provider->dtpv_next = provider;
8320 	} else {
8321 		dtrace_provider = provider;
8322 	}
8323 
8324 	if (dtrace_retained != NULL) {
8325 		dtrace_enabling_provide(provider);
8326 
8327 		/*
8328 		 * Now we need to call dtrace_enabling_matchall() -- which
8329 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8330 		 * to drop all of our locks before calling into it...
8331 		 */
8332 		mutex_exit(&dtrace_lock);
8333 		mutex_exit(&dtrace_provider_lock);
8334 		dtrace_enabling_matchall();
8335 
8336 		return (0);
8337 	}
8338 
8339 	mutex_exit(&dtrace_lock);
8340 	mutex_exit(&dtrace_provider_lock);
8341 
8342 	return (0);
8343 }
8344 
8345 /*
8346  * Unregister the specified provider from the DTrace framework.  This should
8347  * generally be called by DTrace providers in their detach(9E) entry point.
8348  */
8349 int
8350 dtrace_unregister(dtrace_provider_id_t id)
8351 {
8352 	dtrace_provider_t *old = (dtrace_provider_t *)id;
8353 	dtrace_provider_t *prev = NULL;
8354 	int i, self = 0, noreap = 0;
8355 	dtrace_probe_t *probe, *first = NULL;
8356 
8357 	if (old->dtpv_pops.dtps_enable ==
8358 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
8359 		/*
8360 		 * If DTrace itself is the provider, we're called with locks
8361 		 * already held.
8362 		 */
8363 		ASSERT(old == dtrace_provider);
8364 		ASSERT(dtrace_devi != NULL);
8365 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8366 		ASSERT(MUTEX_HELD(&dtrace_lock));
8367 		self = 1;
8368 
8369 		if (dtrace_provider->dtpv_next != NULL) {
8370 			/*
8371 			 * There's another provider here; return failure.
8372 			 */
8373 			return (EBUSY);
8374 		}
8375 	} else {
8376 		mutex_enter(&dtrace_provider_lock);
8377 		mutex_enter(&mod_lock);
8378 		mutex_enter(&dtrace_lock);
8379 	}
8380 
8381 	/*
8382 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8383 	 * probes, we refuse to let providers slither away, unless this
8384 	 * provider has already been explicitly invalidated.
8385 	 */
8386 	if (!old->dtpv_defunct &&
8387 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8388 	    dtrace_anon.dta_state->dts_necbs > 0))) {
8389 		if (!self) {
8390 			mutex_exit(&dtrace_lock);
8391 			mutex_exit(&mod_lock);
8392 			mutex_exit(&dtrace_provider_lock);
8393 		}
8394 		return (EBUSY);
8395 	}
8396 
8397 	/*
8398 	 * Attempt to destroy the probes associated with this provider.
8399 	 */
8400 	for (i = 0; i < dtrace_nprobes; i++) {
8401 		if ((probe = dtrace_probes[i]) == NULL)
8402 			continue;
8403 
8404 		if (probe->dtpr_provider != old)
8405 			continue;
8406 
8407 		if (probe->dtpr_ecb == NULL)
8408 			continue;
8409 
8410 		/*
8411 		 * If we are trying to unregister a defunct provider, and the
8412 		 * provider was made defunct within the interval dictated by
8413 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8414 		 * attempt to reap our enablings.  To denote that the provider
8415 		 * should reattempt to unregister itself at some point in the
8416 		 * future, we will return a differentiable error code (EAGAIN
8417 		 * instead of EBUSY) in this case.
8418 		 */
8419 		if (dtrace_gethrtime() - old->dtpv_defunct >
8420 		    dtrace_unregister_defunct_reap)
8421 			noreap = 1;
8422 
8423 		if (!self) {
8424 			mutex_exit(&dtrace_lock);
8425 			mutex_exit(&mod_lock);
8426 			mutex_exit(&dtrace_provider_lock);
8427 		}
8428 
8429 		if (noreap)
8430 			return (EBUSY);
8431 
8432 		(void) taskq_dispatch(dtrace_taskq,
8433 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8434 
8435 		return (EAGAIN);
8436 	}
8437 
8438 	/*
8439 	 * All of the probes for this provider are disabled; we can safely
8440 	 * remove all of them from their hash chains and from the probe array.
8441 	 */
8442 	for (i = 0; i < dtrace_nprobes; i++) {
8443 		if ((probe = dtrace_probes[i]) == NULL)
8444 			continue;
8445 
8446 		if (probe->dtpr_provider != old)
8447 			continue;
8448 
8449 		dtrace_probes[i] = NULL;
8450 
8451 		dtrace_hash_remove(dtrace_bymod, probe);
8452 		dtrace_hash_remove(dtrace_byfunc, probe);
8453 		dtrace_hash_remove(dtrace_byname, probe);
8454 
8455 		if (first == NULL) {
8456 			first = probe;
8457 			probe->dtpr_nextmod = NULL;
8458 		} else {
8459 			probe->dtpr_nextmod = first;
8460 			first = probe;
8461 		}
8462 	}
8463 
8464 	/*
8465 	 * The provider's probes have been removed from the hash chains and
8466 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8467 	 * everyone has cleared out from any probe array processing.
8468 	 */
8469 	dtrace_sync();
8470 
8471 	for (probe = first; probe != NULL; probe = first) {
8472 		first = probe->dtpr_nextmod;
8473 
8474 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8475 		    probe->dtpr_arg);
8476 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8477 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8478 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8479 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8480 		kmem_free(probe, sizeof (dtrace_probe_t));
8481 	}
8482 
8483 	if ((prev = dtrace_provider) == old) {
8484 		ASSERT(self || dtrace_devi == NULL);
8485 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8486 		dtrace_provider = old->dtpv_next;
8487 	} else {
8488 		while (prev != NULL && prev->dtpv_next != old)
8489 			prev = prev->dtpv_next;
8490 
8491 		if (prev == NULL) {
8492 			panic("attempt to unregister non-existent "
8493 			    "dtrace provider %p\n", (void *)id);
8494 		}
8495 
8496 		prev->dtpv_next = old->dtpv_next;
8497 	}
8498 
8499 	if (!self) {
8500 		mutex_exit(&dtrace_lock);
8501 		mutex_exit(&mod_lock);
8502 		mutex_exit(&dtrace_provider_lock);
8503 	}
8504 
8505 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8506 	kmem_free(old, sizeof (dtrace_provider_t));
8507 
8508 	return (0);
8509 }
8510 
8511 /*
8512  * Invalidate the specified provider.  All subsequent probe lookups for the
8513  * specified provider will fail, but its probes will not be removed.
8514  */
8515 void
8516 dtrace_invalidate(dtrace_provider_id_t id)
8517 {
8518 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8519 
8520 	ASSERT(pvp->dtpv_pops.dtps_enable !=
8521 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8522 
8523 	mutex_enter(&dtrace_provider_lock);
8524 	mutex_enter(&dtrace_lock);
8525 
8526 	pvp->dtpv_defunct = dtrace_gethrtime();
8527 
8528 	mutex_exit(&dtrace_lock);
8529 	mutex_exit(&dtrace_provider_lock);
8530 }
8531 
8532 /*
8533  * Indicate whether or not DTrace has attached.
8534  */
8535 int
8536 dtrace_attached(void)
8537 {
8538 	/*
8539 	 * dtrace_provider will be non-NULL iff the DTrace driver has
8540 	 * attached.  (It's non-NULL because DTrace is always itself a
8541 	 * provider.)
8542 	 */
8543 	return (dtrace_provider != NULL);
8544 }
8545 
8546 /*
8547  * Remove all the unenabled probes for the given provider.  This function is
8548  * not unlike dtrace_unregister(), except that it doesn't remove the provider
8549  * -- just as many of its associated probes as it can.
8550  */
8551 int
8552 dtrace_condense(dtrace_provider_id_t id)
8553 {
8554 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
8555 	int i;
8556 	dtrace_probe_t *probe;
8557 
8558 	/*
8559 	 * Make sure this isn't the dtrace provider itself.
8560 	 */
8561 	ASSERT(prov->dtpv_pops.dtps_enable !=
8562 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8563 
8564 	mutex_enter(&dtrace_provider_lock);
8565 	mutex_enter(&dtrace_lock);
8566 
8567 	/*
8568 	 * Attempt to destroy the probes associated with this provider.
8569 	 */
8570 	for (i = 0; i < dtrace_nprobes; i++) {
8571 		if ((probe = dtrace_probes[i]) == NULL)
8572 			continue;
8573 
8574 		if (probe->dtpr_provider != prov)
8575 			continue;
8576 
8577 		if (probe->dtpr_ecb != NULL)
8578 			continue;
8579 
8580 		dtrace_probes[i] = NULL;
8581 
8582 		dtrace_hash_remove(dtrace_bymod, probe);
8583 		dtrace_hash_remove(dtrace_byfunc, probe);
8584 		dtrace_hash_remove(dtrace_byname, probe);
8585 
8586 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8587 		    probe->dtpr_arg);
8588 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8589 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8590 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8591 		kmem_free(probe, sizeof (dtrace_probe_t));
8592 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8593 	}
8594 
8595 	mutex_exit(&dtrace_lock);
8596 	mutex_exit(&dtrace_provider_lock);
8597 
8598 	return (0);
8599 }
8600 
8601 /*
8602  * DTrace Probe Management Functions
8603  *
8604  * The functions in this section perform the DTrace probe management,
8605  * including functions to create probes, look-up probes, and call into the
8606  * providers to request that probes be provided.  Some of these functions are
8607  * in the Provider-to-Framework API; these functions can be identified by the
8608  * fact that they are not declared "static".
8609  */
8610 
8611 /*
8612  * Create a probe with the specified module name, function name, and name.
8613  */
8614 dtrace_id_t
8615 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8616     const char *func, const char *name, int aframes, void *arg)
8617 {
8618 	dtrace_probe_t *probe, **probes;
8619 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8620 	dtrace_id_t id;
8621 
8622 	if (provider == dtrace_provider) {
8623 		ASSERT(MUTEX_HELD(&dtrace_lock));
8624 	} else {
8625 		mutex_enter(&dtrace_lock);
8626 	}
8627 
8628 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8629 	    VM_BESTFIT | VM_SLEEP);
8630 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8631 
8632 	probe->dtpr_id = id;
8633 	probe->dtpr_gen = dtrace_probegen++;
8634 	probe->dtpr_mod = dtrace_strdup(mod);
8635 	probe->dtpr_func = dtrace_strdup(func);
8636 	probe->dtpr_name = dtrace_strdup(name);
8637 	probe->dtpr_arg = arg;
8638 	probe->dtpr_aframes = aframes;
8639 	probe->dtpr_provider = provider;
8640 
8641 	dtrace_hash_add(dtrace_bymod, probe);
8642 	dtrace_hash_add(dtrace_byfunc, probe);
8643 	dtrace_hash_add(dtrace_byname, probe);
8644 
8645 	if (id - 1 >= dtrace_nprobes) {
8646 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8647 		size_t nsize = osize << 1;
8648 
8649 		if (nsize == 0) {
8650 			ASSERT(osize == 0);
8651 			ASSERT(dtrace_probes == NULL);
8652 			nsize = sizeof (dtrace_probe_t *);
8653 		}
8654 
8655 		probes = kmem_zalloc(nsize, KM_SLEEP);
8656 
8657 		if (dtrace_probes == NULL) {
8658 			ASSERT(osize == 0);
8659 			dtrace_probes = probes;
8660 			dtrace_nprobes = 1;
8661 		} else {
8662 			dtrace_probe_t **oprobes = dtrace_probes;
8663 
8664 			bcopy(oprobes, probes, osize);
8665 			dtrace_membar_producer();
8666 			dtrace_probes = probes;
8667 
8668 			dtrace_sync();
8669 
8670 			/*
8671 			 * All CPUs are now seeing the new probes array; we can
8672 			 * safely free the old array.
8673 			 */
8674 			kmem_free(oprobes, osize);
8675 			dtrace_nprobes <<= 1;
8676 		}
8677 
8678 		ASSERT(id - 1 < dtrace_nprobes);
8679 	}
8680 
8681 	ASSERT(dtrace_probes[id - 1] == NULL);
8682 	dtrace_probes[id - 1] = probe;
8683 
8684 	if (provider != dtrace_provider)
8685 		mutex_exit(&dtrace_lock);
8686 
8687 	return (id);
8688 }
8689 
8690 static dtrace_probe_t *
8691 dtrace_probe_lookup_id(dtrace_id_t id)
8692 {
8693 	ASSERT(MUTEX_HELD(&dtrace_lock));
8694 
8695 	if (id == 0 || id > dtrace_nprobes)
8696 		return (NULL);
8697 
8698 	return (dtrace_probes[id - 1]);
8699 }
8700 
8701 static int
8702 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8703 {
8704 	*((dtrace_id_t *)arg) = probe->dtpr_id;
8705 
8706 	return (DTRACE_MATCH_DONE);
8707 }
8708 
8709 /*
8710  * Look up a probe based on provider and one or more of module name, function
8711  * name and probe name.
8712  */
8713 dtrace_id_t
8714 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
8715     const char *func, const char *name)
8716 {
8717 	dtrace_probekey_t pkey;
8718 	dtrace_id_t id;
8719 	int match;
8720 
8721 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8722 	pkey.dtpk_pmatch = &dtrace_match_string;
8723 	pkey.dtpk_mod = mod;
8724 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8725 	pkey.dtpk_func = func;
8726 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8727 	pkey.dtpk_name = name;
8728 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8729 	pkey.dtpk_id = DTRACE_IDNONE;
8730 
8731 	mutex_enter(&dtrace_lock);
8732 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8733 	    dtrace_probe_lookup_match, &id);
8734 	mutex_exit(&dtrace_lock);
8735 
8736 	ASSERT(match == 1 || match == 0);
8737 	return (match ? id : 0);
8738 }
8739 
8740 /*
8741  * Returns the probe argument associated with the specified probe.
8742  */
8743 void *
8744 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8745 {
8746 	dtrace_probe_t *probe;
8747 	void *rval = NULL;
8748 
8749 	mutex_enter(&dtrace_lock);
8750 
8751 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8752 	    probe->dtpr_provider == (dtrace_provider_t *)id)
8753 		rval = probe->dtpr_arg;
8754 
8755 	mutex_exit(&dtrace_lock);
8756 
8757 	return (rval);
8758 }
8759 
8760 /*
8761  * Copy a probe into a probe description.
8762  */
8763 static void
8764 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8765 {
8766 	bzero(pdp, sizeof (dtrace_probedesc_t));
8767 	pdp->dtpd_id = prp->dtpr_id;
8768 
8769 	(void) strncpy(pdp->dtpd_provider,
8770 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8771 
8772 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8773 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8774 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8775 }
8776 
8777 /*
8778  * Called to indicate that a probe -- or probes -- should be provided by a
8779  * specfied provider.  If the specified description is NULL, the provider will
8780  * be told to provide all of its probes.  (This is done whenever a new
8781  * consumer comes along, or whenever a retained enabling is to be matched.) If
8782  * the specified description is non-NULL, the provider is given the
8783  * opportunity to dynamically provide the specified probe, allowing providers
8784  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8785  * probes.)  If the provider is NULL, the operations will be applied to all
8786  * providers; if the provider is non-NULL the operations will only be applied
8787  * to the specified provider.  The dtrace_provider_lock must be held, and the
8788  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8789  * will need to grab the dtrace_lock when it reenters the framework through
8790  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8791  */
8792 static void
8793 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8794 {
8795 	struct modctl *ctl;
8796 	int all = 0;
8797 
8798 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8799 
8800 	if (prv == NULL) {
8801 		all = 1;
8802 		prv = dtrace_provider;
8803 	}
8804 
8805 	do {
8806 		/*
8807 		 * First, call the blanket provide operation.
8808 		 */
8809 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8810 
8811 		/*
8812 		 * Now call the per-module provide operation.  We will grab
8813 		 * mod_lock to prevent the list from being modified.  Note
8814 		 * that this also prevents the mod_busy bits from changing.
8815 		 * (mod_busy can only be changed with mod_lock held.)
8816 		 */
8817 		mutex_enter(&mod_lock);
8818 
8819 		ctl = &modules;
8820 		do {
8821 			if (ctl->mod_busy || ctl->mod_mp == NULL)
8822 				continue;
8823 
8824 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8825 
8826 		} while ((ctl = ctl->mod_next) != &modules);
8827 
8828 		mutex_exit(&mod_lock);
8829 	} while (all && (prv = prv->dtpv_next) != NULL);
8830 }
8831 
8832 /*
8833  * Iterate over each probe, and call the Framework-to-Provider API function
8834  * denoted by offs.
8835  */
8836 static void
8837 dtrace_probe_foreach(uintptr_t offs)
8838 {
8839 	dtrace_provider_t *prov;
8840 	void (*func)(void *, dtrace_id_t, void *);
8841 	dtrace_probe_t *probe;
8842 	dtrace_icookie_t cookie;
8843 	int i;
8844 
8845 	/*
8846 	 * We disable interrupts to walk through the probe array.  This is
8847 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8848 	 * won't see stale data.
8849 	 */
8850 	cookie = dtrace_interrupt_disable();
8851 
8852 	for (i = 0; i < dtrace_nprobes; i++) {
8853 		if ((probe = dtrace_probes[i]) == NULL)
8854 			continue;
8855 
8856 		if (probe->dtpr_ecb == NULL) {
8857 			/*
8858 			 * This probe isn't enabled -- don't call the function.
8859 			 */
8860 			continue;
8861 		}
8862 
8863 		prov = probe->dtpr_provider;
8864 		func = *((void(**)(void *, dtrace_id_t, void *))
8865 		    ((uintptr_t)&prov->dtpv_pops + offs));
8866 
8867 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8868 	}
8869 
8870 	dtrace_interrupt_enable(cookie);
8871 }
8872 
8873 static int
8874 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8875 {
8876 	dtrace_probekey_t pkey;
8877 	uint32_t priv;
8878 	uid_t uid;
8879 	zoneid_t zoneid;
8880 
8881 	ASSERT(MUTEX_HELD(&dtrace_lock));
8882 	dtrace_ecb_create_cache = NULL;
8883 
8884 	if (desc == NULL) {
8885 		/*
8886 		 * If we're passed a NULL description, we're being asked to
8887 		 * create an ECB with a NULL probe.
8888 		 */
8889 		(void) dtrace_ecb_create_enable(NULL, enab);
8890 		return (0);
8891 	}
8892 
8893 	dtrace_probekey(desc, &pkey);
8894 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8895 	    &priv, &uid, &zoneid);
8896 
8897 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8898 	    enab));
8899 }
8900 
8901 /*
8902  * DTrace Helper Provider Functions
8903  */
8904 static void
8905 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8906 {
8907 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8908 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8909 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8910 }
8911 
8912 static void
8913 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8914     const dof_provider_t *dofprov, char *strtab)
8915 {
8916 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8917 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8918 	    dofprov->dofpv_provattr);
8919 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8920 	    dofprov->dofpv_modattr);
8921 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8922 	    dofprov->dofpv_funcattr);
8923 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8924 	    dofprov->dofpv_nameattr);
8925 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8926 	    dofprov->dofpv_argsattr);
8927 }
8928 
8929 static void
8930 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8931 {
8932 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8933 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8934 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8935 	dof_provider_t *provider;
8936 	dof_probe_t *probe;
8937 	uint32_t *off, *enoff;
8938 	uint8_t *arg;
8939 	char *strtab;
8940 	uint_t i, nprobes;
8941 	dtrace_helper_provdesc_t dhpv;
8942 	dtrace_helper_probedesc_t dhpb;
8943 	dtrace_meta_t *meta = dtrace_meta_pid;
8944 	dtrace_mops_t *mops = &meta->dtm_mops;
8945 	void *parg;
8946 
8947 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8948 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8949 	    provider->dofpv_strtab * dof->dofh_secsize);
8950 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8951 	    provider->dofpv_probes * dof->dofh_secsize);
8952 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8953 	    provider->dofpv_prargs * dof->dofh_secsize);
8954 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8955 	    provider->dofpv_proffs * dof->dofh_secsize);
8956 
8957 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8958 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8959 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8960 	enoff = NULL;
8961 
8962 	/*
8963 	 * See dtrace_helper_provider_validate().
8964 	 */
8965 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8966 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8967 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8968 		    provider->dofpv_prenoffs * dof->dofh_secsize);
8969 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8970 	}
8971 
8972 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8973 
8974 	/*
8975 	 * Create the provider.
8976 	 */
8977 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8978 
8979 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8980 		return;
8981 
8982 	meta->dtm_count++;
8983 
8984 	/*
8985 	 * Create the probes.
8986 	 */
8987 	for (i = 0; i < nprobes; i++) {
8988 		probe = (dof_probe_t *)(uintptr_t)(daddr +
8989 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8990 
8991 		dhpb.dthpb_mod = dhp->dofhp_mod;
8992 		dhpb.dthpb_func = strtab + probe->dofpr_func;
8993 		dhpb.dthpb_name = strtab + probe->dofpr_name;
8994 		dhpb.dthpb_base = probe->dofpr_addr;
8995 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8996 		dhpb.dthpb_noffs = probe->dofpr_noffs;
8997 		if (enoff != NULL) {
8998 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8999 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9000 		} else {
9001 			dhpb.dthpb_enoffs = NULL;
9002 			dhpb.dthpb_nenoffs = 0;
9003 		}
9004 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9005 		dhpb.dthpb_nargc = probe->dofpr_nargc;
9006 		dhpb.dthpb_xargc = probe->dofpr_xargc;
9007 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9008 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9009 
9010 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9011 	}
9012 }
9013 
9014 static void
9015 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9016 {
9017 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9018 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9019 	int i;
9020 
9021 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9022 
9023 	for (i = 0; i < dof->dofh_secnum; i++) {
9024 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9025 		    dof->dofh_secoff + i * dof->dofh_secsize);
9026 
9027 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9028 			continue;
9029 
9030 		dtrace_helper_provide_one(dhp, sec, pid);
9031 	}
9032 
9033 	/*
9034 	 * We may have just created probes, so we must now rematch against
9035 	 * any retained enablings.  Note that this call will acquire both
9036 	 * cpu_lock and dtrace_lock; the fact that we are holding
9037 	 * dtrace_meta_lock now is what defines the ordering with respect to
9038 	 * these three locks.
9039 	 */
9040 	dtrace_enabling_matchall();
9041 }
9042 
9043 static void
9044 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9045 {
9046 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9047 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9048 	dof_sec_t *str_sec;
9049 	dof_provider_t *provider;
9050 	char *strtab;
9051 	dtrace_helper_provdesc_t dhpv;
9052 	dtrace_meta_t *meta = dtrace_meta_pid;
9053 	dtrace_mops_t *mops = &meta->dtm_mops;
9054 
9055 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9056 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9057 	    provider->dofpv_strtab * dof->dofh_secsize);
9058 
9059 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9060 
9061 	/*
9062 	 * Create the provider.
9063 	 */
9064 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9065 
9066 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9067 
9068 	meta->dtm_count--;
9069 }
9070 
9071 static void
9072 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9073 {
9074 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9075 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9076 	int i;
9077 
9078 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9079 
9080 	for (i = 0; i < dof->dofh_secnum; i++) {
9081 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9082 		    dof->dofh_secoff + i * dof->dofh_secsize);
9083 
9084 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9085 			continue;
9086 
9087 		dtrace_helper_provider_remove_one(dhp, sec, pid);
9088 	}
9089 }
9090 
9091 /*
9092  * DTrace Meta Provider-to-Framework API Functions
9093  *
9094  * These functions implement the Meta Provider-to-Framework API, as described
9095  * in <sys/dtrace.h>.
9096  */
9097 int
9098 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9099     dtrace_meta_provider_id_t *idp)
9100 {
9101 	dtrace_meta_t *meta;
9102 	dtrace_helpers_t *help, *next;
9103 	int i;
9104 
9105 	*idp = DTRACE_METAPROVNONE;
9106 
9107 	/*
9108 	 * We strictly don't need the name, but we hold onto it for
9109 	 * debuggability. All hail error queues!
9110 	 */
9111 	if (name == NULL) {
9112 		cmn_err(CE_WARN, "failed to register meta-provider: "
9113 		    "invalid name");
9114 		return (EINVAL);
9115 	}
9116 
9117 	if (mops == NULL ||
9118 	    mops->dtms_create_probe == NULL ||
9119 	    mops->dtms_provide_pid == NULL ||
9120 	    mops->dtms_remove_pid == NULL) {
9121 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9122 		    "invalid ops", name);
9123 		return (EINVAL);
9124 	}
9125 
9126 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9127 	meta->dtm_mops = *mops;
9128 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9129 	(void) strcpy(meta->dtm_name, name);
9130 	meta->dtm_arg = arg;
9131 
9132 	mutex_enter(&dtrace_meta_lock);
9133 	mutex_enter(&dtrace_lock);
9134 
9135 	if (dtrace_meta_pid != NULL) {
9136 		mutex_exit(&dtrace_lock);
9137 		mutex_exit(&dtrace_meta_lock);
9138 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9139 		    "user-land meta-provider exists", name);
9140 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9141 		kmem_free(meta, sizeof (dtrace_meta_t));
9142 		return (EINVAL);
9143 	}
9144 
9145 	dtrace_meta_pid = meta;
9146 	*idp = (dtrace_meta_provider_id_t)meta;
9147 
9148 	/*
9149 	 * If there are providers and probes ready to go, pass them
9150 	 * off to the new meta provider now.
9151 	 */
9152 
9153 	help = dtrace_deferred_pid;
9154 	dtrace_deferred_pid = NULL;
9155 
9156 	mutex_exit(&dtrace_lock);
9157 
9158 	while (help != NULL) {
9159 		for (i = 0; i < help->dthps_nprovs; i++) {
9160 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9161 			    help->dthps_pid);
9162 		}
9163 
9164 		next = help->dthps_next;
9165 		help->dthps_next = NULL;
9166 		help->dthps_prev = NULL;
9167 		help->dthps_deferred = 0;
9168 		help = next;
9169 	}
9170 
9171 	mutex_exit(&dtrace_meta_lock);
9172 
9173 	return (0);
9174 }
9175 
9176 int
9177 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9178 {
9179 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9180 
9181 	mutex_enter(&dtrace_meta_lock);
9182 	mutex_enter(&dtrace_lock);
9183 
9184 	if (old == dtrace_meta_pid) {
9185 		pp = &dtrace_meta_pid;
9186 	} else {
9187 		panic("attempt to unregister non-existent "
9188 		    "dtrace meta-provider %p\n", (void *)old);
9189 	}
9190 
9191 	if (old->dtm_count != 0) {
9192 		mutex_exit(&dtrace_lock);
9193 		mutex_exit(&dtrace_meta_lock);
9194 		return (EBUSY);
9195 	}
9196 
9197 	*pp = NULL;
9198 
9199 	mutex_exit(&dtrace_lock);
9200 	mutex_exit(&dtrace_meta_lock);
9201 
9202 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9203 	kmem_free(old, sizeof (dtrace_meta_t));
9204 
9205 	return (0);
9206 }
9207 
9208 
9209 /*
9210  * DTrace DIF Object Functions
9211  */
9212 static int
9213 dtrace_difo_err(uint_t pc, const char *format, ...)
9214 {
9215 	if (dtrace_err_verbose) {
9216 		va_list alist;
9217 
9218 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9219 		va_start(alist, format);
9220 		(void) vuprintf(format, alist);
9221 		va_end(alist);
9222 	}
9223 
9224 #ifdef DTRACE_ERRDEBUG
9225 	dtrace_errdebug(format);
9226 #endif
9227 	return (1);
9228 }
9229 
9230 /*
9231  * Validate a DTrace DIF object by checking the IR instructions.  The following
9232  * rules are currently enforced by dtrace_difo_validate():
9233  *
9234  * 1. Each instruction must have a valid opcode
9235  * 2. Each register, string, variable, or subroutine reference must be valid
9236  * 3. No instruction can modify register %r0 (must be zero)
9237  * 4. All instruction reserved bits must be set to zero
9238  * 5. The last instruction must be a "ret" instruction
9239  * 6. All branch targets must reference a valid instruction _after_ the branch
9240  */
9241 static int
9242 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9243     cred_t *cr)
9244 {
9245 	int err = 0, i;
9246 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9247 	int kcheckload;
9248 	uint_t pc;
9249 	int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9250 
9251 	kcheckload = cr == NULL ||
9252 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9253 
9254 	dp->dtdo_destructive = 0;
9255 
9256 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9257 		dif_instr_t instr = dp->dtdo_buf[pc];
9258 
9259 		uint_t r1 = DIF_INSTR_R1(instr);
9260 		uint_t r2 = DIF_INSTR_R2(instr);
9261 		uint_t rd = DIF_INSTR_RD(instr);
9262 		uint_t rs = DIF_INSTR_RS(instr);
9263 		uint_t label = DIF_INSTR_LABEL(instr);
9264 		uint_t v = DIF_INSTR_VAR(instr);
9265 		uint_t subr = DIF_INSTR_SUBR(instr);
9266 		uint_t type = DIF_INSTR_TYPE(instr);
9267 		uint_t op = DIF_INSTR_OP(instr);
9268 
9269 		switch (op) {
9270 		case DIF_OP_OR:
9271 		case DIF_OP_XOR:
9272 		case DIF_OP_AND:
9273 		case DIF_OP_SLL:
9274 		case DIF_OP_SRL:
9275 		case DIF_OP_SRA:
9276 		case DIF_OP_SUB:
9277 		case DIF_OP_ADD:
9278 		case DIF_OP_MUL:
9279 		case DIF_OP_SDIV:
9280 		case DIF_OP_UDIV:
9281 		case DIF_OP_SREM:
9282 		case DIF_OP_UREM:
9283 		case DIF_OP_COPYS:
9284 			if (r1 >= nregs)
9285 				err += efunc(pc, "invalid register %u\n", r1);
9286 			if (r2 >= nregs)
9287 				err += efunc(pc, "invalid register %u\n", r2);
9288 			if (rd >= nregs)
9289 				err += efunc(pc, "invalid register %u\n", rd);
9290 			if (rd == 0)
9291 				err += efunc(pc, "cannot write to %r0\n");
9292 			break;
9293 		case DIF_OP_NOT:
9294 		case DIF_OP_MOV:
9295 		case DIF_OP_ALLOCS:
9296 			if (r1 >= nregs)
9297 				err += efunc(pc, "invalid register %u\n", r1);
9298 			if (r2 != 0)
9299 				err += efunc(pc, "non-zero reserved bits\n");
9300 			if (rd >= nregs)
9301 				err += efunc(pc, "invalid register %u\n", rd);
9302 			if (rd == 0)
9303 				err += efunc(pc, "cannot write to %r0\n");
9304 			break;
9305 		case DIF_OP_LDSB:
9306 		case DIF_OP_LDSH:
9307 		case DIF_OP_LDSW:
9308 		case DIF_OP_LDUB:
9309 		case DIF_OP_LDUH:
9310 		case DIF_OP_LDUW:
9311 		case DIF_OP_LDX:
9312 			if (r1 >= nregs)
9313 				err += efunc(pc, "invalid register %u\n", r1);
9314 			if (r2 != 0)
9315 				err += efunc(pc, "non-zero reserved bits\n");
9316 			if (rd >= nregs)
9317 				err += efunc(pc, "invalid register %u\n", rd);
9318 			if (rd == 0)
9319 				err += efunc(pc, "cannot write to %r0\n");
9320 			if (kcheckload)
9321 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9322 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9323 			break;
9324 		case DIF_OP_RLDSB:
9325 		case DIF_OP_RLDSH:
9326 		case DIF_OP_RLDSW:
9327 		case DIF_OP_RLDUB:
9328 		case DIF_OP_RLDUH:
9329 		case DIF_OP_RLDUW:
9330 		case DIF_OP_RLDX:
9331 			if (r1 >= nregs)
9332 				err += efunc(pc, "invalid register %u\n", r1);
9333 			if (r2 != 0)
9334 				err += efunc(pc, "non-zero reserved bits\n");
9335 			if (rd >= nregs)
9336 				err += efunc(pc, "invalid register %u\n", rd);
9337 			if (rd == 0)
9338 				err += efunc(pc, "cannot write to %r0\n");
9339 			break;
9340 		case DIF_OP_ULDSB:
9341 		case DIF_OP_ULDSH:
9342 		case DIF_OP_ULDSW:
9343 		case DIF_OP_ULDUB:
9344 		case DIF_OP_ULDUH:
9345 		case DIF_OP_ULDUW:
9346 		case DIF_OP_ULDX:
9347 			if (r1 >= nregs)
9348 				err += efunc(pc, "invalid register %u\n", r1);
9349 			if (r2 != 0)
9350 				err += efunc(pc, "non-zero reserved bits\n");
9351 			if (rd >= nregs)
9352 				err += efunc(pc, "invalid register %u\n", rd);
9353 			if (rd == 0)
9354 				err += efunc(pc, "cannot write to %r0\n");
9355 			break;
9356 		case DIF_OP_STB:
9357 		case DIF_OP_STH:
9358 		case DIF_OP_STW:
9359 		case DIF_OP_STX:
9360 			if (r1 >= nregs)
9361 				err += efunc(pc, "invalid register %u\n", r1);
9362 			if (r2 != 0)
9363 				err += efunc(pc, "non-zero reserved bits\n");
9364 			if (rd >= nregs)
9365 				err += efunc(pc, "invalid register %u\n", rd);
9366 			if (rd == 0)
9367 				err += efunc(pc, "cannot write to 0 address\n");
9368 			break;
9369 		case DIF_OP_CMP:
9370 		case DIF_OP_SCMP:
9371 			if (r1 >= nregs)
9372 				err += efunc(pc, "invalid register %u\n", r1);
9373 			if (r2 >= nregs)
9374 				err += efunc(pc, "invalid register %u\n", r2);
9375 			if (rd != 0)
9376 				err += efunc(pc, "non-zero reserved bits\n");
9377 			break;
9378 		case DIF_OP_TST:
9379 			if (r1 >= nregs)
9380 				err += efunc(pc, "invalid register %u\n", r1);
9381 			if (r2 != 0 || rd != 0)
9382 				err += efunc(pc, "non-zero reserved bits\n");
9383 			break;
9384 		case DIF_OP_BA:
9385 		case DIF_OP_BE:
9386 		case DIF_OP_BNE:
9387 		case DIF_OP_BG:
9388 		case DIF_OP_BGU:
9389 		case DIF_OP_BGE:
9390 		case DIF_OP_BGEU:
9391 		case DIF_OP_BL:
9392 		case DIF_OP_BLU:
9393 		case DIF_OP_BLE:
9394 		case DIF_OP_BLEU:
9395 			if (label >= dp->dtdo_len) {
9396 				err += efunc(pc, "invalid branch target %u\n",
9397 				    label);
9398 			}
9399 			if (label <= pc) {
9400 				err += efunc(pc, "backward branch to %u\n",
9401 				    label);
9402 			}
9403 			break;
9404 		case DIF_OP_RET:
9405 			if (r1 != 0 || r2 != 0)
9406 				err += efunc(pc, "non-zero reserved bits\n");
9407 			if (rd >= nregs)
9408 				err += efunc(pc, "invalid register %u\n", rd);
9409 			break;
9410 		case DIF_OP_NOP:
9411 		case DIF_OP_POPTS:
9412 		case DIF_OP_FLUSHTS:
9413 			if (r1 != 0 || r2 != 0 || rd != 0)
9414 				err += efunc(pc, "non-zero reserved bits\n");
9415 			break;
9416 		case DIF_OP_SETX:
9417 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9418 				err += efunc(pc, "invalid integer ref %u\n",
9419 				    DIF_INSTR_INTEGER(instr));
9420 			}
9421 			if (rd >= nregs)
9422 				err += efunc(pc, "invalid register %u\n", rd);
9423 			if (rd == 0)
9424 				err += efunc(pc, "cannot write to %r0\n");
9425 			break;
9426 		case DIF_OP_SETS:
9427 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9428 				err += efunc(pc, "invalid string ref %u\n",
9429 				    DIF_INSTR_STRING(instr));
9430 			}
9431 			if (rd >= nregs)
9432 				err += efunc(pc, "invalid register %u\n", rd);
9433 			if (rd == 0)
9434 				err += efunc(pc, "cannot write to %r0\n");
9435 			break;
9436 		case DIF_OP_LDGA:
9437 		case DIF_OP_LDTA:
9438 			if (r1 > DIF_VAR_ARRAY_MAX)
9439 				err += efunc(pc, "invalid array %u\n", r1);
9440 			if (r2 >= nregs)
9441 				err += efunc(pc, "invalid register %u\n", r2);
9442 			if (rd >= nregs)
9443 				err += efunc(pc, "invalid register %u\n", rd);
9444 			if (rd == 0)
9445 				err += efunc(pc, "cannot write to %r0\n");
9446 			break;
9447 		case DIF_OP_STGA:
9448 			if (r1 > DIF_VAR_ARRAY_MAX)
9449 				err += efunc(pc, "invalid array %u\n", r1);
9450 			if (r2 >= nregs)
9451 				err += efunc(pc, "invalid register %u\n", r2);
9452 			if (rd >= nregs)
9453 				err += efunc(pc, "invalid register %u\n", rd);
9454 			dp->dtdo_destructive = 1;
9455 			break;
9456 		case DIF_OP_LDGS:
9457 		case DIF_OP_LDTS:
9458 		case DIF_OP_LDLS:
9459 		case DIF_OP_LDGAA:
9460 		case DIF_OP_LDTAA:
9461 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9462 				err += efunc(pc, "invalid variable %u\n", v);
9463 			if (rd >= nregs)
9464 				err += efunc(pc, "invalid register %u\n", rd);
9465 			if (rd == 0)
9466 				err += efunc(pc, "cannot write to %r0\n");
9467 			break;
9468 		case DIF_OP_STGS:
9469 		case DIF_OP_STTS:
9470 		case DIF_OP_STLS:
9471 		case DIF_OP_STGAA:
9472 		case DIF_OP_STTAA:
9473 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9474 				err += efunc(pc, "invalid variable %u\n", v);
9475 			if (rs >= nregs)
9476 				err += efunc(pc, "invalid register %u\n", rd);
9477 			break;
9478 		case DIF_OP_CALL:
9479 			if (subr > DIF_SUBR_MAX)
9480 				err += efunc(pc, "invalid subr %u\n", subr);
9481 			if (rd >= nregs)
9482 				err += efunc(pc, "invalid register %u\n", rd);
9483 			if (rd == 0)
9484 				err += efunc(pc, "cannot write to %r0\n");
9485 
9486 			if (subr == DIF_SUBR_COPYOUT ||
9487 			    subr == DIF_SUBR_COPYOUTSTR) {
9488 				dp->dtdo_destructive = 1;
9489 			}
9490 
9491 			if (subr == DIF_SUBR_GETF) {
9492 				/*
9493 				 * If we have a getf() we need to record that
9494 				 * in our state.  Note that our state can be
9495 				 * NULL if this is a helper -- but in that
9496 				 * case, the call to getf() is itself illegal,
9497 				 * and will be caught (slightly later) when
9498 				 * the helper is validated.
9499 				 */
9500 				if (vstate->dtvs_state != NULL)
9501 					vstate->dtvs_state->dts_getf++;
9502 			}
9503 
9504 			break;
9505 		case DIF_OP_PUSHTR:
9506 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9507 				err += efunc(pc, "invalid ref type %u\n", type);
9508 			if (r2 >= nregs)
9509 				err += efunc(pc, "invalid register %u\n", r2);
9510 			if (rs >= nregs)
9511 				err += efunc(pc, "invalid register %u\n", rs);
9512 			break;
9513 		case DIF_OP_PUSHTV:
9514 			if (type != DIF_TYPE_CTF)
9515 				err += efunc(pc, "invalid val type %u\n", type);
9516 			if (r2 >= nregs)
9517 				err += efunc(pc, "invalid register %u\n", r2);
9518 			if (rs >= nregs)
9519 				err += efunc(pc, "invalid register %u\n", rs);
9520 			break;
9521 		default:
9522 			err += efunc(pc, "invalid opcode %u\n",
9523 			    DIF_INSTR_OP(instr));
9524 		}
9525 	}
9526 
9527 	if (dp->dtdo_len != 0 &&
9528 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9529 		err += efunc(dp->dtdo_len - 1,
9530 		    "expected 'ret' as last DIF instruction\n");
9531 	}
9532 
9533 	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9534 		/*
9535 		 * If we're not returning by reference, the size must be either
9536 		 * 0 or the size of one of the base types.
9537 		 */
9538 		switch (dp->dtdo_rtype.dtdt_size) {
9539 		case 0:
9540 		case sizeof (uint8_t):
9541 		case sizeof (uint16_t):
9542 		case sizeof (uint32_t):
9543 		case sizeof (uint64_t):
9544 			break;
9545 
9546 		default:
9547 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
9548 		}
9549 	}
9550 
9551 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9552 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9553 		dtrace_diftype_t *vt, *et;
9554 		uint_t id, ndx;
9555 
9556 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9557 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
9558 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9559 			err += efunc(i, "unrecognized variable scope %d\n",
9560 			    v->dtdv_scope);
9561 			break;
9562 		}
9563 
9564 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9565 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
9566 			err += efunc(i, "unrecognized variable type %d\n",
9567 			    v->dtdv_kind);
9568 			break;
9569 		}
9570 
9571 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9572 			err += efunc(i, "%d exceeds variable id limit\n", id);
9573 			break;
9574 		}
9575 
9576 		if (id < DIF_VAR_OTHER_UBASE)
9577 			continue;
9578 
9579 		/*
9580 		 * For user-defined variables, we need to check that this
9581 		 * definition is identical to any previous definition that we
9582 		 * encountered.
9583 		 */
9584 		ndx = id - DIF_VAR_OTHER_UBASE;
9585 
9586 		switch (v->dtdv_scope) {
9587 		case DIFV_SCOPE_GLOBAL:
9588 			if (maxglobal == -1 || ndx > maxglobal)
9589 				maxglobal = ndx;
9590 
9591 			if (ndx < vstate->dtvs_nglobals) {
9592 				dtrace_statvar_t *svar;
9593 
9594 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9595 					existing = &svar->dtsv_var;
9596 			}
9597 
9598 			break;
9599 
9600 		case DIFV_SCOPE_THREAD:
9601 			if (maxtlocal == -1 || ndx > maxtlocal)
9602 				maxtlocal = ndx;
9603 
9604 			if (ndx < vstate->dtvs_ntlocals)
9605 				existing = &vstate->dtvs_tlocals[ndx];
9606 			break;
9607 
9608 		case DIFV_SCOPE_LOCAL:
9609 			if (maxlocal == -1 || ndx > maxlocal)
9610 				maxlocal = ndx;
9611 
9612 			if (ndx < vstate->dtvs_nlocals) {
9613 				dtrace_statvar_t *svar;
9614 
9615 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9616 					existing = &svar->dtsv_var;
9617 			}
9618 
9619 			break;
9620 		}
9621 
9622 		vt = &v->dtdv_type;
9623 
9624 		if (vt->dtdt_flags & DIF_TF_BYREF) {
9625 			if (vt->dtdt_size == 0) {
9626 				err += efunc(i, "zero-sized variable\n");
9627 				break;
9628 			}
9629 
9630 			if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
9631 			    v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
9632 			    vt->dtdt_size > dtrace_statvar_maxsize) {
9633 				err += efunc(i, "oversized by-ref static\n");
9634 				break;
9635 			}
9636 		}
9637 
9638 		if (existing == NULL || existing->dtdv_id == 0)
9639 			continue;
9640 
9641 		ASSERT(existing->dtdv_id == v->dtdv_id);
9642 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
9643 
9644 		if (existing->dtdv_kind != v->dtdv_kind)
9645 			err += efunc(i, "%d changed variable kind\n", id);
9646 
9647 		et = &existing->dtdv_type;
9648 
9649 		if (vt->dtdt_flags != et->dtdt_flags) {
9650 			err += efunc(i, "%d changed variable type flags\n", id);
9651 			break;
9652 		}
9653 
9654 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9655 			err += efunc(i, "%d changed variable type size\n", id);
9656 			break;
9657 		}
9658 	}
9659 
9660 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9661 		dif_instr_t instr = dp->dtdo_buf[pc];
9662 
9663 		uint_t v = DIF_INSTR_VAR(instr);
9664 		uint_t op = DIF_INSTR_OP(instr);
9665 
9666 		switch (op) {
9667 		case DIF_OP_LDGS:
9668 		case DIF_OP_LDGAA:
9669 		case DIF_OP_STGS:
9670 		case DIF_OP_STGAA:
9671 			if (v > DIF_VAR_OTHER_UBASE + maxglobal)
9672 				err += efunc(pc, "invalid variable %u\n", v);
9673 			break;
9674 		case DIF_OP_LDTS:
9675 		case DIF_OP_LDTAA:
9676 		case DIF_OP_STTS:
9677 		case DIF_OP_STTAA:
9678 			if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
9679 				err += efunc(pc, "invalid variable %u\n", v);
9680 			break;
9681 		case DIF_OP_LDLS:
9682 		case DIF_OP_STLS:
9683 			if (v > DIF_VAR_OTHER_UBASE + maxlocal)
9684 				err += efunc(pc, "invalid variable %u\n", v);
9685 			break;
9686 		default:
9687 			break;
9688 		}
9689 	}
9690 
9691 	return (err);
9692 }
9693 
9694 /*
9695  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9696  * are much more constrained than normal DIFOs.  Specifically, they may
9697  * not:
9698  *
9699  * 1. Make calls to subroutines other than copyin(), copyinstr() or
9700  *    miscellaneous string routines
9701  * 2. Access DTrace variables other than the args[] array, and the
9702  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9703  * 3. Have thread-local variables.
9704  * 4. Have dynamic variables.
9705  */
9706 static int
9707 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9708 {
9709 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9710 	int err = 0;
9711 	uint_t pc;
9712 
9713 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9714 		dif_instr_t instr = dp->dtdo_buf[pc];
9715 
9716 		uint_t v = DIF_INSTR_VAR(instr);
9717 		uint_t subr = DIF_INSTR_SUBR(instr);
9718 		uint_t op = DIF_INSTR_OP(instr);
9719 
9720 		switch (op) {
9721 		case DIF_OP_OR:
9722 		case DIF_OP_XOR:
9723 		case DIF_OP_AND:
9724 		case DIF_OP_SLL:
9725 		case DIF_OP_SRL:
9726 		case DIF_OP_SRA:
9727 		case DIF_OP_SUB:
9728 		case DIF_OP_ADD:
9729 		case DIF_OP_MUL:
9730 		case DIF_OP_SDIV:
9731 		case DIF_OP_UDIV:
9732 		case DIF_OP_SREM:
9733 		case DIF_OP_UREM:
9734 		case DIF_OP_COPYS:
9735 		case DIF_OP_NOT:
9736 		case DIF_OP_MOV:
9737 		case DIF_OP_RLDSB:
9738 		case DIF_OP_RLDSH:
9739 		case DIF_OP_RLDSW:
9740 		case DIF_OP_RLDUB:
9741 		case DIF_OP_RLDUH:
9742 		case DIF_OP_RLDUW:
9743 		case DIF_OP_RLDX:
9744 		case DIF_OP_ULDSB:
9745 		case DIF_OP_ULDSH:
9746 		case DIF_OP_ULDSW:
9747 		case DIF_OP_ULDUB:
9748 		case DIF_OP_ULDUH:
9749 		case DIF_OP_ULDUW:
9750 		case DIF_OP_ULDX:
9751 		case DIF_OP_STB:
9752 		case DIF_OP_STH:
9753 		case DIF_OP_STW:
9754 		case DIF_OP_STX:
9755 		case DIF_OP_ALLOCS:
9756 		case DIF_OP_CMP:
9757 		case DIF_OP_SCMP:
9758 		case DIF_OP_TST:
9759 		case DIF_OP_BA:
9760 		case DIF_OP_BE:
9761 		case DIF_OP_BNE:
9762 		case DIF_OP_BG:
9763 		case DIF_OP_BGU:
9764 		case DIF_OP_BGE:
9765 		case DIF_OP_BGEU:
9766 		case DIF_OP_BL:
9767 		case DIF_OP_BLU:
9768 		case DIF_OP_BLE:
9769 		case DIF_OP_BLEU:
9770 		case DIF_OP_RET:
9771 		case DIF_OP_NOP:
9772 		case DIF_OP_POPTS:
9773 		case DIF_OP_FLUSHTS:
9774 		case DIF_OP_SETX:
9775 		case DIF_OP_SETS:
9776 		case DIF_OP_LDGA:
9777 		case DIF_OP_LDLS:
9778 		case DIF_OP_STGS:
9779 		case DIF_OP_STLS:
9780 		case DIF_OP_PUSHTR:
9781 		case DIF_OP_PUSHTV:
9782 			break;
9783 
9784 		case DIF_OP_LDGS:
9785 			if (v >= DIF_VAR_OTHER_UBASE)
9786 				break;
9787 
9788 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9789 				break;
9790 
9791 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9792 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9793 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9794 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
9795 				break;
9796 
9797 			err += efunc(pc, "illegal variable %u\n", v);
9798 			break;
9799 
9800 		case DIF_OP_LDTA:
9801 			if (v < DIF_VAR_OTHER_UBASE) {
9802 				err += efunc(pc, "illegal variable load\n");
9803 				break;
9804 			}
9805 			/* FALLTHROUGH */
9806 		case DIF_OP_LDTS:
9807 		case DIF_OP_LDGAA:
9808 		case DIF_OP_LDTAA:
9809 			err += efunc(pc, "illegal dynamic variable load\n");
9810 			break;
9811 
9812 		case DIF_OP_STGA:
9813 			if (v < DIF_VAR_OTHER_UBASE) {
9814 				err += efunc(pc, "illegal variable store\n");
9815 				break;
9816 			}
9817 			/* FALLTHROUGH */
9818 		case DIF_OP_STTS:
9819 		case DIF_OP_STGAA:
9820 		case DIF_OP_STTAA:
9821 			err += efunc(pc, "illegal dynamic variable store\n");
9822 			break;
9823 
9824 		case DIF_OP_CALL:
9825 			if (subr == DIF_SUBR_ALLOCA ||
9826 			    subr == DIF_SUBR_BCOPY ||
9827 			    subr == DIF_SUBR_COPYIN ||
9828 			    subr == DIF_SUBR_COPYINTO ||
9829 			    subr == DIF_SUBR_COPYINSTR ||
9830 			    subr == DIF_SUBR_INDEX ||
9831 			    subr == DIF_SUBR_INET_NTOA ||
9832 			    subr == DIF_SUBR_INET_NTOA6 ||
9833 			    subr == DIF_SUBR_INET_NTOP ||
9834 			    subr == DIF_SUBR_JSON ||
9835 			    subr == DIF_SUBR_LLTOSTR ||
9836 			    subr == DIF_SUBR_STRTOLL ||
9837 			    subr == DIF_SUBR_RINDEX ||
9838 			    subr == DIF_SUBR_STRCHR ||
9839 			    subr == DIF_SUBR_STRJOIN ||
9840 			    subr == DIF_SUBR_STRRCHR ||
9841 			    subr == DIF_SUBR_STRSTR ||
9842 			    subr == DIF_SUBR_HTONS ||
9843 			    subr == DIF_SUBR_HTONL ||
9844 			    subr == DIF_SUBR_HTONLL ||
9845 			    subr == DIF_SUBR_NTOHS ||
9846 			    subr == DIF_SUBR_NTOHL ||
9847 			    subr == DIF_SUBR_NTOHLL)
9848 				break;
9849 
9850 			err += efunc(pc, "invalid subr %u\n", subr);
9851 			break;
9852 
9853 		default:
9854 			err += efunc(pc, "invalid opcode %u\n",
9855 			    DIF_INSTR_OP(instr));
9856 		}
9857 	}
9858 
9859 	return (err);
9860 }
9861 
9862 /*
9863  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9864  * basis; 0 if not.
9865  */
9866 static int
9867 dtrace_difo_cacheable(dtrace_difo_t *dp)
9868 {
9869 	int i;
9870 
9871 	if (dp == NULL)
9872 		return (0);
9873 
9874 	for (i = 0; i < dp->dtdo_varlen; i++) {
9875 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9876 
9877 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9878 			continue;
9879 
9880 		switch (v->dtdv_id) {
9881 		case DIF_VAR_CURTHREAD:
9882 		case DIF_VAR_PID:
9883 		case DIF_VAR_TID:
9884 		case DIF_VAR_EXECNAME:
9885 		case DIF_VAR_ZONENAME:
9886 			break;
9887 
9888 		default:
9889 			return (0);
9890 		}
9891 	}
9892 
9893 	/*
9894 	 * This DIF object may be cacheable.  Now we need to look for any
9895 	 * array loading instructions, any memory loading instructions, or
9896 	 * any stores to thread-local variables.
9897 	 */
9898 	for (i = 0; i < dp->dtdo_len; i++) {
9899 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9900 
9901 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9902 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9903 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9904 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9905 			return (0);
9906 	}
9907 
9908 	return (1);
9909 }
9910 
9911 static void
9912 dtrace_difo_hold(dtrace_difo_t *dp)
9913 {
9914 	int i;
9915 
9916 	ASSERT(MUTEX_HELD(&dtrace_lock));
9917 
9918 	dp->dtdo_refcnt++;
9919 	ASSERT(dp->dtdo_refcnt != 0);
9920 
9921 	/*
9922 	 * We need to check this DIF object for references to the variable
9923 	 * DIF_VAR_VTIMESTAMP.
9924 	 */
9925 	for (i = 0; i < dp->dtdo_varlen; i++) {
9926 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9927 
9928 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9929 			continue;
9930 
9931 		if (dtrace_vtime_references++ == 0)
9932 			dtrace_vtime_enable();
9933 	}
9934 }
9935 
9936 /*
9937  * This routine calculates the dynamic variable chunksize for a given DIF
9938  * object.  The calculation is not fool-proof, and can probably be tricked by
9939  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9940  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9941  * if a dynamic variable size exceeds the chunksize.
9942  */
9943 static void
9944 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9945 {
9946 	uint64_t sval;
9947 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9948 	const dif_instr_t *text = dp->dtdo_buf;
9949 	uint_t pc, srd = 0;
9950 	uint_t ttop = 0;
9951 	size_t size, ksize;
9952 	uint_t id, i;
9953 
9954 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9955 		dif_instr_t instr = text[pc];
9956 		uint_t op = DIF_INSTR_OP(instr);
9957 		uint_t rd = DIF_INSTR_RD(instr);
9958 		uint_t r1 = DIF_INSTR_R1(instr);
9959 		uint_t nkeys = 0;
9960 		uchar_t scope;
9961 
9962 		dtrace_key_t *key = tupregs;
9963 
9964 		switch (op) {
9965 		case DIF_OP_SETX:
9966 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9967 			srd = rd;
9968 			continue;
9969 
9970 		case DIF_OP_STTS:
9971 			key = &tupregs[DIF_DTR_NREGS];
9972 			key[0].dttk_size = 0;
9973 			key[1].dttk_size = 0;
9974 			nkeys = 2;
9975 			scope = DIFV_SCOPE_THREAD;
9976 			break;
9977 
9978 		case DIF_OP_STGAA:
9979 		case DIF_OP_STTAA:
9980 			nkeys = ttop;
9981 
9982 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9983 				key[nkeys++].dttk_size = 0;
9984 
9985 			key[nkeys++].dttk_size = 0;
9986 
9987 			if (op == DIF_OP_STTAA) {
9988 				scope = DIFV_SCOPE_THREAD;
9989 			} else {
9990 				scope = DIFV_SCOPE_GLOBAL;
9991 			}
9992 
9993 			break;
9994 
9995 		case DIF_OP_PUSHTR:
9996 			if (ttop == DIF_DTR_NREGS)
9997 				return;
9998 
9999 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10000 				/*
10001 				 * If the register for the size of the "pushtr"
10002 				 * is %r0 (or the value is 0) and the type is
10003 				 * a string, we'll use the system-wide default
10004 				 * string size.
10005 				 */
10006 				tupregs[ttop++].dttk_size =
10007 				    dtrace_strsize_default;
10008 			} else {
10009 				if (srd == 0)
10010 					return;
10011 
10012 				if (sval > LONG_MAX)
10013 					return;
10014 
10015 				tupregs[ttop++].dttk_size = sval;
10016 			}
10017 
10018 			break;
10019 
10020 		case DIF_OP_PUSHTV:
10021 			if (ttop == DIF_DTR_NREGS)
10022 				return;
10023 
10024 			tupregs[ttop++].dttk_size = 0;
10025 			break;
10026 
10027 		case DIF_OP_FLUSHTS:
10028 			ttop = 0;
10029 			break;
10030 
10031 		case DIF_OP_POPTS:
10032 			if (ttop != 0)
10033 				ttop--;
10034 			break;
10035 		}
10036 
10037 		sval = 0;
10038 		srd = 0;
10039 
10040 		if (nkeys == 0)
10041 			continue;
10042 
10043 		/*
10044 		 * We have a dynamic variable allocation; calculate its size.
10045 		 */
10046 		for (ksize = 0, i = 0; i < nkeys; i++)
10047 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10048 
10049 		size = sizeof (dtrace_dynvar_t);
10050 		size += sizeof (dtrace_key_t) * (nkeys - 1);
10051 		size += ksize;
10052 
10053 		/*
10054 		 * Now we need to determine the size of the stored data.
10055 		 */
10056 		id = DIF_INSTR_VAR(instr);
10057 
10058 		for (i = 0; i < dp->dtdo_varlen; i++) {
10059 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10060 
10061 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10062 				size += v->dtdv_type.dtdt_size;
10063 				break;
10064 			}
10065 		}
10066 
10067 		if (i == dp->dtdo_varlen)
10068 			return;
10069 
10070 		/*
10071 		 * We have the size.  If this is larger than the chunk size
10072 		 * for our dynamic variable state, reset the chunk size.
10073 		 */
10074 		size = P2ROUNDUP(size, sizeof (uint64_t));
10075 
10076 		/*
10077 		 * Before setting the chunk size, check that we're not going
10078 		 * to set it to a negative value...
10079 		 */
10080 		if (size > LONG_MAX)
10081 			return;
10082 
10083 		/*
10084 		 * ...and make certain that we didn't badly overflow.
10085 		 */
10086 		if (size < ksize || size < sizeof (dtrace_dynvar_t))
10087 			return;
10088 
10089 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10090 			vstate->dtvs_dynvars.dtds_chunksize = size;
10091 	}
10092 }
10093 
10094 static void
10095 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10096 {
10097 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10098 	uint_t id;
10099 
10100 	ASSERT(MUTEX_HELD(&dtrace_lock));
10101 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10102 
10103 	for (i = 0; i < dp->dtdo_varlen; i++) {
10104 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10105 		dtrace_statvar_t *svar, ***svarp;
10106 		size_t dsize = 0;
10107 		uint8_t scope = v->dtdv_scope;
10108 		int *np;
10109 
10110 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10111 			continue;
10112 
10113 		id -= DIF_VAR_OTHER_UBASE;
10114 
10115 		switch (scope) {
10116 		case DIFV_SCOPE_THREAD:
10117 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10118 				dtrace_difv_t *tlocals;
10119 
10120 				if ((ntlocals = (otlocals << 1)) == 0)
10121 					ntlocals = 1;
10122 
10123 				osz = otlocals * sizeof (dtrace_difv_t);
10124 				nsz = ntlocals * sizeof (dtrace_difv_t);
10125 
10126 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10127 
10128 				if (osz != 0) {
10129 					bcopy(vstate->dtvs_tlocals,
10130 					    tlocals, osz);
10131 					kmem_free(vstate->dtvs_tlocals, osz);
10132 				}
10133 
10134 				vstate->dtvs_tlocals = tlocals;
10135 				vstate->dtvs_ntlocals = ntlocals;
10136 			}
10137 
10138 			vstate->dtvs_tlocals[id] = *v;
10139 			continue;
10140 
10141 		case DIFV_SCOPE_LOCAL:
10142 			np = &vstate->dtvs_nlocals;
10143 			svarp = &vstate->dtvs_locals;
10144 
10145 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10146 				dsize = NCPU * (v->dtdv_type.dtdt_size +
10147 				    sizeof (uint64_t));
10148 			else
10149 				dsize = NCPU * sizeof (uint64_t);
10150 
10151 			break;
10152 
10153 		case DIFV_SCOPE_GLOBAL:
10154 			np = &vstate->dtvs_nglobals;
10155 			svarp = &vstate->dtvs_globals;
10156 
10157 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10158 				dsize = v->dtdv_type.dtdt_size +
10159 				    sizeof (uint64_t);
10160 
10161 			break;
10162 
10163 		default:
10164 			ASSERT(0);
10165 		}
10166 
10167 		while (id >= (oldsvars = *np)) {
10168 			dtrace_statvar_t **statics;
10169 			int newsvars, oldsize, newsize;
10170 
10171 			if ((newsvars = (oldsvars << 1)) == 0)
10172 				newsvars = 1;
10173 
10174 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10175 			newsize = newsvars * sizeof (dtrace_statvar_t *);
10176 
10177 			statics = kmem_zalloc(newsize, KM_SLEEP);
10178 
10179 			if (oldsize != 0) {
10180 				bcopy(*svarp, statics, oldsize);
10181 				kmem_free(*svarp, oldsize);
10182 			}
10183 
10184 			*svarp = statics;
10185 			*np = newsvars;
10186 		}
10187 
10188 		if ((svar = (*svarp)[id]) == NULL) {
10189 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10190 			svar->dtsv_var = *v;
10191 
10192 			if ((svar->dtsv_size = dsize) != 0) {
10193 				svar->dtsv_data = (uint64_t)(uintptr_t)
10194 				    kmem_zalloc(dsize, KM_SLEEP);
10195 			}
10196 
10197 			(*svarp)[id] = svar;
10198 		}
10199 
10200 		svar->dtsv_refcnt++;
10201 	}
10202 
10203 	dtrace_difo_chunksize(dp, vstate);
10204 	dtrace_difo_hold(dp);
10205 }
10206 
10207 static dtrace_difo_t *
10208 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10209 {
10210 	dtrace_difo_t *new;
10211 	size_t sz;
10212 
10213 	ASSERT(dp->dtdo_buf != NULL);
10214 	ASSERT(dp->dtdo_refcnt != 0);
10215 
10216 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10217 
10218 	ASSERT(dp->dtdo_buf != NULL);
10219 	sz = dp->dtdo_len * sizeof (dif_instr_t);
10220 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10221 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10222 	new->dtdo_len = dp->dtdo_len;
10223 
10224 	if (dp->dtdo_strtab != NULL) {
10225 		ASSERT(dp->dtdo_strlen != 0);
10226 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10227 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10228 		new->dtdo_strlen = dp->dtdo_strlen;
10229 	}
10230 
10231 	if (dp->dtdo_inttab != NULL) {
10232 		ASSERT(dp->dtdo_intlen != 0);
10233 		sz = dp->dtdo_intlen * sizeof (uint64_t);
10234 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10235 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10236 		new->dtdo_intlen = dp->dtdo_intlen;
10237 	}
10238 
10239 	if (dp->dtdo_vartab != NULL) {
10240 		ASSERT(dp->dtdo_varlen != 0);
10241 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10242 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10243 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10244 		new->dtdo_varlen = dp->dtdo_varlen;
10245 	}
10246 
10247 	dtrace_difo_init(new, vstate);
10248 	return (new);
10249 }
10250 
10251 static void
10252 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10253 {
10254 	int i;
10255 
10256 	ASSERT(dp->dtdo_refcnt == 0);
10257 
10258 	for (i = 0; i < dp->dtdo_varlen; i++) {
10259 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10260 		dtrace_statvar_t *svar, **svarp;
10261 		uint_t id;
10262 		uint8_t scope = v->dtdv_scope;
10263 		int *np;
10264 
10265 		switch (scope) {
10266 		case DIFV_SCOPE_THREAD:
10267 			continue;
10268 
10269 		case DIFV_SCOPE_LOCAL:
10270 			np = &vstate->dtvs_nlocals;
10271 			svarp = vstate->dtvs_locals;
10272 			break;
10273 
10274 		case DIFV_SCOPE_GLOBAL:
10275 			np = &vstate->dtvs_nglobals;
10276 			svarp = vstate->dtvs_globals;
10277 			break;
10278 
10279 		default:
10280 			ASSERT(0);
10281 		}
10282 
10283 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10284 			continue;
10285 
10286 		id -= DIF_VAR_OTHER_UBASE;
10287 		ASSERT(id < *np);
10288 
10289 		svar = svarp[id];
10290 		ASSERT(svar != NULL);
10291 		ASSERT(svar->dtsv_refcnt > 0);
10292 
10293 		if (--svar->dtsv_refcnt > 0)
10294 			continue;
10295 
10296 		if (svar->dtsv_size != 0) {
10297 			ASSERT(svar->dtsv_data != NULL);
10298 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10299 			    svar->dtsv_size);
10300 		}
10301 
10302 		kmem_free(svar, sizeof (dtrace_statvar_t));
10303 		svarp[id] = NULL;
10304 	}
10305 
10306 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10307 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10308 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10309 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10310 
10311 	kmem_free(dp, sizeof (dtrace_difo_t));
10312 }
10313 
10314 static void
10315 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10316 {
10317 	int i;
10318 
10319 	ASSERT(MUTEX_HELD(&dtrace_lock));
10320 	ASSERT(dp->dtdo_refcnt != 0);
10321 
10322 	for (i = 0; i < dp->dtdo_varlen; i++) {
10323 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10324 
10325 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10326 			continue;
10327 
10328 		ASSERT(dtrace_vtime_references > 0);
10329 		if (--dtrace_vtime_references == 0)
10330 			dtrace_vtime_disable();
10331 	}
10332 
10333 	if (--dp->dtdo_refcnt == 0)
10334 		dtrace_difo_destroy(dp, vstate);
10335 }
10336 
10337 /*
10338  * DTrace Format Functions
10339  */
10340 static uint16_t
10341 dtrace_format_add(dtrace_state_t *state, char *str)
10342 {
10343 	char *fmt, **new;
10344 	uint16_t ndx, len = strlen(str) + 1;
10345 
10346 	fmt = kmem_zalloc(len, KM_SLEEP);
10347 	bcopy(str, fmt, len);
10348 
10349 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10350 		if (state->dts_formats[ndx] == NULL) {
10351 			state->dts_formats[ndx] = fmt;
10352 			return (ndx + 1);
10353 		}
10354 	}
10355 
10356 	if (state->dts_nformats == USHRT_MAX) {
10357 		/*
10358 		 * This is only likely if a denial-of-service attack is being
10359 		 * attempted.  As such, it's okay to fail silently here.
10360 		 */
10361 		kmem_free(fmt, len);
10362 		return (0);
10363 	}
10364 
10365 	/*
10366 	 * For simplicity, we always resize the formats array to be exactly the
10367 	 * number of formats.
10368 	 */
10369 	ndx = state->dts_nformats++;
10370 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10371 
10372 	if (state->dts_formats != NULL) {
10373 		ASSERT(ndx != 0);
10374 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10375 		kmem_free(state->dts_formats, ndx * sizeof (char *));
10376 	}
10377 
10378 	state->dts_formats = new;
10379 	state->dts_formats[ndx] = fmt;
10380 
10381 	return (ndx + 1);
10382 }
10383 
10384 static void
10385 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10386 {
10387 	char *fmt;
10388 
10389 	ASSERT(state->dts_formats != NULL);
10390 	ASSERT(format <= state->dts_nformats);
10391 	ASSERT(state->dts_formats[format - 1] != NULL);
10392 
10393 	fmt = state->dts_formats[format - 1];
10394 	kmem_free(fmt, strlen(fmt) + 1);
10395 	state->dts_formats[format - 1] = NULL;
10396 }
10397 
10398 static void
10399 dtrace_format_destroy(dtrace_state_t *state)
10400 {
10401 	int i;
10402 
10403 	if (state->dts_nformats == 0) {
10404 		ASSERT(state->dts_formats == NULL);
10405 		return;
10406 	}
10407 
10408 	ASSERT(state->dts_formats != NULL);
10409 
10410 	for (i = 0; i < state->dts_nformats; i++) {
10411 		char *fmt = state->dts_formats[i];
10412 
10413 		if (fmt == NULL)
10414 			continue;
10415 
10416 		kmem_free(fmt, strlen(fmt) + 1);
10417 	}
10418 
10419 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10420 	state->dts_nformats = 0;
10421 	state->dts_formats = NULL;
10422 }
10423 
10424 /*
10425  * DTrace Predicate Functions
10426  */
10427 static dtrace_predicate_t *
10428 dtrace_predicate_create(dtrace_difo_t *dp)
10429 {
10430 	dtrace_predicate_t *pred;
10431 
10432 	ASSERT(MUTEX_HELD(&dtrace_lock));
10433 	ASSERT(dp->dtdo_refcnt != 0);
10434 
10435 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10436 	pred->dtp_difo = dp;
10437 	pred->dtp_refcnt = 1;
10438 
10439 	if (!dtrace_difo_cacheable(dp))
10440 		return (pred);
10441 
10442 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10443 		/*
10444 		 * This is only theoretically possible -- we have had 2^32
10445 		 * cacheable predicates on this machine.  We cannot allow any
10446 		 * more predicates to become cacheable:  as unlikely as it is,
10447 		 * there may be a thread caching a (now stale) predicate cache
10448 		 * ID. (N.B.: the temptation is being successfully resisted to
10449 		 * have this cmn_err() "Holy shit -- we executed this code!")
10450 		 */
10451 		return (pred);
10452 	}
10453 
10454 	pred->dtp_cacheid = dtrace_predcache_id++;
10455 
10456 	return (pred);
10457 }
10458 
10459 static void
10460 dtrace_predicate_hold(dtrace_predicate_t *pred)
10461 {
10462 	ASSERT(MUTEX_HELD(&dtrace_lock));
10463 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10464 	ASSERT(pred->dtp_refcnt > 0);
10465 
10466 	pred->dtp_refcnt++;
10467 }
10468 
10469 static void
10470 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10471 {
10472 	dtrace_difo_t *dp = pred->dtp_difo;
10473 
10474 	ASSERT(MUTEX_HELD(&dtrace_lock));
10475 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10476 	ASSERT(pred->dtp_refcnt > 0);
10477 
10478 	if (--pred->dtp_refcnt == 0) {
10479 		dtrace_difo_release(pred->dtp_difo, vstate);
10480 		kmem_free(pred, sizeof (dtrace_predicate_t));
10481 	}
10482 }
10483 
10484 /*
10485  * DTrace Action Description Functions
10486  */
10487 static dtrace_actdesc_t *
10488 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10489     uint64_t uarg, uint64_t arg)
10490 {
10491 	dtrace_actdesc_t *act;
10492 
10493 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10494 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10495 
10496 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10497 	act->dtad_kind = kind;
10498 	act->dtad_ntuple = ntuple;
10499 	act->dtad_uarg = uarg;
10500 	act->dtad_arg = arg;
10501 	act->dtad_refcnt = 1;
10502 
10503 	return (act);
10504 }
10505 
10506 static void
10507 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10508 {
10509 	ASSERT(act->dtad_refcnt >= 1);
10510 	act->dtad_refcnt++;
10511 }
10512 
10513 static void
10514 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10515 {
10516 	dtrace_actkind_t kind = act->dtad_kind;
10517 	dtrace_difo_t *dp;
10518 
10519 	ASSERT(act->dtad_refcnt >= 1);
10520 
10521 	if (--act->dtad_refcnt != 0)
10522 		return;
10523 
10524 	if ((dp = act->dtad_difo) != NULL)
10525 		dtrace_difo_release(dp, vstate);
10526 
10527 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
10528 		char *str = (char *)(uintptr_t)act->dtad_arg;
10529 
10530 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10531 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10532 
10533 		if (str != NULL)
10534 			kmem_free(str, strlen(str) + 1);
10535 	}
10536 
10537 	kmem_free(act, sizeof (dtrace_actdesc_t));
10538 }
10539 
10540 /*
10541  * DTrace ECB Functions
10542  */
10543 static dtrace_ecb_t *
10544 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10545 {
10546 	dtrace_ecb_t *ecb;
10547 	dtrace_epid_t epid;
10548 
10549 	ASSERT(MUTEX_HELD(&dtrace_lock));
10550 
10551 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10552 	ecb->dte_predicate = NULL;
10553 	ecb->dte_probe = probe;
10554 
10555 	/*
10556 	 * The default size is the size of the default action: recording
10557 	 * the header.
10558 	 */
10559 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10560 	ecb->dte_alignment = sizeof (dtrace_epid_t);
10561 
10562 	epid = state->dts_epid++;
10563 
10564 	if (epid - 1 >= state->dts_necbs) {
10565 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10566 		int necbs = state->dts_necbs << 1;
10567 
10568 		ASSERT(epid == state->dts_necbs + 1);
10569 
10570 		if (necbs == 0) {
10571 			ASSERT(oecbs == NULL);
10572 			necbs = 1;
10573 		}
10574 
10575 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10576 
10577 		if (oecbs != NULL)
10578 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10579 
10580 		dtrace_membar_producer();
10581 		state->dts_ecbs = ecbs;
10582 
10583 		if (oecbs != NULL) {
10584 			/*
10585 			 * If this state is active, we must dtrace_sync()
10586 			 * before we can free the old dts_ecbs array:  we're
10587 			 * coming in hot, and there may be active ring
10588 			 * buffer processing (which indexes into the dts_ecbs
10589 			 * array) on another CPU.
10590 			 */
10591 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10592 				dtrace_sync();
10593 
10594 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10595 		}
10596 
10597 		dtrace_membar_producer();
10598 		state->dts_necbs = necbs;
10599 	}
10600 
10601 	ecb->dte_state = state;
10602 
10603 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
10604 	dtrace_membar_producer();
10605 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10606 
10607 	return (ecb);
10608 }
10609 
10610 static int
10611 dtrace_ecb_enable(dtrace_ecb_t *ecb)
10612 {
10613 	dtrace_probe_t *probe = ecb->dte_probe;
10614 
10615 	ASSERT(MUTEX_HELD(&cpu_lock));
10616 	ASSERT(MUTEX_HELD(&dtrace_lock));
10617 	ASSERT(ecb->dte_next == NULL);
10618 
10619 	if (probe == NULL) {
10620 		/*
10621 		 * This is the NULL probe -- there's nothing to do.
10622 		 */
10623 		return (0);
10624 	}
10625 
10626 	if (probe->dtpr_ecb == NULL) {
10627 		dtrace_provider_t *prov = probe->dtpr_provider;
10628 
10629 		/*
10630 		 * We're the first ECB on this probe.
10631 		 */
10632 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10633 
10634 		if (ecb->dte_predicate != NULL)
10635 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10636 
10637 		return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10638 		    probe->dtpr_id, probe->dtpr_arg));
10639 	} else {
10640 		/*
10641 		 * This probe is already active.  Swing the last pointer to
10642 		 * point to the new ECB, and issue a dtrace_sync() to assure
10643 		 * that all CPUs have seen the change.
10644 		 */
10645 		ASSERT(probe->dtpr_ecb_last != NULL);
10646 		probe->dtpr_ecb_last->dte_next = ecb;
10647 		probe->dtpr_ecb_last = ecb;
10648 		probe->dtpr_predcache = 0;
10649 
10650 		dtrace_sync();
10651 		return (0);
10652 	}
10653 }
10654 
10655 static int
10656 dtrace_ecb_resize(dtrace_ecb_t *ecb)
10657 {
10658 	dtrace_action_t *act;
10659 	uint32_t curneeded = UINT32_MAX;
10660 	uint32_t aggbase = UINT32_MAX;
10661 
10662 	/*
10663 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
10664 	 * we always record it first.)
10665 	 */
10666 	ecb->dte_size = sizeof (dtrace_rechdr_t);
10667 	ecb->dte_alignment = sizeof (dtrace_epid_t);
10668 
10669 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10670 		dtrace_recdesc_t *rec = &act->dta_rec;
10671 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10672 
10673 		ecb->dte_alignment = MAX(ecb->dte_alignment,
10674 		    rec->dtrd_alignment);
10675 
10676 		if (DTRACEACT_ISAGG(act->dta_kind)) {
10677 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10678 
10679 			ASSERT(rec->dtrd_size != 0);
10680 			ASSERT(agg->dtag_first != NULL);
10681 			ASSERT(act->dta_prev->dta_intuple);
10682 			ASSERT(aggbase != UINT32_MAX);
10683 			ASSERT(curneeded != UINT32_MAX);
10684 
10685 			agg->dtag_base = aggbase;
10686 
10687 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10688 			rec->dtrd_offset = curneeded;
10689 			if (curneeded + rec->dtrd_size < curneeded)
10690 				return (EINVAL);
10691 			curneeded += rec->dtrd_size;
10692 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10693 
10694 			aggbase = UINT32_MAX;
10695 			curneeded = UINT32_MAX;
10696 		} else if (act->dta_intuple) {
10697 			if (curneeded == UINT32_MAX) {
10698 				/*
10699 				 * This is the first record in a tuple.  Align
10700 				 * curneeded to be at offset 4 in an 8-byte
10701 				 * aligned block.
10702 				 */
10703 				ASSERT(act->dta_prev == NULL ||
10704 				    !act->dta_prev->dta_intuple);
10705 				ASSERT3U(aggbase, ==, UINT32_MAX);
10706 				curneeded = P2PHASEUP(ecb->dte_size,
10707 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
10708 
10709 				aggbase = curneeded - sizeof (dtrace_aggid_t);
10710 				ASSERT(IS_P2ALIGNED(aggbase,
10711 				    sizeof (uint64_t)));
10712 			}
10713 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10714 			rec->dtrd_offset = curneeded;
10715 			if (curneeded + rec->dtrd_size < curneeded)
10716 				return (EINVAL);
10717 			curneeded += rec->dtrd_size;
10718 		} else {
10719 			/* tuples must be followed by an aggregation */
10720 			ASSERT(act->dta_prev == NULL ||
10721 			    !act->dta_prev->dta_intuple);
10722 
10723 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10724 			    rec->dtrd_alignment);
10725 			rec->dtrd_offset = ecb->dte_size;
10726 			if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
10727 				return (EINVAL);
10728 			ecb->dte_size += rec->dtrd_size;
10729 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10730 		}
10731 	}
10732 
10733 	if ((act = ecb->dte_action) != NULL &&
10734 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10735 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10736 		/*
10737 		 * If the size is still sizeof (dtrace_rechdr_t), then all
10738 		 * actions store no data; set the size to 0.
10739 		 */
10740 		ecb->dte_size = 0;
10741 	}
10742 
10743 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10744 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10745 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10746 	    ecb->dte_needed);
10747 	return (0);
10748 }
10749 
10750 static dtrace_action_t *
10751 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10752 {
10753 	dtrace_aggregation_t *agg;
10754 	size_t size = sizeof (uint64_t);
10755 	int ntuple = desc->dtad_ntuple;
10756 	dtrace_action_t *act;
10757 	dtrace_recdesc_t *frec;
10758 	dtrace_aggid_t aggid;
10759 	dtrace_state_t *state = ecb->dte_state;
10760 
10761 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10762 	agg->dtag_ecb = ecb;
10763 
10764 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10765 
10766 	switch (desc->dtad_kind) {
10767 	case DTRACEAGG_MIN:
10768 		agg->dtag_initial = INT64_MAX;
10769 		agg->dtag_aggregate = dtrace_aggregate_min;
10770 		break;
10771 
10772 	case DTRACEAGG_MAX:
10773 		agg->dtag_initial = INT64_MIN;
10774 		agg->dtag_aggregate = dtrace_aggregate_max;
10775 		break;
10776 
10777 	case DTRACEAGG_COUNT:
10778 		agg->dtag_aggregate = dtrace_aggregate_count;
10779 		break;
10780 
10781 	case DTRACEAGG_QUANTIZE:
10782 		agg->dtag_aggregate = dtrace_aggregate_quantize;
10783 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10784 		    sizeof (uint64_t);
10785 		break;
10786 
10787 	case DTRACEAGG_LQUANTIZE: {
10788 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10789 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10790 
10791 		agg->dtag_initial = desc->dtad_arg;
10792 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
10793 
10794 		if (step == 0 || levels == 0)
10795 			goto err;
10796 
10797 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10798 		break;
10799 	}
10800 
10801 	case DTRACEAGG_LLQUANTIZE: {
10802 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10803 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10804 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10805 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10806 		int64_t v;
10807 
10808 		agg->dtag_initial = desc->dtad_arg;
10809 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
10810 
10811 		if (factor < 2 || low >= high || nsteps < factor)
10812 			goto err;
10813 
10814 		/*
10815 		 * Now check that the number of steps evenly divides a power
10816 		 * of the factor.  (This assures both integer bucket size and
10817 		 * linearity within each magnitude.)
10818 		 */
10819 		for (v = factor; v < nsteps; v *= factor)
10820 			continue;
10821 
10822 		if ((v % nsteps) || (nsteps % factor))
10823 			goto err;
10824 
10825 		size = (dtrace_aggregate_llquantize_bucket(factor,
10826 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10827 		break;
10828 	}
10829 
10830 	case DTRACEAGG_AVG:
10831 		agg->dtag_aggregate = dtrace_aggregate_avg;
10832 		size = sizeof (uint64_t) * 2;
10833 		break;
10834 
10835 	case DTRACEAGG_STDDEV:
10836 		agg->dtag_aggregate = dtrace_aggregate_stddev;
10837 		size = sizeof (uint64_t) * 4;
10838 		break;
10839 
10840 	case DTRACEAGG_SUM:
10841 		agg->dtag_aggregate = dtrace_aggregate_sum;
10842 		break;
10843 
10844 	default:
10845 		goto err;
10846 	}
10847 
10848 	agg->dtag_action.dta_rec.dtrd_size = size;
10849 
10850 	if (ntuple == 0)
10851 		goto err;
10852 
10853 	/*
10854 	 * We must make sure that we have enough actions for the n-tuple.
10855 	 */
10856 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10857 		if (DTRACEACT_ISAGG(act->dta_kind))
10858 			break;
10859 
10860 		if (--ntuple == 0) {
10861 			/*
10862 			 * This is the action with which our n-tuple begins.
10863 			 */
10864 			agg->dtag_first = act;
10865 			goto success;
10866 		}
10867 	}
10868 
10869 	/*
10870 	 * This n-tuple is short by ntuple elements.  Return failure.
10871 	 */
10872 	ASSERT(ntuple != 0);
10873 err:
10874 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10875 	return (NULL);
10876 
10877 success:
10878 	/*
10879 	 * If the last action in the tuple has a size of zero, it's actually
10880 	 * an expression argument for the aggregating action.
10881 	 */
10882 	ASSERT(ecb->dte_action_last != NULL);
10883 	act = ecb->dte_action_last;
10884 
10885 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10886 		ASSERT(act->dta_difo != NULL);
10887 
10888 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10889 			agg->dtag_hasarg = 1;
10890 	}
10891 
10892 	/*
10893 	 * We need to allocate an id for this aggregation.
10894 	 */
10895 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10896 	    VM_BESTFIT | VM_SLEEP);
10897 
10898 	if (aggid - 1 >= state->dts_naggregations) {
10899 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10900 		dtrace_aggregation_t **aggs;
10901 		int naggs = state->dts_naggregations << 1;
10902 		int onaggs = state->dts_naggregations;
10903 
10904 		ASSERT(aggid == state->dts_naggregations + 1);
10905 
10906 		if (naggs == 0) {
10907 			ASSERT(oaggs == NULL);
10908 			naggs = 1;
10909 		}
10910 
10911 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10912 
10913 		if (oaggs != NULL) {
10914 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10915 			kmem_free(oaggs, onaggs * sizeof (*aggs));
10916 		}
10917 
10918 		state->dts_aggregations = aggs;
10919 		state->dts_naggregations = naggs;
10920 	}
10921 
10922 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10923 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10924 
10925 	frec = &agg->dtag_first->dta_rec;
10926 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10927 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10928 
10929 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10930 		ASSERT(!act->dta_intuple);
10931 		act->dta_intuple = 1;
10932 	}
10933 
10934 	return (&agg->dtag_action);
10935 }
10936 
10937 static void
10938 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10939 {
10940 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10941 	dtrace_state_t *state = ecb->dte_state;
10942 	dtrace_aggid_t aggid = agg->dtag_id;
10943 
10944 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10945 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10946 
10947 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10948 	state->dts_aggregations[aggid - 1] = NULL;
10949 
10950 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10951 }
10952 
10953 static int
10954 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10955 {
10956 	dtrace_action_t *action, *last;
10957 	dtrace_difo_t *dp = desc->dtad_difo;
10958 	uint32_t size = 0, align = sizeof (uint8_t), mask;
10959 	uint16_t format = 0;
10960 	dtrace_recdesc_t *rec;
10961 	dtrace_state_t *state = ecb->dte_state;
10962 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
10963 	uint64_t arg = desc->dtad_arg;
10964 
10965 	ASSERT(MUTEX_HELD(&dtrace_lock));
10966 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10967 
10968 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10969 		/*
10970 		 * If this is an aggregating action, there must be neither
10971 		 * a speculate nor a commit on the action chain.
10972 		 */
10973 		dtrace_action_t *act;
10974 
10975 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10976 			if (act->dta_kind == DTRACEACT_COMMIT)
10977 				return (EINVAL);
10978 
10979 			if (act->dta_kind == DTRACEACT_SPECULATE)
10980 				return (EINVAL);
10981 		}
10982 
10983 		action = dtrace_ecb_aggregation_create(ecb, desc);
10984 
10985 		if (action == NULL)
10986 			return (EINVAL);
10987 	} else {
10988 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10989 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10990 		    dp != NULL && dp->dtdo_destructive)) {
10991 			state->dts_destructive = 1;
10992 		}
10993 
10994 		switch (desc->dtad_kind) {
10995 		case DTRACEACT_PRINTF:
10996 		case DTRACEACT_PRINTA:
10997 		case DTRACEACT_SYSTEM:
10998 		case DTRACEACT_FREOPEN:
10999 		case DTRACEACT_DIFEXPR:
11000 			/*
11001 			 * We know that our arg is a string -- turn it into a
11002 			 * format.
11003 			 */
11004 			if (arg == 0) {
11005 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11006 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11007 				format = 0;
11008 			} else {
11009 				ASSERT(arg != NULL);
11010 				ASSERT(arg > KERNELBASE);
11011 				format = dtrace_format_add(state,
11012 				    (char *)(uintptr_t)arg);
11013 			}
11014 
11015 			/*FALLTHROUGH*/
11016 		case DTRACEACT_LIBACT:
11017 		case DTRACEACT_TRACEMEM:
11018 		case DTRACEACT_TRACEMEM_DYNSIZE:
11019 			if (dp == NULL)
11020 				return (EINVAL);
11021 
11022 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11023 				break;
11024 
11025 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11026 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11027 					return (EINVAL);
11028 
11029 				size = opt[DTRACEOPT_STRSIZE];
11030 			}
11031 
11032 			break;
11033 
11034 		case DTRACEACT_STACK:
11035 			if ((nframes = arg) == 0) {
11036 				nframes = opt[DTRACEOPT_STACKFRAMES];
11037 				ASSERT(nframes > 0);
11038 				arg = nframes;
11039 			}
11040 
11041 			size = nframes * sizeof (pc_t);
11042 			break;
11043 
11044 		case DTRACEACT_JSTACK:
11045 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11046 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11047 
11048 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11049 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11050 
11051 			arg = DTRACE_USTACK_ARG(nframes, strsize);
11052 
11053 			/*FALLTHROUGH*/
11054 		case DTRACEACT_USTACK:
11055 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11056 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11057 				strsize = DTRACE_USTACK_STRSIZE(arg);
11058 				nframes = opt[DTRACEOPT_USTACKFRAMES];
11059 				ASSERT(nframes > 0);
11060 				arg = DTRACE_USTACK_ARG(nframes, strsize);
11061 			}
11062 
11063 			/*
11064 			 * Save a slot for the pid.
11065 			 */
11066 			size = (nframes + 1) * sizeof (uint64_t);
11067 			size += DTRACE_USTACK_STRSIZE(arg);
11068 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11069 
11070 			break;
11071 
11072 		case DTRACEACT_SYM:
11073 		case DTRACEACT_MOD:
11074 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11075 			    sizeof (uint64_t)) ||
11076 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11077 				return (EINVAL);
11078 			break;
11079 
11080 		case DTRACEACT_USYM:
11081 		case DTRACEACT_UMOD:
11082 		case DTRACEACT_UADDR:
11083 			if (dp == NULL ||
11084 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11085 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11086 				return (EINVAL);
11087 
11088 			/*
11089 			 * We have a slot for the pid, plus a slot for the
11090 			 * argument.  To keep things simple (aligned with
11091 			 * bitness-neutral sizing), we store each as a 64-bit
11092 			 * quantity.
11093 			 */
11094 			size = 2 * sizeof (uint64_t);
11095 			break;
11096 
11097 		case DTRACEACT_STOP:
11098 		case DTRACEACT_BREAKPOINT:
11099 		case DTRACEACT_PANIC:
11100 			break;
11101 
11102 		case DTRACEACT_CHILL:
11103 		case DTRACEACT_DISCARD:
11104 		case DTRACEACT_RAISE:
11105 			if (dp == NULL)
11106 				return (EINVAL);
11107 			break;
11108 
11109 		case DTRACEACT_EXIT:
11110 			if (dp == NULL ||
11111 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11112 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11113 				return (EINVAL);
11114 			break;
11115 
11116 		case DTRACEACT_SPECULATE:
11117 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11118 				return (EINVAL);
11119 
11120 			if (dp == NULL)
11121 				return (EINVAL);
11122 
11123 			state->dts_speculates = 1;
11124 			break;
11125 
11126 		case DTRACEACT_COMMIT: {
11127 			dtrace_action_t *act = ecb->dte_action;
11128 
11129 			for (; act != NULL; act = act->dta_next) {
11130 				if (act->dta_kind == DTRACEACT_COMMIT)
11131 					return (EINVAL);
11132 			}
11133 
11134 			if (dp == NULL)
11135 				return (EINVAL);
11136 			break;
11137 		}
11138 
11139 		default:
11140 			return (EINVAL);
11141 		}
11142 
11143 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11144 			/*
11145 			 * If this is a data-storing action or a speculate,
11146 			 * we must be sure that there isn't a commit on the
11147 			 * action chain.
11148 			 */
11149 			dtrace_action_t *act = ecb->dte_action;
11150 
11151 			for (; act != NULL; act = act->dta_next) {
11152 				if (act->dta_kind == DTRACEACT_COMMIT)
11153 					return (EINVAL);
11154 			}
11155 		}
11156 
11157 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11158 		action->dta_rec.dtrd_size = size;
11159 	}
11160 
11161 	action->dta_refcnt = 1;
11162 	rec = &action->dta_rec;
11163 	size = rec->dtrd_size;
11164 
11165 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11166 		if (!(size & mask)) {
11167 			align = mask + 1;
11168 			break;
11169 		}
11170 	}
11171 
11172 	action->dta_kind = desc->dtad_kind;
11173 
11174 	if ((action->dta_difo = dp) != NULL)
11175 		dtrace_difo_hold(dp);
11176 
11177 	rec->dtrd_action = action->dta_kind;
11178 	rec->dtrd_arg = arg;
11179 	rec->dtrd_uarg = desc->dtad_uarg;
11180 	rec->dtrd_alignment = (uint16_t)align;
11181 	rec->dtrd_format = format;
11182 
11183 	if ((last = ecb->dte_action_last) != NULL) {
11184 		ASSERT(ecb->dte_action != NULL);
11185 		action->dta_prev = last;
11186 		last->dta_next = action;
11187 	} else {
11188 		ASSERT(ecb->dte_action == NULL);
11189 		ecb->dte_action = action;
11190 	}
11191 
11192 	ecb->dte_action_last = action;
11193 
11194 	return (0);
11195 }
11196 
11197 static void
11198 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11199 {
11200 	dtrace_action_t *act = ecb->dte_action, *next;
11201 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11202 	dtrace_difo_t *dp;
11203 	uint16_t format;
11204 
11205 	if (act != NULL && act->dta_refcnt > 1) {
11206 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11207 		act->dta_refcnt--;
11208 	} else {
11209 		for (; act != NULL; act = next) {
11210 			next = act->dta_next;
11211 			ASSERT(next != NULL || act == ecb->dte_action_last);
11212 			ASSERT(act->dta_refcnt == 1);
11213 
11214 			if ((format = act->dta_rec.dtrd_format) != 0)
11215 				dtrace_format_remove(ecb->dte_state, format);
11216 
11217 			if ((dp = act->dta_difo) != NULL)
11218 				dtrace_difo_release(dp, vstate);
11219 
11220 			if (DTRACEACT_ISAGG(act->dta_kind)) {
11221 				dtrace_ecb_aggregation_destroy(ecb, act);
11222 			} else {
11223 				kmem_free(act, sizeof (dtrace_action_t));
11224 			}
11225 		}
11226 	}
11227 
11228 	ecb->dte_action = NULL;
11229 	ecb->dte_action_last = NULL;
11230 	ecb->dte_size = 0;
11231 }
11232 
11233 static void
11234 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11235 {
11236 	/*
11237 	 * We disable the ECB by removing it from its probe.
11238 	 */
11239 	dtrace_ecb_t *pecb, *prev = NULL;
11240 	dtrace_probe_t *probe = ecb->dte_probe;
11241 
11242 	ASSERT(MUTEX_HELD(&dtrace_lock));
11243 
11244 	if (probe == NULL) {
11245 		/*
11246 		 * This is the NULL probe; there is nothing to disable.
11247 		 */
11248 		return;
11249 	}
11250 
11251 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11252 		if (pecb == ecb)
11253 			break;
11254 		prev = pecb;
11255 	}
11256 
11257 	ASSERT(pecb != NULL);
11258 
11259 	if (prev == NULL) {
11260 		probe->dtpr_ecb = ecb->dte_next;
11261 	} else {
11262 		prev->dte_next = ecb->dte_next;
11263 	}
11264 
11265 	if (ecb == probe->dtpr_ecb_last) {
11266 		ASSERT(ecb->dte_next == NULL);
11267 		probe->dtpr_ecb_last = prev;
11268 	}
11269 
11270 	/*
11271 	 * The ECB has been disconnected from the probe; now sync to assure
11272 	 * that all CPUs have seen the change before returning.
11273 	 */
11274 	dtrace_sync();
11275 
11276 	if (probe->dtpr_ecb == NULL) {
11277 		/*
11278 		 * That was the last ECB on the probe; clear the predicate
11279 		 * cache ID for the probe, disable it and sync one more time
11280 		 * to assure that we'll never hit it again.
11281 		 */
11282 		dtrace_provider_t *prov = probe->dtpr_provider;
11283 
11284 		ASSERT(ecb->dte_next == NULL);
11285 		ASSERT(probe->dtpr_ecb_last == NULL);
11286 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11287 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11288 		    probe->dtpr_id, probe->dtpr_arg);
11289 		dtrace_sync();
11290 	} else {
11291 		/*
11292 		 * There is at least one ECB remaining on the probe.  If there
11293 		 * is _exactly_ one, set the probe's predicate cache ID to be
11294 		 * the predicate cache ID of the remaining ECB.
11295 		 */
11296 		ASSERT(probe->dtpr_ecb_last != NULL);
11297 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11298 
11299 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11300 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11301 
11302 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11303 
11304 			if (p != NULL)
11305 				probe->dtpr_predcache = p->dtp_cacheid;
11306 		}
11307 
11308 		ecb->dte_next = NULL;
11309 	}
11310 }
11311 
11312 static void
11313 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11314 {
11315 	dtrace_state_t *state = ecb->dte_state;
11316 	dtrace_vstate_t *vstate = &state->dts_vstate;
11317 	dtrace_predicate_t *pred;
11318 	dtrace_epid_t epid = ecb->dte_epid;
11319 
11320 	ASSERT(MUTEX_HELD(&dtrace_lock));
11321 	ASSERT(ecb->dte_next == NULL);
11322 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11323 
11324 	if ((pred = ecb->dte_predicate) != NULL)
11325 		dtrace_predicate_release(pred, vstate);
11326 
11327 	dtrace_ecb_action_remove(ecb);
11328 
11329 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11330 	state->dts_ecbs[epid - 1] = NULL;
11331 
11332 	kmem_free(ecb, sizeof (dtrace_ecb_t));
11333 }
11334 
11335 static dtrace_ecb_t *
11336 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11337     dtrace_enabling_t *enab)
11338 {
11339 	dtrace_ecb_t *ecb;
11340 	dtrace_predicate_t *pred;
11341 	dtrace_actdesc_t *act;
11342 	dtrace_provider_t *prov;
11343 	dtrace_ecbdesc_t *desc = enab->dten_current;
11344 
11345 	ASSERT(MUTEX_HELD(&dtrace_lock));
11346 	ASSERT(state != NULL);
11347 
11348 	ecb = dtrace_ecb_add(state, probe);
11349 	ecb->dte_uarg = desc->dted_uarg;
11350 
11351 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11352 		dtrace_predicate_hold(pred);
11353 		ecb->dte_predicate = pred;
11354 	}
11355 
11356 	if (probe != NULL) {
11357 		/*
11358 		 * If the provider shows more leg than the consumer is old
11359 		 * enough to see, we need to enable the appropriate implicit
11360 		 * predicate bits to prevent the ecb from activating at
11361 		 * revealing times.
11362 		 *
11363 		 * Providers specifying DTRACE_PRIV_USER at register time
11364 		 * are stating that they need the /proc-style privilege
11365 		 * model to be enforced, and this is what DTRACE_COND_OWNER
11366 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11367 		 */
11368 		prov = probe->dtpr_provider;
11369 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11370 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11371 			ecb->dte_cond |= DTRACE_COND_OWNER;
11372 
11373 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11374 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11375 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11376 
11377 		/*
11378 		 * If the provider shows us kernel innards and the user
11379 		 * is lacking sufficient privilege, enable the
11380 		 * DTRACE_COND_USERMODE implicit predicate.
11381 		 */
11382 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11383 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11384 			ecb->dte_cond |= DTRACE_COND_USERMODE;
11385 	}
11386 
11387 	if (dtrace_ecb_create_cache != NULL) {
11388 		/*
11389 		 * If we have a cached ecb, we'll use its action list instead
11390 		 * of creating our own (saving both time and space).
11391 		 */
11392 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11393 		dtrace_action_t *act = cached->dte_action;
11394 
11395 		if (act != NULL) {
11396 			ASSERT(act->dta_refcnt > 0);
11397 			act->dta_refcnt++;
11398 			ecb->dte_action = act;
11399 			ecb->dte_action_last = cached->dte_action_last;
11400 			ecb->dte_needed = cached->dte_needed;
11401 			ecb->dte_size = cached->dte_size;
11402 			ecb->dte_alignment = cached->dte_alignment;
11403 		}
11404 
11405 		return (ecb);
11406 	}
11407 
11408 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11409 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11410 			dtrace_ecb_destroy(ecb);
11411 			return (NULL);
11412 		}
11413 	}
11414 
11415 	if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11416 		dtrace_ecb_destroy(ecb);
11417 		return (NULL);
11418 	}
11419 
11420 	return (dtrace_ecb_create_cache = ecb);
11421 }
11422 
11423 static int
11424 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11425 {
11426 	dtrace_ecb_t *ecb;
11427 	dtrace_enabling_t *enab = arg;
11428 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11429 
11430 	ASSERT(state != NULL);
11431 
11432 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11433 		/*
11434 		 * This probe was created in a generation for which this
11435 		 * enabling has previously created ECBs; we don't want to
11436 		 * enable it again, so just kick out.
11437 		 */
11438 		return (DTRACE_MATCH_NEXT);
11439 	}
11440 
11441 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11442 		return (DTRACE_MATCH_DONE);
11443 
11444 	if (dtrace_ecb_enable(ecb) < 0)
11445 		return (DTRACE_MATCH_FAIL);
11446 
11447 	return (DTRACE_MATCH_NEXT);
11448 }
11449 
11450 static dtrace_ecb_t *
11451 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11452 {
11453 	dtrace_ecb_t *ecb;
11454 
11455 	ASSERT(MUTEX_HELD(&dtrace_lock));
11456 
11457 	if (id == 0 || id > state->dts_necbs)
11458 		return (NULL);
11459 
11460 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11461 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11462 
11463 	return (state->dts_ecbs[id - 1]);
11464 }
11465 
11466 static dtrace_aggregation_t *
11467 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11468 {
11469 	dtrace_aggregation_t *agg;
11470 
11471 	ASSERT(MUTEX_HELD(&dtrace_lock));
11472 
11473 	if (id == 0 || id > state->dts_naggregations)
11474 		return (NULL);
11475 
11476 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11477 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11478 	    agg->dtag_id == id);
11479 
11480 	return (state->dts_aggregations[id - 1]);
11481 }
11482 
11483 /*
11484  * DTrace Buffer Functions
11485  *
11486  * The following functions manipulate DTrace buffers.  Most of these functions
11487  * are called in the context of establishing or processing consumer state;
11488  * exceptions are explicitly noted.
11489  */
11490 
11491 /*
11492  * Note:  called from cross call context.  This function switches the two
11493  * buffers on a given CPU.  The atomicity of this operation is assured by
11494  * disabling interrupts while the actual switch takes place; the disabling of
11495  * interrupts serializes the execution with any execution of dtrace_probe() on
11496  * the same CPU.
11497  */
11498 static void
11499 dtrace_buffer_switch(dtrace_buffer_t *buf)
11500 {
11501 	caddr_t tomax = buf->dtb_tomax;
11502 	caddr_t xamot = buf->dtb_xamot;
11503 	dtrace_icookie_t cookie;
11504 	hrtime_t now;
11505 
11506 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11507 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11508 
11509 	cookie = dtrace_interrupt_disable();
11510 	now = dtrace_gethrtime();
11511 	buf->dtb_tomax = xamot;
11512 	buf->dtb_xamot = tomax;
11513 	buf->dtb_xamot_drops = buf->dtb_drops;
11514 	buf->dtb_xamot_offset = buf->dtb_offset;
11515 	buf->dtb_xamot_errors = buf->dtb_errors;
11516 	buf->dtb_xamot_flags = buf->dtb_flags;
11517 	buf->dtb_offset = 0;
11518 	buf->dtb_drops = 0;
11519 	buf->dtb_errors = 0;
11520 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11521 	buf->dtb_interval = now - buf->dtb_switched;
11522 	buf->dtb_switched = now;
11523 	dtrace_interrupt_enable(cookie);
11524 }
11525 
11526 /*
11527  * Note:  called from cross call context.  This function activates a buffer
11528  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11529  * is guaranteed by the disabling of interrupts.
11530  */
11531 static void
11532 dtrace_buffer_activate(dtrace_state_t *state)
11533 {
11534 	dtrace_buffer_t *buf;
11535 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
11536 
11537 	buf = &state->dts_buffer[CPU->cpu_id];
11538 
11539 	if (buf->dtb_tomax != NULL) {
11540 		/*
11541 		 * We might like to assert that the buffer is marked inactive,
11542 		 * but this isn't necessarily true:  the buffer for the CPU
11543 		 * that processes the BEGIN probe has its buffer activated
11544 		 * manually.  In this case, we take the (harmless) action
11545 		 * re-clearing the bit INACTIVE bit.
11546 		 */
11547 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11548 	}
11549 
11550 	dtrace_interrupt_enable(cookie);
11551 }
11552 
11553 static int
11554 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11555     processorid_t cpu, int *factor)
11556 {
11557 	cpu_t *cp;
11558 	dtrace_buffer_t *buf;
11559 	int allocated = 0, desired = 0;
11560 
11561 	ASSERT(MUTEX_HELD(&cpu_lock));
11562 	ASSERT(MUTEX_HELD(&dtrace_lock));
11563 
11564 	*factor = 1;
11565 
11566 	if (size > dtrace_nonroot_maxsize &&
11567 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11568 		return (EFBIG);
11569 
11570 	cp = cpu_list;
11571 
11572 	do {
11573 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11574 			continue;
11575 
11576 		buf = &bufs[cp->cpu_id];
11577 
11578 		/*
11579 		 * If there is already a buffer allocated for this CPU, it
11580 		 * is only possible that this is a DR event.  In this case,
11581 		 * the buffer size must match our specified size.
11582 		 */
11583 		if (buf->dtb_tomax != NULL) {
11584 			ASSERT(buf->dtb_size == size);
11585 			continue;
11586 		}
11587 
11588 		ASSERT(buf->dtb_xamot == NULL);
11589 
11590 		if ((buf->dtb_tomax = kmem_zalloc(size,
11591 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11592 			goto err;
11593 
11594 		buf->dtb_size = size;
11595 		buf->dtb_flags = flags;
11596 		buf->dtb_offset = 0;
11597 		buf->dtb_drops = 0;
11598 
11599 		if (flags & DTRACEBUF_NOSWITCH)
11600 			continue;
11601 
11602 		if ((buf->dtb_xamot = kmem_zalloc(size,
11603 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11604 			goto err;
11605 	} while ((cp = cp->cpu_next) != cpu_list);
11606 
11607 	return (0);
11608 
11609 err:
11610 	cp = cpu_list;
11611 
11612 	do {
11613 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11614 			continue;
11615 
11616 		buf = &bufs[cp->cpu_id];
11617 		desired += 2;
11618 
11619 		if (buf->dtb_xamot != NULL) {
11620 			ASSERT(buf->dtb_tomax != NULL);
11621 			ASSERT(buf->dtb_size == size);
11622 			kmem_free(buf->dtb_xamot, size);
11623 			allocated++;
11624 		}
11625 
11626 		if (buf->dtb_tomax != NULL) {
11627 			ASSERT(buf->dtb_size == size);
11628 			kmem_free(buf->dtb_tomax, size);
11629 			allocated++;
11630 		}
11631 
11632 		buf->dtb_tomax = NULL;
11633 		buf->dtb_xamot = NULL;
11634 		buf->dtb_size = 0;
11635 	} while ((cp = cp->cpu_next) != cpu_list);
11636 
11637 	*factor = desired / (allocated > 0 ? allocated : 1);
11638 
11639 	return (ENOMEM);
11640 }
11641 
11642 /*
11643  * Note:  called from probe context.  This function just increments the drop
11644  * count on a buffer.  It has been made a function to allow for the
11645  * possibility of understanding the source of mysterious drop counts.  (A
11646  * problem for which one may be particularly disappointed that DTrace cannot
11647  * be used to understand DTrace.)
11648  */
11649 static void
11650 dtrace_buffer_drop(dtrace_buffer_t *buf)
11651 {
11652 	buf->dtb_drops++;
11653 }
11654 
11655 /*
11656  * Note:  called from probe context.  This function is called to reserve space
11657  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
11658  * mstate.  Returns the new offset in the buffer, or a negative value if an
11659  * error has occurred.
11660  */
11661 static intptr_t
11662 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11663     dtrace_state_t *state, dtrace_mstate_t *mstate)
11664 {
11665 	intptr_t offs = buf->dtb_offset, soffs;
11666 	intptr_t woffs;
11667 	caddr_t tomax;
11668 	size_t total;
11669 
11670 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11671 		return (-1);
11672 
11673 	if ((tomax = buf->dtb_tomax) == NULL) {
11674 		dtrace_buffer_drop(buf);
11675 		return (-1);
11676 	}
11677 
11678 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11679 		while (offs & (align - 1)) {
11680 			/*
11681 			 * Assert that our alignment is off by a number which
11682 			 * is itself sizeof (uint32_t) aligned.
11683 			 */
11684 			ASSERT(!((align - (offs & (align - 1))) &
11685 			    (sizeof (uint32_t) - 1)));
11686 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11687 			offs += sizeof (uint32_t);
11688 		}
11689 
11690 		if ((soffs = offs + needed) > buf->dtb_size) {
11691 			dtrace_buffer_drop(buf);
11692 			return (-1);
11693 		}
11694 
11695 		if (mstate == NULL)
11696 			return (offs);
11697 
11698 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11699 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
11700 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11701 
11702 		return (offs);
11703 	}
11704 
11705 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11706 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11707 		    (buf->dtb_flags & DTRACEBUF_FULL))
11708 			return (-1);
11709 		goto out;
11710 	}
11711 
11712 	total = needed + (offs & (align - 1));
11713 
11714 	/*
11715 	 * For a ring buffer, life is quite a bit more complicated.  Before
11716 	 * we can store any padding, we need to adjust our wrapping offset.
11717 	 * (If we've never before wrapped or we're not about to, no adjustment
11718 	 * is required.)
11719 	 */
11720 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11721 	    offs + total > buf->dtb_size) {
11722 		woffs = buf->dtb_xamot_offset;
11723 
11724 		if (offs + total > buf->dtb_size) {
11725 			/*
11726 			 * We can't fit in the end of the buffer.  First, a
11727 			 * sanity check that we can fit in the buffer at all.
11728 			 */
11729 			if (total > buf->dtb_size) {
11730 				dtrace_buffer_drop(buf);
11731 				return (-1);
11732 			}
11733 
11734 			/*
11735 			 * We're going to be storing at the top of the buffer,
11736 			 * so now we need to deal with the wrapped offset.  We
11737 			 * only reset our wrapped offset to 0 if it is
11738 			 * currently greater than the current offset.  If it
11739 			 * is less than the current offset, it is because a
11740 			 * previous allocation induced a wrap -- but the
11741 			 * allocation didn't subsequently take the space due
11742 			 * to an error or false predicate evaluation.  In this
11743 			 * case, we'll just leave the wrapped offset alone: if
11744 			 * the wrapped offset hasn't been advanced far enough
11745 			 * for this allocation, it will be adjusted in the
11746 			 * lower loop.
11747 			 */
11748 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11749 				if (woffs >= offs)
11750 					woffs = 0;
11751 			} else {
11752 				woffs = 0;
11753 			}
11754 
11755 			/*
11756 			 * Now we know that we're going to be storing to the
11757 			 * top of the buffer and that there is room for us
11758 			 * there.  We need to clear the buffer from the current
11759 			 * offset to the end (there may be old gunk there).
11760 			 */
11761 			while (offs < buf->dtb_size)
11762 				tomax[offs++] = 0;
11763 
11764 			/*
11765 			 * We need to set our offset to zero.  And because we
11766 			 * are wrapping, we need to set the bit indicating as
11767 			 * much.  We can also adjust our needed space back
11768 			 * down to the space required by the ECB -- we know
11769 			 * that the top of the buffer is aligned.
11770 			 */
11771 			offs = 0;
11772 			total = needed;
11773 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
11774 		} else {
11775 			/*
11776 			 * There is room for us in the buffer, so we simply
11777 			 * need to check the wrapped offset.
11778 			 */
11779 			if (woffs < offs) {
11780 				/*
11781 				 * The wrapped offset is less than the offset.
11782 				 * This can happen if we allocated buffer space
11783 				 * that induced a wrap, but then we didn't
11784 				 * subsequently take the space due to an error
11785 				 * or false predicate evaluation.  This is
11786 				 * okay; we know that _this_ allocation isn't
11787 				 * going to induce a wrap.  We still can't
11788 				 * reset the wrapped offset to be zero,
11789 				 * however: the space may have been trashed in
11790 				 * the previous failed probe attempt.  But at
11791 				 * least the wrapped offset doesn't need to
11792 				 * be adjusted at all...
11793 				 */
11794 				goto out;
11795 			}
11796 		}
11797 
11798 		while (offs + total > woffs) {
11799 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11800 			size_t size;
11801 
11802 			if (epid == DTRACE_EPIDNONE) {
11803 				size = sizeof (uint32_t);
11804 			} else {
11805 				ASSERT3U(epid, <=, state->dts_necbs);
11806 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11807 
11808 				size = state->dts_ecbs[epid - 1]->dte_size;
11809 			}
11810 
11811 			ASSERT(woffs + size <= buf->dtb_size);
11812 			ASSERT(size != 0);
11813 
11814 			if (woffs + size == buf->dtb_size) {
11815 				/*
11816 				 * We've reached the end of the buffer; we want
11817 				 * to set the wrapped offset to 0 and break
11818 				 * out.  However, if the offs is 0, then we're
11819 				 * in a strange edge-condition:  the amount of
11820 				 * space that we want to reserve plus the size
11821 				 * of the record that we're overwriting is
11822 				 * greater than the size of the buffer.  This
11823 				 * is problematic because if we reserve the
11824 				 * space but subsequently don't consume it (due
11825 				 * to a failed predicate or error) the wrapped
11826 				 * offset will be 0 -- yet the EPID at offset 0
11827 				 * will not be committed.  This situation is
11828 				 * relatively easy to deal with:  if we're in
11829 				 * this case, the buffer is indistinguishable
11830 				 * from one that hasn't wrapped; we need only
11831 				 * finish the job by clearing the wrapped bit,
11832 				 * explicitly setting the offset to be 0, and
11833 				 * zero'ing out the old data in the buffer.
11834 				 */
11835 				if (offs == 0) {
11836 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11837 					buf->dtb_offset = 0;
11838 					woffs = total;
11839 
11840 					while (woffs < buf->dtb_size)
11841 						tomax[woffs++] = 0;
11842 				}
11843 
11844 				woffs = 0;
11845 				break;
11846 			}
11847 
11848 			woffs += size;
11849 		}
11850 
11851 		/*
11852 		 * We have a wrapped offset.  It may be that the wrapped offset
11853 		 * has become zero -- that's okay.
11854 		 */
11855 		buf->dtb_xamot_offset = woffs;
11856 	}
11857 
11858 out:
11859 	/*
11860 	 * Now we can plow the buffer with any necessary padding.
11861 	 */
11862 	while (offs & (align - 1)) {
11863 		/*
11864 		 * Assert that our alignment is off by a number which
11865 		 * is itself sizeof (uint32_t) aligned.
11866 		 */
11867 		ASSERT(!((align - (offs & (align - 1))) &
11868 		    (sizeof (uint32_t) - 1)));
11869 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11870 		offs += sizeof (uint32_t);
11871 	}
11872 
11873 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11874 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11875 			buf->dtb_flags |= DTRACEBUF_FULL;
11876 			return (-1);
11877 		}
11878 	}
11879 
11880 	if (mstate == NULL)
11881 		return (offs);
11882 
11883 	/*
11884 	 * For ring buffers and fill buffers, the scratch space is always
11885 	 * the inactive buffer.
11886 	 */
11887 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11888 	mstate->dtms_scratch_size = buf->dtb_size;
11889 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11890 
11891 	return (offs);
11892 }
11893 
11894 static void
11895 dtrace_buffer_polish(dtrace_buffer_t *buf)
11896 {
11897 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11898 	ASSERT(MUTEX_HELD(&dtrace_lock));
11899 
11900 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11901 		return;
11902 
11903 	/*
11904 	 * We need to polish the ring buffer.  There are three cases:
11905 	 *
11906 	 * - The first (and presumably most common) is that there is no gap
11907 	 *   between the buffer offset and the wrapped offset.  In this case,
11908 	 *   there is nothing in the buffer that isn't valid data; we can
11909 	 *   mark the buffer as polished and return.
11910 	 *
11911 	 * - The second (less common than the first but still more common
11912 	 *   than the third) is that there is a gap between the buffer offset
11913 	 *   and the wrapped offset, and the wrapped offset is larger than the
11914 	 *   buffer offset.  This can happen because of an alignment issue, or
11915 	 *   can happen because of a call to dtrace_buffer_reserve() that
11916 	 *   didn't subsequently consume the buffer space.  In this case,
11917 	 *   we need to zero the data from the buffer offset to the wrapped
11918 	 *   offset.
11919 	 *
11920 	 * - The third (and least common) is that there is a gap between the
11921 	 *   buffer offset and the wrapped offset, but the wrapped offset is
11922 	 *   _less_ than the buffer offset.  This can only happen because a
11923 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11924 	 *   was not subsequently consumed.  In this case, we need to zero the
11925 	 *   space from the offset to the end of the buffer _and_ from the
11926 	 *   top of the buffer to the wrapped offset.
11927 	 */
11928 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11929 		bzero(buf->dtb_tomax + buf->dtb_offset,
11930 		    buf->dtb_xamot_offset - buf->dtb_offset);
11931 	}
11932 
11933 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11934 		bzero(buf->dtb_tomax + buf->dtb_offset,
11935 		    buf->dtb_size - buf->dtb_offset);
11936 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11937 	}
11938 }
11939 
11940 /*
11941  * This routine determines if data generated at the specified time has likely
11942  * been entirely consumed at user-level.  This routine is called to determine
11943  * if an ECB on a defunct probe (but for an active enabling) can be safely
11944  * disabled and destroyed.
11945  */
11946 static int
11947 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11948 {
11949 	int i;
11950 
11951 	for (i = 0; i < NCPU; i++) {
11952 		dtrace_buffer_t *buf = &bufs[i];
11953 
11954 		if (buf->dtb_size == 0)
11955 			continue;
11956 
11957 		if (buf->dtb_flags & DTRACEBUF_RING)
11958 			return (0);
11959 
11960 		if (!buf->dtb_switched && buf->dtb_offset != 0)
11961 			return (0);
11962 
11963 		if (buf->dtb_switched - buf->dtb_interval < when)
11964 			return (0);
11965 	}
11966 
11967 	return (1);
11968 }
11969 
11970 static void
11971 dtrace_buffer_free(dtrace_buffer_t *bufs)
11972 {
11973 	int i;
11974 
11975 	for (i = 0; i < NCPU; i++) {
11976 		dtrace_buffer_t *buf = &bufs[i];
11977 
11978 		if (buf->dtb_tomax == NULL) {
11979 			ASSERT(buf->dtb_xamot == NULL);
11980 			ASSERT(buf->dtb_size == 0);
11981 			continue;
11982 		}
11983 
11984 		if (buf->dtb_xamot != NULL) {
11985 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11986 			kmem_free(buf->dtb_xamot, buf->dtb_size);
11987 		}
11988 
11989 		kmem_free(buf->dtb_tomax, buf->dtb_size);
11990 		buf->dtb_size = 0;
11991 		buf->dtb_tomax = NULL;
11992 		buf->dtb_xamot = NULL;
11993 	}
11994 }
11995 
11996 /*
11997  * DTrace Enabling Functions
11998  */
11999 static dtrace_enabling_t *
12000 dtrace_enabling_create(dtrace_vstate_t *vstate)
12001 {
12002 	dtrace_enabling_t *enab;
12003 
12004 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12005 	enab->dten_vstate = vstate;
12006 
12007 	return (enab);
12008 }
12009 
12010 static void
12011 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12012 {
12013 	dtrace_ecbdesc_t **ndesc;
12014 	size_t osize, nsize;
12015 
12016 	/*
12017 	 * We can't add to enablings after we've enabled them, or after we've
12018 	 * retained them.
12019 	 */
12020 	ASSERT(enab->dten_probegen == 0);
12021 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12022 
12023 	if (enab->dten_ndesc < enab->dten_maxdesc) {
12024 		enab->dten_desc[enab->dten_ndesc++] = ecb;
12025 		return;
12026 	}
12027 
12028 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12029 
12030 	if (enab->dten_maxdesc == 0) {
12031 		enab->dten_maxdesc = 1;
12032 	} else {
12033 		enab->dten_maxdesc <<= 1;
12034 	}
12035 
12036 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12037 
12038 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12039 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12040 	bcopy(enab->dten_desc, ndesc, osize);
12041 	kmem_free(enab->dten_desc, osize);
12042 
12043 	enab->dten_desc = ndesc;
12044 	enab->dten_desc[enab->dten_ndesc++] = ecb;
12045 }
12046 
12047 static void
12048 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12049     dtrace_probedesc_t *pd)
12050 {
12051 	dtrace_ecbdesc_t *new;
12052 	dtrace_predicate_t *pred;
12053 	dtrace_actdesc_t *act;
12054 
12055 	/*
12056 	 * We're going to create a new ECB description that matches the
12057 	 * specified ECB in every way, but has the specified probe description.
12058 	 */
12059 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12060 
12061 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12062 		dtrace_predicate_hold(pred);
12063 
12064 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12065 		dtrace_actdesc_hold(act);
12066 
12067 	new->dted_action = ecb->dted_action;
12068 	new->dted_pred = ecb->dted_pred;
12069 	new->dted_probe = *pd;
12070 	new->dted_uarg = ecb->dted_uarg;
12071 
12072 	dtrace_enabling_add(enab, new);
12073 }
12074 
12075 static void
12076 dtrace_enabling_dump(dtrace_enabling_t *enab)
12077 {
12078 	int i;
12079 
12080 	for (i = 0; i < enab->dten_ndesc; i++) {
12081 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12082 
12083 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12084 		    desc->dtpd_provider, desc->dtpd_mod,
12085 		    desc->dtpd_func, desc->dtpd_name);
12086 	}
12087 }
12088 
12089 static void
12090 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12091 {
12092 	int i;
12093 	dtrace_ecbdesc_t *ep;
12094 	dtrace_vstate_t *vstate = enab->dten_vstate;
12095 
12096 	ASSERT(MUTEX_HELD(&dtrace_lock));
12097 
12098 	for (i = 0; i < enab->dten_ndesc; i++) {
12099 		dtrace_actdesc_t *act, *next;
12100 		dtrace_predicate_t *pred;
12101 
12102 		ep = enab->dten_desc[i];
12103 
12104 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12105 			dtrace_predicate_release(pred, vstate);
12106 
12107 		for (act = ep->dted_action; act != NULL; act = next) {
12108 			next = act->dtad_next;
12109 			dtrace_actdesc_release(act, vstate);
12110 		}
12111 
12112 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12113 	}
12114 
12115 	kmem_free(enab->dten_desc,
12116 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12117 
12118 	/*
12119 	 * If this was a retained enabling, decrement the dts_nretained count
12120 	 * and take it off of the dtrace_retained list.
12121 	 */
12122 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12123 	    dtrace_retained == enab) {
12124 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12125 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12126 		enab->dten_vstate->dtvs_state->dts_nretained--;
12127 		dtrace_retained_gen++;
12128 	}
12129 
12130 	if (enab->dten_prev == NULL) {
12131 		if (dtrace_retained == enab) {
12132 			dtrace_retained = enab->dten_next;
12133 
12134 			if (dtrace_retained != NULL)
12135 				dtrace_retained->dten_prev = NULL;
12136 		}
12137 	} else {
12138 		ASSERT(enab != dtrace_retained);
12139 		ASSERT(dtrace_retained != NULL);
12140 		enab->dten_prev->dten_next = enab->dten_next;
12141 	}
12142 
12143 	if (enab->dten_next != NULL) {
12144 		ASSERT(dtrace_retained != NULL);
12145 		enab->dten_next->dten_prev = enab->dten_prev;
12146 	}
12147 
12148 	kmem_free(enab, sizeof (dtrace_enabling_t));
12149 }
12150 
12151 static int
12152 dtrace_enabling_retain(dtrace_enabling_t *enab)
12153 {
12154 	dtrace_state_t *state;
12155 
12156 	ASSERT(MUTEX_HELD(&dtrace_lock));
12157 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12158 	ASSERT(enab->dten_vstate != NULL);
12159 
12160 	state = enab->dten_vstate->dtvs_state;
12161 	ASSERT(state != NULL);
12162 
12163 	/*
12164 	 * We only allow each state to retain dtrace_retain_max enablings.
12165 	 */
12166 	if (state->dts_nretained >= dtrace_retain_max)
12167 		return (ENOSPC);
12168 
12169 	state->dts_nretained++;
12170 	dtrace_retained_gen++;
12171 
12172 	if (dtrace_retained == NULL) {
12173 		dtrace_retained = enab;
12174 		return (0);
12175 	}
12176 
12177 	enab->dten_next = dtrace_retained;
12178 	dtrace_retained->dten_prev = enab;
12179 	dtrace_retained = enab;
12180 
12181 	return (0);
12182 }
12183 
12184 static int
12185 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12186     dtrace_probedesc_t *create)
12187 {
12188 	dtrace_enabling_t *new, *enab;
12189 	int found = 0, err = ENOENT;
12190 
12191 	ASSERT(MUTEX_HELD(&dtrace_lock));
12192 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12193 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12194 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12195 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12196 
12197 	new = dtrace_enabling_create(&state->dts_vstate);
12198 
12199 	/*
12200 	 * Iterate over all retained enablings, looking for enablings that
12201 	 * match the specified state.
12202 	 */
12203 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12204 		int i;
12205 
12206 		/*
12207 		 * dtvs_state can only be NULL for helper enablings -- and
12208 		 * helper enablings can't be retained.
12209 		 */
12210 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12211 
12212 		if (enab->dten_vstate->dtvs_state != state)
12213 			continue;
12214 
12215 		/*
12216 		 * Now iterate over each probe description; we're looking for
12217 		 * an exact match to the specified probe description.
12218 		 */
12219 		for (i = 0; i < enab->dten_ndesc; i++) {
12220 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12221 			dtrace_probedesc_t *pd = &ep->dted_probe;
12222 
12223 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12224 				continue;
12225 
12226 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12227 				continue;
12228 
12229 			if (strcmp(pd->dtpd_func, match->dtpd_func))
12230 				continue;
12231 
12232 			if (strcmp(pd->dtpd_name, match->dtpd_name))
12233 				continue;
12234 
12235 			/*
12236 			 * We have a winning probe!  Add it to our growing
12237 			 * enabling.
12238 			 */
12239 			found = 1;
12240 			dtrace_enabling_addlike(new, ep, create);
12241 		}
12242 	}
12243 
12244 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12245 		dtrace_enabling_destroy(new);
12246 		return (err);
12247 	}
12248 
12249 	return (0);
12250 }
12251 
12252 static void
12253 dtrace_enabling_retract(dtrace_state_t *state)
12254 {
12255 	dtrace_enabling_t *enab, *next;
12256 
12257 	ASSERT(MUTEX_HELD(&dtrace_lock));
12258 
12259 	/*
12260 	 * Iterate over all retained enablings, destroy the enablings retained
12261 	 * for the specified state.
12262 	 */
12263 	for (enab = dtrace_retained; enab != NULL; enab = next) {
12264 		next = enab->dten_next;
12265 
12266 		/*
12267 		 * dtvs_state can only be NULL for helper enablings -- and
12268 		 * helper enablings can't be retained.
12269 		 */
12270 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12271 
12272 		if (enab->dten_vstate->dtvs_state == state) {
12273 			ASSERT(state->dts_nretained > 0);
12274 			dtrace_enabling_destroy(enab);
12275 		}
12276 	}
12277 
12278 	ASSERT(state->dts_nretained == 0);
12279 }
12280 
12281 static int
12282 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12283 {
12284 	int i = 0;
12285 	int total_matched = 0, matched = 0;
12286 
12287 	ASSERT(MUTEX_HELD(&cpu_lock));
12288 	ASSERT(MUTEX_HELD(&dtrace_lock));
12289 
12290 	for (i = 0; i < enab->dten_ndesc; i++) {
12291 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12292 
12293 		enab->dten_current = ep;
12294 		enab->dten_error = 0;
12295 
12296 		/*
12297 		 * If a provider failed to enable a probe then get out and
12298 		 * let the consumer know we failed.
12299 		 */
12300 		if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
12301 			return (EBUSY);
12302 
12303 		total_matched += matched;
12304 
12305 		if (enab->dten_error != 0) {
12306 			/*
12307 			 * If we get an error half-way through enabling the
12308 			 * probes, we kick out -- perhaps with some number of
12309 			 * them enabled.  Leaving enabled probes enabled may
12310 			 * be slightly confusing for user-level, but we expect
12311 			 * that no one will attempt to actually drive on in
12312 			 * the face of such errors.  If this is an anonymous
12313 			 * enabling (indicated with a NULL nmatched pointer),
12314 			 * we cmn_err() a message.  We aren't expecting to
12315 			 * get such an error -- such as it can exist at all,
12316 			 * it would be a result of corrupted DOF in the driver
12317 			 * properties.
12318 			 */
12319 			if (nmatched == NULL) {
12320 				cmn_err(CE_WARN, "dtrace_enabling_match() "
12321 				    "error on %p: %d", (void *)ep,
12322 				    enab->dten_error);
12323 			}
12324 
12325 			return (enab->dten_error);
12326 		}
12327 	}
12328 
12329 	enab->dten_probegen = dtrace_probegen;
12330 	if (nmatched != NULL)
12331 		*nmatched = total_matched;
12332 
12333 	return (0);
12334 }
12335 
12336 static void
12337 dtrace_enabling_matchall(void)
12338 {
12339 	dtrace_enabling_t *enab;
12340 
12341 	mutex_enter(&cpu_lock);
12342 	mutex_enter(&dtrace_lock);
12343 
12344 	/*
12345 	 * Iterate over all retained enablings to see if any probes match
12346 	 * against them.  We only perform this operation on enablings for which
12347 	 * we have sufficient permissions by virtue of being in the global zone
12348 	 * or in the same zone as the DTrace client.  Because we can be called
12349 	 * after dtrace_detach() has been called, we cannot assert that there
12350 	 * are retained enablings.  We can safely load from dtrace_retained,
12351 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12352 	 * block pending our completion.
12353 	 */
12354 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12355 		dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
12356 		cred_t *cr = dcr->dcr_cred;
12357 		zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
12358 
12359 		if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
12360 		    (zone == GLOBAL_ZONEID || getzoneid() == zone)))
12361 			(void) dtrace_enabling_match(enab, NULL);
12362 	}
12363 
12364 	mutex_exit(&dtrace_lock);
12365 	mutex_exit(&cpu_lock);
12366 }
12367 
12368 /*
12369  * If an enabling is to be enabled without having matched probes (that is, if
12370  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12371  * enabling must be _primed_ by creating an ECB for every ECB description.
12372  * This must be done to assure that we know the number of speculations, the
12373  * number of aggregations, the minimum buffer size needed, etc. before we
12374  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12375  * enabling any probes, we create ECBs for every ECB decription, but with a
12376  * NULL probe -- which is exactly what this function does.
12377  */
12378 static void
12379 dtrace_enabling_prime(dtrace_state_t *state)
12380 {
12381 	dtrace_enabling_t *enab;
12382 	int i;
12383 
12384 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12385 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12386 
12387 		if (enab->dten_vstate->dtvs_state != state)
12388 			continue;
12389 
12390 		/*
12391 		 * We don't want to prime an enabling more than once, lest
12392 		 * we allow a malicious user to induce resource exhaustion.
12393 		 * (The ECBs that result from priming an enabling aren't
12394 		 * leaked -- but they also aren't deallocated until the
12395 		 * consumer state is destroyed.)
12396 		 */
12397 		if (enab->dten_primed)
12398 			continue;
12399 
12400 		for (i = 0; i < enab->dten_ndesc; i++) {
12401 			enab->dten_current = enab->dten_desc[i];
12402 			(void) dtrace_probe_enable(NULL, enab);
12403 		}
12404 
12405 		enab->dten_primed = 1;
12406 	}
12407 }
12408 
12409 /*
12410  * Called to indicate that probes should be provided due to retained
12411  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12412  * must take an initial lap through the enabling calling the dtps_provide()
12413  * entry point explicitly to allow for autocreated probes.
12414  */
12415 static void
12416 dtrace_enabling_provide(dtrace_provider_t *prv)
12417 {
12418 	int i, all = 0;
12419 	dtrace_probedesc_t desc;
12420 	dtrace_genid_t gen;
12421 
12422 	ASSERT(MUTEX_HELD(&dtrace_lock));
12423 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12424 
12425 	if (prv == NULL) {
12426 		all = 1;
12427 		prv = dtrace_provider;
12428 	}
12429 
12430 	do {
12431 		dtrace_enabling_t *enab;
12432 		void *parg = prv->dtpv_arg;
12433 
12434 retry:
12435 		gen = dtrace_retained_gen;
12436 		for (enab = dtrace_retained; enab != NULL;
12437 		    enab = enab->dten_next) {
12438 			for (i = 0; i < enab->dten_ndesc; i++) {
12439 				desc = enab->dten_desc[i]->dted_probe;
12440 				mutex_exit(&dtrace_lock);
12441 				prv->dtpv_pops.dtps_provide(parg, &desc);
12442 				mutex_enter(&dtrace_lock);
12443 				/*
12444 				 * Process the retained enablings again if
12445 				 * they have changed while we weren't holding
12446 				 * dtrace_lock.
12447 				 */
12448 				if (gen != dtrace_retained_gen)
12449 					goto retry;
12450 			}
12451 		}
12452 	} while (all && (prv = prv->dtpv_next) != NULL);
12453 
12454 	mutex_exit(&dtrace_lock);
12455 	dtrace_probe_provide(NULL, all ? NULL : prv);
12456 	mutex_enter(&dtrace_lock);
12457 }
12458 
12459 /*
12460  * Called to reap ECBs that are attached to probes from defunct providers.
12461  */
12462 static void
12463 dtrace_enabling_reap(void)
12464 {
12465 	dtrace_provider_t *prov;
12466 	dtrace_probe_t *probe;
12467 	dtrace_ecb_t *ecb;
12468 	hrtime_t when;
12469 	int i;
12470 
12471 	mutex_enter(&cpu_lock);
12472 	mutex_enter(&dtrace_lock);
12473 
12474 	for (i = 0; i < dtrace_nprobes; i++) {
12475 		if ((probe = dtrace_probes[i]) == NULL)
12476 			continue;
12477 
12478 		if (probe->dtpr_ecb == NULL)
12479 			continue;
12480 
12481 		prov = probe->dtpr_provider;
12482 
12483 		if ((when = prov->dtpv_defunct) == 0)
12484 			continue;
12485 
12486 		/*
12487 		 * We have ECBs on a defunct provider:  we want to reap these
12488 		 * ECBs to allow the provider to unregister.  The destruction
12489 		 * of these ECBs must be done carefully:  if we destroy the ECB
12490 		 * and the consumer later wishes to consume an EPID that
12491 		 * corresponds to the destroyed ECB (and if the EPID metadata
12492 		 * has not been previously consumed), the consumer will abort
12493 		 * processing on the unknown EPID.  To reduce (but not, sadly,
12494 		 * eliminate) the possibility of this, we will only destroy an
12495 		 * ECB for a defunct provider if, for the state that
12496 		 * corresponds to the ECB:
12497 		 *
12498 		 *  (a)	There is no speculative tracing (which can effectively
12499 		 *	cache an EPID for an arbitrary amount of time).
12500 		 *
12501 		 *  (b)	The principal buffers have been switched twice since the
12502 		 *	provider became defunct.
12503 		 *
12504 		 *  (c)	The aggregation buffers are of zero size or have been
12505 		 *	switched twice since the provider became defunct.
12506 		 *
12507 		 * We use dts_speculates to determine (a) and call a function
12508 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
12509 		 * that as soon as we've been unable to destroy one of the ECBs
12510 		 * associated with the probe, we quit trying -- reaping is only
12511 		 * fruitful in as much as we can destroy all ECBs associated
12512 		 * with the defunct provider's probes.
12513 		 */
12514 		while ((ecb = probe->dtpr_ecb) != NULL) {
12515 			dtrace_state_t *state = ecb->dte_state;
12516 			dtrace_buffer_t *buf = state->dts_buffer;
12517 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12518 
12519 			if (state->dts_speculates)
12520 				break;
12521 
12522 			if (!dtrace_buffer_consumed(buf, when))
12523 				break;
12524 
12525 			if (!dtrace_buffer_consumed(aggbuf, when))
12526 				break;
12527 
12528 			dtrace_ecb_disable(ecb);
12529 			ASSERT(probe->dtpr_ecb != ecb);
12530 			dtrace_ecb_destroy(ecb);
12531 		}
12532 	}
12533 
12534 	mutex_exit(&dtrace_lock);
12535 	mutex_exit(&cpu_lock);
12536 }
12537 
12538 /*
12539  * DTrace DOF Functions
12540  */
12541 /*ARGSUSED*/
12542 static void
12543 dtrace_dof_error(dof_hdr_t *dof, const char *str)
12544 {
12545 	if (dtrace_err_verbose)
12546 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
12547 
12548 #ifdef DTRACE_ERRDEBUG
12549 	dtrace_errdebug(str);
12550 #endif
12551 }
12552 
12553 /*
12554  * Create DOF out of a currently enabled state.  Right now, we only create
12555  * DOF containing the run-time options -- but this could be expanded to create
12556  * complete DOF representing the enabled state.
12557  */
12558 static dof_hdr_t *
12559 dtrace_dof_create(dtrace_state_t *state)
12560 {
12561 	dof_hdr_t *dof;
12562 	dof_sec_t *sec;
12563 	dof_optdesc_t *opt;
12564 	int i, len = sizeof (dof_hdr_t) +
12565 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12566 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12567 
12568 	ASSERT(MUTEX_HELD(&dtrace_lock));
12569 
12570 	dof = kmem_zalloc(len, KM_SLEEP);
12571 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12572 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12573 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12574 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12575 
12576 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12577 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12578 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12579 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12580 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12581 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12582 
12583 	dof->dofh_flags = 0;
12584 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
12585 	dof->dofh_secsize = sizeof (dof_sec_t);
12586 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
12587 	dof->dofh_secoff = sizeof (dof_hdr_t);
12588 	dof->dofh_loadsz = len;
12589 	dof->dofh_filesz = len;
12590 	dof->dofh_pad = 0;
12591 
12592 	/*
12593 	 * Fill in the option section header...
12594 	 */
12595 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12596 	sec->dofs_type = DOF_SECT_OPTDESC;
12597 	sec->dofs_align = sizeof (uint64_t);
12598 	sec->dofs_flags = DOF_SECF_LOAD;
12599 	sec->dofs_entsize = sizeof (dof_optdesc_t);
12600 
12601 	opt = (dof_optdesc_t *)((uintptr_t)sec +
12602 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12603 
12604 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12605 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12606 
12607 	for (i = 0; i < DTRACEOPT_MAX; i++) {
12608 		opt[i].dofo_option = i;
12609 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
12610 		opt[i].dofo_value = state->dts_options[i];
12611 	}
12612 
12613 	return (dof);
12614 }
12615 
12616 static dof_hdr_t *
12617 dtrace_dof_copyin(uintptr_t uarg, int *errp)
12618 {
12619 	dof_hdr_t hdr, *dof;
12620 
12621 	ASSERT(!MUTEX_HELD(&dtrace_lock));
12622 
12623 	/*
12624 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
12625 	 */
12626 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12627 		dtrace_dof_error(NULL, "failed to copyin DOF header");
12628 		*errp = EFAULT;
12629 		return (NULL);
12630 	}
12631 
12632 	/*
12633 	 * Now we'll allocate the entire DOF and copy it in -- provided
12634 	 * that the length isn't outrageous.
12635 	 */
12636 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12637 		dtrace_dof_error(&hdr, "load size exceeds maximum");
12638 		*errp = E2BIG;
12639 		return (NULL);
12640 	}
12641 
12642 	if (hdr.dofh_loadsz < sizeof (hdr)) {
12643 		dtrace_dof_error(&hdr, "invalid load size");
12644 		*errp = EINVAL;
12645 		return (NULL);
12646 	}
12647 
12648 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12649 
12650 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12651 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
12652 		kmem_free(dof, hdr.dofh_loadsz);
12653 		*errp = EFAULT;
12654 		return (NULL);
12655 	}
12656 
12657 	return (dof);
12658 }
12659 
12660 static dof_hdr_t *
12661 dtrace_dof_property(const char *name)
12662 {
12663 	uchar_t *buf;
12664 	uint64_t loadsz;
12665 	unsigned int len, i;
12666 	dof_hdr_t *dof;
12667 
12668 	/*
12669 	 * Unfortunately, array of values in .conf files are always (and
12670 	 * only) interpreted to be integer arrays.  We must read our DOF
12671 	 * as an integer array, and then squeeze it into a byte array.
12672 	 */
12673 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12674 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12675 		return (NULL);
12676 
12677 	for (i = 0; i < len; i++)
12678 		buf[i] = (uchar_t)(((int *)buf)[i]);
12679 
12680 	if (len < sizeof (dof_hdr_t)) {
12681 		ddi_prop_free(buf);
12682 		dtrace_dof_error(NULL, "truncated header");
12683 		return (NULL);
12684 	}
12685 
12686 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12687 		ddi_prop_free(buf);
12688 		dtrace_dof_error(NULL, "truncated DOF");
12689 		return (NULL);
12690 	}
12691 
12692 	if (loadsz >= dtrace_dof_maxsize) {
12693 		ddi_prop_free(buf);
12694 		dtrace_dof_error(NULL, "oversized DOF");
12695 		return (NULL);
12696 	}
12697 
12698 	dof = kmem_alloc(loadsz, KM_SLEEP);
12699 	bcopy(buf, dof, loadsz);
12700 	ddi_prop_free(buf);
12701 
12702 	return (dof);
12703 }
12704 
12705 static void
12706 dtrace_dof_destroy(dof_hdr_t *dof)
12707 {
12708 	kmem_free(dof, dof->dofh_loadsz);
12709 }
12710 
12711 /*
12712  * Return the dof_sec_t pointer corresponding to a given section index.  If the
12713  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12714  * a type other than DOF_SECT_NONE is specified, the header is checked against
12715  * this type and NULL is returned if the types do not match.
12716  */
12717 static dof_sec_t *
12718 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12719 {
12720 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12721 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12722 
12723 	if (i >= dof->dofh_secnum) {
12724 		dtrace_dof_error(dof, "referenced section index is invalid");
12725 		return (NULL);
12726 	}
12727 
12728 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12729 		dtrace_dof_error(dof, "referenced section is not loadable");
12730 		return (NULL);
12731 	}
12732 
12733 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12734 		dtrace_dof_error(dof, "referenced section is the wrong type");
12735 		return (NULL);
12736 	}
12737 
12738 	return (sec);
12739 }
12740 
12741 static dtrace_probedesc_t *
12742 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12743 {
12744 	dof_probedesc_t *probe;
12745 	dof_sec_t *strtab;
12746 	uintptr_t daddr = (uintptr_t)dof;
12747 	uintptr_t str;
12748 	size_t size;
12749 
12750 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12751 		dtrace_dof_error(dof, "invalid probe section");
12752 		return (NULL);
12753 	}
12754 
12755 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12756 		dtrace_dof_error(dof, "bad alignment in probe description");
12757 		return (NULL);
12758 	}
12759 
12760 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12761 		dtrace_dof_error(dof, "truncated probe description");
12762 		return (NULL);
12763 	}
12764 
12765 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12766 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12767 
12768 	if (strtab == NULL)
12769 		return (NULL);
12770 
12771 	str = daddr + strtab->dofs_offset;
12772 	size = strtab->dofs_size;
12773 
12774 	if (probe->dofp_provider >= strtab->dofs_size) {
12775 		dtrace_dof_error(dof, "corrupt probe provider");
12776 		return (NULL);
12777 	}
12778 
12779 	(void) strncpy(desc->dtpd_provider,
12780 	    (char *)(str + probe->dofp_provider),
12781 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12782 
12783 	if (probe->dofp_mod >= strtab->dofs_size) {
12784 		dtrace_dof_error(dof, "corrupt probe module");
12785 		return (NULL);
12786 	}
12787 
12788 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12789 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12790 
12791 	if (probe->dofp_func >= strtab->dofs_size) {
12792 		dtrace_dof_error(dof, "corrupt probe function");
12793 		return (NULL);
12794 	}
12795 
12796 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12797 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12798 
12799 	if (probe->dofp_name >= strtab->dofs_size) {
12800 		dtrace_dof_error(dof, "corrupt probe name");
12801 		return (NULL);
12802 	}
12803 
12804 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12805 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12806 
12807 	return (desc);
12808 }
12809 
12810 static dtrace_difo_t *
12811 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12812     cred_t *cr)
12813 {
12814 	dtrace_difo_t *dp;
12815 	size_t ttl = 0;
12816 	dof_difohdr_t *dofd;
12817 	uintptr_t daddr = (uintptr_t)dof;
12818 	size_t max = dtrace_difo_maxsize;
12819 	int i, l, n;
12820 
12821 	static const struct {
12822 		int section;
12823 		int bufoffs;
12824 		int lenoffs;
12825 		int entsize;
12826 		int align;
12827 		const char *msg;
12828 	} difo[] = {
12829 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12830 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12831 		sizeof (dif_instr_t), "multiple DIF sections" },
12832 
12833 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12834 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12835 		sizeof (uint64_t), "multiple integer tables" },
12836 
12837 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12838 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12839 		sizeof (char), "multiple string tables" },
12840 
12841 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12842 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12843 		sizeof (uint_t), "multiple variable tables" },
12844 
12845 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12846 	};
12847 
12848 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12849 		dtrace_dof_error(dof, "invalid DIFO header section");
12850 		return (NULL);
12851 	}
12852 
12853 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12854 		dtrace_dof_error(dof, "bad alignment in DIFO header");
12855 		return (NULL);
12856 	}
12857 
12858 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12859 	    sec->dofs_size % sizeof (dof_secidx_t)) {
12860 		dtrace_dof_error(dof, "bad size in DIFO header");
12861 		return (NULL);
12862 	}
12863 
12864 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12865 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12866 
12867 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12868 	dp->dtdo_rtype = dofd->dofd_rtype;
12869 
12870 	for (l = 0; l < n; l++) {
12871 		dof_sec_t *subsec;
12872 		void **bufp;
12873 		uint32_t *lenp;
12874 
12875 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12876 		    dofd->dofd_links[l])) == NULL)
12877 			goto err; /* invalid section link */
12878 
12879 		if (ttl + subsec->dofs_size > max) {
12880 			dtrace_dof_error(dof, "exceeds maximum size");
12881 			goto err;
12882 		}
12883 
12884 		ttl += subsec->dofs_size;
12885 
12886 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12887 			if (subsec->dofs_type != difo[i].section)
12888 				continue;
12889 
12890 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12891 				dtrace_dof_error(dof, "section not loaded");
12892 				goto err;
12893 			}
12894 
12895 			if (subsec->dofs_align != difo[i].align) {
12896 				dtrace_dof_error(dof, "bad alignment");
12897 				goto err;
12898 			}
12899 
12900 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12901 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12902 
12903 			if (*bufp != NULL) {
12904 				dtrace_dof_error(dof, difo[i].msg);
12905 				goto err;
12906 			}
12907 
12908 			if (difo[i].entsize != subsec->dofs_entsize) {
12909 				dtrace_dof_error(dof, "entry size mismatch");
12910 				goto err;
12911 			}
12912 
12913 			if (subsec->dofs_entsize != 0 &&
12914 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12915 				dtrace_dof_error(dof, "corrupt entry size");
12916 				goto err;
12917 			}
12918 
12919 			*lenp = subsec->dofs_size;
12920 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12921 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12922 			    *bufp, subsec->dofs_size);
12923 
12924 			if (subsec->dofs_entsize != 0)
12925 				*lenp /= subsec->dofs_entsize;
12926 
12927 			break;
12928 		}
12929 
12930 		/*
12931 		 * If we encounter a loadable DIFO sub-section that is not
12932 		 * known to us, assume this is a broken program and fail.
12933 		 */
12934 		if (difo[i].section == DOF_SECT_NONE &&
12935 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12936 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12937 			goto err;
12938 		}
12939 	}
12940 
12941 	if (dp->dtdo_buf == NULL) {
12942 		/*
12943 		 * We can't have a DIF object without DIF text.
12944 		 */
12945 		dtrace_dof_error(dof, "missing DIF text");
12946 		goto err;
12947 	}
12948 
12949 	/*
12950 	 * Before we validate the DIF object, run through the variable table
12951 	 * looking for the strings -- if any of their size are under, we'll set
12952 	 * their size to be the system-wide default string size.  Note that
12953 	 * this should _not_ happen if the "strsize" option has been set --
12954 	 * in this case, the compiler should have set the size to reflect the
12955 	 * setting of the option.
12956 	 */
12957 	for (i = 0; i < dp->dtdo_varlen; i++) {
12958 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12959 		dtrace_diftype_t *t = &v->dtdv_type;
12960 
12961 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12962 			continue;
12963 
12964 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12965 			t->dtdt_size = dtrace_strsize_default;
12966 	}
12967 
12968 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12969 		goto err;
12970 
12971 	dtrace_difo_init(dp, vstate);
12972 	return (dp);
12973 
12974 err:
12975 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12976 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12977 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12978 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12979 
12980 	kmem_free(dp, sizeof (dtrace_difo_t));
12981 	return (NULL);
12982 }
12983 
12984 static dtrace_predicate_t *
12985 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12986     cred_t *cr)
12987 {
12988 	dtrace_difo_t *dp;
12989 
12990 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12991 		return (NULL);
12992 
12993 	return (dtrace_predicate_create(dp));
12994 }
12995 
12996 static dtrace_actdesc_t *
12997 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12998     cred_t *cr)
12999 {
13000 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13001 	dof_actdesc_t *desc;
13002 	dof_sec_t *difosec;
13003 	size_t offs;
13004 	uintptr_t daddr = (uintptr_t)dof;
13005 	uint64_t arg;
13006 	dtrace_actkind_t kind;
13007 
13008 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13009 		dtrace_dof_error(dof, "invalid action section");
13010 		return (NULL);
13011 	}
13012 
13013 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13014 		dtrace_dof_error(dof, "truncated action description");
13015 		return (NULL);
13016 	}
13017 
13018 	if (sec->dofs_align != sizeof (uint64_t)) {
13019 		dtrace_dof_error(dof, "bad alignment in action description");
13020 		return (NULL);
13021 	}
13022 
13023 	if (sec->dofs_size < sec->dofs_entsize) {
13024 		dtrace_dof_error(dof, "section entry size exceeds total size");
13025 		return (NULL);
13026 	}
13027 
13028 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13029 		dtrace_dof_error(dof, "bad entry size in action description");
13030 		return (NULL);
13031 	}
13032 
13033 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13034 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13035 		return (NULL);
13036 	}
13037 
13038 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13039 		desc = (dof_actdesc_t *)(daddr +
13040 		    (uintptr_t)sec->dofs_offset + offs);
13041 		kind = (dtrace_actkind_t)desc->dofa_kind;
13042 
13043 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13044 		    (kind != DTRACEACT_PRINTA ||
13045 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13046 		    (kind == DTRACEACT_DIFEXPR &&
13047 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13048 			dof_sec_t *strtab;
13049 			char *str, *fmt;
13050 			uint64_t i;
13051 
13052 			/*
13053 			 * The argument to these actions is an index into the
13054 			 * DOF string table.  For printf()-like actions, this
13055 			 * is the format string.  For print(), this is the
13056 			 * CTF type of the expression result.
13057 			 */
13058 			if ((strtab = dtrace_dof_sect(dof,
13059 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13060 				goto err;
13061 
13062 			str = (char *)((uintptr_t)dof +
13063 			    (uintptr_t)strtab->dofs_offset);
13064 
13065 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13066 				if (str[i] == '\0')
13067 					break;
13068 			}
13069 
13070 			if (i >= strtab->dofs_size) {
13071 				dtrace_dof_error(dof, "bogus format string");
13072 				goto err;
13073 			}
13074 
13075 			if (i == desc->dofa_arg) {
13076 				dtrace_dof_error(dof, "empty format string");
13077 				goto err;
13078 			}
13079 
13080 			i -= desc->dofa_arg;
13081 			fmt = kmem_alloc(i + 1, KM_SLEEP);
13082 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13083 			arg = (uint64_t)(uintptr_t)fmt;
13084 		} else {
13085 			if (kind == DTRACEACT_PRINTA) {
13086 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13087 				arg = 0;
13088 			} else {
13089 				arg = desc->dofa_arg;
13090 			}
13091 		}
13092 
13093 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13094 		    desc->dofa_uarg, arg);
13095 
13096 		if (last != NULL) {
13097 			last->dtad_next = act;
13098 		} else {
13099 			first = act;
13100 		}
13101 
13102 		last = act;
13103 
13104 		if (desc->dofa_difo == DOF_SECIDX_NONE)
13105 			continue;
13106 
13107 		if ((difosec = dtrace_dof_sect(dof,
13108 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13109 			goto err;
13110 
13111 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13112 
13113 		if (act->dtad_difo == NULL)
13114 			goto err;
13115 	}
13116 
13117 	ASSERT(first != NULL);
13118 	return (first);
13119 
13120 err:
13121 	for (act = first; act != NULL; act = next) {
13122 		next = act->dtad_next;
13123 		dtrace_actdesc_release(act, vstate);
13124 	}
13125 
13126 	return (NULL);
13127 }
13128 
13129 static dtrace_ecbdesc_t *
13130 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13131     cred_t *cr)
13132 {
13133 	dtrace_ecbdesc_t *ep;
13134 	dof_ecbdesc_t *ecb;
13135 	dtrace_probedesc_t *desc;
13136 	dtrace_predicate_t *pred = NULL;
13137 
13138 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13139 		dtrace_dof_error(dof, "truncated ECB description");
13140 		return (NULL);
13141 	}
13142 
13143 	if (sec->dofs_align != sizeof (uint64_t)) {
13144 		dtrace_dof_error(dof, "bad alignment in ECB description");
13145 		return (NULL);
13146 	}
13147 
13148 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13149 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13150 
13151 	if (sec == NULL)
13152 		return (NULL);
13153 
13154 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13155 	ep->dted_uarg = ecb->dofe_uarg;
13156 	desc = &ep->dted_probe;
13157 
13158 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13159 		goto err;
13160 
13161 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13162 		if ((sec = dtrace_dof_sect(dof,
13163 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13164 			goto err;
13165 
13166 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13167 			goto err;
13168 
13169 		ep->dted_pred.dtpdd_predicate = pred;
13170 	}
13171 
13172 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13173 		if ((sec = dtrace_dof_sect(dof,
13174 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13175 			goto err;
13176 
13177 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13178 
13179 		if (ep->dted_action == NULL)
13180 			goto err;
13181 	}
13182 
13183 	return (ep);
13184 
13185 err:
13186 	if (pred != NULL)
13187 		dtrace_predicate_release(pred, vstate);
13188 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13189 	return (NULL);
13190 }
13191 
13192 /*
13193  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13194  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
13195  * site of any user SETX relocations to account for load object base address.
13196  * In the future, if we need other relocations, this function can be extended.
13197  */
13198 static int
13199 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
13200 {
13201 	uintptr_t daddr = (uintptr_t)dof;
13202 	uintptr_t ts_end;
13203 	dof_relohdr_t *dofr =
13204 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13205 	dof_sec_t *ss, *rs, *ts;
13206 	dof_relodesc_t *r;
13207 	uint_t i, n;
13208 
13209 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13210 	    sec->dofs_align != sizeof (dof_secidx_t)) {
13211 		dtrace_dof_error(dof, "invalid relocation header");
13212 		return (-1);
13213 	}
13214 
13215 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13216 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13217 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13218 	ts_end = (uintptr_t)ts + sizeof (dof_sec_t);
13219 
13220 	if (ss == NULL || rs == NULL || ts == NULL)
13221 		return (-1); /* dtrace_dof_error() has been called already */
13222 
13223 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13224 	    rs->dofs_align != sizeof (uint64_t)) {
13225 		dtrace_dof_error(dof, "invalid relocation section");
13226 		return (-1);
13227 	}
13228 
13229 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13230 	n = rs->dofs_size / rs->dofs_entsize;
13231 
13232 	for (i = 0; i < n; i++) {
13233 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13234 
13235 		switch (r->dofr_type) {
13236 		case DOF_RELO_NONE:
13237 			break;
13238 		case DOF_RELO_SETX:
13239 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13240 			    sizeof (uint64_t) > ts->dofs_size) {
13241 				dtrace_dof_error(dof, "bad relocation offset");
13242 				return (-1);
13243 			}
13244 
13245 			if (taddr >= (uintptr_t)ts && taddr < ts_end) {
13246 				dtrace_dof_error(dof, "bad relocation offset");
13247 				return (-1);
13248 			}
13249 
13250 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13251 				dtrace_dof_error(dof, "misaligned setx relo");
13252 				return (-1);
13253 			}
13254 
13255 			*(uint64_t *)taddr += ubase;
13256 			break;
13257 		default:
13258 			dtrace_dof_error(dof, "invalid relocation type");
13259 			return (-1);
13260 		}
13261 
13262 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13263 	}
13264 
13265 	return (0);
13266 }
13267 
13268 /*
13269  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13270  * header:  it should be at the front of a memory region that is at least
13271  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13272  * size.  It need not be validated in any other way.
13273  */
13274 static int
13275 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13276     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
13277 {
13278 	uint64_t len = dof->dofh_loadsz, seclen;
13279 	uintptr_t daddr = (uintptr_t)dof;
13280 	dtrace_ecbdesc_t *ep;
13281 	dtrace_enabling_t *enab;
13282 	uint_t i;
13283 
13284 	ASSERT(MUTEX_HELD(&dtrace_lock));
13285 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
13286 
13287 	/*
13288 	 * Check the DOF header identification bytes.  In addition to checking
13289 	 * valid settings, we also verify that unused bits/bytes are zeroed so
13290 	 * we can use them later without fear of regressing existing binaries.
13291 	 */
13292 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
13293 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
13294 		dtrace_dof_error(dof, "DOF magic string mismatch");
13295 		return (-1);
13296 	}
13297 
13298 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
13299 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
13300 		dtrace_dof_error(dof, "DOF has invalid data model");
13301 		return (-1);
13302 	}
13303 
13304 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
13305 		dtrace_dof_error(dof, "DOF encoding mismatch");
13306 		return (-1);
13307 	}
13308 
13309 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13310 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
13311 		dtrace_dof_error(dof, "DOF version mismatch");
13312 		return (-1);
13313 	}
13314 
13315 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
13316 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
13317 		return (-1);
13318 	}
13319 
13320 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
13321 		dtrace_dof_error(dof, "DOF uses too many integer registers");
13322 		return (-1);
13323 	}
13324 
13325 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
13326 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
13327 		return (-1);
13328 	}
13329 
13330 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
13331 		if (dof->dofh_ident[i] != 0) {
13332 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
13333 			return (-1);
13334 		}
13335 	}
13336 
13337 	if (dof->dofh_flags & ~DOF_FL_VALID) {
13338 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
13339 		return (-1);
13340 	}
13341 
13342 	if (dof->dofh_secsize == 0) {
13343 		dtrace_dof_error(dof, "zero section header size");
13344 		return (-1);
13345 	}
13346 
13347 	/*
13348 	 * Check that the section headers don't exceed the amount of DOF
13349 	 * data.  Note that we cast the section size and number of sections
13350 	 * to uint64_t's to prevent possible overflow in the multiplication.
13351 	 */
13352 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
13353 
13354 	if (dof->dofh_secoff > len || seclen > len ||
13355 	    dof->dofh_secoff + seclen > len) {
13356 		dtrace_dof_error(dof, "truncated section headers");
13357 		return (-1);
13358 	}
13359 
13360 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13361 		dtrace_dof_error(dof, "misaligned section headers");
13362 		return (-1);
13363 	}
13364 
13365 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13366 		dtrace_dof_error(dof, "misaligned section size");
13367 		return (-1);
13368 	}
13369 
13370 	/*
13371 	 * Take an initial pass through the section headers to be sure that
13372 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
13373 	 * set, do not permit sections relating to providers, probes, or args.
13374 	 */
13375 	for (i = 0; i < dof->dofh_secnum; i++) {
13376 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13377 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13378 
13379 		if (noprobes) {
13380 			switch (sec->dofs_type) {
13381 			case DOF_SECT_PROVIDER:
13382 			case DOF_SECT_PROBES:
13383 			case DOF_SECT_PRARGS:
13384 			case DOF_SECT_PROFFS:
13385 				dtrace_dof_error(dof, "illegal sections "
13386 				    "for enabling");
13387 				return (-1);
13388 			}
13389 		}
13390 
13391 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13392 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
13393 			dtrace_dof_error(dof, "loadable section with load "
13394 			    "flag unset");
13395 			return (-1);
13396 		}
13397 
13398 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13399 			continue; /* just ignore non-loadable sections */
13400 
13401 		if (!ISP2(sec->dofs_align)) {
13402 			dtrace_dof_error(dof, "bad section alignment");
13403 			return (-1);
13404 		}
13405 
13406 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
13407 			dtrace_dof_error(dof, "misaligned section");
13408 			return (-1);
13409 		}
13410 
13411 		if (sec->dofs_offset > len || sec->dofs_size > len ||
13412 		    sec->dofs_offset + sec->dofs_size > len) {
13413 			dtrace_dof_error(dof, "corrupt section header");
13414 			return (-1);
13415 		}
13416 
13417 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13418 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13419 			dtrace_dof_error(dof, "non-terminating string table");
13420 			return (-1);
13421 		}
13422 	}
13423 
13424 	/*
13425 	 * Take a second pass through the sections and locate and perform any
13426 	 * relocations that are present.  We do this after the first pass to
13427 	 * be sure that all sections have had their headers validated.
13428 	 */
13429 	for (i = 0; i < dof->dofh_secnum; i++) {
13430 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13431 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13432 
13433 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13434 			continue; /* skip sections that are not loadable */
13435 
13436 		switch (sec->dofs_type) {
13437 		case DOF_SECT_URELHDR:
13438 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13439 				return (-1);
13440 			break;
13441 		}
13442 	}
13443 
13444 	if ((enab = *enabp) == NULL)
13445 		enab = *enabp = dtrace_enabling_create(vstate);
13446 
13447 	for (i = 0; i < dof->dofh_secnum; i++) {
13448 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13449 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13450 
13451 		if (sec->dofs_type != DOF_SECT_ECBDESC)
13452 			continue;
13453 
13454 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13455 			dtrace_enabling_destroy(enab);
13456 			*enabp = NULL;
13457 			return (-1);
13458 		}
13459 
13460 		dtrace_enabling_add(enab, ep);
13461 	}
13462 
13463 	return (0);
13464 }
13465 
13466 /*
13467  * Process DOF for any options.  This routine assumes that the DOF has been
13468  * at least processed by dtrace_dof_slurp().
13469  */
13470 static int
13471 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13472 {
13473 	int i, rval;
13474 	uint32_t entsize;
13475 	size_t offs;
13476 	dof_optdesc_t *desc;
13477 
13478 	for (i = 0; i < dof->dofh_secnum; i++) {
13479 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13480 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13481 
13482 		if (sec->dofs_type != DOF_SECT_OPTDESC)
13483 			continue;
13484 
13485 		if (sec->dofs_align != sizeof (uint64_t)) {
13486 			dtrace_dof_error(dof, "bad alignment in "
13487 			    "option description");
13488 			return (EINVAL);
13489 		}
13490 
13491 		if ((entsize = sec->dofs_entsize) == 0) {
13492 			dtrace_dof_error(dof, "zeroed option entry size");
13493 			return (EINVAL);
13494 		}
13495 
13496 		if (entsize < sizeof (dof_optdesc_t)) {
13497 			dtrace_dof_error(dof, "bad option entry size");
13498 			return (EINVAL);
13499 		}
13500 
13501 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13502 			desc = (dof_optdesc_t *)((uintptr_t)dof +
13503 			    (uintptr_t)sec->dofs_offset + offs);
13504 
13505 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13506 				dtrace_dof_error(dof, "non-zero option string");
13507 				return (EINVAL);
13508 			}
13509 
13510 			if (desc->dofo_value == DTRACEOPT_UNSET) {
13511 				dtrace_dof_error(dof, "unset option");
13512 				return (EINVAL);
13513 			}
13514 
13515 			if ((rval = dtrace_state_option(state,
13516 			    desc->dofo_option, desc->dofo_value)) != 0) {
13517 				dtrace_dof_error(dof, "rejected option");
13518 				return (rval);
13519 			}
13520 		}
13521 	}
13522 
13523 	return (0);
13524 }
13525 
13526 /*
13527  * DTrace Consumer State Functions
13528  */
13529 int
13530 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13531 {
13532 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13533 	void *base;
13534 	uintptr_t limit;
13535 	dtrace_dynvar_t *dvar, *next, *start;
13536 	int i;
13537 
13538 	ASSERT(MUTEX_HELD(&dtrace_lock));
13539 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13540 
13541 	bzero(dstate, sizeof (dtrace_dstate_t));
13542 
13543 	if ((dstate->dtds_chunksize = chunksize) == 0)
13544 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13545 
13546 	VERIFY(dstate->dtds_chunksize < LONG_MAX);
13547 
13548 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13549 		size = min;
13550 
13551 	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13552 		return (ENOMEM);
13553 
13554 	dstate->dtds_size = size;
13555 	dstate->dtds_base = base;
13556 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13557 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13558 
13559 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13560 
13561 	if (hashsize != 1 && (hashsize & 1))
13562 		hashsize--;
13563 
13564 	dstate->dtds_hashsize = hashsize;
13565 	dstate->dtds_hash = dstate->dtds_base;
13566 
13567 	/*
13568 	 * Set all of our hash buckets to point to the single sink, and (if
13569 	 * it hasn't already been set), set the sink's hash value to be the
13570 	 * sink sentinel value.  The sink is needed for dynamic variable
13571 	 * lookups to know that they have iterated over an entire, valid hash
13572 	 * chain.
13573 	 */
13574 	for (i = 0; i < hashsize; i++)
13575 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13576 
13577 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13578 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13579 
13580 	/*
13581 	 * Determine number of active CPUs.  Divide free list evenly among
13582 	 * active CPUs.
13583 	 */
13584 	start = (dtrace_dynvar_t *)
13585 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13586 	limit = (uintptr_t)base + size;
13587 
13588 	VERIFY((uintptr_t)start < limit);
13589 	VERIFY((uintptr_t)start >= (uintptr_t)base);
13590 
13591 	maxper = (limit - (uintptr_t)start) / NCPU;
13592 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13593 
13594 	for (i = 0; i < NCPU; i++) {
13595 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13596 
13597 		/*
13598 		 * If we don't even have enough chunks to make it once through
13599 		 * NCPUs, we're just going to allocate everything to the first
13600 		 * CPU.  And if we're on the last CPU, we're going to allocate
13601 		 * whatever is left over.  In either case, we set the limit to
13602 		 * be the limit of the dynamic variable space.
13603 		 */
13604 		if (maxper == 0 || i == NCPU - 1) {
13605 			limit = (uintptr_t)base + size;
13606 			start = NULL;
13607 		} else {
13608 			limit = (uintptr_t)start + maxper;
13609 			start = (dtrace_dynvar_t *)limit;
13610 		}
13611 
13612 		VERIFY(limit <= (uintptr_t)base + size);
13613 
13614 		for (;;) {
13615 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13616 			    dstate->dtds_chunksize);
13617 
13618 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13619 				break;
13620 
13621 			VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
13622 			    (uintptr_t)dvar <= (uintptr_t)base + size);
13623 			dvar->dtdv_next = next;
13624 			dvar = next;
13625 		}
13626 
13627 		if (maxper == 0)
13628 			break;
13629 	}
13630 
13631 	return (0);
13632 }
13633 
13634 void
13635 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13636 {
13637 	ASSERT(MUTEX_HELD(&cpu_lock));
13638 
13639 	if (dstate->dtds_base == NULL)
13640 		return;
13641 
13642 	kmem_free(dstate->dtds_base, dstate->dtds_size);
13643 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13644 }
13645 
13646 static void
13647 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13648 {
13649 	/*
13650 	 * Logical XOR, where are you?
13651 	 */
13652 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13653 
13654 	if (vstate->dtvs_nglobals > 0) {
13655 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13656 		    sizeof (dtrace_statvar_t *));
13657 	}
13658 
13659 	if (vstate->dtvs_ntlocals > 0) {
13660 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13661 		    sizeof (dtrace_difv_t));
13662 	}
13663 
13664 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13665 
13666 	if (vstate->dtvs_nlocals > 0) {
13667 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13668 		    sizeof (dtrace_statvar_t *));
13669 	}
13670 }
13671 
13672 static void
13673 dtrace_state_clean(dtrace_state_t *state)
13674 {
13675 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13676 		return;
13677 
13678 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13679 	dtrace_speculation_clean(state);
13680 }
13681 
13682 static void
13683 dtrace_state_deadman(dtrace_state_t *state)
13684 {
13685 	hrtime_t now;
13686 
13687 	dtrace_sync();
13688 
13689 	now = dtrace_gethrtime();
13690 
13691 	if (state != dtrace_anon.dta_state &&
13692 	    now - state->dts_laststatus >= dtrace_deadman_user)
13693 		return;
13694 
13695 	/*
13696 	 * We must be sure that dts_alive never appears to be less than the
13697 	 * value upon entry to dtrace_state_deadman(), and because we lack a
13698 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13699 	 * store INT64_MAX to it, followed by a memory barrier, followed by
13700 	 * the new value.  This assures that dts_alive never appears to be
13701 	 * less than its true value, regardless of the order in which the
13702 	 * stores to the underlying storage are issued.
13703 	 */
13704 	state->dts_alive = INT64_MAX;
13705 	dtrace_membar_producer();
13706 	state->dts_alive = now;
13707 }
13708 
13709 dtrace_state_t *
13710 dtrace_state_create(dev_t *devp, cred_t *cr)
13711 {
13712 	minor_t minor;
13713 	major_t major;
13714 	char c[30];
13715 	dtrace_state_t *state;
13716 	dtrace_optval_t *opt;
13717 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13718 
13719 	ASSERT(MUTEX_HELD(&dtrace_lock));
13720 	ASSERT(MUTEX_HELD(&cpu_lock));
13721 
13722 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13723 	    VM_BESTFIT | VM_SLEEP);
13724 
13725 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13726 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13727 		return (NULL);
13728 	}
13729 
13730 	state = ddi_get_soft_state(dtrace_softstate, minor);
13731 	state->dts_epid = DTRACE_EPIDNONE + 1;
13732 
13733 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
13734 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13735 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13736 
13737 	if (devp != NULL) {
13738 		major = getemajor(*devp);
13739 	} else {
13740 		major = ddi_driver_major(dtrace_devi);
13741 	}
13742 
13743 	state->dts_dev = makedevice(major, minor);
13744 
13745 	if (devp != NULL)
13746 		*devp = state->dts_dev;
13747 
13748 	/*
13749 	 * We allocate NCPU buffers.  On the one hand, this can be quite
13750 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
13751 	 * other hand, it saves an additional memory reference in the probe
13752 	 * path.
13753 	 */
13754 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13755 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13756 	state->dts_cleaner = CYCLIC_NONE;
13757 	state->dts_deadman = CYCLIC_NONE;
13758 	state->dts_vstate.dtvs_state = state;
13759 
13760 	for (i = 0; i < DTRACEOPT_MAX; i++)
13761 		state->dts_options[i] = DTRACEOPT_UNSET;
13762 
13763 	/*
13764 	 * Set the default options.
13765 	 */
13766 	opt = state->dts_options;
13767 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13768 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13769 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13770 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13771 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13772 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13773 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13774 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13775 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13776 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13777 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13778 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13779 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13780 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13781 
13782 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13783 
13784 	/*
13785 	 * Depending on the user credentials, we set flag bits which alter probe
13786 	 * visibility or the amount of destructiveness allowed.  In the case of
13787 	 * actual anonymous tracing, or the possession of all privileges, all of
13788 	 * the normal checks are bypassed.
13789 	 */
13790 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13791 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13792 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13793 	} else {
13794 		/*
13795 		 * Set up the credentials for this instantiation.  We take a
13796 		 * hold on the credential to prevent it from disappearing on
13797 		 * us; this in turn prevents the zone_t referenced by this
13798 		 * credential from disappearing.  This means that we can
13799 		 * examine the credential and the zone from probe context.
13800 		 */
13801 		crhold(cr);
13802 		state->dts_cred.dcr_cred = cr;
13803 
13804 		/*
13805 		 * CRA_PROC means "we have *some* privilege for dtrace" and
13806 		 * unlocks the use of variables like pid, zonename, etc.
13807 		 */
13808 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13809 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13810 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13811 		}
13812 
13813 		/*
13814 		 * dtrace_user allows use of syscall and profile providers.
13815 		 * If the user also has proc_owner and/or proc_zone, we
13816 		 * extend the scope to include additional visibility and
13817 		 * destructive power.
13818 		 */
13819 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13820 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13821 				state->dts_cred.dcr_visible |=
13822 				    DTRACE_CRV_ALLPROC;
13823 
13824 				state->dts_cred.dcr_action |=
13825 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13826 			}
13827 
13828 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13829 				state->dts_cred.dcr_visible |=
13830 				    DTRACE_CRV_ALLZONE;
13831 
13832 				state->dts_cred.dcr_action |=
13833 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13834 			}
13835 
13836 			/*
13837 			 * If we have all privs in whatever zone this is,
13838 			 * we can do destructive things to processes which
13839 			 * have altered credentials.
13840 			 */
13841 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13842 			    cr->cr_zone->zone_privset)) {
13843 				state->dts_cred.dcr_action |=
13844 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13845 			}
13846 		}
13847 
13848 		/*
13849 		 * Holding the dtrace_kernel privilege also implies that
13850 		 * the user has the dtrace_user privilege from a visibility
13851 		 * perspective.  But without further privileges, some
13852 		 * destructive actions are not available.
13853 		 */
13854 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13855 			/*
13856 			 * Make all probes in all zones visible.  However,
13857 			 * this doesn't mean that all actions become available
13858 			 * to all zones.
13859 			 */
13860 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13861 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13862 
13863 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13864 			    DTRACE_CRA_PROC;
13865 			/*
13866 			 * Holding proc_owner means that destructive actions
13867 			 * for *this* zone are allowed.
13868 			 */
13869 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13870 				state->dts_cred.dcr_action |=
13871 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13872 
13873 			/*
13874 			 * Holding proc_zone means that destructive actions
13875 			 * for this user/group ID in all zones is allowed.
13876 			 */
13877 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13878 				state->dts_cred.dcr_action |=
13879 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13880 
13881 			/*
13882 			 * If we have all privs in whatever zone this is,
13883 			 * we can do destructive things to processes which
13884 			 * have altered credentials.
13885 			 */
13886 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13887 			    cr->cr_zone->zone_privset)) {
13888 				state->dts_cred.dcr_action |=
13889 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13890 			}
13891 		}
13892 
13893 		/*
13894 		 * Holding the dtrace_proc privilege gives control over fasttrap
13895 		 * and pid providers.  We need to grant wider destructive
13896 		 * privileges in the event that the user has proc_owner and/or
13897 		 * proc_zone.
13898 		 */
13899 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13900 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13901 				state->dts_cred.dcr_action |=
13902 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13903 
13904 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13905 				state->dts_cred.dcr_action |=
13906 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13907 		}
13908 	}
13909 
13910 	return (state);
13911 }
13912 
13913 static int
13914 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13915 {
13916 	dtrace_optval_t *opt = state->dts_options, size;
13917 	processorid_t cpu;
13918 	int flags = 0, rval, factor, divisor = 1;
13919 
13920 	ASSERT(MUTEX_HELD(&dtrace_lock));
13921 	ASSERT(MUTEX_HELD(&cpu_lock));
13922 	ASSERT(which < DTRACEOPT_MAX);
13923 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13924 	    (state == dtrace_anon.dta_state &&
13925 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13926 
13927 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13928 		return (0);
13929 
13930 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13931 		cpu = opt[DTRACEOPT_CPU];
13932 
13933 	if (which == DTRACEOPT_SPECSIZE)
13934 		flags |= DTRACEBUF_NOSWITCH;
13935 
13936 	if (which == DTRACEOPT_BUFSIZE) {
13937 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13938 			flags |= DTRACEBUF_RING;
13939 
13940 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13941 			flags |= DTRACEBUF_FILL;
13942 
13943 		if (state != dtrace_anon.dta_state ||
13944 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13945 			flags |= DTRACEBUF_INACTIVE;
13946 	}
13947 
13948 	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13949 		/*
13950 		 * The size must be 8-byte aligned.  If the size is not 8-byte
13951 		 * aligned, drop it down by the difference.
13952 		 */
13953 		if (size & (sizeof (uint64_t) - 1))
13954 			size -= size & (sizeof (uint64_t) - 1);
13955 
13956 		if (size < state->dts_reserve) {
13957 			/*
13958 			 * Buffers always must be large enough to accommodate
13959 			 * their prereserved space.  We return E2BIG instead
13960 			 * of ENOMEM in this case to allow for user-level
13961 			 * software to differentiate the cases.
13962 			 */
13963 			return (E2BIG);
13964 		}
13965 
13966 		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
13967 
13968 		if (rval != ENOMEM) {
13969 			opt[which] = size;
13970 			return (rval);
13971 		}
13972 
13973 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13974 			return (rval);
13975 
13976 		for (divisor = 2; divisor < factor; divisor <<= 1)
13977 			continue;
13978 	}
13979 
13980 	return (ENOMEM);
13981 }
13982 
13983 static int
13984 dtrace_state_buffers(dtrace_state_t *state)
13985 {
13986 	dtrace_speculation_t *spec = state->dts_speculations;
13987 	int rval, i;
13988 
13989 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13990 	    DTRACEOPT_BUFSIZE)) != 0)
13991 		return (rval);
13992 
13993 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13994 	    DTRACEOPT_AGGSIZE)) != 0)
13995 		return (rval);
13996 
13997 	for (i = 0; i < state->dts_nspeculations; i++) {
13998 		if ((rval = dtrace_state_buffer(state,
13999 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14000 			return (rval);
14001 	}
14002 
14003 	return (0);
14004 }
14005 
14006 static void
14007 dtrace_state_prereserve(dtrace_state_t *state)
14008 {
14009 	dtrace_ecb_t *ecb;
14010 	dtrace_probe_t *probe;
14011 
14012 	state->dts_reserve = 0;
14013 
14014 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14015 		return;
14016 
14017 	/*
14018 	 * If our buffer policy is a "fill" buffer policy, we need to set the
14019 	 * prereserved space to be the space required by the END probes.
14020 	 */
14021 	probe = dtrace_probes[dtrace_probeid_end - 1];
14022 	ASSERT(probe != NULL);
14023 
14024 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14025 		if (ecb->dte_state != state)
14026 			continue;
14027 
14028 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14029 	}
14030 }
14031 
14032 static int
14033 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14034 {
14035 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14036 	dtrace_speculation_t *spec;
14037 	dtrace_buffer_t *buf;
14038 	cyc_handler_t hdlr;
14039 	cyc_time_t when;
14040 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14041 	dtrace_icookie_t cookie;
14042 
14043 	mutex_enter(&cpu_lock);
14044 	mutex_enter(&dtrace_lock);
14045 
14046 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14047 		rval = EBUSY;
14048 		goto out;
14049 	}
14050 
14051 	/*
14052 	 * Before we can perform any checks, we must prime all of the
14053 	 * retained enablings that correspond to this state.
14054 	 */
14055 	dtrace_enabling_prime(state);
14056 
14057 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14058 		rval = EACCES;
14059 		goto out;
14060 	}
14061 
14062 	dtrace_state_prereserve(state);
14063 
14064 	/*
14065 	 * Now we want to do is try to allocate our speculations.
14066 	 * We do not automatically resize the number of speculations; if
14067 	 * this fails, we will fail the operation.
14068 	 */
14069 	nspec = opt[DTRACEOPT_NSPEC];
14070 	ASSERT(nspec != DTRACEOPT_UNSET);
14071 
14072 	if (nspec > INT_MAX) {
14073 		rval = ENOMEM;
14074 		goto out;
14075 	}
14076 
14077 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14078 	    KM_NOSLEEP | KM_NORMALPRI);
14079 
14080 	if (spec == NULL) {
14081 		rval = ENOMEM;
14082 		goto out;
14083 	}
14084 
14085 	state->dts_speculations = spec;
14086 	state->dts_nspeculations = (int)nspec;
14087 
14088 	for (i = 0; i < nspec; i++) {
14089 		if ((buf = kmem_zalloc(bufsize,
14090 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14091 			rval = ENOMEM;
14092 			goto err;
14093 		}
14094 
14095 		spec[i].dtsp_buffer = buf;
14096 	}
14097 
14098 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14099 		if (dtrace_anon.dta_state == NULL) {
14100 			rval = ENOENT;
14101 			goto out;
14102 		}
14103 
14104 		if (state->dts_necbs != 0) {
14105 			rval = EALREADY;
14106 			goto out;
14107 		}
14108 
14109 		state->dts_anon = dtrace_anon_grab();
14110 		ASSERT(state->dts_anon != NULL);
14111 		state = state->dts_anon;
14112 
14113 		/*
14114 		 * We want "grabanon" to be set in the grabbed state, so we'll
14115 		 * copy that option value from the grabbing state into the
14116 		 * grabbed state.
14117 		 */
14118 		state->dts_options[DTRACEOPT_GRABANON] =
14119 		    opt[DTRACEOPT_GRABANON];
14120 
14121 		*cpu = dtrace_anon.dta_beganon;
14122 
14123 		/*
14124 		 * If the anonymous state is active (as it almost certainly
14125 		 * is if the anonymous enabling ultimately matched anything),
14126 		 * we don't allow any further option processing -- but we
14127 		 * don't return failure.
14128 		 */
14129 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14130 			goto out;
14131 	}
14132 
14133 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14134 	    opt[DTRACEOPT_AGGSIZE] != 0) {
14135 		if (state->dts_aggregations == NULL) {
14136 			/*
14137 			 * We're not going to create an aggregation buffer
14138 			 * because we don't have any ECBs that contain
14139 			 * aggregations -- set this option to 0.
14140 			 */
14141 			opt[DTRACEOPT_AGGSIZE] = 0;
14142 		} else {
14143 			/*
14144 			 * If we have an aggregation buffer, we must also have
14145 			 * a buffer to use as scratch.
14146 			 */
14147 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
14148 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
14149 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
14150 			}
14151 		}
14152 	}
14153 
14154 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
14155 	    opt[DTRACEOPT_SPECSIZE] != 0) {
14156 		if (!state->dts_speculates) {
14157 			/*
14158 			 * We're not going to create speculation buffers
14159 			 * because we don't have any ECBs that actually
14160 			 * speculate -- set the speculation size to 0.
14161 			 */
14162 			opt[DTRACEOPT_SPECSIZE] = 0;
14163 		}
14164 	}
14165 
14166 	/*
14167 	 * The bare minimum size for any buffer that we're actually going to
14168 	 * do anything to is sizeof (uint64_t).
14169 	 */
14170 	sz = sizeof (uint64_t);
14171 
14172 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
14173 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
14174 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
14175 		/*
14176 		 * A buffer size has been explicitly set to 0 (or to a size
14177 		 * that will be adjusted to 0) and we need the space -- we
14178 		 * need to return failure.  We return ENOSPC to differentiate
14179 		 * it from failing to allocate a buffer due to failure to meet
14180 		 * the reserve (for which we return E2BIG).
14181 		 */
14182 		rval = ENOSPC;
14183 		goto out;
14184 	}
14185 
14186 	if ((rval = dtrace_state_buffers(state)) != 0)
14187 		goto err;
14188 
14189 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
14190 		sz = dtrace_dstate_defsize;
14191 
14192 	do {
14193 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
14194 
14195 		if (rval == 0)
14196 			break;
14197 
14198 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14199 			goto err;
14200 	} while (sz >>= 1);
14201 
14202 	opt[DTRACEOPT_DYNVARSIZE] = sz;
14203 
14204 	if (rval != 0)
14205 		goto err;
14206 
14207 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
14208 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
14209 
14210 	if (opt[DTRACEOPT_CLEANRATE] == 0)
14211 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14212 
14213 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
14214 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
14215 
14216 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
14217 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14218 
14219 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
14220 	hdlr.cyh_arg = state;
14221 	hdlr.cyh_level = CY_LOW_LEVEL;
14222 
14223 	when.cyt_when = 0;
14224 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
14225 
14226 	state->dts_cleaner = cyclic_add(&hdlr, &when);
14227 
14228 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
14229 	hdlr.cyh_arg = state;
14230 	hdlr.cyh_level = CY_LOW_LEVEL;
14231 
14232 	when.cyt_when = 0;
14233 	when.cyt_interval = dtrace_deadman_interval;
14234 
14235 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
14236 	state->dts_deadman = cyclic_add(&hdlr, &when);
14237 
14238 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
14239 
14240 	if (state->dts_getf != 0 &&
14241 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14242 		/*
14243 		 * We don't have kernel privs but we have at least one call
14244 		 * to getf(); we need to bump our zone's count, and (if
14245 		 * this is the first enabling to have an unprivileged call
14246 		 * to getf()) we need to hook into closef().
14247 		 */
14248 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
14249 
14250 		if (dtrace_getf++ == 0) {
14251 			ASSERT(dtrace_closef == NULL);
14252 			dtrace_closef = dtrace_getf_barrier;
14253 		}
14254 	}
14255 
14256 	/*
14257 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
14258 	 * interrupts here both to record the CPU on which we fired the BEGIN
14259 	 * probe (the data from this CPU will be processed first at user
14260 	 * level) and to manually activate the buffer for this CPU.
14261 	 */
14262 	cookie = dtrace_interrupt_disable();
14263 	*cpu = CPU->cpu_id;
14264 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
14265 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
14266 
14267 	dtrace_probe(dtrace_probeid_begin,
14268 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14269 	dtrace_interrupt_enable(cookie);
14270 	/*
14271 	 * We may have had an exit action from a BEGIN probe; only change our
14272 	 * state to ACTIVE if we're still in WARMUP.
14273 	 */
14274 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
14275 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
14276 
14277 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
14278 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
14279 
14280 	/*
14281 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14282 	 * want each CPU to transition its principal buffer out of the
14283 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
14284 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
14285 	 * atomically transition from processing none of a state's ECBs to
14286 	 * processing all of them.
14287 	 */
14288 	dtrace_xcall(DTRACE_CPUALL,
14289 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
14290 	goto out;
14291 
14292 err:
14293 	dtrace_buffer_free(state->dts_buffer);
14294 	dtrace_buffer_free(state->dts_aggbuffer);
14295 
14296 	if ((nspec = state->dts_nspeculations) == 0) {
14297 		ASSERT(state->dts_speculations == NULL);
14298 		goto out;
14299 	}
14300 
14301 	spec = state->dts_speculations;
14302 	ASSERT(spec != NULL);
14303 
14304 	for (i = 0; i < state->dts_nspeculations; i++) {
14305 		if ((buf = spec[i].dtsp_buffer) == NULL)
14306 			break;
14307 
14308 		dtrace_buffer_free(buf);
14309 		kmem_free(buf, bufsize);
14310 	}
14311 
14312 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14313 	state->dts_nspeculations = 0;
14314 	state->dts_speculations = NULL;
14315 
14316 out:
14317 	mutex_exit(&dtrace_lock);
14318 	mutex_exit(&cpu_lock);
14319 
14320 	return (rval);
14321 }
14322 
14323 static int
14324 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
14325 {
14326 	dtrace_icookie_t cookie;
14327 
14328 	ASSERT(MUTEX_HELD(&dtrace_lock));
14329 
14330 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
14331 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
14332 		return (EINVAL);
14333 
14334 	/*
14335 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14336 	 * to be sure that every CPU has seen it.  See below for the details
14337 	 * on why this is done.
14338 	 */
14339 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
14340 	dtrace_sync();
14341 
14342 	/*
14343 	 * By this point, it is impossible for any CPU to be still processing
14344 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
14345 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14346 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
14347 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14348 	 * iff we're in the END probe.
14349 	 */
14350 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
14351 	dtrace_sync();
14352 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
14353 
14354 	/*
14355 	 * Finally, we can release the reserve and call the END probe.  We
14356 	 * disable interrupts across calling the END probe to allow us to
14357 	 * return the CPU on which we actually called the END probe.  This
14358 	 * allows user-land to be sure that this CPU's principal buffer is
14359 	 * processed last.
14360 	 */
14361 	state->dts_reserve = 0;
14362 
14363 	cookie = dtrace_interrupt_disable();
14364 	*cpu = CPU->cpu_id;
14365 	dtrace_probe(dtrace_probeid_end,
14366 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14367 	dtrace_interrupt_enable(cookie);
14368 
14369 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14370 	dtrace_sync();
14371 
14372 	if (state->dts_getf != 0 &&
14373 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14374 		/*
14375 		 * We don't have kernel privs but we have at least one call
14376 		 * to getf(); we need to lower our zone's count, and (if
14377 		 * this is the last enabling to have an unprivileged call
14378 		 * to getf()) we need to clear the closef() hook.
14379 		 */
14380 		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14381 		ASSERT(dtrace_closef == dtrace_getf_barrier);
14382 		ASSERT(dtrace_getf > 0);
14383 
14384 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14385 
14386 		if (--dtrace_getf == 0)
14387 			dtrace_closef = NULL;
14388 	}
14389 
14390 	return (0);
14391 }
14392 
14393 static int
14394 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14395     dtrace_optval_t val)
14396 {
14397 	ASSERT(MUTEX_HELD(&dtrace_lock));
14398 
14399 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14400 		return (EBUSY);
14401 
14402 	if (option >= DTRACEOPT_MAX)
14403 		return (EINVAL);
14404 
14405 	if (option != DTRACEOPT_CPU && val < 0)
14406 		return (EINVAL);
14407 
14408 	switch (option) {
14409 	case DTRACEOPT_DESTRUCTIVE:
14410 		if (dtrace_destructive_disallow)
14411 			return (EACCES);
14412 
14413 		state->dts_cred.dcr_destructive = 1;
14414 		break;
14415 
14416 	case DTRACEOPT_BUFSIZE:
14417 	case DTRACEOPT_DYNVARSIZE:
14418 	case DTRACEOPT_AGGSIZE:
14419 	case DTRACEOPT_SPECSIZE:
14420 	case DTRACEOPT_STRSIZE:
14421 		if (val < 0)
14422 			return (EINVAL);
14423 
14424 		if (val >= LONG_MAX) {
14425 			/*
14426 			 * If this is an otherwise negative value, set it to
14427 			 * the highest multiple of 128m less than LONG_MAX.
14428 			 * Technically, we're adjusting the size without
14429 			 * regard to the buffer resizing policy, but in fact,
14430 			 * this has no effect -- if we set the buffer size to
14431 			 * ~LONG_MAX and the buffer policy is ultimately set to
14432 			 * be "manual", the buffer allocation is guaranteed to
14433 			 * fail, if only because the allocation requires two
14434 			 * buffers.  (We set the the size to the highest
14435 			 * multiple of 128m because it ensures that the size
14436 			 * will remain a multiple of a megabyte when
14437 			 * repeatedly halved -- all the way down to 15m.)
14438 			 */
14439 			val = LONG_MAX - (1 << 27) + 1;
14440 		}
14441 	}
14442 
14443 	state->dts_options[option] = val;
14444 
14445 	return (0);
14446 }
14447 
14448 static void
14449 dtrace_state_destroy(dtrace_state_t *state)
14450 {
14451 	dtrace_ecb_t *ecb;
14452 	dtrace_vstate_t *vstate = &state->dts_vstate;
14453 	minor_t minor = getminor(state->dts_dev);
14454 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14455 	dtrace_speculation_t *spec = state->dts_speculations;
14456 	int nspec = state->dts_nspeculations;
14457 	uint32_t match;
14458 
14459 	ASSERT(MUTEX_HELD(&dtrace_lock));
14460 	ASSERT(MUTEX_HELD(&cpu_lock));
14461 
14462 	/*
14463 	 * First, retract any retained enablings for this state.
14464 	 */
14465 	dtrace_enabling_retract(state);
14466 	ASSERT(state->dts_nretained == 0);
14467 
14468 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14469 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14470 		/*
14471 		 * We have managed to come into dtrace_state_destroy() on a
14472 		 * hot enabling -- almost certainly because of a disorderly
14473 		 * shutdown of a consumer.  (That is, a consumer that is
14474 		 * exiting without having called dtrace_stop().) In this case,
14475 		 * we're going to set our activity to be KILLED, and then
14476 		 * issue a sync to be sure that everyone is out of probe
14477 		 * context before we start blowing away ECBs.
14478 		 */
14479 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
14480 		dtrace_sync();
14481 	}
14482 
14483 	/*
14484 	 * Release the credential hold we took in dtrace_state_create().
14485 	 */
14486 	if (state->dts_cred.dcr_cred != NULL)
14487 		crfree(state->dts_cred.dcr_cred);
14488 
14489 	/*
14490 	 * Now we can safely disable and destroy any enabled probes.  Because
14491 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14492 	 * (especially if they're all enabled), we take two passes through the
14493 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14494 	 * in the second we disable whatever is left over.
14495 	 */
14496 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14497 		for (i = 0; i < state->dts_necbs; i++) {
14498 			if ((ecb = state->dts_ecbs[i]) == NULL)
14499 				continue;
14500 
14501 			if (match && ecb->dte_probe != NULL) {
14502 				dtrace_probe_t *probe = ecb->dte_probe;
14503 				dtrace_provider_t *prov = probe->dtpr_provider;
14504 
14505 				if (!(prov->dtpv_priv.dtpp_flags & match))
14506 					continue;
14507 			}
14508 
14509 			dtrace_ecb_disable(ecb);
14510 			dtrace_ecb_destroy(ecb);
14511 		}
14512 
14513 		if (!match)
14514 			break;
14515 	}
14516 
14517 	/*
14518 	 * Before we free the buffers, perform one more sync to assure that
14519 	 * every CPU is out of probe context.
14520 	 */
14521 	dtrace_sync();
14522 
14523 	dtrace_buffer_free(state->dts_buffer);
14524 	dtrace_buffer_free(state->dts_aggbuffer);
14525 
14526 	for (i = 0; i < nspec; i++)
14527 		dtrace_buffer_free(spec[i].dtsp_buffer);
14528 
14529 	if (state->dts_cleaner != CYCLIC_NONE)
14530 		cyclic_remove(state->dts_cleaner);
14531 
14532 	if (state->dts_deadman != CYCLIC_NONE)
14533 		cyclic_remove(state->dts_deadman);
14534 
14535 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
14536 	dtrace_vstate_fini(vstate);
14537 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
14538 
14539 	if (state->dts_aggregations != NULL) {
14540 #ifdef DEBUG
14541 		for (i = 0; i < state->dts_naggregations; i++)
14542 			ASSERT(state->dts_aggregations[i] == NULL);
14543 #endif
14544 		ASSERT(state->dts_naggregations > 0);
14545 		kmem_free(state->dts_aggregations,
14546 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14547 	}
14548 
14549 	kmem_free(state->dts_buffer, bufsize);
14550 	kmem_free(state->dts_aggbuffer, bufsize);
14551 
14552 	for (i = 0; i < nspec; i++)
14553 		kmem_free(spec[i].dtsp_buffer, bufsize);
14554 
14555 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14556 
14557 	dtrace_format_destroy(state);
14558 
14559 	vmem_destroy(state->dts_aggid_arena);
14560 	ddi_soft_state_free(dtrace_softstate, minor);
14561 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14562 }
14563 
14564 /*
14565  * DTrace Anonymous Enabling Functions
14566  */
14567 static dtrace_state_t *
14568 dtrace_anon_grab(void)
14569 {
14570 	dtrace_state_t *state;
14571 
14572 	ASSERT(MUTEX_HELD(&dtrace_lock));
14573 
14574 	if ((state = dtrace_anon.dta_state) == NULL) {
14575 		ASSERT(dtrace_anon.dta_enabling == NULL);
14576 		return (NULL);
14577 	}
14578 
14579 	ASSERT(dtrace_anon.dta_enabling != NULL);
14580 	ASSERT(dtrace_retained != NULL);
14581 
14582 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14583 	dtrace_anon.dta_enabling = NULL;
14584 	dtrace_anon.dta_state = NULL;
14585 
14586 	return (state);
14587 }
14588 
14589 static void
14590 dtrace_anon_property(void)
14591 {
14592 	int i, rv;
14593 	dtrace_state_t *state;
14594 	dof_hdr_t *dof;
14595 	char c[32];		/* enough for "dof-data-" + digits */
14596 
14597 	ASSERT(MUTEX_HELD(&dtrace_lock));
14598 	ASSERT(MUTEX_HELD(&cpu_lock));
14599 
14600 	for (i = 0; ; i++) {
14601 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
14602 
14603 		dtrace_err_verbose = 1;
14604 
14605 		if ((dof = dtrace_dof_property(c)) == NULL) {
14606 			dtrace_err_verbose = 0;
14607 			break;
14608 		}
14609 
14610 		/*
14611 		 * We want to create anonymous state, so we need to transition
14612 		 * the kernel debugger to indicate that DTrace is active.  If
14613 		 * this fails (e.g. because the debugger has modified text in
14614 		 * some way), we won't continue with the processing.
14615 		 */
14616 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14617 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14618 			    "enabling ignored.");
14619 			dtrace_dof_destroy(dof);
14620 			break;
14621 		}
14622 
14623 		/*
14624 		 * If we haven't allocated an anonymous state, we'll do so now.
14625 		 */
14626 		if ((state = dtrace_anon.dta_state) == NULL) {
14627 			state = dtrace_state_create(NULL, NULL);
14628 			dtrace_anon.dta_state = state;
14629 
14630 			if (state == NULL) {
14631 				/*
14632 				 * This basically shouldn't happen:  the only
14633 				 * failure mode from dtrace_state_create() is a
14634 				 * failure of ddi_soft_state_zalloc() that
14635 				 * itself should never happen.  Still, the
14636 				 * interface allows for a failure mode, and
14637 				 * we want to fail as gracefully as possible:
14638 				 * we'll emit an error message and cease
14639 				 * processing anonymous state in this case.
14640 				 */
14641 				cmn_err(CE_WARN, "failed to create "
14642 				    "anonymous state");
14643 				dtrace_dof_destroy(dof);
14644 				break;
14645 			}
14646 		}
14647 
14648 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14649 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
14650 
14651 		if (rv == 0)
14652 			rv = dtrace_dof_options(dof, state);
14653 
14654 		dtrace_err_verbose = 0;
14655 		dtrace_dof_destroy(dof);
14656 
14657 		if (rv != 0) {
14658 			/*
14659 			 * This is malformed DOF; chuck any anonymous state
14660 			 * that we created.
14661 			 */
14662 			ASSERT(dtrace_anon.dta_enabling == NULL);
14663 			dtrace_state_destroy(state);
14664 			dtrace_anon.dta_state = NULL;
14665 			break;
14666 		}
14667 
14668 		ASSERT(dtrace_anon.dta_enabling != NULL);
14669 	}
14670 
14671 	if (dtrace_anon.dta_enabling != NULL) {
14672 		int rval;
14673 
14674 		/*
14675 		 * dtrace_enabling_retain() can only fail because we are
14676 		 * trying to retain more enablings than are allowed -- but
14677 		 * we only have one anonymous enabling, and we are guaranteed
14678 		 * to be allowed at least one retained enabling; we assert
14679 		 * that dtrace_enabling_retain() returns success.
14680 		 */
14681 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14682 		ASSERT(rval == 0);
14683 
14684 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
14685 	}
14686 }
14687 
14688 /*
14689  * DTrace Helper Functions
14690  */
14691 static void
14692 dtrace_helper_trace(dtrace_helper_action_t *helper,
14693     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14694 {
14695 	uint32_t size, next, nnext, i;
14696 	dtrace_helptrace_t *ent, *buffer;
14697 	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14698 
14699 	if ((buffer = dtrace_helptrace_buffer) == NULL)
14700 		return;
14701 
14702 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14703 
14704 	/*
14705 	 * What would a tracing framework be without its own tracing
14706 	 * framework?  (Well, a hell of a lot simpler, for starters...)
14707 	 */
14708 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14709 	    sizeof (uint64_t) - sizeof (uint64_t);
14710 
14711 	/*
14712 	 * Iterate until we can allocate a slot in the trace buffer.
14713 	 */
14714 	do {
14715 		next = dtrace_helptrace_next;
14716 
14717 		if (next + size < dtrace_helptrace_bufsize) {
14718 			nnext = next + size;
14719 		} else {
14720 			nnext = size;
14721 		}
14722 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14723 
14724 	/*
14725 	 * We have our slot; fill it in.
14726 	 */
14727 	if (nnext == size) {
14728 		dtrace_helptrace_wrapped++;
14729 		next = 0;
14730 	}
14731 
14732 	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
14733 	ent->dtht_helper = helper;
14734 	ent->dtht_where = where;
14735 	ent->dtht_nlocals = vstate->dtvs_nlocals;
14736 
14737 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14738 	    mstate->dtms_fltoffs : -1;
14739 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14740 	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
14741 
14742 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
14743 		dtrace_statvar_t *svar;
14744 
14745 		if ((svar = vstate->dtvs_locals[i]) == NULL)
14746 			continue;
14747 
14748 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14749 		ent->dtht_locals[i] =
14750 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
14751 	}
14752 }
14753 
14754 static uint64_t
14755 dtrace_helper(int which, dtrace_mstate_t *mstate,
14756     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14757 {
14758 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14759 	uint64_t sarg0 = mstate->dtms_arg[0];
14760 	uint64_t sarg1 = mstate->dtms_arg[1];
14761 	uint64_t rval;
14762 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14763 	dtrace_helper_action_t *helper;
14764 	dtrace_vstate_t *vstate;
14765 	dtrace_difo_t *pred;
14766 	int i, trace = dtrace_helptrace_buffer != NULL;
14767 
14768 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14769 
14770 	if (helpers == NULL)
14771 		return (0);
14772 
14773 	if ((helper = helpers->dthps_actions[which]) == NULL)
14774 		return (0);
14775 
14776 	vstate = &helpers->dthps_vstate;
14777 	mstate->dtms_arg[0] = arg0;
14778 	mstate->dtms_arg[1] = arg1;
14779 
14780 	/*
14781 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
14782 	 * we'll call the corresponding actions.  Note that the below calls
14783 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
14784 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14785 	 * the stored DIF offset with its own (which is the desired behavior).
14786 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14787 	 * from machine state; this is okay, too.
14788 	 */
14789 	for (; helper != NULL; helper = helper->dtha_next) {
14790 		if ((pred = helper->dtha_predicate) != NULL) {
14791 			if (trace)
14792 				dtrace_helper_trace(helper, mstate, vstate, 0);
14793 
14794 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14795 				goto next;
14796 
14797 			if (*flags & CPU_DTRACE_FAULT)
14798 				goto err;
14799 		}
14800 
14801 		for (i = 0; i < helper->dtha_nactions; i++) {
14802 			if (trace)
14803 				dtrace_helper_trace(helper,
14804 				    mstate, vstate, i + 1);
14805 
14806 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14807 			    mstate, vstate, state);
14808 
14809 			if (*flags & CPU_DTRACE_FAULT)
14810 				goto err;
14811 		}
14812 
14813 next:
14814 		if (trace)
14815 			dtrace_helper_trace(helper, mstate, vstate,
14816 			    DTRACE_HELPTRACE_NEXT);
14817 	}
14818 
14819 	if (trace)
14820 		dtrace_helper_trace(helper, mstate, vstate,
14821 		    DTRACE_HELPTRACE_DONE);
14822 
14823 	/*
14824 	 * Restore the arg0 that we saved upon entry.
14825 	 */
14826 	mstate->dtms_arg[0] = sarg0;
14827 	mstate->dtms_arg[1] = sarg1;
14828 
14829 	return (rval);
14830 
14831 err:
14832 	if (trace)
14833 		dtrace_helper_trace(helper, mstate, vstate,
14834 		    DTRACE_HELPTRACE_ERR);
14835 
14836 	/*
14837 	 * Restore the arg0 that we saved upon entry.
14838 	 */
14839 	mstate->dtms_arg[0] = sarg0;
14840 	mstate->dtms_arg[1] = sarg1;
14841 
14842 	return (0);
14843 }
14844 
14845 static void
14846 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14847     dtrace_vstate_t *vstate)
14848 {
14849 	int i;
14850 
14851 	if (helper->dtha_predicate != NULL)
14852 		dtrace_difo_release(helper->dtha_predicate, vstate);
14853 
14854 	for (i = 0; i < helper->dtha_nactions; i++) {
14855 		ASSERT(helper->dtha_actions[i] != NULL);
14856 		dtrace_difo_release(helper->dtha_actions[i], vstate);
14857 	}
14858 
14859 	kmem_free(helper->dtha_actions,
14860 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14861 	kmem_free(helper, sizeof (dtrace_helper_action_t));
14862 }
14863 
14864 static int
14865 dtrace_helper_destroygen(int gen)
14866 {
14867 	proc_t *p = curproc;
14868 	dtrace_helpers_t *help = p->p_dtrace_helpers;
14869 	dtrace_vstate_t *vstate;
14870 	int i;
14871 
14872 	ASSERT(MUTEX_HELD(&dtrace_lock));
14873 
14874 	if (help == NULL || gen > help->dthps_generation)
14875 		return (EINVAL);
14876 
14877 	vstate = &help->dthps_vstate;
14878 
14879 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14880 		dtrace_helper_action_t *last = NULL, *h, *next;
14881 
14882 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14883 			next = h->dtha_next;
14884 
14885 			if (h->dtha_generation == gen) {
14886 				if (last != NULL) {
14887 					last->dtha_next = next;
14888 				} else {
14889 					help->dthps_actions[i] = next;
14890 				}
14891 
14892 				dtrace_helper_action_destroy(h, vstate);
14893 			} else {
14894 				last = h;
14895 			}
14896 		}
14897 	}
14898 
14899 	/*
14900 	 * Interate until we've cleared out all helper providers with the
14901 	 * given generation number.
14902 	 */
14903 	for (;;) {
14904 		dtrace_helper_provider_t *prov;
14905 
14906 		/*
14907 		 * Look for a helper provider with the right generation. We
14908 		 * have to start back at the beginning of the list each time
14909 		 * because we drop dtrace_lock. It's unlikely that we'll make
14910 		 * more than two passes.
14911 		 */
14912 		for (i = 0; i < help->dthps_nprovs; i++) {
14913 			prov = help->dthps_provs[i];
14914 
14915 			if (prov->dthp_generation == gen)
14916 				break;
14917 		}
14918 
14919 		/*
14920 		 * If there were no matches, we're done.
14921 		 */
14922 		if (i == help->dthps_nprovs)
14923 			break;
14924 
14925 		/*
14926 		 * Move the last helper provider into this slot.
14927 		 */
14928 		help->dthps_nprovs--;
14929 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14930 		help->dthps_provs[help->dthps_nprovs] = NULL;
14931 
14932 		mutex_exit(&dtrace_lock);
14933 
14934 		/*
14935 		 * If we have a meta provider, remove this helper provider.
14936 		 */
14937 		mutex_enter(&dtrace_meta_lock);
14938 		if (dtrace_meta_pid != NULL) {
14939 			ASSERT(dtrace_deferred_pid == NULL);
14940 			dtrace_helper_provider_remove(&prov->dthp_prov,
14941 			    p->p_pid);
14942 		}
14943 		mutex_exit(&dtrace_meta_lock);
14944 
14945 		dtrace_helper_provider_destroy(prov);
14946 
14947 		mutex_enter(&dtrace_lock);
14948 	}
14949 
14950 	return (0);
14951 }
14952 
14953 static int
14954 dtrace_helper_validate(dtrace_helper_action_t *helper)
14955 {
14956 	int err = 0, i;
14957 	dtrace_difo_t *dp;
14958 
14959 	if ((dp = helper->dtha_predicate) != NULL)
14960 		err += dtrace_difo_validate_helper(dp);
14961 
14962 	for (i = 0; i < helper->dtha_nactions; i++)
14963 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14964 
14965 	return (err == 0);
14966 }
14967 
14968 static int
14969 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14970 {
14971 	dtrace_helpers_t *help;
14972 	dtrace_helper_action_t *helper, *last;
14973 	dtrace_actdesc_t *act;
14974 	dtrace_vstate_t *vstate;
14975 	dtrace_predicate_t *pred;
14976 	int count = 0, nactions = 0, i;
14977 
14978 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14979 		return (EINVAL);
14980 
14981 	help = curproc->p_dtrace_helpers;
14982 	last = help->dthps_actions[which];
14983 	vstate = &help->dthps_vstate;
14984 
14985 	for (count = 0; last != NULL; last = last->dtha_next) {
14986 		count++;
14987 		if (last->dtha_next == NULL)
14988 			break;
14989 	}
14990 
14991 	/*
14992 	 * If we already have dtrace_helper_actions_max helper actions for this
14993 	 * helper action type, we'll refuse to add a new one.
14994 	 */
14995 	if (count >= dtrace_helper_actions_max)
14996 		return (ENOSPC);
14997 
14998 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14999 	helper->dtha_generation = help->dthps_generation;
15000 
15001 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15002 		ASSERT(pred->dtp_difo != NULL);
15003 		dtrace_difo_hold(pred->dtp_difo);
15004 		helper->dtha_predicate = pred->dtp_difo;
15005 	}
15006 
15007 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15008 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15009 			goto err;
15010 
15011 		if (act->dtad_difo == NULL)
15012 			goto err;
15013 
15014 		nactions++;
15015 	}
15016 
15017 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15018 	    (helper->dtha_nactions = nactions), KM_SLEEP);
15019 
15020 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15021 		dtrace_difo_hold(act->dtad_difo);
15022 		helper->dtha_actions[i++] = act->dtad_difo;
15023 	}
15024 
15025 	if (!dtrace_helper_validate(helper))
15026 		goto err;
15027 
15028 	if (last == NULL) {
15029 		help->dthps_actions[which] = helper;
15030 	} else {
15031 		last->dtha_next = helper;
15032 	}
15033 
15034 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15035 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15036 		dtrace_helptrace_next = 0;
15037 	}
15038 
15039 	return (0);
15040 err:
15041 	dtrace_helper_action_destroy(helper, vstate);
15042 	return (EINVAL);
15043 }
15044 
15045 static void
15046 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15047     dof_helper_t *dofhp)
15048 {
15049 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15050 
15051 	mutex_enter(&dtrace_meta_lock);
15052 	mutex_enter(&dtrace_lock);
15053 
15054 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
15055 		/*
15056 		 * If the dtrace module is loaded but not attached, or if
15057 		 * there aren't isn't a meta provider registered to deal with
15058 		 * these provider descriptions, we need to postpone creating
15059 		 * the actual providers until later.
15060 		 */
15061 
15062 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
15063 		    dtrace_deferred_pid != help) {
15064 			help->dthps_deferred = 1;
15065 			help->dthps_pid = p->p_pid;
15066 			help->dthps_next = dtrace_deferred_pid;
15067 			help->dthps_prev = NULL;
15068 			if (dtrace_deferred_pid != NULL)
15069 				dtrace_deferred_pid->dthps_prev = help;
15070 			dtrace_deferred_pid = help;
15071 		}
15072 
15073 		mutex_exit(&dtrace_lock);
15074 
15075 	} else if (dofhp != NULL) {
15076 		/*
15077 		 * If the dtrace module is loaded and we have a particular
15078 		 * helper provider description, pass that off to the
15079 		 * meta provider.
15080 		 */
15081 
15082 		mutex_exit(&dtrace_lock);
15083 
15084 		dtrace_helper_provide(dofhp, p->p_pid);
15085 
15086 	} else {
15087 		/*
15088 		 * Otherwise, just pass all the helper provider descriptions
15089 		 * off to the meta provider.
15090 		 */
15091 
15092 		int i;
15093 		mutex_exit(&dtrace_lock);
15094 
15095 		for (i = 0; i < help->dthps_nprovs; i++) {
15096 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
15097 			    p->p_pid);
15098 		}
15099 	}
15100 
15101 	mutex_exit(&dtrace_meta_lock);
15102 }
15103 
15104 static int
15105 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
15106 {
15107 	dtrace_helpers_t *help;
15108 	dtrace_helper_provider_t *hprov, **tmp_provs;
15109 	uint_t tmp_maxprovs, i;
15110 
15111 	ASSERT(MUTEX_HELD(&dtrace_lock));
15112 
15113 	help = curproc->p_dtrace_helpers;
15114 	ASSERT(help != NULL);
15115 
15116 	/*
15117 	 * If we already have dtrace_helper_providers_max helper providers,
15118 	 * we're refuse to add a new one.
15119 	 */
15120 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
15121 		return (ENOSPC);
15122 
15123 	/*
15124 	 * Check to make sure this isn't a duplicate.
15125 	 */
15126 	for (i = 0; i < help->dthps_nprovs; i++) {
15127 		if (dofhp->dofhp_addr ==
15128 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
15129 			return (EALREADY);
15130 	}
15131 
15132 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
15133 	hprov->dthp_prov = *dofhp;
15134 	hprov->dthp_ref = 1;
15135 	hprov->dthp_generation = gen;
15136 
15137 	/*
15138 	 * Allocate a bigger table for helper providers if it's already full.
15139 	 */
15140 	if (help->dthps_maxprovs == help->dthps_nprovs) {
15141 		tmp_maxprovs = help->dthps_maxprovs;
15142 		tmp_provs = help->dthps_provs;
15143 
15144 		if (help->dthps_maxprovs == 0)
15145 			help->dthps_maxprovs = 2;
15146 		else
15147 			help->dthps_maxprovs *= 2;
15148 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
15149 			help->dthps_maxprovs = dtrace_helper_providers_max;
15150 
15151 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
15152 
15153 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
15154 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15155 
15156 		if (tmp_provs != NULL) {
15157 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
15158 			    sizeof (dtrace_helper_provider_t *));
15159 			kmem_free(tmp_provs, tmp_maxprovs *
15160 			    sizeof (dtrace_helper_provider_t *));
15161 		}
15162 	}
15163 
15164 	help->dthps_provs[help->dthps_nprovs] = hprov;
15165 	help->dthps_nprovs++;
15166 
15167 	return (0);
15168 }
15169 
15170 static void
15171 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
15172 {
15173 	mutex_enter(&dtrace_lock);
15174 
15175 	if (--hprov->dthp_ref == 0) {
15176 		dof_hdr_t *dof;
15177 		mutex_exit(&dtrace_lock);
15178 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
15179 		dtrace_dof_destroy(dof);
15180 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
15181 	} else {
15182 		mutex_exit(&dtrace_lock);
15183 	}
15184 }
15185 
15186 static int
15187 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
15188 {
15189 	uintptr_t daddr = (uintptr_t)dof;
15190 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
15191 	dof_provider_t *provider;
15192 	dof_probe_t *probe;
15193 	uint8_t *arg;
15194 	char *strtab, *typestr;
15195 	dof_stridx_t typeidx;
15196 	size_t typesz;
15197 	uint_t nprobes, j, k;
15198 
15199 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
15200 
15201 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
15202 		dtrace_dof_error(dof, "misaligned section offset");
15203 		return (-1);
15204 	}
15205 
15206 	/*
15207 	 * The section needs to be large enough to contain the DOF provider
15208 	 * structure appropriate for the given version.
15209 	 */
15210 	if (sec->dofs_size <
15211 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
15212 	    offsetof(dof_provider_t, dofpv_prenoffs) :
15213 	    sizeof (dof_provider_t))) {
15214 		dtrace_dof_error(dof, "provider section too small");
15215 		return (-1);
15216 	}
15217 
15218 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
15219 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
15220 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
15221 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
15222 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
15223 
15224 	if (str_sec == NULL || prb_sec == NULL ||
15225 	    arg_sec == NULL || off_sec == NULL)
15226 		return (-1);
15227 
15228 	enoff_sec = NULL;
15229 
15230 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
15231 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
15232 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
15233 	    provider->dofpv_prenoffs)) == NULL)
15234 		return (-1);
15235 
15236 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
15237 
15238 	if (provider->dofpv_name >= str_sec->dofs_size ||
15239 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
15240 		dtrace_dof_error(dof, "invalid provider name");
15241 		return (-1);
15242 	}
15243 
15244 	if (prb_sec->dofs_entsize == 0 ||
15245 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
15246 		dtrace_dof_error(dof, "invalid entry size");
15247 		return (-1);
15248 	}
15249 
15250 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
15251 		dtrace_dof_error(dof, "misaligned entry size");
15252 		return (-1);
15253 	}
15254 
15255 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
15256 		dtrace_dof_error(dof, "invalid entry size");
15257 		return (-1);
15258 	}
15259 
15260 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
15261 		dtrace_dof_error(dof, "misaligned section offset");
15262 		return (-1);
15263 	}
15264 
15265 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
15266 		dtrace_dof_error(dof, "invalid entry size");
15267 		return (-1);
15268 	}
15269 
15270 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
15271 
15272 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
15273 
15274 	/*
15275 	 * Take a pass through the probes to check for errors.
15276 	 */
15277 	for (j = 0; j < nprobes; j++) {
15278 		probe = (dof_probe_t *)(uintptr_t)(daddr +
15279 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
15280 
15281 		if (probe->dofpr_func >= str_sec->dofs_size) {
15282 			dtrace_dof_error(dof, "invalid function name");
15283 			return (-1);
15284 		}
15285 
15286 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
15287 			dtrace_dof_error(dof, "function name too long");
15288 			return (-1);
15289 		}
15290 
15291 		if (probe->dofpr_name >= str_sec->dofs_size ||
15292 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
15293 			dtrace_dof_error(dof, "invalid probe name");
15294 			return (-1);
15295 		}
15296 
15297 		/*
15298 		 * The offset count must not wrap the index, and the offsets
15299 		 * must also not overflow the section's data.
15300 		 */
15301 		if (probe->dofpr_offidx + probe->dofpr_noffs <
15302 		    probe->dofpr_offidx ||
15303 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
15304 		    off_sec->dofs_entsize > off_sec->dofs_size) {
15305 			dtrace_dof_error(dof, "invalid probe offset");
15306 			return (-1);
15307 		}
15308 
15309 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
15310 			/*
15311 			 * If there's no is-enabled offset section, make sure
15312 			 * there aren't any is-enabled offsets. Otherwise
15313 			 * perform the same checks as for probe offsets
15314 			 * (immediately above).
15315 			 */
15316 			if (enoff_sec == NULL) {
15317 				if (probe->dofpr_enoffidx != 0 ||
15318 				    probe->dofpr_nenoffs != 0) {
15319 					dtrace_dof_error(dof, "is-enabled "
15320 					    "offsets with null section");
15321 					return (-1);
15322 				}
15323 			} else if (probe->dofpr_enoffidx +
15324 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
15325 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
15326 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
15327 				dtrace_dof_error(dof, "invalid is-enabled "
15328 				    "offset");
15329 				return (-1);
15330 			}
15331 
15332 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
15333 				dtrace_dof_error(dof, "zero probe and "
15334 				    "is-enabled offsets");
15335 				return (-1);
15336 			}
15337 		} else if (probe->dofpr_noffs == 0) {
15338 			dtrace_dof_error(dof, "zero probe offsets");
15339 			return (-1);
15340 		}
15341 
15342 		if (probe->dofpr_argidx + probe->dofpr_xargc <
15343 		    probe->dofpr_argidx ||
15344 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
15345 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
15346 			dtrace_dof_error(dof, "invalid args");
15347 			return (-1);
15348 		}
15349 
15350 		typeidx = probe->dofpr_nargv;
15351 		typestr = strtab + probe->dofpr_nargv;
15352 		for (k = 0; k < probe->dofpr_nargc; k++) {
15353 			if (typeidx >= str_sec->dofs_size) {
15354 				dtrace_dof_error(dof, "bad "
15355 				    "native argument type");
15356 				return (-1);
15357 			}
15358 
15359 			typesz = strlen(typestr) + 1;
15360 			if (typesz > DTRACE_ARGTYPELEN) {
15361 				dtrace_dof_error(dof, "native "
15362 				    "argument type too long");
15363 				return (-1);
15364 			}
15365 			typeidx += typesz;
15366 			typestr += typesz;
15367 		}
15368 
15369 		typeidx = probe->dofpr_xargv;
15370 		typestr = strtab + probe->dofpr_xargv;
15371 		for (k = 0; k < probe->dofpr_xargc; k++) {
15372 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15373 				dtrace_dof_error(dof, "bad "
15374 				    "native argument index");
15375 				return (-1);
15376 			}
15377 
15378 			if (typeidx >= str_sec->dofs_size) {
15379 				dtrace_dof_error(dof, "bad "
15380 				    "translated argument type");
15381 				return (-1);
15382 			}
15383 
15384 			typesz = strlen(typestr) + 1;
15385 			if (typesz > DTRACE_ARGTYPELEN) {
15386 				dtrace_dof_error(dof, "translated argument "
15387 				    "type too long");
15388 				return (-1);
15389 			}
15390 
15391 			typeidx += typesz;
15392 			typestr += typesz;
15393 		}
15394 	}
15395 
15396 	return (0);
15397 }
15398 
15399 static int
15400 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15401 {
15402 	dtrace_helpers_t *help;
15403 	dtrace_vstate_t *vstate;
15404 	dtrace_enabling_t *enab = NULL;
15405 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15406 	uintptr_t daddr = (uintptr_t)dof;
15407 
15408 	ASSERT(MUTEX_HELD(&dtrace_lock));
15409 
15410 	if ((help = curproc->p_dtrace_helpers) == NULL)
15411 		help = dtrace_helpers_create(curproc);
15412 
15413 	vstate = &help->dthps_vstate;
15414 
15415 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15416 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15417 		dtrace_dof_destroy(dof);
15418 		return (rv);
15419 	}
15420 
15421 	/*
15422 	 * Look for helper providers and validate their descriptions.
15423 	 */
15424 	if (dhp != NULL) {
15425 		for (i = 0; i < dof->dofh_secnum; i++) {
15426 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15427 			    dof->dofh_secoff + i * dof->dofh_secsize);
15428 
15429 			if (sec->dofs_type != DOF_SECT_PROVIDER)
15430 				continue;
15431 
15432 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
15433 				dtrace_enabling_destroy(enab);
15434 				dtrace_dof_destroy(dof);
15435 				return (-1);
15436 			}
15437 
15438 			nprovs++;
15439 		}
15440 	}
15441 
15442 	/*
15443 	 * Now we need to walk through the ECB descriptions in the enabling.
15444 	 */
15445 	for (i = 0; i < enab->dten_ndesc; i++) {
15446 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15447 		dtrace_probedesc_t *desc = &ep->dted_probe;
15448 
15449 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15450 			continue;
15451 
15452 		if (strcmp(desc->dtpd_mod, "helper") != 0)
15453 			continue;
15454 
15455 		if (strcmp(desc->dtpd_func, "ustack") != 0)
15456 			continue;
15457 
15458 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15459 		    ep)) != 0) {
15460 			/*
15461 			 * Adding this helper action failed -- we are now going
15462 			 * to rip out the entire generation and return failure.
15463 			 */
15464 			(void) dtrace_helper_destroygen(help->dthps_generation);
15465 			dtrace_enabling_destroy(enab);
15466 			dtrace_dof_destroy(dof);
15467 			return (-1);
15468 		}
15469 
15470 		nhelpers++;
15471 	}
15472 
15473 	if (nhelpers < enab->dten_ndesc)
15474 		dtrace_dof_error(dof, "unmatched helpers");
15475 
15476 	gen = help->dthps_generation++;
15477 	dtrace_enabling_destroy(enab);
15478 
15479 	if (dhp != NULL && nprovs > 0) {
15480 		/*
15481 		 * Now that this is in-kernel, we change the sense of the
15482 		 * members:  dofhp_dof denotes the in-kernel copy of the DOF
15483 		 * and dofhp_addr denotes the address at user-level.
15484 		 */
15485 		dhp->dofhp_addr = dhp->dofhp_dof;
15486 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
15487 
15488 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
15489 			mutex_exit(&dtrace_lock);
15490 			dtrace_helper_provider_register(curproc, help, dhp);
15491 			mutex_enter(&dtrace_lock);
15492 
15493 			destroy = 0;
15494 		}
15495 	}
15496 
15497 	if (destroy)
15498 		dtrace_dof_destroy(dof);
15499 
15500 	return (gen);
15501 }
15502 
15503 static dtrace_helpers_t *
15504 dtrace_helpers_create(proc_t *p)
15505 {
15506 	dtrace_helpers_t *help;
15507 
15508 	ASSERT(MUTEX_HELD(&dtrace_lock));
15509 	ASSERT(p->p_dtrace_helpers == NULL);
15510 
15511 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
15512 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
15513 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
15514 
15515 	p->p_dtrace_helpers = help;
15516 	dtrace_helpers++;
15517 
15518 	return (help);
15519 }
15520 
15521 static void
15522 dtrace_helpers_destroy(proc_t *p)
15523 {
15524 	dtrace_helpers_t *help;
15525 	dtrace_vstate_t *vstate;
15526 	int i;
15527 
15528 	mutex_enter(&dtrace_lock);
15529 
15530 	ASSERT(p->p_dtrace_helpers != NULL);
15531 	ASSERT(dtrace_helpers > 0);
15532 
15533 	help = p->p_dtrace_helpers;
15534 	vstate = &help->dthps_vstate;
15535 
15536 	/*
15537 	 * We're now going to lose the help from this process.
15538 	 */
15539 	p->p_dtrace_helpers = NULL;
15540 	if (p == curproc) {
15541 		dtrace_sync();
15542 	} else {
15543 		/*
15544 		 * It is sometimes necessary to clean up dtrace helpers from a
15545 		 * an incomplete child process as part of a failed fork
15546 		 * operation.  In such situations, a dtrace_sync() call should
15547 		 * be unnecessary as the process should be devoid of threads,
15548 		 * much less any in probe context.
15549 		 */
15550 		VERIFY(p->p_stat == SIDL);
15551 	}
15552 
15553 	/*
15554 	 * Destroy the helper actions.
15555 	 */
15556 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15557 		dtrace_helper_action_t *h, *next;
15558 
15559 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15560 			next = h->dtha_next;
15561 			dtrace_helper_action_destroy(h, vstate);
15562 			h = next;
15563 		}
15564 	}
15565 
15566 	mutex_exit(&dtrace_lock);
15567 
15568 	/*
15569 	 * Destroy the helper providers.
15570 	 */
15571 	if (help->dthps_maxprovs > 0) {
15572 		mutex_enter(&dtrace_meta_lock);
15573 		if (dtrace_meta_pid != NULL) {
15574 			ASSERT(dtrace_deferred_pid == NULL);
15575 
15576 			for (i = 0; i < help->dthps_nprovs; i++) {
15577 				dtrace_helper_provider_remove(
15578 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
15579 			}
15580 		} else {
15581 			mutex_enter(&dtrace_lock);
15582 			ASSERT(help->dthps_deferred == 0 ||
15583 			    help->dthps_next != NULL ||
15584 			    help->dthps_prev != NULL ||
15585 			    help == dtrace_deferred_pid);
15586 
15587 			/*
15588 			 * Remove the helper from the deferred list.
15589 			 */
15590 			if (help->dthps_next != NULL)
15591 				help->dthps_next->dthps_prev = help->dthps_prev;
15592 			if (help->dthps_prev != NULL)
15593 				help->dthps_prev->dthps_next = help->dthps_next;
15594 			if (dtrace_deferred_pid == help) {
15595 				dtrace_deferred_pid = help->dthps_next;
15596 				ASSERT(help->dthps_prev == NULL);
15597 			}
15598 
15599 			mutex_exit(&dtrace_lock);
15600 		}
15601 
15602 		mutex_exit(&dtrace_meta_lock);
15603 
15604 		for (i = 0; i < help->dthps_nprovs; i++) {
15605 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
15606 		}
15607 
15608 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
15609 		    sizeof (dtrace_helper_provider_t *));
15610 	}
15611 
15612 	mutex_enter(&dtrace_lock);
15613 
15614 	dtrace_vstate_fini(&help->dthps_vstate);
15615 	kmem_free(help->dthps_actions,
15616 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15617 	kmem_free(help, sizeof (dtrace_helpers_t));
15618 
15619 	--dtrace_helpers;
15620 	mutex_exit(&dtrace_lock);
15621 }
15622 
15623 static void
15624 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15625 {
15626 	dtrace_helpers_t *help, *newhelp;
15627 	dtrace_helper_action_t *helper, *new, *last;
15628 	dtrace_difo_t *dp;
15629 	dtrace_vstate_t *vstate;
15630 	int i, j, sz, hasprovs = 0;
15631 
15632 	mutex_enter(&dtrace_lock);
15633 	ASSERT(from->p_dtrace_helpers != NULL);
15634 	ASSERT(dtrace_helpers > 0);
15635 
15636 	help = from->p_dtrace_helpers;
15637 	newhelp = dtrace_helpers_create(to);
15638 	ASSERT(to->p_dtrace_helpers != NULL);
15639 
15640 	newhelp->dthps_generation = help->dthps_generation;
15641 	vstate = &newhelp->dthps_vstate;
15642 
15643 	/*
15644 	 * Duplicate the helper actions.
15645 	 */
15646 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15647 		if ((helper = help->dthps_actions[i]) == NULL)
15648 			continue;
15649 
15650 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15651 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15652 			    KM_SLEEP);
15653 			new->dtha_generation = helper->dtha_generation;
15654 
15655 			if ((dp = helper->dtha_predicate) != NULL) {
15656 				dp = dtrace_difo_duplicate(dp, vstate);
15657 				new->dtha_predicate = dp;
15658 			}
15659 
15660 			new->dtha_nactions = helper->dtha_nactions;
15661 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15662 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15663 
15664 			for (j = 0; j < new->dtha_nactions; j++) {
15665 				dtrace_difo_t *dp = helper->dtha_actions[j];
15666 
15667 				ASSERT(dp != NULL);
15668 				dp = dtrace_difo_duplicate(dp, vstate);
15669 				new->dtha_actions[j] = dp;
15670 			}
15671 
15672 			if (last != NULL) {
15673 				last->dtha_next = new;
15674 			} else {
15675 				newhelp->dthps_actions[i] = new;
15676 			}
15677 
15678 			last = new;
15679 		}
15680 	}
15681 
15682 	/*
15683 	 * Duplicate the helper providers and register them with the
15684 	 * DTrace framework.
15685 	 */
15686 	if (help->dthps_nprovs > 0) {
15687 		newhelp->dthps_nprovs = help->dthps_nprovs;
15688 		newhelp->dthps_maxprovs = help->dthps_nprovs;
15689 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15690 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15691 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
15692 			newhelp->dthps_provs[i] = help->dthps_provs[i];
15693 			newhelp->dthps_provs[i]->dthp_ref++;
15694 		}
15695 
15696 		hasprovs = 1;
15697 	}
15698 
15699 	mutex_exit(&dtrace_lock);
15700 
15701 	if (hasprovs)
15702 		dtrace_helper_provider_register(to, newhelp, NULL);
15703 }
15704 
15705 /*
15706  * DTrace Hook Functions
15707  */
15708 static void
15709 dtrace_module_loaded(struct modctl *ctl)
15710 {
15711 	dtrace_provider_t *prv;
15712 
15713 	mutex_enter(&dtrace_provider_lock);
15714 	mutex_enter(&mod_lock);
15715 
15716 	ASSERT(ctl->mod_busy);
15717 
15718 	/*
15719 	 * We're going to call each providers per-module provide operation
15720 	 * specifying only this module.
15721 	 */
15722 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15723 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15724 
15725 	mutex_exit(&mod_lock);
15726 	mutex_exit(&dtrace_provider_lock);
15727 
15728 	/*
15729 	 * If we have any retained enablings, we need to match against them.
15730 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
15731 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15732 	 * module.  (In particular, this happens when loading scheduling
15733 	 * classes.)  So if we have any retained enablings, we need to dispatch
15734 	 * our task queue to do the match for us.
15735 	 */
15736 	mutex_enter(&dtrace_lock);
15737 
15738 	if (dtrace_retained == NULL) {
15739 		mutex_exit(&dtrace_lock);
15740 		return;
15741 	}
15742 
15743 	(void) taskq_dispatch(dtrace_taskq,
15744 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15745 
15746 	mutex_exit(&dtrace_lock);
15747 
15748 	/*
15749 	 * And now, for a little heuristic sleaze:  in general, we want to
15750 	 * match modules as soon as they load.  However, we cannot guarantee
15751 	 * this, because it would lead us to the lock ordering violation
15752 	 * outlined above.  The common case, of course, is that cpu_lock is
15753 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
15754 	 * long enough for the task queue to do its work.  If it's not, it's
15755 	 * not a serious problem -- it just means that the module that we
15756 	 * just loaded may not be immediately instrumentable.
15757 	 */
15758 	delay(1);
15759 }
15760 
15761 static void
15762 dtrace_module_unloaded(struct modctl *ctl)
15763 {
15764 	dtrace_probe_t template, *probe, *first, *next;
15765 	dtrace_provider_t *prov;
15766 
15767 	template.dtpr_mod = ctl->mod_modname;
15768 
15769 	mutex_enter(&dtrace_provider_lock);
15770 	mutex_enter(&mod_lock);
15771 	mutex_enter(&dtrace_lock);
15772 
15773 	if (dtrace_bymod == NULL) {
15774 		/*
15775 		 * The DTrace module is loaded (obviously) but not attached;
15776 		 * we don't have any work to do.
15777 		 */
15778 		mutex_exit(&dtrace_provider_lock);
15779 		mutex_exit(&mod_lock);
15780 		mutex_exit(&dtrace_lock);
15781 		return;
15782 	}
15783 
15784 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15785 	    probe != NULL; probe = probe->dtpr_nextmod) {
15786 		if (probe->dtpr_ecb != NULL) {
15787 			mutex_exit(&dtrace_provider_lock);
15788 			mutex_exit(&mod_lock);
15789 			mutex_exit(&dtrace_lock);
15790 
15791 			/*
15792 			 * This shouldn't _actually_ be possible -- we're
15793 			 * unloading a module that has an enabled probe in it.
15794 			 * (It's normally up to the provider to make sure that
15795 			 * this can't happen.)  However, because dtps_enable()
15796 			 * doesn't have a failure mode, there can be an
15797 			 * enable/unload race.  Upshot:  we don't want to
15798 			 * assert, but we're not going to disable the
15799 			 * probe, either.
15800 			 */
15801 			if (dtrace_err_verbose) {
15802 				cmn_err(CE_WARN, "unloaded module '%s' had "
15803 				    "enabled probes", ctl->mod_modname);
15804 			}
15805 
15806 			return;
15807 		}
15808 	}
15809 
15810 	probe = first;
15811 
15812 	for (first = NULL; probe != NULL; probe = next) {
15813 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15814 
15815 		dtrace_probes[probe->dtpr_id - 1] = NULL;
15816 
15817 		next = probe->dtpr_nextmod;
15818 		dtrace_hash_remove(dtrace_bymod, probe);
15819 		dtrace_hash_remove(dtrace_byfunc, probe);
15820 		dtrace_hash_remove(dtrace_byname, probe);
15821 
15822 		if (first == NULL) {
15823 			first = probe;
15824 			probe->dtpr_nextmod = NULL;
15825 		} else {
15826 			probe->dtpr_nextmod = first;
15827 			first = probe;
15828 		}
15829 	}
15830 
15831 	/*
15832 	 * We've removed all of the module's probes from the hash chains and
15833 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15834 	 * everyone has cleared out from any probe array processing.
15835 	 */
15836 	dtrace_sync();
15837 
15838 	for (probe = first; probe != NULL; probe = first) {
15839 		first = probe->dtpr_nextmod;
15840 		prov = probe->dtpr_provider;
15841 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15842 		    probe->dtpr_arg);
15843 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15844 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15845 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15846 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15847 		kmem_free(probe, sizeof (dtrace_probe_t));
15848 	}
15849 
15850 	mutex_exit(&dtrace_lock);
15851 	mutex_exit(&mod_lock);
15852 	mutex_exit(&dtrace_provider_lock);
15853 }
15854 
15855 void
15856 dtrace_suspend(void)
15857 {
15858 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15859 }
15860 
15861 void
15862 dtrace_resume(void)
15863 {
15864 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15865 }
15866 
15867 static int
15868 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15869 {
15870 	ASSERT(MUTEX_HELD(&cpu_lock));
15871 	mutex_enter(&dtrace_lock);
15872 
15873 	switch (what) {
15874 	case CPU_CONFIG: {
15875 		dtrace_state_t *state;
15876 		dtrace_optval_t *opt, rs, c;
15877 
15878 		/*
15879 		 * For now, we only allocate a new buffer for anonymous state.
15880 		 */
15881 		if ((state = dtrace_anon.dta_state) == NULL)
15882 			break;
15883 
15884 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15885 			break;
15886 
15887 		opt = state->dts_options;
15888 		c = opt[DTRACEOPT_CPU];
15889 
15890 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15891 			break;
15892 
15893 		/*
15894 		 * Regardless of what the actual policy is, we're going to
15895 		 * temporarily set our resize policy to be manual.  We're
15896 		 * also going to temporarily set our CPU option to denote
15897 		 * the newly configured CPU.
15898 		 */
15899 		rs = opt[DTRACEOPT_BUFRESIZE];
15900 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15901 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15902 
15903 		(void) dtrace_state_buffers(state);
15904 
15905 		opt[DTRACEOPT_BUFRESIZE] = rs;
15906 		opt[DTRACEOPT_CPU] = c;
15907 
15908 		break;
15909 	}
15910 
15911 	case CPU_UNCONFIG:
15912 		/*
15913 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15914 		 * buffer will be freed when the consumer exits.)
15915 		 */
15916 		break;
15917 
15918 	default:
15919 		break;
15920 	}
15921 
15922 	mutex_exit(&dtrace_lock);
15923 	return (0);
15924 }
15925 
15926 static void
15927 dtrace_cpu_setup_initial(processorid_t cpu)
15928 {
15929 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15930 }
15931 
15932 static void
15933 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15934 {
15935 	if (dtrace_toxranges >= dtrace_toxranges_max) {
15936 		int osize, nsize;
15937 		dtrace_toxrange_t *range;
15938 
15939 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15940 
15941 		if (osize == 0) {
15942 			ASSERT(dtrace_toxrange == NULL);
15943 			ASSERT(dtrace_toxranges_max == 0);
15944 			dtrace_toxranges_max = 1;
15945 		} else {
15946 			dtrace_toxranges_max <<= 1;
15947 		}
15948 
15949 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15950 		range = kmem_zalloc(nsize, KM_SLEEP);
15951 
15952 		if (dtrace_toxrange != NULL) {
15953 			ASSERT(osize != 0);
15954 			bcopy(dtrace_toxrange, range, osize);
15955 			kmem_free(dtrace_toxrange, osize);
15956 		}
15957 
15958 		dtrace_toxrange = range;
15959 	}
15960 
15961 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
15962 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
15963 
15964 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15965 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15966 	dtrace_toxranges++;
15967 }
15968 
15969 static void
15970 dtrace_getf_barrier()
15971 {
15972 	/*
15973 	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
15974 	 * that contain calls to getf(), this routine will be called on every
15975 	 * closef() before either the underlying vnode is released or the
15976 	 * file_t itself is freed.  By the time we are here, it is essential
15977 	 * that the file_t can no longer be accessed from a call to getf()
15978 	 * in probe context -- that assures that a dtrace_sync() can be used
15979 	 * to clear out any enablings referring to the old structures.
15980 	 */
15981 	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
15982 	    kcred->cr_zone->zone_dtrace_getf != 0)
15983 		dtrace_sync();
15984 }
15985 
15986 /*
15987  * DTrace Driver Cookbook Functions
15988  */
15989 /*ARGSUSED*/
15990 static int
15991 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15992 {
15993 	dtrace_provider_id_t id;
15994 	dtrace_state_t *state = NULL;
15995 	dtrace_enabling_t *enab;
15996 
15997 	mutex_enter(&cpu_lock);
15998 	mutex_enter(&dtrace_provider_lock);
15999 	mutex_enter(&dtrace_lock);
16000 
16001 	if (ddi_soft_state_init(&dtrace_softstate,
16002 	    sizeof (dtrace_state_t), 0) != 0) {
16003 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
16004 		mutex_exit(&cpu_lock);
16005 		mutex_exit(&dtrace_provider_lock);
16006 		mutex_exit(&dtrace_lock);
16007 		return (DDI_FAILURE);
16008 	}
16009 
16010 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
16011 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, 0) == DDI_FAILURE ||
16012 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
16013 	    DTRACEMNRN_HELPER, DDI_PSEUDO, 0) == DDI_FAILURE) {
16014 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
16015 		ddi_remove_minor_node(devi, NULL);
16016 		ddi_soft_state_fini(&dtrace_softstate);
16017 		mutex_exit(&cpu_lock);
16018 		mutex_exit(&dtrace_provider_lock);
16019 		mutex_exit(&dtrace_lock);
16020 		return (DDI_FAILURE);
16021 	}
16022 
16023 	ddi_report_dev(devi);
16024 	dtrace_devi = devi;
16025 
16026 	dtrace_modload = dtrace_module_loaded;
16027 	dtrace_modunload = dtrace_module_unloaded;
16028 	dtrace_cpu_init = dtrace_cpu_setup_initial;
16029 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
16030 	dtrace_helpers_fork = dtrace_helpers_duplicate;
16031 	dtrace_cpustart_init = dtrace_suspend;
16032 	dtrace_cpustart_fini = dtrace_resume;
16033 	dtrace_debugger_init = dtrace_suspend;
16034 	dtrace_debugger_fini = dtrace_resume;
16035 
16036 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16037 
16038 	ASSERT(MUTEX_HELD(&cpu_lock));
16039 
16040 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
16041 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
16042 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
16043 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
16044 	    VM_SLEEP | VMC_IDENTIFIER);
16045 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
16046 	    1, INT_MAX, 0);
16047 
16048 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
16049 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
16050 	    NULL, NULL, NULL, NULL, NULL, 0);
16051 
16052 	ASSERT(MUTEX_HELD(&cpu_lock));
16053 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
16054 	    offsetof(dtrace_probe_t, dtpr_nextmod),
16055 	    offsetof(dtrace_probe_t, dtpr_prevmod));
16056 
16057 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
16058 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
16059 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
16060 
16061 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
16062 	    offsetof(dtrace_probe_t, dtpr_nextname),
16063 	    offsetof(dtrace_probe_t, dtpr_prevname));
16064 
16065 	if (dtrace_retain_max < 1) {
16066 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
16067 		    "setting to 1", dtrace_retain_max);
16068 		dtrace_retain_max = 1;
16069 	}
16070 
16071 	/*
16072 	 * Now discover our toxic ranges.
16073 	 */
16074 	dtrace_toxic_ranges(dtrace_toxrange_add);
16075 
16076 	/*
16077 	 * Before we register ourselves as a provider to our own framework,
16078 	 * we would like to assert that dtrace_provider is NULL -- but that's
16079 	 * not true if we were loaded as a dependency of a DTrace provider.
16080 	 * Once we've registered, we can assert that dtrace_provider is our
16081 	 * pseudo provider.
16082 	 */
16083 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
16084 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
16085 
16086 	ASSERT(dtrace_provider != NULL);
16087 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
16088 
16089 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
16090 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
16091 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
16092 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
16093 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
16094 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
16095 
16096 	dtrace_anon_property();
16097 	mutex_exit(&cpu_lock);
16098 
16099 	/*
16100 	 * If there are already providers, we must ask them to provide their
16101 	 * probes, and then match any anonymous enabling against them.  Note
16102 	 * that there should be no other retained enablings at this time:
16103 	 * the only retained enablings at this time should be the anonymous
16104 	 * enabling.
16105 	 */
16106 	if (dtrace_anon.dta_enabling != NULL) {
16107 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
16108 
16109 		dtrace_enabling_provide(NULL);
16110 		state = dtrace_anon.dta_state;
16111 
16112 		/*
16113 		 * We couldn't hold cpu_lock across the above call to
16114 		 * dtrace_enabling_provide(), but we must hold it to actually
16115 		 * enable the probes.  We have to drop all of our locks, pick
16116 		 * up cpu_lock, and regain our locks before matching the
16117 		 * retained anonymous enabling.
16118 		 */
16119 		mutex_exit(&dtrace_lock);
16120 		mutex_exit(&dtrace_provider_lock);
16121 
16122 		mutex_enter(&cpu_lock);
16123 		mutex_enter(&dtrace_provider_lock);
16124 		mutex_enter(&dtrace_lock);
16125 
16126 		if ((enab = dtrace_anon.dta_enabling) != NULL)
16127 			(void) dtrace_enabling_match(enab, NULL);
16128 
16129 		mutex_exit(&cpu_lock);
16130 	}
16131 
16132 	mutex_exit(&dtrace_lock);
16133 	mutex_exit(&dtrace_provider_lock);
16134 
16135 	if (state != NULL) {
16136 		/*
16137 		 * If we created any anonymous state, set it going now.
16138 		 */
16139 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
16140 	}
16141 
16142 	return (DDI_SUCCESS);
16143 }
16144 
16145 /*ARGSUSED*/
16146 static int
16147 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
16148 {
16149 	dtrace_state_t *state;
16150 	uint32_t priv;
16151 	uid_t uid;
16152 	zoneid_t zoneid;
16153 
16154 	if (getminor(*devp) == DTRACEMNRN_HELPER)
16155 		return (0);
16156 
16157 	/*
16158 	 * If this wasn't an open with the "helper" minor, then it must be
16159 	 * the "dtrace" minor.
16160 	 */
16161 	if (getminor(*devp) != DTRACEMNRN_DTRACE)
16162 		return (ENXIO);
16163 
16164 	/*
16165 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
16166 	 * caller lacks sufficient permission to do anything with DTrace.
16167 	 */
16168 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
16169 	if (priv == DTRACE_PRIV_NONE)
16170 		return (EACCES);
16171 
16172 	/*
16173 	 * Ask all providers to provide all their probes.
16174 	 */
16175 	mutex_enter(&dtrace_provider_lock);
16176 	dtrace_probe_provide(NULL, NULL);
16177 	mutex_exit(&dtrace_provider_lock);
16178 
16179 	mutex_enter(&cpu_lock);
16180 	mutex_enter(&dtrace_lock);
16181 	dtrace_opens++;
16182 	dtrace_membar_producer();
16183 
16184 	/*
16185 	 * If the kernel debugger is active (that is, if the kernel debugger
16186 	 * modified text in some way), we won't allow the open.
16187 	 */
16188 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
16189 		dtrace_opens--;
16190 		mutex_exit(&cpu_lock);
16191 		mutex_exit(&dtrace_lock);
16192 		return (EBUSY);
16193 	}
16194 
16195 	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
16196 		/*
16197 		 * If DTrace helper tracing is enabled, we need to allocate the
16198 		 * trace buffer and initialize the values.
16199 		 */
16200 		dtrace_helptrace_buffer =
16201 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
16202 		dtrace_helptrace_next = 0;
16203 		dtrace_helptrace_wrapped = 0;
16204 		dtrace_helptrace_enable = 0;
16205 	}
16206 
16207 	state = dtrace_state_create(devp, cred_p);
16208 	mutex_exit(&cpu_lock);
16209 
16210 	if (state == NULL) {
16211 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16212 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16213 		mutex_exit(&dtrace_lock);
16214 		return (EAGAIN);
16215 	}
16216 
16217 	mutex_exit(&dtrace_lock);
16218 
16219 	return (0);
16220 }
16221 
16222 /*ARGSUSED*/
16223 static int
16224 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
16225 {
16226 	minor_t minor = getminor(dev);
16227 	dtrace_state_t *state;
16228 	dtrace_helptrace_t *buf = NULL;
16229 
16230 	if (minor == DTRACEMNRN_HELPER)
16231 		return (0);
16232 
16233 	state = ddi_get_soft_state(dtrace_softstate, minor);
16234 
16235 	mutex_enter(&cpu_lock);
16236 	mutex_enter(&dtrace_lock);
16237 
16238 	if (state->dts_anon) {
16239 		/*
16240 		 * There is anonymous state. Destroy that first.
16241 		 */
16242 		ASSERT(dtrace_anon.dta_state == NULL);
16243 		dtrace_state_destroy(state->dts_anon);
16244 	}
16245 
16246 	if (dtrace_helptrace_disable) {
16247 		/*
16248 		 * If we have been told to disable helper tracing, set the
16249 		 * buffer to NULL before calling into dtrace_state_destroy();
16250 		 * we take advantage of its dtrace_sync() to know that no
16251 		 * CPU is in probe context with enabled helper tracing
16252 		 * after it returns.
16253 		 */
16254 		buf = dtrace_helptrace_buffer;
16255 		dtrace_helptrace_buffer = NULL;
16256 	}
16257 
16258 	dtrace_state_destroy(state);
16259 	ASSERT(dtrace_opens > 0);
16260 
16261 	/*
16262 	 * Only relinquish control of the kernel debugger interface when there
16263 	 * are no consumers and no anonymous enablings.
16264 	 */
16265 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16266 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16267 
16268 	if (buf != NULL) {
16269 		kmem_free(buf, dtrace_helptrace_bufsize);
16270 		dtrace_helptrace_disable = 0;
16271 	}
16272 
16273 	mutex_exit(&dtrace_lock);
16274 	mutex_exit(&cpu_lock);
16275 
16276 	return (0);
16277 }
16278 
16279 /*ARGSUSED*/
16280 static int
16281 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
16282 {
16283 	int rval;
16284 	dof_helper_t help, *dhp = NULL;
16285 
16286 	switch (cmd) {
16287 	case DTRACEHIOC_ADDDOF:
16288 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
16289 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
16290 			return (EFAULT);
16291 		}
16292 
16293 		dhp = &help;
16294 		arg = (intptr_t)help.dofhp_dof;
16295 		/*FALLTHROUGH*/
16296 
16297 	case DTRACEHIOC_ADD: {
16298 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
16299 
16300 		if (dof == NULL)
16301 			return (rval);
16302 
16303 		mutex_enter(&dtrace_lock);
16304 
16305 		/*
16306 		 * dtrace_helper_slurp() takes responsibility for the dof --
16307 		 * it may free it now or it may save it and free it later.
16308 		 */
16309 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
16310 			*rv = rval;
16311 			rval = 0;
16312 		} else {
16313 			rval = EINVAL;
16314 		}
16315 
16316 		mutex_exit(&dtrace_lock);
16317 		return (rval);
16318 	}
16319 
16320 	case DTRACEHIOC_REMOVE: {
16321 		mutex_enter(&dtrace_lock);
16322 		rval = dtrace_helper_destroygen(arg);
16323 		mutex_exit(&dtrace_lock);
16324 
16325 		return (rval);
16326 	}
16327 
16328 	default:
16329 		break;
16330 	}
16331 
16332 	return (ENOTTY);
16333 }
16334 
16335 /*ARGSUSED*/
16336 static int
16337 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
16338 {
16339 	minor_t minor = getminor(dev);
16340 	dtrace_state_t *state;
16341 	int rval;
16342 
16343 	if (minor == DTRACEMNRN_HELPER)
16344 		return (dtrace_ioctl_helper(cmd, arg, rv));
16345 
16346 	state = ddi_get_soft_state(dtrace_softstate, minor);
16347 
16348 	if (state->dts_anon) {
16349 		ASSERT(dtrace_anon.dta_state == NULL);
16350 		state = state->dts_anon;
16351 	}
16352 
16353 	switch (cmd) {
16354 	case DTRACEIOC_PROVIDER: {
16355 		dtrace_providerdesc_t pvd;
16356 		dtrace_provider_t *pvp;
16357 
16358 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
16359 			return (EFAULT);
16360 
16361 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
16362 		mutex_enter(&dtrace_provider_lock);
16363 
16364 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
16365 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
16366 				break;
16367 		}
16368 
16369 		mutex_exit(&dtrace_provider_lock);
16370 
16371 		if (pvp == NULL)
16372 			return (ESRCH);
16373 
16374 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
16375 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
16376 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
16377 			return (EFAULT);
16378 
16379 		return (0);
16380 	}
16381 
16382 	case DTRACEIOC_EPROBE: {
16383 		dtrace_eprobedesc_t epdesc;
16384 		dtrace_ecb_t *ecb;
16385 		dtrace_action_t *act;
16386 		void *buf;
16387 		size_t size;
16388 		uintptr_t dest;
16389 		int nrecs;
16390 
16391 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
16392 			return (EFAULT);
16393 
16394 		mutex_enter(&dtrace_lock);
16395 
16396 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
16397 			mutex_exit(&dtrace_lock);
16398 			return (EINVAL);
16399 		}
16400 
16401 		if (ecb->dte_probe == NULL) {
16402 			mutex_exit(&dtrace_lock);
16403 			return (EINVAL);
16404 		}
16405 
16406 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16407 		epdesc.dtepd_uarg = ecb->dte_uarg;
16408 		epdesc.dtepd_size = ecb->dte_size;
16409 
16410 		nrecs = epdesc.dtepd_nrecs;
16411 		epdesc.dtepd_nrecs = 0;
16412 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16413 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16414 				continue;
16415 
16416 			epdesc.dtepd_nrecs++;
16417 		}
16418 
16419 		/*
16420 		 * Now that we have the size, we need to allocate a temporary
16421 		 * buffer in which to store the complete description.  We need
16422 		 * the temporary buffer to be able to drop dtrace_lock()
16423 		 * across the copyout(), below.
16424 		 */
16425 		size = sizeof (dtrace_eprobedesc_t) +
16426 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16427 
16428 		buf = kmem_alloc(size, KM_SLEEP);
16429 		dest = (uintptr_t)buf;
16430 
16431 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16432 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16433 
16434 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16435 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16436 				continue;
16437 
16438 			if (nrecs-- == 0)
16439 				break;
16440 
16441 			bcopy(&act->dta_rec, (void *)dest,
16442 			    sizeof (dtrace_recdesc_t));
16443 			dest += sizeof (dtrace_recdesc_t);
16444 		}
16445 
16446 		mutex_exit(&dtrace_lock);
16447 
16448 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16449 			kmem_free(buf, size);
16450 			return (EFAULT);
16451 		}
16452 
16453 		kmem_free(buf, size);
16454 		return (0);
16455 	}
16456 
16457 	case DTRACEIOC_AGGDESC: {
16458 		dtrace_aggdesc_t aggdesc;
16459 		dtrace_action_t *act;
16460 		dtrace_aggregation_t *agg;
16461 		int nrecs;
16462 		uint32_t offs;
16463 		dtrace_recdesc_t *lrec;
16464 		void *buf;
16465 		size_t size;
16466 		uintptr_t dest;
16467 
16468 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16469 			return (EFAULT);
16470 
16471 		mutex_enter(&dtrace_lock);
16472 
16473 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16474 			mutex_exit(&dtrace_lock);
16475 			return (EINVAL);
16476 		}
16477 
16478 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16479 
16480 		nrecs = aggdesc.dtagd_nrecs;
16481 		aggdesc.dtagd_nrecs = 0;
16482 
16483 		offs = agg->dtag_base;
16484 		lrec = &agg->dtag_action.dta_rec;
16485 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16486 
16487 		for (act = agg->dtag_first; ; act = act->dta_next) {
16488 			ASSERT(act->dta_intuple ||
16489 			    DTRACEACT_ISAGG(act->dta_kind));
16490 
16491 			/*
16492 			 * If this action has a record size of zero, it
16493 			 * denotes an argument to the aggregating action.
16494 			 * Because the presence of this record doesn't (or
16495 			 * shouldn't) affect the way the data is interpreted,
16496 			 * we don't copy it out to save user-level the
16497 			 * confusion of dealing with a zero-length record.
16498 			 */
16499 			if (act->dta_rec.dtrd_size == 0) {
16500 				ASSERT(agg->dtag_hasarg);
16501 				continue;
16502 			}
16503 
16504 			aggdesc.dtagd_nrecs++;
16505 
16506 			if (act == &agg->dtag_action)
16507 				break;
16508 		}
16509 
16510 		/*
16511 		 * Now that we have the size, we need to allocate a temporary
16512 		 * buffer in which to store the complete description.  We need
16513 		 * the temporary buffer to be able to drop dtrace_lock()
16514 		 * across the copyout(), below.
16515 		 */
16516 		size = sizeof (dtrace_aggdesc_t) +
16517 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16518 
16519 		buf = kmem_alloc(size, KM_SLEEP);
16520 		dest = (uintptr_t)buf;
16521 
16522 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16523 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16524 
16525 		for (act = agg->dtag_first; ; act = act->dta_next) {
16526 			dtrace_recdesc_t rec = act->dta_rec;
16527 
16528 			/*
16529 			 * See the comment in the above loop for why we pass
16530 			 * over zero-length records.
16531 			 */
16532 			if (rec.dtrd_size == 0) {
16533 				ASSERT(agg->dtag_hasarg);
16534 				continue;
16535 			}
16536 
16537 			if (nrecs-- == 0)
16538 				break;
16539 
16540 			rec.dtrd_offset -= offs;
16541 			bcopy(&rec, (void *)dest, sizeof (rec));
16542 			dest += sizeof (dtrace_recdesc_t);
16543 
16544 			if (act == &agg->dtag_action)
16545 				break;
16546 		}
16547 
16548 		mutex_exit(&dtrace_lock);
16549 
16550 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16551 			kmem_free(buf, size);
16552 			return (EFAULT);
16553 		}
16554 
16555 		kmem_free(buf, size);
16556 		return (0);
16557 	}
16558 
16559 	case DTRACEIOC_ENABLE: {
16560 		dof_hdr_t *dof;
16561 		dtrace_enabling_t *enab = NULL;
16562 		dtrace_vstate_t *vstate;
16563 		int err = 0;
16564 
16565 		*rv = 0;
16566 
16567 		/*
16568 		 * If a NULL argument has been passed, we take this as our
16569 		 * cue to reevaluate our enablings.
16570 		 */
16571 		if (arg == 0) {
16572 			dtrace_enabling_matchall();
16573 
16574 			return (0);
16575 		}
16576 
16577 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16578 			return (rval);
16579 
16580 		mutex_enter(&cpu_lock);
16581 		mutex_enter(&dtrace_lock);
16582 		vstate = &state->dts_vstate;
16583 
16584 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16585 			mutex_exit(&dtrace_lock);
16586 			mutex_exit(&cpu_lock);
16587 			dtrace_dof_destroy(dof);
16588 			return (EBUSY);
16589 		}
16590 
16591 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16592 			mutex_exit(&dtrace_lock);
16593 			mutex_exit(&cpu_lock);
16594 			dtrace_dof_destroy(dof);
16595 			return (EINVAL);
16596 		}
16597 
16598 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
16599 			dtrace_enabling_destroy(enab);
16600 			mutex_exit(&dtrace_lock);
16601 			mutex_exit(&cpu_lock);
16602 			dtrace_dof_destroy(dof);
16603 			return (rval);
16604 		}
16605 
16606 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16607 			err = dtrace_enabling_retain(enab);
16608 		} else {
16609 			dtrace_enabling_destroy(enab);
16610 		}
16611 
16612 		mutex_exit(&cpu_lock);
16613 		mutex_exit(&dtrace_lock);
16614 		dtrace_dof_destroy(dof);
16615 
16616 		return (err);
16617 	}
16618 
16619 	case DTRACEIOC_REPLICATE: {
16620 		dtrace_repldesc_t desc;
16621 		dtrace_probedesc_t *match = &desc.dtrpd_match;
16622 		dtrace_probedesc_t *create = &desc.dtrpd_create;
16623 		int err;
16624 
16625 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16626 			return (EFAULT);
16627 
16628 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16629 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16630 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16631 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16632 
16633 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16634 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16635 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16636 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16637 
16638 		mutex_enter(&dtrace_lock);
16639 		err = dtrace_enabling_replicate(state, match, create);
16640 		mutex_exit(&dtrace_lock);
16641 
16642 		return (err);
16643 	}
16644 
16645 	case DTRACEIOC_PROBEMATCH:
16646 	case DTRACEIOC_PROBES: {
16647 		dtrace_probe_t *probe = NULL;
16648 		dtrace_probedesc_t desc;
16649 		dtrace_probekey_t pkey;
16650 		dtrace_id_t i;
16651 		int m = 0;
16652 		uint32_t priv;
16653 		uid_t uid;
16654 		zoneid_t zoneid;
16655 
16656 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16657 			return (EFAULT);
16658 
16659 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16660 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16661 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16662 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16663 
16664 		/*
16665 		 * Before we attempt to match this probe, we want to give
16666 		 * all providers the opportunity to provide it.
16667 		 */
16668 		if (desc.dtpd_id == DTRACE_IDNONE) {
16669 			mutex_enter(&dtrace_provider_lock);
16670 			dtrace_probe_provide(&desc, NULL);
16671 			mutex_exit(&dtrace_provider_lock);
16672 			desc.dtpd_id++;
16673 		}
16674 
16675 		if (cmd == DTRACEIOC_PROBEMATCH)  {
16676 			dtrace_probekey(&desc, &pkey);
16677 			pkey.dtpk_id = DTRACE_IDNONE;
16678 		}
16679 
16680 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16681 
16682 		mutex_enter(&dtrace_lock);
16683 
16684 		if (cmd == DTRACEIOC_PROBEMATCH) {
16685 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16686 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16687 				    (m = dtrace_match_probe(probe, &pkey,
16688 				    priv, uid, zoneid)) != 0)
16689 					break;
16690 			}
16691 
16692 			if (m < 0) {
16693 				mutex_exit(&dtrace_lock);
16694 				return (EINVAL);
16695 			}
16696 
16697 		} else {
16698 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16699 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16700 				    dtrace_match_priv(probe, priv, uid, zoneid))
16701 					break;
16702 			}
16703 		}
16704 
16705 		if (probe == NULL) {
16706 			mutex_exit(&dtrace_lock);
16707 			return (ESRCH);
16708 		}
16709 
16710 		dtrace_probe_description(probe, &desc);
16711 		mutex_exit(&dtrace_lock);
16712 
16713 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16714 			return (EFAULT);
16715 
16716 		return (0);
16717 	}
16718 
16719 	case DTRACEIOC_PROBEARG: {
16720 		dtrace_argdesc_t desc;
16721 		dtrace_probe_t *probe;
16722 		dtrace_provider_t *prov;
16723 
16724 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16725 			return (EFAULT);
16726 
16727 		if (desc.dtargd_id == DTRACE_IDNONE)
16728 			return (EINVAL);
16729 
16730 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
16731 			return (EINVAL);
16732 
16733 		mutex_enter(&dtrace_provider_lock);
16734 		mutex_enter(&mod_lock);
16735 		mutex_enter(&dtrace_lock);
16736 
16737 		if (desc.dtargd_id > dtrace_nprobes) {
16738 			mutex_exit(&dtrace_lock);
16739 			mutex_exit(&mod_lock);
16740 			mutex_exit(&dtrace_provider_lock);
16741 			return (EINVAL);
16742 		}
16743 
16744 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16745 			mutex_exit(&dtrace_lock);
16746 			mutex_exit(&mod_lock);
16747 			mutex_exit(&dtrace_provider_lock);
16748 			return (EINVAL);
16749 		}
16750 
16751 		mutex_exit(&dtrace_lock);
16752 
16753 		prov = probe->dtpr_provider;
16754 
16755 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16756 			/*
16757 			 * There isn't any typed information for this probe.
16758 			 * Set the argument number to DTRACE_ARGNONE.
16759 			 */
16760 			desc.dtargd_ndx = DTRACE_ARGNONE;
16761 		} else {
16762 			desc.dtargd_native[0] = '\0';
16763 			desc.dtargd_xlate[0] = '\0';
16764 			desc.dtargd_mapping = desc.dtargd_ndx;
16765 
16766 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16767 			    probe->dtpr_id, probe->dtpr_arg, &desc);
16768 		}
16769 
16770 		mutex_exit(&mod_lock);
16771 		mutex_exit(&dtrace_provider_lock);
16772 
16773 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16774 			return (EFAULT);
16775 
16776 		return (0);
16777 	}
16778 
16779 	case DTRACEIOC_GO: {
16780 		processorid_t cpuid;
16781 		rval = dtrace_state_go(state, &cpuid);
16782 
16783 		if (rval != 0)
16784 			return (rval);
16785 
16786 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16787 			return (EFAULT);
16788 
16789 		return (0);
16790 	}
16791 
16792 	case DTRACEIOC_STOP: {
16793 		processorid_t cpuid;
16794 
16795 		mutex_enter(&dtrace_lock);
16796 		rval = dtrace_state_stop(state, &cpuid);
16797 		mutex_exit(&dtrace_lock);
16798 
16799 		if (rval != 0)
16800 			return (rval);
16801 
16802 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16803 			return (EFAULT);
16804 
16805 		return (0);
16806 	}
16807 
16808 	case DTRACEIOC_DOFGET: {
16809 		dof_hdr_t hdr, *dof;
16810 		uint64_t len;
16811 
16812 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16813 			return (EFAULT);
16814 
16815 		mutex_enter(&dtrace_lock);
16816 		dof = dtrace_dof_create(state);
16817 		mutex_exit(&dtrace_lock);
16818 
16819 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16820 		rval = copyout(dof, (void *)arg, len);
16821 		dtrace_dof_destroy(dof);
16822 
16823 		return (rval == 0 ? 0 : EFAULT);
16824 	}
16825 
16826 	case DTRACEIOC_AGGSNAP:
16827 	case DTRACEIOC_BUFSNAP: {
16828 		dtrace_bufdesc_t desc;
16829 		caddr_t cached;
16830 		dtrace_buffer_t *buf;
16831 
16832 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16833 			return (EFAULT);
16834 
16835 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16836 			return (EINVAL);
16837 
16838 		mutex_enter(&dtrace_lock);
16839 
16840 		if (cmd == DTRACEIOC_BUFSNAP) {
16841 			buf = &state->dts_buffer[desc.dtbd_cpu];
16842 		} else {
16843 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16844 		}
16845 
16846 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16847 			size_t sz = buf->dtb_offset;
16848 
16849 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16850 				mutex_exit(&dtrace_lock);
16851 				return (EBUSY);
16852 			}
16853 
16854 			/*
16855 			 * If this buffer has already been consumed, we're
16856 			 * going to indicate that there's nothing left here
16857 			 * to consume.
16858 			 */
16859 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16860 				mutex_exit(&dtrace_lock);
16861 
16862 				desc.dtbd_size = 0;
16863 				desc.dtbd_drops = 0;
16864 				desc.dtbd_errors = 0;
16865 				desc.dtbd_oldest = 0;
16866 				sz = sizeof (desc);
16867 
16868 				if (copyout(&desc, (void *)arg, sz) != 0)
16869 					return (EFAULT);
16870 
16871 				return (0);
16872 			}
16873 
16874 			/*
16875 			 * If this is a ring buffer that has wrapped, we want
16876 			 * to copy the whole thing out.
16877 			 */
16878 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16879 				dtrace_buffer_polish(buf);
16880 				sz = buf->dtb_size;
16881 			}
16882 
16883 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16884 				mutex_exit(&dtrace_lock);
16885 				return (EFAULT);
16886 			}
16887 
16888 			desc.dtbd_size = sz;
16889 			desc.dtbd_drops = buf->dtb_drops;
16890 			desc.dtbd_errors = buf->dtb_errors;
16891 			desc.dtbd_oldest = buf->dtb_xamot_offset;
16892 			desc.dtbd_timestamp = dtrace_gethrtime();
16893 
16894 			mutex_exit(&dtrace_lock);
16895 
16896 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16897 				return (EFAULT);
16898 
16899 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16900 
16901 			return (0);
16902 		}
16903 
16904 		if (buf->dtb_tomax == NULL) {
16905 			ASSERT(buf->dtb_xamot == NULL);
16906 			mutex_exit(&dtrace_lock);
16907 			return (ENOENT);
16908 		}
16909 
16910 		cached = buf->dtb_tomax;
16911 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16912 
16913 		dtrace_xcall(desc.dtbd_cpu,
16914 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16915 
16916 		state->dts_errors += buf->dtb_xamot_errors;
16917 
16918 		/*
16919 		 * If the buffers did not actually switch, then the cross call
16920 		 * did not take place -- presumably because the given CPU is
16921 		 * not in the ready set.  If this is the case, we'll return
16922 		 * ENOENT.
16923 		 */
16924 		if (buf->dtb_tomax == cached) {
16925 			ASSERT(buf->dtb_xamot != cached);
16926 			mutex_exit(&dtrace_lock);
16927 			return (ENOENT);
16928 		}
16929 
16930 		ASSERT(cached == buf->dtb_xamot);
16931 
16932 		/*
16933 		 * We have our snapshot; now copy it out.
16934 		 */
16935 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16936 		    buf->dtb_xamot_offset) != 0) {
16937 			mutex_exit(&dtrace_lock);
16938 			return (EFAULT);
16939 		}
16940 
16941 		desc.dtbd_size = buf->dtb_xamot_offset;
16942 		desc.dtbd_drops = buf->dtb_xamot_drops;
16943 		desc.dtbd_errors = buf->dtb_xamot_errors;
16944 		desc.dtbd_oldest = 0;
16945 		desc.dtbd_timestamp = buf->dtb_switched;
16946 
16947 		mutex_exit(&dtrace_lock);
16948 
16949 		/*
16950 		 * Finally, copy out the buffer description.
16951 		 */
16952 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16953 			return (EFAULT);
16954 
16955 		return (0);
16956 	}
16957 
16958 	case DTRACEIOC_CONF: {
16959 		dtrace_conf_t conf;
16960 
16961 		bzero(&conf, sizeof (conf));
16962 		conf.dtc_difversion = DIF_VERSION;
16963 		conf.dtc_difintregs = DIF_DIR_NREGS;
16964 		conf.dtc_diftupregs = DIF_DTR_NREGS;
16965 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16966 
16967 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16968 			return (EFAULT);
16969 
16970 		return (0);
16971 	}
16972 
16973 	case DTRACEIOC_STATUS: {
16974 		dtrace_status_t stat;
16975 		dtrace_dstate_t *dstate;
16976 		int i, j;
16977 		uint64_t nerrs;
16978 
16979 		/*
16980 		 * See the comment in dtrace_state_deadman() for the reason
16981 		 * for setting dts_laststatus to INT64_MAX before setting
16982 		 * it to the correct value.
16983 		 */
16984 		state->dts_laststatus = INT64_MAX;
16985 		dtrace_membar_producer();
16986 		state->dts_laststatus = dtrace_gethrtime();
16987 
16988 		bzero(&stat, sizeof (stat));
16989 
16990 		mutex_enter(&dtrace_lock);
16991 
16992 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16993 			mutex_exit(&dtrace_lock);
16994 			return (ENOENT);
16995 		}
16996 
16997 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16998 			stat.dtst_exiting = 1;
16999 
17000 		nerrs = state->dts_errors;
17001 		dstate = &state->dts_vstate.dtvs_dynvars;
17002 
17003 		for (i = 0; i < NCPU; i++) {
17004 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
17005 
17006 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
17007 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
17008 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
17009 
17010 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
17011 				stat.dtst_filled++;
17012 
17013 			nerrs += state->dts_buffer[i].dtb_errors;
17014 
17015 			for (j = 0; j < state->dts_nspeculations; j++) {
17016 				dtrace_speculation_t *spec;
17017 				dtrace_buffer_t *buf;
17018 
17019 				spec = &state->dts_speculations[j];
17020 				buf = &spec->dtsp_buffer[i];
17021 				stat.dtst_specdrops += buf->dtb_xamot_drops;
17022 			}
17023 		}
17024 
17025 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
17026 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
17027 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
17028 		stat.dtst_dblerrors = state->dts_dblerrors;
17029 		stat.dtst_killed =
17030 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
17031 		stat.dtst_errors = nerrs;
17032 
17033 		mutex_exit(&dtrace_lock);
17034 
17035 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
17036 			return (EFAULT);
17037 
17038 		return (0);
17039 	}
17040 
17041 	case DTRACEIOC_FORMAT: {
17042 		dtrace_fmtdesc_t fmt;
17043 		char *str;
17044 		int len;
17045 
17046 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
17047 			return (EFAULT);
17048 
17049 		mutex_enter(&dtrace_lock);
17050 
17051 		if (fmt.dtfd_format == 0 ||
17052 		    fmt.dtfd_format > state->dts_nformats) {
17053 			mutex_exit(&dtrace_lock);
17054 			return (EINVAL);
17055 		}
17056 
17057 		/*
17058 		 * Format strings are allocated contiguously and they are
17059 		 * never freed; if a format index is less than the number
17060 		 * of formats, we can assert that the format map is non-NULL
17061 		 * and that the format for the specified index is non-NULL.
17062 		 */
17063 		ASSERT(state->dts_formats != NULL);
17064 		str = state->dts_formats[fmt.dtfd_format - 1];
17065 		ASSERT(str != NULL);
17066 
17067 		len = strlen(str) + 1;
17068 
17069 		if (len > fmt.dtfd_length) {
17070 			fmt.dtfd_length = len;
17071 
17072 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
17073 				mutex_exit(&dtrace_lock);
17074 				return (EINVAL);
17075 			}
17076 		} else {
17077 			if (copyout(str, fmt.dtfd_string, len) != 0) {
17078 				mutex_exit(&dtrace_lock);
17079 				return (EINVAL);
17080 			}
17081 		}
17082 
17083 		mutex_exit(&dtrace_lock);
17084 		return (0);
17085 	}
17086 
17087 	default:
17088 		break;
17089 	}
17090 
17091 	return (ENOTTY);
17092 }
17093 
17094 /*ARGSUSED*/
17095 static int
17096 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
17097 {
17098 	dtrace_state_t *state;
17099 
17100 	switch (cmd) {
17101 	case DDI_DETACH:
17102 		break;
17103 
17104 	case DDI_SUSPEND:
17105 		return (DDI_SUCCESS);
17106 
17107 	default:
17108 		return (DDI_FAILURE);
17109 	}
17110 
17111 	mutex_enter(&cpu_lock);
17112 	mutex_enter(&dtrace_provider_lock);
17113 	mutex_enter(&dtrace_lock);
17114 
17115 	ASSERT(dtrace_opens == 0);
17116 
17117 	if (dtrace_helpers > 0) {
17118 		mutex_exit(&dtrace_provider_lock);
17119 		mutex_exit(&dtrace_lock);
17120 		mutex_exit(&cpu_lock);
17121 		return (DDI_FAILURE);
17122 	}
17123 
17124 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
17125 		mutex_exit(&dtrace_provider_lock);
17126 		mutex_exit(&dtrace_lock);
17127 		mutex_exit(&cpu_lock);
17128 		return (DDI_FAILURE);
17129 	}
17130 
17131 	dtrace_provider = NULL;
17132 
17133 	if ((state = dtrace_anon_grab()) != NULL) {
17134 		/*
17135 		 * If there were ECBs on this state, the provider should
17136 		 * have not been allowed to detach; assert that there is
17137 		 * none.
17138 		 */
17139 		ASSERT(state->dts_necbs == 0);
17140 		dtrace_state_destroy(state);
17141 
17142 		/*
17143 		 * If we're being detached with anonymous state, we need to
17144 		 * indicate to the kernel debugger that DTrace is now inactive.
17145 		 */
17146 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17147 	}
17148 
17149 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
17150 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17151 	dtrace_cpu_init = NULL;
17152 	dtrace_helpers_cleanup = NULL;
17153 	dtrace_helpers_fork = NULL;
17154 	dtrace_cpustart_init = NULL;
17155 	dtrace_cpustart_fini = NULL;
17156 	dtrace_debugger_init = NULL;
17157 	dtrace_debugger_fini = NULL;
17158 	dtrace_modload = NULL;
17159 	dtrace_modunload = NULL;
17160 
17161 	ASSERT(dtrace_getf == 0);
17162 	ASSERT(dtrace_closef == NULL);
17163 
17164 	mutex_exit(&cpu_lock);
17165 
17166 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
17167 	dtrace_probes = NULL;
17168 	dtrace_nprobes = 0;
17169 
17170 	dtrace_hash_destroy(dtrace_bymod);
17171 	dtrace_hash_destroy(dtrace_byfunc);
17172 	dtrace_hash_destroy(dtrace_byname);
17173 	dtrace_bymod = NULL;
17174 	dtrace_byfunc = NULL;
17175 	dtrace_byname = NULL;
17176 
17177 	kmem_cache_destroy(dtrace_state_cache);
17178 	vmem_destroy(dtrace_minor);
17179 	vmem_destroy(dtrace_arena);
17180 
17181 	if (dtrace_toxrange != NULL) {
17182 		kmem_free(dtrace_toxrange,
17183 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
17184 		dtrace_toxrange = NULL;
17185 		dtrace_toxranges = 0;
17186 		dtrace_toxranges_max = 0;
17187 	}
17188 
17189 	ddi_remove_minor_node(dtrace_devi, NULL);
17190 	dtrace_devi = NULL;
17191 
17192 	ddi_soft_state_fini(&dtrace_softstate);
17193 
17194 	ASSERT(dtrace_vtime_references == 0);
17195 	ASSERT(dtrace_opens == 0);
17196 	ASSERT(dtrace_retained == NULL);
17197 
17198 	mutex_exit(&dtrace_lock);
17199 	mutex_exit(&dtrace_provider_lock);
17200 
17201 	/*
17202 	 * We don't destroy the task queue until after we have dropped our
17203 	 * locks (taskq_destroy() may block on running tasks).  To prevent
17204 	 * attempting to do work after we have effectively detached but before
17205 	 * the task queue has been destroyed, all tasks dispatched via the
17206 	 * task queue must check that DTrace is still attached before
17207 	 * performing any operation.
17208 	 */
17209 	taskq_destroy(dtrace_taskq);
17210 	dtrace_taskq = NULL;
17211 
17212 	return (DDI_SUCCESS);
17213 }
17214 
17215 /*ARGSUSED*/
17216 static int
17217 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
17218 {
17219 	int error;
17220 
17221 	switch (infocmd) {
17222 	case DDI_INFO_DEVT2DEVINFO:
17223 		*result = (void *)dtrace_devi;
17224 		error = DDI_SUCCESS;
17225 		break;
17226 	case DDI_INFO_DEVT2INSTANCE:
17227 		*result = (void *)0;
17228 		error = DDI_SUCCESS;
17229 		break;
17230 	default:
17231 		error = DDI_FAILURE;
17232 	}
17233 	return (error);
17234 }
17235 
17236 static struct cb_ops dtrace_cb_ops = {
17237 	dtrace_open,		/* open */
17238 	dtrace_close,		/* close */
17239 	nulldev,		/* strategy */
17240 	nulldev,		/* print */
17241 	nodev,			/* dump */
17242 	nodev,			/* read */
17243 	nodev,			/* write */
17244 	dtrace_ioctl,		/* ioctl */
17245 	nodev,			/* devmap */
17246 	nodev,			/* mmap */
17247 	nodev,			/* segmap */
17248 	nochpoll,		/* poll */
17249 	ddi_prop_op,		/* cb_prop_op */
17250 	0,			/* streamtab  */
17251 	D_NEW | D_MP		/* Driver compatibility flag */
17252 };
17253 
17254 static struct dev_ops dtrace_ops = {
17255 	DEVO_REV,		/* devo_rev */
17256 	0,			/* refcnt */
17257 	dtrace_info,		/* get_dev_info */
17258 	nulldev,		/* identify */
17259 	nulldev,		/* probe */
17260 	dtrace_attach,		/* attach */
17261 	dtrace_detach,		/* detach */
17262 	nodev,			/* reset */
17263 	&dtrace_cb_ops,		/* driver operations */
17264 	NULL,			/* bus operations */
17265 	nodev,			/* dev power */
17266 	ddi_quiesce_not_needed,		/* quiesce */
17267 };
17268 
17269 static struct modldrv modldrv = {
17270 	&mod_driverops,		/* module type (this is a pseudo driver) */
17271 	"Dynamic Tracing",	/* name of module */
17272 	&dtrace_ops,		/* driver ops */
17273 };
17274 
17275 static struct modlinkage modlinkage = {
17276 	MODREV_1,
17277 	(void *)&modldrv,
17278 	NULL
17279 };
17280 
17281 int
17282 _init(void)
17283 {
17284 	return (mod_install(&modlinkage));
17285 }
17286 
17287 int
17288 _info(struct modinfo *modinfop)
17289 {
17290 	return (mod_info(&modlinkage, modinfop));
17291 }
17292 
17293 int
17294 _fini(void)
17295 {
17296 	return (mod_remove(&modlinkage));
17297 }
17298