xref: /illumos-gate/usr/src/uts/common/dtrace/dtrace.c (revision 902686d13f8a39cfdc57f5605470369eafa51e1f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27 
28 /*
29  * DTrace - Dynamic Tracing for Solaris
30  *
31  * This is the implementation of the Solaris Dynamic Tracing framework
32  * (DTrace).  The user-visible interface to DTrace is described at length in
33  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
34  * library, the in-kernel DTrace framework, and the DTrace providers are
35  * described in the block comments in the <sys/dtrace.h> header file.  The
36  * internal architecture of DTrace is described in the block comments in the
37  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
38  * implementation very much assume mastery of all of these sources; if one has
39  * an unanswered question about the implementation, one should consult them
40  * first.
41  *
42  * The functions here are ordered roughly as follows:
43  *
44  *   - Probe context functions
45  *   - Probe hashing functions
46  *   - Non-probe context utility functions
47  *   - Matching functions
48  *   - Provider-to-Framework API functions
49  *   - Probe management functions
50  *   - DIF object functions
51  *   - Format functions
52  *   - Predicate functions
53  *   - ECB functions
54  *   - Buffer functions
55  *   - Enabling functions
56  *   - DOF functions
57  *   - Anonymous enabling functions
58  *   - Consumer state functions
59  *   - Helper functions
60  *   - Hook functions
61  *   - Driver cookbook functions
62  *
63  * Each group of functions begins with a block comment labelled the "DTrace
64  * [Group] Functions", allowing one to find each block by searching forward
65  * on capital-f functions.
66  */
67 #include <sys/errno.h>
68 #include <sys/stat.h>
69 #include <sys/modctl.h>
70 #include <sys/conf.h>
71 #include <sys/systm.h>
72 #include <sys/ddi.h>
73 #include <sys/sunddi.h>
74 #include <sys/cpuvar.h>
75 #include <sys/kmem.h>
76 #include <sys/strsubr.h>
77 #include <sys/sysmacros.h>
78 #include <sys/dtrace_impl.h>
79 #include <sys/atomic.h>
80 #include <sys/cmn_err.h>
81 #include <sys/mutex_impl.h>
82 #include <sys/rwlock_impl.h>
83 #include <sys/ctf_api.h>
84 #include <sys/panic.h>
85 #include <sys/priv_impl.h>
86 #include <sys/policy.h>
87 #include <sys/cred_impl.h>
88 #include <sys/procfs_isa.h>
89 #include <sys/taskq.h>
90 #include <sys/mkdev.h>
91 #include <sys/kdi.h>
92 #include <sys/zone.h>
93 #include <sys/socket.h>
94 #include <netinet/in.h>
95 #include "strtolctype.h"
96 
97 /*
98  * DTrace Tunable Variables
99  *
100  * The following variables may be tuned by adding a line to /etc/system that
101  * includes both the name of the DTrace module ("dtrace") and the name of the
102  * variable.  For example:
103  *
104  *   set dtrace:dtrace_destructive_disallow = 1
105  *
106  * In general, the only variables that one should be tuning this way are those
107  * that affect system-wide DTrace behavior, and for which the default behavior
108  * is undesirable.  Most of these variables are tunable on a per-consumer
109  * basis using DTrace options, and need not be tuned on a system-wide basis.
110  * When tuning these variables, avoid pathological values; while some attempt
111  * is made to verify the integrity of these variables, they are not considered
112  * part of the supported interface to DTrace, and they are therefore not
113  * checked comprehensively.  Further, these variables should not be tuned
114  * dynamically via "mdb -kw" or other means; they should only be tuned via
115  * /etc/system.
116  */
117 int		dtrace_destructive_disallow = 0;
118 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
119 size_t		dtrace_difo_maxsize = (256 * 1024);
120 dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
121 size_t		dtrace_global_maxsize = (16 * 1024);
122 size_t		dtrace_actions_max = (16 * 1024);
123 size_t		dtrace_retain_max = 1024;
124 dtrace_optval_t	dtrace_helper_actions_max = 1024;
125 dtrace_optval_t	dtrace_helper_providers_max = 32;
126 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
127 size_t		dtrace_strsize_default = 256;
128 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
129 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
130 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
131 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
132 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
134 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
135 dtrace_optval_t	dtrace_nspec_default = 1;
136 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
137 dtrace_optval_t dtrace_stackframes_default = 20;
138 dtrace_optval_t dtrace_ustackframes_default = 20;
139 dtrace_optval_t dtrace_jstackframes_default = 50;
140 dtrace_optval_t dtrace_jstackstrsize_default = 512;
141 int		dtrace_msgdsize_max = 128;
142 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
143 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
144 int		dtrace_devdepth_max = 32;
145 int		dtrace_err_verbose;
146 hrtime_t	dtrace_deadman_interval = NANOSEC;
147 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
148 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
149 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
150 
151 /*
152  * DTrace External Variables
153  *
154  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
155  * available to DTrace consumers via the backtick (`) syntax.  One of these,
156  * dtrace_zero, is made deliberately so:  it is provided as a source of
157  * well-known, zero-filled memory.  While this variable is not documented,
158  * it is used by some translators as an implementation detail.
159  */
160 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
161 
162 /*
163  * DTrace Internal Variables
164  */
165 static dev_info_t	*dtrace_devi;		/* device info */
166 static vmem_t		*dtrace_arena;		/* probe ID arena */
167 static vmem_t		*dtrace_minor;		/* minor number arena */
168 static taskq_t		*dtrace_taskq;		/* task queue */
169 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
170 static int		dtrace_nprobes;		/* number of probes */
171 static dtrace_provider_t *dtrace_provider;	/* provider list */
172 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
173 static int		dtrace_opens;		/* number of opens */
174 static int		dtrace_helpers;		/* number of helpers */
175 static int		dtrace_getf;		/* number of unpriv getf()s */
176 static void		*dtrace_softstate;	/* softstate pointer */
177 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
178 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
179 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
180 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
181 static int		dtrace_toxranges;	/* number of toxic ranges */
182 static int		dtrace_toxranges_max;	/* size of toxic range array */
183 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
184 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
185 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
186 static kthread_t	*dtrace_panicked;	/* panicking thread */
187 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
188 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
189 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
190 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
191 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
192 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
193 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
194 
195 /*
196  * DTrace Locking
197  * DTrace is protected by three (relatively coarse-grained) locks:
198  *
199  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
200  *     including enabling state, probes, ECBs, consumer state, helper state,
201  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
202  *     probe context is lock-free -- synchronization is handled via the
203  *     dtrace_sync() cross call mechanism.
204  *
205  * (2) dtrace_provider_lock is required when manipulating provider state, or
206  *     when provider state must be held constant.
207  *
208  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
209  *     when meta provider state must be held constant.
210  *
211  * The lock ordering between these three locks is dtrace_meta_lock before
212  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
213  * several places where dtrace_provider_lock is held by the framework as it
214  * calls into the providers -- which then call back into the framework,
215  * grabbing dtrace_lock.)
216  *
217  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
218  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
219  * role as a coarse-grained lock; it is acquired before both of these locks.
220  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
221  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
222  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
223  * acquired _between_ dtrace_provider_lock and dtrace_lock.
224  */
225 static kmutex_t		dtrace_lock;		/* probe state lock */
226 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
227 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
228 
229 /*
230  * DTrace Provider Variables
231  *
232  * These are the variables relating to DTrace as a provider (that is, the
233  * provider of the BEGIN, END, and ERROR probes).
234  */
235 static dtrace_pattr_t	dtrace_provider_attr = {
236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
241 };
242 
243 static void
244 dtrace_nullop(void)
245 {}
246 
247 static int
248 dtrace_enable_nullop(void)
249 {
250 	return (0);
251 }
252 
253 static dtrace_pops_t	dtrace_provider_ops = {
254 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
255 	(void (*)(void *, struct modctl *))dtrace_nullop,
256 	(int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
257 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
258 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
259 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
260 	NULL,
261 	NULL,
262 	NULL,
263 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
264 };
265 
266 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
267 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
268 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
269 
270 /*
271  * DTrace Helper Tracing Variables
272  *
273  * These variables should be set dynamically to enable helper tracing.  The
274  * only variables that should be set are dtrace_helptrace_enable (which should
275  * be set to a non-zero value to allocate helper tracing buffers on the next
276  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
277  * non-zero value to deallocate helper tracing buffers on the next close of
278  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
279  * buffer size may also be set via dtrace_helptrace_bufsize.
280  */
281 int			dtrace_helptrace_enable = 0;
282 int			dtrace_helptrace_disable = 0;
283 int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
284 uint32_t		dtrace_helptrace_nlocals;
285 static dtrace_helptrace_t *dtrace_helptrace_buffer;
286 static uint32_t		dtrace_helptrace_next = 0;
287 static int		dtrace_helptrace_wrapped = 0;
288 
289 /*
290  * DTrace Error Hashing
291  *
292  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
293  * table.  This is very useful for checking coverage of tests that are
294  * expected to induce DIF or DOF processing errors, and may be useful for
295  * debugging problems in the DIF code generator or in DOF generation .  The
296  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
297  */
298 #ifdef DEBUG
299 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
300 static const char *dtrace_errlast;
301 static kthread_t *dtrace_errthread;
302 static kmutex_t dtrace_errlock;
303 #endif
304 
305 /*
306  * DTrace Macros and Constants
307  *
308  * These are various macros that are useful in various spots in the
309  * implementation, along with a few random constants that have no meaning
310  * outside of the implementation.  There is no real structure to this cpp
311  * mishmash -- but is there ever?
312  */
313 #define	DTRACE_HASHSTR(hash, probe)	\
314 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
315 
316 #define	DTRACE_HASHNEXT(hash, probe)	\
317 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
318 
319 #define	DTRACE_HASHPREV(hash, probe)	\
320 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
321 
322 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
323 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
324 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
325 
326 #define	DTRACE_AGGHASHSIZE_SLEW		17
327 
328 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
329 
330 /*
331  * The key for a thread-local variable consists of the lower 61 bits of the
332  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
333  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
334  * equal to a variable identifier.  This is necessary (but not sufficient) to
335  * assure that global associative arrays never collide with thread-local
336  * variables.  To guarantee that they cannot collide, we must also define the
337  * order for keying dynamic variables.  That order is:
338  *
339  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
340  *
341  * Because the variable-key and the tls-key are in orthogonal spaces, there is
342  * no way for a global variable key signature to match a thread-local key
343  * signature.
344  */
345 #define	DTRACE_TLS_THRKEY(where) { \
346 	uint_t intr = 0; \
347 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
348 	for (; actv; actv >>= 1) \
349 		intr++; \
350 	ASSERT(intr < (1 << 3)); \
351 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
352 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
353 }
354 
355 #define	DT_BSWAP_8(x)	((x) & 0xff)
356 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
357 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
358 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
359 
360 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
361 
362 #define	DTRACE_STORE(type, tomax, offset, what) \
363 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
364 
365 #ifndef __x86
366 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
367 	if (addr & (size - 1)) {					\
368 		*flags |= CPU_DTRACE_BADALIGN;				\
369 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
370 		return (0);						\
371 	}
372 #else
373 #define	DTRACE_ALIGNCHECK(addr, size, flags)
374 #endif
375 
376 /*
377  * Test whether a range of memory starting at testaddr of size testsz falls
378  * within the range of memory described by addr, sz.  We take care to avoid
379  * problems with overflow and underflow of the unsigned quantities, and
380  * disallow all negative sizes.  Ranges of size 0 are allowed.
381  */
382 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
383 	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
384 	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
385 	(testaddr) + (testsz) >= (testaddr))
386 
387 /*
388  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
389  * alloc_sz on the righthand side of the comparison in order to avoid overflow
390  * or underflow in the comparison with it.  This is simpler than the INRANGE
391  * check above, because we know that the dtms_scratch_ptr is valid in the
392  * range.  Allocations of size zero are allowed.
393  */
394 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
395 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
396 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
397 
398 #define	DTRACE_LOADFUNC(bits)						\
399 /*CSTYLED*/								\
400 uint##bits##_t								\
401 dtrace_load##bits(uintptr_t addr)					\
402 {									\
403 	size_t size = bits / NBBY;					\
404 	/*CSTYLED*/							\
405 	uint##bits##_t rval;						\
406 	int i;								\
407 	volatile uint16_t *flags = (volatile uint16_t *)		\
408 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
409 									\
410 	DTRACE_ALIGNCHECK(addr, size, flags);				\
411 									\
412 	for (i = 0; i < dtrace_toxranges; i++) {			\
413 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
414 			continue;					\
415 									\
416 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
417 			continue;					\
418 									\
419 		/*							\
420 		 * This address falls within a toxic region; return 0.	\
421 		 */							\
422 		*flags |= CPU_DTRACE_BADADDR;				\
423 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
424 		return (0);						\
425 	}								\
426 									\
427 	*flags |= CPU_DTRACE_NOFAULT;					\
428 	/*CSTYLED*/							\
429 	rval = *((volatile uint##bits##_t *)addr);			\
430 	*flags &= ~CPU_DTRACE_NOFAULT;					\
431 									\
432 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
433 }
434 
435 #ifdef _LP64
436 #define	dtrace_loadptr	dtrace_load64
437 #else
438 #define	dtrace_loadptr	dtrace_load32
439 #endif
440 
441 #define	DTRACE_DYNHASH_FREE	0
442 #define	DTRACE_DYNHASH_SINK	1
443 #define	DTRACE_DYNHASH_VALID	2
444 
445 #define	DTRACE_MATCH_FAIL	-1
446 #define	DTRACE_MATCH_NEXT	0
447 #define	DTRACE_MATCH_DONE	1
448 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
449 #define	DTRACE_STATE_ALIGN	64
450 
451 #define	DTRACE_FLAGS2FLT(flags)						\
452 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
453 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
454 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
455 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
456 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
457 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
458 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
459 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
460 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
461 	DTRACEFLT_UNKNOWN)
462 
463 #define	DTRACEACT_ISSTRING(act)						\
464 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
465 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
466 
467 static size_t dtrace_strlen(const char *, size_t);
468 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
469 static void dtrace_enabling_provide(dtrace_provider_t *);
470 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
471 static void dtrace_enabling_matchall(void);
472 static void dtrace_enabling_reap(void);
473 static dtrace_state_t *dtrace_anon_grab(void);
474 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
475     dtrace_state_t *, uint64_t, uint64_t);
476 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
477 static void dtrace_buffer_drop(dtrace_buffer_t *);
478 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
479 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
480     dtrace_state_t *, dtrace_mstate_t *);
481 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
482     dtrace_optval_t);
483 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
484 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
485 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
486 static void dtrace_getf_barrier(void);
487 
488 /*
489  * DTrace Probe Context Functions
490  *
491  * These functions are called from probe context.  Because probe context is
492  * any context in which C may be called, arbitrarily locks may be held,
493  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
494  * As a result, functions called from probe context may only call other DTrace
495  * support functions -- they may not interact at all with the system at large.
496  * (Note that the ASSERT macro is made probe-context safe by redefining it in
497  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
498  * loads are to be performed from probe context, they _must_ be in terms of
499  * the safe dtrace_load*() variants.
500  *
501  * Some functions in this block are not actually called from probe context;
502  * for these functions, there will be a comment above the function reading
503  * "Note:  not called from probe context."
504  */
505 void
506 dtrace_panic(const char *format, ...)
507 {
508 	va_list alist;
509 
510 	va_start(alist, format);
511 	dtrace_vpanic(format, alist);
512 	va_end(alist);
513 }
514 
515 int
516 dtrace_assfail(const char *a, const char *f, int l)
517 {
518 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
519 
520 	/*
521 	 * We just need something here that even the most clever compiler
522 	 * cannot optimize away.
523 	 */
524 	return (a[(uintptr_t)f]);
525 }
526 
527 /*
528  * Atomically increment a specified error counter from probe context.
529  */
530 static void
531 dtrace_error(uint32_t *counter)
532 {
533 	/*
534 	 * Most counters stored to in probe context are per-CPU counters.
535 	 * However, there are some error conditions that are sufficiently
536 	 * arcane that they don't merit per-CPU storage.  If these counters
537 	 * are incremented concurrently on different CPUs, scalability will be
538 	 * adversely affected -- but we don't expect them to be white-hot in a
539 	 * correctly constructed enabling...
540 	 */
541 	uint32_t oval, nval;
542 
543 	do {
544 		oval = *counter;
545 
546 		if ((nval = oval + 1) == 0) {
547 			/*
548 			 * If the counter would wrap, set it to 1 -- assuring
549 			 * that the counter is never zero when we have seen
550 			 * errors.  (The counter must be 32-bits because we
551 			 * aren't guaranteed a 64-bit compare&swap operation.)
552 			 * To save this code both the infamy of being fingered
553 			 * by a priggish news story and the indignity of being
554 			 * the target of a neo-puritan witch trial, we're
555 			 * carefully avoiding any colorful description of the
556 			 * likelihood of this condition -- but suffice it to
557 			 * say that it is only slightly more likely than the
558 			 * overflow of predicate cache IDs, as discussed in
559 			 * dtrace_predicate_create().
560 			 */
561 			nval = 1;
562 		}
563 	} while (dtrace_cas32(counter, oval, nval) != oval);
564 }
565 
566 /*
567  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
568  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
569  */
570 DTRACE_LOADFUNC(8)
571 DTRACE_LOADFUNC(16)
572 DTRACE_LOADFUNC(32)
573 DTRACE_LOADFUNC(64)
574 
575 static int
576 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
577 {
578 	if (dest < mstate->dtms_scratch_base)
579 		return (0);
580 
581 	if (dest + size < dest)
582 		return (0);
583 
584 	if (dest + size > mstate->dtms_scratch_ptr)
585 		return (0);
586 
587 	return (1);
588 }
589 
590 static int
591 dtrace_canstore_statvar(uint64_t addr, size_t sz,
592     dtrace_statvar_t **svars, int nsvars)
593 {
594 	int i;
595 
596 	for (i = 0; i < nsvars; i++) {
597 		dtrace_statvar_t *svar = svars[i];
598 
599 		if (svar == NULL || svar->dtsv_size == 0)
600 			continue;
601 
602 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
603 			return (1);
604 	}
605 
606 	return (0);
607 }
608 
609 /*
610  * Check to see if the address is within a memory region to which a store may
611  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
612  * region.  The caller of dtrace_canstore() is responsible for performing any
613  * alignment checks that are needed before stores are actually executed.
614  */
615 static int
616 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
617     dtrace_vstate_t *vstate)
618 {
619 	/*
620 	 * First, check to see if the address is in scratch space...
621 	 */
622 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
623 	    mstate->dtms_scratch_size))
624 		return (1);
625 
626 	/*
627 	 * Now check to see if it's a dynamic variable.  This check will pick
628 	 * up both thread-local variables and any global dynamically-allocated
629 	 * variables.
630 	 */
631 	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
632 	    vstate->dtvs_dynvars.dtds_size)) {
633 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
634 		uintptr_t base = (uintptr_t)dstate->dtds_base +
635 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
636 		uintptr_t chunkoffs;
637 
638 		/*
639 		 * Before we assume that we can store here, we need to make
640 		 * sure that it isn't in our metadata -- storing to our
641 		 * dynamic variable metadata would corrupt our state.  For
642 		 * the range to not include any dynamic variable metadata,
643 		 * it must:
644 		 *
645 		 *	(1) Start above the hash table that is at the base of
646 		 *	the dynamic variable space
647 		 *
648 		 *	(2) Have a starting chunk offset that is beyond the
649 		 *	dtrace_dynvar_t that is at the base of every chunk
650 		 *
651 		 *	(3) Not span a chunk boundary
652 		 *
653 		 */
654 		if (addr < base)
655 			return (0);
656 
657 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
658 
659 		if (chunkoffs < sizeof (dtrace_dynvar_t))
660 			return (0);
661 
662 		if (chunkoffs + sz > dstate->dtds_chunksize)
663 			return (0);
664 
665 		return (1);
666 	}
667 
668 	/*
669 	 * Finally, check the static local and global variables.  These checks
670 	 * take the longest, so we perform them last.
671 	 */
672 	if (dtrace_canstore_statvar(addr, sz,
673 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
674 		return (1);
675 
676 	if (dtrace_canstore_statvar(addr, sz,
677 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
678 		return (1);
679 
680 	return (0);
681 }
682 
683 
684 /*
685  * Convenience routine to check to see if the address is within a memory
686  * region in which a load may be issued given the user's privilege level;
687  * if not, it sets the appropriate error flags and loads 'addr' into the
688  * illegal value slot.
689  *
690  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
691  * appropriate memory access protection.
692  */
693 static int
694 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
695     dtrace_vstate_t *vstate)
696 {
697 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
698 	file_t *fp;
699 
700 	/*
701 	 * If we hold the privilege to read from kernel memory, then
702 	 * everything is readable.
703 	 */
704 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
705 		return (1);
706 
707 	/*
708 	 * You can obviously read that which you can store.
709 	 */
710 	if (dtrace_canstore(addr, sz, mstate, vstate))
711 		return (1);
712 
713 	/*
714 	 * We're allowed to read from our own string table.
715 	 */
716 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
717 	    mstate->dtms_difo->dtdo_strlen))
718 		return (1);
719 
720 	if (vstate->dtvs_state != NULL &&
721 	    dtrace_priv_proc(vstate->dtvs_state, mstate)) {
722 		proc_t *p;
723 
724 		/*
725 		 * When we have privileges to the current process, there are
726 		 * several context-related kernel structures that are safe to
727 		 * read, even absent the privilege to read from kernel memory.
728 		 * These reads are safe because these structures contain only
729 		 * state that (1) we're permitted to read, (2) is harmless or
730 		 * (3) contains pointers to additional kernel state that we're
731 		 * not permitted to read (and as such, do not present an
732 		 * opportunity for privilege escalation).  Finally (and
733 		 * critically), because of the nature of their relation with
734 		 * the current thread context, the memory associated with these
735 		 * structures cannot change over the duration of probe context,
736 		 * and it is therefore impossible for this memory to be
737 		 * deallocated and reallocated as something else while it's
738 		 * being operated upon.
739 		 */
740 		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
741 			return (1);
742 
743 		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
744 		    sz, curthread->t_procp, sizeof (proc_t))) {
745 			return (1);
746 		}
747 
748 		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
749 		    curthread->t_cred, sizeof (cred_t))) {
750 			return (1);
751 		}
752 
753 		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
754 		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
755 			return (1);
756 		}
757 
758 		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
759 		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
760 			return (1);
761 		}
762 	}
763 
764 	if ((fp = mstate->dtms_getf) != NULL) {
765 		uintptr_t psz = sizeof (void *);
766 		vnode_t *vp;
767 		vnodeops_t *op;
768 
769 		/*
770 		 * When getf() returns a file_t, the enabling is implicitly
771 		 * granted the (transient) right to read the returned file_t
772 		 * as well as the v_path and v_op->vnop_name of the underlying
773 		 * vnode.  These accesses are allowed after a successful
774 		 * getf() because the members that they refer to cannot change
775 		 * once set -- and the barrier logic in the kernel's closef()
776 		 * path assures that the file_t and its referenced vode_t
777 		 * cannot themselves be stale (that is, it impossible for
778 		 * either dtms_getf itself or its f_vnode member to reference
779 		 * freed memory).
780 		 */
781 		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
782 			return (1);
783 
784 		if ((vp = fp->f_vnode) != NULL) {
785 			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
786 				return (1);
787 
788 			if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
789 			    vp->v_path, strlen(vp->v_path) + 1)) {
790 				return (1);
791 			}
792 
793 			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
794 				return (1);
795 
796 			if ((op = vp->v_op) != NULL &&
797 			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
798 				return (1);
799 			}
800 
801 			if (op != NULL && op->vnop_name != NULL &&
802 			    DTRACE_INRANGE(addr, sz, op->vnop_name,
803 			    strlen(op->vnop_name) + 1)) {
804 				return (1);
805 			}
806 		}
807 	}
808 
809 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
810 	*illval = addr;
811 	return (0);
812 }
813 
814 /*
815  * Convenience routine to check to see if a given string is within a memory
816  * region in which a load may be issued given the user's privilege level;
817  * this exists so that we don't need to issue unnecessary dtrace_strlen()
818  * calls in the event that the user has all privileges.
819  */
820 static int
821 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
822     dtrace_vstate_t *vstate)
823 {
824 	size_t strsz;
825 
826 	/*
827 	 * If we hold the privilege to read from kernel memory, then
828 	 * everything is readable.
829 	 */
830 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
831 		return (1);
832 
833 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
834 	if (dtrace_canload(addr, strsz, mstate, vstate))
835 		return (1);
836 
837 	return (0);
838 }
839 
840 /*
841  * Convenience routine to check to see if a given variable is within a memory
842  * region in which a load may be issued given the user's privilege level.
843  */
844 static int
845 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
846     dtrace_vstate_t *vstate)
847 {
848 	size_t sz;
849 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
850 
851 	/*
852 	 * If we hold the privilege to read from kernel memory, then
853 	 * everything is readable.
854 	 */
855 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
856 		return (1);
857 
858 	if (type->dtdt_kind == DIF_TYPE_STRING)
859 		sz = dtrace_strlen(src,
860 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
861 	else
862 		sz = type->dtdt_size;
863 
864 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
865 }
866 
867 /*
868  * Convert a string to a signed integer using safe loads.
869  *
870  * NOTE: This function uses various macros from strtolctype.h to manipulate
871  * digit values, etc -- these have all been checked to ensure they make
872  * no additional function calls.
873  */
874 static int64_t
875 dtrace_strtoll(char *input, int base, size_t limit)
876 {
877 	uintptr_t pos = (uintptr_t)input;
878 	int64_t val = 0;
879 	int x;
880 	boolean_t neg = B_FALSE;
881 	char c, cc, ccc;
882 	uintptr_t end = pos + limit;
883 
884 	/*
885 	 * Consume any whitespace preceding digits.
886 	 */
887 	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
888 		pos++;
889 
890 	/*
891 	 * Handle an explicit sign if one is present.
892 	 */
893 	if (c == '-' || c == '+') {
894 		if (c == '-')
895 			neg = B_TRUE;
896 		c = dtrace_load8(++pos);
897 	}
898 
899 	/*
900 	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
901 	 * if present.
902 	 */
903 	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
904 	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
905 		pos += 2;
906 		c = ccc;
907 	}
908 
909 	/*
910 	 * Read in contiguous digits until the first non-digit character.
911 	 */
912 	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
913 	    c = dtrace_load8(++pos))
914 		val = val * base + x;
915 
916 	return (neg ? -val : val);
917 }
918 
919 /*
920  * Compare two strings using safe loads.
921  */
922 static int
923 dtrace_strncmp(char *s1, char *s2, size_t limit)
924 {
925 	uint8_t c1, c2;
926 	volatile uint16_t *flags;
927 
928 	if (s1 == s2 || limit == 0)
929 		return (0);
930 
931 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
932 
933 	do {
934 		if (s1 == NULL) {
935 			c1 = '\0';
936 		} else {
937 			c1 = dtrace_load8((uintptr_t)s1++);
938 		}
939 
940 		if (s2 == NULL) {
941 			c2 = '\0';
942 		} else {
943 			c2 = dtrace_load8((uintptr_t)s2++);
944 		}
945 
946 		if (c1 != c2)
947 			return (c1 - c2);
948 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
949 
950 	return (0);
951 }
952 
953 /*
954  * Compute strlen(s) for a string using safe memory accesses.  The additional
955  * len parameter is used to specify a maximum length to ensure completion.
956  */
957 static size_t
958 dtrace_strlen(const char *s, size_t lim)
959 {
960 	uint_t len;
961 
962 	for (len = 0; len != lim; len++) {
963 		if (dtrace_load8((uintptr_t)s++) == '\0')
964 			break;
965 	}
966 
967 	return (len);
968 }
969 
970 /*
971  * Check if an address falls within a toxic region.
972  */
973 static int
974 dtrace_istoxic(uintptr_t kaddr, size_t size)
975 {
976 	uintptr_t taddr, tsize;
977 	int i;
978 
979 	for (i = 0; i < dtrace_toxranges; i++) {
980 		taddr = dtrace_toxrange[i].dtt_base;
981 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
982 
983 		if (kaddr - taddr < tsize) {
984 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
985 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
986 			return (1);
987 		}
988 
989 		if (taddr - kaddr < size) {
990 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
991 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
992 			return (1);
993 		}
994 	}
995 
996 	return (0);
997 }
998 
999 /*
1000  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1001  * memory specified by the DIF program.  The dst is assumed to be safe memory
1002  * that we can store to directly because it is managed by DTrace.  As with
1003  * standard bcopy, overlapping copies are handled properly.
1004  */
1005 static void
1006 dtrace_bcopy(const void *src, void *dst, size_t len)
1007 {
1008 	if (len != 0) {
1009 		uint8_t *s1 = dst;
1010 		const uint8_t *s2 = src;
1011 
1012 		if (s1 <= s2) {
1013 			do {
1014 				*s1++ = dtrace_load8((uintptr_t)s2++);
1015 			} while (--len != 0);
1016 		} else {
1017 			s2 += len;
1018 			s1 += len;
1019 
1020 			do {
1021 				*--s1 = dtrace_load8((uintptr_t)--s2);
1022 			} while (--len != 0);
1023 		}
1024 	}
1025 }
1026 
1027 /*
1028  * Copy src to dst using safe memory accesses, up to either the specified
1029  * length, or the point that a nul byte is encountered.  The src is assumed to
1030  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1031  * safe memory that we can store to directly because it is managed by DTrace.
1032  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1033  */
1034 static void
1035 dtrace_strcpy(const void *src, void *dst, size_t len)
1036 {
1037 	if (len != 0) {
1038 		uint8_t *s1 = dst, c;
1039 		const uint8_t *s2 = src;
1040 
1041 		do {
1042 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1043 		} while (--len != 0 && c != '\0');
1044 	}
1045 }
1046 
1047 /*
1048  * Copy src to dst, deriving the size and type from the specified (BYREF)
1049  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1050  * program.  The dst is assumed to be DTrace variable memory that is of the
1051  * specified type; we assume that we can store to directly.
1052  */
1053 static void
1054 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1055 {
1056 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1057 
1058 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1059 		dtrace_strcpy(src, dst, type->dtdt_size);
1060 	} else {
1061 		dtrace_bcopy(src, dst, type->dtdt_size);
1062 	}
1063 }
1064 
1065 /*
1066  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1067  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1068  * safe memory that we can access directly because it is managed by DTrace.
1069  */
1070 static int
1071 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1072 {
1073 	volatile uint16_t *flags;
1074 
1075 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1076 
1077 	if (s1 == s2)
1078 		return (0);
1079 
1080 	if (s1 == NULL || s2 == NULL)
1081 		return (1);
1082 
1083 	if (s1 != s2 && len != 0) {
1084 		const uint8_t *ps1 = s1;
1085 		const uint8_t *ps2 = s2;
1086 
1087 		do {
1088 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1089 				return (1);
1090 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1091 	}
1092 	return (0);
1093 }
1094 
1095 /*
1096  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1097  * is for safe DTrace-managed memory only.
1098  */
1099 static void
1100 dtrace_bzero(void *dst, size_t len)
1101 {
1102 	uchar_t *cp;
1103 
1104 	for (cp = dst; len != 0; len--)
1105 		*cp++ = 0;
1106 }
1107 
1108 static void
1109 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1110 {
1111 	uint64_t result[2];
1112 
1113 	result[0] = addend1[0] + addend2[0];
1114 	result[1] = addend1[1] + addend2[1] +
1115 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1116 
1117 	sum[0] = result[0];
1118 	sum[1] = result[1];
1119 }
1120 
1121 /*
1122  * Shift the 128-bit value in a by b. If b is positive, shift left.
1123  * If b is negative, shift right.
1124  */
1125 static void
1126 dtrace_shift_128(uint64_t *a, int b)
1127 {
1128 	uint64_t mask;
1129 
1130 	if (b == 0)
1131 		return;
1132 
1133 	if (b < 0) {
1134 		b = -b;
1135 		if (b >= 64) {
1136 			a[0] = a[1] >> (b - 64);
1137 			a[1] = 0;
1138 		} else {
1139 			a[0] >>= b;
1140 			mask = 1LL << (64 - b);
1141 			mask -= 1;
1142 			a[0] |= ((a[1] & mask) << (64 - b));
1143 			a[1] >>= b;
1144 		}
1145 	} else {
1146 		if (b >= 64) {
1147 			a[1] = a[0] << (b - 64);
1148 			a[0] = 0;
1149 		} else {
1150 			a[1] <<= b;
1151 			mask = a[0] >> (64 - b);
1152 			a[1] |= mask;
1153 			a[0] <<= b;
1154 		}
1155 	}
1156 }
1157 
1158 /*
1159  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1160  * use native multiplication on those, and then re-combine into the
1161  * resulting 128-bit value.
1162  *
1163  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1164  *     hi1 * hi2 << 64 +
1165  *     hi1 * lo2 << 32 +
1166  *     hi2 * lo1 << 32 +
1167  *     lo1 * lo2
1168  */
1169 static void
1170 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1171 {
1172 	uint64_t hi1, hi2, lo1, lo2;
1173 	uint64_t tmp[2];
1174 
1175 	hi1 = factor1 >> 32;
1176 	hi2 = factor2 >> 32;
1177 
1178 	lo1 = factor1 & DT_MASK_LO;
1179 	lo2 = factor2 & DT_MASK_LO;
1180 
1181 	product[0] = lo1 * lo2;
1182 	product[1] = hi1 * hi2;
1183 
1184 	tmp[0] = hi1 * lo2;
1185 	tmp[1] = 0;
1186 	dtrace_shift_128(tmp, 32);
1187 	dtrace_add_128(product, tmp, product);
1188 
1189 	tmp[0] = hi2 * lo1;
1190 	tmp[1] = 0;
1191 	dtrace_shift_128(tmp, 32);
1192 	dtrace_add_128(product, tmp, product);
1193 }
1194 
1195 /*
1196  * This privilege check should be used by actions and subroutines to
1197  * verify that the user credentials of the process that enabled the
1198  * invoking ECB match the target credentials
1199  */
1200 static int
1201 dtrace_priv_proc_common_user(dtrace_state_t *state)
1202 {
1203 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1204 
1205 	/*
1206 	 * We should always have a non-NULL state cred here, since if cred
1207 	 * is null (anonymous tracing), we fast-path bypass this routine.
1208 	 */
1209 	ASSERT(s_cr != NULL);
1210 
1211 	if ((cr = CRED()) != NULL &&
1212 	    s_cr->cr_uid == cr->cr_uid &&
1213 	    s_cr->cr_uid == cr->cr_ruid &&
1214 	    s_cr->cr_uid == cr->cr_suid &&
1215 	    s_cr->cr_gid == cr->cr_gid &&
1216 	    s_cr->cr_gid == cr->cr_rgid &&
1217 	    s_cr->cr_gid == cr->cr_sgid)
1218 		return (1);
1219 
1220 	return (0);
1221 }
1222 
1223 /*
1224  * This privilege check should be used by actions and subroutines to
1225  * verify that the zone of the process that enabled the invoking ECB
1226  * matches the target credentials
1227  */
1228 static int
1229 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1230 {
1231 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1232 
1233 	/*
1234 	 * We should always have a non-NULL state cred here, since if cred
1235 	 * is null (anonymous tracing), we fast-path bypass this routine.
1236 	 */
1237 	ASSERT(s_cr != NULL);
1238 
1239 	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1240 		return (1);
1241 
1242 	return (0);
1243 }
1244 
1245 /*
1246  * This privilege check should be used by actions and subroutines to
1247  * verify that the process has not setuid or changed credentials.
1248  */
1249 static int
1250 dtrace_priv_proc_common_nocd()
1251 {
1252 	proc_t *proc;
1253 
1254 	if ((proc = ttoproc(curthread)) != NULL &&
1255 	    !(proc->p_flag & SNOCD))
1256 		return (1);
1257 
1258 	return (0);
1259 }
1260 
1261 static int
1262 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1263 {
1264 	int action = state->dts_cred.dcr_action;
1265 
1266 	if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1267 		goto bad;
1268 
1269 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1270 	    dtrace_priv_proc_common_zone(state) == 0)
1271 		goto bad;
1272 
1273 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1274 	    dtrace_priv_proc_common_user(state) == 0)
1275 		goto bad;
1276 
1277 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1278 	    dtrace_priv_proc_common_nocd() == 0)
1279 		goto bad;
1280 
1281 	return (1);
1282 
1283 bad:
1284 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1285 
1286 	return (0);
1287 }
1288 
1289 static int
1290 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1291 {
1292 	if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1293 		if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1294 			return (1);
1295 
1296 		if (dtrace_priv_proc_common_zone(state) &&
1297 		    dtrace_priv_proc_common_user(state) &&
1298 		    dtrace_priv_proc_common_nocd())
1299 			return (1);
1300 	}
1301 
1302 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1303 
1304 	return (0);
1305 }
1306 
1307 static int
1308 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1309 {
1310 	if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1311 	    (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1312 		return (1);
1313 
1314 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1315 
1316 	return (0);
1317 }
1318 
1319 static int
1320 dtrace_priv_kernel(dtrace_state_t *state)
1321 {
1322 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1323 		return (1);
1324 
1325 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1326 
1327 	return (0);
1328 }
1329 
1330 static int
1331 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1332 {
1333 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1334 		return (1);
1335 
1336 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1337 
1338 	return (0);
1339 }
1340 
1341 /*
1342  * Determine if the dte_cond of the specified ECB allows for processing of
1343  * the current probe to continue.  Note that this routine may allow continued
1344  * processing, but with access(es) stripped from the mstate's dtms_access
1345  * field.
1346  */
1347 static int
1348 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1349     dtrace_ecb_t *ecb)
1350 {
1351 	dtrace_probe_t *probe = ecb->dte_probe;
1352 	dtrace_provider_t *prov = probe->dtpr_provider;
1353 	dtrace_pops_t *pops = &prov->dtpv_pops;
1354 	int mode = DTRACE_MODE_NOPRIV_DROP;
1355 
1356 	ASSERT(ecb->dte_cond);
1357 
1358 	if (pops->dtps_mode != NULL) {
1359 		mode = pops->dtps_mode(prov->dtpv_arg,
1360 		    probe->dtpr_id, probe->dtpr_arg);
1361 
1362 		ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1363 		ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1364 		    DTRACE_MODE_NOPRIV_DROP));
1365 	}
1366 
1367 	/*
1368 	 * If the dte_cond bits indicate that this consumer is only allowed to
1369 	 * see user-mode firings of this probe, check that the probe was fired
1370 	 * while in a user context.  If that's not the case, use the policy
1371 	 * specified by the provider to determine if we drop the probe or
1372 	 * merely restrict operation.
1373 	 */
1374 	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1375 		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1376 
1377 		if (!(mode & DTRACE_MODE_USER)) {
1378 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1379 				return (0);
1380 
1381 			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1382 		}
1383 	}
1384 
1385 	/*
1386 	 * This is more subtle than it looks. We have to be absolutely certain
1387 	 * that CRED() isn't going to change out from under us so it's only
1388 	 * legit to examine that structure if we're in constrained situations.
1389 	 * Currently, the only times we'll this check is if a non-super-user
1390 	 * has enabled the profile or syscall providers -- providers that
1391 	 * allow visibility of all processes. For the profile case, the check
1392 	 * above will ensure that we're examining a user context.
1393 	 */
1394 	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1395 		cred_t *cr;
1396 		cred_t *s_cr = state->dts_cred.dcr_cred;
1397 		proc_t *proc;
1398 
1399 		ASSERT(s_cr != NULL);
1400 
1401 		if ((cr = CRED()) == NULL ||
1402 		    s_cr->cr_uid != cr->cr_uid ||
1403 		    s_cr->cr_uid != cr->cr_ruid ||
1404 		    s_cr->cr_uid != cr->cr_suid ||
1405 		    s_cr->cr_gid != cr->cr_gid ||
1406 		    s_cr->cr_gid != cr->cr_rgid ||
1407 		    s_cr->cr_gid != cr->cr_sgid ||
1408 		    (proc = ttoproc(curthread)) == NULL ||
1409 		    (proc->p_flag & SNOCD)) {
1410 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1411 				return (0);
1412 
1413 			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1414 		}
1415 	}
1416 
1417 	/*
1418 	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1419 	 * in our zone, check to see if our mode policy is to restrict rather
1420 	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1421 	 * and DTRACE_ACCESS_ARGS
1422 	 */
1423 	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1424 		cred_t *cr;
1425 		cred_t *s_cr = state->dts_cred.dcr_cred;
1426 
1427 		ASSERT(s_cr != NULL);
1428 
1429 		if ((cr = CRED()) == NULL ||
1430 		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1431 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1432 				return (0);
1433 
1434 			mstate->dtms_access &=
1435 			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1436 		}
1437 	}
1438 
1439 	/*
1440 	 * By merits of being in this code path at all, we have limited
1441 	 * privileges.  If the provider has indicated that limited privileges
1442 	 * are to denote restricted operation, strip off the ability to access
1443 	 * arguments.
1444 	 */
1445 	if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)
1446 		mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1447 
1448 	return (1);
1449 }
1450 
1451 /*
1452  * Note:  not called from probe context.  This function is called
1453  * asynchronously (and at a regular interval) from outside of probe context to
1454  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1455  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1456  */
1457 void
1458 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1459 {
1460 	dtrace_dynvar_t *dirty;
1461 	dtrace_dstate_percpu_t *dcpu;
1462 	dtrace_dynvar_t **rinsep;
1463 	int i, j, work = 0;
1464 
1465 	for (i = 0; i < NCPU; i++) {
1466 		dcpu = &dstate->dtds_percpu[i];
1467 		rinsep = &dcpu->dtdsc_rinsing;
1468 
1469 		/*
1470 		 * If the dirty list is NULL, there is no dirty work to do.
1471 		 */
1472 		if (dcpu->dtdsc_dirty == NULL)
1473 			continue;
1474 
1475 		if (dcpu->dtdsc_rinsing != NULL) {
1476 			/*
1477 			 * If the rinsing list is non-NULL, then it is because
1478 			 * this CPU was selected to accept another CPU's
1479 			 * dirty list -- and since that time, dirty buffers
1480 			 * have accumulated.  This is a highly unlikely
1481 			 * condition, but we choose to ignore the dirty
1482 			 * buffers -- they'll be picked up a future cleanse.
1483 			 */
1484 			continue;
1485 		}
1486 
1487 		if (dcpu->dtdsc_clean != NULL) {
1488 			/*
1489 			 * If the clean list is non-NULL, then we're in a
1490 			 * situation where a CPU has done deallocations (we
1491 			 * have a non-NULL dirty list) but no allocations (we
1492 			 * also have a non-NULL clean list).  We can't simply
1493 			 * move the dirty list into the clean list on this
1494 			 * CPU, yet we also don't want to allow this condition
1495 			 * to persist, lest a short clean list prevent a
1496 			 * massive dirty list from being cleaned (which in
1497 			 * turn could lead to otherwise avoidable dynamic
1498 			 * drops).  To deal with this, we look for some CPU
1499 			 * with a NULL clean list, NULL dirty list, and NULL
1500 			 * rinsing list -- and then we borrow this CPU to
1501 			 * rinse our dirty list.
1502 			 */
1503 			for (j = 0; j < NCPU; j++) {
1504 				dtrace_dstate_percpu_t *rinser;
1505 
1506 				rinser = &dstate->dtds_percpu[j];
1507 
1508 				if (rinser->dtdsc_rinsing != NULL)
1509 					continue;
1510 
1511 				if (rinser->dtdsc_dirty != NULL)
1512 					continue;
1513 
1514 				if (rinser->dtdsc_clean != NULL)
1515 					continue;
1516 
1517 				rinsep = &rinser->dtdsc_rinsing;
1518 				break;
1519 			}
1520 
1521 			if (j == NCPU) {
1522 				/*
1523 				 * We were unable to find another CPU that
1524 				 * could accept this dirty list -- we are
1525 				 * therefore unable to clean it now.
1526 				 */
1527 				dtrace_dynvar_failclean++;
1528 				continue;
1529 			}
1530 		}
1531 
1532 		work = 1;
1533 
1534 		/*
1535 		 * Atomically move the dirty list aside.
1536 		 */
1537 		do {
1538 			dirty = dcpu->dtdsc_dirty;
1539 
1540 			/*
1541 			 * Before we zap the dirty list, set the rinsing list.
1542 			 * (This allows for a potential assertion in
1543 			 * dtrace_dynvar():  if a free dynamic variable appears
1544 			 * on a hash chain, either the dirty list or the
1545 			 * rinsing list for some CPU must be non-NULL.)
1546 			 */
1547 			*rinsep = dirty;
1548 			dtrace_membar_producer();
1549 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1550 		    dirty, NULL) != dirty);
1551 	}
1552 
1553 	if (!work) {
1554 		/*
1555 		 * We have no work to do; we can simply return.
1556 		 */
1557 		return;
1558 	}
1559 
1560 	dtrace_sync();
1561 
1562 	for (i = 0; i < NCPU; i++) {
1563 		dcpu = &dstate->dtds_percpu[i];
1564 
1565 		if (dcpu->dtdsc_rinsing == NULL)
1566 			continue;
1567 
1568 		/*
1569 		 * We are now guaranteed that no hash chain contains a pointer
1570 		 * into this dirty list; we can make it clean.
1571 		 */
1572 		ASSERT(dcpu->dtdsc_clean == NULL);
1573 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1574 		dcpu->dtdsc_rinsing = NULL;
1575 	}
1576 
1577 	/*
1578 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1579 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1580 	 * This prevents a race whereby a CPU incorrectly decides that
1581 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1582 	 * after dtrace_dynvar_clean() has completed.
1583 	 */
1584 	dtrace_sync();
1585 
1586 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1587 }
1588 
1589 /*
1590  * Depending on the value of the op parameter, this function looks-up,
1591  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1592  * allocation is requested, this function will return a pointer to a
1593  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1594  * variable can be allocated.  If NULL is returned, the appropriate counter
1595  * will be incremented.
1596  */
1597 dtrace_dynvar_t *
1598 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1599     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1600     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1601 {
1602 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1603 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1604 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1605 	processorid_t me = CPU->cpu_id, cpu = me;
1606 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1607 	size_t bucket, ksize;
1608 	size_t chunksize = dstate->dtds_chunksize;
1609 	uintptr_t kdata, lock, nstate;
1610 	uint_t i;
1611 
1612 	ASSERT(nkeys != 0);
1613 
1614 	/*
1615 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1616 	 * algorithm.  For the by-value portions, we perform the algorithm in
1617 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1618 	 * bit, and seems to have only a minute effect on distribution.  For
1619 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1620 	 * over each referenced byte.  It's painful to do this, but it's much
1621 	 * better than pathological hash distribution.  The efficacy of the
1622 	 * hashing algorithm (and a comparison with other algorithms) may be
1623 	 * found by running the ::dtrace_dynstat MDB dcmd.
1624 	 */
1625 	for (i = 0; i < nkeys; i++) {
1626 		if (key[i].dttk_size == 0) {
1627 			uint64_t val = key[i].dttk_value;
1628 
1629 			hashval += (val >> 48) & 0xffff;
1630 			hashval += (hashval << 10);
1631 			hashval ^= (hashval >> 6);
1632 
1633 			hashval += (val >> 32) & 0xffff;
1634 			hashval += (hashval << 10);
1635 			hashval ^= (hashval >> 6);
1636 
1637 			hashval += (val >> 16) & 0xffff;
1638 			hashval += (hashval << 10);
1639 			hashval ^= (hashval >> 6);
1640 
1641 			hashval += val & 0xffff;
1642 			hashval += (hashval << 10);
1643 			hashval ^= (hashval >> 6);
1644 		} else {
1645 			/*
1646 			 * This is incredibly painful, but it beats the hell
1647 			 * out of the alternative.
1648 			 */
1649 			uint64_t j, size = key[i].dttk_size;
1650 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1651 
1652 			if (!dtrace_canload(base, size, mstate, vstate))
1653 				break;
1654 
1655 			for (j = 0; j < size; j++) {
1656 				hashval += dtrace_load8(base + j);
1657 				hashval += (hashval << 10);
1658 				hashval ^= (hashval >> 6);
1659 			}
1660 		}
1661 	}
1662 
1663 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1664 		return (NULL);
1665 
1666 	hashval += (hashval << 3);
1667 	hashval ^= (hashval >> 11);
1668 	hashval += (hashval << 15);
1669 
1670 	/*
1671 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1672 	 * comes out to be one of our two sentinel hash values.  If this
1673 	 * actually happens, we set the hashval to be a value known to be a
1674 	 * non-sentinel value.
1675 	 */
1676 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1677 		hashval = DTRACE_DYNHASH_VALID;
1678 
1679 	/*
1680 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1681 	 * important here, tricks can be pulled to reduce it.  (However, it's
1682 	 * critical that hash collisions be kept to an absolute minimum;
1683 	 * they're much more painful than a divide.)  It's better to have a
1684 	 * solution that generates few collisions and still keeps things
1685 	 * relatively simple.
1686 	 */
1687 	bucket = hashval % dstate->dtds_hashsize;
1688 
1689 	if (op == DTRACE_DYNVAR_DEALLOC) {
1690 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1691 
1692 		for (;;) {
1693 			while ((lock = *lockp) & 1)
1694 				continue;
1695 
1696 			if (dtrace_casptr((void *)lockp,
1697 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1698 				break;
1699 		}
1700 
1701 		dtrace_membar_producer();
1702 	}
1703 
1704 top:
1705 	prev = NULL;
1706 	lock = hash[bucket].dtdh_lock;
1707 
1708 	dtrace_membar_consumer();
1709 
1710 	start = hash[bucket].dtdh_chain;
1711 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1712 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1713 	    op != DTRACE_DYNVAR_DEALLOC));
1714 
1715 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1716 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1717 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1718 
1719 		if (dvar->dtdv_hashval != hashval) {
1720 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1721 				/*
1722 				 * We've reached the sink, and therefore the
1723 				 * end of the hash chain; we can kick out of
1724 				 * the loop knowing that we have seen a valid
1725 				 * snapshot of state.
1726 				 */
1727 				ASSERT(dvar->dtdv_next == NULL);
1728 				ASSERT(dvar == &dtrace_dynhash_sink);
1729 				break;
1730 			}
1731 
1732 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1733 				/*
1734 				 * We've gone off the rails:  somewhere along
1735 				 * the line, one of the members of this hash
1736 				 * chain was deleted.  Note that we could also
1737 				 * detect this by simply letting this loop run
1738 				 * to completion, as we would eventually hit
1739 				 * the end of the dirty list.  However, we
1740 				 * want to avoid running the length of the
1741 				 * dirty list unnecessarily (it might be quite
1742 				 * long), so we catch this as early as
1743 				 * possible by detecting the hash marker.  In
1744 				 * this case, we simply set dvar to NULL and
1745 				 * break; the conditional after the loop will
1746 				 * send us back to top.
1747 				 */
1748 				dvar = NULL;
1749 				break;
1750 			}
1751 
1752 			goto next;
1753 		}
1754 
1755 		if (dtuple->dtt_nkeys != nkeys)
1756 			goto next;
1757 
1758 		for (i = 0; i < nkeys; i++, dkey++) {
1759 			if (dkey->dttk_size != key[i].dttk_size)
1760 				goto next; /* size or type mismatch */
1761 
1762 			if (dkey->dttk_size != 0) {
1763 				if (dtrace_bcmp(
1764 				    (void *)(uintptr_t)key[i].dttk_value,
1765 				    (void *)(uintptr_t)dkey->dttk_value,
1766 				    dkey->dttk_size))
1767 					goto next;
1768 			} else {
1769 				if (dkey->dttk_value != key[i].dttk_value)
1770 					goto next;
1771 			}
1772 		}
1773 
1774 		if (op != DTRACE_DYNVAR_DEALLOC)
1775 			return (dvar);
1776 
1777 		ASSERT(dvar->dtdv_next == NULL ||
1778 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1779 
1780 		if (prev != NULL) {
1781 			ASSERT(hash[bucket].dtdh_chain != dvar);
1782 			ASSERT(start != dvar);
1783 			ASSERT(prev->dtdv_next == dvar);
1784 			prev->dtdv_next = dvar->dtdv_next;
1785 		} else {
1786 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1787 			    start, dvar->dtdv_next) != start) {
1788 				/*
1789 				 * We have failed to atomically swing the
1790 				 * hash table head pointer, presumably because
1791 				 * of a conflicting allocation on another CPU.
1792 				 * We need to reread the hash chain and try
1793 				 * again.
1794 				 */
1795 				goto top;
1796 			}
1797 		}
1798 
1799 		dtrace_membar_producer();
1800 
1801 		/*
1802 		 * Now set the hash value to indicate that it's free.
1803 		 */
1804 		ASSERT(hash[bucket].dtdh_chain != dvar);
1805 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1806 
1807 		dtrace_membar_producer();
1808 
1809 		/*
1810 		 * Set the next pointer to point at the dirty list, and
1811 		 * atomically swing the dirty pointer to the newly freed dvar.
1812 		 */
1813 		do {
1814 			next = dcpu->dtdsc_dirty;
1815 			dvar->dtdv_next = next;
1816 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1817 
1818 		/*
1819 		 * Finally, unlock this hash bucket.
1820 		 */
1821 		ASSERT(hash[bucket].dtdh_lock == lock);
1822 		ASSERT(lock & 1);
1823 		hash[bucket].dtdh_lock++;
1824 
1825 		return (NULL);
1826 next:
1827 		prev = dvar;
1828 		continue;
1829 	}
1830 
1831 	if (dvar == NULL) {
1832 		/*
1833 		 * If dvar is NULL, it is because we went off the rails:
1834 		 * one of the elements that we traversed in the hash chain
1835 		 * was deleted while we were traversing it.  In this case,
1836 		 * we assert that we aren't doing a dealloc (deallocs lock
1837 		 * the hash bucket to prevent themselves from racing with
1838 		 * one another), and retry the hash chain traversal.
1839 		 */
1840 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1841 		goto top;
1842 	}
1843 
1844 	if (op != DTRACE_DYNVAR_ALLOC) {
1845 		/*
1846 		 * If we are not to allocate a new variable, we want to
1847 		 * return NULL now.  Before we return, check that the value
1848 		 * of the lock word hasn't changed.  If it has, we may have
1849 		 * seen an inconsistent snapshot.
1850 		 */
1851 		if (op == DTRACE_DYNVAR_NOALLOC) {
1852 			if (hash[bucket].dtdh_lock != lock)
1853 				goto top;
1854 		} else {
1855 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1856 			ASSERT(hash[bucket].dtdh_lock == lock);
1857 			ASSERT(lock & 1);
1858 			hash[bucket].dtdh_lock++;
1859 		}
1860 
1861 		return (NULL);
1862 	}
1863 
1864 	/*
1865 	 * We need to allocate a new dynamic variable.  The size we need is the
1866 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1867 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1868 	 * the size of any referred-to data (dsize).  We then round the final
1869 	 * size up to the chunksize for allocation.
1870 	 */
1871 	for (ksize = 0, i = 0; i < nkeys; i++)
1872 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1873 
1874 	/*
1875 	 * This should be pretty much impossible, but could happen if, say,
1876 	 * strange DIF specified the tuple.  Ideally, this should be an
1877 	 * assertion and not an error condition -- but that requires that the
1878 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1879 	 * bullet-proof.  (That is, it must not be able to be fooled by
1880 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1881 	 * solving this would presumably not amount to solving the Halting
1882 	 * Problem -- but it still seems awfully hard.
1883 	 */
1884 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1885 	    ksize + dsize > chunksize) {
1886 		dcpu->dtdsc_drops++;
1887 		return (NULL);
1888 	}
1889 
1890 	nstate = DTRACE_DSTATE_EMPTY;
1891 
1892 	do {
1893 retry:
1894 		free = dcpu->dtdsc_free;
1895 
1896 		if (free == NULL) {
1897 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1898 			void *rval;
1899 
1900 			if (clean == NULL) {
1901 				/*
1902 				 * We're out of dynamic variable space on
1903 				 * this CPU.  Unless we have tried all CPUs,
1904 				 * we'll try to allocate from a different
1905 				 * CPU.
1906 				 */
1907 				switch (dstate->dtds_state) {
1908 				case DTRACE_DSTATE_CLEAN: {
1909 					void *sp = &dstate->dtds_state;
1910 
1911 					if (++cpu >= NCPU)
1912 						cpu = 0;
1913 
1914 					if (dcpu->dtdsc_dirty != NULL &&
1915 					    nstate == DTRACE_DSTATE_EMPTY)
1916 						nstate = DTRACE_DSTATE_DIRTY;
1917 
1918 					if (dcpu->dtdsc_rinsing != NULL)
1919 						nstate = DTRACE_DSTATE_RINSING;
1920 
1921 					dcpu = &dstate->dtds_percpu[cpu];
1922 
1923 					if (cpu != me)
1924 						goto retry;
1925 
1926 					(void) dtrace_cas32(sp,
1927 					    DTRACE_DSTATE_CLEAN, nstate);
1928 
1929 					/*
1930 					 * To increment the correct bean
1931 					 * counter, take another lap.
1932 					 */
1933 					goto retry;
1934 				}
1935 
1936 				case DTRACE_DSTATE_DIRTY:
1937 					dcpu->dtdsc_dirty_drops++;
1938 					break;
1939 
1940 				case DTRACE_DSTATE_RINSING:
1941 					dcpu->dtdsc_rinsing_drops++;
1942 					break;
1943 
1944 				case DTRACE_DSTATE_EMPTY:
1945 					dcpu->dtdsc_drops++;
1946 					break;
1947 				}
1948 
1949 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1950 				return (NULL);
1951 			}
1952 
1953 			/*
1954 			 * The clean list appears to be non-empty.  We want to
1955 			 * move the clean list to the free list; we start by
1956 			 * moving the clean pointer aside.
1957 			 */
1958 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1959 			    clean, NULL) != clean) {
1960 				/*
1961 				 * We are in one of two situations:
1962 				 *
1963 				 *  (a)	The clean list was switched to the
1964 				 *	free list by another CPU.
1965 				 *
1966 				 *  (b)	The clean list was added to by the
1967 				 *	cleansing cyclic.
1968 				 *
1969 				 * In either of these situations, we can
1970 				 * just reattempt the free list allocation.
1971 				 */
1972 				goto retry;
1973 			}
1974 
1975 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1976 
1977 			/*
1978 			 * Now we'll move the clean list to our free list.
1979 			 * It's impossible for this to fail:  the only way
1980 			 * the free list can be updated is through this
1981 			 * code path, and only one CPU can own the clean list.
1982 			 * Thus, it would only be possible for this to fail if
1983 			 * this code were racing with dtrace_dynvar_clean().
1984 			 * (That is, if dtrace_dynvar_clean() updated the clean
1985 			 * list, and we ended up racing to update the free
1986 			 * list.)  This race is prevented by the dtrace_sync()
1987 			 * in dtrace_dynvar_clean() -- which flushes the
1988 			 * owners of the clean lists out before resetting
1989 			 * the clean lists.
1990 			 */
1991 			dcpu = &dstate->dtds_percpu[me];
1992 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1993 			ASSERT(rval == NULL);
1994 			goto retry;
1995 		}
1996 
1997 		dvar = free;
1998 		new_free = dvar->dtdv_next;
1999 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2000 
2001 	/*
2002 	 * We have now allocated a new chunk.  We copy the tuple keys into the
2003 	 * tuple array and copy any referenced key data into the data space
2004 	 * following the tuple array.  As we do this, we relocate dttk_value
2005 	 * in the final tuple to point to the key data address in the chunk.
2006 	 */
2007 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2008 	dvar->dtdv_data = (void *)(kdata + ksize);
2009 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2010 
2011 	for (i = 0; i < nkeys; i++) {
2012 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2013 		size_t kesize = key[i].dttk_size;
2014 
2015 		if (kesize != 0) {
2016 			dtrace_bcopy(
2017 			    (const void *)(uintptr_t)key[i].dttk_value,
2018 			    (void *)kdata, kesize);
2019 			dkey->dttk_value = kdata;
2020 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2021 		} else {
2022 			dkey->dttk_value = key[i].dttk_value;
2023 		}
2024 
2025 		dkey->dttk_size = kesize;
2026 	}
2027 
2028 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2029 	dvar->dtdv_hashval = hashval;
2030 	dvar->dtdv_next = start;
2031 
2032 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2033 		return (dvar);
2034 
2035 	/*
2036 	 * The cas has failed.  Either another CPU is adding an element to
2037 	 * this hash chain, or another CPU is deleting an element from this
2038 	 * hash chain.  The simplest way to deal with both of these cases
2039 	 * (though not necessarily the most efficient) is to free our
2040 	 * allocated block and tail-call ourselves.  Note that the free is
2041 	 * to the dirty list and _not_ to the free list.  This is to prevent
2042 	 * races with allocators, above.
2043 	 */
2044 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2045 
2046 	dtrace_membar_producer();
2047 
2048 	do {
2049 		free = dcpu->dtdsc_dirty;
2050 		dvar->dtdv_next = free;
2051 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2052 
2053 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
2054 }
2055 
2056 /*ARGSUSED*/
2057 static void
2058 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2059 {
2060 	if ((int64_t)nval < (int64_t)*oval)
2061 		*oval = nval;
2062 }
2063 
2064 /*ARGSUSED*/
2065 static void
2066 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2067 {
2068 	if ((int64_t)nval > (int64_t)*oval)
2069 		*oval = nval;
2070 }
2071 
2072 static void
2073 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2074 {
2075 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2076 	int64_t val = (int64_t)nval;
2077 
2078 	if (val < 0) {
2079 		for (i = 0; i < zero; i++) {
2080 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2081 				quanta[i] += incr;
2082 				return;
2083 			}
2084 		}
2085 	} else {
2086 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2087 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2088 				quanta[i - 1] += incr;
2089 				return;
2090 			}
2091 		}
2092 
2093 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2094 		return;
2095 	}
2096 
2097 	ASSERT(0);
2098 }
2099 
2100 static void
2101 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2102 {
2103 	uint64_t arg = *lquanta++;
2104 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2105 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2106 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2107 	int32_t val = (int32_t)nval, level;
2108 
2109 	ASSERT(step != 0);
2110 	ASSERT(levels != 0);
2111 
2112 	if (val < base) {
2113 		/*
2114 		 * This is an underflow.
2115 		 */
2116 		lquanta[0] += incr;
2117 		return;
2118 	}
2119 
2120 	level = (val - base) / step;
2121 
2122 	if (level < levels) {
2123 		lquanta[level + 1] += incr;
2124 		return;
2125 	}
2126 
2127 	/*
2128 	 * This is an overflow.
2129 	 */
2130 	lquanta[levels + 1] += incr;
2131 }
2132 
2133 static int
2134 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2135     uint16_t high, uint16_t nsteps, int64_t value)
2136 {
2137 	int64_t this = 1, last, next;
2138 	int base = 1, order;
2139 
2140 	ASSERT(factor <= nsteps);
2141 	ASSERT(nsteps % factor == 0);
2142 
2143 	for (order = 0; order < low; order++)
2144 		this *= factor;
2145 
2146 	/*
2147 	 * If our value is less than our factor taken to the power of the
2148 	 * low order of magnitude, it goes into the zeroth bucket.
2149 	 */
2150 	if (value < (last = this))
2151 		return (0);
2152 
2153 	for (this *= factor; order <= high; order++) {
2154 		int nbuckets = this > nsteps ? nsteps : this;
2155 
2156 		if ((next = this * factor) < this) {
2157 			/*
2158 			 * We should not generally get log/linear quantizations
2159 			 * with a high magnitude that allows 64-bits to
2160 			 * overflow, but we nonetheless protect against this
2161 			 * by explicitly checking for overflow, and clamping
2162 			 * our value accordingly.
2163 			 */
2164 			value = this - 1;
2165 		}
2166 
2167 		if (value < this) {
2168 			/*
2169 			 * If our value lies within this order of magnitude,
2170 			 * determine its position by taking the offset within
2171 			 * the order of magnitude, dividing by the bucket
2172 			 * width, and adding to our (accumulated) base.
2173 			 */
2174 			return (base + (value - last) / (this / nbuckets));
2175 		}
2176 
2177 		base += nbuckets - (nbuckets / factor);
2178 		last = this;
2179 		this = next;
2180 	}
2181 
2182 	/*
2183 	 * Our value is greater than or equal to our factor taken to the
2184 	 * power of one plus the high magnitude -- return the top bucket.
2185 	 */
2186 	return (base);
2187 }
2188 
2189 static void
2190 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2191 {
2192 	uint64_t arg = *llquanta++;
2193 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2194 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2195 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2196 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2197 
2198 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2199 	    low, high, nsteps, nval)] += incr;
2200 }
2201 
2202 /*ARGSUSED*/
2203 static void
2204 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2205 {
2206 	data[0]++;
2207 	data[1] += nval;
2208 }
2209 
2210 /*ARGSUSED*/
2211 static void
2212 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2213 {
2214 	int64_t snval = (int64_t)nval;
2215 	uint64_t tmp[2];
2216 
2217 	data[0]++;
2218 	data[1] += nval;
2219 
2220 	/*
2221 	 * What we want to say here is:
2222 	 *
2223 	 * data[2] += nval * nval;
2224 	 *
2225 	 * But given that nval is 64-bit, we could easily overflow, so
2226 	 * we do this as 128-bit arithmetic.
2227 	 */
2228 	if (snval < 0)
2229 		snval = -snval;
2230 
2231 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2232 	dtrace_add_128(data + 2, tmp, data + 2);
2233 }
2234 
2235 /*ARGSUSED*/
2236 static void
2237 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2238 {
2239 	*oval = *oval + 1;
2240 }
2241 
2242 /*ARGSUSED*/
2243 static void
2244 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2245 {
2246 	*oval += nval;
2247 }
2248 
2249 /*
2250  * Aggregate given the tuple in the principal data buffer, and the aggregating
2251  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2252  * buffer is specified as the buf parameter.  This routine does not return
2253  * failure; if there is no space in the aggregation buffer, the data will be
2254  * dropped, and a corresponding counter incremented.
2255  */
2256 static void
2257 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2258     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2259 {
2260 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2261 	uint32_t i, ndx, size, fsize;
2262 	uint32_t align = sizeof (uint64_t) - 1;
2263 	dtrace_aggbuffer_t *agb;
2264 	dtrace_aggkey_t *key;
2265 	uint32_t hashval = 0, limit, isstr;
2266 	caddr_t tomax, data, kdata;
2267 	dtrace_actkind_t action;
2268 	dtrace_action_t *act;
2269 	uintptr_t offs;
2270 
2271 	if (buf == NULL)
2272 		return;
2273 
2274 	if (!agg->dtag_hasarg) {
2275 		/*
2276 		 * Currently, only quantize() and lquantize() take additional
2277 		 * arguments, and they have the same semantics:  an increment
2278 		 * value that defaults to 1 when not present.  If additional
2279 		 * aggregating actions take arguments, the setting of the
2280 		 * default argument value will presumably have to become more
2281 		 * sophisticated...
2282 		 */
2283 		arg = 1;
2284 	}
2285 
2286 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2287 	size = rec->dtrd_offset - agg->dtag_base;
2288 	fsize = size + rec->dtrd_size;
2289 
2290 	ASSERT(dbuf->dtb_tomax != NULL);
2291 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2292 
2293 	if ((tomax = buf->dtb_tomax) == NULL) {
2294 		dtrace_buffer_drop(buf);
2295 		return;
2296 	}
2297 
2298 	/*
2299 	 * The metastructure is always at the bottom of the buffer.
2300 	 */
2301 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2302 	    sizeof (dtrace_aggbuffer_t));
2303 
2304 	if (buf->dtb_offset == 0) {
2305 		/*
2306 		 * We just kludge up approximately 1/8th of the size to be
2307 		 * buckets.  If this guess ends up being routinely
2308 		 * off-the-mark, we may need to dynamically readjust this
2309 		 * based on past performance.
2310 		 */
2311 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2312 
2313 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2314 		    (uintptr_t)tomax || hashsize == 0) {
2315 			/*
2316 			 * We've been given a ludicrously small buffer;
2317 			 * increment our drop count and leave.
2318 			 */
2319 			dtrace_buffer_drop(buf);
2320 			return;
2321 		}
2322 
2323 		/*
2324 		 * And now, a pathetic attempt to try to get a an odd (or
2325 		 * perchance, a prime) hash size for better hash distribution.
2326 		 */
2327 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2328 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2329 
2330 		agb->dtagb_hashsize = hashsize;
2331 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2332 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2333 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2334 
2335 		for (i = 0; i < agb->dtagb_hashsize; i++)
2336 			agb->dtagb_hash[i] = NULL;
2337 	}
2338 
2339 	ASSERT(agg->dtag_first != NULL);
2340 	ASSERT(agg->dtag_first->dta_intuple);
2341 
2342 	/*
2343 	 * Calculate the hash value based on the key.  Note that we _don't_
2344 	 * include the aggid in the hashing (but we will store it as part of
2345 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2346 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2347 	 * gets good distribution in practice.  The efficacy of the hashing
2348 	 * algorithm (and a comparison with other algorithms) may be found by
2349 	 * running the ::dtrace_aggstat MDB dcmd.
2350 	 */
2351 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2352 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2353 		limit = i + act->dta_rec.dtrd_size;
2354 		ASSERT(limit <= size);
2355 		isstr = DTRACEACT_ISSTRING(act);
2356 
2357 		for (; i < limit; i++) {
2358 			hashval += data[i];
2359 			hashval += (hashval << 10);
2360 			hashval ^= (hashval >> 6);
2361 
2362 			if (isstr && data[i] == '\0')
2363 				break;
2364 		}
2365 	}
2366 
2367 	hashval += (hashval << 3);
2368 	hashval ^= (hashval >> 11);
2369 	hashval += (hashval << 15);
2370 
2371 	/*
2372 	 * Yes, the divide here is expensive -- but it's generally the least
2373 	 * of the performance issues given the amount of data that we iterate
2374 	 * over to compute hash values, compare data, etc.
2375 	 */
2376 	ndx = hashval % agb->dtagb_hashsize;
2377 
2378 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2379 		ASSERT((caddr_t)key >= tomax);
2380 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2381 
2382 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2383 			continue;
2384 
2385 		kdata = key->dtak_data;
2386 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2387 
2388 		for (act = agg->dtag_first; act->dta_intuple;
2389 		    act = act->dta_next) {
2390 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2391 			limit = i + act->dta_rec.dtrd_size;
2392 			ASSERT(limit <= size);
2393 			isstr = DTRACEACT_ISSTRING(act);
2394 
2395 			for (; i < limit; i++) {
2396 				if (kdata[i] != data[i])
2397 					goto next;
2398 
2399 				if (isstr && data[i] == '\0')
2400 					break;
2401 			}
2402 		}
2403 
2404 		if (action != key->dtak_action) {
2405 			/*
2406 			 * We are aggregating on the same value in the same
2407 			 * aggregation with two different aggregating actions.
2408 			 * (This should have been picked up in the compiler,
2409 			 * so we may be dealing with errant or devious DIF.)
2410 			 * This is an error condition; we indicate as much,
2411 			 * and return.
2412 			 */
2413 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2414 			return;
2415 		}
2416 
2417 		/*
2418 		 * This is a hit:  we need to apply the aggregator to
2419 		 * the value at this key.
2420 		 */
2421 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2422 		return;
2423 next:
2424 		continue;
2425 	}
2426 
2427 	/*
2428 	 * We didn't find it.  We need to allocate some zero-filled space,
2429 	 * link it into the hash table appropriately, and apply the aggregator
2430 	 * to the (zero-filled) value.
2431 	 */
2432 	offs = buf->dtb_offset;
2433 	while (offs & (align - 1))
2434 		offs += sizeof (uint32_t);
2435 
2436 	/*
2437 	 * If we don't have enough room to both allocate a new key _and_
2438 	 * its associated data, increment the drop count and return.
2439 	 */
2440 	if ((uintptr_t)tomax + offs + fsize >
2441 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2442 		dtrace_buffer_drop(buf);
2443 		return;
2444 	}
2445 
2446 	/*CONSTCOND*/
2447 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2448 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2449 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2450 
2451 	key->dtak_data = kdata = tomax + offs;
2452 	buf->dtb_offset = offs + fsize;
2453 
2454 	/*
2455 	 * Now copy the data across.
2456 	 */
2457 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2458 
2459 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2460 		kdata[i] = data[i];
2461 
2462 	/*
2463 	 * Because strings are not zeroed out by default, we need to iterate
2464 	 * looking for actions that store strings, and we need to explicitly
2465 	 * pad these strings out with zeroes.
2466 	 */
2467 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2468 		int nul;
2469 
2470 		if (!DTRACEACT_ISSTRING(act))
2471 			continue;
2472 
2473 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2474 		limit = i + act->dta_rec.dtrd_size;
2475 		ASSERT(limit <= size);
2476 
2477 		for (nul = 0; i < limit; i++) {
2478 			if (nul) {
2479 				kdata[i] = '\0';
2480 				continue;
2481 			}
2482 
2483 			if (data[i] != '\0')
2484 				continue;
2485 
2486 			nul = 1;
2487 		}
2488 	}
2489 
2490 	for (i = size; i < fsize; i++)
2491 		kdata[i] = 0;
2492 
2493 	key->dtak_hashval = hashval;
2494 	key->dtak_size = size;
2495 	key->dtak_action = action;
2496 	key->dtak_next = agb->dtagb_hash[ndx];
2497 	agb->dtagb_hash[ndx] = key;
2498 
2499 	/*
2500 	 * Finally, apply the aggregator.
2501 	 */
2502 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2503 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2504 }
2505 
2506 /*
2507  * Given consumer state, this routine finds a speculation in the INACTIVE
2508  * state and transitions it into the ACTIVE state.  If there is no speculation
2509  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2510  * incremented -- it is up to the caller to take appropriate action.
2511  */
2512 static int
2513 dtrace_speculation(dtrace_state_t *state)
2514 {
2515 	int i = 0;
2516 	dtrace_speculation_state_t current;
2517 	uint32_t *stat = &state->dts_speculations_unavail, count;
2518 
2519 	while (i < state->dts_nspeculations) {
2520 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2521 
2522 		current = spec->dtsp_state;
2523 
2524 		if (current != DTRACESPEC_INACTIVE) {
2525 			if (current == DTRACESPEC_COMMITTINGMANY ||
2526 			    current == DTRACESPEC_COMMITTING ||
2527 			    current == DTRACESPEC_DISCARDING)
2528 				stat = &state->dts_speculations_busy;
2529 			i++;
2530 			continue;
2531 		}
2532 
2533 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2534 		    current, DTRACESPEC_ACTIVE) == current)
2535 			return (i + 1);
2536 	}
2537 
2538 	/*
2539 	 * We couldn't find a speculation.  If we found as much as a single
2540 	 * busy speculation buffer, we'll attribute this failure as "busy"
2541 	 * instead of "unavail".
2542 	 */
2543 	do {
2544 		count = *stat;
2545 	} while (dtrace_cas32(stat, count, count + 1) != count);
2546 
2547 	return (0);
2548 }
2549 
2550 /*
2551  * This routine commits an active speculation.  If the specified speculation
2552  * is not in a valid state to perform a commit(), this routine will silently do
2553  * nothing.  The state of the specified speculation is transitioned according
2554  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2555  */
2556 static void
2557 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2558     dtrace_specid_t which)
2559 {
2560 	dtrace_speculation_t *spec;
2561 	dtrace_buffer_t *src, *dest;
2562 	uintptr_t daddr, saddr, dlimit, slimit;
2563 	dtrace_speculation_state_t current, new;
2564 	intptr_t offs;
2565 	uint64_t timestamp;
2566 
2567 	if (which == 0)
2568 		return;
2569 
2570 	if (which > state->dts_nspeculations) {
2571 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2572 		return;
2573 	}
2574 
2575 	spec = &state->dts_speculations[which - 1];
2576 	src = &spec->dtsp_buffer[cpu];
2577 	dest = &state->dts_buffer[cpu];
2578 
2579 	do {
2580 		current = spec->dtsp_state;
2581 
2582 		if (current == DTRACESPEC_COMMITTINGMANY)
2583 			break;
2584 
2585 		switch (current) {
2586 		case DTRACESPEC_INACTIVE:
2587 		case DTRACESPEC_DISCARDING:
2588 			return;
2589 
2590 		case DTRACESPEC_COMMITTING:
2591 			/*
2592 			 * This is only possible if we are (a) commit()'ing
2593 			 * without having done a prior speculate() on this CPU
2594 			 * and (b) racing with another commit() on a different
2595 			 * CPU.  There's nothing to do -- we just assert that
2596 			 * our offset is 0.
2597 			 */
2598 			ASSERT(src->dtb_offset == 0);
2599 			return;
2600 
2601 		case DTRACESPEC_ACTIVE:
2602 			new = DTRACESPEC_COMMITTING;
2603 			break;
2604 
2605 		case DTRACESPEC_ACTIVEONE:
2606 			/*
2607 			 * This speculation is active on one CPU.  If our
2608 			 * buffer offset is non-zero, we know that the one CPU
2609 			 * must be us.  Otherwise, we are committing on a
2610 			 * different CPU from the speculate(), and we must
2611 			 * rely on being asynchronously cleaned.
2612 			 */
2613 			if (src->dtb_offset != 0) {
2614 				new = DTRACESPEC_COMMITTING;
2615 				break;
2616 			}
2617 			/*FALLTHROUGH*/
2618 
2619 		case DTRACESPEC_ACTIVEMANY:
2620 			new = DTRACESPEC_COMMITTINGMANY;
2621 			break;
2622 
2623 		default:
2624 			ASSERT(0);
2625 		}
2626 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2627 	    current, new) != current);
2628 
2629 	/*
2630 	 * We have set the state to indicate that we are committing this
2631 	 * speculation.  Now reserve the necessary space in the destination
2632 	 * buffer.
2633 	 */
2634 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2635 	    sizeof (uint64_t), state, NULL)) < 0) {
2636 		dtrace_buffer_drop(dest);
2637 		goto out;
2638 	}
2639 
2640 	/*
2641 	 * We have sufficient space to copy the speculative buffer into the
2642 	 * primary buffer.  First, modify the speculative buffer, filling
2643 	 * in the timestamp of all entries with the current time.  The data
2644 	 * must have the commit() time rather than the time it was traced,
2645 	 * so that all entries in the primary buffer are in timestamp order.
2646 	 */
2647 	timestamp = dtrace_gethrtime();
2648 	saddr = (uintptr_t)src->dtb_tomax;
2649 	slimit = saddr + src->dtb_offset;
2650 	while (saddr < slimit) {
2651 		size_t size;
2652 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2653 
2654 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2655 			saddr += sizeof (dtrace_epid_t);
2656 			continue;
2657 		}
2658 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2659 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2660 
2661 		ASSERT3U(saddr + size, <=, slimit);
2662 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2663 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2664 
2665 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2666 
2667 		saddr += size;
2668 	}
2669 
2670 	/*
2671 	 * Copy the buffer across.  (Note that this is a
2672 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2673 	 * a serious performance issue, a high-performance DTrace-specific
2674 	 * bcopy() should obviously be invented.)
2675 	 */
2676 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2677 	dlimit = daddr + src->dtb_offset;
2678 	saddr = (uintptr_t)src->dtb_tomax;
2679 
2680 	/*
2681 	 * First, the aligned portion.
2682 	 */
2683 	while (dlimit - daddr >= sizeof (uint64_t)) {
2684 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2685 
2686 		daddr += sizeof (uint64_t);
2687 		saddr += sizeof (uint64_t);
2688 	}
2689 
2690 	/*
2691 	 * Now any left-over bit...
2692 	 */
2693 	while (dlimit - daddr)
2694 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2695 
2696 	/*
2697 	 * Finally, commit the reserved space in the destination buffer.
2698 	 */
2699 	dest->dtb_offset = offs + src->dtb_offset;
2700 
2701 out:
2702 	/*
2703 	 * If we're lucky enough to be the only active CPU on this speculation
2704 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2705 	 */
2706 	if (current == DTRACESPEC_ACTIVE ||
2707 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2708 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2709 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2710 
2711 		ASSERT(rval == DTRACESPEC_COMMITTING);
2712 	}
2713 
2714 	src->dtb_offset = 0;
2715 	src->dtb_xamot_drops += src->dtb_drops;
2716 	src->dtb_drops = 0;
2717 }
2718 
2719 /*
2720  * This routine discards an active speculation.  If the specified speculation
2721  * is not in a valid state to perform a discard(), this routine will silently
2722  * do nothing.  The state of the specified speculation is transitioned
2723  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2724  */
2725 static void
2726 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2727     dtrace_specid_t which)
2728 {
2729 	dtrace_speculation_t *spec;
2730 	dtrace_speculation_state_t current, new;
2731 	dtrace_buffer_t *buf;
2732 
2733 	if (which == 0)
2734 		return;
2735 
2736 	if (which > state->dts_nspeculations) {
2737 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2738 		return;
2739 	}
2740 
2741 	spec = &state->dts_speculations[which - 1];
2742 	buf = &spec->dtsp_buffer[cpu];
2743 
2744 	do {
2745 		current = spec->dtsp_state;
2746 
2747 		switch (current) {
2748 		case DTRACESPEC_INACTIVE:
2749 		case DTRACESPEC_COMMITTINGMANY:
2750 		case DTRACESPEC_COMMITTING:
2751 		case DTRACESPEC_DISCARDING:
2752 			return;
2753 
2754 		case DTRACESPEC_ACTIVE:
2755 		case DTRACESPEC_ACTIVEMANY:
2756 			new = DTRACESPEC_DISCARDING;
2757 			break;
2758 
2759 		case DTRACESPEC_ACTIVEONE:
2760 			if (buf->dtb_offset != 0) {
2761 				new = DTRACESPEC_INACTIVE;
2762 			} else {
2763 				new = DTRACESPEC_DISCARDING;
2764 			}
2765 			break;
2766 
2767 		default:
2768 			ASSERT(0);
2769 		}
2770 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2771 	    current, new) != current);
2772 
2773 	buf->dtb_offset = 0;
2774 	buf->dtb_drops = 0;
2775 }
2776 
2777 /*
2778  * Note:  not called from probe context.  This function is called
2779  * asynchronously from cross call context to clean any speculations that are
2780  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2781  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2782  * speculation.
2783  */
2784 static void
2785 dtrace_speculation_clean_here(dtrace_state_t *state)
2786 {
2787 	dtrace_icookie_t cookie;
2788 	processorid_t cpu = CPU->cpu_id;
2789 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2790 	dtrace_specid_t i;
2791 
2792 	cookie = dtrace_interrupt_disable();
2793 
2794 	if (dest->dtb_tomax == NULL) {
2795 		dtrace_interrupt_enable(cookie);
2796 		return;
2797 	}
2798 
2799 	for (i = 0; i < state->dts_nspeculations; i++) {
2800 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2801 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2802 
2803 		if (src->dtb_tomax == NULL)
2804 			continue;
2805 
2806 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2807 			src->dtb_offset = 0;
2808 			continue;
2809 		}
2810 
2811 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2812 			continue;
2813 
2814 		if (src->dtb_offset == 0)
2815 			continue;
2816 
2817 		dtrace_speculation_commit(state, cpu, i + 1);
2818 	}
2819 
2820 	dtrace_interrupt_enable(cookie);
2821 }
2822 
2823 /*
2824  * Note:  not called from probe context.  This function is called
2825  * asynchronously (and at a regular interval) to clean any speculations that
2826  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2827  * is work to be done, it cross calls all CPUs to perform that work;
2828  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2829  * INACTIVE state until they have been cleaned by all CPUs.
2830  */
2831 static void
2832 dtrace_speculation_clean(dtrace_state_t *state)
2833 {
2834 	int work = 0, rv;
2835 	dtrace_specid_t i;
2836 
2837 	for (i = 0; i < state->dts_nspeculations; i++) {
2838 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2839 
2840 		ASSERT(!spec->dtsp_cleaning);
2841 
2842 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2843 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2844 			continue;
2845 
2846 		work++;
2847 		spec->dtsp_cleaning = 1;
2848 	}
2849 
2850 	if (!work)
2851 		return;
2852 
2853 	dtrace_xcall(DTRACE_CPUALL,
2854 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2855 
2856 	/*
2857 	 * We now know that all CPUs have committed or discarded their
2858 	 * speculation buffers, as appropriate.  We can now set the state
2859 	 * to inactive.
2860 	 */
2861 	for (i = 0; i < state->dts_nspeculations; i++) {
2862 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2863 		dtrace_speculation_state_t current, new;
2864 
2865 		if (!spec->dtsp_cleaning)
2866 			continue;
2867 
2868 		current = spec->dtsp_state;
2869 		ASSERT(current == DTRACESPEC_DISCARDING ||
2870 		    current == DTRACESPEC_COMMITTINGMANY);
2871 
2872 		new = DTRACESPEC_INACTIVE;
2873 
2874 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2875 		ASSERT(rv == current);
2876 		spec->dtsp_cleaning = 0;
2877 	}
2878 }
2879 
2880 /*
2881  * Called as part of a speculate() to get the speculative buffer associated
2882  * with a given speculation.  Returns NULL if the specified speculation is not
2883  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2884  * the active CPU is not the specified CPU -- the speculation will be
2885  * atomically transitioned into the ACTIVEMANY state.
2886  */
2887 static dtrace_buffer_t *
2888 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2889     dtrace_specid_t which)
2890 {
2891 	dtrace_speculation_t *spec;
2892 	dtrace_speculation_state_t current, new;
2893 	dtrace_buffer_t *buf;
2894 
2895 	if (which == 0)
2896 		return (NULL);
2897 
2898 	if (which > state->dts_nspeculations) {
2899 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2900 		return (NULL);
2901 	}
2902 
2903 	spec = &state->dts_speculations[which - 1];
2904 	buf = &spec->dtsp_buffer[cpuid];
2905 
2906 	do {
2907 		current = spec->dtsp_state;
2908 
2909 		switch (current) {
2910 		case DTRACESPEC_INACTIVE:
2911 		case DTRACESPEC_COMMITTINGMANY:
2912 		case DTRACESPEC_DISCARDING:
2913 			return (NULL);
2914 
2915 		case DTRACESPEC_COMMITTING:
2916 			ASSERT(buf->dtb_offset == 0);
2917 			return (NULL);
2918 
2919 		case DTRACESPEC_ACTIVEONE:
2920 			/*
2921 			 * This speculation is currently active on one CPU.
2922 			 * Check the offset in the buffer; if it's non-zero,
2923 			 * that CPU must be us (and we leave the state alone).
2924 			 * If it's zero, assume that we're starting on a new
2925 			 * CPU -- and change the state to indicate that the
2926 			 * speculation is active on more than one CPU.
2927 			 */
2928 			if (buf->dtb_offset != 0)
2929 				return (buf);
2930 
2931 			new = DTRACESPEC_ACTIVEMANY;
2932 			break;
2933 
2934 		case DTRACESPEC_ACTIVEMANY:
2935 			return (buf);
2936 
2937 		case DTRACESPEC_ACTIVE:
2938 			new = DTRACESPEC_ACTIVEONE;
2939 			break;
2940 
2941 		default:
2942 			ASSERT(0);
2943 		}
2944 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2945 	    current, new) != current);
2946 
2947 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2948 	return (buf);
2949 }
2950 
2951 /*
2952  * Return a string.  In the event that the user lacks the privilege to access
2953  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2954  * don't fail access checking.
2955  *
2956  * dtrace_dif_variable() uses this routine as a helper for various
2957  * builtin values such as 'execname' and 'probefunc.'
2958  */
2959 uintptr_t
2960 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2961     dtrace_mstate_t *mstate)
2962 {
2963 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2964 	uintptr_t ret;
2965 	size_t strsz;
2966 
2967 	/*
2968 	 * The easy case: this probe is allowed to read all of memory, so
2969 	 * we can just return this as a vanilla pointer.
2970 	 */
2971 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2972 		return (addr);
2973 
2974 	/*
2975 	 * This is the tougher case: we copy the string in question from
2976 	 * kernel memory into scratch memory and return it that way: this
2977 	 * ensures that we won't trip up when access checking tests the
2978 	 * BYREF return value.
2979 	 */
2980 	strsz = dtrace_strlen((char *)addr, size) + 1;
2981 
2982 	if (mstate->dtms_scratch_ptr + strsz >
2983 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2984 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2985 		return (NULL);
2986 	}
2987 
2988 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2989 	    strsz);
2990 	ret = mstate->dtms_scratch_ptr;
2991 	mstate->dtms_scratch_ptr += strsz;
2992 	return (ret);
2993 }
2994 
2995 /*
2996  * This function implements the DIF emulator's variable lookups.  The emulator
2997  * passes a reserved variable identifier and optional built-in array index.
2998  */
2999 static uint64_t
3000 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3001     uint64_t ndx)
3002 {
3003 	/*
3004 	 * If we're accessing one of the uncached arguments, we'll turn this
3005 	 * into a reference in the args array.
3006 	 */
3007 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3008 		ndx = v - DIF_VAR_ARG0;
3009 		v = DIF_VAR_ARGS;
3010 	}
3011 
3012 	switch (v) {
3013 	case DIF_VAR_ARGS:
3014 		if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
3015 			cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
3016 			    CPU_DTRACE_KPRIV;
3017 			return (0);
3018 		}
3019 
3020 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3021 		if (ndx >= sizeof (mstate->dtms_arg) /
3022 		    sizeof (mstate->dtms_arg[0])) {
3023 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3024 			dtrace_provider_t *pv;
3025 			uint64_t val;
3026 
3027 			pv = mstate->dtms_probe->dtpr_provider;
3028 			if (pv->dtpv_pops.dtps_getargval != NULL)
3029 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3030 				    mstate->dtms_probe->dtpr_id,
3031 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3032 			else
3033 				val = dtrace_getarg(ndx, aframes);
3034 
3035 			/*
3036 			 * This is regrettably required to keep the compiler
3037 			 * from tail-optimizing the call to dtrace_getarg().
3038 			 * The condition always evaluates to true, but the
3039 			 * compiler has no way of figuring that out a priori.
3040 			 * (None of this would be necessary if the compiler
3041 			 * could be relied upon to _always_ tail-optimize
3042 			 * the call to dtrace_getarg() -- but it can't.)
3043 			 */
3044 			if (mstate->dtms_probe != NULL)
3045 				return (val);
3046 
3047 			ASSERT(0);
3048 		}
3049 
3050 		return (mstate->dtms_arg[ndx]);
3051 
3052 	case DIF_VAR_UREGS: {
3053 		klwp_t *lwp;
3054 
3055 		if (!dtrace_priv_proc(state, mstate))
3056 			return (0);
3057 
3058 		if ((lwp = curthread->t_lwp) == NULL) {
3059 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3060 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
3061 			return (0);
3062 		}
3063 
3064 		return (dtrace_getreg(lwp->lwp_regs, ndx));
3065 	}
3066 
3067 	case DIF_VAR_VMREGS: {
3068 		uint64_t rval;
3069 
3070 		if (!dtrace_priv_kernel(state))
3071 			return (0);
3072 
3073 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3074 
3075 		rval = dtrace_getvmreg(ndx,
3076 		    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
3077 
3078 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3079 
3080 		return (rval);
3081 	}
3082 
3083 	case DIF_VAR_CURTHREAD:
3084 		if (!dtrace_priv_proc(state, mstate))
3085 			return (0);
3086 		return ((uint64_t)(uintptr_t)curthread);
3087 
3088 	case DIF_VAR_TIMESTAMP:
3089 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3090 			mstate->dtms_timestamp = dtrace_gethrtime();
3091 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3092 		}
3093 		return (mstate->dtms_timestamp);
3094 
3095 	case DIF_VAR_VTIMESTAMP:
3096 		ASSERT(dtrace_vtime_references != 0);
3097 		return (curthread->t_dtrace_vtime);
3098 
3099 	case DIF_VAR_WALLTIMESTAMP:
3100 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3101 			mstate->dtms_walltimestamp = dtrace_gethrestime();
3102 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3103 		}
3104 		return (mstate->dtms_walltimestamp);
3105 
3106 	case DIF_VAR_IPL:
3107 		if (!dtrace_priv_kernel(state))
3108 			return (0);
3109 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3110 			mstate->dtms_ipl = dtrace_getipl();
3111 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3112 		}
3113 		return (mstate->dtms_ipl);
3114 
3115 	case DIF_VAR_EPID:
3116 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3117 		return (mstate->dtms_epid);
3118 
3119 	case DIF_VAR_ID:
3120 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3121 		return (mstate->dtms_probe->dtpr_id);
3122 
3123 	case DIF_VAR_STACKDEPTH:
3124 		if (!dtrace_priv_kernel(state))
3125 			return (0);
3126 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3127 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3128 
3129 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3130 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3131 		}
3132 		return (mstate->dtms_stackdepth);
3133 
3134 	case DIF_VAR_USTACKDEPTH:
3135 		if (!dtrace_priv_proc(state, mstate))
3136 			return (0);
3137 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3138 			/*
3139 			 * See comment in DIF_VAR_PID.
3140 			 */
3141 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3142 			    CPU_ON_INTR(CPU)) {
3143 				mstate->dtms_ustackdepth = 0;
3144 			} else {
3145 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3146 				mstate->dtms_ustackdepth =
3147 				    dtrace_getustackdepth();
3148 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3149 			}
3150 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3151 		}
3152 		return (mstate->dtms_ustackdepth);
3153 
3154 	case DIF_VAR_CALLER:
3155 		if (!dtrace_priv_kernel(state))
3156 			return (0);
3157 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3158 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3159 
3160 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3161 				/*
3162 				 * If this is an unanchored probe, we are
3163 				 * required to go through the slow path:
3164 				 * dtrace_caller() only guarantees correct
3165 				 * results for anchored probes.
3166 				 */
3167 				pc_t caller[2];
3168 
3169 				dtrace_getpcstack(caller, 2, aframes,
3170 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3171 				mstate->dtms_caller = caller[1];
3172 			} else if ((mstate->dtms_caller =
3173 			    dtrace_caller(aframes)) == -1) {
3174 				/*
3175 				 * We have failed to do this the quick way;
3176 				 * we must resort to the slower approach of
3177 				 * calling dtrace_getpcstack().
3178 				 */
3179 				pc_t caller;
3180 
3181 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3182 				mstate->dtms_caller = caller;
3183 			}
3184 
3185 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3186 		}
3187 		return (mstate->dtms_caller);
3188 
3189 	case DIF_VAR_UCALLER:
3190 		if (!dtrace_priv_proc(state, mstate))
3191 			return (0);
3192 
3193 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3194 			uint64_t ustack[3];
3195 
3196 			/*
3197 			 * dtrace_getupcstack() fills in the first uint64_t
3198 			 * with the current PID.  The second uint64_t will
3199 			 * be the program counter at user-level.  The third
3200 			 * uint64_t will contain the caller, which is what
3201 			 * we're after.
3202 			 */
3203 			ustack[2] = NULL;
3204 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3205 			dtrace_getupcstack(ustack, 3);
3206 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3207 			mstate->dtms_ucaller = ustack[2];
3208 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3209 		}
3210 
3211 		return (mstate->dtms_ucaller);
3212 
3213 	case DIF_VAR_PROBEPROV:
3214 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3215 		return (dtrace_dif_varstr(
3216 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3217 		    state, mstate));
3218 
3219 	case DIF_VAR_PROBEMOD:
3220 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3221 		return (dtrace_dif_varstr(
3222 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3223 		    state, mstate));
3224 
3225 	case DIF_VAR_PROBEFUNC:
3226 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3227 		return (dtrace_dif_varstr(
3228 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3229 		    state, mstate));
3230 
3231 	case DIF_VAR_PROBENAME:
3232 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3233 		return (dtrace_dif_varstr(
3234 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3235 		    state, mstate));
3236 
3237 	case DIF_VAR_PID:
3238 		if (!dtrace_priv_proc(state, mstate))
3239 			return (0);
3240 
3241 		/*
3242 		 * Note that we are assuming that an unanchored probe is
3243 		 * always due to a high-level interrupt.  (And we're assuming
3244 		 * that there is only a single high level interrupt.)
3245 		 */
3246 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3247 			return (pid0.pid_id);
3248 
3249 		/*
3250 		 * It is always safe to dereference one's own t_procp pointer:
3251 		 * it always points to a valid, allocated proc structure.
3252 		 * Further, it is always safe to dereference the p_pidp member
3253 		 * of one's own proc structure.  (These are truisms becuase
3254 		 * threads and processes don't clean up their own state --
3255 		 * they leave that task to whomever reaps them.)
3256 		 */
3257 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3258 
3259 	case DIF_VAR_PPID:
3260 		if (!dtrace_priv_proc(state, mstate))
3261 			return (0);
3262 
3263 		/*
3264 		 * See comment in DIF_VAR_PID.
3265 		 */
3266 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3267 			return (pid0.pid_id);
3268 
3269 		/*
3270 		 * It is always safe to dereference one's own t_procp pointer:
3271 		 * it always points to a valid, allocated proc structure.
3272 		 * (This is true because threads don't clean up their own
3273 		 * state -- they leave that task to whomever reaps them.)
3274 		 */
3275 		return ((uint64_t)curthread->t_procp->p_ppid);
3276 
3277 	case DIF_VAR_TID:
3278 		/*
3279 		 * See comment in DIF_VAR_PID.
3280 		 */
3281 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3282 			return (0);
3283 
3284 		return ((uint64_t)curthread->t_tid);
3285 
3286 	case DIF_VAR_EXECNAME:
3287 		if (!dtrace_priv_proc(state, mstate))
3288 			return (0);
3289 
3290 		/*
3291 		 * See comment in DIF_VAR_PID.
3292 		 */
3293 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3294 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3295 
3296 		/*
3297 		 * It is always safe to dereference one's own t_procp pointer:
3298 		 * it always points to a valid, allocated proc structure.
3299 		 * (This is true because threads don't clean up their own
3300 		 * state -- they leave that task to whomever reaps them.)
3301 		 */
3302 		return (dtrace_dif_varstr(
3303 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3304 		    state, mstate));
3305 
3306 	case DIF_VAR_ZONENAME:
3307 		if (!dtrace_priv_proc(state, mstate))
3308 			return (0);
3309 
3310 		/*
3311 		 * See comment in DIF_VAR_PID.
3312 		 */
3313 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3314 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3315 
3316 		/*
3317 		 * It is always safe to dereference one's own t_procp pointer:
3318 		 * it always points to a valid, allocated proc structure.
3319 		 * (This is true because threads don't clean up their own
3320 		 * state -- they leave that task to whomever reaps them.)
3321 		 */
3322 		return (dtrace_dif_varstr(
3323 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3324 		    state, mstate));
3325 
3326 	case DIF_VAR_UID:
3327 		if (!dtrace_priv_proc(state, mstate))
3328 			return (0);
3329 
3330 		/*
3331 		 * See comment in DIF_VAR_PID.
3332 		 */
3333 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3334 			return ((uint64_t)p0.p_cred->cr_uid);
3335 
3336 		/*
3337 		 * It is always safe to dereference one's own t_procp pointer:
3338 		 * it always points to a valid, allocated proc structure.
3339 		 * (This is true because threads don't clean up their own
3340 		 * state -- they leave that task to whomever reaps them.)
3341 		 *
3342 		 * Additionally, it is safe to dereference one's own process
3343 		 * credential, since this is never NULL after process birth.
3344 		 */
3345 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3346 
3347 	case DIF_VAR_GID:
3348 		if (!dtrace_priv_proc(state, mstate))
3349 			return (0);
3350 
3351 		/*
3352 		 * See comment in DIF_VAR_PID.
3353 		 */
3354 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3355 			return ((uint64_t)p0.p_cred->cr_gid);
3356 
3357 		/*
3358 		 * It is always safe to dereference one's own t_procp pointer:
3359 		 * it always points to a valid, allocated proc structure.
3360 		 * (This is true because threads don't clean up their own
3361 		 * state -- they leave that task to whomever reaps them.)
3362 		 *
3363 		 * Additionally, it is safe to dereference one's own process
3364 		 * credential, since this is never NULL after process birth.
3365 		 */
3366 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3367 
3368 	case DIF_VAR_ERRNO: {
3369 		klwp_t *lwp;
3370 		if (!dtrace_priv_proc(state, mstate))
3371 			return (0);
3372 
3373 		/*
3374 		 * See comment in DIF_VAR_PID.
3375 		 */
3376 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3377 			return (0);
3378 
3379 		/*
3380 		 * It is always safe to dereference one's own t_lwp pointer in
3381 		 * the event that this pointer is non-NULL.  (This is true
3382 		 * because threads and lwps don't clean up their own state --
3383 		 * they leave that task to whomever reaps them.)
3384 		 */
3385 		if ((lwp = curthread->t_lwp) == NULL)
3386 			return (0);
3387 
3388 		return ((uint64_t)lwp->lwp_errno);
3389 	}
3390 	default:
3391 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3392 		return (0);
3393 	}
3394 }
3395 
3396 
3397 typedef enum dtrace_json_state {
3398 	DTRACE_JSON_REST = 1,
3399 	DTRACE_JSON_OBJECT,
3400 	DTRACE_JSON_STRING,
3401 	DTRACE_JSON_STRING_ESCAPE,
3402 	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3403 	DTRACE_JSON_COLON,
3404 	DTRACE_JSON_COMMA,
3405 	DTRACE_JSON_VALUE,
3406 	DTRACE_JSON_IDENTIFIER,
3407 	DTRACE_JSON_NUMBER,
3408 	DTRACE_JSON_NUMBER_FRAC,
3409 	DTRACE_JSON_NUMBER_EXP,
3410 	DTRACE_JSON_COLLECT_OBJECT
3411 } dtrace_json_state_t;
3412 
3413 /*
3414  * This function possesses just enough knowledge about JSON to extract a single
3415  * value from a JSON string and store it in the scratch buffer.  It is able
3416  * to extract nested object values, and members of arrays by index.
3417  *
3418  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3419  * be looked up as we descend into the object tree.  e.g.
3420  *
3421  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3422  *       with nelems = 5.
3423  *
3424  * The run time of this function must be bounded above by strsize to limit the
3425  * amount of work done in probe context.  As such, it is implemented as a
3426  * simple state machine, reading one character at a time using safe loads
3427  * until we find the requested element, hit a parsing error or run off the
3428  * end of the object or string.
3429  *
3430  * As there is no way for a subroutine to return an error without interrupting
3431  * clause execution, we simply return NULL in the event of a missing key or any
3432  * other error condition.  Each NULL return in this function is commented with
3433  * the error condition it represents -- parsing or otherwise.
3434  *
3435  * The set of states for the state machine closely matches the JSON
3436  * specification (http://json.org/).  Briefly:
3437  *
3438  *   DTRACE_JSON_REST:
3439  *     Skip whitespace until we find either a top-level Object, moving
3440  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3441  *
3442  *   DTRACE_JSON_OBJECT:
3443  *     Locate the next key String in an Object.  Sets a flag to denote
3444  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3445  *
3446  *   DTRACE_JSON_COLON:
3447  *     Skip whitespace until we find the colon that separates key Strings
3448  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3449  *
3450  *   DTRACE_JSON_VALUE:
3451  *     Detects the type of the next value (String, Number, Identifier, Object
3452  *     or Array) and routes to the states that process that type.  Here we also
3453  *     deal with the element selector list if we are requested to traverse down
3454  *     into the object tree.
3455  *
3456  *   DTRACE_JSON_COMMA:
3457  *     Skip whitespace until we find the comma that separates key-value pairs
3458  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3459  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3460  *     states return to this state at the end of their value, unless otherwise
3461  *     noted.
3462  *
3463  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3464  *     Processes a Number literal from the JSON, including any exponent
3465  *     component that may be present.  Numbers are returned as strings, which
3466  *     may be passed to strtoll() if an integer is required.
3467  *
3468  *   DTRACE_JSON_IDENTIFIER:
3469  *     Processes a "true", "false" or "null" literal in the JSON.
3470  *
3471  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3472  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3473  *     Processes a String literal from the JSON, whether the String denotes
3474  *     a key, a value or part of a larger Object.  Handles all escape sequences
3475  *     present in the specification, including four-digit unicode characters,
3476  *     but merely includes the escape sequence without converting it to the
3477  *     actual escaped character.  If the String is flagged as a key, we
3478  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3479  *
3480  *   DTRACE_JSON_COLLECT_OBJECT:
3481  *     This state collects an entire Object (or Array), correctly handling
3482  *     embedded strings.  If the full element selector list matches this nested
3483  *     object, we return the Object in full as a string.  If not, we use this
3484  *     state to skip to the next value at this level and continue processing.
3485  *
3486  * NOTE: This function uses various macros from strtolctype.h to manipulate
3487  * digit values, etc -- these have all been checked to ensure they make
3488  * no additional function calls.
3489  */
3490 static char *
3491 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3492     char *dest)
3493 {
3494 	dtrace_json_state_t state = DTRACE_JSON_REST;
3495 	int64_t array_elem = INT64_MIN;
3496 	int64_t array_pos = 0;
3497 	uint8_t escape_unicount = 0;
3498 	boolean_t string_is_key = B_FALSE;
3499 	boolean_t collect_object = B_FALSE;
3500 	boolean_t found_key = B_FALSE;
3501 	boolean_t in_array = B_FALSE;
3502 	uint32_t braces = 0, brackets = 0;
3503 	char *elem = elemlist;
3504 	char *dd = dest;
3505 	uintptr_t cur;
3506 
3507 	for (cur = json; cur < json + size; cur++) {
3508 		char cc = dtrace_load8(cur);
3509 		if (cc == '\0')
3510 			return (NULL);
3511 
3512 		switch (state) {
3513 		case DTRACE_JSON_REST:
3514 			if (isspace(cc))
3515 				break;
3516 
3517 			if (cc == '{') {
3518 				state = DTRACE_JSON_OBJECT;
3519 				break;
3520 			}
3521 
3522 			if (cc == '[') {
3523 				in_array = B_TRUE;
3524 				array_pos = 0;
3525 				array_elem = dtrace_strtoll(elem, 10, size);
3526 				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3527 				state = DTRACE_JSON_VALUE;
3528 				break;
3529 			}
3530 
3531 			/*
3532 			 * ERROR: expected to find a top-level object or array.
3533 			 */
3534 			return (NULL);
3535 		case DTRACE_JSON_OBJECT:
3536 			if (isspace(cc))
3537 				break;
3538 
3539 			if (cc == '"') {
3540 				state = DTRACE_JSON_STRING;
3541 				string_is_key = B_TRUE;
3542 				break;
3543 			}
3544 
3545 			/*
3546 			 * ERROR: either the object did not start with a key
3547 			 * string, or we've run off the end of the object
3548 			 * without finding the requested key.
3549 			 */
3550 			return (NULL);
3551 		case DTRACE_JSON_STRING:
3552 			if (cc == '\\') {
3553 				*dd++ = '\\';
3554 				state = DTRACE_JSON_STRING_ESCAPE;
3555 				break;
3556 			}
3557 
3558 			if (cc == '"') {
3559 				if (collect_object) {
3560 					/*
3561 					 * We don't reset the dest here, as
3562 					 * the string is part of a larger
3563 					 * object being collected.
3564 					 */
3565 					*dd++ = cc;
3566 					collect_object = B_FALSE;
3567 					state = DTRACE_JSON_COLLECT_OBJECT;
3568 					break;
3569 				}
3570 				*dd = '\0';
3571 				dd = dest; /* reset string buffer */
3572 				if (string_is_key) {
3573 					if (dtrace_strncmp(dest, elem,
3574 					    size) == 0)
3575 						found_key = B_TRUE;
3576 				} else if (found_key) {
3577 					if (nelems > 1) {
3578 						/*
3579 						 * We expected an object, not
3580 						 * this string.
3581 						 */
3582 						return (NULL);
3583 					}
3584 					return (dest);
3585 				}
3586 				state = string_is_key ? DTRACE_JSON_COLON :
3587 				    DTRACE_JSON_COMMA;
3588 				string_is_key = B_FALSE;
3589 				break;
3590 			}
3591 
3592 			*dd++ = cc;
3593 			break;
3594 		case DTRACE_JSON_STRING_ESCAPE:
3595 			*dd++ = cc;
3596 			if (cc == 'u') {
3597 				escape_unicount = 0;
3598 				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3599 			} else {
3600 				state = DTRACE_JSON_STRING;
3601 			}
3602 			break;
3603 		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3604 			if (!isxdigit(cc)) {
3605 				/*
3606 				 * ERROR: invalid unicode escape, expected
3607 				 * four valid hexidecimal digits.
3608 				 */
3609 				return (NULL);
3610 			}
3611 
3612 			*dd++ = cc;
3613 			if (++escape_unicount == 4)
3614 				state = DTRACE_JSON_STRING;
3615 			break;
3616 		case DTRACE_JSON_COLON:
3617 			if (isspace(cc))
3618 				break;
3619 
3620 			if (cc == ':') {
3621 				state = DTRACE_JSON_VALUE;
3622 				break;
3623 			}
3624 
3625 			/*
3626 			 * ERROR: expected a colon.
3627 			 */
3628 			return (NULL);
3629 		case DTRACE_JSON_COMMA:
3630 			if (isspace(cc))
3631 				break;
3632 
3633 			if (cc == ',') {
3634 				if (in_array) {
3635 					state = DTRACE_JSON_VALUE;
3636 					if (++array_pos == array_elem)
3637 						found_key = B_TRUE;
3638 				} else {
3639 					state = DTRACE_JSON_OBJECT;
3640 				}
3641 				break;
3642 			}
3643 
3644 			/*
3645 			 * ERROR: either we hit an unexpected character, or
3646 			 * we reached the end of the object or array without
3647 			 * finding the requested key.
3648 			 */
3649 			return (NULL);
3650 		case DTRACE_JSON_IDENTIFIER:
3651 			if (islower(cc)) {
3652 				*dd++ = cc;
3653 				break;
3654 			}
3655 
3656 			*dd = '\0';
3657 			dd = dest; /* reset string buffer */
3658 
3659 			if (dtrace_strncmp(dest, "true", 5) == 0 ||
3660 			    dtrace_strncmp(dest, "false", 6) == 0 ||
3661 			    dtrace_strncmp(dest, "null", 5) == 0) {
3662 				if (found_key) {
3663 					if (nelems > 1) {
3664 						/*
3665 						 * ERROR: We expected an object,
3666 						 * not this identifier.
3667 						 */
3668 						return (NULL);
3669 					}
3670 					return (dest);
3671 				} else {
3672 					cur--;
3673 					state = DTRACE_JSON_COMMA;
3674 					break;
3675 				}
3676 			}
3677 
3678 			/*
3679 			 * ERROR: we did not recognise the identifier as one
3680 			 * of those in the JSON specification.
3681 			 */
3682 			return (NULL);
3683 		case DTRACE_JSON_NUMBER:
3684 			if (cc == '.') {
3685 				*dd++ = cc;
3686 				state = DTRACE_JSON_NUMBER_FRAC;
3687 				break;
3688 			}
3689 
3690 			if (cc == 'x' || cc == 'X') {
3691 				/*
3692 				 * ERROR: specification explicitly excludes
3693 				 * hexidecimal or octal numbers.
3694 				 */
3695 				return (NULL);
3696 			}
3697 
3698 			/* FALLTHRU */
3699 		case DTRACE_JSON_NUMBER_FRAC:
3700 			if (cc == 'e' || cc == 'E') {
3701 				*dd++ = cc;
3702 				state = DTRACE_JSON_NUMBER_EXP;
3703 				break;
3704 			}
3705 
3706 			if (cc == '+' || cc == '-') {
3707 				/*
3708 				 * ERROR: expect sign as part of exponent only.
3709 				 */
3710 				return (NULL);
3711 			}
3712 			/* FALLTHRU */
3713 		case DTRACE_JSON_NUMBER_EXP:
3714 			if (isdigit(cc) || cc == '+' || cc == '-') {
3715 				*dd++ = cc;
3716 				break;
3717 			}
3718 
3719 			*dd = '\0';
3720 			dd = dest; /* reset string buffer */
3721 			if (found_key) {
3722 				if (nelems > 1) {
3723 					/*
3724 					 * ERROR: We expected an object, not
3725 					 * this number.
3726 					 */
3727 					return (NULL);
3728 				}
3729 				return (dest);
3730 			}
3731 
3732 			cur--;
3733 			state = DTRACE_JSON_COMMA;
3734 			break;
3735 		case DTRACE_JSON_VALUE:
3736 			if (isspace(cc))
3737 				break;
3738 
3739 			if (cc == '{' || cc == '[') {
3740 				if (nelems > 1 && found_key) {
3741 					in_array = cc == '[' ? B_TRUE : B_FALSE;
3742 					/*
3743 					 * If our element selector directs us
3744 					 * to descend into this nested object,
3745 					 * then move to the next selector
3746 					 * element in the list and restart the
3747 					 * state machine.
3748 					 */
3749 					while (*elem != '\0')
3750 						elem++;
3751 					elem++; /* skip the inter-element NUL */
3752 					nelems--;
3753 					dd = dest;
3754 					if (in_array) {
3755 						state = DTRACE_JSON_VALUE;
3756 						array_pos = 0;
3757 						array_elem = dtrace_strtoll(
3758 						    elem, 10, size);
3759 						found_key = array_elem == 0 ?
3760 						    B_TRUE : B_FALSE;
3761 					} else {
3762 						found_key = B_FALSE;
3763 						state = DTRACE_JSON_OBJECT;
3764 					}
3765 					break;
3766 				}
3767 
3768 				/*
3769 				 * Otherwise, we wish to either skip this
3770 				 * nested object or return it in full.
3771 				 */
3772 				if (cc == '[')
3773 					brackets = 1;
3774 				else
3775 					braces = 1;
3776 				*dd++ = cc;
3777 				state = DTRACE_JSON_COLLECT_OBJECT;
3778 				break;
3779 			}
3780 
3781 			if (cc == '"') {
3782 				state = DTRACE_JSON_STRING;
3783 				break;
3784 			}
3785 
3786 			if (islower(cc)) {
3787 				/*
3788 				 * Here we deal with true, false and null.
3789 				 */
3790 				*dd++ = cc;
3791 				state = DTRACE_JSON_IDENTIFIER;
3792 				break;
3793 			}
3794 
3795 			if (cc == '-' || isdigit(cc)) {
3796 				*dd++ = cc;
3797 				state = DTRACE_JSON_NUMBER;
3798 				break;
3799 			}
3800 
3801 			/*
3802 			 * ERROR: unexpected character at start of value.
3803 			 */
3804 			return (NULL);
3805 		case DTRACE_JSON_COLLECT_OBJECT:
3806 			if (cc == '\0')
3807 				/*
3808 				 * ERROR: unexpected end of input.
3809 				 */
3810 				return (NULL);
3811 
3812 			*dd++ = cc;
3813 			if (cc == '"') {
3814 				collect_object = B_TRUE;
3815 				state = DTRACE_JSON_STRING;
3816 				break;
3817 			}
3818 
3819 			if (cc == ']') {
3820 				if (brackets-- == 0) {
3821 					/*
3822 					 * ERROR: unbalanced brackets.
3823 					 */
3824 					return (NULL);
3825 				}
3826 			} else if (cc == '}') {
3827 				if (braces-- == 0) {
3828 					/*
3829 					 * ERROR: unbalanced braces.
3830 					 */
3831 					return (NULL);
3832 				}
3833 			} else if (cc == '{') {
3834 				braces++;
3835 			} else if (cc == '[') {
3836 				brackets++;
3837 			}
3838 
3839 			if (brackets == 0 && braces == 0) {
3840 				if (found_key) {
3841 					*dd = '\0';
3842 					return (dest);
3843 				}
3844 				dd = dest; /* reset string buffer */
3845 				state = DTRACE_JSON_COMMA;
3846 			}
3847 			break;
3848 		}
3849 	}
3850 	return (NULL);
3851 }
3852 
3853 /*
3854  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3855  * Notice that we don't bother validating the proper number of arguments or
3856  * their types in the tuple stack.  This isn't needed because all argument
3857  * interpretation is safe because of our load safety -- the worst that can
3858  * happen is that a bogus program can obtain bogus results.
3859  */
3860 static void
3861 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3862     dtrace_key_t *tupregs, int nargs,
3863     dtrace_mstate_t *mstate, dtrace_state_t *state)
3864 {
3865 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3866 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3867 	dtrace_vstate_t *vstate = &state->dts_vstate;
3868 
3869 	union {
3870 		mutex_impl_t mi;
3871 		uint64_t mx;
3872 	} m;
3873 
3874 	union {
3875 		krwlock_t ri;
3876 		uintptr_t rw;
3877 	} r;
3878 
3879 	switch (subr) {
3880 	case DIF_SUBR_RAND:
3881 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3882 		break;
3883 
3884 	case DIF_SUBR_MUTEX_OWNED:
3885 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3886 		    mstate, vstate)) {
3887 			regs[rd] = NULL;
3888 			break;
3889 		}
3890 
3891 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3892 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3893 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3894 		else
3895 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3896 		break;
3897 
3898 	case DIF_SUBR_MUTEX_OWNER:
3899 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3900 		    mstate, vstate)) {
3901 			regs[rd] = NULL;
3902 			break;
3903 		}
3904 
3905 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3906 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3907 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3908 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3909 		else
3910 			regs[rd] = 0;
3911 		break;
3912 
3913 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3914 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3915 		    mstate, vstate)) {
3916 			regs[rd] = NULL;
3917 			break;
3918 		}
3919 
3920 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3921 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3922 		break;
3923 
3924 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3925 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3926 		    mstate, vstate)) {
3927 			regs[rd] = NULL;
3928 			break;
3929 		}
3930 
3931 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3932 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3933 		break;
3934 
3935 	case DIF_SUBR_RW_READ_HELD: {
3936 		uintptr_t tmp;
3937 
3938 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3939 		    mstate, vstate)) {
3940 			regs[rd] = NULL;
3941 			break;
3942 		}
3943 
3944 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3945 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3946 		break;
3947 	}
3948 
3949 	case DIF_SUBR_RW_WRITE_HELD:
3950 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3951 		    mstate, vstate)) {
3952 			regs[rd] = NULL;
3953 			break;
3954 		}
3955 
3956 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3957 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3958 		break;
3959 
3960 	case DIF_SUBR_RW_ISWRITER:
3961 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3962 		    mstate, vstate)) {
3963 			regs[rd] = NULL;
3964 			break;
3965 		}
3966 
3967 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3968 		regs[rd] = _RW_ISWRITER(&r.ri);
3969 		break;
3970 
3971 	case DIF_SUBR_BCOPY: {
3972 		/*
3973 		 * We need to be sure that the destination is in the scratch
3974 		 * region -- no other region is allowed.
3975 		 */
3976 		uintptr_t src = tupregs[0].dttk_value;
3977 		uintptr_t dest = tupregs[1].dttk_value;
3978 		size_t size = tupregs[2].dttk_value;
3979 
3980 		if (!dtrace_inscratch(dest, size, mstate)) {
3981 			*flags |= CPU_DTRACE_BADADDR;
3982 			*illval = regs[rd];
3983 			break;
3984 		}
3985 
3986 		if (!dtrace_canload(src, size, mstate, vstate)) {
3987 			regs[rd] = NULL;
3988 			break;
3989 		}
3990 
3991 		dtrace_bcopy((void *)src, (void *)dest, size);
3992 		break;
3993 	}
3994 
3995 	case DIF_SUBR_ALLOCA:
3996 	case DIF_SUBR_COPYIN: {
3997 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3998 		uint64_t size =
3999 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4000 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4001 
4002 		/*
4003 		 * This action doesn't require any credential checks since
4004 		 * probes will not activate in user contexts to which the
4005 		 * enabling user does not have permissions.
4006 		 */
4007 
4008 		/*
4009 		 * Rounding up the user allocation size could have overflowed
4010 		 * a large, bogus allocation (like -1ULL) to 0.
4011 		 */
4012 		if (scratch_size < size ||
4013 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4014 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4015 			regs[rd] = NULL;
4016 			break;
4017 		}
4018 
4019 		if (subr == DIF_SUBR_COPYIN) {
4020 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4021 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4022 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4023 		}
4024 
4025 		mstate->dtms_scratch_ptr += scratch_size;
4026 		regs[rd] = dest;
4027 		break;
4028 	}
4029 
4030 	case DIF_SUBR_COPYINTO: {
4031 		uint64_t size = tupregs[1].dttk_value;
4032 		uintptr_t dest = tupregs[2].dttk_value;
4033 
4034 		/*
4035 		 * This action doesn't require any credential checks since
4036 		 * probes will not activate in user contexts to which the
4037 		 * enabling user does not have permissions.
4038 		 */
4039 		if (!dtrace_inscratch(dest, size, mstate)) {
4040 			*flags |= CPU_DTRACE_BADADDR;
4041 			*illval = regs[rd];
4042 			break;
4043 		}
4044 
4045 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4046 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4047 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4048 		break;
4049 	}
4050 
4051 	case DIF_SUBR_COPYINSTR: {
4052 		uintptr_t dest = mstate->dtms_scratch_ptr;
4053 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4054 
4055 		if (nargs > 1 && tupregs[1].dttk_value < size)
4056 			size = tupregs[1].dttk_value + 1;
4057 
4058 		/*
4059 		 * This action doesn't require any credential checks since
4060 		 * probes will not activate in user contexts to which the
4061 		 * enabling user does not have permissions.
4062 		 */
4063 		if (!DTRACE_INSCRATCH(mstate, size)) {
4064 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4065 			regs[rd] = NULL;
4066 			break;
4067 		}
4068 
4069 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4070 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4071 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4072 
4073 		((char *)dest)[size - 1] = '\0';
4074 		mstate->dtms_scratch_ptr += size;
4075 		regs[rd] = dest;
4076 		break;
4077 	}
4078 
4079 	case DIF_SUBR_MSGSIZE:
4080 	case DIF_SUBR_MSGDSIZE: {
4081 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4082 		uintptr_t wptr, rptr;
4083 		size_t count = 0;
4084 		int cont = 0;
4085 
4086 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4087 
4088 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4089 			    vstate)) {
4090 				regs[rd] = NULL;
4091 				break;
4092 			}
4093 
4094 			wptr = dtrace_loadptr(baddr +
4095 			    offsetof(mblk_t, b_wptr));
4096 
4097 			rptr = dtrace_loadptr(baddr +
4098 			    offsetof(mblk_t, b_rptr));
4099 
4100 			if (wptr < rptr) {
4101 				*flags |= CPU_DTRACE_BADADDR;
4102 				*illval = tupregs[0].dttk_value;
4103 				break;
4104 			}
4105 
4106 			daddr = dtrace_loadptr(baddr +
4107 			    offsetof(mblk_t, b_datap));
4108 
4109 			baddr = dtrace_loadptr(baddr +
4110 			    offsetof(mblk_t, b_cont));
4111 
4112 			/*
4113 			 * We want to prevent against denial-of-service here,
4114 			 * so we're only going to search the list for
4115 			 * dtrace_msgdsize_max mblks.
4116 			 */
4117 			if (cont++ > dtrace_msgdsize_max) {
4118 				*flags |= CPU_DTRACE_ILLOP;
4119 				break;
4120 			}
4121 
4122 			if (subr == DIF_SUBR_MSGDSIZE) {
4123 				if (dtrace_load8(daddr +
4124 				    offsetof(dblk_t, db_type)) != M_DATA)
4125 					continue;
4126 			}
4127 
4128 			count += wptr - rptr;
4129 		}
4130 
4131 		if (!(*flags & CPU_DTRACE_FAULT))
4132 			regs[rd] = count;
4133 
4134 		break;
4135 	}
4136 
4137 	case DIF_SUBR_PROGENYOF: {
4138 		pid_t pid = tupregs[0].dttk_value;
4139 		proc_t *p;
4140 		int rval = 0;
4141 
4142 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4143 
4144 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4145 			if (p->p_pidp->pid_id == pid) {
4146 				rval = 1;
4147 				break;
4148 			}
4149 		}
4150 
4151 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4152 
4153 		regs[rd] = rval;
4154 		break;
4155 	}
4156 
4157 	case DIF_SUBR_SPECULATION:
4158 		regs[rd] = dtrace_speculation(state);
4159 		break;
4160 
4161 	case DIF_SUBR_COPYOUT: {
4162 		uintptr_t kaddr = tupregs[0].dttk_value;
4163 		uintptr_t uaddr = tupregs[1].dttk_value;
4164 		uint64_t size = tupregs[2].dttk_value;
4165 
4166 		if (!dtrace_destructive_disallow &&
4167 		    dtrace_priv_proc_control(state, mstate) &&
4168 		    !dtrace_istoxic(kaddr, size)) {
4169 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4170 			dtrace_copyout(kaddr, uaddr, size, flags);
4171 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4172 		}
4173 		break;
4174 	}
4175 
4176 	case DIF_SUBR_COPYOUTSTR: {
4177 		uintptr_t kaddr = tupregs[0].dttk_value;
4178 		uintptr_t uaddr = tupregs[1].dttk_value;
4179 		uint64_t size = tupregs[2].dttk_value;
4180 
4181 		if (!dtrace_destructive_disallow &&
4182 		    dtrace_priv_proc_control(state, mstate) &&
4183 		    !dtrace_istoxic(kaddr, size)) {
4184 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4185 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
4186 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4187 		}
4188 		break;
4189 	}
4190 
4191 	case DIF_SUBR_STRLEN: {
4192 		size_t sz;
4193 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4194 		sz = dtrace_strlen((char *)addr,
4195 		    state->dts_options[DTRACEOPT_STRSIZE]);
4196 
4197 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
4198 			regs[rd] = NULL;
4199 			break;
4200 		}
4201 
4202 		regs[rd] = sz;
4203 
4204 		break;
4205 	}
4206 
4207 	case DIF_SUBR_STRCHR:
4208 	case DIF_SUBR_STRRCHR: {
4209 		/*
4210 		 * We're going to iterate over the string looking for the
4211 		 * specified character.  We will iterate until we have reached
4212 		 * the string length or we have found the character.  If this
4213 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4214 		 * of the specified character instead of the first.
4215 		 */
4216 		uintptr_t saddr = tupregs[0].dttk_value;
4217 		uintptr_t addr = tupregs[0].dttk_value;
4218 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
4219 		char c, target = (char)tupregs[1].dttk_value;
4220 
4221 		for (regs[rd] = NULL; addr < limit; addr++) {
4222 			if ((c = dtrace_load8(addr)) == target) {
4223 				regs[rd] = addr;
4224 
4225 				if (subr == DIF_SUBR_STRCHR)
4226 					break;
4227 			}
4228 
4229 			if (c == '\0')
4230 				break;
4231 		}
4232 
4233 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
4234 			regs[rd] = NULL;
4235 			break;
4236 		}
4237 
4238 		break;
4239 	}
4240 
4241 	case DIF_SUBR_STRSTR:
4242 	case DIF_SUBR_INDEX:
4243 	case DIF_SUBR_RINDEX: {
4244 		/*
4245 		 * We're going to iterate over the string looking for the
4246 		 * specified string.  We will iterate until we have reached
4247 		 * the string length or we have found the string.  (Yes, this
4248 		 * is done in the most naive way possible -- but considering
4249 		 * that the string we're searching for is likely to be
4250 		 * relatively short, the complexity of Rabin-Karp or similar
4251 		 * hardly seems merited.)
4252 		 */
4253 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4254 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4255 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4256 		size_t len = dtrace_strlen(addr, size);
4257 		size_t sublen = dtrace_strlen(substr, size);
4258 		char *limit = addr + len, *orig = addr;
4259 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4260 		int inc = 1;
4261 
4262 		regs[rd] = notfound;
4263 
4264 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4265 			regs[rd] = NULL;
4266 			break;
4267 		}
4268 
4269 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4270 		    vstate)) {
4271 			regs[rd] = NULL;
4272 			break;
4273 		}
4274 
4275 		/*
4276 		 * strstr() and index()/rindex() have similar semantics if
4277 		 * both strings are the empty string: strstr() returns a
4278 		 * pointer to the (empty) string, and index() and rindex()
4279 		 * both return index 0 (regardless of any position argument).
4280 		 */
4281 		if (sublen == 0 && len == 0) {
4282 			if (subr == DIF_SUBR_STRSTR)
4283 				regs[rd] = (uintptr_t)addr;
4284 			else
4285 				regs[rd] = 0;
4286 			break;
4287 		}
4288 
4289 		if (subr != DIF_SUBR_STRSTR) {
4290 			if (subr == DIF_SUBR_RINDEX) {
4291 				limit = orig - 1;
4292 				addr += len;
4293 				inc = -1;
4294 			}
4295 
4296 			/*
4297 			 * Both index() and rindex() take an optional position
4298 			 * argument that denotes the starting position.
4299 			 */
4300 			if (nargs == 3) {
4301 				int64_t pos = (int64_t)tupregs[2].dttk_value;
4302 
4303 				/*
4304 				 * If the position argument to index() is
4305 				 * negative, Perl implicitly clamps it at
4306 				 * zero.  This semantic is a little surprising
4307 				 * given the special meaning of negative
4308 				 * positions to similar Perl functions like
4309 				 * substr(), but it appears to reflect a
4310 				 * notion that index() can start from a
4311 				 * negative index and increment its way up to
4312 				 * the string.  Given this notion, Perl's
4313 				 * rindex() is at least self-consistent in
4314 				 * that it implicitly clamps positions greater
4315 				 * than the string length to be the string
4316 				 * length.  Where Perl completely loses
4317 				 * coherence, however, is when the specified
4318 				 * substring is the empty string ("").  In
4319 				 * this case, even if the position is
4320 				 * negative, rindex() returns 0 -- and even if
4321 				 * the position is greater than the length,
4322 				 * index() returns the string length.  These
4323 				 * semantics violate the notion that index()
4324 				 * should never return a value less than the
4325 				 * specified position and that rindex() should
4326 				 * never return a value greater than the
4327 				 * specified position.  (One assumes that
4328 				 * these semantics are artifacts of Perl's
4329 				 * implementation and not the results of
4330 				 * deliberate design -- it beggars belief that
4331 				 * even Larry Wall could desire such oddness.)
4332 				 * While in the abstract one would wish for
4333 				 * consistent position semantics across
4334 				 * substr(), index() and rindex() -- or at the
4335 				 * very least self-consistent position
4336 				 * semantics for index() and rindex() -- we
4337 				 * instead opt to keep with the extant Perl
4338 				 * semantics, in all their broken glory.  (Do
4339 				 * we have more desire to maintain Perl's
4340 				 * semantics than Perl does?  Probably.)
4341 				 */
4342 				if (subr == DIF_SUBR_RINDEX) {
4343 					if (pos < 0) {
4344 						if (sublen == 0)
4345 							regs[rd] = 0;
4346 						break;
4347 					}
4348 
4349 					if (pos > len)
4350 						pos = len;
4351 				} else {
4352 					if (pos < 0)
4353 						pos = 0;
4354 
4355 					if (pos >= len) {
4356 						if (sublen == 0)
4357 							regs[rd] = len;
4358 						break;
4359 					}
4360 				}
4361 
4362 				addr = orig + pos;
4363 			}
4364 		}
4365 
4366 		for (regs[rd] = notfound; addr != limit; addr += inc) {
4367 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4368 				if (subr != DIF_SUBR_STRSTR) {
4369 					/*
4370 					 * As D index() and rindex() are
4371 					 * modeled on Perl (and not on awk),
4372 					 * we return a zero-based (and not a
4373 					 * one-based) index.  (For you Perl
4374 					 * weenies: no, we're not going to add
4375 					 * $[ -- and shouldn't you be at a con
4376 					 * or something?)
4377 					 */
4378 					regs[rd] = (uintptr_t)(addr - orig);
4379 					break;
4380 				}
4381 
4382 				ASSERT(subr == DIF_SUBR_STRSTR);
4383 				regs[rd] = (uintptr_t)addr;
4384 				break;
4385 			}
4386 		}
4387 
4388 		break;
4389 	}
4390 
4391 	case DIF_SUBR_STRTOK: {
4392 		uintptr_t addr = tupregs[0].dttk_value;
4393 		uintptr_t tokaddr = tupregs[1].dttk_value;
4394 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4395 		uintptr_t limit, toklimit = tokaddr + size;
4396 		uint8_t c, tokmap[32];	 /* 256 / 8 */
4397 		char *dest = (char *)mstate->dtms_scratch_ptr;
4398 		int i;
4399 
4400 		/*
4401 		 * Check both the token buffer and (later) the input buffer,
4402 		 * since both could be non-scratch addresses.
4403 		 */
4404 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
4405 			regs[rd] = NULL;
4406 			break;
4407 		}
4408 
4409 		if (!DTRACE_INSCRATCH(mstate, size)) {
4410 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4411 			regs[rd] = NULL;
4412 			break;
4413 		}
4414 
4415 		if (addr == NULL) {
4416 			/*
4417 			 * If the address specified is NULL, we use our saved
4418 			 * strtok pointer from the mstate.  Note that this
4419 			 * means that the saved strtok pointer is _only_
4420 			 * valid within multiple enablings of the same probe --
4421 			 * it behaves like an implicit clause-local variable.
4422 			 */
4423 			addr = mstate->dtms_strtok;
4424 		} else {
4425 			/*
4426 			 * If the user-specified address is non-NULL we must
4427 			 * access check it.  This is the only time we have
4428 			 * a chance to do so, since this address may reside
4429 			 * in the string table of this clause-- future calls
4430 			 * (when we fetch addr from mstate->dtms_strtok)
4431 			 * would fail this access check.
4432 			 */
4433 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
4434 				regs[rd] = NULL;
4435 				break;
4436 			}
4437 		}
4438 
4439 		/*
4440 		 * First, zero the token map, and then process the token
4441 		 * string -- setting a bit in the map for every character
4442 		 * found in the token string.
4443 		 */
4444 		for (i = 0; i < sizeof (tokmap); i++)
4445 			tokmap[i] = 0;
4446 
4447 		for (; tokaddr < toklimit; tokaddr++) {
4448 			if ((c = dtrace_load8(tokaddr)) == '\0')
4449 				break;
4450 
4451 			ASSERT((c >> 3) < sizeof (tokmap));
4452 			tokmap[c >> 3] |= (1 << (c & 0x7));
4453 		}
4454 
4455 		for (limit = addr + size; addr < limit; addr++) {
4456 			/*
4457 			 * We're looking for a character that is _not_ contained
4458 			 * in the token string.
4459 			 */
4460 			if ((c = dtrace_load8(addr)) == '\0')
4461 				break;
4462 
4463 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4464 				break;
4465 		}
4466 
4467 		if (c == '\0') {
4468 			/*
4469 			 * We reached the end of the string without finding
4470 			 * any character that was not in the token string.
4471 			 * We return NULL in this case, and we set the saved
4472 			 * address to NULL as well.
4473 			 */
4474 			regs[rd] = NULL;
4475 			mstate->dtms_strtok = NULL;
4476 			break;
4477 		}
4478 
4479 		/*
4480 		 * From here on, we're copying into the destination string.
4481 		 */
4482 		for (i = 0; addr < limit && i < size - 1; addr++) {
4483 			if ((c = dtrace_load8(addr)) == '\0')
4484 				break;
4485 
4486 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4487 				break;
4488 
4489 			ASSERT(i < size);
4490 			dest[i++] = c;
4491 		}
4492 
4493 		ASSERT(i < size);
4494 		dest[i] = '\0';
4495 		regs[rd] = (uintptr_t)dest;
4496 		mstate->dtms_scratch_ptr += size;
4497 		mstate->dtms_strtok = addr;
4498 		break;
4499 	}
4500 
4501 	case DIF_SUBR_SUBSTR: {
4502 		uintptr_t s = tupregs[0].dttk_value;
4503 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4504 		char *d = (char *)mstate->dtms_scratch_ptr;
4505 		int64_t index = (int64_t)tupregs[1].dttk_value;
4506 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4507 		size_t len = dtrace_strlen((char *)s, size);
4508 		int64_t i;
4509 
4510 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4511 			regs[rd] = NULL;
4512 			break;
4513 		}
4514 
4515 		if (!DTRACE_INSCRATCH(mstate, size)) {
4516 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4517 			regs[rd] = NULL;
4518 			break;
4519 		}
4520 
4521 		if (nargs <= 2)
4522 			remaining = (int64_t)size;
4523 
4524 		if (index < 0) {
4525 			index += len;
4526 
4527 			if (index < 0 && index + remaining > 0) {
4528 				remaining += index;
4529 				index = 0;
4530 			}
4531 		}
4532 
4533 		if (index >= len || index < 0) {
4534 			remaining = 0;
4535 		} else if (remaining < 0) {
4536 			remaining += len - index;
4537 		} else if (index + remaining > size) {
4538 			remaining = size - index;
4539 		}
4540 
4541 		for (i = 0; i < remaining; i++) {
4542 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4543 				break;
4544 		}
4545 
4546 		d[i] = '\0';
4547 
4548 		mstate->dtms_scratch_ptr += size;
4549 		regs[rd] = (uintptr_t)d;
4550 		break;
4551 	}
4552 
4553 	case DIF_SUBR_JSON: {
4554 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4555 		uintptr_t json = tupregs[0].dttk_value;
4556 		size_t jsonlen = dtrace_strlen((char *)json, size);
4557 		uintptr_t elem = tupregs[1].dttk_value;
4558 		size_t elemlen = dtrace_strlen((char *)elem, size);
4559 
4560 		char *dest = (char *)mstate->dtms_scratch_ptr;
4561 		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4562 		char *ee = elemlist;
4563 		int nelems = 1;
4564 		uintptr_t cur;
4565 
4566 		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4567 		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4568 			regs[rd] = NULL;
4569 			break;
4570 		}
4571 
4572 		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4573 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4574 			regs[rd] = NULL;
4575 			break;
4576 		}
4577 
4578 		/*
4579 		 * Read the element selector and split it up into a packed list
4580 		 * of strings.
4581 		 */
4582 		for (cur = elem; cur < elem + elemlen; cur++) {
4583 			char cc = dtrace_load8(cur);
4584 
4585 			if (cur == elem && cc == '[') {
4586 				/*
4587 				 * If the first element selector key is
4588 				 * actually an array index then ignore the
4589 				 * bracket.
4590 				 */
4591 				continue;
4592 			}
4593 
4594 			if (cc == ']')
4595 				continue;
4596 
4597 			if (cc == '.' || cc == '[') {
4598 				nelems++;
4599 				cc = '\0';
4600 			}
4601 
4602 			*ee++ = cc;
4603 		}
4604 		*ee++ = '\0';
4605 
4606 		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4607 		    nelems, dest)) != NULL)
4608 			mstate->dtms_scratch_ptr += jsonlen + 1;
4609 		break;
4610 	}
4611 
4612 	case DIF_SUBR_TOUPPER:
4613 	case DIF_SUBR_TOLOWER: {
4614 		uintptr_t s = tupregs[0].dttk_value;
4615 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4616 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4617 		size_t len = dtrace_strlen((char *)s, size);
4618 		char lower, upper, convert;
4619 		int64_t i;
4620 
4621 		if (subr == DIF_SUBR_TOUPPER) {
4622 			lower = 'a';
4623 			upper = 'z';
4624 			convert = 'A';
4625 		} else {
4626 			lower = 'A';
4627 			upper = 'Z';
4628 			convert = 'a';
4629 		}
4630 
4631 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4632 			regs[rd] = NULL;
4633 			break;
4634 		}
4635 
4636 		if (!DTRACE_INSCRATCH(mstate, size)) {
4637 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4638 			regs[rd] = NULL;
4639 			break;
4640 		}
4641 
4642 		for (i = 0; i < size - 1; i++) {
4643 			if ((c = dtrace_load8(s + i)) == '\0')
4644 				break;
4645 
4646 			if (c >= lower && c <= upper)
4647 				c = convert + (c - lower);
4648 
4649 			dest[i] = c;
4650 		}
4651 
4652 		ASSERT(i < size);
4653 		dest[i] = '\0';
4654 		regs[rd] = (uintptr_t)dest;
4655 		mstate->dtms_scratch_ptr += size;
4656 		break;
4657 	}
4658 
4659 case DIF_SUBR_GETMAJOR:
4660 #ifdef _LP64
4661 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4662 #else
4663 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4664 #endif
4665 		break;
4666 
4667 	case DIF_SUBR_GETMINOR:
4668 #ifdef _LP64
4669 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4670 #else
4671 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4672 #endif
4673 		break;
4674 
4675 	case DIF_SUBR_DDI_PATHNAME: {
4676 		/*
4677 		 * This one is a galactic mess.  We are going to roughly
4678 		 * emulate ddi_pathname(), but it's made more complicated
4679 		 * by the fact that we (a) want to include the minor name and
4680 		 * (b) must proceed iteratively instead of recursively.
4681 		 */
4682 		uintptr_t dest = mstate->dtms_scratch_ptr;
4683 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4684 		char *start = (char *)dest, *end = start + size - 1;
4685 		uintptr_t daddr = tupregs[0].dttk_value;
4686 		int64_t minor = (int64_t)tupregs[1].dttk_value;
4687 		char *s;
4688 		int i, len, depth = 0;
4689 
4690 		/*
4691 		 * Due to all the pointer jumping we do and context we must
4692 		 * rely upon, we just mandate that the user must have kernel
4693 		 * read privileges to use this routine.
4694 		 */
4695 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4696 			*flags |= CPU_DTRACE_KPRIV;
4697 			*illval = daddr;
4698 			regs[rd] = NULL;
4699 		}
4700 
4701 		if (!DTRACE_INSCRATCH(mstate, size)) {
4702 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4703 			regs[rd] = NULL;
4704 			break;
4705 		}
4706 
4707 		*end = '\0';
4708 
4709 		/*
4710 		 * We want to have a name for the minor.  In order to do this,
4711 		 * we need to walk the minor list from the devinfo.  We want
4712 		 * to be sure that we don't infinitely walk a circular list,
4713 		 * so we check for circularity by sending a scout pointer
4714 		 * ahead two elements for every element that we iterate over;
4715 		 * if the list is circular, these will ultimately point to the
4716 		 * same element.  You may recognize this little trick as the
4717 		 * answer to a stupid interview question -- one that always
4718 		 * seems to be asked by those who had to have it laboriously
4719 		 * explained to them, and who can't even concisely describe
4720 		 * the conditions under which one would be forced to resort to
4721 		 * this technique.  Needless to say, those conditions are
4722 		 * found here -- and probably only here.  Is this the only use
4723 		 * of this infamous trick in shipping, production code?  If it
4724 		 * isn't, it probably should be...
4725 		 */
4726 		if (minor != -1) {
4727 			uintptr_t maddr = dtrace_loadptr(daddr +
4728 			    offsetof(struct dev_info, devi_minor));
4729 
4730 			uintptr_t next = offsetof(struct ddi_minor_data, next);
4731 			uintptr_t name = offsetof(struct ddi_minor_data,
4732 			    d_minor) + offsetof(struct ddi_minor, name);
4733 			uintptr_t dev = offsetof(struct ddi_minor_data,
4734 			    d_minor) + offsetof(struct ddi_minor, dev);
4735 			uintptr_t scout;
4736 
4737 			if (maddr != NULL)
4738 				scout = dtrace_loadptr(maddr + next);
4739 
4740 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4741 				uint64_t m;
4742 #ifdef _LP64
4743 				m = dtrace_load64(maddr + dev) & MAXMIN64;
4744 #else
4745 				m = dtrace_load32(maddr + dev) & MAXMIN;
4746 #endif
4747 				if (m != minor) {
4748 					maddr = dtrace_loadptr(maddr + next);
4749 
4750 					if (scout == NULL)
4751 						continue;
4752 
4753 					scout = dtrace_loadptr(scout + next);
4754 
4755 					if (scout == NULL)
4756 						continue;
4757 
4758 					scout = dtrace_loadptr(scout + next);
4759 
4760 					if (scout == NULL)
4761 						continue;
4762 
4763 					if (scout == maddr) {
4764 						*flags |= CPU_DTRACE_ILLOP;
4765 						break;
4766 					}
4767 
4768 					continue;
4769 				}
4770 
4771 				/*
4772 				 * We have the minor data.  Now we need to
4773 				 * copy the minor's name into the end of the
4774 				 * pathname.
4775 				 */
4776 				s = (char *)dtrace_loadptr(maddr + name);
4777 				len = dtrace_strlen(s, size);
4778 
4779 				if (*flags & CPU_DTRACE_FAULT)
4780 					break;
4781 
4782 				if (len != 0) {
4783 					if ((end -= (len + 1)) < start)
4784 						break;
4785 
4786 					*end = ':';
4787 				}
4788 
4789 				for (i = 1; i <= len; i++)
4790 					end[i] = dtrace_load8((uintptr_t)s++);
4791 				break;
4792 			}
4793 		}
4794 
4795 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4796 			ddi_node_state_t devi_state;
4797 
4798 			devi_state = dtrace_load32(daddr +
4799 			    offsetof(struct dev_info, devi_node_state));
4800 
4801 			if (*flags & CPU_DTRACE_FAULT)
4802 				break;
4803 
4804 			if (devi_state >= DS_INITIALIZED) {
4805 				s = (char *)dtrace_loadptr(daddr +
4806 				    offsetof(struct dev_info, devi_addr));
4807 				len = dtrace_strlen(s, size);
4808 
4809 				if (*flags & CPU_DTRACE_FAULT)
4810 					break;
4811 
4812 				if (len != 0) {
4813 					if ((end -= (len + 1)) < start)
4814 						break;
4815 
4816 					*end = '@';
4817 				}
4818 
4819 				for (i = 1; i <= len; i++)
4820 					end[i] = dtrace_load8((uintptr_t)s++);
4821 			}
4822 
4823 			/*
4824 			 * Now for the node name...
4825 			 */
4826 			s = (char *)dtrace_loadptr(daddr +
4827 			    offsetof(struct dev_info, devi_node_name));
4828 
4829 			daddr = dtrace_loadptr(daddr +
4830 			    offsetof(struct dev_info, devi_parent));
4831 
4832 			/*
4833 			 * If our parent is NULL (that is, if we're the root
4834 			 * node), we're going to use the special path
4835 			 * "devices".
4836 			 */
4837 			if (daddr == NULL)
4838 				s = "devices";
4839 
4840 			len = dtrace_strlen(s, size);
4841 			if (*flags & CPU_DTRACE_FAULT)
4842 				break;
4843 
4844 			if ((end -= (len + 1)) < start)
4845 				break;
4846 
4847 			for (i = 1; i <= len; i++)
4848 				end[i] = dtrace_load8((uintptr_t)s++);
4849 			*end = '/';
4850 
4851 			if (depth++ > dtrace_devdepth_max) {
4852 				*flags |= CPU_DTRACE_ILLOP;
4853 				break;
4854 			}
4855 		}
4856 
4857 		if (end < start)
4858 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4859 
4860 		if (daddr == NULL) {
4861 			regs[rd] = (uintptr_t)end;
4862 			mstate->dtms_scratch_ptr += size;
4863 		}
4864 
4865 		break;
4866 	}
4867 
4868 	case DIF_SUBR_STRJOIN: {
4869 		char *d = (char *)mstate->dtms_scratch_ptr;
4870 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4871 		uintptr_t s1 = tupregs[0].dttk_value;
4872 		uintptr_t s2 = tupregs[1].dttk_value;
4873 		int i = 0;
4874 
4875 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4876 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4877 			regs[rd] = NULL;
4878 			break;
4879 		}
4880 
4881 		if (!DTRACE_INSCRATCH(mstate, size)) {
4882 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4883 			regs[rd] = NULL;
4884 			break;
4885 		}
4886 
4887 		for (;;) {
4888 			if (i >= size) {
4889 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4890 				regs[rd] = NULL;
4891 				break;
4892 			}
4893 
4894 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4895 				i--;
4896 				break;
4897 			}
4898 		}
4899 
4900 		for (;;) {
4901 			if (i >= size) {
4902 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4903 				regs[rd] = NULL;
4904 				break;
4905 			}
4906 
4907 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4908 				break;
4909 		}
4910 
4911 		if (i < size) {
4912 			mstate->dtms_scratch_ptr += i;
4913 			regs[rd] = (uintptr_t)d;
4914 		}
4915 
4916 		break;
4917 	}
4918 
4919 	case DIF_SUBR_STRTOLL: {
4920 		uintptr_t s = tupregs[0].dttk_value;
4921 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4922 		int base = 10;
4923 
4924 		if (nargs > 1) {
4925 			if ((base = tupregs[1].dttk_value) <= 1 ||
4926 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4927 				*flags |= CPU_DTRACE_ILLOP;
4928 				break;
4929 			}
4930 		}
4931 
4932 		if (!dtrace_strcanload(s, size, mstate, vstate)) {
4933 			regs[rd] = INT64_MIN;
4934 			break;
4935 		}
4936 
4937 		regs[rd] = dtrace_strtoll((char *)s, base, size);
4938 		break;
4939 	}
4940 
4941 	case DIF_SUBR_LLTOSTR: {
4942 		int64_t i = (int64_t)tupregs[0].dttk_value;
4943 		uint64_t val, digit;
4944 		uint64_t size = 65;	/* enough room for 2^64 in binary */
4945 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4946 		int base = 10;
4947 
4948 		if (nargs > 1) {
4949 			if ((base = tupregs[1].dttk_value) <= 1 ||
4950 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4951 				*flags |= CPU_DTRACE_ILLOP;
4952 				break;
4953 			}
4954 		}
4955 
4956 		val = (base == 10 && i < 0) ? i * -1 : i;
4957 
4958 		if (!DTRACE_INSCRATCH(mstate, size)) {
4959 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4960 			regs[rd] = NULL;
4961 			break;
4962 		}
4963 
4964 		for (*end-- = '\0'; val; val /= base) {
4965 			if ((digit = val % base) <= '9' - '0') {
4966 				*end-- = '0' + digit;
4967 			} else {
4968 				*end-- = 'a' + (digit - ('9' - '0') - 1);
4969 			}
4970 		}
4971 
4972 		if (i == 0 && base == 16)
4973 			*end-- = '0';
4974 
4975 		if (base == 16)
4976 			*end-- = 'x';
4977 
4978 		if (i == 0 || base == 8 || base == 16)
4979 			*end-- = '0';
4980 
4981 		if (i < 0 && base == 10)
4982 			*end-- = '-';
4983 
4984 		regs[rd] = (uintptr_t)end + 1;
4985 		mstate->dtms_scratch_ptr += size;
4986 		break;
4987 	}
4988 
4989 	case DIF_SUBR_HTONS:
4990 	case DIF_SUBR_NTOHS:
4991 #ifdef _BIG_ENDIAN
4992 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4993 #else
4994 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4995 #endif
4996 		break;
4997 
4998 
4999 	case DIF_SUBR_HTONL:
5000 	case DIF_SUBR_NTOHL:
5001 #ifdef _BIG_ENDIAN
5002 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5003 #else
5004 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5005 #endif
5006 		break;
5007 
5008 
5009 	case DIF_SUBR_HTONLL:
5010 	case DIF_SUBR_NTOHLL:
5011 #ifdef _BIG_ENDIAN
5012 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5013 #else
5014 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5015 #endif
5016 		break;
5017 
5018 
5019 	case DIF_SUBR_DIRNAME:
5020 	case DIF_SUBR_BASENAME: {
5021 		char *dest = (char *)mstate->dtms_scratch_ptr;
5022 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5023 		uintptr_t src = tupregs[0].dttk_value;
5024 		int i, j, len = dtrace_strlen((char *)src, size);
5025 		int lastbase = -1, firstbase = -1, lastdir = -1;
5026 		int start, end;
5027 
5028 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5029 			regs[rd] = NULL;
5030 			break;
5031 		}
5032 
5033 		if (!DTRACE_INSCRATCH(mstate, size)) {
5034 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5035 			regs[rd] = NULL;
5036 			break;
5037 		}
5038 
5039 		/*
5040 		 * The basename and dirname for a zero-length string is
5041 		 * defined to be "."
5042 		 */
5043 		if (len == 0) {
5044 			len = 1;
5045 			src = (uintptr_t)".";
5046 		}
5047 
5048 		/*
5049 		 * Start from the back of the string, moving back toward the
5050 		 * front until we see a character that isn't a slash.  That
5051 		 * character is the last character in the basename.
5052 		 */
5053 		for (i = len - 1; i >= 0; i--) {
5054 			if (dtrace_load8(src + i) != '/')
5055 				break;
5056 		}
5057 
5058 		if (i >= 0)
5059 			lastbase = i;
5060 
5061 		/*
5062 		 * Starting from the last character in the basename, move
5063 		 * towards the front until we find a slash.  The character
5064 		 * that we processed immediately before that is the first
5065 		 * character in the basename.
5066 		 */
5067 		for (; i >= 0; i--) {
5068 			if (dtrace_load8(src + i) == '/')
5069 				break;
5070 		}
5071 
5072 		if (i >= 0)
5073 			firstbase = i + 1;
5074 
5075 		/*
5076 		 * Now keep going until we find a non-slash character.  That
5077 		 * character is the last character in the dirname.
5078 		 */
5079 		for (; i >= 0; i--) {
5080 			if (dtrace_load8(src + i) != '/')
5081 				break;
5082 		}
5083 
5084 		if (i >= 0)
5085 			lastdir = i;
5086 
5087 		ASSERT(!(lastbase == -1 && firstbase != -1));
5088 		ASSERT(!(firstbase == -1 && lastdir != -1));
5089 
5090 		if (lastbase == -1) {
5091 			/*
5092 			 * We didn't find a non-slash character.  We know that
5093 			 * the length is non-zero, so the whole string must be
5094 			 * slashes.  In either the dirname or the basename
5095 			 * case, we return '/'.
5096 			 */
5097 			ASSERT(firstbase == -1);
5098 			firstbase = lastbase = lastdir = 0;
5099 		}
5100 
5101 		if (firstbase == -1) {
5102 			/*
5103 			 * The entire string consists only of a basename
5104 			 * component.  If we're looking for dirname, we need
5105 			 * to change our string to be just "."; if we're
5106 			 * looking for a basename, we'll just set the first
5107 			 * character of the basename to be 0.
5108 			 */
5109 			if (subr == DIF_SUBR_DIRNAME) {
5110 				ASSERT(lastdir == -1);
5111 				src = (uintptr_t)".";
5112 				lastdir = 0;
5113 			} else {
5114 				firstbase = 0;
5115 			}
5116 		}
5117 
5118 		if (subr == DIF_SUBR_DIRNAME) {
5119 			if (lastdir == -1) {
5120 				/*
5121 				 * We know that we have a slash in the name --
5122 				 * or lastdir would be set to 0, above.  And
5123 				 * because lastdir is -1, we know that this
5124 				 * slash must be the first character.  (That
5125 				 * is, the full string must be of the form
5126 				 * "/basename".)  In this case, the last
5127 				 * character of the directory name is 0.
5128 				 */
5129 				lastdir = 0;
5130 			}
5131 
5132 			start = 0;
5133 			end = lastdir;
5134 		} else {
5135 			ASSERT(subr == DIF_SUBR_BASENAME);
5136 			ASSERT(firstbase != -1 && lastbase != -1);
5137 			start = firstbase;
5138 			end = lastbase;
5139 		}
5140 
5141 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5142 			dest[j] = dtrace_load8(src + i);
5143 
5144 		dest[j] = '\0';
5145 		regs[rd] = (uintptr_t)dest;
5146 		mstate->dtms_scratch_ptr += size;
5147 		break;
5148 	}
5149 
5150 	case DIF_SUBR_GETF: {
5151 		uintptr_t fd = tupregs[0].dttk_value;
5152 		uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
5153 		file_t *fp;
5154 
5155 		if (!dtrace_priv_proc(state, mstate)) {
5156 			regs[rd] = NULL;
5157 			break;
5158 		}
5159 
5160 		/*
5161 		 * This is safe because fi_nfiles only increases, and the
5162 		 * fi_list array is not freed when the array size doubles.
5163 		 * (See the comment in flist_grow() for details on the
5164 		 * management of the u_finfo structure.)
5165 		 */
5166 		fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;
5167 
5168 		mstate->dtms_getf = fp;
5169 		regs[rd] = (uintptr_t)fp;
5170 		break;
5171 	}
5172 
5173 	case DIF_SUBR_CLEANPATH: {
5174 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5175 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5176 		uintptr_t src = tupregs[0].dttk_value;
5177 		int i = 0, j = 0;
5178 		zone_t *z;
5179 
5180 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
5181 			regs[rd] = NULL;
5182 			break;
5183 		}
5184 
5185 		if (!DTRACE_INSCRATCH(mstate, size)) {
5186 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5187 			regs[rd] = NULL;
5188 			break;
5189 		}
5190 
5191 		/*
5192 		 * Move forward, loading each character.
5193 		 */
5194 		do {
5195 			c = dtrace_load8(src + i++);
5196 next:
5197 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5198 				break;
5199 
5200 			if (c != '/') {
5201 				dest[j++] = c;
5202 				continue;
5203 			}
5204 
5205 			c = dtrace_load8(src + i++);
5206 
5207 			if (c == '/') {
5208 				/*
5209 				 * We have two slashes -- we can just advance
5210 				 * to the next character.
5211 				 */
5212 				goto next;
5213 			}
5214 
5215 			if (c != '.') {
5216 				/*
5217 				 * This is not "." and it's not ".." -- we can
5218 				 * just store the "/" and this character and
5219 				 * drive on.
5220 				 */
5221 				dest[j++] = '/';
5222 				dest[j++] = c;
5223 				continue;
5224 			}
5225 
5226 			c = dtrace_load8(src + i++);
5227 
5228 			if (c == '/') {
5229 				/*
5230 				 * This is a "/./" component.  We're not going
5231 				 * to store anything in the destination buffer;
5232 				 * we're just going to go to the next component.
5233 				 */
5234 				goto next;
5235 			}
5236 
5237 			if (c != '.') {
5238 				/*
5239 				 * This is not ".." -- we can just store the
5240 				 * "/." and this character and continue
5241 				 * processing.
5242 				 */
5243 				dest[j++] = '/';
5244 				dest[j++] = '.';
5245 				dest[j++] = c;
5246 				continue;
5247 			}
5248 
5249 			c = dtrace_load8(src + i++);
5250 
5251 			if (c != '/' && c != '\0') {
5252 				/*
5253 				 * This is not ".." -- it's "..[mumble]".
5254 				 * We'll store the "/.." and this character
5255 				 * and continue processing.
5256 				 */
5257 				dest[j++] = '/';
5258 				dest[j++] = '.';
5259 				dest[j++] = '.';
5260 				dest[j++] = c;
5261 				continue;
5262 			}
5263 
5264 			/*
5265 			 * This is "/../" or "/..\0".  We need to back up
5266 			 * our destination pointer until we find a "/".
5267 			 */
5268 			i--;
5269 			while (j != 0 && dest[--j] != '/')
5270 				continue;
5271 
5272 			if (c == '\0')
5273 				dest[++j] = '/';
5274 		} while (c != '\0');
5275 
5276 		dest[j] = '\0';
5277 
5278 		if (mstate->dtms_getf != NULL &&
5279 		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5280 		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5281 			/*
5282 			 * If we've done a getf() as a part of this ECB and we
5283 			 * don't have kernel access (and we're not in the global
5284 			 * zone), check if the path we cleaned up begins with
5285 			 * the zone's root path, and trim it off if so.  Note
5286 			 * that this is an output cleanliness issue, not a
5287 			 * security issue: knowing one's zone root path does
5288 			 * not enable privilege escalation.
5289 			 */
5290 			if (strstr(dest, z->zone_rootpath) == dest)
5291 				dest += strlen(z->zone_rootpath) - 1;
5292 		}
5293 
5294 		regs[rd] = (uintptr_t)dest;
5295 		mstate->dtms_scratch_ptr += size;
5296 		break;
5297 	}
5298 
5299 	case DIF_SUBR_INET_NTOA:
5300 	case DIF_SUBR_INET_NTOA6:
5301 	case DIF_SUBR_INET_NTOP: {
5302 		size_t size;
5303 		int af, argi, i;
5304 		char *base, *end;
5305 
5306 		if (subr == DIF_SUBR_INET_NTOP) {
5307 			af = (int)tupregs[0].dttk_value;
5308 			argi = 1;
5309 		} else {
5310 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5311 			argi = 0;
5312 		}
5313 
5314 		if (af == AF_INET) {
5315 			ipaddr_t ip4;
5316 			uint8_t *ptr8, val;
5317 
5318 			/*
5319 			 * Safely load the IPv4 address.
5320 			 */
5321 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5322 
5323 			/*
5324 			 * Check an IPv4 string will fit in scratch.
5325 			 */
5326 			size = INET_ADDRSTRLEN;
5327 			if (!DTRACE_INSCRATCH(mstate, size)) {
5328 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5329 				regs[rd] = NULL;
5330 				break;
5331 			}
5332 			base = (char *)mstate->dtms_scratch_ptr;
5333 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5334 
5335 			/*
5336 			 * Stringify as a dotted decimal quad.
5337 			 */
5338 			*end-- = '\0';
5339 			ptr8 = (uint8_t *)&ip4;
5340 			for (i = 3; i >= 0; i--) {
5341 				val = ptr8[i];
5342 
5343 				if (val == 0) {
5344 					*end-- = '0';
5345 				} else {
5346 					for (; val; val /= 10) {
5347 						*end-- = '0' + (val % 10);
5348 					}
5349 				}
5350 
5351 				if (i > 0)
5352 					*end-- = '.';
5353 			}
5354 			ASSERT(end + 1 >= base);
5355 
5356 		} else if (af == AF_INET6) {
5357 			struct in6_addr ip6;
5358 			int firstzero, tryzero, numzero, v6end;
5359 			uint16_t val;
5360 			const char digits[] = "0123456789abcdef";
5361 
5362 			/*
5363 			 * Stringify using RFC 1884 convention 2 - 16 bit
5364 			 * hexadecimal values with a zero-run compression.
5365 			 * Lower case hexadecimal digits are used.
5366 			 * 	eg, fe80::214:4fff:fe0b:76c8.
5367 			 * The IPv4 embedded form is returned for inet_ntop,
5368 			 * just the IPv4 string is returned for inet_ntoa6.
5369 			 */
5370 
5371 			/*
5372 			 * Safely load the IPv6 address.
5373 			 */
5374 			dtrace_bcopy(
5375 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5376 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5377 
5378 			/*
5379 			 * Check an IPv6 string will fit in scratch.
5380 			 */
5381 			size = INET6_ADDRSTRLEN;
5382 			if (!DTRACE_INSCRATCH(mstate, size)) {
5383 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5384 				regs[rd] = NULL;
5385 				break;
5386 			}
5387 			base = (char *)mstate->dtms_scratch_ptr;
5388 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5389 			*end-- = '\0';
5390 
5391 			/*
5392 			 * Find the longest run of 16 bit zero values
5393 			 * for the single allowed zero compression - "::".
5394 			 */
5395 			firstzero = -1;
5396 			tryzero = -1;
5397 			numzero = 1;
5398 			for (i = 0; i < sizeof (struct in6_addr); i++) {
5399 				if (ip6._S6_un._S6_u8[i] == 0 &&
5400 				    tryzero == -1 && i % 2 == 0) {
5401 					tryzero = i;
5402 					continue;
5403 				}
5404 
5405 				if (tryzero != -1 &&
5406 				    (ip6._S6_un._S6_u8[i] != 0 ||
5407 				    i == sizeof (struct in6_addr) - 1)) {
5408 
5409 					if (i - tryzero <= numzero) {
5410 						tryzero = -1;
5411 						continue;
5412 					}
5413 
5414 					firstzero = tryzero;
5415 					numzero = i - i % 2 - tryzero;
5416 					tryzero = -1;
5417 
5418 					if (ip6._S6_un._S6_u8[i] == 0 &&
5419 					    i == sizeof (struct in6_addr) - 1)
5420 						numzero += 2;
5421 				}
5422 			}
5423 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5424 
5425 			/*
5426 			 * Check for an IPv4 embedded address.
5427 			 */
5428 			v6end = sizeof (struct in6_addr) - 2;
5429 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5430 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5431 				for (i = sizeof (struct in6_addr) - 1;
5432 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5433 					ASSERT(end >= base);
5434 
5435 					val = ip6._S6_un._S6_u8[i];
5436 
5437 					if (val == 0) {
5438 						*end-- = '0';
5439 					} else {
5440 						for (; val; val /= 10) {
5441 							*end-- = '0' + val % 10;
5442 						}
5443 					}
5444 
5445 					if (i > DTRACE_V4MAPPED_OFFSET)
5446 						*end-- = '.';
5447 				}
5448 
5449 				if (subr == DIF_SUBR_INET_NTOA6)
5450 					goto inetout;
5451 
5452 				/*
5453 				 * Set v6end to skip the IPv4 address that
5454 				 * we have already stringified.
5455 				 */
5456 				v6end = 10;
5457 			}
5458 
5459 			/*
5460 			 * Build the IPv6 string by working through the
5461 			 * address in reverse.
5462 			 */
5463 			for (i = v6end; i >= 0; i -= 2) {
5464 				ASSERT(end >= base);
5465 
5466 				if (i == firstzero + numzero - 2) {
5467 					*end-- = ':';
5468 					*end-- = ':';
5469 					i -= numzero - 2;
5470 					continue;
5471 				}
5472 
5473 				if (i < 14 && i != firstzero - 2)
5474 					*end-- = ':';
5475 
5476 				val = (ip6._S6_un._S6_u8[i] << 8) +
5477 				    ip6._S6_un._S6_u8[i + 1];
5478 
5479 				if (val == 0) {
5480 					*end-- = '0';
5481 				} else {
5482 					for (; val; val /= 16) {
5483 						*end-- = digits[val % 16];
5484 					}
5485 				}
5486 			}
5487 			ASSERT(end + 1 >= base);
5488 
5489 		} else {
5490 			/*
5491 			 * The user didn't use AH_INET or AH_INET6.
5492 			 */
5493 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5494 			regs[rd] = NULL;
5495 			break;
5496 		}
5497 
5498 inetout:	regs[rd] = (uintptr_t)end + 1;
5499 		mstate->dtms_scratch_ptr += size;
5500 		break;
5501 	}
5502 
5503 	}
5504 }
5505 
5506 /*
5507  * Emulate the execution of DTrace IR instructions specified by the given
5508  * DIF object.  This function is deliberately void of assertions as all of
5509  * the necessary checks are handled by a call to dtrace_difo_validate().
5510  */
5511 static uint64_t
5512 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5513     dtrace_vstate_t *vstate, dtrace_state_t *state)
5514 {
5515 	const dif_instr_t *text = difo->dtdo_buf;
5516 	const uint_t textlen = difo->dtdo_len;
5517 	const char *strtab = difo->dtdo_strtab;
5518 	const uint64_t *inttab = difo->dtdo_inttab;
5519 
5520 	uint64_t rval = 0;
5521 	dtrace_statvar_t *svar;
5522 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5523 	dtrace_difv_t *v;
5524 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5525 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
5526 
5527 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5528 	uint64_t regs[DIF_DIR_NREGS];
5529 	uint64_t *tmp;
5530 
5531 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5532 	int64_t cc_r;
5533 	uint_t pc = 0, id, opc;
5534 	uint8_t ttop = 0;
5535 	dif_instr_t instr;
5536 	uint_t r1, r2, rd;
5537 
5538 	/*
5539 	 * We stash the current DIF object into the machine state: we need it
5540 	 * for subsequent access checking.
5541 	 */
5542 	mstate->dtms_difo = difo;
5543 
5544 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
5545 
5546 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5547 		opc = pc;
5548 
5549 		instr = text[pc++];
5550 		r1 = DIF_INSTR_R1(instr);
5551 		r2 = DIF_INSTR_R2(instr);
5552 		rd = DIF_INSTR_RD(instr);
5553 
5554 		switch (DIF_INSTR_OP(instr)) {
5555 		case DIF_OP_OR:
5556 			regs[rd] = regs[r1] | regs[r2];
5557 			break;
5558 		case DIF_OP_XOR:
5559 			regs[rd] = regs[r1] ^ regs[r2];
5560 			break;
5561 		case DIF_OP_AND:
5562 			regs[rd] = regs[r1] & regs[r2];
5563 			break;
5564 		case DIF_OP_SLL:
5565 			regs[rd] = regs[r1] << regs[r2];
5566 			break;
5567 		case DIF_OP_SRL:
5568 			regs[rd] = regs[r1] >> regs[r2];
5569 			break;
5570 		case DIF_OP_SUB:
5571 			regs[rd] = regs[r1] - regs[r2];
5572 			break;
5573 		case DIF_OP_ADD:
5574 			regs[rd] = regs[r1] + regs[r2];
5575 			break;
5576 		case DIF_OP_MUL:
5577 			regs[rd] = regs[r1] * regs[r2];
5578 			break;
5579 		case DIF_OP_SDIV:
5580 			if (regs[r2] == 0) {
5581 				regs[rd] = 0;
5582 				*flags |= CPU_DTRACE_DIVZERO;
5583 			} else {
5584 				regs[rd] = (int64_t)regs[r1] /
5585 				    (int64_t)regs[r2];
5586 			}
5587 			break;
5588 
5589 		case DIF_OP_UDIV:
5590 			if (regs[r2] == 0) {
5591 				regs[rd] = 0;
5592 				*flags |= CPU_DTRACE_DIVZERO;
5593 			} else {
5594 				regs[rd] = regs[r1] / regs[r2];
5595 			}
5596 			break;
5597 
5598 		case DIF_OP_SREM:
5599 			if (regs[r2] == 0) {
5600 				regs[rd] = 0;
5601 				*flags |= CPU_DTRACE_DIVZERO;
5602 			} else {
5603 				regs[rd] = (int64_t)regs[r1] %
5604 				    (int64_t)regs[r2];
5605 			}
5606 			break;
5607 
5608 		case DIF_OP_UREM:
5609 			if (regs[r2] == 0) {
5610 				regs[rd] = 0;
5611 				*flags |= CPU_DTRACE_DIVZERO;
5612 			} else {
5613 				regs[rd] = regs[r1] % regs[r2];
5614 			}
5615 			break;
5616 
5617 		case DIF_OP_NOT:
5618 			regs[rd] = ~regs[r1];
5619 			break;
5620 		case DIF_OP_MOV:
5621 			regs[rd] = regs[r1];
5622 			break;
5623 		case DIF_OP_CMP:
5624 			cc_r = regs[r1] - regs[r2];
5625 			cc_n = cc_r < 0;
5626 			cc_z = cc_r == 0;
5627 			cc_v = 0;
5628 			cc_c = regs[r1] < regs[r2];
5629 			break;
5630 		case DIF_OP_TST:
5631 			cc_n = cc_v = cc_c = 0;
5632 			cc_z = regs[r1] == 0;
5633 			break;
5634 		case DIF_OP_BA:
5635 			pc = DIF_INSTR_LABEL(instr);
5636 			break;
5637 		case DIF_OP_BE:
5638 			if (cc_z)
5639 				pc = DIF_INSTR_LABEL(instr);
5640 			break;
5641 		case DIF_OP_BNE:
5642 			if (cc_z == 0)
5643 				pc = DIF_INSTR_LABEL(instr);
5644 			break;
5645 		case DIF_OP_BG:
5646 			if ((cc_z | (cc_n ^ cc_v)) == 0)
5647 				pc = DIF_INSTR_LABEL(instr);
5648 			break;
5649 		case DIF_OP_BGU:
5650 			if ((cc_c | cc_z) == 0)
5651 				pc = DIF_INSTR_LABEL(instr);
5652 			break;
5653 		case DIF_OP_BGE:
5654 			if ((cc_n ^ cc_v) == 0)
5655 				pc = DIF_INSTR_LABEL(instr);
5656 			break;
5657 		case DIF_OP_BGEU:
5658 			if (cc_c == 0)
5659 				pc = DIF_INSTR_LABEL(instr);
5660 			break;
5661 		case DIF_OP_BL:
5662 			if (cc_n ^ cc_v)
5663 				pc = DIF_INSTR_LABEL(instr);
5664 			break;
5665 		case DIF_OP_BLU:
5666 			if (cc_c)
5667 				pc = DIF_INSTR_LABEL(instr);
5668 			break;
5669 		case DIF_OP_BLE:
5670 			if (cc_z | (cc_n ^ cc_v))
5671 				pc = DIF_INSTR_LABEL(instr);
5672 			break;
5673 		case DIF_OP_BLEU:
5674 			if (cc_c | cc_z)
5675 				pc = DIF_INSTR_LABEL(instr);
5676 			break;
5677 		case DIF_OP_RLDSB:
5678 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5679 				break;
5680 			/*FALLTHROUGH*/
5681 		case DIF_OP_LDSB:
5682 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5683 			break;
5684 		case DIF_OP_RLDSH:
5685 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5686 				break;
5687 			/*FALLTHROUGH*/
5688 		case DIF_OP_LDSH:
5689 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5690 			break;
5691 		case DIF_OP_RLDSW:
5692 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5693 				break;
5694 			/*FALLTHROUGH*/
5695 		case DIF_OP_LDSW:
5696 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5697 			break;
5698 		case DIF_OP_RLDUB:
5699 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5700 				break;
5701 			/*FALLTHROUGH*/
5702 		case DIF_OP_LDUB:
5703 			regs[rd] = dtrace_load8(regs[r1]);
5704 			break;
5705 		case DIF_OP_RLDUH:
5706 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5707 				break;
5708 			/*FALLTHROUGH*/
5709 		case DIF_OP_LDUH:
5710 			regs[rd] = dtrace_load16(regs[r1]);
5711 			break;
5712 		case DIF_OP_RLDUW:
5713 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5714 				break;
5715 			/*FALLTHROUGH*/
5716 		case DIF_OP_LDUW:
5717 			regs[rd] = dtrace_load32(regs[r1]);
5718 			break;
5719 		case DIF_OP_RLDX:
5720 			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5721 				break;
5722 			/*FALLTHROUGH*/
5723 		case DIF_OP_LDX:
5724 			regs[rd] = dtrace_load64(regs[r1]);
5725 			break;
5726 		case DIF_OP_ULDSB:
5727 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5728 			regs[rd] = (int8_t)
5729 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5730 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5731 			break;
5732 		case DIF_OP_ULDSH:
5733 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5734 			regs[rd] = (int16_t)
5735 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5736 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5737 			break;
5738 		case DIF_OP_ULDSW:
5739 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5740 			regs[rd] = (int32_t)
5741 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5742 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5743 			break;
5744 		case DIF_OP_ULDUB:
5745 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5746 			regs[rd] =
5747 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5748 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5749 			break;
5750 		case DIF_OP_ULDUH:
5751 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5752 			regs[rd] =
5753 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5754 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5755 			break;
5756 		case DIF_OP_ULDUW:
5757 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5758 			regs[rd] =
5759 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5760 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5761 			break;
5762 		case DIF_OP_ULDX:
5763 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5764 			regs[rd] =
5765 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5766 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5767 			break;
5768 		case DIF_OP_RET:
5769 			rval = regs[rd];
5770 			pc = textlen;
5771 			break;
5772 		case DIF_OP_NOP:
5773 			break;
5774 		case DIF_OP_SETX:
5775 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5776 			break;
5777 		case DIF_OP_SETS:
5778 			regs[rd] = (uint64_t)(uintptr_t)
5779 			    (strtab + DIF_INSTR_STRING(instr));
5780 			break;
5781 		case DIF_OP_SCMP: {
5782 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5783 			uintptr_t s1 = regs[r1];
5784 			uintptr_t s2 = regs[r2];
5785 
5786 			if (s1 != NULL &&
5787 			    !dtrace_strcanload(s1, sz, mstate, vstate))
5788 				break;
5789 			if (s2 != NULL &&
5790 			    !dtrace_strcanload(s2, sz, mstate, vstate))
5791 				break;
5792 
5793 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5794 
5795 			cc_n = cc_r < 0;
5796 			cc_z = cc_r == 0;
5797 			cc_v = cc_c = 0;
5798 			break;
5799 		}
5800 		case DIF_OP_LDGA:
5801 			regs[rd] = dtrace_dif_variable(mstate, state,
5802 			    r1, regs[r2]);
5803 			break;
5804 		case DIF_OP_LDGS:
5805 			id = DIF_INSTR_VAR(instr);
5806 
5807 			if (id >= DIF_VAR_OTHER_UBASE) {
5808 				uintptr_t a;
5809 
5810 				id -= DIF_VAR_OTHER_UBASE;
5811 				svar = vstate->dtvs_globals[id];
5812 				ASSERT(svar != NULL);
5813 				v = &svar->dtsv_var;
5814 
5815 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5816 					regs[rd] = svar->dtsv_data;
5817 					break;
5818 				}
5819 
5820 				a = (uintptr_t)svar->dtsv_data;
5821 
5822 				if (*(uint8_t *)a == UINT8_MAX) {
5823 					/*
5824 					 * If the 0th byte is set to UINT8_MAX
5825 					 * then this is to be treated as a
5826 					 * reference to a NULL variable.
5827 					 */
5828 					regs[rd] = NULL;
5829 				} else {
5830 					regs[rd] = a + sizeof (uint64_t);
5831 				}
5832 
5833 				break;
5834 			}
5835 
5836 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5837 			break;
5838 
5839 		case DIF_OP_STGS:
5840 			id = DIF_INSTR_VAR(instr);
5841 
5842 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5843 			id -= DIF_VAR_OTHER_UBASE;
5844 
5845 			svar = vstate->dtvs_globals[id];
5846 			ASSERT(svar != NULL);
5847 			v = &svar->dtsv_var;
5848 
5849 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5850 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5851 
5852 				ASSERT(a != NULL);
5853 				ASSERT(svar->dtsv_size != 0);
5854 
5855 				if (regs[rd] == NULL) {
5856 					*(uint8_t *)a = UINT8_MAX;
5857 					break;
5858 				} else {
5859 					*(uint8_t *)a = 0;
5860 					a += sizeof (uint64_t);
5861 				}
5862 				if (!dtrace_vcanload(
5863 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5864 				    mstate, vstate))
5865 					break;
5866 
5867 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5868 				    (void *)a, &v->dtdv_type);
5869 				break;
5870 			}
5871 
5872 			svar->dtsv_data = regs[rd];
5873 			break;
5874 
5875 		case DIF_OP_LDTA:
5876 			/*
5877 			 * There are no DTrace built-in thread-local arrays at
5878 			 * present.  This opcode is saved for future work.
5879 			 */
5880 			*flags |= CPU_DTRACE_ILLOP;
5881 			regs[rd] = 0;
5882 			break;
5883 
5884 		case DIF_OP_LDLS:
5885 			id = DIF_INSTR_VAR(instr);
5886 
5887 			if (id < DIF_VAR_OTHER_UBASE) {
5888 				/*
5889 				 * For now, this has no meaning.
5890 				 */
5891 				regs[rd] = 0;
5892 				break;
5893 			}
5894 
5895 			id -= DIF_VAR_OTHER_UBASE;
5896 
5897 			ASSERT(id < vstate->dtvs_nlocals);
5898 			ASSERT(vstate->dtvs_locals != NULL);
5899 
5900 			svar = vstate->dtvs_locals[id];
5901 			ASSERT(svar != NULL);
5902 			v = &svar->dtsv_var;
5903 
5904 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5905 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5906 				size_t sz = v->dtdv_type.dtdt_size;
5907 
5908 				sz += sizeof (uint64_t);
5909 				ASSERT(svar->dtsv_size == NCPU * sz);
5910 				a += CPU->cpu_id * sz;
5911 
5912 				if (*(uint8_t *)a == UINT8_MAX) {
5913 					/*
5914 					 * If the 0th byte is set to UINT8_MAX
5915 					 * then this is to be treated as a
5916 					 * reference to a NULL variable.
5917 					 */
5918 					regs[rd] = NULL;
5919 				} else {
5920 					regs[rd] = a + sizeof (uint64_t);
5921 				}
5922 
5923 				break;
5924 			}
5925 
5926 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5927 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5928 			regs[rd] = tmp[CPU->cpu_id];
5929 			break;
5930 
5931 		case DIF_OP_STLS:
5932 			id = DIF_INSTR_VAR(instr);
5933 
5934 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5935 			id -= DIF_VAR_OTHER_UBASE;
5936 			ASSERT(id < vstate->dtvs_nlocals);
5937 
5938 			ASSERT(vstate->dtvs_locals != NULL);
5939 			svar = vstate->dtvs_locals[id];
5940 			ASSERT(svar != NULL);
5941 			v = &svar->dtsv_var;
5942 
5943 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5944 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5945 				size_t sz = v->dtdv_type.dtdt_size;
5946 
5947 				sz += sizeof (uint64_t);
5948 				ASSERT(svar->dtsv_size == NCPU * sz);
5949 				a += CPU->cpu_id * sz;
5950 
5951 				if (regs[rd] == NULL) {
5952 					*(uint8_t *)a = UINT8_MAX;
5953 					break;
5954 				} else {
5955 					*(uint8_t *)a = 0;
5956 					a += sizeof (uint64_t);
5957 				}
5958 
5959 				if (!dtrace_vcanload(
5960 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5961 				    mstate, vstate))
5962 					break;
5963 
5964 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5965 				    (void *)a, &v->dtdv_type);
5966 				break;
5967 			}
5968 
5969 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5970 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5971 			tmp[CPU->cpu_id] = regs[rd];
5972 			break;
5973 
5974 		case DIF_OP_LDTS: {
5975 			dtrace_dynvar_t *dvar;
5976 			dtrace_key_t *key;
5977 
5978 			id = DIF_INSTR_VAR(instr);
5979 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5980 			id -= DIF_VAR_OTHER_UBASE;
5981 			v = &vstate->dtvs_tlocals[id];
5982 
5983 			key = &tupregs[DIF_DTR_NREGS];
5984 			key[0].dttk_value = (uint64_t)id;
5985 			key[0].dttk_size = 0;
5986 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5987 			key[1].dttk_size = 0;
5988 
5989 			dvar = dtrace_dynvar(dstate, 2, key,
5990 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5991 			    mstate, vstate);
5992 
5993 			if (dvar == NULL) {
5994 				regs[rd] = 0;
5995 				break;
5996 			}
5997 
5998 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5999 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6000 			} else {
6001 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6002 			}
6003 
6004 			break;
6005 		}
6006 
6007 		case DIF_OP_STTS: {
6008 			dtrace_dynvar_t *dvar;
6009 			dtrace_key_t *key;
6010 
6011 			id = DIF_INSTR_VAR(instr);
6012 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6013 			id -= DIF_VAR_OTHER_UBASE;
6014 
6015 			key = &tupregs[DIF_DTR_NREGS];
6016 			key[0].dttk_value = (uint64_t)id;
6017 			key[0].dttk_size = 0;
6018 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6019 			key[1].dttk_size = 0;
6020 			v = &vstate->dtvs_tlocals[id];
6021 
6022 			dvar = dtrace_dynvar(dstate, 2, key,
6023 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6024 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6025 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6026 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6027 
6028 			/*
6029 			 * Given that we're storing to thread-local data,
6030 			 * we need to flush our predicate cache.
6031 			 */
6032 			curthread->t_predcache = NULL;
6033 
6034 			if (dvar == NULL)
6035 				break;
6036 
6037 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6038 				if (!dtrace_vcanload(
6039 				    (void *)(uintptr_t)regs[rd],
6040 				    &v->dtdv_type, mstate, vstate))
6041 					break;
6042 
6043 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6044 				    dvar->dtdv_data, &v->dtdv_type);
6045 			} else {
6046 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6047 			}
6048 
6049 			break;
6050 		}
6051 
6052 		case DIF_OP_SRA:
6053 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6054 			break;
6055 
6056 		case DIF_OP_CALL:
6057 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6058 			    regs, tupregs, ttop, mstate, state);
6059 			break;
6060 
6061 		case DIF_OP_PUSHTR:
6062 			if (ttop == DIF_DTR_NREGS) {
6063 				*flags |= CPU_DTRACE_TUPOFLOW;
6064 				break;
6065 			}
6066 
6067 			if (r1 == DIF_TYPE_STRING) {
6068 				/*
6069 				 * If this is a string type and the size is 0,
6070 				 * we'll use the system-wide default string
6071 				 * size.  Note that we are _not_ looking at
6072 				 * the value of the DTRACEOPT_STRSIZE option;
6073 				 * had this been set, we would expect to have
6074 				 * a non-zero size value in the "pushtr".
6075 				 */
6076 				tupregs[ttop].dttk_size =
6077 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6078 				    regs[r2] ? regs[r2] :
6079 				    dtrace_strsize_default) + 1;
6080 			} else {
6081 				tupregs[ttop].dttk_size = regs[r2];
6082 			}
6083 
6084 			tupregs[ttop++].dttk_value = regs[rd];
6085 			break;
6086 
6087 		case DIF_OP_PUSHTV:
6088 			if (ttop == DIF_DTR_NREGS) {
6089 				*flags |= CPU_DTRACE_TUPOFLOW;
6090 				break;
6091 			}
6092 
6093 			tupregs[ttop].dttk_value = regs[rd];
6094 			tupregs[ttop++].dttk_size = 0;
6095 			break;
6096 
6097 		case DIF_OP_POPTS:
6098 			if (ttop != 0)
6099 				ttop--;
6100 			break;
6101 
6102 		case DIF_OP_FLUSHTS:
6103 			ttop = 0;
6104 			break;
6105 
6106 		case DIF_OP_LDGAA:
6107 		case DIF_OP_LDTAA: {
6108 			dtrace_dynvar_t *dvar;
6109 			dtrace_key_t *key = tupregs;
6110 			uint_t nkeys = ttop;
6111 
6112 			id = DIF_INSTR_VAR(instr);
6113 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6114 			id -= DIF_VAR_OTHER_UBASE;
6115 
6116 			key[nkeys].dttk_value = (uint64_t)id;
6117 			key[nkeys++].dttk_size = 0;
6118 
6119 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6120 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6121 				key[nkeys++].dttk_size = 0;
6122 				v = &vstate->dtvs_tlocals[id];
6123 			} else {
6124 				v = &vstate->dtvs_globals[id]->dtsv_var;
6125 			}
6126 
6127 			dvar = dtrace_dynvar(dstate, nkeys, key,
6128 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6129 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6130 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6131 
6132 			if (dvar == NULL) {
6133 				regs[rd] = 0;
6134 				break;
6135 			}
6136 
6137 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6138 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6139 			} else {
6140 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6141 			}
6142 
6143 			break;
6144 		}
6145 
6146 		case DIF_OP_STGAA:
6147 		case DIF_OP_STTAA: {
6148 			dtrace_dynvar_t *dvar;
6149 			dtrace_key_t *key = tupregs;
6150 			uint_t nkeys = ttop;
6151 
6152 			id = DIF_INSTR_VAR(instr);
6153 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6154 			id -= DIF_VAR_OTHER_UBASE;
6155 
6156 			key[nkeys].dttk_value = (uint64_t)id;
6157 			key[nkeys++].dttk_size = 0;
6158 
6159 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6160 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6161 				key[nkeys++].dttk_size = 0;
6162 				v = &vstate->dtvs_tlocals[id];
6163 			} else {
6164 				v = &vstate->dtvs_globals[id]->dtsv_var;
6165 			}
6166 
6167 			dvar = dtrace_dynvar(dstate, nkeys, key,
6168 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6169 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6170 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6171 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6172 
6173 			if (dvar == NULL)
6174 				break;
6175 
6176 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6177 				if (!dtrace_vcanload(
6178 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6179 				    mstate, vstate))
6180 					break;
6181 
6182 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6183 				    dvar->dtdv_data, &v->dtdv_type);
6184 			} else {
6185 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6186 			}
6187 
6188 			break;
6189 		}
6190 
6191 		case DIF_OP_ALLOCS: {
6192 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6193 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6194 
6195 			/*
6196 			 * Rounding up the user allocation size could have
6197 			 * overflowed large, bogus allocations (like -1ULL) to
6198 			 * 0.
6199 			 */
6200 			if (size < regs[r1] ||
6201 			    !DTRACE_INSCRATCH(mstate, size)) {
6202 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6203 				regs[rd] = NULL;
6204 				break;
6205 			}
6206 
6207 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6208 			mstate->dtms_scratch_ptr += size;
6209 			regs[rd] = ptr;
6210 			break;
6211 		}
6212 
6213 		case DIF_OP_COPYS:
6214 			if (!dtrace_canstore(regs[rd], regs[r2],
6215 			    mstate, vstate)) {
6216 				*flags |= CPU_DTRACE_BADADDR;
6217 				*illval = regs[rd];
6218 				break;
6219 			}
6220 
6221 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6222 				break;
6223 
6224 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6225 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6226 			break;
6227 
6228 		case DIF_OP_STB:
6229 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6230 				*flags |= CPU_DTRACE_BADADDR;
6231 				*illval = regs[rd];
6232 				break;
6233 			}
6234 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6235 			break;
6236 
6237 		case DIF_OP_STH:
6238 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6239 				*flags |= CPU_DTRACE_BADADDR;
6240 				*illval = regs[rd];
6241 				break;
6242 			}
6243 			if (regs[rd] & 1) {
6244 				*flags |= CPU_DTRACE_BADALIGN;
6245 				*illval = regs[rd];
6246 				break;
6247 			}
6248 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6249 			break;
6250 
6251 		case DIF_OP_STW:
6252 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6253 				*flags |= CPU_DTRACE_BADADDR;
6254 				*illval = regs[rd];
6255 				break;
6256 			}
6257 			if (regs[rd] & 3) {
6258 				*flags |= CPU_DTRACE_BADALIGN;
6259 				*illval = regs[rd];
6260 				break;
6261 			}
6262 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6263 			break;
6264 
6265 		case DIF_OP_STX:
6266 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6267 				*flags |= CPU_DTRACE_BADADDR;
6268 				*illval = regs[rd];
6269 				break;
6270 			}
6271 			if (regs[rd] & 7) {
6272 				*flags |= CPU_DTRACE_BADALIGN;
6273 				*illval = regs[rd];
6274 				break;
6275 			}
6276 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6277 			break;
6278 		}
6279 	}
6280 
6281 	if (!(*flags & CPU_DTRACE_FAULT))
6282 		return (rval);
6283 
6284 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6285 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6286 
6287 	return (0);
6288 }
6289 
6290 static void
6291 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6292 {
6293 	dtrace_probe_t *probe = ecb->dte_probe;
6294 	dtrace_provider_t *prov = probe->dtpr_provider;
6295 	char c[DTRACE_FULLNAMELEN + 80], *str;
6296 	char *msg = "dtrace: breakpoint action at probe ";
6297 	char *ecbmsg = " (ecb ";
6298 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6299 	uintptr_t val = (uintptr_t)ecb;
6300 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6301 
6302 	if (dtrace_destructive_disallow)
6303 		return;
6304 
6305 	/*
6306 	 * It's impossible to be taking action on the NULL probe.
6307 	 */
6308 	ASSERT(probe != NULL);
6309 
6310 	/*
6311 	 * This is a poor man's (destitute man's?) sprintf():  we want to
6312 	 * print the provider name, module name, function name and name of
6313 	 * the probe, along with the hex address of the ECB with the breakpoint
6314 	 * action -- all of which we must place in the character buffer by
6315 	 * hand.
6316 	 */
6317 	while (*msg != '\0')
6318 		c[i++] = *msg++;
6319 
6320 	for (str = prov->dtpv_name; *str != '\0'; str++)
6321 		c[i++] = *str;
6322 	c[i++] = ':';
6323 
6324 	for (str = probe->dtpr_mod; *str != '\0'; str++)
6325 		c[i++] = *str;
6326 	c[i++] = ':';
6327 
6328 	for (str = probe->dtpr_func; *str != '\0'; str++)
6329 		c[i++] = *str;
6330 	c[i++] = ':';
6331 
6332 	for (str = probe->dtpr_name; *str != '\0'; str++)
6333 		c[i++] = *str;
6334 
6335 	while (*ecbmsg != '\0')
6336 		c[i++] = *ecbmsg++;
6337 
6338 	while (shift >= 0) {
6339 		mask = (uintptr_t)0xf << shift;
6340 
6341 		if (val >= ((uintptr_t)1 << shift))
6342 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6343 		shift -= 4;
6344 	}
6345 
6346 	c[i++] = ')';
6347 	c[i] = '\0';
6348 
6349 	debug_enter(c);
6350 }
6351 
6352 static void
6353 dtrace_action_panic(dtrace_ecb_t *ecb)
6354 {
6355 	dtrace_probe_t *probe = ecb->dte_probe;
6356 
6357 	/*
6358 	 * It's impossible to be taking action on the NULL probe.
6359 	 */
6360 	ASSERT(probe != NULL);
6361 
6362 	if (dtrace_destructive_disallow)
6363 		return;
6364 
6365 	if (dtrace_panicked != NULL)
6366 		return;
6367 
6368 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6369 		return;
6370 
6371 	/*
6372 	 * We won the right to panic.  (We want to be sure that only one
6373 	 * thread calls panic() from dtrace_probe(), and that panic() is
6374 	 * called exactly once.)
6375 	 */
6376 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6377 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6378 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6379 }
6380 
6381 static void
6382 dtrace_action_raise(uint64_t sig)
6383 {
6384 	if (dtrace_destructive_disallow)
6385 		return;
6386 
6387 	if (sig >= NSIG) {
6388 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6389 		return;
6390 	}
6391 
6392 	/*
6393 	 * raise() has a queue depth of 1 -- we ignore all subsequent
6394 	 * invocations of the raise() action.
6395 	 */
6396 	if (curthread->t_dtrace_sig == 0)
6397 		curthread->t_dtrace_sig = (uint8_t)sig;
6398 
6399 	curthread->t_sig_check = 1;
6400 	aston(curthread);
6401 }
6402 
6403 static void
6404 dtrace_action_stop(void)
6405 {
6406 	if (dtrace_destructive_disallow)
6407 		return;
6408 
6409 	if (!curthread->t_dtrace_stop) {
6410 		curthread->t_dtrace_stop = 1;
6411 		curthread->t_sig_check = 1;
6412 		aston(curthread);
6413 	}
6414 }
6415 
6416 static void
6417 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6418 {
6419 	hrtime_t now;
6420 	volatile uint16_t *flags;
6421 	cpu_t *cpu = CPU;
6422 
6423 	if (dtrace_destructive_disallow)
6424 		return;
6425 
6426 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
6427 
6428 	now = dtrace_gethrtime();
6429 
6430 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6431 		/*
6432 		 * We need to advance the mark to the current time.
6433 		 */
6434 		cpu->cpu_dtrace_chillmark = now;
6435 		cpu->cpu_dtrace_chilled = 0;
6436 	}
6437 
6438 	/*
6439 	 * Now check to see if the requested chill time would take us over
6440 	 * the maximum amount of time allowed in the chill interval.  (Or
6441 	 * worse, if the calculation itself induces overflow.)
6442 	 */
6443 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6444 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6445 		*flags |= CPU_DTRACE_ILLOP;
6446 		return;
6447 	}
6448 
6449 	while (dtrace_gethrtime() - now < val)
6450 		continue;
6451 
6452 	/*
6453 	 * Normally, we assure that the value of the variable "timestamp" does
6454 	 * not change within an ECB.  The presence of chill() represents an
6455 	 * exception to this rule, however.
6456 	 */
6457 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6458 	cpu->cpu_dtrace_chilled += val;
6459 }
6460 
6461 static void
6462 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6463     uint64_t *buf, uint64_t arg)
6464 {
6465 	int nframes = DTRACE_USTACK_NFRAMES(arg);
6466 	int strsize = DTRACE_USTACK_STRSIZE(arg);
6467 	uint64_t *pcs = &buf[1], *fps;
6468 	char *str = (char *)&pcs[nframes];
6469 	int size, offs = 0, i, j;
6470 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
6471 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6472 	char *sym;
6473 
6474 	/*
6475 	 * Should be taking a faster path if string space has not been
6476 	 * allocated.
6477 	 */
6478 	ASSERT(strsize != 0);
6479 
6480 	/*
6481 	 * We will first allocate some temporary space for the frame pointers.
6482 	 */
6483 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6484 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6485 	    (nframes * sizeof (uint64_t));
6486 
6487 	if (!DTRACE_INSCRATCH(mstate, size)) {
6488 		/*
6489 		 * Not enough room for our frame pointers -- need to indicate
6490 		 * that we ran out of scratch space.
6491 		 */
6492 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6493 		return;
6494 	}
6495 
6496 	mstate->dtms_scratch_ptr += size;
6497 	saved = mstate->dtms_scratch_ptr;
6498 
6499 	/*
6500 	 * Now get a stack with both program counters and frame pointers.
6501 	 */
6502 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6503 	dtrace_getufpstack(buf, fps, nframes + 1);
6504 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6505 
6506 	/*
6507 	 * If that faulted, we're cooked.
6508 	 */
6509 	if (*flags & CPU_DTRACE_FAULT)
6510 		goto out;
6511 
6512 	/*
6513 	 * Now we want to walk up the stack, calling the USTACK helper.  For
6514 	 * each iteration, we restore the scratch pointer.
6515 	 */
6516 	for (i = 0; i < nframes; i++) {
6517 		mstate->dtms_scratch_ptr = saved;
6518 
6519 		if (offs >= strsize)
6520 			break;
6521 
6522 		sym = (char *)(uintptr_t)dtrace_helper(
6523 		    DTRACE_HELPER_ACTION_USTACK,
6524 		    mstate, state, pcs[i], fps[i]);
6525 
6526 		/*
6527 		 * If we faulted while running the helper, we're going to
6528 		 * clear the fault and null out the corresponding string.
6529 		 */
6530 		if (*flags & CPU_DTRACE_FAULT) {
6531 			*flags &= ~CPU_DTRACE_FAULT;
6532 			str[offs++] = '\0';
6533 			continue;
6534 		}
6535 
6536 		if (sym == NULL) {
6537 			str[offs++] = '\0';
6538 			continue;
6539 		}
6540 
6541 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6542 
6543 		/*
6544 		 * Now copy in the string that the helper returned to us.
6545 		 */
6546 		for (j = 0; offs + j < strsize; j++) {
6547 			if ((str[offs + j] = sym[j]) == '\0')
6548 				break;
6549 		}
6550 
6551 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6552 
6553 		offs += j + 1;
6554 	}
6555 
6556 	if (offs >= strsize) {
6557 		/*
6558 		 * If we didn't have room for all of the strings, we don't
6559 		 * abort processing -- this needn't be a fatal error -- but we
6560 		 * still want to increment a counter (dts_stkstroverflows) to
6561 		 * allow this condition to be warned about.  (If this is from
6562 		 * a jstack() action, it is easily tuned via jstackstrsize.)
6563 		 */
6564 		dtrace_error(&state->dts_stkstroverflows);
6565 	}
6566 
6567 	while (offs < strsize)
6568 		str[offs++] = '\0';
6569 
6570 out:
6571 	mstate->dtms_scratch_ptr = old;
6572 }
6573 
6574 static void
6575 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6576     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6577 {
6578 	volatile uint16_t *flags;
6579 	uint64_t val = *valp;
6580 	size_t valoffs = *valoffsp;
6581 
6582 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6583 	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6584 
6585 	/*
6586 	 * If this is a string, we're going to only load until we find the zero
6587 	 * byte -- after which we'll store zero bytes.
6588 	 */
6589 	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6590 		char c = '\0' + 1;
6591 		size_t s;
6592 
6593 		for (s = 0; s < size; s++) {
6594 			if (c != '\0' && dtkind == DIF_TF_BYREF) {
6595 				c = dtrace_load8(val++);
6596 			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6597 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6598 				c = dtrace_fuword8((void *)(uintptr_t)val++);
6599 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6600 				if (*flags & CPU_DTRACE_FAULT)
6601 					break;
6602 			}
6603 
6604 			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
6605 
6606 			if (c == '\0' && intuple)
6607 				break;
6608 		}
6609 	} else {
6610 		uint8_t c;
6611 		while (valoffs < end) {
6612 			if (dtkind == DIF_TF_BYREF) {
6613 				c = dtrace_load8(val++);
6614 			} else if (dtkind == DIF_TF_BYUREF) {
6615 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6616 				c = dtrace_fuword8((void *)(uintptr_t)val++);
6617 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6618 				if (*flags & CPU_DTRACE_FAULT)
6619 					break;
6620 			}
6621 
6622 			DTRACE_STORE(uint8_t, tomax,
6623 			    valoffs++, c);
6624 		}
6625 	}
6626 
6627 	*valp = val;
6628 	*valoffsp = valoffs;
6629 }
6630 
6631 /*
6632  * If you're looking for the epicenter of DTrace, you just found it.  This
6633  * is the function called by the provider to fire a probe -- from which all
6634  * subsequent probe-context DTrace activity emanates.
6635  */
6636 void
6637 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6638     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6639 {
6640 	processorid_t cpuid;
6641 	dtrace_icookie_t cookie;
6642 	dtrace_probe_t *probe;
6643 	dtrace_mstate_t mstate;
6644 	dtrace_ecb_t *ecb;
6645 	dtrace_action_t *act;
6646 	intptr_t offs;
6647 	size_t size;
6648 	int vtime, onintr;
6649 	volatile uint16_t *flags;
6650 	hrtime_t now, end;
6651 
6652 	/*
6653 	 * Kick out immediately if this CPU is still being born (in which case
6654 	 * curthread will be set to -1) or the current thread can't allow
6655 	 * probes in its current context.
6656 	 */
6657 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6658 		return;
6659 
6660 	cookie = dtrace_interrupt_disable();
6661 	probe = dtrace_probes[id - 1];
6662 	cpuid = CPU->cpu_id;
6663 	onintr = CPU_ON_INTR(CPU);
6664 
6665 	CPU->cpu_dtrace_probes++;
6666 
6667 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6668 	    probe->dtpr_predcache == curthread->t_predcache) {
6669 		/*
6670 		 * We have hit in the predicate cache; we know that
6671 		 * this predicate would evaluate to be false.
6672 		 */
6673 		dtrace_interrupt_enable(cookie);
6674 		return;
6675 	}
6676 
6677 	if (panic_quiesce) {
6678 		/*
6679 		 * We don't trace anything if we're panicking.
6680 		 */
6681 		dtrace_interrupt_enable(cookie);
6682 		return;
6683 	}
6684 
6685 	now = dtrace_gethrtime();
6686 	vtime = dtrace_vtime_references != 0;
6687 
6688 	if (vtime && curthread->t_dtrace_start)
6689 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6690 
6691 	mstate.dtms_difo = NULL;
6692 	mstate.dtms_probe = probe;
6693 	mstate.dtms_strtok = NULL;
6694 	mstate.dtms_arg[0] = arg0;
6695 	mstate.dtms_arg[1] = arg1;
6696 	mstate.dtms_arg[2] = arg2;
6697 	mstate.dtms_arg[3] = arg3;
6698 	mstate.dtms_arg[4] = arg4;
6699 
6700 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6701 
6702 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6703 		dtrace_predicate_t *pred = ecb->dte_predicate;
6704 		dtrace_state_t *state = ecb->dte_state;
6705 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6706 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6707 		dtrace_vstate_t *vstate = &state->dts_vstate;
6708 		dtrace_provider_t *prov = probe->dtpr_provider;
6709 		uint64_t tracememsize = 0;
6710 		int committed = 0;
6711 		caddr_t tomax;
6712 
6713 		/*
6714 		 * A little subtlety with the following (seemingly innocuous)
6715 		 * declaration of the automatic 'val':  by looking at the
6716 		 * code, you might think that it could be declared in the
6717 		 * action processing loop, below.  (That is, it's only used in
6718 		 * the action processing loop.)  However, it must be declared
6719 		 * out of that scope because in the case of DIF expression
6720 		 * arguments to aggregating actions, one iteration of the
6721 		 * action loop will use the last iteration's value.
6722 		 */
6723 #ifdef lint
6724 		uint64_t val = 0;
6725 #else
6726 		uint64_t val;
6727 #endif
6728 
6729 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6730 		mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
6731 		mstate.dtms_getf = NULL;
6732 
6733 		*flags &= ~CPU_DTRACE_ERROR;
6734 
6735 		if (prov == dtrace_provider) {
6736 			/*
6737 			 * If dtrace itself is the provider of this probe,
6738 			 * we're only going to continue processing the ECB if
6739 			 * arg0 (the dtrace_state_t) is equal to the ECB's
6740 			 * creating state.  (This prevents disjoint consumers
6741 			 * from seeing one another's metaprobes.)
6742 			 */
6743 			if (arg0 != (uint64_t)(uintptr_t)state)
6744 				continue;
6745 		}
6746 
6747 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6748 			/*
6749 			 * We're not currently active.  If our provider isn't
6750 			 * the dtrace pseudo provider, we're not interested.
6751 			 */
6752 			if (prov != dtrace_provider)
6753 				continue;
6754 
6755 			/*
6756 			 * Now we must further check if we are in the BEGIN
6757 			 * probe.  If we are, we will only continue processing
6758 			 * if we're still in WARMUP -- if one BEGIN enabling
6759 			 * has invoked the exit() action, we don't want to
6760 			 * evaluate subsequent BEGIN enablings.
6761 			 */
6762 			if (probe->dtpr_id == dtrace_probeid_begin &&
6763 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6764 				ASSERT(state->dts_activity ==
6765 				    DTRACE_ACTIVITY_DRAINING);
6766 				continue;
6767 			}
6768 		}
6769 
6770 		if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
6771 			continue;
6772 
6773 		if (now - state->dts_alive > dtrace_deadman_timeout) {
6774 			/*
6775 			 * We seem to be dead.  Unless we (a) have kernel
6776 			 * destructive permissions (b) have explicitly enabled
6777 			 * destructive actions and (c) destructive actions have
6778 			 * not been disabled, we're going to transition into
6779 			 * the KILLED state, from which no further processing
6780 			 * on this state will be performed.
6781 			 */
6782 			if (!dtrace_priv_kernel_destructive(state) ||
6783 			    !state->dts_cred.dcr_destructive ||
6784 			    dtrace_destructive_disallow) {
6785 				void *activity = &state->dts_activity;
6786 				dtrace_activity_t current;
6787 
6788 				do {
6789 					current = state->dts_activity;
6790 				} while (dtrace_cas32(activity, current,
6791 				    DTRACE_ACTIVITY_KILLED) != current);
6792 
6793 				continue;
6794 			}
6795 		}
6796 
6797 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6798 		    ecb->dte_alignment, state, &mstate)) < 0)
6799 			continue;
6800 
6801 		tomax = buf->dtb_tomax;
6802 		ASSERT(tomax != NULL);
6803 
6804 		if (ecb->dte_size != 0) {
6805 			dtrace_rechdr_t dtrh;
6806 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6807 				mstate.dtms_timestamp = dtrace_gethrtime();
6808 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6809 			}
6810 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6811 			dtrh.dtrh_epid = ecb->dte_epid;
6812 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6813 			    mstate.dtms_timestamp);
6814 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6815 		}
6816 
6817 		mstate.dtms_epid = ecb->dte_epid;
6818 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6819 
6820 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6821 			mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
6822 
6823 		if (pred != NULL) {
6824 			dtrace_difo_t *dp = pred->dtp_difo;
6825 			int rval;
6826 
6827 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6828 
6829 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6830 				dtrace_cacheid_t cid = probe->dtpr_predcache;
6831 
6832 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6833 					/*
6834 					 * Update the predicate cache...
6835 					 */
6836 					ASSERT(cid == pred->dtp_cacheid);
6837 					curthread->t_predcache = cid;
6838 				}
6839 
6840 				continue;
6841 			}
6842 		}
6843 
6844 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6845 		    act != NULL; act = act->dta_next) {
6846 			size_t valoffs;
6847 			dtrace_difo_t *dp;
6848 			dtrace_recdesc_t *rec = &act->dta_rec;
6849 
6850 			size = rec->dtrd_size;
6851 			valoffs = offs + rec->dtrd_offset;
6852 
6853 			if (DTRACEACT_ISAGG(act->dta_kind)) {
6854 				uint64_t v = 0xbad;
6855 				dtrace_aggregation_t *agg;
6856 
6857 				agg = (dtrace_aggregation_t *)act;
6858 
6859 				if ((dp = act->dta_difo) != NULL)
6860 					v = dtrace_dif_emulate(dp,
6861 					    &mstate, vstate, state);
6862 
6863 				if (*flags & CPU_DTRACE_ERROR)
6864 					continue;
6865 
6866 				/*
6867 				 * Note that we always pass the expression
6868 				 * value from the previous iteration of the
6869 				 * action loop.  This value will only be used
6870 				 * if there is an expression argument to the
6871 				 * aggregating action, denoted by the
6872 				 * dtag_hasarg field.
6873 				 */
6874 				dtrace_aggregate(agg, buf,
6875 				    offs, aggbuf, v, val);
6876 				continue;
6877 			}
6878 
6879 			switch (act->dta_kind) {
6880 			case DTRACEACT_STOP:
6881 				if (dtrace_priv_proc_destructive(state,
6882 				    &mstate))
6883 					dtrace_action_stop();
6884 				continue;
6885 
6886 			case DTRACEACT_BREAKPOINT:
6887 				if (dtrace_priv_kernel_destructive(state))
6888 					dtrace_action_breakpoint(ecb);
6889 				continue;
6890 
6891 			case DTRACEACT_PANIC:
6892 				if (dtrace_priv_kernel_destructive(state))
6893 					dtrace_action_panic(ecb);
6894 				continue;
6895 
6896 			case DTRACEACT_STACK:
6897 				if (!dtrace_priv_kernel(state))
6898 					continue;
6899 
6900 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6901 				    size / sizeof (pc_t), probe->dtpr_aframes,
6902 				    DTRACE_ANCHORED(probe) ? NULL :
6903 				    (uint32_t *)arg0);
6904 
6905 				continue;
6906 
6907 			case DTRACEACT_JSTACK:
6908 			case DTRACEACT_USTACK:
6909 				if (!dtrace_priv_proc(state, &mstate))
6910 					continue;
6911 
6912 				/*
6913 				 * See comment in DIF_VAR_PID.
6914 				 */
6915 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6916 				    CPU_ON_INTR(CPU)) {
6917 					int depth = DTRACE_USTACK_NFRAMES(
6918 					    rec->dtrd_arg) + 1;
6919 
6920 					dtrace_bzero((void *)(tomax + valoffs),
6921 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6922 					    + depth * sizeof (uint64_t));
6923 
6924 					continue;
6925 				}
6926 
6927 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6928 				    curproc->p_dtrace_helpers != NULL) {
6929 					/*
6930 					 * This is the slow path -- we have
6931 					 * allocated string space, and we're
6932 					 * getting the stack of a process that
6933 					 * has helpers.  Call into a separate
6934 					 * routine to perform this processing.
6935 					 */
6936 					dtrace_action_ustack(&mstate, state,
6937 					    (uint64_t *)(tomax + valoffs),
6938 					    rec->dtrd_arg);
6939 					continue;
6940 				}
6941 
6942 				/*
6943 				 * Clear the string space, since there's no
6944 				 * helper to do it for us.
6945 				 */
6946 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
6947 					int depth = DTRACE_USTACK_NFRAMES(
6948 					    rec->dtrd_arg);
6949 					size_t strsize = DTRACE_USTACK_STRSIZE(
6950 					    rec->dtrd_arg);
6951 					uint64_t *buf = (uint64_t *)(tomax +
6952 					    valoffs);
6953 					void *strspace = &buf[depth + 1];
6954 
6955 					dtrace_bzero(strspace,
6956 					    MIN(depth, strsize));
6957 				}
6958 
6959 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6960 				dtrace_getupcstack((uint64_t *)
6961 				    (tomax + valoffs),
6962 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6963 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6964 				continue;
6965 
6966 			default:
6967 				break;
6968 			}
6969 
6970 			dp = act->dta_difo;
6971 			ASSERT(dp != NULL);
6972 
6973 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6974 
6975 			if (*flags & CPU_DTRACE_ERROR)
6976 				continue;
6977 
6978 			switch (act->dta_kind) {
6979 			case DTRACEACT_SPECULATE: {
6980 				dtrace_rechdr_t *dtrh;
6981 
6982 				ASSERT(buf == &state->dts_buffer[cpuid]);
6983 				buf = dtrace_speculation_buffer(state,
6984 				    cpuid, val);
6985 
6986 				if (buf == NULL) {
6987 					*flags |= CPU_DTRACE_DROP;
6988 					continue;
6989 				}
6990 
6991 				offs = dtrace_buffer_reserve(buf,
6992 				    ecb->dte_needed, ecb->dte_alignment,
6993 				    state, NULL);
6994 
6995 				if (offs < 0) {
6996 					*flags |= CPU_DTRACE_DROP;
6997 					continue;
6998 				}
6999 
7000 				tomax = buf->dtb_tomax;
7001 				ASSERT(tomax != NULL);
7002 
7003 				if (ecb->dte_size == 0)
7004 					continue;
7005 
7006 				ASSERT3U(ecb->dte_size, >=,
7007 				    sizeof (dtrace_rechdr_t));
7008 				dtrh = ((void *)(tomax + offs));
7009 				dtrh->dtrh_epid = ecb->dte_epid;
7010 				/*
7011 				 * When the speculation is committed, all of
7012 				 * the records in the speculative buffer will
7013 				 * have their timestamps set to the commit
7014 				 * time.  Until then, it is set to a sentinel
7015 				 * value, for debugability.
7016 				 */
7017 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7018 				continue;
7019 			}
7020 
7021 			case DTRACEACT_CHILL:
7022 				if (dtrace_priv_kernel_destructive(state))
7023 					dtrace_action_chill(&mstate, val);
7024 				continue;
7025 
7026 			case DTRACEACT_RAISE:
7027 				if (dtrace_priv_proc_destructive(state,
7028 				    &mstate))
7029 					dtrace_action_raise(val);
7030 				continue;
7031 
7032 			case DTRACEACT_COMMIT:
7033 				ASSERT(!committed);
7034 
7035 				/*
7036 				 * We need to commit our buffer state.
7037 				 */
7038 				if (ecb->dte_size)
7039 					buf->dtb_offset = offs + ecb->dte_size;
7040 				buf = &state->dts_buffer[cpuid];
7041 				dtrace_speculation_commit(state, cpuid, val);
7042 				committed = 1;
7043 				continue;
7044 
7045 			case DTRACEACT_DISCARD:
7046 				dtrace_speculation_discard(state, cpuid, val);
7047 				continue;
7048 
7049 			case DTRACEACT_DIFEXPR:
7050 			case DTRACEACT_LIBACT:
7051 			case DTRACEACT_PRINTF:
7052 			case DTRACEACT_PRINTA:
7053 			case DTRACEACT_SYSTEM:
7054 			case DTRACEACT_FREOPEN:
7055 			case DTRACEACT_TRACEMEM:
7056 				break;
7057 
7058 			case DTRACEACT_TRACEMEM_DYNSIZE:
7059 				tracememsize = val;
7060 				break;
7061 
7062 			case DTRACEACT_SYM:
7063 			case DTRACEACT_MOD:
7064 				if (!dtrace_priv_kernel(state))
7065 					continue;
7066 				break;
7067 
7068 			case DTRACEACT_USYM:
7069 			case DTRACEACT_UMOD:
7070 			case DTRACEACT_UADDR: {
7071 				struct pid *pid = curthread->t_procp->p_pidp;
7072 
7073 				if (!dtrace_priv_proc(state, &mstate))
7074 					continue;
7075 
7076 				DTRACE_STORE(uint64_t, tomax,
7077 				    valoffs, (uint64_t)pid->pid_id);
7078 				DTRACE_STORE(uint64_t, tomax,
7079 				    valoffs + sizeof (uint64_t), val);
7080 
7081 				continue;
7082 			}
7083 
7084 			case DTRACEACT_EXIT: {
7085 				/*
7086 				 * For the exit action, we are going to attempt
7087 				 * to atomically set our activity to be
7088 				 * draining.  If this fails (either because
7089 				 * another CPU has beat us to the exit action,
7090 				 * or because our current activity is something
7091 				 * other than ACTIVE or WARMUP), we will
7092 				 * continue.  This assures that the exit action
7093 				 * can be successfully recorded at most once
7094 				 * when we're in the ACTIVE state.  If we're
7095 				 * encountering the exit() action while in
7096 				 * COOLDOWN, however, we want to honor the new
7097 				 * status code.  (We know that we're the only
7098 				 * thread in COOLDOWN, so there is no race.)
7099 				 */
7100 				void *activity = &state->dts_activity;
7101 				dtrace_activity_t current = state->dts_activity;
7102 
7103 				if (current == DTRACE_ACTIVITY_COOLDOWN)
7104 					break;
7105 
7106 				if (current != DTRACE_ACTIVITY_WARMUP)
7107 					current = DTRACE_ACTIVITY_ACTIVE;
7108 
7109 				if (dtrace_cas32(activity, current,
7110 				    DTRACE_ACTIVITY_DRAINING) != current) {
7111 					*flags |= CPU_DTRACE_DROP;
7112 					continue;
7113 				}
7114 
7115 				break;
7116 			}
7117 
7118 			default:
7119 				ASSERT(0);
7120 			}
7121 
7122 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7123 			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7124 				uintptr_t end = valoffs + size;
7125 
7126 				if (tracememsize != 0 &&
7127 				    valoffs + tracememsize < end) {
7128 					end = valoffs + tracememsize;
7129 					tracememsize = 0;
7130 				}
7131 
7132 				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7133 				    !dtrace_vcanload((void *)(uintptr_t)val,
7134 				    &dp->dtdo_rtype, &mstate, vstate))
7135 					continue;
7136 
7137 				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7138 				    &val, end, act->dta_intuple,
7139 				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7140 				    DIF_TF_BYREF: DIF_TF_BYUREF);
7141 				continue;
7142 			}
7143 
7144 			switch (size) {
7145 			case 0:
7146 				break;
7147 
7148 			case sizeof (uint8_t):
7149 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7150 				break;
7151 			case sizeof (uint16_t):
7152 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7153 				break;
7154 			case sizeof (uint32_t):
7155 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7156 				break;
7157 			case sizeof (uint64_t):
7158 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7159 				break;
7160 			default:
7161 				/*
7162 				 * Any other size should have been returned by
7163 				 * reference, not by value.
7164 				 */
7165 				ASSERT(0);
7166 				break;
7167 			}
7168 		}
7169 
7170 		if (*flags & CPU_DTRACE_DROP)
7171 			continue;
7172 
7173 		if (*flags & CPU_DTRACE_FAULT) {
7174 			int ndx;
7175 			dtrace_action_t *err;
7176 
7177 			buf->dtb_errors++;
7178 
7179 			if (probe->dtpr_id == dtrace_probeid_error) {
7180 				/*
7181 				 * There's nothing we can do -- we had an
7182 				 * error on the error probe.  We bump an
7183 				 * error counter to at least indicate that
7184 				 * this condition happened.
7185 				 */
7186 				dtrace_error(&state->dts_dblerrors);
7187 				continue;
7188 			}
7189 
7190 			if (vtime) {
7191 				/*
7192 				 * Before recursing on dtrace_probe(), we
7193 				 * need to explicitly clear out our start
7194 				 * time to prevent it from being accumulated
7195 				 * into t_dtrace_vtime.
7196 				 */
7197 				curthread->t_dtrace_start = 0;
7198 			}
7199 
7200 			/*
7201 			 * Iterate over the actions to figure out which action
7202 			 * we were processing when we experienced the error.
7203 			 * Note that act points _past_ the faulting action; if
7204 			 * act is ecb->dte_action, the fault was in the
7205 			 * predicate, if it's ecb->dte_action->dta_next it's
7206 			 * in action #1, and so on.
7207 			 */
7208 			for (err = ecb->dte_action, ndx = 0;
7209 			    err != act; err = err->dta_next, ndx++)
7210 				continue;
7211 
7212 			dtrace_probe_error(state, ecb->dte_epid, ndx,
7213 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7214 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7215 			    cpu_core[cpuid].cpuc_dtrace_illval);
7216 
7217 			continue;
7218 		}
7219 
7220 		if (!committed)
7221 			buf->dtb_offset = offs + ecb->dte_size;
7222 	}
7223 
7224 	end = dtrace_gethrtime();
7225 	if (vtime)
7226 		curthread->t_dtrace_start = end;
7227 
7228 	CPU->cpu_dtrace_nsec += end - now;
7229 
7230 	dtrace_interrupt_enable(cookie);
7231 }
7232 
7233 /*
7234  * DTrace Probe Hashing Functions
7235  *
7236  * The functions in this section (and indeed, the functions in remaining
7237  * sections) are not _called_ from probe context.  (Any exceptions to this are
7238  * marked with a "Note:".)  Rather, they are called from elsewhere in the
7239  * DTrace framework to look-up probes in, add probes to and remove probes from
7240  * the DTrace probe hashes.  (Each probe is hashed by each element of the
7241  * probe tuple -- allowing for fast lookups, regardless of what was
7242  * specified.)
7243  */
7244 static uint_t
7245 dtrace_hash_str(char *p)
7246 {
7247 	unsigned int g;
7248 	uint_t hval = 0;
7249 
7250 	while (*p) {
7251 		hval = (hval << 4) + *p++;
7252 		if ((g = (hval & 0xf0000000)) != 0)
7253 			hval ^= g >> 24;
7254 		hval &= ~g;
7255 	}
7256 	return (hval);
7257 }
7258 
7259 static dtrace_hash_t *
7260 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7261 {
7262 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7263 
7264 	hash->dth_stroffs = stroffs;
7265 	hash->dth_nextoffs = nextoffs;
7266 	hash->dth_prevoffs = prevoffs;
7267 
7268 	hash->dth_size = 1;
7269 	hash->dth_mask = hash->dth_size - 1;
7270 
7271 	hash->dth_tab = kmem_zalloc(hash->dth_size *
7272 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7273 
7274 	return (hash);
7275 }
7276 
7277 static void
7278 dtrace_hash_destroy(dtrace_hash_t *hash)
7279 {
7280 #ifdef DEBUG
7281 	int i;
7282 
7283 	for (i = 0; i < hash->dth_size; i++)
7284 		ASSERT(hash->dth_tab[i] == NULL);
7285 #endif
7286 
7287 	kmem_free(hash->dth_tab,
7288 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
7289 	kmem_free(hash, sizeof (dtrace_hash_t));
7290 }
7291 
7292 static void
7293 dtrace_hash_resize(dtrace_hash_t *hash)
7294 {
7295 	int size = hash->dth_size, i, ndx;
7296 	int new_size = hash->dth_size << 1;
7297 	int new_mask = new_size - 1;
7298 	dtrace_hashbucket_t **new_tab, *bucket, *next;
7299 
7300 	ASSERT((new_size & new_mask) == 0);
7301 
7302 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7303 
7304 	for (i = 0; i < size; i++) {
7305 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7306 			dtrace_probe_t *probe = bucket->dthb_chain;
7307 
7308 			ASSERT(probe != NULL);
7309 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7310 
7311 			next = bucket->dthb_next;
7312 			bucket->dthb_next = new_tab[ndx];
7313 			new_tab[ndx] = bucket;
7314 		}
7315 	}
7316 
7317 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7318 	hash->dth_tab = new_tab;
7319 	hash->dth_size = new_size;
7320 	hash->dth_mask = new_mask;
7321 }
7322 
7323 static void
7324 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7325 {
7326 	int hashval = DTRACE_HASHSTR(hash, new);
7327 	int ndx = hashval & hash->dth_mask;
7328 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7329 	dtrace_probe_t **nextp, **prevp;
7330 
7331 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7332 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7333 			goto add;
7334 	}
7335 
7336 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7337 		dtrace_hash_resize(hash);
7338 		dtrace_hash_add(hash, new);
7339 		return;
7340 	}
7341 
7342 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7343 	bucket->dthb_next = hash->dth_tab[ndx];
7344 	hash->dth_tab[ndx] = bucket;
7345 	hash->dth_nbuckets++;
7346 
7347 add:
7348 	nextp = DTRACE_HASHNEXT(hash, new);
7349 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7350 	*nextp = bucket->dthb_chain;
7351 
7352 	if (bucket->dthb_chain != NULL) {
7353 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7354 		ASSERT(*prevp == NULL);
7355 		*prevp = new;
7356 	}
7357 
7358 	bucket->dthb_chain = new;
7359 	bucket->dthb_len++;
7360 }
7361 
7362 static dtrace_probe_t *
7363 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7364 {
7365 	int hashval = DTRACE_HASHSTR(hash, template);
7366 	int ndx = hashval & hash->dth_mask;
7367 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7368 
7369 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7370 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7371 			return (bucket->dthb_chain);
7372 	}
7373 
7374 	return (NULL);
7375 }
7376 
7377 static int
7378 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7379 {
7380 	int hashval = DTRACE_HASHSTR(hash, template);
7381 	int ndx = hashval & hash->dth_mask;
7382 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7383 
7384 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7385 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7386 			return (bucket->dthb_len);
7387 	}
7388 
7389 	return (NULL);
7390 }
7391 
7392 static void
7393 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7394 {
7395 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7396 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7397 
7398 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7399 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7400 
7401 	/*
7402 	 * Find the bucket that we're removing this probe from.
7403 	 */
7404 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7405 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7406 			break;
7407 	}
7408 
7409 	ASSERT(bucket != NULL);
7410 
7411 	if (*prevp == NULL) {
7412 		if (*nextp == NULL) {
7413 			/*
7414 			 * The removed probe was the only probe on this
7415 			 * bucket; we need to remove the bucket.
7416 			 */
7417 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7418 
7419 			ASSERT(bucket->dthb_chain == probe);
7420 			ASSERT(b != NULL);
7421 
7422 			if (b == bucket) {
7423 				hash->dth_tab[ndx] = bucket->dthb_next;
7424 			} else {
7425 				while (b->dthb_next != bucket)
7426 					b = b->dthb_next;
7427 				b->dthb_next = bucket->dthb_next;
7428 			}
7429 
7430 			ASSERT(hash->dth_nbuckets > 0);
7431 			hash->dth_nbuckets--;
7432 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7433 			return;
7434 		}
7435 
7436 		bucket->dthb_chain = *nextp;
7437 	} else {
7438 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7439 	}
7440 
7441 	if (*nextp != NULL)
7442 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7443 }
7444 
7445 /*
7446  * DTrace Utility Functions
7447  *
7448  * These are random utility functions that are _not_ called from probe context.
7449  */
7450 static int
7451 dtrace_badattr(const dtrace_attribute_t *a)
7452 {
7453 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
7454 	    a->dtat_data > DTRACE_STABILITY_MAX ||
7455 	    a->dtat_class > DTRACE_CLASS_MAX);
7456 }
7457 
7458 /*
7459  * Return a duplicate copy of a string.  If the specified string is NULL,
7460  * this function returns a zero-length string.
7461  */
7462 static char *
7463 dtrace_strdup(const char *str)
7464 {
7465 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7466 
7467 	if (str != NULL)
7468 		(void) strcpy(new, str);
7469 
7470 	return (new);
7471 }
7472 
7473 #define	DTRACE_ISALPHA(c)	\
7474 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7475 
7476 static int
7477 dtrace_badname(const char *s)
7478 {
7479 	char c;
7480 
7481 	if (s == NULL || (c = *s++) == '\0')
7482 		return (0);
7483 
7484 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7485 		return (1);
7486 
7487 	while ((c = *s++) != '\0') {
7488 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7489 		    c != '-' && c != '_' && c != '.' && c != '`')
7490 			return (1);
7491 	}
7492 
7493 	return (0);
7494 }
7495 
7496 static void
7497 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7498 {
7499 	uint32_t priv;
7500 
7501 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7502 		/*
7503 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7504 		 */
7505 		priv = DTRACE_PRIV_ALL;
7506 	} else {
7507 		*uidp = crgetuid(cr);
7508 		*zoneidp = crgetzoneid(cr);
7509 
7510 		priv = 0;
7511 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7512 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7513 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7514 			priv |= DTRACE_PRIV_USER;
7515 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7516 			priv |= DTRACE_PRIV_PROC;
7517 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7518 			priv |= DTRACE_PRIV_OWNER;
7519 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7520 			priv |= DTRACE_PRIV_ZONEOWNER;
7521 	}
7522 
7523 	*privp = priv;
7524 }
7525 
7526 #ifdef DTRACE_ERRDEBUG
7527 static void
7528 dtrace_errdebug(const char *str)
7529 {
7530 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
7531 	int occupied = 0;
7532 
7533 	mutex_enter(&dtrace_errlock);
7534 	dtrace_errlast = str;
7535 	dtrace_errthread = curthread;
7536 
7537 	while (occupied++ < DTRACE_ERRHASHSZ) {
7538 		if (dtrace_errhash[hval].dter_msg == str) {
7539 			dtrace_errhash[hval].dter_count++;
7540 			goto out;
7541 		}
7542 
7543 		if (dtrace_errhash[hval].dter_msg != NULL) {
7544 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
7545 			continue;
7546 		}
7547 
7548 		dtrace_errhash[hval].dter_msg = str;
7549 		dtrace_errhash[hval].dter_count = 1;
7550 		goto out;
7551 	}
7552 
7553 	panic("dtrace: undersized error hash");
7554 out:
7555 	mutex_exit(&dtrace_errlock);
7556 }
7557 #endif
7558 
7559 /*
7560  * DTrace Matching Functions
7561  *
7562  * These functions are used to match groups of probes, given some elements of
7563  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7564  */
7565 static int
7566 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7567     zoneid_t zoneid)
7568 {
7569 	if (priv != DTRACE_PRIV_ALL) {
7570 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7571 		uint32_t match = priv & ppriv;
7572 
7573 		/*
7574 		 * No PRIV_DTRACE_* privileges...
7575 		 */
7576 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7577 		    DTRACE_PRIV_KERNEL)) == 0)
7578 			return (0);
7579 
7580 		/*
7581 		 * No matching bits, but there were bits to match...
7582 		 */
7583 		if (match == 0 && ppriv != 0)
7584 			return (0);
7585 
7586 		/*
7587 		 * Need to have permissions to the process, but don't...
7588 		 */
7589 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7590 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7591 			return (0);
7592 		}
7593 
7594 		/*
7595 		 * Need to be in the same zone unless we possess the
7596 		 * privilege to examine all zones.
7597 		 */
7598 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7599 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7600 			return (0);
7601 		}
7602 	}
7603 
7604 	return (1);
7605 }
7606 
7607 /*
7608  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7609  * consists of input pattern strings and an ops-vector to evaluate them.
7610  * This function returns >0 for match, 0 for no match, and <0 for error.
7611  */
7612 static int
7613 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7614     uint32_t priv, uid_t uid, zoneid_t zoneid)
7615 {
7616 	dtrace_provider_t *pvp = prp->dtpr_provider;
7617 	int rv;
7618 
7619 	if (pvp->dtpv_defunct)
7620 		return (0);
7621 
7622 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7623 		return (rv);
7624 
7625 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7626 		return (rv);
7627 
7628 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7629 		return (rv);
7630 
7631 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7632 		return (rv);
7633 
7634 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7635 		return (0);
7636 
7637 	return (rv);
7638 }
7639 
7640 /*
7641  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7642  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7643  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7644  * In addition, all of the recursion cases except for '*' matching have been
7645  * unwound.  For '*', we still implement recursive evaluation, but a depth
7646  * counter is maintained and matching is aborted if we recurse too deep.
7647  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7648  */
7649 static int
7650 dtrace_match_glob(const char *s, const char *p, int depth)
7651 {
7652 	const char *olds;
7653 	char s1, c;
7654 	int gs;
7655 
7656 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7657 		return (-1);
7658 
7659 	if (s == NULL)
7660 		s = ""; /* treat NULL as empty string */
7661 
7662 top:
7663 	olds = s;
7664 	s1 = *s++;
7665 
7666 	if (p == NULL)
7667 		return (0);
7668 
7669 	if ((c = *p++) == '\0')
7670 		return (s1 == '\0');
7671 
7672 	switch (c) {
7673 	case '[': {
7674 		int ok = 0, notflag = 0;
7675 		char lc = '\0';
7676 
7677 		if (s1 == '\0')
7678 			return (0);
7679 
7680 		if (*p == '!') {
7681 			notflag = 1;
7682 			p++;
7683 		}
7684 
7685 		if ((c = *p++) == '\0')
7686 			return (0);
7687 
7688 		do {
7689 			if (c == '-' && lc != '\0' && *p != ']') {
7690 				if ((c = *p++) == '\0')
7691 					return (0);
7692 				if (c == '\\' && (c = *p++) == '\0')
7693 					return (0);
7694 
7695 				if (notflag) {
7696 					if (s1 < lc || s1 > c)
7697 						ok++;
7698 					else
7699 						return (0);
7700 				} else if (lc <= s1 && s1 <= c)
7701 					ok++;
7702 
7703 			} else if (c == '\\' && (c = *p++) == '\0')
7704 				return (0);
7705 
7706 			lc = c; /* save left-hand 'c' for next iteration */
7707 
7708 			if (notflag) {
7709 				if (s1 != c)
7710 					ok++;
7711 				else
7712 					return (0);
7713 			} else if (s1 == c)
7714 				ok++;
7715 
7716 			if ((c = *p++) == '\0')
7717 				return (0);
7718 
7719 		} while (c != ']');
7720 
7721 		if (ok)
7722 			goto top;
7723 
7724 		return (0);
7725 	}
7726 
7727 	case '\\':
7728 		if ((c = *p++) == '\0')
7729 			return (0);
7730 		/*FALLTHRU*/
7731 
7732 	default:
7733 		if (c != s1)
7734 			return (0);
7735 		/*FALLTHRU*/
7736 
7737 	case '?':
7738 		if (s1 != '\0')
7739 			goto top;
7740 		return (0);
7741 
7742 	case '*':
7743 		while (*p == '*')
7744 			p++; /* consecutive *'s are identical to a single one */
7745 
7746 		if (*p == '\0')
7747 			return (1);
7748 
7749 		for (s = olds; *s != '\0'; s++) {
7750 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7751 				return (gs);
7752 		}
7753 
7754 		return (0);
7755 	}
7756 }
7757 
7758 /*ARGSUSED*/
7759 static int
7760 dtrace_match_string(const char *s, const char *p, int depth)
7761 {
7762 	return (s != NULL && strcmp(s, p) == 0);
7763 }
7764 
7765 /*ARGSUSED*/
7766 static int
7767 dtrace_match_nul(const char *s, const char *p, int depth)
7768 {
7769 	return (1); /* always match the empty pattern */
7770 }
7771 
7772 /*ARGSUSED*/
7773 static int
7774 dtrace_match_nonzero(const char *s, const char *p, int depth)
7775 {
7776 	return (s != NULL && s[0] != '\0');
7777 }
7778 
7779 static int
7780 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7781     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7782 {
7783 	dtrace_probe_t template, *probe;
7784 	dtrace_hash_t *hash = NULL;
7785 	int len, rc, best = INT_MAX, nmatched = 0;
7786 	dtrace_id_t i;
7787 
7788 	ASSERT(MUTEX_HELD(&dtrace_lock));
7789 
7790 	/*
7791 	 * If the probe ID is specified in the key, just lookup by ID and
7792 	 * invoke the match callback once if a matching probe is found.
7793 	 */
7794 	if (pkp->dtpk_id != DTRACE_IDNONE) {
7795 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7796 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7797 			if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
7798 				return (DTRACE_MATCH_FAIL);
7799 			nmatched++;
7800 		}
7801 		return (nmatched);
7802 	}
7803 
7804 	template.dtpr_mod = (char *)pkp->dtpk_mod;
7805 	template.dtpr_func = (char *)pkp->dtpk_func;
7806 	template.dtpr_name = (char *)pkp->dtpk_name;
7807 
7808 	/*
7809 	 * We want to find the most distinct of the module name, function
7810 	 * name, and name.  So for each one that is not a glob pattern or
7811 	 * empty string, we perform a lookup in the corresponding hash and
7812 	 * use the hash table with the fewest collisions to do our search.
7813 	 */
7814 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7815 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7816 		best = len;
7817 		hash = dtrace_bymod;
7818 	}
7819 
7820 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7821 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7822 		best = len;
7823 		hash = dtrace_byfunc;
7824 	}
7825 
7826 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7827 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7828 		best = len;
7829 		hash = dtrace_byname;
7830 	}
7831 
7832 	/*
7833 	 * If we did not select a hash table, iterate over every probe and
7834 	 * invoke our callback for each one that matches our input probe key.
7835 	 */
7836 	if (hash == NULL) {
7837 		for (i = 0; i < dtrace_nprobes; i++) {
7838 			if ((probe = dtrace_probes[i]) == NULL ||
7839 			    dtrace_match_probe(probe, pkp, priv, uid,
7840 			    zoneid) <= 0)
7841 				continue;
7842 
7843 			nmatched++;
7844 
7845 			if ((rc = (*matched)(probe, arg)) !=
7846 			    DTRACE_MATCH_NEXT) {
7847 				if (rc == DTRACE_MATCH_FAIL)
7848 					return (DTRACE_MATCH_FAIL);
7849 				break;
7850 			}
7851 		}
7852 
7853 		return (nmatched);
7854 	}
7855 
7856 	/*
7857 	 * If we selected a hash table, iterate over each probe of the same key
7858 	 * name and invoke the callback for every probe that matches the other
7859 	 * attributes of our input probe key.
7860 	 */
7861 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7862 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7863 
7864 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7865 			continue;
7866 
7867 		nmatched++;
7868 
7869 		if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7870 			if (rc == DTRACE_MATCH_FAIL)
7871 				return (DTRACE_MATCH_FAIL);
7872 			break;
7873 		}
7874 	}
7875 
7876 	return (nmatched);
7877 }
7878 
7879 /*
7880  * Return the function pointer dtrace_probecmp() should use to compare the
7881  * specified pattern with a string.  For NULL or empty patterns, we select
7882  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7883  * For non-empty non-glob strings, we use dtrace_match_string().
7884  */
7885 static dtrace_probekey_f *
7886 dtrace_probekey_func(const char *p)
7887 {
7888 	char c;
7889 
7890 	if (p == NULL || *p == '\0')
7891 		return (&dtrace_match_nul);
7892 
7893 	while ((c = *p++) != '\0') {
7894 		if (c == '[' || c == '?' || c == '*' || c == '\\')
7895 			return (&dtrace_match_glob);
7896 	}
7897 
7898 	return (&dtrace_match_string);
7899 }
7900 
7901 /*
7902  * Build a probe comparison key for use with dtrace_match_probe() from the
7903  * given probe description.  By convention, a null key only matches anchored
7904  * probes: if each field is the empty string, reset dtpk_fmatch to
7905  * dtrace_match_nonzero().
7906  */
7907 static void
7908 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7909 {
7910 	pkp->dtpk_prov = pdp->dtpd_provider;
7911 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7912 
7913 	pkp->dtpk_mod = pdp->dtpd_mod;
7914 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7915 
7916 	pkp->dtpk_func = pdp->dtpd_func;
7917 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7918 
7919 	pkp->dtpk_name = pdp->dtpd_name;
7920 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7921 
7922 	pkp->dtpk_id = pdp->dtpd_id;
7923 
7924 	if (pkp->dtpk_id == DTRACE_IDNONE &&
7925 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7926 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7927 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7928 	    pkp->dtpk_nmatch == &dtrace_match_nul)
7929 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7930 }
7931 
7932 /*
7933  * DTrace Provider-to-Framework API Functions
7934  *
7935  * These functions implement much of the Provider-to-Framework API, as
7936  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7937  * the functions in the API for probe management (found below), and
7938  * dtrace_probe() itself (found above).
7939  */
7940 
7941 /*
7942  * Register the calling provider with the DTrace framework.  This should
7943  * generally be called by DTrace providers in their attach(9E) entry point.
7944  */
7945 int
7946 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7947     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7948 {
7949 	dtrace_provider_t *provider;
7950 
7951 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7952 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7953 		    "arguments", name ? name : "<NULL>");
7954 		return (EINVAL);
7955 	}
7956 
7957 	if (name[0] == '\0' || dtrace_badname(name)) {
7958 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7959 		    "provider name", name);
7960 		return (EINVAL);
7961 	}
7962 
7963 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7964 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7965 	    pops->dtps_destroy == NULL ||
7966 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7967 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7968 		    "provider ops", name);
7969 		return (EINVAL);
7970 	}
7971 
7972 	if (dtrace_badattr(&pap->dtpa_provider) ||
7973 	    dtrace_badattr(&pap->dtpa_mod) ||
7974 	    dtrace_badattr(&pap->dtpa_func) ||
7975 	    dtrace_badattr(&pap->dtpa_name) ||
7976 	    dtrace_badattr(&pap->dtpa_args)) {
7977 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7978 		    "provider attributes", name);
7979 		return (EINVAL);
7980 	}
7981 
7982 	if (priv & ~DTRACE_PRIV_ALL) {
7983 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7984 		    "privilege attributes", name);
7985 		return (EINVAL);
7986 	}
7987 
7988 	if ((priv & DTRACE_PRIV_KERNEL) &&
7989 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7990 	    pops->dtps_mode == NULL) {
7991 		cmn_err(CE_WARN, "failed to register provider '%s': need "
7992 		    "dtps_mode() op for given privilege attributes", name);
7993 		return (EINVAL);
7994 	}
7995 
7996 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7997 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7998 	(void) strcpy(provider->dtpv_name, name);
7999 
8000 	provider->dtpv_attr = *pap;
8001 	provider->dtpv_priv.dtpp_flags = priv;
8002 	if (cr != NULL) {
8003 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8004 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8005 	}
8006 	provider->dtpv_pops = *pops;
8007 
8008 	if (pops->dtps_provide == NULL) {
8009 		ASSERT(pops->dtps_provide_module != NULL);
8010 		provider->dtpv_pops.dtps_provide =
8011 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
8012 	}
8013 
8014 	if (pops->dtps_provide_module == NULL) {
8015 		ASSERT(pops->dtps_provide != NULL);
8016 		provider->dtpv_pops.dtps_provide_module =
8017 		    (void (*)(void *, struct modctl *))dtrace_nullop;
8018 	}
8019 
8020 	if (pops->dtps_suspend == NULL) {
8021 		ASSERT(pops->dtps_resume == NULL);
8022 		provider->dtpv_pops.dtps_suspend =
8023 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8024 		provider->dtpv_pops.dtps_resume =
8025 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8026 	}
8027 
8028 	provider->dtpv_arg = arg;
8029 	*idp = (dtrace_provider_id_t)provider;
8030 
8031 	if (pops == &dtrace_provider_ops) {
8032 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8033 		ASSERT(MUTEX_HELD(&dtrace_lock));
8034 		ASSERT(dtrace_anon.dta_enabling == NULL);
8035 
8036 		/*
8037 		 * We make sure that the DTrace provider is at the head of
8038 		 * the provider chain.
8039 		 */
8040 		provider->dtpv_next = dtrace_provider;
8041 		dtrace_provider = provider;
8042 		return (0);
8043 	}
8044 
8045 	mutex_enter(&dtrace_provider_lock);
8046 	mutex_enter(&dtrace_lock);
8047 
8048 	/*
8049 	 * If there is at least one provider registered, we'll add this
8050 	 * provider after the first provider.
8051 	 */
8052 	if (dtrace_provider != NULL) {
8053 		provider->dtpv_next = dtrace_provider->dtpv_next;
8054 		dtrace_provider->dtpv_next = provider;
8055 	} else {
8056 		dtrace_provider = provider;
8057 	}
8058 
8059 	if (dtrace_retained != NULL) {
8060 		dtrace_enabling_provide(provider);
8061 
8062 		/*
8063 		 * Now we need to call dtrace_enabling_matchall() -- which
8064 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8065 		 * to drop all of our locks before calling into it...
8066 		 */
8067 		mutex_exit(&dtrace_lock);
8068 		mutex_exit(&dtrace_provider_lock);
8069 		dtrace_enabling_matchall();
8070 
8071 		return (0);
8072 	}
8073 
8074 	mutex_exit(&dtrace_lock);
8075 	mutex_exit(&dtrace_provider_lock);
8076 
8077 	return (0);
8078 }
8079 
8080 /*
8081  * Unregister the specified provider from the DTrace framework.  This should
8082  * generally be called by DTrace providers in their detach(9E) entry point.
8083  */
8084 int
8085 dtrace_unregister(dtrace_provider_id_t id)
8086 {
8087 	dtrace_provider_t *old = (dtrace_provider_t *)id;
8088 	dtrace_provider_t *prev = NULL;
8089 	int i, self = 0, noreap = 0;
8090 	dtrace_probe_t *probe, *first = NULL;
8091 
8092 	if (old->dtpv_pops.dtps_enable ==
8093 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
8094 		/*
8095 		 * If DTrace itself is the provider, we're called with locks
8096 		 * already held.
8097 		 */
8098 		ASSERT(old == dtrace_provider);
8099 		ASSERT(dtrace_devi != NULL);
8100 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8101 		ASSERT(MUTEX_HELD(&dtrace_lock));
8102 		self = 1;
8103 
8104 		if (dtrace_provider->dtpv_next != NULL) {
8105 			/*
8106 			 * There's another provider here; return failure.
8107 			 */
8108 			return (EBUSY);
8109 		}
8110 	} else {
8111 		mutex_enter(&dtrace_provider_lock);
8112 		mutex_enter(&mod_lock);
8113 		mutex_enter(&dtrace_lock);
8114 	}
8115 
8116 	/*
8117 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8118 	 * probes, we refuse to let providers slither away, unless this
8119 	 * provider has already been explicitly invalidated.
8120 	 */
8121 	if (!old->dtpv_defunct &&
8122 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8123 	    dtrace_anon.dta_state->dts_necbs > 0))) {
8124 		if (!self) {
8125 			mutex_exit(&dtrace_lock);
8126 			mutex_exit(&mod_lock);
8127 			mutex_exit(&dtrace_provider_lock);
8128 		}
8129 		return (EBUSY);
8130 	}
8131 
8132 	/*
8133 	 * Attempt to destroy the probes associated with this provider.
8134 	 */
8135 	for (i = 0; i < dtrace_nprobes; i++) {
8136 		if ((probe = dtrace_probes[i]) == NULL)
8137 			continue;
8138 
8139 		if (probe->dtpr_provider != old)
8140 			continue;
8141 
8142 		if (probe->dtpr_ecb == NULL)
8143 			continue;
8144 
8145 		/*
8146 		 * If we are trying to unregister a defunct provider, and the
8147 		 * provider was made defunct within the interval dictated by
8148 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8149 		 * attempt to reap our enablings.  To denote that the provider
8150 		 * should reattempt to unregister itself at some point in the
8151 		 * future, we will return a differentiable error code (EAGAIN
8152 		 * instead of EBUSY) in this case.
8153 		 */
8154 		if (dtrace_gethrtime() - old->dtpv_defunct >
8155 		    dtrace_unregister_defunct_reap)
8156 			noreap = 1;
8157 
8158 		if (!self) {
8159 			mutex_exit(&dtrace_lock);
8160 			mutex_exit(&mod_lock);
8161 			mutex_exit(&dtrace_provider_lock);
8162 		}
8163 
8164 		if (noreap)
8165 			return (EBUSY);
8166 
8167 		(void) taskq_dispatch(dtrace_taskq,
8168 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8169 
8170 		return (EAGAIN);
8171 	}
8172 
8173 	/*
8174 	 * All of the probes for this provider are disabled; we can safely
8175 	 * remove all of them from their hash chains and from the probe array.
8176 	 */
8177 	for (i = 0; i < dtrace_nprobes; i++) {
8178 		if ((probe = dtrace_probes[i]) == NULL)
8179 			continue;
8180 
8181 		if (probe->dtpr_provider != old)
8182 			continue;
8183 
8184 		dtrace_probes[i] = NULL;
8185 
8186 		dtrace_hash_remove(dtrace_bymod, probe);
8187 		dtrace_hash_remove(dtrace_byfunc, probe);
8188 		dtrace_hash_remove(dtrace_byname, probe);
8189 
8190 		if (first == NULL) {
8191 			first = probe;
8192 			probe->dtpr_nextmod = NULL;
8193 		} else {
8194 			probe->dtpr_nextmod = first;
8195 			first = probe;
8196 		}
8197 	}
8198 
8199 	/*
8200 	 * The provider's probes have been removed from the hash chains and
8201 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8202 	 * everyone has cleared out from any probe array processing.
8203 	 */
8204 	dtrace_sync();
8205 
8206 	for (probe = first; probe != NULL; probe = first) {
8207 		first = probe->dtpr_nextmod;
8208 
8209 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8210 		    probe->dtpr_arg);
8211 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8212 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8213 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8214 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8215 		kmem_free(probe, sizeof (dtrace_probe_t));
8216 	}
8217 
8218 	if ((prev = dtrace_provider) == old) {
8219 		ASSERT(self || dtrace_devi == NULL);
8220 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8221 		dtrace_provider = old->dtpv_next;
8222 	} else {
8223 		while (prev != NULL && prev->dtpv_next != old)
8224 			prev = prev->dtpv_next;
8225 
8226 		if (prev == NULL) {
8227 			panic("attempt to unregister non-existent "
8228 			    "dtrace provider %p\n", (void *)id);
8229 		}
8230 
8231 		prev->dtpv_next = old->dtpv_next;
8232 	}
8233 
8234 	if (!self) {
8235 		mutex_exit(&dtrace_lock);
8236 		mutex_exit(&mod_lock);
8237 		mutex_exit(&dtrace_provider_lock);
8238 	}
8239 
8240 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8241 	kmem_free(old, sizeof (dtrace_provider_t));
8242 
8243 	return (0);
8244 }
8245 
8246 /*
8247  * Invalidate the specified provider.  All subsequent probe lookups for the
8248  * specified provider will fail, but its probes will not be removed.
8249  */
8250 void
8251 dtrace_invalidate(dtrace_provider_id_t id)
8252 {
8253 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8254 
8255 	ASSERT(pvp->dtpv_pops.dtps_enable !=
8256 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8257 
8258 	mutex_enter(&dtrace_provider_lock);
8259 	mutex_enter(&dtrace_lock);
8260 
8261 	pvp->dtpv_defunct = dtrace_gethrtime();
8262 
8263 	mutex_exit(&dtrace_lock);
8264 	mutex_exit(&dtrace_provider_lock);
8265 }
8266 
8267 /*
8268  * Indicate whether or not DTrace has attached.
8269  */
8270 int
8271 dtrace_attached(void)
8272 {
8273 	/*
8274 	 * dtrace_provider will be non-NULL iff the DTrace driver has
8275 	 * attached.  (It's non-NULL because DTrace is always itself a
8276 	 * provider.)
8277 	 */
8278 	return (dtrace_provider != NULL);
8279 }
8280 
8281 /*
8282  * Remove all the unenabled probes for the given provider.  This function is
8283  * not unlike dtrace_unregister(), except that it doesn't remove the provider
8284  * -- just as many of its associated probes as it can.
8285  */
8286 int
8287 dtrace_condense(dtrace_provider_id_t id)
8288 {
8289 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
8290 	int i;
8291 	dtrace_probe_t *probe;
8292 
8293 	/*
8294 	 * Make sure this isn't the dtrace provider itself.
8295 	 */
8296 	ASSERT(prov->dtpv_pops.dtps_enable !=
8297 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8298 
8299 	mutex_enter(&dtrace_provider_lock);
8300 	mutex_enter(&dtrace_lock);
8301 
8302 	/*
8303 	 * Attempt to destroy the probes associated with this provider.
8304 	 */
8305 	for (i = 0; i < dtrace_nprobes; i++) {
8306 		if ((probe = dtrace_probes[i]) == NULL)
8307 			continue;
8308 
8309 		if (probe->dtpr_provider != prov)
8310 			continue;
8311 
8312 		if (probe->dtpr_ecb != NULL)
8313 			continue;
8314 
8315 		dtrace_probes[i] = NULL;
8316 
8317 		dtrace_hash_remove(dtrace_bymod, probe);
8318 		dtrace_hash_remove(dtrace_byfunc, probe);
8319 		dtrace_hash_remove(dtrace_byname, probe);
8320 
8321 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8322 		    probe->dtpr_arg);
8323 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8324 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8325 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8326 		kmem_free(probe, sizeof (dtrace_probe_t));
8327 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8328 	}
8329 
8330 	mutex_exit(&dtrace_lock);
8331 	mutex_exit(&dtrace_provider_lock);
8332 
8333 	return (0);
8334 }
8335 
8336 /*
8337  * DTrace Probe Management Functions
8338  *
8339  * The functions in this section perform the DTrace probe management,
8340  * including functions to create probes, look-up probes, and call into the
8341  * providers to request that probes be provided.  Some of these functions are
8342  * in the Provider-to-Framework API; these functions can be identified by the
8343  * fact that they are not declared "static".
8344  */
8345 
8346 /*
8347  * Create a probe with the specified module name, function name, and name.
8348  */
8349 dtrace_id_t
8350 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8351     const char *func, const char *name, int aframes, void *arg)
8352 {
8353 	dtrace_probe_t *probe, **probes;
8354 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8355 	dtrace_id_t id;
8356 
8357 	if (provider == dtrace_provider) {
8358 		ASSERT(MUTEX_HELD(&dtrace_lock));
8359 	} else {
8360 		mutex_enter(&dtrace_lock);
8361 	}
8362 
8363 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8364 	    VM_BESTFIT | VM_SLEEP);
8365 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8366 
8367 	probe->dtpr_id = id;
8368 	probe->dtpr_gen = dtrace_probegen++;
8369 	probe->dtpr_mod = dtrace_strdup(mod);
8370 	probe->dtpr_func = dtrace_strdup(func);
8371 	probe->dtpr_name = dtrace_strdup(name);
8372 	probe->dtpr_arg = arg;
8373 	probe->dtpr_aframes = aframes;
8374 	probe->dtpr_provider = provider;
8375 
8376 	dtrace_hash_add(dtrace_bymod, probe);
8377 	dtrace_hash_add(dtrace_byfunc, probe);
8378 	dtrace_hash_add(dtrace_byname, probe);
8379 
8380 	if (id - 1 >= dtrace_nprobes) {
8381 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8382 		size_t nsize = osize << 1;
8383 
8384 		if (nsize == 0) {
8385 			ASSERT(osize == 0);
8386 			ASSERT(dtrace_probes == NULL);
8387 			nsize = sizeof (dtrace_probe_t *);
8388 		}
8389 
8390 		probes = kmem_zalloc(nsize, KM_SLEEP);
8391 
8392 		if (dtrace_probes == NULL) {
8393 			ASSERT(osize == 0);
8394 			dtrace_probes = probes;
8395 			dtrace_nprobes = 1;
8396 		} else {
8397 			dtrace_probe_t **oprobes = dtrace_probes;
8398 
8399 			bcopy(oprobes, probes, osize);
8400 			dtrace_membar_producer();
8401 			dtrace_probes = probes;
8402 
8403 			dtrace_sync();
8404 
8405 			/*
8406 			 * All CPUs are now seeing the new probes array; we can
8407 			 * safely free the old array.
8408 			 */
8409 			kmem_free(oprobes, osize);
8410 			dtrace_nprobes <<= 1;
8411 		}
8412 
8413 		ASSERT(id - 1 < dtrace_nprobes);
8414 	}
8415 
8416 	ASSERT(dtrace_probes[id - 1] == NULL);
8417 	dtrace_probes[id - 1] = probe;
8418 
8419 	if (provider != dtrace_provider)
8420 		mutex_exit(&dtrace_lock);
8421 
8422 	return (id);
8423 }
8424 
8425 static dtrace_probe_t *
8426 dtrace_probe_lookup_id(dtrace_id_t id)
8427 {
8428 	ASSERT(MUTEX_HELD(&dtrace_lock));
8429 
8430 	if (id == 0 || id > dtrace_nprobes)
8431 		return (NULL);
8432 
8433 	return (dtrace_probes[id - 1]);
8434 }
8435 
8436 static int
8437 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8438 {
8439 	*((dtrace_id_t *)arg) = probe->dtpr_id;
8440 
8441 	return (DTRACE_MATCH_DONE);
8442 }
8443 
8444 /*
8445  * Look up a probe based on provider and one or more of module name, function
8446  * name and probe name.
8447  */
8448 dtrace_id_t
8449 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
8450     const char *func, const char *name)
8451 {
8452 	dtrace_probekey_t pkey;
8453 	dtrace_id_t id;
8454 	int match;
8455 
8456 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8457 	pkey.dtpk_pmatch = &dtrace_match_string;
8458 	pkey.dtpk_mod = mod;
8459 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8460 	pkey.dtpk_func = func;
8461 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8462 	pkey.dtpk_name = name;
8463 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8464 	pkey.dtpk_id = DTRACE_IDNONE;
8465 
8466 	mutex_enter(&dtrace_lock);
8467 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8468 	    dtrace_probe_lookup_match, &id);
8469 	mutex_exit(&dtrace_lock);
8470 
8471 	ASSERT(match == 1 || match == 0);
8472 	return (match ? id : 0);
8473 }
8474 
8475 /*
8476  * Returns the probe argument associated with the specified probe.
8477  */
8478 void *
8479 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8480 {
8481 	dtrace_probe_t *probe;
8482 	void *rval = NULL;
8483 
8484 	mutex_enter(&dtrace_lock);
8485 
8486 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8487 	    probe->dtpr_provider == (dtrace_provider_t *)id)
8488 		rval = probe->dtpr_arg;
8489 
8490 	mutex_exit(&dtrace_lock);
8491 
8492 	return (rval);
8493 }
8494 
8495 /*
8496  * Copy a probe into a probe description.
8497  */
8498 static void
8499 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8500 {
8501 	bzero(pdp, sizeof (dtrace_probedesc_t));
8502 	pdp->dtpd_id = prp->dtpr_id;
8503 
8504 	(void) strncpy(pdp->dtpd_provider,
8505 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8506 
8507 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8508 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8509 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8510 }
8511 
8512 /*
8513  * Called to indicate that a probe -- or probes -- should be provided by a
8514  * specfied provider.  If the specified description is NULL, the provider will
8515  * be told to provide all of its probes.  (This is done whenever a new
8516  * consumer comes along, or whenever a retained enabling is to be matched.) If
8517  * the specified description is non-NULL, the provider is given the
8518  * opportunity to dynamically provide the specified probe, allowing providers
8519  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8520  * probes.)  If the provider is NULL, the operations will be applied to all
8521  * providers; if the provider is non-NULL the operations will only be applied
8522  * to the specified provider.  The dtrace_provider_lock must be held, and the
8523  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8524  * will need to grab the dtrace_lock when it reenters the framework through
8525  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8526  */
8527 static void
8528 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8529 {
8530 	struct modctl *ctl;
8531 	int all = 0;
8532 
8533 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8534 
8535 	if (prv == NULL) {
8536 		all = 1;
8537 		prv = dtrace_provider;
8538 	}
8539 
8540 	do {
8541 		/*
8542 		 * First, call the blanket provide operation.
8543 		 */
8544 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8545 
8546 		/*
8547 		 * Now call the per-module provide operation.  We will grab
8548 		 * mod_lock to prevent the list from being modified.  Note
8549 		 * that this also prevents the mod_busy bits from changing.
8550 		 * (mod_busy can only be changed with mod_lock held.)
8551 		 */
8552 		mutex_enter(&mod_lock);
8553 
8554 		ctl = &modules;
8555 		do {
8556 			if (ctl->mod_busy || ctl->mod_mp == NULL)
8557 				continue;
8558 
8559 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8560 
8561 		} while ((ctl = ctl->mod_next) != &modules);
8562 
8563 		mutex_exit(&mod_lock);
8564 	} while (all && (prv = prv->dtpv_next) != NULL);
8565 }
8566 
8567 /*
8568  * Iterate over each probe, and call the Framework-to-Provider API function
8569  * denoted by offs.
8570  */
8571 static void
8572 dtrace_probe_foreach(uintptr_t offs)
8573 {
8574 	dtrace_provider_t *prov;
8575 	void (*func)(void *, dtrace_id_t, void *);
8576 	dtrace_probe_t *probe;
8577 	dtrace_icookie_t cookie;
8578 	int i;
8579 
8580 	/*
8581 	 * We disable interrupts to walk through the probe array.  This is
8582 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8583 	 * won't see stale data.
8584 	 */
8585 	cookie = dtrace_interrupt_disable();
8586 
8587 	for (i = 0; i < dtrace_nprobes; i++) {
8588 		if ((probe = dtrace_probes[i]) == NULL)
8589 			continue;
8590 
8591 		if (probe->dtpr_ecb == NULL) {
8592 			/*
8593 			 * This probe isn't enabled -- don't call the function.
8594 			 */
8595 			continue;
8596 		}
8597 
8598 		prov = probe->dtpr_provider;
8599 		func = *((void(**)(void *, dtrace_id_t, void *))
8600 		    ((uintptr_t)&prov->dtpv_pops + offs));
8601 
8602 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8603 	}
8604 
8605 	dtrace_interrupt_enable(cookie);
8606 }
8607 
8608 static int
8609 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8610 {
8611 	dtrace_probekey_t pkey;
8612 	uint32_t priv;
8613 	uid_t uid;
8614 	zoneid_t zoneid;
8615 
8616 	ASSERT(MUTEX_HELD(&dtrace_lock));
8617 	dtrace_ecb_create_cache = NULL;
8618 
8619 	if (desc == NULL) {
8620 		/*
8621 		 * If we're passed a NULL description, we're being asked to
8622 		 * create an ECB with a NULL probe.
8623 		 */
8624 		(void) dtrace_ecb_create_enable(NULL, enab);
8625 		return (0);
8626 	}
8627 
8628 	dtrace_probekey(desc, &pkey);
8629 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8630 	    &priv, &uid, &zoneid);
8631 
8632 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8633 	    enab));
8634 }
8635 
8636 /*
8637  * DTrace Helper Provider Functions
8638  */
8639 static void
8640 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8641 {
8642 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8643 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8644 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8645 }
8646 
8647 static void
8648 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8649     const dof_provider_t *dofprov, char *strtab)
8650 {
8651 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8652 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8653 	    dofprov->dofpv_provattr);
8654 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8655 	    dofprov->dofpv_modattr);
8656 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8657 	    dofprov->dofpv_funcattr);
8658 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8659 	    dofprov->dofpv_nameattr);
8660 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8661 	    dofprov->dofpv_argsattr);
8662 }
8663 
8664 static void
8665 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8666 {
8667 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8668 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8669 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8670 	dof_provider_t *provider;
8671 	dof_probe_t *probe;
8672 	uint32_t *off, *enoff;
8673 	uint8_t *arg;
8674 	char *strtab;
8675 	uint_t i, nprobes;
8676 	dtrace_helper_provdesc_t dhpv;
8677 	dtrace_helper_probedesc_t dhpb;
8678 	dtrace_meta_t *meta = dtrace_meta_pid;
8679 	dtrace_mops_t *mops = &meta->dtm_mops;
8680 	void *parg;
8681 
8682 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8683 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8684 	    provider->dofpv_strtab * dof->dofh_secsize);
8685 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8686 	    provider->dofpv_probes * dof->dofh_secsize);
8687 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8688 	    provider->dofpv_prargs * dof->dofh_secsize);
8689 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8690 	    provider->dofpv_proffs * dof->dofh_secsize);
8691 
8692 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8693 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8694 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8695 	enoff = NULL;
8696 
8697 	/*
8698 	 * See dtrace_helper_provider_validate().
8699 	 */
8700 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8701 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8702 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8703 		    provider->dofpv_prenoffs * dof->dofh_secsize);
8704 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8705 	}
8706 
8707 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8708 
8709 	/*
8710 	 * Create the provider.
8711 	 */
8712 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8713 
8714 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8715 		return;
8716 
8717 	meta->dtm_count++;
8718 
8719 	/*
8720 	 * Create the probes.
8721 	 */
8722 	for (i = 0; i < nprobes; i++) {
8723 		probe = (dof_probe_t *)(uintptr_t)(daddr +
8724 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8725 
8726 		dhpb.dthpb_mod = dhp->dofhp_mod;
8727 		dhpb.dthpb_func = strtab + probe->dofpr_func;
8728 		dhpb.dthpb_name = strtab + probe->dofpr_name;
8729 		dhpb.dthpb_base = probe->dofpr_addr;
8730 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8731 		dhpb.dthpb_noffs = probe->dofpr_noffs;
8732 		if (enoff != NULL) {
8733 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8734 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8735 		} else {
8736 			dhpb.dthpb_enoffs = NULL;
8737 			dhpb.dthpb_nenoffs = 0;
8738 		}
8739 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8740 		dhpb.dthpb_nargc = probe->dofpr_nargc;
8741 		dhpb.dthpb_xargc = probe->dofpr_xargc;
8742 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8743 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8744 
8745 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8746 	}
8747 }
8748 
8749 static void
8750 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8751 {
8752 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8753 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8754 	int i;
8755 
8756 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8757 
8758 	for (i = 0; i < dof->dofh_secnum; i++) {
8759 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8760 		    dof->dofh_secoff + i * dof->dofh_secsize);
8761 
8762 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8763 			continue;
8764 
8765 		dtrace_helper_provide_one(dhp, sec, pid);
8766 	}
8767 
8768 	/*
8769 	 * We may have just created probes, so we must now rematch against
8770 	 * any retained enablings.  Note that this call will acquire both
8771 	 * cpu_lock and dtrace_lock; the fact that we are holding
8772 	 * dtrace_meta_lock now is what defines the ordering with respect to
8773 	 * these three locks.
8774 	 */
8775 	dtrace_enabling_matchall();
8776 }
8777 
8778 static void
8779 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8780 {
8781 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8782 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8783 	dof_sec_t *str_sec;
8784 	dof_provider_t *provider;
8785 	char *strtab;
8786 	dtrace_helper_provdesc_t dhpv;
8787 	dtrace_meta_t *meta = dtrace_meta_pid;
8788 	dtrace_mops_t *mops = &meta->dtm_mops;
8789 
8790 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8791 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8792 	    provider->dofpv_strtab * dof->dofh_secsize);
8793 
8794 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8795 
8796 	/*
8797 	 * Create the provider.
8798 	 */
8799 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8800 
8801 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8802 
8803 	meta->dtm_count--;
8804 }
8805 
8806 static void
8807 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8808 {
8809 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8810 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8811 	int i;
8812 
8813 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8814 
8815 	for (i = 0; i < dof->dofh_secnum; i++) {
8816 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8817 		    dof->dofh_secoff + i * dof->dofh_secsize);
8818 
8819 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8820 			continue;
8821 
8822 		dtrace_helper_provider_remove_one(dhp, sec, pid);
8823 	}
8824 }
8825 
8826 /*
8827  * DTrace Meta Provider-to-Framework API Functions
8828  *
8829  * These functions implement the Meta Provider-to-Framework API, as described
8830  * in <sys/dtrace.h>.
8831  */
8832 int
8833 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8834     dtrace_meta_provider_id_t *idp)
8835 {
8836 	dtrace_meta_t *meta;
8837 	dtrace_helpers_t *help, *next;
8838 	int i;
8839 
8840 	*idp = DTRACE_METAPROVNONE;
8841 
8842 	/*
8843 	 * We strictly don't need the name, but we hold onto it for
8844 	 * debuggability. All hail error queues!
8845 	 */
8846 	if (name == NULL) {
8847 		cmn_err(CE_WARN, "failed to register meta-provider: "
8848 		    "invalid name");
8849 		return (EINVAL);
8850 	}
8851 
8852 	if (mops == NULL ||
8853 	    mops->dtms_create_probe == NULL ||
8854 	    mops->dtms_provide_pid == NULL ||
8855 	    mops->dtms_remove_pid == NULL) {
8856 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8857 		    "invalid ops", name);
8858 		return (EINVAL);
8859 	}
8860 
8861 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8862 	meta->dtm_mops = *mops;
8863 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8864 	(void) strcpy(meta->dtm_name, name);
8865 	meta->dtm_arg = arg;
8866 
8867 	mutex_enter(&dtrace_meta_lock);
8868 	mutex_enter(&dtrace_lock);
8869 
8870 	if (dtrace_meta_pid != NULL) {
8871 		mutex_exit(&dtrace_lock);
8872 		mutex_exit(&dtrace_meta_lock);
8873 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8874 		    "user-land meta-provider exists", name);
8875 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8876 		kmem_free(meta, sizeof (dtrace_meta_t));
8877 		return (EINVAL);
8878 	}
8879 
8880 	dtrace_meta_pid = meta;
8881 	*idp = (dtrace_meta_provider_id_t)meta;
8882 
8883 	/*
8884 	 * If there are providers and probes ready to go, pass them
8885 	 * off to the new meta provider now.
8886 	 */
8887 
8888 	help = dtrace_deferred_pid;
8889 	dtrace_deferred_pid = NULL;
8890 
8891 	mutex_exit(&dtrace_lock);
8892 
8893 	while (help != NULL) {
8894 		for (i = 0; i < help->dthps_nprovs; i++) {
8895 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8896 			    help->dthps_pid);
8897 		}
8898 
8899 		next = help->dthps_next;
8900 		help->dthps_next = NULL;
8901 		help->dthps_prev = NULL;
8902 		help->dthps_deferred = 0;
8903 		help = next;
8904 	}
8905 
8906 	mutex_exit(&dtrace_meta_lock);
8907 
8908 	return (0);
8909 }
8910 
8911 int
8912 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8913 {
8914 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8915 
8916 	mutex_enter(&dtrace_meta_lock);
8917 	mutex_enter(&dtrace_lock);
8918 
8919 	if (old == dtrace_meta_pid) {
8920 		pp = &dtrace_meta_pid;
8921 	} else {
8922 		panic("attempt to unregister non-existent "
8923 		    "dtrace meta-provider %p\n", (void *)old);
8924 	}
8925 
8926 	if (old->dtm_count != 0) {
8927 		mutex_exit(&dtrace_lock);
8928 		mutex_exit(&dtrace_meta_lock);
8929 		return (EBUSY);
8930 	}
8931 
8932 	*pp = NULL;
8933 
8934 	mutex_exit(&dtrace_lock);
8935 	mutex_exit(&dtrace_meta_lock);
8936 
8937 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8938 	kmem_free(old, sizeof (dtrace_meta_t));
8939 
8940 	return (0);
8941 }
8942 
8943 
8944 /*
8945  * DTrace DIF Object Functions
8946  */
8947 static int
8948 dtrace_difo_err(uint_t pc, const char *format, ...)
8949 {
8950 	if (dtrace_err_verbose) {
8951 		va_list alist;
8952 
8953 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8954 		va_start(alist, format);
8955 		(void) vuprintf(format, alist);
8956 		va_end(alist);
8957 	}
8958 
8959 #ifdef DTRACE_ERRDEBUG
8960 	dtrace_errdebug(format);
8961 #endif
8962 	return (1);
8963 }
8964 
8965 /*
8966  * Validate a DTrace DIF object by checking the IR instructions.  The following
8967  * rules are currently enforced by dtrace_difo_validate():
8968  *
8969  * 1. Each instruction must have a valid opcode
8970  * 2. Each register, string, variable, or subroutine reference must be valid
8971  * 3. No instruction can modify register %r0 (must be zero)
8972  * 4. All instruction reserved bits must be set to zero
8973  * 5. The last instruction must be a "ret" instruction
8974  * 6. All branch targets must reference a valid instruction _after_ the branch
8975  */
8976 static int
8977 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8978     cred_t *cr)
8979 {
8980 	int err = 0, i;
8981 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8982 	int kcheckload;
8983 	uint_t pc;
8984 
8985 	kcheckload = cr == NULL ||
8986 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8987 
8988 	dp->dtdo_destructive = 0;
8989 
8990 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8991 		dif_instr_t instr = dp->dtdo_buf[pc];
8992 
8993 		uint_t r1 = DIF_INSTR_R1(instr);
8994 		uint_t r2 = DIF_INSTR_R2(instr);
8995 		uint_t rd = DIF_INSTR_RD(instr);
8996 		uint_t rs = DIF_INSTR_RS(instr);
8997 		uint_t label = DIF_INSTR_LABEL(instr);
8998 		uint_t v = DIF_INSTR_VAR(instr);
8999 		uint_t subr = DIF_INSTR_SUBR(instr);
9000 		uint_t type = DIF_INSTR_TYPE(instr);
9001 		uint_t op = DIF_INSTR_OP(instr);
9002 
9003 		switch (op) {
9004 		case DIF_OP_OR:
9005 		case DIF_OP_XOR:
9006 		case DIF_OP_AND:
9007 		case DIF_OP_SLL:
9008 		case DIF_OP_SRL:
9009 		case DIF_OP_SRA:
9010 		case DIF_OP_SUB:
9011 		case DIF_OP_ADD:
9012 		case DIF_OP_MUL:
9013 		case DIF_OP_SDIV:
9014 		case DIF_OP_UDIV:
9015 		case DIF_OP_SREM:
9016 		case DIF_OP_UREM:
9017 		case DIF_OP_COPYS:
9018 			if (r1 >= nregs)
9019 				err += efunc(pc, "invalid register %u\n", r1);
9020 			if (r2 >= nregs)
9021 				err += efunc(pc, "invalid register %u\n", r2);
9022 			if (rd >= nregs)
9023 				err += efunc(pc, "invalid register %u\n", rd);
9024 			if (rd == 0)
9025 				err += efunc(pc, "cannot write to %r0\n");
9026 			break;
9027 		case DIF_OP_NOT:
9028 		case DIF_OP_MOV:
9029 		case DIF_OP_ALLOCS:
9030 			if (r1 >= nregs)
9031 				err += efunc(pc, "invalid register %u\n", r1);
9032 			if (r2 != 0)
9033 				err += efunc(pc, "non-zero reserved bits\n");
9034 			if (rd >= nregs)
9035 				err += efunc(pc, "invalid register %u\n", rd);
9036 			if (rd == 0)
9037 				err += efunc(pc, "cannot write to %r0\n");
9038 			break;
9039 		case DIF_OP_LDSB:
9040 		case DIF_OP_LDSH:
9041 		case DIF_OP_LDSW:
9042 		case DIF_OP_LDUB:
9043 		case DIF_OP_LDUH:
9044 		case DIF_OP_LDUW:
9045 		case DIF_OP_LDX:
9046 			if (r1 >= nregs)
9047 				err += efunc(pc, "invalid register %u\n", r1);
9048 			if (r2 != 0)
9049 				err += efunc(pc, "non-zero reserved bits\n");
9050 			if (rd >= nregs)
9051 				err += efunc(pc, "invalid register %u\n", rd);
9052 			if (rd == 0)
9053 				err += efunc(pc, "cannot write to %r0\n");
9054 			if (kcheckload)
9055 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9056 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9057 			break;
9058 		case DIF_OP_RLDSB:
9059 		case DIF_OP_RLDSH:
9060 		case DIF_OP_RLDSW:
9061 		case DIF_OP_RLDUB:
9062 		case DIF_OP_RLDUH:
9063 		case DIF_OP_RLDUW:
9064 		case DIF_OP_RLDX:
9065 			if (r1 >= nregs)
9066 				err += efunc(pc, "invalid register %u\n", r1);
9067 			if (r2 != 0)
9068 				err += efunc(pc, "non-zero reserved bits\n");
9069 			if (rd >= nregs)
9070 				err += efunc(pc, "invalid register %u\n", rd);
9071 			if (rd == 0)
9072 				err += efunc(pc, "cannot write to %r0\n");
9073 			break;
9074 		case DIF_OP_ULDSB:
9075 		case DIF_OP_ULDSH:
9076 		case DIF_OP_ULDSW:
9077 		case DIF_OP_ULDUB:
9078 		case DIF_OP_ULDUH:
9079 		case DIF_OP_ULDUW:
9080 		case DIF_OP_ULDX:
9081 			if (r1 >= nregs)
9082 				err += efunc(pc, "invalid register %u\n", r1);
9083 			if (r2 != 0)
9084 				err += efunc(pc, "non-zero reserved bits\n");
9085 			if (rd >= nregs)
9086 				err += efunc(pc, "invalid register %u\n", rd);
9087 			if (rd == 0)
9088 				err += efunc(pc, "cannot write to %r0\n");
9089 			break;
9090 		case DIF_OP_STB:
9091 		case DIF_OP_STH:
9092 		case DIF_OP_STW:
9093 		case DIF_OP_STX:
9094 			if (r1 >= nregs)
9095 				err += efunc(pc, "invalid register %u\n", r1);
9096 			if (r2 != 0)
9097 				err += efunc(pc, "non-zero reserved bits\n");
9098 			if (rd >= nregs)
9099 				err += efunc(pc, "invalid register %u\n", rd);
9100 			if (rd == 0)
9101 				err += efunc(pc, "cannot write to 0 address\n");
9102 			break;
9103 		case DIF_OP_CMP:
9104 		case DIF_OP_SCMP:
9105 			if (r1 >= nregs)
9106 				err += efunc(pc, "invalid register %u\n", r1);
9107 			if (r2 >= nregs)
9108 				err += efunc(pc, "invalid register %u\n", r2);
9109 			if (rd != 0)
9110 				err += efunc(pc, "non-zero reserved bits\n");
9111 			break;
9112 		case DIF_OP_TST:
9113 			if (r1 >= nregs)
9114 				err += efunc(pc, "invalid register %u\n", r1);
9115 			if (r2 != 0 || rd != 0)
9116 				err += efunc(pc, "non-zero reserved bits\n");
9117 			break;
9118 		case DIF_OP_BA:
9119 		case DIF_OP_BE:
9120 		case DIF_OP_BNE:
9121 		case DIF_OP_BG:
9122 		case DIF_OP_BGU:
9123 		case DIF_OP_BGE:
9124 		case DIF_OP_BGEU:
9125 		case DIF_OP_BL:
9126 		case DIF_OP_BLU:
9127 		case DIF_OP_BLE:
9128 		case DIF_OP_BLEU:
9129 			if (label >= dp->dtdo_len) {
9130 				err += efunc(pc, "invalid branch target %u\n",
9131 				    label);
9132 			}
9133 			if (label <= pc) {
9134 				err += efunc(pc, "backward branch to %u\n",
9135 				    label);
9136 			}
9137 			break;
9138 		case DIF_OP_RET:
9139 			if (r1 != 0 || r2 != 0)
9140 				err += efunc(pc, "non-zero reserved bits\n");
9141 			if (rd >= nregs)
9142 				err += efunc(pc, "invalid register %u\n", rd);
9143 			break;
9144 		case DIF_OP_NOP:
9145 		case DIF_OP_POPTS:
9146 		case DIF_OP_FLUSHTS:
9147 			if (r1 != 0 || r2 != 0 || rd != 0)
9148 				err += efunc(pc, "non-zero reserved bits\n");
9149 			break;
9150 		case DIF_OP_SETX:
9151 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9152 				err += efunc(pc, "invalid integer ref %u\n",
9153 				    DIF_INSTR_INTEGER(instr));
9154 			}
9155 			if (rd >= nregs)
9156 				err += efunc(pc, "invalid register %u\n", rd);
9157 			if (rd == 0)
9158 				err += efunc(pc, "cannot write to %r0\n");
9159 			break;
9160 		case DIF_OP_SETS:
9161 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9162 				err += efunc(pc, "invalid string ref %u\n",
9163 				    DIF_INSTR_STRING(instr));
9164 			}
9165 			if (rd >= nregs)
9166 				err += efunc(pc, "invalid register %u\n", rd);
9167 			if (rd == 0)
9168 				err += efunc(pc, "cannot write to %r0\n");
9169 			break;
9170 		case DIF_OP_LDGA:
9171 		case DIF_OP_LDTA:
9172 			if (r1 > DIF_VAR_ARRAY_MAX)
9173 				err += efunc(pc, "invalid array %u\n", r1);
9174 			if (r2 >= nregs)
9175 				err += efunc(pc, "invalid register %u\n", r2);
9176 			if (rd >= nregs)
9177 				err += efunc(pc, "invalid register %u\n", rd);
9178 			if (rd == 0)
9179 				err += efunc(pc, "cannot write to %r0\n");
9180 			break;
9181 		case DIF_OP_LDGS:
9182 		case DIF_OP_LDTS:
9183 		case DIF_OP_LDLS:
9184 		case DIF_OP_LDGAA:
9185 		case DIF_OP_LDTAA:
9186 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9187 				err += efunc(pc, "invalid variable %u\n", v);
9188 			if (rd >= nregs)
9189 				err += efunc(pc, "invalid register %u\n", rd);
9190 			if (rd == 0)
9191 				err += efunc(pc, "cannot write to %r0\n");
9192 			break;
9193 		case DIF_OP_STGS:
9194 		case DIF_OP_STTS:
9195 		case DIF_OP_STLS:
9196 		case DIF_OP_STGAA:
9197 		case DIF_OP_STTAA:
9198 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9199 				err += efunc(pc, "invalid variable %u\n", v);
9200 			if (rs >= nregs)
9201 				err += efunc(pc, "invalid register %u\n", rd);
9202 			break;
9203 		case DIF_OP_CALL:
9204 			if (subr > DIF_SUBR_MAX)
9205 				err += efunc(pc, "invalid subr %u\n", subr);
9206 			if (rd >= nregs)
9207 				err += efunc(pc, "invalid register %u\n", rd);
9208 			if (rd == 0)
9209 				err += efunc(pc, "cannot write to %r0\n");
9210 
9211 			if (subr == DIF_SUBR_COPYOUT ||
9212 			    subr == DIF_SUBR_COPYOUTSTR) {
9213 				dp->dtdo_destructive = 1;
9214 			}
9215 
9216 			if (subr == DIF_SUBR_GETF) {
9217 				/*
9218 				 * If we have a getf() we need to record that
9219 				 * in our state.  Note that our state can be
9220 				 * NULL if this is a helper -- but in that
9221 				 * case, the call to getf() is itself illegal,
9222 				 * and will be caught (slightly later) when
9223 				 * the helper is validated.
9224 				 */
9225 				if (vstate->dtvs_state != NULL)
9226 					vstate->dtvs_state->dts_getf++;
9227 			}
9228 
9229 			break;
9230 		case DIF_OP_PUSHTR:
9231 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9232 				err += efunc(pc, "invalid ref type %u\n", type);
9233 			if (r2 >= nregs)
9234 				err += efunc(pc, "invalid register %u\n", r2);
9235 			if (rs >= nregs)
9236 				err += efunc(pc, "invalid register %u\n", rs);
9237 			break;
9238 		case DIF_OP_PUSHTV:
9239 			if (type != DIF_TYPE_CTF)
9240 				err += efunc(pc, "invalid val type %u\n", type);
9241 			if (r2 >= nregs)
9242 				err += efunc(pc, "invalid register %u\n", r2);
9243 			if (rs >= nregs)
9244 				err += efunc(pc, "invalid register %u\n", rs);
9245 			break;
9246 		default:
9247 			err += efunc(pc, "invalid opcode %u\n",
9248 			    DIF_INSTR_OP(instr));
9249 		}
9250 	}
9251 
9252 	if (dp->dtdo_len != 0 &&
9253 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9254 		err += efunc(dp->dtdo_len - 1,
9255 		    "expected 'ret' as last DIF instruction\n");
9256 	}
9257 
9258 	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9259 		/*
9260 		 * If we're not returning by reference, the size must be either
9261 		 * 0 or the size of one of the base types.
9262 		 */
9263 		switch (dp->dtdo_rtype.dtdt_size) {
9264 		case 0:
9265 		case sizeof (uint8_t):
9266 		case sizeof (uint16_t):
9267 		case sizeof (uint32_t):
9268 		case sizeof (uint64_t):
9269 			break;
9270 
9271 		default:
9272 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
9273 		}
9274 	}
9275 
9276 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9277 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9278 		dtrace_diftype_t *vt, *et;
9279 		uint_t id, ndx;
9280 
9281 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9282 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
9283 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9284 			err += efunc(i, "unrecognized variable scope %d\n",
9285 			    v->dtdv_scope);
9286 			break;
9287 		}
9288 
9289 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9290 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
9291 			err += efunc(i, "unrecognized variable type %d\n",
9292 			    v->dtdv_kind);
9293 			break;
9294 		}
9295 
9296 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9297 			err += efunc(i, "%d exceeds variable id limit\n", id);
9298 			break;
9299 		}
9300 
9301 		if (id < DIF_VAR_OTHER_UBASE)
9302 			continue;
9303 
9304 		/*
9305 		 * For user-defined variables, we need to check that this
9306 		 * definition is identical to any previous definition that we
9307 		 * encountered.
9308 		 */
9309 		ndx = id - DIF_VAR_OTHER_UBASE;
9310 
9311 		switch (v->dtdv_scope) {
9312 		case DIFV_SCOPE_GLOBAL:
9313 			if (ndx < vstate->dtvs_nglobals) {
9314 				dtrace_statvar_t *svar;
9315 
9316 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9317 					existing = &svar->dtsv_var;
9318 			}
9319 
9320 			break;
9321 
9322 		case DIFV_SCOPE_THREAD:
9323 			if (ndx < vstate->dtvs_ntlocals)
9324 				existing = &vstate->dtvs_tlocals[ndx];
9325 			break;
9326 
9327 		case DIFV_SCOPE_LOCAL:
9328 			if (ndx < vstate->dtvs_nlocals) {
9329 				dtrace_statvar_t *svar;
9330 
9331 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9332 					existing = &svar->dtsv_var;
9333 			}
9334 
9335 			break;
9336 		}
9337 
9338 		vt = &v->dtdv_type;
9339 
9340 		if (vt->dtdt_flags & DIF_TF_BYREF) {
9341 			if (vt->dtdt_size == 0) {
9342 				err += efunc(i, "zero-sized variable\n");
9343 				break;
9344 			}
9345 
9346 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
9347 			    vt->dtdt_size > dtrace_global_maxsize) {
9348 				err += efunc(i, "oversized by-ref global\n");
9349 				break;
9350 			}
9351 		}
9352 
9353 		if (existing == NULL || existing->dtdv_id == 0)
9354 			continue;
9355 
9356 		ASSERT(existing->dtdv_id == v->dtdv_id);
9357 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
9358 
9359 		if (existing->dtdv_kind != v->dtdv_kind)
9360 			err += efunc(i, "%d changed variable kind\n", id);
9361 
9362 		et = &existing->dtdv_type;
9363 
9364 		if (vt->dtdt_flags != et->dtdt_flags) {
9365 			err += efunc(i, "%d changed variable type flags\n", id);
9366 			break;
9367 		}
9368 
9369 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9370 			err += efunc(i, "%d changed variable type size\n", id);
9371 			break;
9372 		}
9373 	}
9374 
9375 	return (err);
9376 }
9377 
9378 /*
9379  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9380  * are much more constrained than normal DIFOs.  Specifically, they may
9381  * not:
9382  *
9383  * 1. Make calls to subroutines other than copyin(), copyinstr() or
9384  *    miscellaneous string routines
9385  * 2. Access DTrace variables other than the args[] array, and the
9386  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9387  * 3. Have thread-local variables.
9388  * 4. Have dynamic variables.
9389  */
9390 static int
9391 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9392 {
9393 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9394 	int err = 0;
9395 	uint_t pc;
9396 
9397 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9398 		dif_instr_t instr = dp->dtdo_buf[pc];
9399 
9400 		uint_t v = DIF_INSTR_VAR(instr);
9401 		uint_t subr = DIF_INSTR_SUBR(instr);
9402 		uint_t op = DIF_INSTR_OP(instr);
9403 
9404 		switch (op) {
9405 		case DIF_OP_OR:
9406 		case DIF_OP_XOR:
9407 		case DIF_OP_AND:
9408 		case DIF_OP_SLL:
9409 		case DIF_OP_SRL:
9410 		case DIF_OP_SRA:
9411 		case DIF_OP_SUB:
9412 		case DIF_OP_ADD:
9413 		case DIF_OP_MUL:
9414 		case DIF_OP_SDIV:
9415 		case DIF_OP_UDIV:
9416 		case DIF_OP_SREM:
9417 		case DIF_OP_UREM:
9418 		case DIF_OP_COPYS:
9419 		case DIF_OP_NOT:
9420 		case DIF_OP_MOV:
9421 		case DIF_OP_RLDSB:
9422 		case DIF_OP_RLDSH:
9423 		case DIF_OP_RLDSW:
9424 		case DIF_OP_RLDUB:
9425 		case DIF_OP_RLDUH:
9426 		case DIF_OP_RLDUW:
9427 		case DIF_OP_RLDX:
9428 		case DIF_OP_ULDSB:
9429 		case DIF_OP_ULDSH:
9430 		case DIF_OP_ULDSW:
9431 		case DIF_OP_ULDUB:
9432 		case DIF_OP_ULDUH:
9433 		case DIF_OP_ULDUW:
9434 		case DIF_OP_ULDX:
9435 		case DIF_OP_STB:
9436 		case DIF_OP_STH:
9437 		case DIF_OP_STW:
9438 		case DIF_OP_STX:
9439 		case DIF_OP_ALLOCS:
9440 		case DIF_OP_CMP:
9441 		case DIF_OP_SCMP:
9442 		case DIF_OP_TST:
9443 		case DIF_OP_BA:
9444 		case DIF_OP_BE:
9445 		case DIF_OP_BNE:
9446 		case DIF_OP_BG:
9447 		case DIF_OP_BGU:
9448 		case DIF_OP_BGE:
9449 		case DIF_OP_BGEU:
9450 		case DIF_OP_BL:
9451 		case DIF_OP_BLU:
9452 		case DIF_OP_BLE:
9453 		case DIF_OP_BLEU:
9454 		case DIF_OP_RET:
9455 		case DIF_OP_NOP:
9456 		case DIF_OP_POPTS:
9457 		case DIF_OP_FLUSHTS:
9458 		case DIF_OP_SETX:
9459 		case DIF_OP_SETS:
9460 		case DIF_OP_LDGA:
9461 		case DIF_OP_LDLS:
9462 		case DIF_OP_STGS:
9463 		case DIF_OP_STLS:
9464 		case DIF_OP_PUSHTR:
9465 		case DIF_OP_PUSHTV:
9466 			break;
9467 
9468 		case DIF_OP_LDGS:
9469 			if (v >= DIF_VAR_OTHER_UBASE)
9470 				break;
9471 
9472 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9473 				break;
9474 
9475 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9476 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9477 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9478 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
9479 				break;
9480 
9481 			err += efunc(pc, "illegal variable %u\n", v);
9482 			break;
9483 
9484 		case DIF_OP_LDTA:
9485 		case DIF_OP_LDTS:
9486 		case DIF_OP_LDGAA:
9487 		case DIF_OP_LDTAA:
9488 			err += efunc(pc, "illegal dynamic variable load\n");
9489 			break;
9490 
9491 		case DIF_OP_STTS:
9492 		case DIF_OP_STGAA:
9493 		case DIF_OP_STTAA:
9494 			err += efunc(pc, "illegal dynamic variable store\n");
9495 			break;
9496 
9497 		case DIF_OP_CALL:
9498 			if (subr == DIF_SUBR_ALLOCA ||
9499 			    subr == DIF_SUBR_BCOPY ||
9500 			    subr == DIF_SUBR_COPYIN ||
9501 			    subr == DIF_SUBR_COPYINTO ||
9502 			    subr == DIF_SUBR_COPYINSTR ||
9503 			    subr == DIF_SUBR_INDEX ||
9504 			    subr == DIF_SUBR_INET_NTOA ||
9505 			    subr == DIF_SUBR_INET_NTOA6 ||
9506 			    subr == DIF_SUBR_INET_NTOP ||
9507 			    subr == DIF_SUBR_JSON ||
9508 			    subr == DIF_SUBR_LLTOSTR ||
9509 			    subr == DIF_SUBR_STRTOLL ||
9510 			    subr == DIF_SUBR_RINDEX ||
9511 			    subr == DIF_SUBR_STRCHR ||
9512 			    subr == DIF_SUBR_STRJOIN ||
9513 			    subr == DIF_SUBR_STRRCHR ||
9514 			    subr == DIF_SUBR_STRSTR ||
9515 			    subr == DIF_SUBR_HTONS ||
9516 			    subr == DIF_SUBR_HTONL ||
9517 			    subr == DIF_SUBR_HTONLL ||
9518 			    subr == DIF_SUBR_NTOHS ||
9519 			    subr == DIF_SUBR_NTOHL ||
9520 			    subr == DIF_SUBR_NTOHLL)
9521 				break;
9522 
9523 			err += efunc(pc, "invalid subr %u\n", subr);
9524 			break;
9525 
9526 		default:
9527 			err += efunc(pc, "invalid opcode %u\n",
9528 			    DIF_INSTR_OP(instr));
9529 		}
9530 	}
9531 
9532 	return (err);
9533 }
9534 
9535 /*
9536  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9537  * basis; 0 if not.
9538  */
9539 static int
9540 dtrace_difo_cacheable(dtrace_difo_t *dp)
9541 {
9542 	int i;
9543 
9544 	if (dp == NULL)
9545 		return (0);
9546 
9547 	for (i = 0; i < dp->dtdo_varlen; i++) {
9548 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9549 
9550 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9551 			continue;
9552 
9553 		switch (v->dtdv_id) {
9554 		case DIF_VAR_CURTHREAD:
9555 		case DIF_VAR_PID:
9556 		case DIF_VAR_TID:
9557 		case DIF_VAR_EXECNAME:
9558 		case DIF_VAR_ZONENAME:
9559 			break;
9560 
9561 		default:
9562 			return (0);
9563 		}
9564 	}
9565 
9566 	/*
9567 	 * This DIF object may be cacheable.  Now we need to look for any
9568 	 * array loading instructions, any memory loading instructions, or
9569 	 * any stores to thread-local variables.
9570 	 */
9571 	for (i = 0; i < dp->dtdo_len; i++) {
9572 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9573 
9574 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9575 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9576 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9577 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9578 			return (0);
9579 	}
9580 
9581 	return (1);
9582 }
9583 
9584 static void
9585 dtrace_difo_hold(dtrace_difo_t *dp)
9586 {
9587 	int i;
9588 
9589 	ASSERT(MUTEX_HELD(&dtrace_lock));
9590 
9591 	dp->dtdo_refcnt++;
9592 	ASSERT(dp->dtdo_refcnt != 0);
9593 
9594 	/*
9595 	 * We need to check this DIF object for references to the variable
9596 	 * DIF_VAR_VTIMESTAMP.
9597 	 */
9598 	for (i = 0; i < dp->dtdo_varlen; i++) {
9599 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9600 
9601 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9602 			continue;
9603 
9604 		if (dtrace_vtime_references++ == 0)
9605 			dtrace_vtime_enable();
9606 	}
9607 }
9608 
9609 /*
9610  * This routine calculates the dynamic variable chunksize for a given DIF
9611  * object.  The calculation is not fool-proof, and can probably be tricked by
9612  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9613  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9614  * if a dynamic variable size exceeds the chunksize.
9615  */
9616 static void
9617 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9618 {
9619 	uint64_t sval;
9620 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9621 	const dif_instr_t *text = dp->dtdo_buf;
9622 	uint_t pc, srd = 0;
9623 	uint_t ttop = 0;
9624 	size_t size, ksize;
9625 	uint_t id, i;
9626 
9627 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9628 		dif_instr_t instr = text[pc];
9629 		uint_t op = DIF_INSTR_OP(instr);
9630 		uint_t rd = DIF_INSTR_RD(instr);
9631 		uint_t r1 = DIF_INSTR_R1(instr);
9632 		uint_t nkeys = 0;
9633 		uchar_t scope;
9634 
9635 		dtrace_key_t *key = tupregs;
9636 
9637 		switch (op) {
9638 		case DIF_OP_SETX:
9639 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9640 			srd = rd;
9641 			continue;
9642 
9643 		case DIF_OP_STTS:
9644 			key = &tupregs[DIF_DTR_NREGS];
9645 			key[0].dttk_size = 0;
9646 			key[1].dttk_size = 0;
9647 			nkeys = 2;
9648 			scope = DIFV_SCOPE_THREAD;
9649 			break;
9650 
9651 		case DIF_OP_STGAA:
9652 		case DIF_OP_STTAA:
9653 			nkeys = ttop;
9654 
9655 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9656 				key[nkeys++].dttk_size = 0;
9657 
9658 			key[nkeys++].dttk_size = 0;
9659 
9660 			if (op == DIF_OP_STTAA) {
9661 				scope = DIFV_SCOPE_THREAD;
9662 			} else {
9663 				scope = DIFV_SCOPE_GLOBAL;
9664 			}
9665 
9666 			break;
9667 
9668 		case DIF_OP_PUSHTR:
9669 			if (ttop == DIF_DTR_NREGS)
9670 				return;
9671 
9672 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9673 				/*
9674 				 * If the register for the size of the "pushtr"
9675 				 * is %r0 (or the value is 0) and the type is
9676 				 * a string, we'll use the system-wide default
9677 				 * string size.
9678 				 */
9679 				tupregs[ttop++].dttk_size =
9680 				    dtrace_strsize_default;
9681 			} else {
9682 				if (srd == 0)
9683 					return;
9684 
9685 				tupregs[ttop++].dttk_size = sval;
9686 			}
9687 
9688 			break;
9689 
9690 		case DIF_OP_PUSHTV:
9691 			if (ttop == DIF_DTR_NREGS)
9692 				return;
9693 
9694 			tupregs[ttop++].dttk_size = 0;
9695 			break;
9696 
9697 		case DIF_OP_FLUSHTS:
9698 			ttop = 0;
9699 			break;
9700 
9701 		case DIF_OP_POPTS:
9702 			if (ttop != 0)
9703 				ttop--;
9704 			break;
9705 		}
9706 
9707 		sval = 0;
9708 		srd = 0;
9709 
9710 		if (nkeys == 0)
9711 			continue;
9712 
9713 		/*
9714 		 * We have a dynamic variable allocation; calculate its size.
9715 		 */
9716 		for (ksize = 0, i = 0; i < nkeys; i++)
9717 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9718 
9719 		size = sizeof (dtrace_dynvar_t);
9720 		size += sizeof (dtrace_key_t) * (nkeys - 1);
9721 		size += ksize;
9722 
9723 		/*
9724 		 * Now we need to determine the size of the stored data.
9725 		 */
9726 		id = DIF_INSTR_VAR(instr);
9727 
9728 		for (i = 0; i < dp->dtdo_varlen; i++) {
9729 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9730 
9731 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9732 				size += v->dtdv_type.dtdt_size;
9733 				break;
9734 			}
9735 		}
9736 
9737 		if (i == dp->dtdo_varlen)
9738 			return;
9739 
9740 		/*
9741 		 * We have the size.  If this is larger than the chunk size
9742 		 * for our dynamic variable state, reset the chunk size.
9743 		 */
9744 		size = P2ROUNDUP(size, sizeof (uint64_t));
9745 
9746 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9747 			vstate->dtvs_dynvars.dtds_chunksize = size;
9748 	}
9749 }
9750 
9751 static void
9752 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9753 {
9754 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9755 	uint_t id;
9756 
9757 	ASSERT(MUTEX_HELD(&dtrace_lock));
9758 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9759 
9760 	for (i = 0; i < dp->dtdo_varlen; i++) {
9761 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9762 		dtrace_statvar_t *svar, ***svarp;
9763 		size_t dsize = 0;
9764 		uint8_t scope = v->dtdv_scope;
9765 		int *np;
9766 
9767 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9768 			continue;
9769 
9770 		id -= DIF_VAR_OTHER_UBASE;
9771 
9772 		switch (scope) {
9773 		case DIFV_SCOPE_THREAD:
9774 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9775 				dtrace_difv_t *tlocals;
9776 
9777 				if ((ntlocals = (otlocals << 1)) == 0)
9778 					ntlocals = 1;
9779 
9780 				osz = otlocals * sizeof (dtrace_difv_t);
9781 				nsz = ntlocals * sizeof (dtrace_difv_t);
9782 
9783 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9784 
9785 				if (osz != 0) {
9786 					bcopy(vstate->dtvs_tlocals,
9787 					    tlocals, osz);
9788 					kmem_free(vstate->dtvs_tlocals, osz);
9789 				}
9790 
9791 				vstate->dtvs_tlocals = tlocals;
9792 				vstate->dtvs_ntlocals = ntlocals;
9793 			}
9794 
9795 			vstate->dtvs_tlocals[id] = *v;
9796 			continue;
9797 
9798 		case DIFV_SCOPE_LOCAL:
9799 			np = &vstate->dtvs_nlocals;
9800 			svarp = &vstate->dtvs_locals;
9801 
9802 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9803 				dsize = NCPU * (v->dtdv_type.dtdt_size +
9804 				    sizeof (uint64_t));
9805 			else
9806 				dsize = NCPU * sizeof (uint64_t);
9807 
9808 			break;
9809 
9810 		case DIFV_SCOPE_GLOBAL:
9811 			np = &vstate->dtvs_nglobals;
9812 			svarp = &vstate->dtvs_globals;
9813 
9814 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9815 				dsize = v->dtdv_type.dtdt_size +
9816 				    sizeof (uint64_t);
9817 
9818 			break;
9819 
9820 		default:
9821 			ASSERT(0);
9822 		}
9823 
9824 		while (id >= (oldsvars = *np)) {
9825 			dtrace_statvar_t **statics;
9826 			int newsvars, oldsize, newsize;
9827 
9828 			if ((newsvars = (oldsvars << 1)) == 0)
9829 				newsvars = 1;
9830 
9831 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9832 			newsize = newsvars * sizeof (dtrace_statvar_t *);
9833 
9834 			statics = kmem_zalloc(newsize, KM_SLEEP);
9835 
9836 			if (oldsize != 0) {
9837 				bcopy(*svarp, statics, oldsize);
9838 				kmem_free(*svarp, oldsize);
9839 			}
9840 
9841 			*svarp = statics;
9842 			*np = newsvars;
9843 		}
9844 
9845 		if ((svar = (*svarp)[id]) == NULL) {
9846 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9847 			svar->dtsv_var = *v;
9848 
9849 			if ((svar->dtsv_size = dsize) != 0) {
9850 				svar->dtsv_data = (uint64_t)(uintptr_t)
9851 				    kmem_zalloc(dsize, KM_SLEEP);
9852 			}
9853 
9854 			(*svarp)[id] = svar;
9855 		}
9856 
9857 		svar->dtsv_refcnt++;
9858 	}
9859 
9860 	dtrace_difo_chunksize(dp, vstate);
9861 	dtrace_difo_hold(dp);
9862 }
9863 
9864 static dtrace_difo_t *
9865 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9866 {
9867 	dtrace_difo_t *new;
9868 	size_t sz;
9869 
9870 	ASSERT(dp->dtdo_buf != NULL);
9871 	ASSERT(dp->dtdo_refcnt != 0);
9872 
9873 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9874 
9875 	ASSERT(dp->dtdo_buf != NULL);
9876 	sz = dp->dtdo_len * sizeof (dif_instr_t);
9877 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9878 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9879 	new->dtdo_len = dp->dtdo_len;
9880 
9881 	if (dp->dtdo_strtab != NULL) {
9882 		ASSERT(dp->dtdo_strlen != 0);
9883 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9884 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9885 		new->dtdo_strlen = dp->dtdo_strlen;
9886 	}
9887 
9888 	if (dp->dtdo_inttab != NULL) {
9889 		ASSERT(dp->dtdo_intlen != 0);
9890 		sz = dp->dtdo_intlen * sizeof (uint64_t);
9891 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9892 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9893 		new->dtdo_intlen = dp->dtdo_intlen;
9894 	}
9895 
9896 	if (dp->dtdo_vartab != NULL) {
9897 		ASSERT(dp->dtdo_varlen != 0);
9898 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9899 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9900 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9901 		new->dtdo_varlen = dp->dtdo_varlen;
9902 	}
9903 
9904 	dtrace_difo_init(new, vstate);
9905 	return (new);
9906 }
9907 
9908 static void
9909 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9910 {
9911 	int i;
9912 
9913 	ASSERT(dp->dtdo_refcnt == 0);
9914 
9915 	for (i = 0; i < dp->dtdo_varlen; i++) {
9916 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9917 		dtrace_statvar_t *svar, **svarp;
9918 		uint_t id;
9919 		uint8_t scope = v->dtdv_scope;
9920 		int *np;
9921 
9922 		switch (scope) {
9923 		case DIFV_SCOPE_THREAD:
9924 			continue;
9925 
9926 		case DIFV_SCOPE_LOCAL:
9927 			np = &vstate->dtvs_nlocals;
9928 			svarp = vstate->dtvs_locals;
9929 			break;
9930 
9931 		case DIFV_SCOPE_GLOBAL:
9932 			np = &vstate->dtvs_nglobals;
9933 			svarp = vstate->dtvs_globals;
9934 			break;
9935 
9936 		default:
9937 			ASSERT(0);
9938 		}
9939 
9940 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9941 			continue;
9942 
9943 		id -= DIF_VAR_OTHER_UBASE;
9944 		ASSERT(id < *np);
9945 
9946 		svar = svarp[id];
9947 		ASSERT(svar != NULL);
9948 		ASSERT(svar->dtsv_refcnt > 0);
9949 
9950 		if (--svar->dtsv_refcnt > 0)
9951 			continue;
9952 
9953 		if (svar->dtsv_size != 0) {
9954 			ASSERT(svar->dtsv_data != NULL);
9955 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9956 			    svar->dtsv_size);
9957 		}
9958 
9959 		kmem_free(svar, sizeof (dtrace_statvar_t));
9960 		svarp[id] = NULL;
9961 	}
9962 
9963 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9964 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9965 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9966 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9967 
9968 	kmem_free(dp, sizeof (dtrace_difo_t));
9969 }
9970 
9971 static void
9972 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9973 {
9974 	int i;
9975 
9976 	ASSERT(MUTEX_HELD(&dtrace_lock));
9977 	ASSERT(dp->dtdo_refcnt != 0);
9978 
9979 	for (i = 0; i < dp->dtdo_varlen; i++) {
9980 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9981 
9982 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9983 			continue;
9984 
9985 		ASSERT(dtrace_vtime_references > 0);
9986 		if (--dtrace_vtime_references == 0)
9987 			dtrace_vtime_disable();
9988 	}
9989 
9990 	if (--dp->dtdo_refcnt == 0)
9991 		dtrace_difo_destroy(dp, vstate);
9992 }
9993 
9994 /*
9995  * DTrace Format Functions
9996  */
9997 static uint16_t
9998 dtrace_format_add(dtrace_state_t *state, char *str)
9999 {
10000 	char *fmt, **new;
10001 	uint16_t ndx, len = strlen(str) + 1;
10002 
10003 	fmt = kmem_zalloc(len, KM_SLEEP);
10004 	bcopy(str, fmt, len);
10005 
10006 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10007 		if (state->dts_formats[ndx] == NULL) {
10008 			state->dts_formats[ndx] = fmt;
10009 			return (ndx + 1);
10010 		}
10011 	}
10012 
10013 	if (state->dts_nformats == USHRT_MAX) {
10014 		/*
10015 		 * This is only likely if a denial-of-service attack is being
10016 		 * attempted.  As such, it's okay to fail silently here.
10017 		 */
10018 		kmem_free(fmt, len);
10019 		return (0);
10020 	}
10021 
10022 	/*
10023 	 * For simplicity, we always resize the formats array to be exactly the
10024 	 * number of formats.
10025 	 */
10026 	ndx = state->dts_nformats++;
10027 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10028 
10029 	if (state->dts_formats != NULL) {
10030 		ASSERT(ndx != 0);
10031 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10032 		kmem_free(state->dts_formats, ndx * sizeof (char *));
10033 	}
10034 
10035 	state->dts_formats = new;
10036 	state->dts_formats[ndx] = fmt;
10037 
10038 	return (ndx + 1);
10039 }
10040 
10041 static void
10042 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10043 {
10044 	char *fmt;
10045 
10046 	ASSERT(state->dts_formats != NULL);
10047 	ASSERT(format <= state->dts_nformats);
10048 	ASSERT(state->dts_formats[format - 1] != NULL);
10049 
10050 	fmt = state->dts_formats[format - 1];
10051 	kmem_free(fmt, strlen(fmt) + 1);
10052 	state->dts_formats[format - 1] = NULL;
10053 }
10054 
10055 static void
10056 dtrace_format_destroy(dtrace_state_t *state)
10057 {
10058 	int i;
10059 
10060 	if (state->dts_nformats == 0) {
10061 		ASSERT(state->dts_formats == NULL);
10062 		return;
10063 	}
10064 
10065 	ASSERT(state->dts_formats != NULL);
10066 
10067 	for (i = 0; i < state->dts_nformats; i++) {
10068 		char *fmt = state->dts_formats[i];
10069 
10070 		if (fmt == NULL)
10071 			continue;
10072 
10073 		kmem_free(fmt, strlen(fmt) + 1);
10074 	}
10075 
10076 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10077 	state->dts_nformats = 0;
10078 	state->dts_formats = NULL;
10079 }
10080 
10081 /*
10082  * DTrace Predicate Functions
10083  */
10084 static dtrace_predicate_t *
10085 dtrace_predicate_create(dtrace_difo_t *dp)
10086 {
10087 	dtrace_predicate_t *pred;
10088 
10089 	ASSERT(MUTEX_HELD(&dtrace_lock));
10090 	ASSERT(dp->dtdo_refcnt != 0);
10091 
10092 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10093 	pred->dtp_difo = dp;
10094 	pred->dtp_refcnt = 1;
10095 
10096 	if (!dtrace_difo_cacheable(dp))
10097 		return (pred);
10098 
10099 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10100 		/*
10101 		 * This is only theoretically possible -- we have had 2^32
10102 		 * cacheable predicates on this machine.  We cannot allow any
10103 		 * more predicates to become cacheable:  as unlikely as it is,
10104 		 * there may be a thread caching a (now stale) predicate cache
10105 		 * ID. (N.B.: the temptation is being successfully resisted to
10106 		 * have this cmn_err() "Holy shit -- we executed this code!")
10107 		 */
10108 		return (pred);
10109 	}
10110 
10111 	pred->dtp_cacheid = dtrace_predcache_id++;
10112 
10113 	return (pred);
10114 }
10115 
10116 static void
10117 dtrace_predicate_hold(dtrace_predicate_t *pred)
10118 {
10119 	ASSERT(MUTEX_HELD(&dtrace_lock));
10120 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10121 	ASSERT(pred->dtp_refcnt > 0);
10122 
10123 	pred->dtp_refcnt++;
10124 }
10125 
10126 static void
10127 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10128 {
10129 	dtrace_difo_t *dp = pred->dtp_difo;
10130 
10131 	ASSERT(MUTEX_HELD(&dtrace_lock));
10132 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10133 	ASSERT(pred->dtp_refcnt > 0);
10134 
10135 	if (--pred->dtp_refcnt == 0) {
10136 		dtrace_difo_release(pred->dtp_difo, vstate);
10137 		kmem_free(pred, sizeof (dtrace_predicate_t));
10138 	}
10139 }
10140 
10141 /*
10142  * DTrace Action Description Functions
10143  */
10144 static dtrace_actdesc_t *
10145 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10146     uint64_t uarg, uint64_t arg)
10147 {
10148 	dtrace_actdesc_t *act;
10149 
10150 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10151 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10152 
10153 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10154 	act->dtad_kind = kind;
10155 	act->dtad_ntuple = ntuple;
10156 	act->dtad_uarg = uarg;
10157 	act->dtad_arg = arg;
10158 	act->dtad_refcnt = 1;
10159 
10160 	return (act);
10161 }
10162 
10163 static void
10164 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10165 {
10166 	ASSERT(act->dtad_refcnt >= 1);
10167 	act->dtad_refcnt++;
10168 }
10169 
10170 static void
10171 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10172 {
10173 	dtrace_actkind_t kind = act->dtad_kind;
10174 	dtrace_difo_t *dp;
10175 
10176 	ASSERT(act->dtad_refcnt >= 1);
10177 
10178 	if (--act->dtad_refcnt != 0)
10179 		return;
10180 
10181 	if ((dp = act->dtad_difo) != NULL)
10182 		dtrace_difo_release(dp, vstate);
10183 
10184 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
10185 		char *str = (char *)(uintptr_t)act->dtad_arg;
10186 
10187 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10188 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10189 
10190 		if (str != NULL)
10191 			kmem_free(str, strlen(str) + 1);
10192 	}
10193 
10194 	kmem_free(act, sizeof (dtrace_actdesc_t));
10195 }
10196 
10197 /*
10198  * DTrace ECB Functions
10199  */
10200 static dtrace_ecb_t *
10201 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10202 {
10203 	dtrace_ecb_t *ecb;
10204 	dtrace_epid_t epid;
10205 
10206 	ASSERT(MUTEX_HELD(&dtrace_lock));
10207 
10208 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10209 	ecb->dte_predicate = NULL;
10210 	ecb->dte_probe = probe;
10211 
10212 	/*
10213 	 * The default size is the size of the default action: recording
10214 	 * the header.
10215 	 */
10216 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10217 	ecb->dte_alignment = sizeof (dtrace_epid_t);
10218 
10219 	epid = state->dts_epid++;
10220 
10221 	if (epid - 1 >= state->dts_necbs) {
10222 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10223 		int necbs = state->dts_necbs << 1;
10224 
10225 		ASSERT(epid == state->dts_necbs + 1);
10226 
10227 		if (necbs == 0) {
10228 			ASSERT(oecbs == NULL);
10229 			necbs = 1;
10230 		}
10231 
10232 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10233 
10234 		if (oecbs != NULL)
10235 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10236 
10237 		dtrace_membar_producer();
10238 		state->dts_ecbs = ecbs;
10239 
10240 		if (oecbs != NULL) {
10241 			/*
10242 			 * If this state is active, we must dtrace_sync()
10243 			 * before we can free the old dts_ecbs array:  we're
10244 			 * coming in hot, and there may be active ring
10245 			 * buffer processing (which indexes into the dts_ecbs
10246 			 * array) on another CPU.
10247 			 */
10248 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10249 				dtrace_sync();
10250 
10251 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10252 		}
10253 
10254 		dtrace_membar_producer();
10255 		state->dts_necbs = necbs;
10256 	}
10257 
10258 	ecb->dte_state = state;
10259 
10260 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
10261 	dtrace_membar_producer();
10262 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10263 
10264 	return (ecb);
10265 }
10266 
10267 static int
10268 dtrace_ecb_enable(dtrace_ecb_t *ecb)
10269 {
10270 	dtrace_probe_t *probe = ecb->dte_probe;
10271 
10272 	ASSERT(MUTEX_HELD(&cpu_lock));
10273 	ASSERT(MUTEX_HELD(&dtrace_lock));
10274 	ASSERT(ecb->dte_next == NULL);
10275 
10276 	if (probe == NULL) {
10277 		/*
10278 		 * This is the NULL probe -- there's nothing to do.
10279 		 */
10280 		return (0);
10281 	}
10282 
10283 	if (probe->dtpr_ecb == NULL) {
10284 		dtrace_provider_t *prov = probe->dtpr_provider;
10285 
10286 		/*
10287 		 * We're the first ECB on this probe.
10288 		 */
10289 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10290 
10291 		if (ecb->dte_predicate != NULL)
10292 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10293 
10294 		return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10295 		    probe->dtpr_id, probe->dtpr_arg));
10296 	} else {
10297 		/*
10298 		 * This probe is already active.  Swing the last pointer to
10299 		 * point to the new ECB, and issue a dtrace_sync() to assure
10300 		 * that all CPUs have seen the change.
10301 		 */
10302 		ASSERT(probe->dtpr_ecb_last != NULL);
10303 		probe->dtpr_ecb_last->dte_next = ecb;
10304 		probe->dtpr_ecb_last = ecb;
10305 		probe->dtpr_predcache = 0;
10306 
10307 		dtrace_sync();
10308 		return (0);
10309 	}
10310 }
10311 
10312 static void
10313 dtrace_ecb_resize(dtrace_ecb_t *ecb)
10314 {
10315 	dtrace_action_t *act;
10316 	uint32_t curneeded = UINT32_MAX;
10317 	uint32_t aggbase = UINT32_MAX;
10318 
10319 	/*
10320 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
10321 	 * we always record it first.)
10322 	 */
10323 	ecb->dte_size = sizeof (dtrace_rechdr_t);
10324 	ecb->dte_alignment = sizeof (dtrace_epid_t);
10325 
10326 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10327 		dtrace_recdesc_t *rec = &act->dta_rec;
10328 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10329 
10330 		ecb->dte_alignment = MAX(ecb->dte_alignment,
10331 		    rec->dtrd_alignment);
10332 
10333 		if (DTRACEACT_ISAGG(act->dta_kind)) {
10334 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10335 
10336 			ASSERT(rec->dtrd_size != 0);
10337 			ASSERT(agg->dtag_first != NULL);
10338 			ASSERT(act->dta_prev->dta_intuple);
10339 			ASSERT(aggbase != UINT32_MAX);
10340 			ASSERT(curneeded != UINT32_MAX);
10341 
10342 			agg->dtag_base = aggbase;
10343 
10344 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10345 			rec->dtrd_offset = curneeded;
10346 			curneeded += rec->dtrd_size;
10347 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10348 
10349 			aggbase = UINT32_MAX;
10350 			curneeded = UINT32_MAX;
10351 		} else if (act->dta_intuple) {
10352 			if (curneeded == UINT32_MAX) {
10353 				/*
10354 				 * This is the first record in a tuple.  Align
10355 				 * curneeded to be at offset 4 in an 8-byte
10356 				 * aligned block.
10357 				 */
10358 				ASSERT(act->dta_prev == NULL ||
10359 				    !act->dta_prev->dta_intuple);
10360 				ASSERT3U(aggbase, ==, UINT32_MAX);
10361 				curneeded = P2PHASEUP(ecb->dte_size,
10362 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
10363 
10364 				aggbase = curneeded - sizeof (dtrace_aggid_t);
10365 				ASSERT(IS_P2ALIGNED(aggbase,
10366 				    sizeof (uint64_t)));
10367 			}
10368 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10369 			rec->dtrd_offset = curneeded;
10370 			curneeded += rec->dtrd_size;
10371 		} else {
10372 			/* tuples must be followed by an aggregation */
10373 			ASSERT(act->dta_prev == NULL ||
10374 			    !act->dta_prev->dta_intuple);
10375 
10376 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10377 			    rec->dtrd_alignment);
10378 			rec->dtrd_offset = ecb->dte_size;
10379 			ecb->dte_size += rec->dtrd_size;
10380 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10381 		}
10382 	}
10383 
10384 	if ((act = ecb->dte_action) != NULL &&
10385 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10386 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10387 		/*
10388 		 * If the size is still sizeof (dtrace_rechdr_t), then all
10389 		 * actions store no data; set the size to 0.
10390 		 */
10391 		ecb->dte_size = 0;
10392 	}
10393 
10394 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10395 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10396 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10397 	    ecb->dte_needed);
10398 }
10399 
10400 static dtrace_action_t *
10401 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10402 {
10403 	dtrace_aggregation_t *agg;
10404 	size_t size = sizeof (uint64_t);
10405 	int ntuple = desc->dtad_ntuple;
10406 	dtrace_action_t *act;
10407 	dtrace_recdesc_t *frec;
10408 	dtrace_aggid_t aggid;
10409 	dtrace_state_t *state = ecb->dte_state;
10410 
10411 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10412 	agg->dtag_ecb = ecb;
10413 
10414 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10415 
10416 	switch (desc->dtad_kind) {
10417 	case DTRACEAGG_MIN:
10418 		agg->dtag_initial = INT64_MAX;
10419 		agg->dtag_aggregate = dtrace_aggregate_min;
10420 		break;
10421 
10422 	case DTRACEAGG_MAX:
10423 		agg->dtag_initial = INT64_MIN;
10424 		agg->dtag_aggregate = dtrace_aggregate_max;
10425 		break;
10426 
10427 	case DTRACEAGG_COUNT:
10428 		agg->dtag_aggregate = dtrace_aggregate_count;
10429 		break;
10430 
10431 	case DTRACEAGG_QUANTIZE:
10432 		agg->dtag_aggregate = dtrace_aggregate_quantize;
10433 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10434 		    sizeof (uint64_t);
10435 		break;
10436 
10437 	case DTRACEAGG_LQUANTIZE: {
10438 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10439 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10440 
10441 		agg->dtag_initial = desc->dtad_arg;
10442 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
10443 
10444 		if (step == 0 || levels == 0)
10445 			goto err;
10446 
10447 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10448 		break;
10449 	}
10450 
10451 	case DTRACEAGG_LLQUANTIZE: {
10452 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10453 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10454 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10455 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10456 		int64_t v;
10457 
10458 		agg->dtag_initial = desc->dtad_arg;
10459 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
10460 
10461 		if (factor < 2 || low >= high || nsteps < factor)
10462 			goto err;
10463 
10464 		/*
10465 		 * Now check that the number of steps evenly divides a power
10466 		 * of the factor.  (This assures both integer bucket size and
10467 		 * linearity within each magnitude.)
10468 		 */
10469 		for (v = factor; v < nsteps; v *= factor)
10470 			continue;
10471 
10472 		if ((v % nsteps) || (nsteps % factor))
10473 			goto err;
10474 
10475 		size = (dtrace_aggregate_llquantize_bucket(factor,
10476 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10477 		break;
10478 	}
10479 
10480 	case DTRACEAGG_AVG:
10481 		agg->dtag_aggregate = dtrace_aggregate_avg;
10482 		size = sizeof (uint64_t) * 2;
10483 		break;
10484 
10485 	case DTRACEAGG_STDDEV:
10486 		agg->dtag_aggregate = dtrace_aggregate_stddev;
10487 		size = sizeof (uint64_t) * 4;
10488 		break;
10489 
10490 	case DTRACEAGG_SUM:
10491 		agg->dtag_aggregate = dtrace_aggregate_sum;
10492 		break;
10493 
10494 	default:
10495 		goto err;
10496 	}
10497 
10498 	agg->dtag_action.dta_rec.dtrd_size = size;
10499 
10500 	if (ntuple == 0)
10501 		goto err;
10502 
10503 	/*
10504 	 * We must make sure that we have enough actions for the n-tuple.
10505 	 */
10506 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10507 		if (DTRACEACT_ISAGG(act->dta_kind))
10508 			break;
10509 
10510 		if (--ntuple == 0) {
10511 			/*
10512 			 * This is the action with which our n-tuple begins.
10513 			 */
10514 			agg->dtag_first = act;
10515 			goto success;
10516 		}
10517 	}
10518 
10519 	/*
10520 	 * This n-tuple is short by ntuple elements.  Return failure.
10521 	 */
10522 	ASSERT(ntuple != 0);
10523 err:
10524 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10525 	return (NULL);
10526 
10527 success:
10528 	/*
10529 	 * If the last action in the tuple has a size of zero, it's actually
10530 	 * an expression argument for the aggregating action.
10531 	 */
10532 	ASSERT(ecb->dte_action_last != NULL);
10533 	act = ecb->dte_action_last;
10534 
10535 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10536 		ASSERT(act->dta_difo != NULL);
10537 
10538 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10539 			agg->dtag_hasarg = 1;
10540 	}
10541 
10542 	/*
10543 	 * We need to allocate an id for this aggregation.
10544 	 */
10545 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10546 	    VM_BESTFIT | VM_SLEEP);
10547 
10548 	if (aggid - 1 >= state->dts_naggregations) {
10549 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10550 		dtrace_aggregation_t **aggs;
10551 		int naggs = state->dts_naggregations << 1;
10552 		int onaggs = state->dts_naggregations;
10553 
10554 		ASSERT(aggid == state->dts_naggregations + 1);
10555 
10556 		if (naggs == 0) {
10557 			ASSERT(oaggs == NULL);
10558 			naggs = 1;
10559 		}
10560 
10561 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10562 
10563 		if (oaggs != NULL) {
10564 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10565 			kmem_free(oaggs, onaggs * sizeof (*aggs));
10566 		}
10567 
10568 		state->dts_aggregations = aggs;
10569 		state->dts_naggregations = naggs;
10570 	}
10571 
10572 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10573 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10574 
10575 	frec = &agg->dtag_first->dta_rec;
10576 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10577 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10578 
10579 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10580 		ASSERT(!act->dta_intuple);
10581 		act->dta_intuple = 1;
10582 	}
10583 
10584 	return (&agg->dtag_action);
10585 }
10586 
10587 static void
10588 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10589 {
10590 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10591 	dtrace_state_t *state = ecb->dte_state;
10592 	dtrace_aggid_t aggid = agg->dtag_id;
10593 
10594 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10595 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10596 
10597 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10598 	state->dts_aggregations[aggid - 1] = NULL;
10599 
10600 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10601 }
10602 
10603 static int
10604 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10605 {
10606 	dtrace_action_t *action, *last;
10607 	dtrace_difo_t *dp = desc->dtad_difo;
10608 	uint32_t size = 0, align = sizeof (uint8_t), mask;
10609 	uint16_t format = 0;
10610 	dtrace_recdesc_t *rec;
10611 	dtrace_state_t *state = ecb->dte_state;
10612 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
10613 	uint64_t arg = desc->dtad_arg;
10614 
10615 	ASSERT(MUTEX_HELD(&dtrace_lock));
10616 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10617 
10618 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10619 		/*
10620 		 * If this is an aggregating action, there must be neither
10621 		 * a speculate nor a commit on the action chain.
10622 		 */
10623 		dtrace_action_t *act;
10624 
10625 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10626 			if (act->dta_kind == DTRACEACT_COMMIT)
10627 				return (EINVAL);
10628 
10629 			if (act->dta_kind == DTRACEACT_SPECULATE)
10630 				return (EINVAL);
10631 		}
10632 
10633 		action = dtrace_ecb_aggregation_create(ecb, desc);
10634 
10635 		if (action == NULL)
10636 			return (EINVAL);
10637 	} else {
10638 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10639 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10640 		    dp != NULL && dp->dtdo_destructive)) {
10641 			state->dts_destructive = 1;
10642 		}
10643 
10644 		switch (desc->dtad_kind) {
10645 		case DTRACEACT_PRINTF:
10646 		case DTRACEACT_PRINTA:
10647 		case DTRACEACT_SYSTEM:
10648 		case DTRACEACT_FREOPEN:
10649 		case DTRACEACT_DIFEXPR:
10650 			/*
10651 			 * We know that our arg is a string -- turn it into a
10652 			 * format.
10653 			 */
10654 			if (arg == NULL) {
10655 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10656 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
10657 				format = 0;
10658 			} else {
10659 				ASSERT(arg != NULL);
10660 				ASSERT(arg > KERNELBASE);
10661 				format = dtrace_format_add(state,
10662 				    (char *)(uintptr_t)arg);
10663 			}
10664 
10665 			/*FALLTHROUGH*/
10666 		case DTRACEACT_LIBACT:
10667 		case DTRACEACT_TRACEMEM:
10668 		case DTRACEACT_TRACEMEM_DYNSIZE:
10669 			if (dp == NULL)
10670 				return (EINVAL);
10671 
10672 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10673 				break;
10674 
10675 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10676 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10677 					return (EINVAL);
10678 
10679 				size = opt[DTRACEOPT_STRSIZE];
10680 			}
10681 
10682 			break;
10683 
10684 		case DTRACEACT_STACK:
10685 			if ((nframes = arg) == 0) {
10686 				nframes = opt[DTRACEOPT_STACKFRAMES];
10687 				ASSERT(nframes > 0);
10688 				arg = nframes;
10689 			}
10690 
10691 			size = nframes * sizeof (pc_t);
10692 			break;
10693 
10694 		case DTRACEACT_JSTACK:
10695 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10696 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10697 
10698 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10699 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10700 
10701 			arg = DTRACE_USTACK_ARG(nframes, strsize);
10702 
10703 			/*FALLTHROUGH*/
10704 		case DTRACEACT_USTACK:
10705 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10706 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10707 				strsize = DTRACE_USTACK_STRSIZE(arg);
10708 				nframes = opt[DTRACEOPT_USTACKFRAMES];
10709 				ASSERT(nframes > 0);
10710 				arg = DTRACE_USTACK_ARG(nframes, strsize);
10711 			}
10712 
10713 			/*
10714 			 * Save a slot for the pid.
10715 			 */
10716 			size = (nframes + 1) * sizeof (uint64_t);
10717 			size += DTRACE_USTACK_STRSIZE(arg);
10718 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10719 
10720 			break;
10721 
10722 		case DTRACEACT_SYM:
10723 		case DTRACEACT_MOD:
10724 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10725 			    sizeof (uint64_t)) ||
10726 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10727 				return (EINVAL);
10728 			break;
10729 
10730 		case DTRACEACT_USYM:
10731 		case DTRACEACT_UMOD:
10732 		case DTRACEACT_UADDR:
10733 			if (dp == NULL ||
10734 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10735 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10736 				return (EINVAL);
10737 
10738 			/*
10739 			 * We have a slot for the pid, plus a slot for the
10740 			 * argument.  To keep things simple (aligned with
10741 			 * bitness-neutral sizing), we store each as a 64-bit
10742 			 * quantity.
10743 			 */
10744 			size = 2 * sizeof (uint64_t);
10745 			break;
10746 
10747 		case DTRACEACT_STOP:
10748 		case DTRACEACT_BREAKPOINT:
10749 		case DTRACEACT_PANIC:
10750 			break;
10751 
10752 		case DTRACEACT_CHILL:
10753 		case DTRACEACT_DISCARD:
10754 		case DTRACEACT_RAISE:
10755 			if (dp == NULL)
10756 				return (EINVAL);
10757 			break;
10758 
10759 		case DTRACEACT_EXIT:
10760 			if (dp == NULL ||
10761 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10762 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10763 				return (EINVAL);
10764 			break;
10765 
10766 		case DTRACEACT_SPECULATE:
10767 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10768 				return (EINVAL);
10769 
10770 			if (dp == NULL)
10771 				return (EINVAL);
10772 
10773 			state->dts_speculates = 1;
10774 			break;
10775 
10776 		case DTRACEACT_COMMIT: {
10777 			dtrace_action_t *act = ecb->dte_action;
10778 
10779 			for (; act != NULL; act = act->dta_next) {
10780 				if (act->dta_kind == DTRACEACT_COMMIT)
10781 					return (EINVAL);
10782 			}
10783 
10784 			if (dp == NULL)
10785 				return (EINVAL);
10786 			break;
10787 		}
10788 
10789 		default:
10790 			return (EINVAL);
10791 		}
10792 
10793 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10794 			/*
10795 			 * If this is a data-storing action or a speculate,
10796 			 * we must be sure that there isn't a commit on the
10797 			 * action chain.
10798 			 */
10799 			dtrace_action_t *act = ecb->dte_action;
10800 
10801 			for (; act != NULL; act = act->dta_next) {
10802 				if (act->dta_kind == DTRACEACT_COMMIT)
10803 					return (EINVAL);
10804 			}
10805 		}
10806 
10807 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10808 		action->dta_rec.dtrd_size = size;
10809 	}
10810 
10811 	action->dta_refcnt = 1;
10812 	rec = &action->dta_rec;
10813 	size = rec->dtrd_size;
10814 
10815 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10816 		if (!(size & mask)) {
10817 			align = mask + 1;
10818 			break;
10819 		}
10820 	}
10821 
10822 	action->dta_kind = desc->dtad_kind;
10823 
10824 	if ((action->dta_difo = dp) != NULL)
10825 		dtrace_difo_hold(dp);
10826 
10827 	rec->dtrd_action = action->dta_kind;
10828 	rec->dtrd_arg = arg;
10829 	rec->dtrd_uarg = desc->dtad_uarg;
10830 	rec->dtrd_alignment = (uint16_t)align;
10831 	rec->dtrd_format = format;
10832 
10833 	if ((last = ecb->dte_action_last) != NULL) {
10834 		ASSERT(ecb->dte_action != NULL);
10835 		action->dta_prev = last;
10836 		last->dta_next = action;
10837 	} else {
10838 		ASSERT(ecb->dte_action == NULL);
10839 		ecb->dte_action = action;
10840 	}
10841 
10842 	ecb->dte_action_last = action;
10843 
10844 	return (0);
10845 }
10846 
10847 static void
10848 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10849 {
10850 	dtrace_action_t *act = ecb->dte_action, *next;
10851 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10852 	dtrace_difo_t *dp;
10853 	uint16_t format;
10854 
10855 	if (act != NULL && act->dta_refcnt > 1) {
10856 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10857 		act->dta_refcnt--;
10858 	} else {
10859 		for (; act != NULL; act = next) {
10860 			next = act->dta_next;
10861 			ASSERT(next != NULL || act == ecb->dte_action_last);
10862 			ASSERT(act->dta_refcnt == 1);
10863 
10864 			if ((format = act->dta_rec.dtrd_format) != 0)
10865 				dtrace_format_remove(ecb->dte_state, format);
10866 
10867 			if ((dp = act->dta_difo) != NULL)
10868 				dtrace_difo_release(dp, vstate);
10869 
10870 			if (DTRACEACT_ISAGG(act->dta_kind)) {
10871 				dtrace_ecb_aggregation_destroy(ecb, act);
10872 			} else {
10873 				kmem_free(act, sizeof (dtrace_action_t));
10874 			}
10875 		}
10876 	}
10877 
10878 	ecb->dte_action = NULL;
10879 	ecb->dte_action_last = NULL;
10880 	ecb->dte_size = 0;
10881 }
10882 
10883 static void
10884 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10885 {
10886 	/*
10887 	 * We disable the ECB by removing it from its probe.
10888 	 */
10889 	dtrace_ecb_t *pecb, *prev = NULL;
10890 	dtrace_probe_t *probe = ecb->dte_probe;
10891 
10892 	ASSERT(MUTEX_HELD(&dtrace_lock));
10893 
10894 	if (probe == NULL) {
10895 		/*
10896 		 * This is the NULL probe; there is nothing to disable.
10897 		 */
10898 		return;
10899 	}
10900 
10901 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10902 		if (pecb == ecb)
10903 			break;
10904 		prev = pecb;
10905 	}
10906 
10907 	ASSERT(pecb != NULL);
10908 
10909 	if (prev == NULL) {
10910 		probe->dtpr_ecb = ecb->dte_next;
10911 	} else {
10912 		prev->dte_next = ecb->dte_next;
10913 	}
10914 
10915 	if (ecb == probe->dtpr_ecb_last) {
10916 		ASSERT(ecb->dte_next == NULL);
10917 		probe->dtpr_ecb_last = prev;
10918 	}
10919 
10920 	/*
10921 	 * The ECB has been disconnected from the probe; now sync to assure
10922 	 * that all CPUs have seen the change before returning.
10923 	 */
10924 	dtrace_sync();
10925 
10926 	if (probe->dtpr_ecb == NULL) {
10927 		/*
10928 		 * That was the last ECB on the probe; clear the predicate
10929 		 * cache ID for the probe, disable it and sync one more time
10930 		 * to assure that we'll never hit it again.
10931 		 */
10932 		dtrace_provider_t *prov = probe->dtpr_provider;
10933 
10934 		ASSERT(ecb->dte_next == NULL);
10935 		ASSERT(probe->dtpr_ecb_last == NULL);
10936 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10937 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10938 		    probe->dtpr_id, probe->dtpr_arg);
10939 		dtrace_sync();
10940 	} else {
10941 		/*
10942 		 * There is at least one ECB remaining on the probe.  If there
10943 		 * is _exactly_ one, set the probe's predicate cache ID to be
10944 		 * the predicate cache ID of the remaining ECB.
10945 		 */
10946 		ASSERT(probe->dtpr_ecb_last != NULL);
10947 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10948 
10949 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10950 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10951 
10952 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10953 
10954 			if (p != NULL)
10955 				probe->dtpr_predcache = p->dtp_cacheid;
10956 		}
10957 
10958 		ecb->dte_next = NULL;
10959 	}
10960 }
10961 
10962 static void
10963 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10964 {
10965 	dtrace_state_t *state = ecb->dte_state;
10966 	dtrace_vstate_t *vstate = &state->dts_vstate;
10967 	dtrace_predicate_t *pred;
10968 	dtrace_epid_t epid = ecb->dte_epid;
10969 
10970 	ASSERT(MUTEX_HELD(&dtrace_lock));
10971 	ASSERT(ecb->dte_next == NULL);
10972 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10973 
10974 	if ((pred = ecb->dte_predicate) != NULL)
10975 		dtrace_predicate_release(pred, vstate);
10976 
10977 	dtrace_ecb_action_remove(ecb);
10978 
10979 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10980 	state->dts_ecbs[epid - 1] = NULL;
10981 
10982 	kmem_free(ecb, sizeof (dtrace_ecb_t));
10983 }
10984 
10985 static dtrace_ecb_t *
10986 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10987     dtrace_enabling_t *enab)
10988 {
10989 	dtrace_ecb_t *ecb;
10990 	dtrace_predicate_t *pred;
10991 	dtrace_actdesc_t *act;
10992 	dtrace_provider_t *prov;
10993 	dtrace_ecbdesc_t *desc = enab->dten_current;
10994 
10995 	ASSERT(MUTEX_HELD(&dtrace_lock));
10996 	ASSERT(state != NULL);
10997 
10998 	ecb = dtrace_ecb_add(state, probe);
10999 	ecb->dte_uarg = desc->dted_uarg;
11000 
11001 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11002 		dtrace_predicate_hold(pred);
11003 		ecb->dte_predicate = pred;
11004 	}
11005 
11006 	if (probe != NULL) {
11007 		/*
11008 		 * If the provider shows more leg than the consumer is old
11009 		 * enough to see, we need to enable the appropriate implicit
11010 		 * predicate bits to prevent the ecb from activating at
11011 		 * revealing times.
11012 		 *
11013 		 * Providers specifying DTRACE_PRIV_USER at register time
11014 		 * are stating that they need the /proc-style privilege
11015 		 * model to be enforced, and this is what DTRACE_COND_OWNER
11016 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11017 		 */
11018 		prov = probe->dtpr_provider;
11019 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11020 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11021 			ecb->dte_cond |= DTRACE_COND_OWNER;
11022 
11023 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11024 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11025 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11026 
11027 		/*
11028 		 * If the provider shows us kernel innards and the user
11029 		 * is lacking sufficient privilege, enable the
11030 		 * DTRACE_COND_USERMODE implicit predicate.
11031 		 */
11032 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11033 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11034 			ecb->dte_cond |= DTRACE_COND_USERMODE;
11035 	}
11036 
11037 	if (dtrace_ecb_create_cache != NULL) {
11038 		/*
11039 		 * If we have a cached ecb, we'll use its action list instead
11040 		 * of creating our own (saving both time and space).
11041 		 */
11042 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11043 		dtrace_action_t *act = cached->dte_action;
11044 
11045 		if (act != NULL) {
11046 			ASSERT(act->dta_refcnt > 0);
11047 			act->dta_refcnt++;
11048 			ecb->dte_action = act;
11049 			ecb->dte_action_last = cached->dte_action_last;
11050 			ecb->dte_needed = cached->dte_needed;
11051 			ecb->dte_size = cached->dte_size;
11052 			ecb->dte_alignment = cached->dte_alignment;
11053 		}
11054 
11055 		return (ecb);
11056 	}
11057 
11058 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11059 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11060 			dtrace_ecb_destroy(ecb);
11061 			return (NULL);
11062 		}
11063 	}
11064 
11065 	dtrace_ecb_resize(ecb);
11066 
11067 	return (dtrace_ecb_create_cache = ecb);
11068 }
11069 
11070 static int
11071 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11072 {
11073 	dtrace_ecb_t *ecb;
11074 	dtrace_enabling_t *enab = arg;
11075 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11076 
11077 	ASSERT(state != NULL);
11078 
11079 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11080 		/*
11081 		 * This probe was created in a generation for which this
11082 		 * enabling has previously created ECBs; we don't want to
11083 		 * enable it again, so just kick out.
11084 		 */
11085 		return (DTRACE_MATCH_NEXT);
11086 	}
11087 
11088 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11089 		return (DTRACE_MATCH_DONE);
11090 
11091 	if (dtrace_ecb_enable(ecb) < 0)
11092 		return (DTRACE_MATCH_FAIL);
11093 
11094 	return (DTRACE_MATCH_NEXT);
11095 }
11096 
11097 static dtrace_ecb_t *
11098 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11099 {
11100 	dtrace_ecb_t *ecb;
11101 
11102 	ASSERT(MUTEX_HELD(&dtrace_lock));
11103 
11104 	if (id == 0 || id > state->dts_necbs)
11105 		return (NULL);
11106 
11107 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11108 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11109 
11110 	return (state->dts_ecbs[id - 1]);
11111 }
11112 
11113 static dtrace_aggregation_t *
11114 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11115 {
11116 	dtrace_aggregation_t *agg;
11117 
11118 	ASSERT(MUTEX_HELD(&dtrace_lock));
11119 
11120 	if (id == 0 || id > state->dts_naggregations)
11121 		return (NULL);
11122 
11123 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11124 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11125 	    agg->dtag_id == id);
11126 
11127 	return (state->dts_aggregations[id - 1]);
11128 }
11129 
11130 /*
11131  * DTrace Buffer Functions
11132  *
11133  * The following functions manipulate DTrace buffers.  Most of these functions
11134  * are called in the context of establishing or processing consumer state;
11135  * exceptions are explicitly noted.
11136  */
11137 
11138 /*
11139  * Note:  called from cross call context.  This function switches the two
11140  * buffers on a given CPU.  The atomicity of this operation is assured by
11141  * disabling interrupts while the actual switch takes place; the disabling of
11142  * interrupts serializes the execution with any execution of dtrace_probe() on
11143  * the same CPU.
11144  */
11145 static void
11146 dtrace_buffer_switch(dtrace_buffer_t *buf)
11147 {
11148 	caddr_t tomax = buf->dtb_tomax;
11149 	caddr_t xamot = buf->dtb_xamot;
11150 	dtrace_icookie_t cookie;
11151 	hrtime_t now;
11152 
11153 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11154 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11155 
11156 	cookie = dtrace_interrupt_disable();
11157 	now = dtrace_gethrtime();
11158 	buf->dtb_tomax = xamot;
11159 	buf->dtb_xamot = tomax;
11160 	buf->dtb_xamot_drops = buf->dtb_drops;
11161 	buf->dtb_xamot_offset = buf->dtb_offset;
11162 	buf->dtb_xamot_errors = buf->dtb_errors;
11163 	buf->dtb_xamot_flags = buf->dtb_flags;
11164 	buf->dtb_offset = 0;
11165 	buf->dtb_drops = 0;
11166 	buf->dtb_errors = 0;
11167 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11168 	buf->dtb_interval = now - buf->dtb_switched;
11169 	buf->dtb_switched = now;
11170 	dtrace_interrupt_enable(cookie);
11171 }
11172 
11173 /*
11174  * Note:  called from cross call context.  This function activates a buffer
11175  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11176  * is guaranteed by the disabling of interrupts.
11177  */
11178 static void
11179 dtrace_buffer_activate(dtrace_state_t *state)
11180 {
11181 	dtrace_buffer_t *buf;
11182 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
11183 
11184 	buf = &state->dts_buffer[CPU->cpu_id];
11185 
11186 	if (buf->dtb_tomax != NULL) {
11187 		/*
11188 		 * We might like to assert that the buffer is marked inactive,
11189 		 * but this isn't necessarily true:  the buffer for the CPU
11190 		 * that processes the BEGIN probe has its buffer activated
11191 		 * manually.  In this case, we take the (harmless) action
11192 		 * re-clearing the bit INACTIVE bit.
11193 		 */
11194 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11195 	}
11196 
11197 	dtrace_interrupt_enable(cookie);
11198 }
11199 
11200 static int
11201 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11202     processorid_t cpu, int *factor)
11203 {
11204 	cpu_t *cp;
11205 	dtrace_buffer_t *buf;
11206 	int allocated = 0, desired = 0;
11207 
11208 	ASSERT(MUTEX_HELD(&cpu_lock));
11209 	ASSERT(MUTEX_HELD(&dtrace_lock));
11210 
11211 	*factor = 1;
11212 
11213 	if (size > dtrace_nonroot_maxsize &&
11214 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11215 		return (EFBIG);
11216 
11217 	cp = cpu_list;
11218 
11219 	do {
11220 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11221 			continue;
11222 
11223 		buf = &bufs[cp->cpu_id];
11224 
11225 		/*
11226 		 * If there is already a buffer allocated for this CPU, it
11227 		 * is only possible that this is a DR event.  In this case,
11228 		 * the buffer size must match our specified size.
11229 		 */
11230 		if (buf->dtb_tomax != NULL) {
11231 			ASSERT(buf->dtb_size == size);
11232 			continue;
11233 		}
11234 
11235 		ASSERT(buf->dtb_xamot == NULL);
11236 
11237 		if ((buf->dtb_tomax = kmem_zalloc(size,
11238 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11239 			goto err;
11240 
11241 		buf->dtb_size = size;
11242 		buf->dtb_flags = flags;
11243 		buf->dtb_offset = 0;
11244 		buf->dtb_drops = 0;
11245 
11246 		if (flags & DTRACEBUF_NOSWITCH)
11247 			continue;
11248 
11249 		if ((buf->dtb_xamot = kmem_zalloc(size,
11250 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11251 			goto err;
11252 	} while ((cp = cp->cpu_next) != cpu_list);
11253 
11254 	return (0);
11255 
11256 err:
11257 	cp = cpu_list;
11258 
11259 	do {
11260 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11261 			continue;
11262 
11263 		buf = &bufs[cp->cpu_id];
11264 		desired += 2;
11265 
11266 		if (buf->dtb_xamot != NULL) {
11267 			ASSERT(buf->dtb_tomax != NULL);
11268 			ASSERT(buf->dtb_size == size);
11269 			kmem_free(buf->dtb_xamot, size);
11270 			allocated++;
11271 		}
11272 
11273 		if (buf->dtb_tomax != NULL) {
11274 			ASSERT(buf->dtb_size == size);
11275 			kmem_free(buf->dtb_tomax, size);
11276 			allocated++;
11277 		}
11278 
11279 		buf->dtb_tomax = NULL;
11280 		buf->dtb_xamot = NULL;
11281 		buf->dtb_size = 0;
11282 	} while ((cp = cp->cpu_next) != cpu_list);
11283 
11284 	*factor = desired / (allocated > 0 ? allocated : 1);
11285 
11286 	return (ENOMEM);
11287 }
11288 
11289 /*
11290  * Note:  called from probe context.  This function just increments the drop
11291  * count on a buffer.  It has been made a function to allow for the
11292  * possibility of understanding the source of mysterious drop counts.  (A
11293  * problem for which one may be particularly disappointed that DTrace cannot
11294  * be used to understand DTrace.)
11295  */
11296 static void
11297 dtrace_buffer_drop(dtrace_buffer_t *buf)
11298 {
11299 	buf->dtb_drops++;
11300 }
11301 
11302 /*
11303  * Note:  called from probe context.  This function is called to reserve space
11304  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
11305  * mstate.  Returns the new offset in the buffer, or a negative value if an
11306  * error has occurred.
11307  */
11308 static intptr_t
11309 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11310     dtrace_state_t *state, dtrace_mstate_t *mstate)
11311 {
11312 	intptr_t offs = buf->dtb_offset, soffs;
11313 	intptr_t woffs;
11314 	caddr_t tomax;
11315 	size_t total;
11316 
11317 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11318 		return (-1);
11319 
11320 	if ((tomax = buf->dtb_tomax) == NULL) {
11321 		dtrace_buffer_drop(buf);
11322 		return (-1);
11323 	}
11324 
11325 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11326 		while (offs & (align - 1)) {
11327 			/*
11328 			 * Assert that our alignment is off by a number which
11329 			 * is itself sizeof (uint32_t) aligned.
11330 			 */
11331 			ASSERT(!((align - (offs & (align - 1))) &
11332 			    (sizeof (uint32_t) - 1)));
11333 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11334 			offs += sizeof (uint32_t);
11335 		}
11336 
11337 		if ((soffs = offs + needed) > buf->dtb_size) {
11338 			dtrace_buffer_drop(buf);
11339 			return (-1);
11340 		}
11341 
11342 		if (mstate == NULL)
11343 			return (offs);
11344 
11345 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11346 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
11347 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11348 
11349 		return (offs);
11350 	}
11351 
11352 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11353 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11354 		    (buf->dtb_flags & DTRACEBUF_FULL))
11355 			return (-1);
11356 		goto out;
11357 	}
11358 
11359 	total = needed + (offs & (align - 1));
11360 
11361 	/*
11362 	 * For a ring buffer, life is quite a bit more complicated.  Before
11363 	 * we can store any padding, we need to adjust our wrapping offset.
11364 	 * (If we've never before wrapped or we're not about to, no adjustment
11365 	 * is required.)
11366 	 */
11367 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11368 	    offs + total > buf->dtb_size) {
11369 		woffs = buf->dtb_xamot_offset;
11370 
11371 		if (offs + total > buf->dtb_size) {
11372 			/*
11373 			 * We can't fit in the end of the buffer.  First, a
11374 			 * sanity check that we can fit in the buffer at all.
11375 			 */
11376 			if (total > buf->dtb_size) {
11377 				dtrace_buffer_drop(buf);
11378 				return (-1);
11379 			}
11380 
11381 			/*
11382 			 * We're going to be storing at the top of the buffer,
11383 			 * so now we need to deal with the wrapped offset.  We
11384 			 * only reset our wrapped offset to 0 if it is
11385 			 * currently greater than the current offset.  If it
11386 			 * is less than the current offset, it is because a
11387 			 * previous allocation induced a wrap -- but the
11388 			 * allocation didn't subsequently take the space due
11389 			 * to an error or false predicate evaluation.  In this
11390 			 * case, we'll just leave the wrapped offset alone: if
11391 			 * the wrapped offset hasn't been advanced far enough
11392 			 * for this allocation, it will be adjusted in the
11393 			 * lower loop.
11394 			 */
11395 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11396 				if (woffs >= offs)
11397 					woffs = 0;
11398 			} else {
11399 				woffs = 0;
11400 			}
11401 
11402 			/*
11403 			 * Now we know that we're going to be storing to the
11404 			 * top of the buffer and that there is room for us
11405 			 * there.  We need to clear the buffer from the current
11406 			 * offset to the end (there may be old gunk there).
11407 			 */
11408 			while (offs < buf->dtb_size)
11409 				tomax[offs++] = 0;
11410 
11411 			/*
11412 			 * We need to set our offset to zero.  And because we
11413 			 * are wrapping, we need to set the bit indicating as
11414 			 * much.  We can also adjust our needed space back
11415 			 * down to the space required by the ECB -- we know
11416 			 * that the top of the buffer is aligned.
11417 			 */
11418 			offs = 0;
11419 			total = needed;
11420 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
11421 		} else {
11422 			/*
11423 			 * There is room for us in the buffer, so we simply
11424 			 * need to check the wrapped offset.
11425 			 */
11426 			if (woffs < offs) {
11427 				/*
11428 				 * The wrapped offset is less than the offset.
11429 				 * This can happen if we allocated buffer space
11430 				 * that induced a wrap, but then we didn't
11431 				 * subsequently take the space due to an error
11432 				 * or false predicate evaluation.  This is
11433 				 * okay; we know that _this_ allocation isn't
11434 				 * going to induce a wrap.  We still can't
11435 				 * reset the wrapped offset to be zero,
11436 				 * however: the space may have been trashed in
11437 				 * the previous failed probe attempt.  But at
11438 				 * least the wrapped offset doesn't need to
11439 				 * be adjusted at all...
11440 				 */
11441 				goto out;
11442 			}
11443 		}
11444 
11445 		while (offs + total > woffs) {
11446 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11447 			size_t size;
11448 
11449 			if (epid == DTRACE_EPIDNONE) {
11450 				size = sizeof (uint32_t);
11451 			} else {
11452 				ASSERT3U(epid, <=, state->dts_necbs);
11453 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11454 
11455 				size = state->dts_ecbs[epid - 1]->dte_size;
11456 			}
11457 
11458 			ASSERT(woffs + size <= buf->dtb_size);
11459 			ASSERT(size != 0);
11460 
11461 			if (woffs + size == buf->dtb_size) {
11462 				/*
11463 				 * We've reached the end of the buffer; we want
11464 				 * to set the wrapped offset to 0 and break
11465 				 * out.  However, if the offs is 0, then we're
11466 				 * in a strange edge-condition:  the amount of
11467 				 * space that we want to reserve plus the size
11468 				 * of the record that we're overwriting is
11469 				 * greater than the size of the buffer.  This
11470 				 * is problematic because if we reserve the
11471 				 * space but subsequently don't consume it (due
11472 				 * to a failed predicate or error) the wrapped
11473 				 * offset will be 0 -- yet the EPID at offset 0
11474 				 * will not be committed.  This situation is
11475 				 * relatively easy to deal with:  if we're in
11476 				 * this case, the buffer is indistinguishable
11477 				 * from one that hasn't wrapped; we need only
11478 				 * finish the job by clearing the wrapped bit,
11479 				 * explicitly setting the offset to be 0, and
11480 				 * zero'ing out the old data in the buffer.
11481 				 */
11482 				if (offs == 0) {
11483 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11484 					buf->dtb_offset = 0;
11485 					woffs = total;
11486 
11487 					while (woffs < buf->dtb_size)
11488 						tomax[woffs++] = 0;
11489 				}
11490 
11491 				woffs = 0;
11492 				break;
11493 			}
11494 
11495 			woffs += size;
11496 		}
11497 
11498 		/*
11499 		 * We have a wrapped offset.  It may be that the wrapped offset
11500 		 * has become zero -- that's okay.
11501 		 */
11502 		buf->dtb_xamot_offset = woffs;
11503 	}
11504 
11505 out:
11506 	/*
11507 	 * Now we can plow the buffer with any necessary padding.
11508 	 */
11509 	while (offs & (align - 1)) {
11510 		/*
11511 		 * Assert that our alignment is off by a number which
11512 		 * is itself sizeof (uint32_t) aligned.
11513 		 */
11514 		ASSERT(!((align - (offs & (align - 1))) &
11515 		    (sizeof (uint32_t) - 1)));
11516 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11517 		offs += sizeof (uint32_t);
11518 	}
11519 
11520 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11521 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11522 			buf->dtb_flags |= DTRACEBUF_FULL;
11523 			return (-1);
11524 		}
11525 	}
11526 
11527 	if (mstate == NULL)
11528 		return (offs);
11529 
11530 	/*
11531 	 * For ring buffers and fill buffers, the scratch space is always
11532 	 * the inactive buffer.
11533 	 */
11534 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11535 	mstate->dtms_scratch_size = buf->dtb_size;
11536 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11537 
11538 	return (offs);
11539 }
11540 
11541 static void
11542 dtrace_buffer_polish(dtrace_buffer_t *buf)
11543 {
11544 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11545 	ASSERT(MUTEX_HELD(&dtrace_lock));
11546 
11547 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11548 		return;
11549 
11550 	/*
11551 	 * We need to polish the ring buffer.  There are three cases:
11552 	 *
11553 	 * - The first (and presumably most common) is that there is no gap
11554 	 *   between the buffer offset and the wrapped offset.  In this case,
11555 	 *   there is nothing in the buffer that isn't valid data; we can
11556 	 *   mark the buffer as polished and return.
11557 	 *
11558 	 * - The second (less common than the first but still more common
11559 	 *   than the third) is that there is a gap between the buffer offset
11560 	 *   and the wrapped offset, and the wrapped offset is larger than the
11561 	 *   buffer offset.  This can happen because of an alignment issue, or
11562 	 *   can happen because of a call to dtrace_buffer_reserve() that
11563 	 *   didn't subsequently consume the buffer space.  In this case,
11564 	 *   we need to zero the data from the buffer offset to the wrapped
11565 	 *   offset.
11566 	 *
11567 	 * - The third (and least common) is that there is a gap between the
11568 	 *   buffer offset and the wrapped offset, but the wrapped offset is
11569 	 *   _less_ than the buffer offset.  This can only happen because a
11570 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11571 	 *   was not subsequently consumed.  In this case, we need to zero the
11572 	 *   space from the offset to the end of the buffer _and_ from the
11573 	 *   top of the buffer to the wrapped offset.
11574 	 */
11575 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11576 		bzero(buf->dtb_tomax + buf->dtb_offset,
11577 		    buf->dtb_xamot_offset - buf->dtb_offset);
11578 	}
11579 
11580 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11581 		bzero(buf->dtb_tomax + buf->dtb_offset,
11582 		    buf->dtb_size - buf->dtb_offset);
11583 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11584 	}
11585 }
11586 
11587 /*
11588  * This routine determines if data generated at the specified time has likely
11589  * been entirely consumed at user-level.  This routine is called to determine
11590  * if an ECB on a defunct probe (but for an active enabling) can be safely
11591  * disabled and destroyed.
11592  */
11593 static int
11594 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11595 {
11596 	int i;
11597 
11598 	for (i = 0; i < NCPU; i++) {
11599 		dtrace_buffer_t *buf = &bufs[i];
11600 
11601 		if (buf->dtb_size == 0)
11602 			continue;
11603 
11604 		if (buf->dtb_flags & DTRACEBUF_RING)
11605 			return (0);
11606 
11607 		if (!buf->dtb_switched && buf->dtb_offset != 0)
11608 			return (0);
11609 
11610 		if (buf->dtb_switched - buf->dtb_interval < when)
11611 			return (0);
11612 	}
11613 
11614 	return (1);
11615 }
11616 
11617 static void
11618 dtrace_buffer_free(dtrace_buffer_t *bufs)
11619 {
11620 	int i;
11621 
11622 	for (i = 0; i < NCPU; i++) {
11623 		dtrace_buffer_t *buf = &bufs[i];
11624 
11625 		if (buf->dtb_tomax == NULL) {
11626 			ASSERT(buf->dtb_xamot == NULL);
11627 			ASSERT(buf->dtb_size == 0);
11628 			continue;
11629 		}
11630 
11631 		if (buf->dtb_xamot != NULL) {
11632 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11633 			kmem_free(buf->dtb_xamot, buf->dtb_size);
11634 		}
11635 
11636 		kmem_free(buf->dtb_tomax, buf->dtb_size);
11637 		buf->dtb_size = 0;
11638 		buf->dtb_tomax = NULL;
11639 		buf->dtb_xamot = NULL;
11640 	}
11641 }
11642 
11643 /*
11644  * DTrace Enabling Functions
11645  */
11646 static dtrace_enabling_t *
11647 dtrace_enabling_create(dtrace_vstate_t *vstate)
11648 {
11649 	dtrace_enabling_t *enab;
11650 
11651 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11652 	enab->dten_vstate = vstate;
11653 
11654 	return (enab);
11655 }
11656 
11657 static void
11658 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11659 {
11660 	dtrace_ecbdesc_t **ndesc;
11661 	size_t osize, nsize;
11662 
11663 	/*
11664 	 * We can't add to enablings after we've enabled them, or after we've
11665 	 * retained them.
11666 	 */
11667 	ASSERT(enab->dten_probegen == 0);
11668 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11669 
11670 	if (enab->dten_ndesc < enab->dten_maxdesc) {
11671 		enab->dten_desc[enab->dten_ndesc++] = ecb;
11672 		return;
11673 	}
11674 
11675 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11676 
11677 	if (enab->dten_maxdesc == 0) {
11678 		enab->dten_maxdesc = 1;
11679 	} else {
11680 		enab->dten_maxdesc <<= 1;
11681 	}
11682 
11683 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11684 
11685 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11686 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11687 	bcopy(enab->dten_desc, ndesc, osize);
11688 	kmem_free(enab->dten_desc, osize);
11689 
11690 	enab->dten_desc = ndesc;
11691 	enab->dten_desc[enab->dten_ndesc++] = ecb;
11692 }
11693 
11694 static void
11695 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11696     dtrace_probedesc_t *pd)
11697 {
11698 	dtrace_ecbdesc_t *new;
11699 	dtrace_predicate_t *pred;
11700 	dtrace_actdesc_t *act;
11701 
11702 	/*
11703 	 * We're going to create a new ECB description that matches the
11704 	 * specified ECB in every way, but has the specified probe description.
11705 	 */
11706 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11707 
11708 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11709 		dtrace_predicate_hold(pred);
11710 
11711 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11712 		dtrace_actdesc_hold(act);
11713 
11714 	new->dted_action = ecb->dted_action;
11715 	new->dted_pred = ecb->dted_pred;
11716 	new->dted_probe = *pd;
11717 	new->dted_uarg = ecb->dted_uarg;
11718 
11719 	dtrace_enabling_add(enab, new);
11720 }
11721 
11722 static void
11723 dtrace_enabling_dump(dtrace_enabling_t *enab)
11724 {
11725 	int i;
11726 
11727 	for (i = 0; i < enab->dten_ndesc; i++) {
11728 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11729 
11730 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11731 		    desc->dtpd_provider, desc->dtpd_mod,
11732 		    desc->dtpd_func, desc->dtpd_name);
11733 	}
11734 }
11735 
11736 static void
11737 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11738 {
11739 	int i;
11740 	dtrace_ecbdesc_t *ep;
11741 	dtrace_vstate_t *vstate = enab->dten_vstate;
11742 
11743 	ASSERT(MUTEX_HELD(&dtrace_lock));
11744 
11745 	for (i = 0; i < enab->dten_ndesc; i++) {
11746 		dtrace_actdesc_t *act, *next;
11747 		dtrace_predicate_t *pred;
11748 
11749 		ep = enab->dten_desc[i];
11750 
11751 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11752 			dtrace_predicate_release(pred, vstate);
11753 
11754 		for (act = ep->dted_action; act != NULL; act = next) {
11755 			next = act->dtad_next;
11756 			dtrace_actdesc_release(act, vstate);
11757 		}
11758 
11759 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11760 	}
11761 
11762 	kmem_free(enab->dten_desc,
11763 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11764 
11765 	/*
11766 	 * If this was a retained enabling, decrement the dts_nretained count
11767 	 * and take it off of the dtrace_retained list.
11768 	 */
11769 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11770 	    dtrace_retained == enab) {
11771 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11772 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11773 		enab->dten_vstate->dtvs_state->dts_nretained--;
11774 		dtrace_retained_gen++;
11775 	}
11776 
11777 	if (enab->dten_prev == NULL) {
11778 		if (dtrace_retained == enab) {
11779 			dtrace_retained = enab->dten_next;
11780 
11781 			if (dtrace_retained != NULL)
11782 				dtrace_retained->dten_prev = NULL;
11783 		}
11784 	} else {
11785 		ASSERT(enab != dtrace_retained);
11786 		ASSERT(dtrace_retained != NULL);
11787 		enab->dten_prev->dten_next = enab->dten_next;
11788 	}
11789 
11790 	if (enab->dten_next != NULL) {
11791 		ASSERT(dtrace_retained != NULL);
11792 		enab->dten_next->dten_prev = enab->dten_prev;
11793 	}
11794 
11795 	kmem_free(enab, sizeof (dtrace_enabling_t));
11796 }
11797 
11798 static int
11799 dtrace_enabling_retain(dtrace_enabling_t *enab)
11800 {
11801 	dtrace_state_t *state;
11802 
11803 	ASSERT(MUTEX_HELD(&dtrace_lock));
11804 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11805 	ASSERT(enab->dten_vstate != NULL);
11806 
11807 	state = enab->dten_vstate->dtvs_state;
11808 	ASSERT(state != NULL);
11809 
11810 	/*
11811 	 * We only allow each state to retain dtrace_retain_max enablings.
11812 	 */
11813 	if (state->dts_nretained >= dtrace_retain_max)
11814 		return (ENOSPC);
11815 
11816 	state->dts_nretained++;
11817 	dtrace_retained_gen++;
11818 
11819 	if (dtrace_retained == NULL) {
11820 		dtrace_retained = enab;
11821 		return (0);
11822 	}
11823 
11824 	enab->dten_next = dtrace_retained;
11825 	dtrace_retained->dten_prev = enab;
11826 	dtrace_retained = enab;
11827 
11828 	return (0);
11829 }
11830 
11831 static int
11832 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11833     dtrace_probedesc_t *create)
11834 {
11835 	dtrace_enabling_t *new, *enab;
11836 	int found = 0, err = ENOENT;
11837 
11838 	ASSERT(MUTEX_HELD(&dtrace_lock));
11839 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11840 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11841 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11842 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11843 
11844 	new = dtrace_enabling_create(&state->dts_vstate);
11845 
11846 	/*
11847 	 * Iterate over all retained enablings, looking for enablings that
11848 	 * match the specified state.
11849 	 */
11850 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11851 		int i;
11852 
11853 		/*
11854 		 * dtvs_state can only be NULL for helper enablings -- and
11855 		 * helper enablings can't be retained.
11856 		 */
11857 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11858 
11859 		if (enab->dten_vstate->dtvs_state != state)
11860 			continue;
11861 
11862 		/*
11863 		 * Now iterate over each probe description; we're looking for
11864 		 * an exact match to the specified probe description.
11865 		 */
11866 		for (i = 0; i < enab->dten_ndesc; i++) {
11867 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11868 			dtrace_probedesc_t *pd = &ep->dted_probe;
11869 
11870 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11871 				continue;
11872 
11873 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11874 				continue;
11875 
11876 			if (strcmp(pd->dtpd_func, match->dtpd_func))
11877 				continue;
11878 
11879 			if (strcmp(pd->dtpd_name, match->dtpd_name))
11880 				continue;
11881 
11882 			/*
11883 			 * We have a winning probe!  Add it to our growing
11884 			 * enabling.
11885 			 */
11886 			found = 1;
11887 			dtrace_enabling_addlike(new, ep, create);
11888 		}
11889 	}
11890 
11891 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11892 		dtrace_enabling_destroy(new);
11893 		return (err);
11894 	}
11895 
11896 	return (0);
11897 }
11898 
11899 static void
11900 dtrace_enabling_retract(dtrace_state_t *state)
11901 {
11902 	dtrace_enabling_t *enab, *next;
11903 
11904 	ASSERT(MUTEX_HELD(&dtrace_lock));
11905 
11906 	/*
11907 	 * Iterate over all retained enablings, destroy the enablings retained
11908 	 * for the specified state.
11909 	 */
11910 	for (enab = dtrace_retained; enab != NULL; enab = next) {
11911 		next = enab->dten_next;
11912 
11913 		/*
11914 		 * dtvs_state can only be NULL for helper enablings -- and
11915 		 * helper enablings can't be retained.
11916 		 */
11917 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11918 
11919 		if (enab->dten_vstate->dtvs_state == state) {
11920 			ASSERT(state->dts_nretained > 0);
11921 			dtrace_enabling_destroy(enab);
11922 		}
11923 	}
11924 
11925 	ASSERT(state->dts_nretained == 0);
11926 }
11927 
11928 static int
11929 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11930 {
11931 	int i = 0;
11932 	int total_matched = 0, matched = 0;
11933 
11934 	ASSERT(MUTEX_HELD(&cpu_lock));
11935 	ASSERT(MUTEX_HELD(&dtrace_lock));
11936 
11937 	for (i = 0; i < enab->dten_ndesc; i++) {
11938 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11939 
11940 		enab->dten_current = ep;
11941 		enab->dten_error = 0;
11942 
11943 		/*
11944 		 * If a provider failed to enable a probe then get out and
11945 		 * let the consumer know we failed.
11946 		 */
11947 		if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11948 			return (EBUSY);
11949 
11950 		total_matched += matched;
11951 
11952 		if (enab->dten_error != 0) {
11953 			/*
11954 			 * If we get an error half-way through enabling the
11955 			 * probes, we kick out -- perhaps with some number of
11956 			 * them enabled.  Leaving enabled probes enabled may
11957 			 * be slightly confusing for user-level, but we expect
11958 			 * that no one will attempt to actually drive on in
11959 			 * the face of such errors.  If this is an anonymous
11960 			 * enabling (indicated with a NULL nmatched pointer),
11961 			 * we cmn_err() a message.  We aren't expecting to
11962 			 * get such an error -- such as it can exist at all,
11963 			 * it would be a result of corrupted DOF in the driver
11964 			 * properties.
11965 			 */
11966 			if (nmatched == NULL) {
11967 				cmn_err(CE_WARN, "dtrace_enabling_match() "
11968 				    "error on %p: %d", (void *)ep,
11969 				    enab->dten_error);
11970 			}
11971 
11972 			return (enab->dten_error);
11973 		}
11974 	}
11975 
11976 	enab->dten_probegen = dtrace_probegen;
11977 	if (nmatched != NULL)
11978 		*nmatched = total_matched;
11979 
11980 	return (0);
11981 }
11982 
11983 static void
11984 dtrace_enabling_matchall(void)
11985 {
11986 	dtrace_enabling_t *enab;
11987 
11988 	mutex_enter(&cpu_lock);
11989 	mutex_enter(&dtrace_lock);
11990 
11991 	/*
11992 	 * Iterate over all retained enablings to see if any probes match
11993 	 * against them.  We only perform this operation on enablings for which
11994 	 * we have sufficient permissions by virtue of being in the global zone
11995 	 * or in the same zone as the DTrace client.  Because we can be called
11996 	 * after dtrace_detach() has been called, we cannot assert that there
11997 	 * are retained enablings.  We can safely load from dtrace_retained,
11998 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11999 	 * block pending our completion.
12000 	 */
12001 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12002 		dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
12003 		cred_t *cr = dcr->dcr_cred;
12004 		zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
12005 
12006 		if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
12007 		    (zone == GLOBAL_ZONEID || getzoneid() == zone)))
12008 			(void) dtrace_enabling_match(enab, NULL);
12009 	}
12010 
12011 	mutex_exit(&dtrace_lock);
12012 	mutex_exit(&cpu_lock);
12013 }
12014 
12015 /*
12016  * If an enabling is to be enabled without having matched probes (that is, if
12017  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12018  * enabling must be _primed_ by creating an ECB for every ECB description.
12019  * This must be done to assure that we know the number of speculations, the
12020  * number of aggregations, the minimum buffer size needed, etc. before we
12021  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12022  * enabling any probes, we create ECBs for every ECB decription, but with a
12023  * NULL probe -- which is exactly what this function does.
12024  */
12025 static void
12026 dtrace_enabling_prime(dtrace_state_t *state)
12027 {
12028 	dtrace_enabling_t *enab;
12029 	int i;
12030 
12031 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12032 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12033 
12034 		if (enab->dten_vstate->dtvs_state != state)
12035 			continue;
12036 
12037 		/*
12038 		 * We don't want to prime an enabling more than once, lest
12039 		 * we allow a malicious user to induce resource exhaustion.
12040 		 * (The ECBs that result from priming an enabling aren't
12041 		 * leaked -- but they also aren't deallocated until the
12042 		 * consumer state is destroyed.)
12043 		 */
12044 		if (enab->dten_primed)
12045 			continue;
12046 
12047 		for (i = 0; i < enab->dten_ndesc; i++) {
12048 			enab->dten_current = enab->dten_desc[i];
12049 			(void) dtrace_probe_enable(NULL, enab);
12050 		}
12051 
12052 		enab->dten_primed = 1;
12053 	}
12054 }
12055 
12056 /*
12057  * Called to indicate that probes should be provided due to retained
12058  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12059  * must take an initial lap through the enabling calling the dtps_provide()
12060  * entry point explicitly to allow for autocreated probes.
12061  */
12062 static void
12063 dtrace_enabling_provide(dtrace_provider_t *prv)
12064 {
12065 	int i, all = 0;
12066 	dtrace_probedesc_t desc;
12067 	dtrace_genid_t gen;
12068 
12069 	ASSERT(MUTEX_HELD(&dtrace_lock));
12070 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12071 
12072 	if (prv == NULL) {
12073 		all = 1;
12074 		prv = dtrace_provider;
12075 	}
12076 
12077 	do {
12078 		dtrace_enabling_t *enab;
12079 		void *parg = prv->dtpv_arg;
12080 
12081 retry:
12082 		gen = dtrace_retained_gen;
12083 		for (enab = dtrace_retained; enab != NULL;
12084 		    enab = enab->dten_next) {
12085 			for (i = 0; i < enab->dten_ndesc; i++) {
12086 				desc = enab->dten_desc[i]->dted_probe;
12087 				mutex_exit(&dtrace_lock);
12088 				prv->dtpv_pops.dtps_provide(parg, &desc);
12089 				mutex_enter(&dtrace_lock);
12090 				/*
12091 				 * Process the retained enablings again if
12092 				 * they have changed while we weren't holding
12093 				 * dtrace_lock.
12094 				 */
12095 				if (gen != dtrace_retained_gen)
12096 					goto retry;
12097 			}
12098 		}
12099 	} while (all && (prv = prv->dtpv_next) != NULL);
12100 
12101 	mutex_exit(&dtrace_lock);
12102 	dtrace_probe_provide(NULL, all ? NULL : prv);
12103 	mutex_enter(&dtrace_lock);
12104 }
12105 
12106 /*
12107  * Called to reap ECBs that are attached to probes from defunct providers.
12108  */
12109 static void
12110 dtrace_enabling_reap(void)
12111 {
12112 	dtrace_provider_t *prov;
12113 	dtrace_probe_t *probe;
12114 	dtrace_ecb_t *ecb;
12115 	hrtime_t when;
12116 	int i;
12117 
12118 	mutex_enter(&cpu_lock);
12119 	mutex_enter(&dtrace_lock);
12120 
12121 	for (i = 0; i < dtrace_nprobes; i++) {
12122 		if ((probe = dtrace_probes[i]) == NULL)
12123 			continue;
12124 
12125 		if (probe->dtpr_ecb == NULL)
12126 			continue;
12127 
12128 		prov = probe->dtpr_provider;
12129 
12130 		if ((when = prov->dtpv_defunct) == 0)
12131 			continue;
12132 
12133 		/*
12134 		 * We have ECBs on a defunct provider:  we want to reap these
12135 		 * ECBs to allow the provider to unregister.  The destruction
12136 		 * of these ECBs must be done carefully:  if we destroy the ECB
12137 		 * and the consumer later wishes to consume an EPID that
12138 		 * corresponds to the destroyed ECB (and if the EPID metadata
12139 		 * has not been previously consumed), the consumer will abort
12140 		 * processing on the unknown EPID.  To reduce (but not, sadly,
12141 		 * eliminate) the possibility of this, we will only destroy an
12142 		 * ECB for a defunct provider if, for the state that
12143 		 * corresponds to the ECB:
12144 		 *
12145 		 *  (a)	There is no speculative tracing (which can effectively
12146 		 *	cache an EPID for an arbitrary amount of time).
12147 		 *
12148 		 *  (b)	The principal buffers have been switched twice since the
12149 		 *	provider became defunct.
12150 		 *
12151 		 *  (c)	The aggregation buffers are of zero size or have been
12152 		 *	switched twice since the provider became defunct.
12153 		 *
12154 		 * We use dts_speculates to determine (a) and call a function
12155 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
12156 		 * that as soon as we've been unable to destroy one of the ECBs
12157 		 * associated with the probe, we quit trying -- reaping is only
12158 		 * fruitful in as much as we can destroy all ECBs associated
12159 		 * with the defunct provider's probes.
12160 		 */
12161 		while ((ecb = probe->dtpr_ecb) != NULL) {
12162 			dtrace_state_t *state = ecb->dte_state;
12163 			dtrace_buffer_t *buf = state->dts_buffer;
12164 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12165 
12166 			if (state->dts_speculates)
12167 				break;
12168 
12169 			if (!dtrace_buffer_consumed(buf, when))
12170 				break;
12171 
12172 			if (!dtrace_buffer_consumed(aggbuf, when))
12173 				break;
12174 
12175 			dtrace_ecb_disable(ecb);
12176 			ASSERT(probe->dtpr_ecb != ecb);
12177 			dtrace_ecb_destroy(ecb);
12178 		}
12179 	}
12180 
12181 	mutex_exit(&dtrace_lock);
12182 	mutex_exit(&cpu_lock);
12183 }
12184 
12185 /*
12186  * DTrace DOF Functions
12187  */
12188 /*ARGSUSED*/
12189 static void
12190 dtrace_dof_error(dof_hdr_t *dof, const char *str)
12191 {
12192 	if (dtrace_err_verbose)
12193 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
12194 
12195 #ifdef DTRACE_ERRDEBUG
12196 	dtrace_errdebug(str);
12197 #endif
12198 }
12199 
12200 /*
12201  * Create DOF out of a currently enabled state.  Right now, we only create
12202  * DOF containing the run-time options -- but this could be expanded to create
12203  * complete DOF representing the enabled state.
12204  */
12205 static dof_hdr_t *
12206 dtrace_dof_create(dtrace_state_t *state)
12207 {
12208 	dof_hdr_t *dof;
12209 	dof_sec_t *sec;
12210 	dof_optdesc_t *opt;
12211 	int i, len = sizeof (dof_hdr_t) +
12212 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12213 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12214 
12215 	ASSERT(MUTEX_HELD(&dtrace_lock));
12216 
12217 	dof = kmem_zalloc(len, KM_SLEEP);
12218 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12219 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12220 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12221 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12222 
12223 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12224 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12225 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12226 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12227 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12228 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12229 
12230 	dof->dofh_flags = 0;
12231 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
12232 	dof->dofh_secsize = sizeof (dof_sec_t);
12233 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
12234 	dof->dofh_secoff = sizeof (dof_hdr_t);
12235 	dof->dofh_loadsz = len;
12236 	dof->dofh_filesz = len;
12237 	dof->dofh_pad = 0;
12238 
12239 	/*
12240 	 * Fill in the option section header...
12241 	 */
12242 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12243 	sec->dofs_type = DOF_SECT_OPTDESC;
12244 	sec->dofs_align = sizeof (uint64_t);
12245 	sec->dofs_flags = DOF_SECF_LOAD;
12246 	sec->dofs_entsize = sizeof (dof_optdesc_t);
12247 
12248 	opt = (dof_optdesc_t *)((uintptr_t)sec +
12249 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12250 
12251 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12252 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12253 
12254 	for (i = 0; i < DTRACEOPT_MAX; i++) {
12255 		opt[i].dofo_option = i;
12256 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
12257 		opt[i].dofo_value = state->dts_options[i];
12258 	}
12259 
12260 	return (dof);
12261 }
12262 
12263 static dof_hdr_t *
12264 dtrace_dof_copyin(uintptr_t uarg, int *errp)
12265 {
12266 	dof_hdr_t hdr, *dof;
12267 
12268 	ASSERT(!MUTEX_HELD(&dtrace_lock));
12269 
12270 	/*
12271 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
12272 	 */
12273 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12274 		dtrace_dof_error(NULL, "failed to copyin DOF header");
12275 		*errp = EFAULT;
12276 		return (NULL);
12277 	}
12278 
12279 	/*
12280 	 * Now we'll allocate the entire DOF and copy it in -- provided
12281 	 * that the length isn't outrageous.
12282 	 */
12283 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12284 		dtrace_dof_error(&hdr, "load size exceeds maximum");
12285 		*errp = E2BIG;
12286 		return (NULL);
12287 	}
12288 
12289 	if (hdr.dofh_loadsz < sizeof (hdr)) {
12290 		dtrace_dof_error(&hdr, "invalid load size");
12291 		*errp = EINVAL;
12292 		return (NULL);
12293 	}
12294 
12295 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12296 
12297 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12298 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
12299 		kmem_free(dof, hdr.dofh_loadsz);
12300 		*errp = EFAULT;
12301 		return (NULL);
12302 	}
12303 
12304 	return (dof);
12305 }
12306 
12307 static dof_hdr_t *
12308 dtrace_dof_property(const char *name)
12309 {
12310 	uchar_t *buf;
12311 	uint64_t loadsz;
12312 	unsigned int len, i;
12313 	dof_hdr_t *dof;
12314 
12315 	/*
12316 	 * Unfortunately, array of values in .conf files are always (and
12317 	 * only) interpreted to be integer arrays.  We must read our DOF
12318 	 * as an integer array, and then squeeze it into a byte array.
12319 	 */
12320 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12321 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12322 		return (NULL);
12323 
12324 	for (i = 0; i < len; i++)
12325 		buf[i] = (uchar_t)(((int *)buf)[i]);
12326 
12327 	if (len < sizeof (dof_hdr_t)) {
12328 		ddi_prop_free(buf);
12329 		dtrace_dof_error(NULL, "truncated header");
12330 		return (NULL);
12331 	}
12332 
12333 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12334 		ddi_prop_free(buf);
12335 		dtrace_dof_error(NULL, "truncated DOF");
12336 		return (NULL);
12337 	}
12338 
12339 	if (loadsz >= dtrace_dof_maxsize) {
12340 		ddi_prop_free(buf);
12341 		dtrace_dof_error(NULL, "oversized DOF");
12342 		return (NULL);
12343 	}
12344 
12345 	dof = kmem_alloc(loadsz, KM_SLEEP);
12346 	bcopy(buf, dof, loadsz);
12347 	ddi_prop_free(buf);
12348 
12349 	return (dof);
12350 }
12351 
12352 static void
12353 dtrace_dof_destroy(dof_hdr_t *dof)
12354 {
12355 	kmem_free(dof, dof->dofh_loadsz);
12356 }
12357 
12358 /*
12359  * Return the dof_sec_t pointer corresponding to a given section index.  If the
12360  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12361  * a type other than DOF_SECT_NONE is specified, the header is checked against
12362  * this type and NULL is returned if the types do not match.
12363  */
12364 static dof_sec_t *
12365 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12366 {
12367 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12368 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12369 
12370 	if (i >= dof->dofh_secnum) {
12371 		dtrace_dof_error(dof, "referenced section index is invalid");
12372 		return (NULL);
12373 	}
12374 
12375 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12376 		dtrace_dof_error(dof, "referenced section is not loadable");
12377 		return (NULL);
12378 	}
12379 
12380 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12381 		dtrace_dof_error(dof, "referenced section is the wrong type");
12382 		return (NULL);
12383 	}
12384 
12385 	return (sec);
12386 }
12387 
12388 static dtrace_probedesc_t *
12389 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12390 {
12391 	dof_probedesc_t *probe;
12392 	dof_sec_t *strtab;
12393 	uintptr_t daddr = (uintptr_t)dof;
12394 	uintptr_t str;
12395 	size_t size;
12396 
12397 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12398 		dtrace_dof_error(dof, "invalid probe section");
12399 		return (NULL);
12400 	}
12401 
12402 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12403 		dtrace_dof_error(dof, "bad alignment in probe description");
12404 		return (NULL);
12405 	}
12406 
12407 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12408 		dtrace_dof_error(dof, "truncated probe description");
12409 		return (NULL);
12410 	}
12411 
12412 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12413 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12414 
12415 	if (strtab == NULL)
12416 		return (NULL);
12417 
12418 	str = daddr + strtab->dofs_offset;
12419 	size = strtab->dofs_size;
12420 
12421 	if (probe->dofp_provider >= strtab->dofs_size) {
12422 		dtrace_dof_error(dof, "corrupt probe provider");
12423 		return (NULL);
12424 	}
12425 
12426 	(void) strncpy(desc->dtpd_provider,
12427 	    (char *)(str + probe->dofp_provider),
12428 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12429 
12430 	if (probe->dofp_mod >= strtab->dofs_size) {
12431 		dtrace_dof_error(dof, "corrupt probe module");
12432 		return (NULL);
12433 	}
12434 
12435 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12436 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12437 
12438 	if (probe->dofp_func >= strtab->dofs_size) {
12439 		dtrace_dof_error(dof, "corrupt probe function");
12440 		return (NULL);
12441 	}
12442 
12443 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12444 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12445 
12446 	if (probe->dofp_name >= strtab->dofs_size) {
12447 		dtrace_dof_error(dof, "corrupt probe name");
12448 		return (NULL);
12449 	}
12450 
12451 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12452 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12453 
12454 	return (desc);
12455 }
12456 
12457 static dtrace_difo_t *
12458 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12459     cred_t *cr)
12460 {
12461 	dtrace_difo_t *dp;
12462 	size_t ttl = 0;
12463 	dof_difohdr_t *dofd;
12464 	uintptr_t daddr = (uintptr_t)dof;
12465 	size_t max = dtrace_difo_maxsize;
12466 	int i, l, n;
12467 
12468 	static const struct {
12469 		int section;
12470 		int bufoffs;
12471 		int lenoffs;
12472 		int entsize;
12473 		int align;
12474 		const char *msg;
12475 	} difo[] = {
12476 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12477 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12478 		sizeof (dif_instr_t), "multiple DIF sections" },
12479 
12480 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12481 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12482 		sizeof (uint64_t), "multiple integer tables" },
12483 
12484 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12485 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12486 		sizeof (char), "multiple string tables" },
12487 
12488 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12489 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12490 		sizeof (uint_t), "multiple variable tables" },
12491 
12492 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
12493 	};
12494 
12495 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12496 		dtrace_dof_error(dof, "invalid DIFO header section");
12497 		return (NULL);
12498 	}
12499 
12500 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12501 		dtrace_dof_error(dof, "bad alignment in DIFO header");
12502 		return (NULL);
12503 	}
12504 
12505 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12506 	    sec->dofs_size % sizeof (dof_secidx_t)) {
12507 		dtrace_dof_error(dof, "bad size in DIFO header");
12508 		return (NULL);
12509 	}
12510 
12511 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12512 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12513 
12514 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12515 	dp->dtdo_rtype = dofd->dofd_rtype;
12516 
12517 	for (l = 0; l < n; l++) {
12518 		dof_sec_t *subsec;
12519 		void **bufp;
12520 		uint32_t *lenp;
12521 
12522 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12523 		    dofd->dofd_links[l])) == NULL)
12524 			goto err; /* invalid section link */
12525 
12526 		if (ttl + subsec->dofs_size > max) {
12527 			dtrace_dof_error(dof, "exceeds maximum size");
12528 			goto err;
12529 		}
12530 
12531 		ttl += subsec->dofs_size;
12532 
12533 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12534 			if (subsec->dofs_type != difo[i].section)
12535 				continue;
12536 
12537 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12538 				dtrace_dof_error(dof, "section not loaded");
12539 				goto err;
12540 			}
12541 
12542 			if (subsec->dofs_align != difo[i].align) {
12543 				dtrace_dof_error(dof, "bad alignment");
12544 				goto err;
12545 			}
12546 
12547 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12548 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12549 
12550 			if (*bufp != NULL) {
12551 				dtrace_dof_error(dof, difo[i].msg);
12552 				goto err;
12553 			}
12554 
12555 			if (difo[i].entsize != subsec->dofs_entsize) {
12556 				dtrace_dof_error(dof, "entry size mismatch");
12557 				goto err;
12558 			}
12559 
12560 			if (subsec->dofs_entsize != 0 &&
12561 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12562 				dtrace_dof_error(dof, "corrupt entry size");
12563 				goto err;
12564 			}
12565 
12566 			*lenp = subsec->dofs_size;
12567 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12568 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12569 			    *bufp, subsec->dofs_size);
12570 
12571 			if (subsec->dofs_entsize != 0)
12572 				*lenp /= subsec->dofs_entsize;
12573 
12574 			break;
12575 		}
12576 
12577 		/*
12578 		 * If we encounter a loadable DIFO sub-section that is not
12579 		 * known to us, assume this is a broken program and fail.
12580 		 */
12581 		if (difo[i].section == DOF_SECT_NONE &&
12582 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12583 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12584 			goto err;
12585 		}
12586 	}
12587 
12588 	if (dp->dtdo_buf == NULL) {
12589 		/*
12590 		 * We can't have a DIF object without DIF text.
12591 		 */
12592 		dtrace_dof_error(dof, "missing DIF text");
12593 		goto err;
12594 	}
12595 
12596 	/*
12597 	 * Before we validate the DIF object, run through the variable table
12598 	 * looking for the strings -- if any of their size are under, we'll set
12599 	 * their size to be the system-wide default string size.  Note that
12600 	 * this should _not_ happen if the "strsize" option has been set --
12601 	 * in this case, the compiler should have set the size to reflect the
12602 	 * setting of the option.
12603 	 */
12604 	for (i = 0; i < dp->dtdo_varlen; i++) {
12605 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12606 		dtrace_diftype_t *t = &v->dtdv_type;
12607 
12608 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12609 			continue;
12610 
12611 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12612 			t->dtdt_size = dtrace_strsize_default;
12613 	}
12614 
12615 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12616 		goto err;
12617 
12618 	dtrace_difo_init(dp, vstate);
12619 	return (dp);
12620 
12621 err:
12622 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12623 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12624 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12625 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12626 
12627 	kmem_free(dp, sizeof (dtrace_difo_t));
12628 	return (NULL);
12629 }
12630 
12631 static dtrace_predicate_t *
12632 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12633     cred_t *cr)
12634 {
12635 	dtrace_difo_t *dp;
12636 
12637 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12638 		return (NULL);
12639 
12640 	return (dtrace_predicate_create(dp));
12641 }
12642 
12643 static dtrace_actdesc_t *
12644 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12645     cred_t *cr)
12646 {
12647 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12648 	dof_actdesc_t *desc;
12649 	dof_sec_t *difosec;
12650 	size_t offs;
12651 	uintptr_t daddr = (uintptr_t)dof;
12652 	uint64_t arg;
12653 	dtrace_actkind_t kind;
12654 
12655 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12656 		dtrace_dof_error(dof, "invalid action section");
12657 		return (NULL);
12658 	}
12659 
12660 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12661 		dtrace_dof_error(dof, "truncated action description");
12662 		return (NULL);
12663 	}
12664 
12665 	if (sec->dofs_align != sizeof (uint64_t)) {
12666 		dtrace_dof_error(dof, "bad alignment in action description");
12667 		return (NULL);
12668 	}
12669 
12670 	if (sec->dofs_size < sec->dofs_entsize) {
12671 		dtrace_dof_error(dof, "section entry size exceeds total size");
12672 		return (NULL);
12673 	}
12674 
12675 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12676 		dtrace_dof_error(dof, "bad entry size in action description");
12677 		return (NULL);
12678 	}
12679 
12680 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12681 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12682 		return (NULL);
12683 	}
12684 
12685 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12686 		desc = (dof_actdesc_t *)(daddr +
12687 		    (uintptr_t)sec->dofs_offset + offs);
12688 		kind = (dtrace_actkind_t)desc->dofa_kind;
12689 
12690 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12691 		    (kind != DTRACEACT_PRINTA ||
12692 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12693 		    (kind == DTRACEACT_DIFEXPR &&
12694 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12695 			dof_sec_t *strtab;
12696 			char *str, *fmt;
12697 			uint64_t i;
12698 
12699 			/*
12700 			 * The argument to these actions is an index into the
12701 			 * DOF string table.  For printf()-like actions, this
12702 			 * is the format string.  For print(), this is the
12703 			 * CTF type of the expression result.
12704 			 */
12705 			if ((strtab = dtrace_dof_sect(dof,
12706 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12707 				goto err;
12708 
12709 			str = (char *)((uintptr_t)dof +
12710 			    (uintptr_t)strtab->dofs_offset);
12711 
12712 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12713 				if (str[i] == '\0')
12714 					break;
12715 			}
12716 
12717 			if (i >= strtab->dofs_size) {
12718 				dtrace_dof_error(dof, "bogus format string");
12719 				goto err;
12720 			}
12721 
12722 			if (i == desc->dofa_arg) {
12723 				dtrace_dof_error(dof, "empty format string");
12724 				goto err;
12725 			}
12726 
12727 			i -= desc->dofa_arg;
12728 			fmt = kmem_alloc(i + 1, KM_SLEEP);
12729 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12730 			arg = (uint64_t)(uintptr_t)fmt;
12731 		} else {
12732 			if (kind == DTRACEACT_PRINTA) {
12733 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12734 				arg = 0;
12735 			} else {
12736 				arg = desc->dofa_arg;
12737 			}
12738 		}
12739 
12740 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12741 		    desc->dofa_uarg, arg);
12742 
12743 		if (last != NULL) {
12744 			last->dtad_next = act;
12745 		} else {
12746 			first = act;
12747 		}
12748 
12749 		last = act;
12750 
12751 		if (desc->dofa_difo == DOF_SECIDX_NONE)
12752 			continue;
12753 
12754 		if ((difosec = dtrace_dof_sect(dof,
12755 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12756 			goto err;
12757 
12758 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12759 
12760 		if (act->dtad_difo == NULL)
12761 			goto err;
12762 	}
12763 
12764 	ASSERT(first != NULL);
12765 	return (first);
12766 
12767 err:
12768 	for (act = first; act != NULL; act = next) {
12769 		next = act->dtad_next;
12770 		dtrace_actdesc_release(act, vstate);
12771 	}
12772 
12773 	return (NULL);
12774 }
12775 
12776 static dtrace_ecbdesc_t *
12777 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12778     cred_t *cr)
12779 {
12780 	dtrace_ecbdesc_t *ep;
12781 	dof_ecbdesc_t *ecb;
12782 	dtrace_probedesc_t *desc;
12783 	dtrace_predicate_t *pred = NULL;
12784 
12785 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12786 		dtrace_dof_error(dof, "truncated ECB description");
12787 		return (NULL);
12788 	}
12789 
12790 	if (sec->dofs_align != sizeof (uint64_t)) {
12791 		dtrace_dof_error(dof, "bad alignment in ECB description");
12792 		return (NULL);
12793 	}
12794 
12795 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12796 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12797 
12798 	if (sec == NULL)
12799 		return (NULL);
12800 
12801 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12802 	ep->dted_uarg = ecb->dofe_uarg;
12803 	desc = &ep->dted_probe;
12804 
12805 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12806 		goto err;
12807 
12808 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12809 		if ((sec = dtrace_dof_sect(dof,
12810 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12811 			goto err;
12812 
12813 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12814 			goto err;
12815 
12816 		ep->dted_pred.dtpdd_predicate = pred;
12817 	}
12818 
12819 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12820 		if ((sec = dtrace_dof_sect(dof,
12821 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12822 			goto err;
12823 
12824 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12825 
12826 		if (ep->dted_action == NULL)
12827 			goto err;
12828 	}
12829 
12830 	return (ep);
12831 
12832 err:
12833 	if (pred != NULL)
12834 		dtrace_predicate_release(pred, vstate);
12835 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12836 	return (NULL);
12837 }
12838 
12839 /*
12840  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12841  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12842  * site of any user SETX relocations to account for load object base address.
12843  * In the future, if we need other relocations, this function can be extended.
12844  */
12845 static int
12846 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12847 {
12848 	uintptr_t daddr = (uintptr_t)dof;
12849 	dof_relohdr_t *dofr =
12850 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12851 	dof_sec_t *ss, *rs, *ts;
12852 	dof_relodesc_t *r;
12853 	uint_t i, n;
12854 
12855 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12856 	    sec->dofs_align != sizeof (dof_secidx_t)) {
12857 		dtrace_dof_error(dof, "invalid relocation header");
12858 		return (-1);
12859 	}
12860 
12861 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12862 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12863 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12864 
12865 	if (ss == NULL || rs == NULL || ts == NULL)
12866 		return (-1); /* dtrace_dof_error() has been called already */
12867 
12868 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12869 	    rs->dofs_align != sizeof (uint64_t)) {
12870 		dtrace_dof_error(dof, "invalid relocation section");
12871 		return (-1);
12872 	}
12873 
12874 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12875 	n = rs->dofs_size / rs->dofs_entsize;
12876 
12877 	for (i = 0; i < n; i++) {
12878 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12879 
12880 		switch (r->dofr_type) {
12881 		case DOF_RELO_NONE:
12882 			break;
12883 		case DOF_RELO_SETX:
12884 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12885 			    sizeof (uint64_t) > ts->dofs_size) {
12886 				dtrace_dof_error(dof, "bad relocation offset");
12887 				return (-1);
12888 			}
12889 
12890 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12891 				dtrace_dof_error(dof, "misaligned setx relo");
12892 				return (-1);
12893 			}
12894 
12895 			*(uint64_t *)taddr += ubase;
12896 			break;
12897 		default:
12898 			dtrace_dof_error(dof, "invalid relocation type");
12899 			return (-1);
12900 		}
12901 
12902 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12903 	}
12904 
12905 	return (0);
12906 }
12907 
12908 /*
12909  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12910  * header:  it should be at the front of a memory region that is at least
12911  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12912  * size.  It need not be validated in any other way.
12913  */
12914 static int
12915 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12916     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12917 {
12918 	uint64_t len = dof->dofh_loadsz, seclen;
12919 	uintptr_t daddr = (uintptr_t)dof;
12920 	dtrace_ecbdesc_t *ep;
12921 	dtrace_enabling_t *enab;
12922 	uint_t i;
12923 
12924 	ASSERT(MUTEX_HELD(&dtrace_lock));
12925 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12926 
12927 	/*
12928 	 * Check the DOF header identification bytes.  In addition to checking
12929 	 * valid settings, we also verify that unused bits/bytes are zeroed so
12930 	 * we can use them later without fear of regressing existing binaries.
12931 	 */
12932 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12933 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12934 		dtrace_dof_error(dof, "DOF magic string mismatch");
12935 		return (-1);
12936 	}
12937 
12938 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12939 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12940 		dtrace_dof_error(dof, "DOF has invalid data model");
12941 		return (-1);
12942 	}
12943 
12944 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12945 		dtrace_dof_error(dof, "DOF encoding mismatch");
12946 		return (-1);
12947 	}
12948 
12949 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12950 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12951 		dtrace_dof_error(dof, "DOF version mismatch");
12952 		return (-1);
12953 	}
12954 
12955 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12956 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12957 		return (-1);
12958 	}
12959 
12960 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12961 		dtrace_dof_error(dof, "DOF uses too many integer registers");
12962 		return (-1);
12963 	}
12964 
12965 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12966 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12967 		return (-1);
12968 	}
12969 
12970 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12971 		if (dof->dofh_ident[i] != 0) {
12972 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12973 			return (-1);
12974 		}
12975 	}
12976 
12977 	if (dof->dofh_flags & ~DOF_FL_VALID) {
12978 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12979 		return (-1);
12980 	}
12981 
12982 	if (dof->dofh_secsize == 0) {
12983 		dtrace_dof_error(dof, "zero section header size");
12984 		return (-1);
12985 	}
12986 
12987 	/*
12988 	 * Check that the section headers don't exceed the amount of DOF
12989 	 * data.  Note that we cast the section size and number of sections
12990 	 * to uint64_t's to prevent possible overflow in the multiplication.
12991 	 */
12992 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12993 
12994 	if (dof->dofh_secoff > len || seclen > len ||
12995 	    dof->dofh_secoff + seclen > len) {
12996 		dtrace_dof_error(dof, "truncated section headers");
12997 		return (-1);
12998 	}
12999 
13000 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13001 		dtrace_dof_error(dof, "misaligned section headers");
13002 		return (-1);
13003 	}
13004 
13005 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13006 		dtrace_dof_error(dof, "misaligned section size");
13007 		return (-1);
13008 	}
13009 
13010 	/*
13011 	 * Take an initial pass through the section headers to be sure that
13012 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
13013 	 * set, do not permit sections relating to providers, probes, or args.
13014 	 */
13015 	for (i = 0; i < dof->dofh_secnum; i++) {
13016 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13017 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13018 
13019 		if (noprobes) {
13020 			switch (sec->dofs_type) {
13021 			case DOF_SECT_PROVIDER:
13022 			case DOF_SECT_PROBES:
13023 			case DOF_SECT_PRARGS:
13024 			case DOF_SECT_PROFFS:
13025 				dtrace_dof_error(dof, "illegal sections "
13026 				    "for enabling");
13027 				return (-1);
13028 			}
13029 		}
13030 
13031 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13032 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
13033 			dtrace_dof_error(dof, "loadable section with load "
13034 			    "flag unset");
13035 			return (-1);
13036 		}
13037 
13038 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13039 			continue; /* just ignore non-loadable sections */
13040 
13041 		if (sec->dofs_align & (sec->dofs_align - 1)) {
13042 			dtrace_dof_error(dof, "bad section alignment");
13043 			return (-1);
13044 		}
13045 
13046 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
13047 			dtrace_dof_error(dof, "misaligned section");
13048 			return (-1);
13049 		}
13050 
13051 		if (sec->dofs_offset > len || sec->dofs_size > len ||
13052 		    sec->dofs_offset + sec->dofs_size > len) {
13053 			dtrace_dof_error(dof, "corrupt section header");
13054 			return (-1);
13055 		}
13056 
13057 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13058 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13059 			dtrace_dof_error(dof, "non-terminating string table");
13060 			return (-1);
13061 		}
13062 	}
13063 
13064 	/*
13065 	 * Take a second pass through the sections and locate and perform any
13066 	 * relocations that are present.  We do this after the first pass to
13067 	 * be sure that all sections have had their headers validated.
13068 	 */
13069 	for (i = 0; i < dof->dofh_secnum; i++) {
13070 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13071 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13072 
13073 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13074 			continue; /* skip sections that are not loadable */
13075 
13076 		switch (sec->dofs_type) {
13077 		case DOF_SECT_URELHDR:
13078 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13079 				return (-1);
13080 			break;
13081 		}
13082 	}
13083 
13084 	if ((enab = *enabp) == NULL)
13085 		enab = *enabp = dtrace_enabling_create(vstate);
13086 
13087 	for (i = 0; i < dof->dofh_secnum; i++) {
13088 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13089 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13090 
13091 		if (sec->dofs_type != DOF_SECT_ECBDESC)
13092 			continue;
13093 
13094 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13095 			dtrace_enabling_destroy(enab);
13096 			*enabp = NULL;
13097 			return (-1);
13098 		}
13099 
13100 		dtrace_enabling_add(enab, ep);
13101 	}
13102 
13103 	return (0);
13104 }
13105 
13106 /*
13107  * Process DOF for any options.  This routine assumes that the DOF has been
13108  * at least processed by dtrace_dof_slurp().
13109  */
13110 static int
13111 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13112 {
13113 	int i, rval;
13114 	uint32_t entsize;
13115 	size_t offs;
13116 	dof_optdesc_t *desc;
13117 
13118 	for (i = 0; i < dof->dofh_secnum; i++) {
13119 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13120 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13121 
13122 		if (sec->dofs_type != DOF_SECT_OPTDESC)
13123 			continue;
13124 
13125 		if (sec->dofs_align != sizeof (uint64_t)) {
13126 			dtrace_dof_error(dof, "bad alignment in "
13127 			    "option description");
13128 			return (EINVAL);
13129 		}
13130 
13131 		if ((entsize = sec->dofs_entsize) == 0) {
13132 			dtrace_dof_error(dof, "zeroed option entry size");
13133 			return (EINVAL);
13134 		}
13135 
13136 		if (entsize < sizeof (dof_optdesc_t)) {
13137 			dtrace_dof_error(dof, "bad option entry size");
13138 			return (EINVAL);
13139 		}
13140 
13141 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13142 			desc = (dof_optdesc_t *)((uintptr_t)dof +
13143 			    (uintptr_t)sec->dofs_offset + offs);
13144 
13145 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13146 				dtrace_dof_error(dof, "non-zero option string");
13147 				return (EINVAL);
13148 			}
13149 
13150 			if (desc->dofo_value == DTRACEOPT_UNSET) {
13151 				dtrace_dof_error(dof, "unset option");
13152 				return (EINVAL);
13153 			}
13154 
13155 			if ((rval = dtrace_state_option(state,
13156 			    desc->dofo_option, desc->dofo_value)) != 0) {
13157 				dtrace_dof_error(dof, "rejected option");
13158 				return (rval);
13159 			}
13160 		}
13161 	}
13162 
13163 	return (0);
13164 }
13165 
13166 /*
13167  * DTrace Consumer State Functions
13168  */
13169 int
13170 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13171 {
13172 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13173 	void *base;
13174 	uintptr_t limit;
13175 	dtrace_dynvar_t *dvar, *next, *start;
13176 	int i;
13177 
13178 	ASSERT(MUTEX_HELD(&dtrace_lock));
13179 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13180 
13181 	bzero(dstate, sizeof (dtrace_dstate_t));
13182 
13183 	if ((dstate->dtds_chunksize = chunksize) == 0)
13184 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13185 
13186 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13187 		size = min;
13188 
13189 	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13190 		return (ENOMEM);
13191 
13192 	dstate->dtds_size = size;
13193 	dstate->dtds_base = base;
13194 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13195 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13196 
13197 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13198 
13199 	if (hashsize != 1 && (hashsize & 1))
13200 		hashsize--;
13201 
13202 	dstate->dtds_hashsize = hashsize;
13203 	dstate->dtds_hash = dstate->dtds_base;
13204 
13205 	/*
13206 	 * Set all of our hash buckets to point to the single sink, and (if
13207 	 * it hasn't already been set), set the sink's hash value to be the
13208 	 * sink sentinel value.  The sink is needed for dynamic variable
13209 	 * lookups to know that they have iterated over an entire, valid hash
13210 	 * chain.
13211 	 */
13212 	for (i = 0; i < hashsize; i++)
13213 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13214 
13215 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13216 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13217 
13218 	/*
13219 	 * Determine number of active CPUs.  Divide free list evenly among
13220 	 * active CPUs.
13221 	 */
13222 	start = (dtrace_dynvar_t *)
13223 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13224 	limit = (uintptr_t)base + size;
13225 
13226 	maxper = (limit - (uintptr_t)start) / NCPU;
13227 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13228 
13229 	for (i = 0; i < NCPU; i++) {
13230 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13231 
13232 		/*
13233 		 * If we don't even have enough chunks to make it once through
13234 		 * NCPUs, we're just going to allocate everything to the first
13235 		 * CPU.  And if we're on the last CPU, we're going to allocate
13236 		 * whatever is left over.  In either case, we set the limit to
13237 		 * be the limit of the dynamic variable space.
13238 		 */
13239 		if (maxper == 0 || i == NCPU - 1) {
13240 			limit = (uintptr_t)base + size;
13241 			start = NULL;
13242 		} else {
13243 			limit = (uintptr_t)start + maxper;
13244 			start = (dtrace_dynvar_t *)limit;
13245 		}
13246 
13247 		ASSERT(limit <= (uintptr_t)base + size);
13248 
13249 		for (;;) {
13250 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13251 			    dstate->dtds_chunksize);
13252 
13253 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13254 				break;
13255 
13256 			dvar->dtdv_next = next;
13257 			dvar = next;
13258 		}
13259 
13260 		if (maxper == 0)
13261 			break;
13262 	}
13263 
13264 	return (0);
13265 }
13266 
13267 void
13268 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13269 {
13270 	ASSERT(MUTEX_HELD(&cpu_lock));
13271 
13272 	if (dstate->dtds_base == NULL)
13273 		return;
13274 
13275 	kmem_free(dstate->dtds_base, dstate->dtds_size);
13276 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13277 }
13278 
13279 static void
13280 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13281 {
13282 	/*
13283 	 * Logical XOR, where are you?
13284 	 */
13285 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13286 
13287 	if (vstate->dtvs_nglobals > 0) {
13288 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13289 		    sizeof (dtrace_statvar_t *));
13290 	}
13291 
13292 	if (vstate->dtvs_ntlocals > 0) {
13293 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13294 		    sizeof (dtrace_difv_t));
13295 	}
13296 
13297 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13298 
13299 	if (vstate->dtvs_nlocals > 0) {
13300 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13301 		    sizeof (dtrace_statvar_t *));
13302 	}
13303 }
13304 
13305 static void
13306 dtrace_state_clean(dtrace_state_t *state)
13307 {
13308 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13309 		return;
13310 
13311 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13312 	dtrace_speculation_clean(state);
13313 }
13314 
13315 static void
13316 dtrace_state_deadman(dtrace_state_t *state)
13317 {
13318 	hrtime_t now;
13319 
13320 	dtrace_sync();
13321 
13322 	now = dtrace_gethrtime();
13323 
13324 	if (state != dtrace_anon.dta_state &&
13325 	    now - state->dts_laststatus >= dtrace_deadman_user)
13326 		return;
13327 
13328 	/*
13329 	 * We must be sure that dts_alive never appears to be less than the
13330 	 * value upon entry to dtrace_state_deadman(), and because we lack a
13331 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13332 	 * store INT64_MAX to it, followed by a memory barrier, followed by
13333 	 * the new value.  This assures that dts_alive never appears to be
13334 	 * less than its true value, regardless of the order in which the
13335 	 * stores to the underlying storage are issued.
13336 	 */
13337 	state->dts_alive = INT64_MAX;
13338 	dtrace_membar_producer();
13339 	state->dts_alive = now;
13340 }
13341 
13342 dtrace_state_t *
13343 dtrace_state_create(dev_t *devp, cred_t *cr)
13344 {
13345 	minor_t minor;
13346 	major_t major;
13347 	char c[30];
13348 	dtrace_state_t *state;
13349 	dtrace_optval_t *opt;
13350 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13351 
13352 	ASSERT(MUTEX_HELD(&dtrace_lock));
13353 	ASSERT(MUTEX_HELD(&cpu_lock));
13354 
13355 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13356 	    VM_BESTFIT | VM_SLEEP);
13357 
13358 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13359 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13360 		return (NULL);
13361 	}
13362 
13363 	state = ddi_get_soft_state(dtrace_softstate, minor);
13364 	state->dts_epid = DTRACE_EPIDNONE + 1;
13365 
13366 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
13367 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13368 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13369 
13370 	if (devp != NULL) {
13371 		major = getemajor(*devp);
13372 	} else {
13373 		major = ddi_driver_major(dtrace_devi);
13374 	}
13375 
13376 	state->dts_dev = makedevice(major, minor);
13377 
13378 	if (devp != NULL)
13379 		*devp = state->dts_dev;
13380 
13381 	/*
13382 	 * We allocate NCPU buffers.  On the one hand, this can be quite
13383 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
13384 	 * other hand, it saves an additional memory reference in the probe
13385 	 * path.
13386 	 */
13387 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13388 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13389 	state->dts_cleaner = CYCLIC_NONE;
13390 	state->dts_deadman = CYCLIC_NONE;
13391 	state->dts_vstate.dtvs_state = state;
13392 
13393 	for (i = 0; i < DTRACEOPT_MAX; i++)
13394 		state->dts_options[i] = DTRACEOPT_UNSET;
13395 
13396 	/*
13397 	 * Set the default options.
13398 	 */
13399 	opt = state->dts_options;
13400 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13401 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13402 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13403 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13404 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13405 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13406 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13407 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13408 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13409 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13410 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13411 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13412 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13413 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13414 
13415 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13416 
13417 	/*
13418 	 * Depending on the user credentials, we set flag bits which alter probe
13419 	 * visibility or the amount of destructiveness allowed.  In the case of
13420 	 * actual anonymous tracing, or the possession of all privileges, all of
13421 	 * the normal checks are bypassed.
13422 	 */
13423 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13424 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13425 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13426 	} else {
13427 		/*
13428 		 * Set up the credentials for this instantiation.  We take a
13429 		 * hold on the credential to prevent it from disappearing on
13430 		 * us; this in turn prevents the zone_t referenced by this
13431 		 * credential from disappearing.  This means that we can
13432 		 * examine the credential and the zone from probe context.
13433 		 */
13434 		crhold(cr);
13435 		state->dts_cred.dcr_cred = cr;
13436 
13437 		/*
13438 		 * CRA_PROC means "we have *some* privilege for dtrace" and
13439 		 * unlocks the use of variables like pid, zonename, etc.
13440 		 */
13441 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13442 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13443 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13444 		}
13445 
13446 		/*
13447 		 * dtrace_user allows use of syscall and profile providers.
13448 		 * If the user also has proc_owner and/or proc_zone, we
13449 		 * extend the scope to include additional visibility and
13450 		 * destructive power.
13451 		 */
13452 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13453 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13454 				state->dts_cred.dcr_visible |=
13455 				    DTRACE_CRV_ALLPROC;
13456 
13457 				state->dts_cred.dcr_action |=
13458 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13459 			}
13460 
13461 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13462 				state->dts_cred.dcr_visible |=
13463 				    DTRACE_CRV_ALLZONE;
13464 
13465 				state->dts_cred.dcr_action |=
13466 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13467 			}
13468 
13469 			/*
13470 			 * If we have all privs in whatever zone this is,
13471 			 * we can do destructive things to processes which
13472 			 * have altered credentials.
13473 			 */
13474 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13475 			    cr->cr_zone->zone_privset)) {
13476 				state->dts_cred.dcr_action |=
13477 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13478 			}
13479 		}
13480 
13481 		/*
13482 		 * Holding the dtrace_kernel privilege also implies that
13483 		 * the user has the dtrace_user privilege from a visibility
13484 		 * perspective.  But without further privileges, some
13485 		 * destructive actions are not available.
13486 		 */
13487 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13488 			/*
13489 			 * Make all probes in all zones visible.  However,
13490 			 * this doesn't mean that all actions become available
13491 			 * to all zones.
13492 			 */
13493 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13494 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13495 
13496 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13497 			    DTRACE_CRA_PROC;
13498 			/*
13499 			 * Holding proc_owner means that destructive actions
13500 			 * for *this* zone are allowed.
13501 			 */
13502 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13503 				state->dts_cred.dcr_action |=
13504 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13505 
13506 			/*
13507 			 * Holding proc_zone means that destructive actions
13508 			 * for this user/group ID in all zones is allowed.
13509 			 */
13510 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13511 				state->dts_cred.dcr_action |=
13512 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13513 
13514 			/*
13515 			 * If we have all privs in whatever zone this is,
13516 			 * we can do destructive things to processes which
13517 			 * have altered credentials.
13518 			 */
13519 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13520 			    cr->cr_zone->zone_privset)) {
13521 				state->dts_cred.dcr_action |=
13522 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13523 			}
13524 		}
13525 
13526 		/*
13527 		 * Holding the dtrace_proc privilege gives control over fasttrap
13528 		 * and pid providers.  We need to grant wider destructive
13529 		 * privileges in the event that the user has proc_owner and/or
13530 		 * proc_zone.
13531 		 */
13532 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13533 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13534 				state->dts_cred.dcr_action |=
13535 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13536 
13537 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13538 				state->dts_cred.dcr_action |=
13539 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13540 		}
13541 	}
13542 
13543 	return (state);
13544 }
13545 
13546 static int
13547 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13548 {
13549 	dtrace_optval_t *opt = state->dts_options, size;
13550 	processorid_t cpu;
13551 	int flags = 0, rval, factor, divisor = 1;
13552 
13553 	ASSERT(MUTEX_HELD(&dtrace_lock));
13554 	ASSERT(MUTEX_HELD(&cpu_lock));
13555 	ASSERT(which < DTRACEOPT_MAX);
13556 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13557 	    (state == dtrace_anon.dta_state &&
13558 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13559 
13560 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13561 		return (0);
13562 
13563 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13564 		cpu = opt[DTRACEOPT_CPU];
13565 
13566 	if (which == DTRACEOPT_SPECSIZE)
13567 		flags |= DTRACEBUF_NOSWITCH;
13568 
13569 	if (which == DTRACEOPT_BUFSIZE) {
13570 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13571 			flags |= DTRACEBUF_RING;
13572 
13573 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13574 			flags |= DTRACEBUF_FILL;
13575 
13576 		if (state != dtrace_anon.dta_state ||
13577 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13578 			flags |= DTRACEBUF_INACTIVE;
13579 	}
13580 
13581 	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13582 		/*
13583 		 * The size must be 8-byte aligned.  If the size is not 8-byte
13584 		 * aligned, drop it down by the difference.
13585 		 */
13586 		if (size & (sizeof (uint64_t) - 1))
13587 			size -= size & (sizeof (uint64_t) - 1);
13588 
13589 		if (size < state->dts_reserve) {
13590 			/*
13591 			 * Buffers always must be large enough to accommodate
13592 			 * their prereserved space.  We return E2BIG instead
13593 			 * of ENOMEM in this case to allow for user-level
13594 			 * software to differentiate the cases.
13595 			 */
13596 			return (E2BIG);
13597 		}
13598 
13599 		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
13600 
13601 		if (rval != ENOMEM) {
13602 			opt[which] = size;
13603 			return (rval);
13604 		}
13605 
13606 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13607 			return (rval);
13608 
13609 		for (divisor = 2; divisor < factor; divisor <<= 1)
13610 			continue;
13611 	}
13612 
13613 	return (ENOMEM);
13614 }
13615 
13616 static int
13617 dtrace_state_buffers(dtrace_state_t *state)
13618 {
13619 	dtrace_speculation_t *spec = state->dts_speculations;
13620 	int rval, i;
13621 
13622 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13623 	    DTRACEOPT_BUFSIZE)) != 0)
13624 		return (rval);
13625 
13626 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13627 	    DTRACEOPT_AGGSIZE)) != 0)
13628 		return (rval);
13629 
13630 	for (i = 0; i < state->dts_nspeculations; i++) {
13631 		if ((rval = dtrace_state_buffer(state,
13632 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13633 			return (rval);
13634 	}
13635 
13636 	return (0);
13637 }
13638 
13639 static void
13640 dtrace_state_prereserve(dtrace_state_t *state)
13641 {
13642 	dtrace_ecb_t *ecb;
13643 	dtrace_probe_t *probe;
13644 
13645 	state->dts_reserve = 0;
13646 
13647 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13648 		return;
13649 
13650 	/*
13651 	 * If our buffer policy is a "fill" buffer policy, we need to set the
13652 	 * prereserved space to be the space required by the END probes.
13653 	 */
13654 	probe = dtrace_probes[dtrace_probeid_end - 1];
13655 	ASSERT(probe != NULL);
13656 
13657 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13658 		if (ecb->dte_state != state)
13659 			continue;
13660 
13661 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13662 	}
13663 }
13664 
13665 static int
13666 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13667 {
13668 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13669 	dtrace_speculation_t *spec;
13670 	dtrace_buffer_t *buf;
13671 	cyc_handler_t hdlr;
13672 	cyc_time_t when;
13673 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13674 	dtrace_icookie_t cookie;
13675 
13676 	mutex_enter(&cpu_lock);
13677 	mutex_enter(&dtrace_lock);
13678 
13679 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13680 		rval = EBUSY;
13681 		goto out;
13682 	}
13683 
13684 	/*
13685 	 * Before we can perform any checks, we must prime all of the
13686 	 * retained enablings that correspond to this state.
13687 	 */
13688 	dtrace_enabling_prime(state);
13689 
13690 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13691 		rval = EACCES;
13692 		goto out;
13693 	}
13694 
13695 	dtrace_state_prereserve(state);
13696 
13697 	/*
13698 	 * Now we want to do is try to allocate our speculations.
13699 	 * We do not automatically resize the number of speculations; if
13700 	 * this fails, we will fail the operation.
13701 	 */
13702 	nspec = opt[DTRACEOPT_NSPEC];
13703 	ASSERT(nspec != DTRACEOPT_UNSET);
13704 
13705 	if (nspec > INT_MAX) {
13706 		rval = ENOMEM;
13707 		goto out;
13708 	}
13709 
13710 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13711 	    KM_NOSLEEP | KM_NORMALPRI);
13712 
13713 	if (spec == NULL) {
13714 		rval = ENOMEM;
13715 		goto out;
13716 	}
13717 
13718 	state->dts_speculations = spec;
13719 	state->dts_nspeculations = (int)nspec;
13720 
13721 	for (i = 0; i < nspec; i++) {
13722 		if ((buf = kmem_zalloc(bufsize,
13723 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
13724 			rval = ENOMEM;
13725 			goto err;
13726 		}
13727 
13728 		spec[i].dtsp_buffer = buf;
13729 	}
13730 
13731 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13732 		if (dtrace_anon.dta_state == NULL) {
13733 			rval = ENOENT;
13734 			goto out;
13735 		}
13736 
13737 		if (state->dts_necbs != 0) {
13738 			rval = EALREADY;
13739 			goto out;
13740 		}
13741 
13742 		state->dts_anon = dtrace_anon_grab();
13743 		ASSERT(state->dts_anon != NULL);
13744 		state = state->dts_anon;
13745 
13746 		/*
13747 		 * We want "grabanon" to be set in the grabbed state, so we'll
13748 		 * copy that option value from the grabbing state into the
13749 		 * grabbed state.
13750 		 */
13751 		state->dts_options[DTRACEOPT_GRABANON] =
13752 		    opt[DTRACEOPT_GRABANON];
13753 
13754 		*cpu = dtrace_anon.dta_beganon;
13755 
13756 		/*
13757 		 * If the anonymous state is active (as it almost certainly
13758 		 * is if the anonymous enabling ultimately matched anything),
13759 		 * we don't allow any further option processing -- but we
13760 		 * don't return failure.
13761 		 */
13762 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13763 			goto out;
13764 	}
13765 
13766 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13767 	    opt[DTRACEOPT_AGGSIZE] != 0) {
13768 		if (state->dts_aggregations == NULL) {
13769 			/*
13770 			 * We're not going to create an aggregation buffer
13771 			 * because we don't have any ECBs that contain
13772 			 * aggregations -- set this option to 0.
13773 			 */
13774 			opt[DTRACEOPT_AGGSIZE] = 0;
13775 		} else {
13776 			/*
13777 			 * If we have an aggregation buffer, we must also have
13778 			 * a buffer to use as scratch.
13779 			 */
13780 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13781 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13782 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13783 			}
13784 		}
13785 	}
13786 
13787 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13788 	    opt[DTRACEOPT_SPECSIZE] != 0) {
13789 		if (!state->dts_speculates) {
13790 			/*
13791 			 * We're not going to create speculation buffers
13792 			 * because we don't have any ECBs that actually
13793 			 * speculate -- set the speculation size to 0.
13794 			 */
13795 			opt[DTRACEOPT_SPECSIZE] = 0;
13796 		}
13797 	}
13798 
13799 	/*
13800 	 * The bare minimum size for any buffer that we're actually going to
13801 	 * do anything to is sizeof (uint64_t).
13802 	 */
13803 	sz = sizeof (uint64_t);
13804 
13805 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13806 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13807 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13808 		/*
13809 		 * A buffer size has been explicitly set to 0 (or to a size
13810 		 * that will be adjusted to 0) and we need the space -- we
13811 		 * need to return failure.  We return ENOSPC to differentiate
13812 		 * it from failing to allocate a buffer due to failure to meet
13813 		 * the reserve (for which we return E2BIG).
13814 		 */
13815 		rval = ENOSPC;
13816 		goto out;
13817 	}
13818 
13819 	if ((rval = dtrace_state_buffers(state)) != 0)
13820 		goto err;
13821 
13822 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13823 		sz = dtrace_dstate_defsize;
13824 
13825 	do {
13826 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13827 
13828 		if (rval == 0)
13829 			break;
13830 
13831 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13832 			goto err;
13833 	} while (sz >>= 1);
13834 
13835 	opt[DTRACEOPT_DYNVARSIZE] = sz;
13836 
13837 	if (rval != 0)
13838 		goto err;
13839 
13840 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13841 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13842 
13843 	if (opt[DTRACEOPT_CLEANRATE] == 0)
13844 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13845 
13846 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13847 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13848 
13849 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13850 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13851 
13852 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13853 	hdlr.cyh_arg = state;
13854 	hdlr.cyh_level = CY_LOW_LEVEL;
13855 
13856 	when.cyt_when = 0;
13857 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13858 
13859 	state->dts_cleaner = cyclic_add(&hdlr, &when);
13860 
13861 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13862 	hdlr.cyh_arg = state;
13863 	hdlr.cyh_level = CY_LOW_LEVEL;
13864 
13865 	when.cyt_when = 0;
13866 	when.cyt_interval = dtrace_deadman_interval;
13867 
13868 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13869 	state->dts_deadman = cyclic_add(&hdlr, &when);
13870 
13871 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13872 
13873 	if (state->dts_getf != 0 &&
13874 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
13875 		/*
13876 		 * We don't have kernel privs but we have at least one call
13877 		 * to getf(); we need to bump our zone's count, and (if
13878 		 * this is the first enabling to have an unprivileged call
13879 		 * to getf()) we need to hook into closef().
13880 		 */
13881 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
13882 
13883 		if (dtrace_getf++ == 0) {
13884 			ASSERT(dtrace_closef == NULL);
13885 			dtrace_closef = dtrace_getf_barrier;
13886 		}
13887 	}
13888 
13889 	/*
13890 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13891 	 * interrupts here both to record the CPU on which we fired the BEGIN
13892 	 * probe (the data from this CPU will be processed first at user
13893 	 * level) and to manually activate the buffer for this CPU.
13894 	 */
13895 	cookie = dtrace_interrupt_disable();
13896 	*cpu = CPU->cpu_id;
13897 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13898 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13899 
13900 	dtrace_probe(dtrace_probeid_begin,
13901 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13902 	dtrace_interrupt_enable(cookie);
13903 	/*
13904 	 * We may have had an exit action from a BEGIN probe; only change our
13905 	 * state to ACTIVE if we're still in WARMUP.
13906 	 */
13907 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13908 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13909 
13910 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13911 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13912 
13913 	/*
13914 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13915 	 * want each CPU to transition its principal buffer out of the
13916 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13917 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13918 	 * atomically transition from processing none of a state's ECBs to
13919 	 * processing all of them.
13920 	 */
13921 	dtrace_xcall(DTRACE_CPUALL,
13922 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13923 	goto out;
13924 
13925 err:
13926 	dtrace_buffer_free(state->dts_buffer);
13927 	dtrace_buffer_free(state->dts_aggbuffer);
13928 
13929 	if ((nspec = state->dts_nspeculations) == 0) {
13930 		ASSERT(state->dts_speculations == NULL);
13931 		goto out;
13932 	}
13933 
13934 	spec = state->dts_speculations;
13935 	ASSERT(spec != NULL);
13936 
13937 	for (i = 0; i < state->dts_nspeculations; i++) {
13938 		if ((buf = spec[i].dtsp_buffer) == NULL)
13939 			break;
13940 
13941 		dtrace_buffer_free(buf);
13942 		kmem_free(buf, bufsize);
13943 	}
13944 
13945 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13946 	state->dts_nspeculations = 0;
13947 	state->dts_speculations = NULL;
13948 
13949 out:
13950 	mutex_exit(&dtrace_lock);
13951 	mutex_exit(&cpu_lock);
13952 
13953 	return (rval);
13954 }
13955 
13956 static int
13957 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13958 {
13959 	dtrace_icookie_t cookie;
13960 
13961 	ASSERT(MUTEX_HELD(&dtrace_lock));
13962 
13963 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13964 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13965 		return (EINVAL);
13966 
13967 	/*
13968 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13969 	 * to be sure that every CPU has seen it.  See below for the details
13970 	 * on why this is done.
13971 	 */
13972 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13973 	dtrace_sync();
13974 
13975 	/*
13976 	 * By this point, it is impossible for any CPU to be still processing
13977 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13978 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13979 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13980 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13981 	 * iff we're in the END probe.
13982 	 */
13983 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13984 	dtrace_sync();
13985 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13986 
13987 	/*
13988 	 * Finally, we can release the reserve and call the END probe.  We
13989 	 * disable interrupts across calling the END probe to allow us to
13990 	 * return the CPU on which we actually called the END probe.  This
13991 	 * allows user-land to be sure that this CPU's principal buffer is
13992 	 * processed last.
13993 	 */
13994 	state->dts_reserve = 0;
13995 
13996 	cookie = dtrace_interrupt_disable();
13997 	*cpu = CPU->cpu_id;
13998 	dtrace_probe(dtrace_probeid_end,
13999 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14000 	dtrace_interrupt_enable(cookie);
14001 
14002 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14003 	dtrace_sync();
14004 
14005 	if (state->dts_getf != 0 &&
14006 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14007 		/*
14008 		 * We don't have kernel privs but we have at least one call
14009 		 * to getf(); we need to lower our zone's count, and (if
14010 		 * this is the last enabling to have an unprivileged call
14011 		 * to getf()) we need to clear the closef() hook.
14012 		 */
14013 		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14014 		ASSERT(dtrace_closef == dtrace_getf_barrier);
14015 		ASSERT(dtrace_getf > 0);
14016 
14017 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14018 
14019 		if (--dtrace_getf == 0)
14020 			dtrace_closef = NULL;
14021 	}
14022 
14023 	return (0);
14024 }
14025 
14026 static int
14027 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14028     dtrace_optval_t val)
14029 {
14030 	ASSERT(MUTEX_HELD(&dtrace_lock));
14031 
14032 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14033 		return (EBUSY);
14034 
14035 	if (option >= DTRACEOPT_MAX)
14036 		return (EINVAL);
14037 
14038 	if (option != DTRACEOPT_CPU && val < 0)
14039 		return (EINVAL);
14040 
14041 	switch (option) {
14042 	case DTRACEOPT_DESTRUCTIVE:
14043 		if (dtrace_destructive_disallow)
14044 			return (EACCES);
14045 
14046 		state->dts_cred.dcr_destructive = 1;
14047 		break;
14048 
14049 	case DTRACEOPT_BUFSIZE:
14050 	case DTRACEOPT_DYNVARSIZE:
14051 	case DTRACEOPT_AGGSIZE:
14052 	case DTRACEOPT_SPECSIZE:
14053 	case DTRACEOPT_STRSIZE:
14054 		if (val < 0)
14055 			return (EINVAL);
14056 
14057 		if (val >= LONG_MAX) {
14058 			/*
14059 			 * If this is an otherwise negative value, set it to
14060 			 * the highest multiple of 128m less than LONG_MAX.
14061 			 * Technically, we're adjusting the size without
14062 			 * regard to the buffer resizing policy, but in fact,
14063 			 * this has no effect -- if we set the buffer size to
14064 			 * ~LONG_MAX and the buffer policy is ultimately set to
14065 			 * be "manual", the buffer allocation is guaranteed to
14066 			 * fail, if only because the allocation requires two
14067 			 * buffers.  (We set the the size to the highest
14068 			 * multiple of 128m because it ensures that the size
14069 			 * will remain a multiple of a megabyte when
14070 			 * repeatedly halved -- all the way down to 15m.)
14071 			 */
14072 			val = LONG_MAX - (1 << 27) + 1;
14073 		}
14074 	}
14075 
14076 	state->dts_options[option] = val;
14077 
14078 	return (0);
14079 }
14080 
14081 static void
14082 dtrace_state_destroy(dtrace_state_t *state)
14083 {
14084 	dtrace_ecb_t *ecb;
14085 	dtrace_vstate_t *vstate = &state->dts_vstate;
14086 	minor_t minor = getminor(state->dts_dev);
14087 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14088 	dtrace_speculation_t *spec = state->dts_speculations;
14089 	int nspec = state->dts_nspeculations;
14090 	uint32_t match;
14091 
14092 	ASSERT(MUTEX_HELD(&dtrace_lock));
14093 	ASSERT(MUTEX_HELD(&cpu_lock));
14094 
14095 	/*
14096 	 * First, retract any retained enablings for this state.
14097 	 */
14098 	dtrace_enabling_retract(state);
14099 	ASSERT(state->dts_nretained == 0);
14100 
14101 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14102 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14103 		/*
14104 		 * We have managed to come into dtrace_state_destroy() on a
14105 		 * hot enabling -- almost certainly because of a disorderly
14106 		 * shutdown of a consumer.  (That is, a consumer that is
14107 		 * exiting without having called dtrace_stop().) In this case,
14108 		 * we're going to set our activity to be KILLED, and then
14109 		 * issue a sync to be sure that everyone is out of probe
14110 		 * context before we start blowing away ECBs.
14111 		 */
14112 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
14113 		dtrace_sync();
14114 	}
14115 
14116 	/*
14117 	 * Release the credential hold we took in dtrace_state_create().
14118 	 */
14119 	if (state->dts_cred.dcr_cred != NULL)
14120 		crfree(state->dts_cred.dcr_cred);
14121 
14122 	/*
14123 	 * Now we can safely disable and destroy any enabled probes.  Because
14124 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14125 	 * (especially if they're all enabled), we take two passes through the
14126 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14127 	 * in the second we disable whatever is left over.
14128 	 */
14129 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14130 		for (i = 0; i < state->dts_necbs; i++) {
14131 			if ((ecb = state->dts_ecbs[i]) == NULL)
14132 				continue;
14133 
14134 			if (match && ecb->dte_probe != NULL) {
14135 				dtrace_probe_t *probe = ecb->dte_probe;
14136 				dtrace_provider_t *prov = probe->dtpr_provider;
14137 
14138 				if (!(prov->dtpv_priv.dtpp_flags & match))
14139 					continue;
14140 			}
14141 
14142 			dtrace_ecb_disable(ecb);
14143 			dtrace_ecb_destroy(ecb);
14144 		}
14145 
14146 		if (!match)
14147 			break;
14148 	}
14149 
14150 	/*
14151 	 * Before we free the buffers, perform one more sync to assure that
14152 	 * every CPU is out of probe context.
14153 	 */
14154 	dtrace_sync();
14155 
14156 	dtrace_buffer_free(state->dts_buffer);
14157 	dtrace_buffer_free(state->dts_aggbuffer);
14158 
14159 	for (i = 0; i < nspec; i++)
14160 		dtrace_buffer_free(spec[i].dtsp_buffer);
14161 
14162 	if (state->dts_cleaner != CYCLIC_NONE)
14163 		cyclic_remove(state->dts_cleaner);
14164 
14165 	if (state->dts_deadman != CYCLIC_NONE)
14166 		cyclic_remove(state->dts_deadman);
14167 
14168 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
14169 	dtrace_vstate_fini(vstate);
14170 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
14171 
14172 	if (state->dts_aggregations != NULL) {
14173 #ifdef DEBUG
14174 		for (i = 0; i < state->dts_naggregations; i++)
14175 			ASSERT(state->dts_aggregations[i] == NULL);
14176 #endif
14177 		ASSERT(state->dts_naggregations > 0);
14178 		kmem_free(state->dts_aggregations,
14179 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14180 	}
14181 
14182 	kmem_free(state->dts_buffer, bufsize);
14183 	kmem_free(state->dts_aggbuffer, bufsize);
14184 
14185 	for (i = 0; i < nspec; i++)
14186 		kmem_free(spec[i].dtsp_buffer, bufsize);
14187 
14188 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14189 
14190 	dtrace_format_destroy(state);
14191 
14192 	vmem_destroy(state->dts_aggid_arena);
14193 	ddi_soft_state_free(dtrace_softstate, minor);
14194 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14195 }
14196 
14197 /*
14198  * DTrace Anonymous Enabling Functions
14199  */
14200 static dtrace_state_t *
14201 dtrace_anon_grab(void)
14202 {
14203 	dtrace_state_t *state;
14204 
14205 	ASSERT(MUTEX_HELD(&dtrace_lock));
14206 
14207 	if ((state = dtrace_anon.dta_state) == NULL) {
14208 		ASSERT(dtrace_anon.dta_enabling == NULL);
14209 		return (NULL);
14210 	}
14211 
14212 	ASSERT(dtrace_anon.dta_enabling != NULL);
14213 	ASSERT(dtrace_retained != NULL);
14214 
14215 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14216 	dtrace_anon.dta_enabling = NULL;
14217 	dtrace_anon.dta_state = NULL;
14218 
14219 	return (state);
14220 }
14221 
14222 static void
14223 dtrace_anon_property(void)
14224 {
14225 	int i, rv;
14226 	dtrace_state_t *state;
14227 	dof_hdr_t *dof;
14228 	char c[32];		/* enough for "dof-data-" + digits */
14229 
14230 	ASSERT(MUTEX_HELD(&dtrace_lock));
14231 	ASSERT(MUTEX_HELD(&cpu_lock));
14232 
14233 	for (i = 0; ; i++) {
14234 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
14235 
14236 		dtrace_err_verbose = 1;
14237 
14238 		if ((dof = dtrace_dof_property(c)) == NULL) {
14239 			dtrace_err_verbose = 0;
14240 			break;
14241 		}
14242 
14243 		/*
14244 		 * We want to create anonymous state, so we need to transition
14245 		 * the kernel debugger to indicate that DTrace is active.  If
14246 		 * this fails (e.g. because the debugger has modified text in
14247 		 * some way), we won't continue with the processing.
14248 		 */
14249 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14250 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14251 			    "enabling ignored.");
14252 			dtrace_dof_destroy(dof);
14253 			break;
14254 		}
14255 
14256 		/*
14257 		 * If we haven't allocated an anonymous state, we'll do so now.
14258 		 */
14259 		if ((state = dtrace_anon.dta_state) == NULL) {
14260 			state = dtrace_state_create(NULL, NULL);
14261 			dtrace_anon.dta_state = state;
14262 
14263 			if (state == NULL) {
14264 				/*
14265 				 * This basically shouldn't happen:  the only
14266 				 * failure mode from dtrace_state_create() is a
14267 				 * failure of ddi_soft_state_zalloc() that
14268 				 * itself should never happen.  Still, the
14269 				 * interface allows for a failure mode, and
14270 				 * we want to fail as gracefully as possible:
14271 				 * we'll emit an error message and cease
14272 				 * processing anonymous state in this case.
14273 				 */
14274 				cmn_err(CE_WARN, "failed to create "
14275 				    "anonymous state");
14276 				dtrace_dof_destroy(dof);
14277 				break;
14278 			}
14279 		}
14280 
14281 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14282 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
14283 
14284 		if (rv == 0)
14285 			rv = dtrace_dof_options(dof, state);
14286 
14287 		dtrace_err_verbose = 0;
14288 		dtrace_dof_destroy(dof);
14289 
14290 		if (rv != 0) {
14291 			/*
14292 			 * This is malformed DOF; chuck any anonymous state
14293 			 * that we created.
14294 			 */
14295 			ASSERT(dtrace_anon.dta_enabling == NULL);
14296 			dtrace_state_destroy(state);
14297 			dtrace_anon.dta_state = NULL;
14298 			break;
14299 		}
14300 
14301 		ASSERT(dtrace_anon.dta_enabling != NULL);
14302 	}
14303 
14304 	if (dtrace_anon.dta_enabling != NULL) {
14305 		int rval;
14306 
14307 		/*
14308 		 * dtrace_enabling_retain() can only fail because we are
14309 		 * trying to retain more enablings than are allowed -- but
14310 		 * we only have one anonymous enabling, and we are guaranteed
14311 		 * to be allowed at least one retained enabling; we assert
14312 		 * that dtrace_enabling_retain() returns success.
14313 		 */
14314 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14315 		ASSERT(rval == 0);
14316 
14317 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
14318 	}
14319 }
14320 
14321 /*
14322  * DTrace Helper Functions
14323  */
14324 static void
14325 dtrace_helper_trace(dtrace_helper_action_t *helper,
14326     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14327 {
14328 	uint32_t size, next, nnext, i;
14329 	dtrace_helptrace_t *ent, *buffer;
14330 	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14331 
14332 	if ((buffer = dtrace_helptrace_buffer) == NULL)
14333 		return;
14334 
14335 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14336 
14337 	/*
14338 	 * What would a tracing framework be without its own tracing
14339 	 * framework?  (Well, a hell of a lot simpler, for starters...)
14340 	 */
14341 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14342 	    sizeof (uint64_t) - sizeof (uint64_t);
14343 
14344 	/*
14345 	 * Iterate until we can allocate a slot in the trace buffer.
14346 	 */
14347 	do {
14348 		next = dtrace_helptrace_next;
14349 
14350 		if (next + size < dtrace_helptrace_bufsize) {
14351 			nnext = next + size;
14352 		} else {
14353 			nnext = size;
14354 		}
14355 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14356 
14357 	/*
14358 	 * We have our slot; fill it in.
14359 	 */
14360 	if (nnext == size) {
14361 		dtrace_helptrace_wrapped++;
14362 		next = 0;
14363 	}
14364 
14365 	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
14366 	ent->dtht_helper = helper;
14367 	ent->dtht_where = where;
14368 	ent->dtht_nlocals = vstate->dtvs_nlocals;
14369 
14370 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14371 	    mstate->dtms_fltoffs : -1;
14372 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14373 	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
14374 
14375 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
14376 		dtrace_statvar_t *svar;
14377 
14378 		if ((svar = vstate->dtvs_locals[i]) == NULL)
14379 			continue;
14380 
14381 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14382 		ent->dtht_locals[i] =
14383 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
14384 	}
14385 }
14386 
14387 static uint64_t
14388 dtrace_helper(int which, dtrace_mstate_t *mstate,
14389     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14390 {
14391 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14392 	uint64_t sarg0 = mstate->dtms_arg[0];
14393 	uint64_t sarg1 = mstate->dtms_arg[1];
14394 	uint64_t rval;
14395 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14396 	dtrace_helper_action_t *helper;
14397 	dtrace_vstate_t *vstate;
14398 	dtrace_difo_t *pred;
14399 	int i, trace = dtrace_helptrace_buffer != NULL;
14400 
14401 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14402 
14403 	if (helpers == NULL)
14404 		return (0);
14405 
14406 	if ((helper = helpers->dthps_actions[which]) == NULL)
14407 		return (0);
14408 
14409 	vstate = &helpers->dthps_vstate;
14410 	mstate->dtms_arg[0] = arg0;
14411 	mstate->dtms_arg[1] = arg1;
14412 
14413 	/*
14414 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
14415 	 * we'll call the corresponding actions.  Note that the below calls
14416 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
14417 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14418 	 * the stored DIF offset with its own (which is the desired behavior).
14419 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14420 	 * from machine state; this is okay, too.
14421 	 */
14422 	for (; helper != NULL; helper = helper->dtha_next) {
14423 		if ((pred = helper->dtha_predicate) != NULL) {
14424 			if (trace)
14425 				dtrace_helper_trace(helper, mstate, vstate, 0);
14426 
14427 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14428 				goto next;
14429 
14430 			if (*flags & CPU_DTRACE_FAULT)
14431 				goto err;
14432 		}
14433 
14434 		for (i = 0; i < helper->dtha_nactions; i++) {
14435 			if (trace)
14436 				dtrace_helper_trace(helper,
14437 				    mstate, vstate, i + 1);
14438 
14439 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14440 			    mstate, vstate, state);
14441 
14442 			if (*flags & CPU_DTRACE_FAULT)
14443 				goto err;
14444 		}
14445 
14446 next:
14447 		if (trace)
14448 			dtrace_helper_trace(helper, mstate, vstate,
14449 			    DTRACE_HELPTRACE_NEXT);
14450 	}
14451 
14452 	if (trace)
14453 		dtrace_helper_trace(helper, mstate, vstate,
14454 		    DTRACE_HELPTRACE_DONE);
14455 
14456 	/*
14457 	 * Restore the arg0 that we saved upon entry.
14458 	 */
14459 	mstate->dtms_arg[0] = sarg0;
14460 	mstate->dtms_arg[1] = sarg1;
14461 
14462 	return (rval);
14463 
14464 err:
14465 	if (trace)
14466 		dtrace_helper_trace(helper, mstate, vstate,
14467 		    DTRACE_HELPTRACE_ERR);
14468 
14469 	/*
14470 	 * Restore the arg0 that we saved upon entry.
14471 	 */
14472 	mstate->dtms_arg[0] = sarg0;
14473 	mstate->dtms_arg[1] = sarg1;
14474 
14475 	return (NULL);
14476 }
14477 
14478 static void
14479 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14480     dtrace_vstate_t *vstate)
14481 {
14482 	int i;
14483 
14484 	if (helper->dtha_predicate != NULL)
14485 		dtrace_difo_release(helper->dtha_predicate, vstate);
14486 
14487 	for (i = 0; i < helper->dtha_nactions; i++) {
14488 		ASSERT(helper->dtha_actions[i] != NULL);
14489 		dtrace_difo_release(helper->dtha_actions[i], vstate);
14490 	}
14491 
14492 	kmem_free(helper->dtha_actions,
14493 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14494 	kmem_free(helper, sizeof (dtrace_helper_action_t));
14495 }
14496 
14497 static int
14498 dtrace_helper_destroygen(int gen)
14499 {
14500 	proc_t *p = curproc;
14501 	dtrace_helpers_t *help = p->p_dtrace_helpers;
14502 	dtrace_vstate_t *vstate;
14503 	int i;
14504 
14505 	ASSERT(MUTEX_HELD(&dtrace_lock));
14506 
14507 	if (help == NULL || gen > help->dthps_generation)
14508 		return (EINVAL);
14509 
14510 	vstate = &help->dthps_vstate;
14511 
14512 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14513 		dtrace_helper_action_t *last = NULL, *h, *next;
14514 
14515 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14516 			next = h->dtha_next;
14517 
14518 			if (h->dtha_generation == gen) {
14519 				if (last != NULL) {
14520 					last->dtha_next = next;
14521 				} else {
14522 					help->dthps_actions[i] = next;
14523 				}
14524 
14525 				dtrace_helper_action_destroy(h, vstate);
14526 			} else {
14527 				last = h;
14528 			}
14529 		}
14530 	}
14531 
14532 	/*
14533 	 * Interate until we've cleared out all helper providers with the
14534 	 * given generation number.
14535 	 */
14536 	for (;;) {
14537 		dtrace_helper_provider_t *prov;
14538 
14539 		/*
14540 		 * Look for a helper provider with the right generation. We
14541 		 * have to start back at the beginning of the list each time
14542 		 * because we drop dtrace_lock. It's unlikely that we'll make
14543 		 * more than two passes.
14544 		 */
14545 		for (i = 0; i < help->dthps_nprovs; i++) {
14546 			prov = help->dthps_provs[i];
14547 
14548 			if (prov->dthp_generation == gen)
14549 				break;
14550 		}
14551 
14552 		/*
14553 		 * If there were no matches, we're done.
14554 		 */
14555 		if (i == help->dthps_nprovs)
14556 			break;
14557 
14558 		/*
14559 		 * Move the last helper provider into this slot.
14560 		 */
14561 		help->dthps_nprovs--;
14562 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14563 		help->dthps_provs[help->dthps_nprovs] = NULL;
14564 
14565 		mutex_exit(&dtrace_lock);
14566 
14567 		/*
14568 		 * If we have a meta provider, remove this helper provider.
14569 		 */
14570 		mutex_enter(&dtrace_meta_lock);
14571 		if (dtrace_meta_pid != NULL) {
14572 			ASSERT(dtrace_deferred_pid == NULL);
14573 			dtrace_helper_provider_remove(&prov->dthp_prov,
14574 			    p->p_pid);
14575 		}
14576 		mutex_exit(&dtrace_meta_lock);
14577 
14578 		dtrace_helper_provider_destroy(prov);
14579 
14580 		mutex_enter(&dtrace_lock);
14581 	}
14582 
14583 	return (0);
14584 }
14585 
14586 static int
14587 dtrace_helper_validate(dtrace_helper_action_t *helper)
14588 {
14589 	int err = 0, i;
14590 	dtrace_difo_t *dp;
14591 
14592 	if ((dp = helper->dtha_predicate) != NULL)
14593 		err += dtrace_difo_validate_helper(dp);
14594 
14595 	for (i = 0; i < helper->dtha_nactions; i++)
14596 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14597 
14598 	return (err == 0);
14599 }
14600 
14601 static int
14602 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14603 {
14604 	dtrace_helpers_t *help;
14605 	dtrace_helper_action_t *helper, *last;
14606 	dtrace_actdesc_t *act;
14607 	dtrace_vstate_t *vstate;
14608 	dtrace_predicate_t *pred;
14609 	int count = 0, nactions = 0, i;
14610 
14611 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14612 		return (EINVAL);
14613 
14614 	help = curproc->p_dtrace_helpers;
14615 	last = help->dthps_actions[which];
14616 	vstate = &help->dthps_vstate;
14617 
14618 	for (count = 0; last != NULL; last = last->dtha_next) {
14619 		count++;
14620 		if (last->dtha_next == NULL)
14621 			break;
14622 	}
14623 
14624 	/*
14625 	 * If we already have dtrace_helper_actions_max helper actions for this
14626 	 * helper action type, we'll refuse to add a new one.
14627 	 */
14628 	if (count >= dtrace_helper_actions_max)
14629 		return (ENOSPC);
14630 
14631 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14632 	helper->dtha_generation = help->dthps_generation;
14633 
14634 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14635 		ASSERT(pred->dtp_difo != NULL);
14636 		dtrace_difo_hold(pred->dtp_difo);
14637 		helper->dtha_predicate = pred->dtp_difo;
14638 	}
14639 
14640 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14641 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14642 			goto err;
14643 
14644 		if (act->dtad_difo == NULL)
14645 			goto err;
14646 
14647 		nactions++;
14648 	}
14649 
14650 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14651 	    (helper->dtha_nactions = nactions), KM_SLEEP);
14652 
14653 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14654 		dtrace_difo_hold(act->dtad_difo);
14655 		helper->dtha_actions[i++] = act->dtad_difo;
14656 	}
14657 
14658 	if (!dtrace_helper_validate(helper))
14659 		goto err;
14660 
14661 	if (last == NULL) {
14662 		help->dthps_actions[which] = helper;
14663 	} else {
14664 		last->dtha_next = helper;
14665 	}
14666 
14667 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14668 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14669 		dtrace_helptrace_next = 0;
14670 	}
14671 
14672 	return (0);
14673 err:
14674 	dtrace_helper_action_destroy(helper, vstate);
14675 	return (EINVAL);
14676 }
14677 
14678 static void
14679 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14680     dof_helper_t *dofhp)
14681 {
14682 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14683 
14684 	mutex_enter(&dtrace_meta_lock);
14685 	mutex_enter(&dtrace_lock);
14686 
14687 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14688 		/*
14689 		 * If the dtrace module is loaded but not attached, or if
14690 		 * there aren't isn't a meta provider registered to deal with
14691 		 * these provider descriptions, we need to postpone creating
14692 		 * the actual providers until later.
14693 		 */
14694 
14695 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14696 		    dtrace_deferred_pid != help) {
14697 			help->dthps_deferred = 1;
14698 			help->dthps_pid = p->p_pid;
14699 			help->dthps_next = dtrace_deferred_pid;
14700 			help->dthps_prev = NULL;
14701 			if (dtrace_deferred_pid != NULL)
14702 				dtrace_deferred_pid->dthps_prev = help;
14703 			dtrace_deferred_pid = help;
14704 		}
14705 
14706 		mutex_exit(&dtrace_lock);
14707 
14708 	} else if (dofhp != NULL) {
14709 		/*
14710 		 * If the dtrace module is loaded and we have a particular
14711 		 * helper provider description, pass that off to the
14712 		 * meta provider.
14713 		 */
14714 
14715 		mutex_exit(&dtrace_lock);
14716 
14717 		dtrace_helper_provide(dofhp, p->p_pid);
14718 
14719 	} else {
14720 		/*
14721 		 * Otherwise, just pass all the helper provider descriptions
14722 		 * off to the meta provider.
14723 		 */
14724 
14725 		int i;
14726 		mutex_exit(&dtrace_lock);
14727 
14728 		for (i = 0; i < help->dthps_nprovs; i++) {
14729 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14730 			    p->p_pid);
14731 		}
14732 	}
14733 
14734 	mutex_exit(&dtrace_meta_lock);
14735 }
14736 
14737 static int
14738 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14739 {
14740 	dtrace_helpers_t *help;
14741 	dtrace_helper_provider_t *hprov, **tmp_provs;
14742 	uint_t tmp_maxprovs, i;
14743 
14744 	ASSERT(MUTEX_HELD(&dtrace_lock));
14745 
14746 	help = curproc->p_dtrace_helpers;
14747 	ASSERT(help != NULL);
14748 
14749 	/*
14750 	 * If we already have dtrace_helper_providers_max helper providers,
14751 	 * we're refuse to add a new one.
14752 	 */
14753 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14754 		return (ENOSPC);
14755 
14756 	/*
14757 	 * Check to make sure this isn't a duplicate.
14758 	 */
14759 	for (i = 0; i < help->dthps_nprovs; i++) {
14760 		if (dofhp->dofhp_dof ==
14761 		    help->dthps_provs[i]->dthp_prov.dofhp_dof)
14762 			return (EALREADY);
14763 	}
14764 
14765 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14766 	hprov->dthp_prov = *dofhp;
14767 	hprov->dthp_ref = 1;
14768 	hprov->dthp_generation = gen;
14769 
14770 	/*
14771 	 * Allocate a bigger table for helper providers if it's already full.
14772 	 */
14773 	if (help->dthps_maxprovs == help->dthps_nprovs) {
14774 		tmp_maxprovs = help->dthps_maxprovs;
14775 		tmp_provs = help->dthps_provs;
14776 
14777 		if (help->dthps_maxprovs == 0)
14778 			help->dthps_maxprovs = 2;
14779 		else
14780 			help->dthps_maxprovs *= 2;
14781 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14782 			help->dthps_maxprovs = dtrace_helper_providers_max;
14783 
14784 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14785 
14786 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14787 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14788 
14789 		if (tmp_provs != NULL) {
14790 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14791 			    sizeof (dtrace_helper_provider_t *));
14792 			kmem_free(tmp_provs, tmp_maxprovs *
14793 			    sizeof (dtrace_helper_provider_t *));
14794 		}
14795 	}
14796 
14797 	help->dthps_provs[help->dthps_nprovs] = hprov;
14798 	help->dthps_nprovs++;
14799 
14800 	return (0);
14801 }
14802 
14803 static void
14804 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14805 {
14806 	mutex_enter(&dtrace_lock);
14807 
14808 	if (--hprov->dthp_ref == 0) {
14809 		dof_hdr_t *dof;
14810 		mutex_exit(&dtrace_lock);
14811 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14812 		dtrace_dof_destroy(dof);
14813 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14814 	} else {
14815 		mutex_exit(&dtrace_lock);
14816 	}
14817 }
14818 
14819 static int
14820 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14821 {
14822 	uintptr_t daddr = (uintptr_t)dof;
14823 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14824 	dof_provider_t *provider;
14825 	dof_probe_t *probe;
14826 	uint8_t *arg;
14827 	char *strtab, *typestr;
14828 	dof_stridx_t typeidx;
14829 	size_t typesz;
14830 	uint_t nprobes, j, k;
14831 
14832 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14833 
14834 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14835 		dtrace_dof_error(dof, "misaligned section offset");
14836 		return (-1);
14837 	}
14838 
14839 	/*
14840 	 * The section needs to be large enough to contain the DOF provider
14841 	 * structure appropriate for the given version.
14842 	 */
14843 	if (sec->dofs_size <
14844 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14845 	    offsetof(dof_provider_t, dofpv_prenoffs) :
14846 	    sizeof (dof_provider_t))) {
14847 		dtrace_dof_error(dof, "provider section too small");
14848 		return (-1);
14849 	}
14850 
14851 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14852 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14853 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14854 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14855 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14856 
14857 	if (str_sec == NULL || prb_sec == NULL ||
14858 	    arg_sec == NULL || off_sec == NULL)
14859 		return (-1);
14860 
14861 	enoff_sec = NULL;
14862 
14863 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14864 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14865 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14866 	    provider->dofpv_prenoffs)) == NULL)
14867 		return (-1);
14868 
14869 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14870 
14871 	if (provider->dofpv_name >= str_sec->dofs_size ||
14872 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14873 		dtrace_dof_error(dof, "invalid provider name");
14874 		return (-1);
14875 	}
14876 
14877 	if (prb_sec->dofs_entsize == 0 ||
14878 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14879 		dtrace_dof_error(dof, "invalid entry size");
14880 		return (-1);
14881 	}
14882 
14883 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14884 		dtrace_dof_error(dof, "misaligned entry size");
14885 		return (-1);
14886 	}
14887 
14888 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14889 		dtrace_dof_error(dof, "invalid entry size");
14890 		return (-1);
14891 	}
14892 
14893 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14894 		dtrace_dof_error(dof, "misaligned section offset");
14895 		return (-1);
14896 	}
14897 
14898 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14899 		dtrace_dof_error(dof, "invalid entry size");
14900 		return (-1);
14901 	}
14902 
14903 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14904 
14905 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14906 
14907 	/*
14908 	 * Take a pass through the probes to check for errors.
14909 	 */
14910 	for (j = 0; j < nprobes; j++) {
14911 		probe = (dof_probe_t *)(uintptr_t)(daddr +
14912 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14913 
14914 		if (probe->dofpr_func >= str_sec->dofs_size) {
14915 			dtrace_dof_error(dof, "invalid function name");
14916 			return (-1);
14917 		}
14918 
14919 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14920 			dtrace_dof_error(dof, "function name too long");
14921 			return (-1);
14922 		}
14923 
14924 		if (probe->dofpr_name >= str_sec->dofs_size ||
14925 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14926 			dtrace_dof_error(dof, "invalid probe name");
14927 			return (-1);
14928 		}
14929 
14930 		/*
14931 		 * The offset count must not wrap the index, and the offsets
14932 		 * must also not overflow the section's data.
14933 		 */
14934 		if (probe->dofpr_offidx + probe->dofpr_noffs <
14935 		    probe->dofpr_offidx ||
14936 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14937 		    off_sec->dofs_entsize > off_sec->dofs_size) {
14938 			dtrace_dof_error(dof, "invalid probe offset");
14939 			return (-1);
14940 		}
14941 
14942 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14943 			/*
14944 			 * If there's no is-enabled offset section, make sure
14945 			 * there aren't any is-enabled offsets. Otherwise
14946 			 * perform the same checks as for probe offsets
14947 			 * (immediately above).
14948 			 */
14949 			if (enoff_sec == NULL) {
14950 				if (probe->dofpr_enoffidx != 0 ||
14951 				    probe->dofpr_nenoffs != 0) {
14952 					dtrace_dof_error(dof, "is-enabled "
14953 					    "offsets with null section");
14954 					return (-1);
14955 				}
14956 			} else if (probe->dofpr_enoffidx +
14957 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14958 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14959 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14960 				dtrace_dof_error(dof, "invalid is-enabled "
14961 				    "offset");
14962 				return (-1);
14963 			}
14964 
14965 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14966 				dtrace_dof_error(dof, "zero probe and "
14967 				    "is-enabled offsets");
14968 				return (-1);
14969 			}
14970 		} else if (probe->dofpr_noffs == 0) {
14971 			dtrace_dof_error(dof, "zero probe offsets");
14972 			return (-1);
14973 		}
14974 
14975 		if (probe->dofpr_argidx + probe->dofpr_xargc <
14976 		    probe->dofpr_argidx ||
14977 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14978 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14979 			dtrace_dof_error(dof, "invalid args");
14980 			return (-1);
14981 		}
14982 
14983 		typeidx = probe->dofpr_nargv;
14984 		typestr = strtab + probe->dofpr_nargv;
14985 		for (k = 0; k < probe->dofpr_nargc; k++) {
14986 			if (typeidx >= str_sec->dofs_size) {
14987 				dtrace_dof_error(dof, "bad "
14988 				    "native argument type");
14989 				return (-1);
14990 			}
14991 
14992 			typesz = strlen(typestr) + 1;
14993 			if (typesz > DTRACE_ARGTYPELEN) {
14994 				dtrace_dof_error(dof, "native "
14995 				    "argument type too long");
14996 				return (-1);
14997 			}
14998 			typeidx += typesz;
14999 			typestr += typesz;
15000 		}
15001 
15002 		typeidx = probe->dofpr_xargv;
15003 		typestr = strtab + probe->dofpr_xargv;
15004 		for (k = 0; k < probe->dofpr_xargc; k++) {
15005 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15006 				dtrace_dof_error(dof, "bad "
15007 				    "native argument index");
15008 				return (-1);
15009 			}
15010 
15011 			if (typeidx >= str_sec->dofs_size) {
15012 				dtrace_dof_error(dof, "bad "
15013 				    "translated argument type");
15014 				return (-1);
15015 			}
15016 
15017 			typesz = strlen(typestr) + 1;
15018 			if (typesz > DTRACE_ARGTYPELEN) {
15019 				dtrace_dof_error(dof, "translated argument "
15020 				    "type too long");
15021 				return (-1);
15022 			}
15023 
15024 			typeidx += typesz;
15025 			typestr += typesz;
15026 		}
15027 	}
15028 
15029 	return (0);
15030 }
15031 
15032 static int
15033 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15034 {
15035 	dtrace_helpers_t *help;
15036 	dtrace_vstate_t *vstate;
15037 	dtrace_enabling_t *enab = NULL;
15038 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15039 	uintptr_t daddr = (uintptr_t)dof;
15040 
15041 	ASSERT(MUTEX_HELD(&dtrace_lock));
15042 
15043 	if ((help = curproc->p_dtrace_helpers) == NULL)
15044 		help = dtrace_helpers_create(curproc);
15045 
15046 	vstate = &help->dthps_vstate;
15047 
15048 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15049 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15050 		dtrace_dof_destroy(dof);
15051 		return (rv);
15052 	}
15053 
15054 	/*
15055 	 * Look for helper providers and validate their descriptions.
15056 	 */
15057 	if (dhp != NULL) {
15058 		for (i = 0; i < dof->dofh_secnum; i++) {
15059 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15060 			    dof->dofh_secoff + i * dof->dofh_secsize);
15061 
15062 			if (sec->dofs_type != DOF_SECT_PROVIDER)
15063 				continue;
15064 
15065 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
15066 				dtrace_enabling_destroy(enab);
15067 				dtrace_dof_destroy(dof);
15068 				return (-1);
15069 			}
15070 
15071 			nprovs++;
15072 		}
15073 	}
15074 
15075 	/*
15076 	 * Now we need to walk through the ECB descriptions in the enabling.
15077 	 */
15078 	for (i = 0; i < enab->dten_ndesc; i++) {
15079 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15080 		dtrace_probedesc_t *desc = &ep->dted_probe;
15081 
15082 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15083 			continue;
15084 
15085 		if (strcmp(desc->dtpd_mod, "helper") != 0)
15086 			continue;
15087 
15088 		if (strcmp(desc->dtpd_func, "ustack") != 0)
15089 			continue;
15090 
15091 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15092 		    ep)) != 0) {
15093 			/*
15094 			 * Adding this helper action failed -- we are now going
15095 			 * to rip out the entire generation and return failure.
15096 			 */
15097 			(void) dtrace_helper_destroygen(help->dthps_generation);
15098 			dtrace_enabling_destroy(enab);
15099 			dtrace_dof_destroy(dof);
15100 			return (-1);
15101 		}
15102 
15103 		nhelpers++;
15104 	}
15105 
15106 	if (nhelpers < enab->dten_ndesc)
15107 		dtrace_dof_error(dof, "unmatched helpers");
15108 
15109 	gen = help->dthps_generation++;
15110 	dtrace_enabling_destroy(enab);
15111 
15112 	if (dhp != NULL && nprovs > 0) {
15113 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
15114 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
15115 			mutex_exit(&dtrace_lock);
15116 			dtrace_helper_provider_register(curproc, help, dhp);
15117 			mutex_enter(&dtrace_lock);
15118 
15119 			destroy = 0;
15120 		}
15121 	}
15122 
15123 	if (destroy)
15124 		dtrace_dof_destroy(dof);
15125 
15126 	return (gen);
15127 }
15128 
15129 static dtrace_helpers_t *
15130 dtrace_helpers_create(proc_t *p)
15131 {
15132 	dtrace_helpers_t *help;
15133 
15134 	ASSERT(MUTEX_HELD(&dtrace_lock));
15135 	ASSERT(p->p_dtrace_helpers == NULL);
15136 
15137 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
15138 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
15139 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
15140 
15141 	p->p_dtrace_helpers = help;
15142 	dtrace_helpers++;
15143 
15144 	return (help);
15145 }
15146 
15147 static void
15148 dtrace_helpers_destroy(void)
15149 {
15150 	dtrace_helpers_t *help;
15151 	dtrace_vstate_t *vstate;
15152 	proc_t *p = curproc;
15153 	int i;
15154 
15155 	mutex_enter(&dtrace_lock);
15156 
15157 	ASSERT(p->p_dtrace_helpers != NULL);
15158 	ASSERT(dtrace_helpers > 0);
15159 
15160 	help = p->p_dtrace_helpers;
15161 	vstate = &help->dthps_vstate;
15162 
15163 	/*
15164 	 * We're now going to lose the help from this process.
15165 	 */
15166 	p->p_dtrace_helpers = NULL;
15167 	dtrace_sync();
15168 
15169 	/*
15170 	 * Destory the helper actions.
15171 	 */
15172 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15173 		dtrace_helper_action_t *h, *next;
15174 
15175 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15176 			next = h->dtha_next;
15177 			dtrace_helper_action_destroy(h, vstate);
15178 			h = next;
15179 		}
15180 	}
15181 
15182 	mutex_exit(&dtrace_lock);
15183 
15184 	/*
15185 	 * Destroy the helper providers.
15186 	 */
15187 	if (help->dthps_maxprovs > 0) {
15188 		mutex_enter(&dtrace_meta_lock);
15189 		if (dtrace_meta_pid != NULL) {
15190 			ASSERT(dtrace_deferred_pid == NULL);
15191 
15192 			for (i = 0; i < help->dthps_nprovs; i++) {
15193 				dtrace_helper_provider_remove(
15194 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
15195 			}
15196 		} else {
15197 			mutex_enter(&dtrace_lock);
15198 			ASSERT(help->dthps_deferred == 0 ||
15199 			    help->dthps_next != NULL ||
15200 			    help->dthps_prev != NULL ||
15201 			    help == dtrace_deferred_pid);
15202 
15203 			/*
15204 			 * Remove the helper from the deferred list.
15205 			 */
15206 			if (help->dthps_next != NULL)
15207 				help->dthps_next->dthps_prev = help->dthps_prev;
15208 			if (help->dthps_prev != NULL)
15209 				help->dthps_prev->dthps_next = help->dthps_next;
15210 			if (dtrace_deferred_pid == help) {
15211 				dtrace_deferred_pid = help->dthps_next;
15212 				ASSERT(help->dthps_prev == NULL);
15213 			}
15214 
15215 			mutex_exit(&dtrace_lock);
15216 		}
15217 
15218 		mutex_exit(&dtrace_meta_lock);
15219 
15220 		for (i = 0; i < help->dthps_nprovs; i++) {
15221 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
15222 		}
15223 
15224 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
15225 		    sizeof (dtrace_helper_provider_t *));
15226 	}
15227 
15228 	mutex_enter(&dtrace_lock);
15229 
15230 	dtrace_vstate_fini(&help->dthps_vstate);
15231 	kmem_free(help->dthps_actions,
15232 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15233 	kmem_free(help, sizeof (dtrace_helpers_t));
15234 
15235 	--dtrace_helpers;
15236 	mutex_exit(&dtrace_lock);
15237 }
15238 
15239 static void
15240 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15241 {
15242 	dtrace_helpers_t *help, *newhelp;
15243 	dtrace_helper_action_t *helper, *new, *last;
15244 	dtrace_difo_t *dp;
15245 	dtrace_vstate_t *vstate;
15246 	int i, j, sz, hasprovs = 0;
15247 
15248 	mutex_enter(&dtrace_lock);
15249 	ASSERT(from->p_dtrace_helpers != NULL);
15250 	ASSERT(dtrace_helpers > 0);
15251 
15252 	help = from->p_dtrace_helpers;
15253 	newhelp = dtrace_helpers_create(to);
15254 	ASSERT(to->p_dtrace_helpers != NULL);
15255 
15256 	newhelp->dthps_generation = help->dthps_generation;
15257 	vstate = &newhelp->dthps_vstate;
15258 
15259 	/*
15260 	 * Duplicate the helper actions.
15261 	 */
15262 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15263 		if ((helper = help->dthps_actions[i]) == NULL)
15264 			continue;
15265 
15266 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15267 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15268 			    KM_SLEEP);
15269 			new->dtha_generation = helper->dtha_generation;
15270 
15271 			if ((dp = helper->dtha_predicate) != NULL) {
15272 				dp = dtrace_difo_duplicate(dp, vstate);
15273 				new->dtha_predicate = dp;
15274 			}
15275 
15276 			new->dtha_nactions = helper->dtha_nactions;
15277 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15278 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15279 
15280 			for (j = 0; j < new->dtha_nactions; j++) {
15281 				dtrace_difo_t *dp = helper->dtha_actions[j];
15282 
15283 				ASSERT(dp != NULL);
15284 				dp = dtrace_difo_duplicate(dp, vstate);
15285 				new->dtha_actions[j] = dp;
15286 			}
15287 
15288 			if (last != NULL) {
15289 				last->dtha_next = new;
15290 			} else {
15291 				newhelp->dthps_actions[i] = new;
15292 			}
15293 
15294 			last = new;
15295 		}
15296 	}
15297 
15298 	/*
15299 	 * Duplicate the helper providers and register them with the
15300 	 * DTrace framework.
15301 	 */
15302 	if (help->dthps_nprovs > 0) {
15303 		newhelp->dthps_nprovs = help->dthps_nprovs;
15304 		newhelp->dthps_maxprovs = help->dthps_nprovs;
15305 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15306 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15307 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
15308 			newhelp->dthps_provs[i] = help->dthps_provs[i];
15309 			newhelp->dthps_provs[i]->dthp_ref++;
15310 		}
15311 
15312 		hasprovs = 1;
15313 	}
15314 
15315 	mutex_exit(&dtrace_lock);
15316 
15317 	if (hasprovs)
15318 		dtrace_helper_provider_register(to, newhelp, NULL);
15319 }
15320 
15321 /*
15322  * DTrace Hook Functions
15323  */
15324 static void
15325 dtrace_module_loaded(struct modctl *ctl)
15326 {
15327 	dtrace_provider_t *prv;
15328 
15329 	mutex_enter(&dtrace_provider_lock);
15330 	mutex_enter(&mod_lock);
15331 
15332 	ASSERT(ctl->mod_busy);
15333 
15334 	/*
15335 	 * We're going to call each providers per-module provide operation
15336 	 * specifying only this module.
15337 	 */
15338 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15339 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15340 
15341 	mutex_exit(&mod_lock);
15342 	mutex_exit(&dtrace_provider_lock);
15343 
15344 	/*
15345 	 * If we have any retained enablings, we need to match against them.
15346 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
15347 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15348 	 * module.  (In particular, this happens when loading scheduling
15349 	 * classes.)  So if we have any retained enablings, we need to dispatch
15350 	 * our task queue to do the match for us.
15351 	 */
15352 	mutex_enter(&dtrace_lock);
15353 
15354 	if (dtrace_retained == NULL) {
15355 		mutex_exit(&dtrace_lock);
15356 		return;
15357 	}
15358 
15359 	(void) taskq_dispatch(dtrace_taskq,
15360 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15361 
15362 	mutex_exit(&dtrace_lock);
15363 
15364 	/*
15365 	 * And now, for a little heuristic sleaze:  in general, we want to
15366 	 * match modules as soon as they load.  However, we cannot guarantee
15367 	 * this, because it would lead us to the lock ordering violation
15368 	 * outlined above.  The common case, of course, is that cpu_lock is
15369 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
15370 	 * long enough for the task queue to do its work.  If it's not, it's
15371 	 * not a serious problem -- it just means that the module that we
15372 	 * just loaded may not be immediately instrumentable.
15373 	 */
15374 	delay(1);
15375 }
15376 
15377 static void
15378 dtrace_module_unloaded(struct modctl *ctl)
15379 {
15380 	dtrace_probe_t template, *probe, *first, *next;
15381 	dtrace_provider_t *prov;
15382 
15383 	template.dtpr_mod = ctl->mod_modname;
15384 
15385 	mutex_enter(&dtrace_provider_lock);
15386 	mutex_enter(&mod_lock);
15387 	mutex_enter(&dtrace_lock);
15388 
15389 	if (dtrace_bymod == NULL) {
15390 		/*
15391 		 * The DTrace module is loaded (obviously) but not attached;
15392 		 * we don't have any work to do.
15393 		 */
15394 		mutex_exit(&dtrace_provider_lock);
15395 		mutex_exit(&mod_lock);
15396 		mutex_exit(&dtrace_lock);
15397 		return;
15398 	}
15399 
15400 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15401 	    probe != NULL; probe = probe->dtpr_nextmod) {
15402 		if (probe->dtpr_ecb != NULL) {
15403 			mutex_exit(&dtrace_provider_lock);
15404 			mutex_exit(&mod_lock);
15405 			mutex_exit(&dtrace_lock);
15406 
15407 			/*
15408 			 * This shouldn't _actually_ be possible -- we're
15409 			 * unloading a module that has an enabled probe in it.
15410 			 * (It's normally up to the provider to make sure that
15411 			 * this can't happen.)  However, because dtps_enable()
15412 			 * doesn't have a failure mode, there can be an
15413 			 * enable/unload race.  Upshot:  we don't want to
15414 			 * assert, but we're not going to disable the
15415 			 * probe, either.
15416 			 */
15417 			if (dtrace_err_verbose) {
15418 				cmn_err(CE_WARN, "unloaded module '%s' had "
15419 				    "enabled probes", ctl->mod_modname);
15420 			}
15421 
15422 			return;
15423 		}
15424 	}
15425 
15426 	probe = first;
15427 
15428 	for (first = NULL; probe != NULL; probe = next) {
15429 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15430 
15431 		dtrace_probes[probe->dtpr_id - 1] = NULL;
15432 
15433 		next = probe->dtpr_nextmod;
15434 		dtrace_hash_remove(dtrace_bymod, probe);
15435 		dtrace_hash_remove(dtrace_byfunc, probe);
15436 		dtrace_hash_remove(dtrace_byname, probe);
15437 
15438 		if (first == NULL) {
15439 			first = probe;
15440 			probe->dtpr_nextmod = NULL;
15441 		} else {
15442 			probe->dtpr_nextmod = first;
15443 			first = probe;
15444 		}
15445 	}
15446 
15447 	/*
15448 	 * We've removed all of the module's probes from the hash chains and
15449 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15450 	 * everyone has cleared out from any probe array processing.
15451 	 */
15452 	dtrace_sync();
15453 
15454 	for (probe = first; probe != NULL; probe = first) {
15455 		first = probe->dtpr_nextmod;
15456 		prov = probe->dtpr_provider;
15457 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15458 		    probe->dtpr_arg);
15459 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15460 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15461 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15462 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15463 		kmem_free(probe, sizeof (dtrace_probe_t));
15464 	}
15465 
15466 	mutex_exit(&dtrace_lock);
15467 	mutex_exit(&mod_lock);
15468 	mutex_exit(&dtrace_provider_lock);
15469 }
15470 
15471 void
15472 dtrace_suspend(void)
15473 {
15474 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15475 }
15476 
15477 void
15478 dtrace_resume(void)
15479 {
15480 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15481 }
15482 
15483 static int
15484 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15485 {
15486 	ASSERT(MUTEX_HELD(&cpu_lock));
15487 	mutex_enter(&dtrace_lock);
15488 
15489 	switch (what) {
15490 	case CPU_CONFIG: {
15491 		dtrace_state_t *state;
15492 		dtrace_optval_t *opt, rs, c;
15493 
15494 		/*
15495 		 * For now, we only allocate a new buffer for anonymous state.
15496 		 */
15497 		if ((state = dtrace_anon.dta_state) == NULL)
15498 			break;
15499 
15500 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15501 			break;
15502 
15503 		opt = state->dts_options;
15504 		c = opt[DTRACEOPT_CPU];
15505 
15506 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15507 			break;
15508 
15509 		/*
15510 		 * Regardless of what the actual policy is, we're going to
15511 		 * temporarily set our resize policy to be manual.  We're
15512 		 * also going to temporarily set our CPU option to denote
15513 		 * the newly configured CPU.
15514 		 */
15515 		rs = opt[DTRACEOPT_BUFRESIZE];
15516 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15517 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15518 
15519 		(void) dtrace_state_buffers(state);
15520 
15521 		opt[DTRACEOPT_BUFRESIZE] = rs;
15522 		opt[DTRACEOPT_CPU] = c;
15523 
15524 		break;
15525 	}
15526 
15527 	case CPU_UNCONFIG:
15528 		/*
15529 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15530 		 * buffer will be freed when the consumer exits.)
15531 		 */
15532 		break;
15533 
15534 	default:
15535 		break;
15536 	}
15537 
15538 	mutex_exit(&dtrace_lock);
15539 	return (0);
15540 }
15541 
15542 static void
15543 dtrace_cpu_setup_initial(processorid_t cpu)
15544 {
15545 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15546 }
15547 
15548 static void
15549 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15550 {
15551 	if (dtrace_toxranges >= dtrace_toxranges_max) {
15552 		int osize, nsize;
15553 		dtrace_toxrange_t *range;
15554 
15555 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15556 
15557 		if (osize == 0) {
15558 			ASSERT(dtrace_toxrange == NULL);
15559 			ASSERT(dtrace_toxranges_max == 0);
15560 			dtrace_toxranges_max = 1;
15561 		} else {
15562 			dtrace_toxranges_max <<= 1;
15563 		}
15564 
15565 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15566 		range = kmem_zalloc(nsize, KM_SLEEP);
15567 
15568 		if (dtrace_toxrange != NULL) {
15569 			ASSERT(osize != 0);
15570 			bcopy(dtrace_toxrange, range, osize);
15571 			kmem_free(dtrace_toxrange, osize);
15572 		}
15573 
15574 		dtrace_toxrange = range;
15575 	}
15576 
15577 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
15578 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
15579 
15580 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15581 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15582 	dtrace_toxranges++;
15583 }
15584 
15585 static void
15586 dtrace_getf_barrier()
15587 {
15588 	/*
15589 	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
15590 	 * that contain calls to getf(), this routine will be called on every
15591 	 * closef() before either the underlying vnode is released or the
15592 	 * file_t itself is freed.  By the time we are here, it is essential
15593 	 * that the file_t can no longer be accessed from a call to getf()
15594 	 * in probe context -- that assures that a dtrace_sync() can be used
15595 	 * to clear out any enablings referring to the old structures.
15596 	 */
15597 	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
15598 	    kcred->cr_zone->zone_dtrace_getf != 0)
15599 		dtrace_sync();
15600 }
15601 
15602 /*
15603  * DTrace Driver Cookbook Functions
15604  */
15605 /*ARGSUSED*/
15606 static int
15607 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15608 {
15609 	dtrace_provider_id_t id;
15610 	dtrace_state_t *state = NULL;
15611 	dtrace_enabling_t *enab;
15612 
15613 	mutex_enter(&cpu_lock);
15614 	mutex_enter(&dtrace_provider_lock);
15615 	mutex_enter(&dtrace_lock);
15616 
15617 	if (ddi_soft_state_init(&dtrace_softstate,
15618 	    sizeof (dtrace_state_t), 0) != 0) {
15619 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15620 		mutex_exit(&cpu_lock);
15621 		mutex_exit(&dtrace_provider_lock);
15622 		mutex_exit(&dtrace_lock);
15623 		return (DDI_FAILURE);
15624 	}
15625 
15626 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15627 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15628 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15629 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15630 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15631 		ddi_remove_minor_node(devi, NULL);
15632 		ddi_soft_state_fini(&dtrace_softstate);
15633 		mutex_exit(&cpu_lock);
15634 		mutex_exit(&dtrace_provider_lock);
15635 		mutex_exit(&dtrace_lock);
15636 		return (DDI_FAILURE);
15637 	}
15638 
15639 	ddi_report_dev(devi);
15640 	dtrace_devi = devi;
15641 
15642 	dtrace_modload = dtrace_module_loaded;
15643 	dtrace_modunload = dtrace_module_unloaded;
15644 	dtrace_cpu_init = dtrace_cpu_setup_initial;
15645 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15646 	dtrace_helpers_fork = dtrace_helpers_duplicate;
15647 	dtrace_cpustart_init = dtrace_suspend;
15648 	dtrace_cpustart_fini = dtrace_resume;
15649 	dtrace_debugger_init = dtrace_suspend;
15650 	dtrace_debugger_fini = dtrace_resume;
15651 
15652 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15653 
15654 	ASSERT(MUTEX_HELD(&cpu_lock));
15655 
15656 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15657 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15658 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15659 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15660 	    VM_SLEEP | VMC_IDENTIFIER);
15661 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15662 	    1, INT_MAX, 0);
15663 
15664 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15665 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15666 	    NULL, NULL, NULL, NULL, NULL, 0);
15667 
15668 	ASSERT(MUTEX_HELD(&cpu_lock));
15669 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15670 	    offsetof(dtrace_probe_t, dtpr_nextmod),
15671 	    offsetof(dtrace_probe_t, dtpr_prevmod));
15672 
15673 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15674 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15675 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15676 
15677 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15678 	    offsetof(dtrace_probe_t, dtpr_nextname),
15679 	    offsetof(dtrace_probe_t, dtpr_prevname));
15680 
15681 	if (dtrace_retain_max < 1) {
15682 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15683 		    "setting to 1", dtrace_retain_max);
15684 		dtrace_retain_max = 1;
15685 	}
15686 
15687 	/*
15688 	 * Now discover our toxic ranges.
15689 	 */
15690 	dtrace_toxic_ranges(dtrace_toxrange_add);
15691 
15692 	/*
15693 	 * Before we register ourselves as a provider to our own framework,
15694 	 * we would like to assert that dtrace_provider is NULL -- but that's
15695 	 * not true if we were loaded as a dependency of a DTrace provider.
15696 	 * Once we've registered, we can assert that dtrace_provider is our
15697 	 * pseudo provider.
15698 	 */
15699 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15700 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15701 
15702 	ASSERT(dtrace_provider != NULL);
15703 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15704 
15705 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15706 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15707 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15708 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15709 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15710 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15711 
15712 	dtrace_anon_property();
15713 	mutex_exit(&cpu_lock);
15714 
15715 	/*
15716 	 * If there are already providers, we must ask them to provide their
15717 	 * probes, and then match any anonymous enabling against them.  Note
15718 	 * that there should be no other retained enablings at this time:
15719 	 * the only retained enablings at this time should be the anonymous
15720 	 * enabling.
15721 	 */
15722 	if (dtrace_anon.dta_enabling != NULL) {
15723 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15724 
15725 		dtrace_enabling_provide(NULL);
15726 		state = dtrace_anon.dta_state;
15727 
15728 		/*
15729 		 * We couldn't hold cpu_lock across the above call to
15730 		 * dtrace_enabling_provide(), but we must hold it to actually
15731 		 * enable the probes.  We have to drop all of our locks, pick
15732 		 * up cpu_lock, and regain our locks before matching the
15733 		 * retained anonymous enabling.
15734 		 */
15735 		mutex_exit(&dtrace_lock);
15736 		mutex_exit(&dtrace_provider_lock);
15737 
15738 		mutex_enter(&cpu_lock);
15739 		mutex_enter(&dtrace_provider_lock);
15740 		mutex_enter(&dtrace_lock);
15741 
15742 		if ((enab = dtrace_anon.dta_enabling) != NULL)
15743 			(void) dtrace_enabling_match(enab, NULL);
15744 
15745 		mutex_exit(&cpu_lock);
15746 	}
15747 
15748 	mutex_exit(&dtrace_lock);
15749 	mutex_exit(&dtrace_provider_lock);
15750 
15751 	if (state != NULL) {
15752 		/*
15753 		 * If we created any anonymous state, set it going now.
15754 		 */
15755 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15756 	}
15757 
15758 	return (DDI_SUCCESS);
15759 }
15760 
15761 /*ARGSUSED*/
15762 static int
15763 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15764 {
15765 	dtrace_state_t *state;
15766 	uint32_t priv;
15767 	uid_t uid;
15768 	zoneid_t zoneid;
15769 
15770 	if (getminor(*devp) == DTRACEMNRN_HELPER)
15771 		return (0);
15772 
15773 	/*
15774 	 * If this wasn't an open with the "helper" minor, then it must be
15775 	 * the "dtrace" minor.
15776 	 */
15777 	if (getminor(*devp) != DTRACEMNRN_DTRACE)
15778 		return (ENXIO);
15779 
15780 	/*
15781 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15782 	 * caller lacks sufficient permission to do anything with DTrace.
15783 	 */
15784 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15785 	if (priv == DTRACE_PRIV_NONE)
15786 		return (EACCES);
15787 
15788 	/*
15789 	 * Ask all providers to provide all their probes.
15790 	 */
15791 	mutex_enter(&dtrace_provider_lock);
15792 	dtrace_probe_provide(NULL, NULL);
15793 	mutex_exit(&dtrace_provider_lock);
15794 
15795 	mutex_enter(&cpu_lock);
15796 	mutex_enter(&dtrace_lock);
15797 	dtrace_opens++;
15798 	dtrace_membar_producer();
15799 
15800 	/*
15801 	 * If the kernel debugger is active (that is, if the kernel debugger
15802 	 * modified text in some way), we won't allow the open.
15803 	 */
15804 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15805 		dtrace_opens--;
15806 		mutex_exit(&cpu_lock);
15807 		mutex_exit(&dtrace_lock);
15808 		return (EBUSY);
15809 	}
15810 
15811 	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
15812 		/*
15813 		 * If DTrace helper tracing is enabled, we need to allocate the
15814 		 * trace buffer and initialize the values.
15815 		 */
15816 		dtrace_helptrace_buffer =
15817 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15818 		dtrace_helptrace_next = 0;
15819 		dtrace_helptrace_wrapped = 0;
15820 		dtrace_helptrace_enable = 0;
15821 	}
15822 
15823 	state = dtrace_state_create(devp, cred_p);
15824 	mutex_exit(&cpu_lock);
15825 
15826 	if (state == NULL) {
15827 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15828 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15829 		mutex_exit(&dtrace_lock);
15830 		return (EAGAIN);
15831 	}
15832 
15833 	mutex_exit(&dtrace_lock);
15834 
15835 	return (0);
15836 }
15837 
15838 /*ARGSUSED*/
15839 static int
15840 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15841 {
15842 	minor_t minor = getminor(dev);
15843 	dtrace_state_t *state;
15844 	dtrace_helptrace_t *buf = NULL;
15845 
15846 	if (minor == DTRACEMNRN_HELPER)
15847 		return (0);
15848 
15849 	state = ddi_get_soft_state(dtrace_softstate, minor);
15850 
15851 	mutex_enter(&cpu_lock);
15852 	mutex_enter(&dtrace_lock);
15853 
15854 	if (state->dts_anon) {
15855 		/*
15856 		 * There is anonymous state. Destroy that first.
15857 		 */
15858 		ASSERT(dtrace_anon.dta_state == NULL);
15859 		dtrace_state_destroy(state->dts_anon);
15860 	}
15861 
15862 	if (dtrace_helptrace_disable) {
15863 		/*
15864 		 * If we have been told to disable helper tracing, set the
15865 		 * buffer to NULL before calling into dtrace_state_destroy();
15866 		 * we take advantage of its dtrace_sync() to know that no
15867 		 * CPU is in probe context with enabled helper tracing
15868 		 * after it returns.
15869 		 */
15870 		buf = dtrace_helptrace_buffer;
15871 		dtrace_helptrace_buffer = NULL;
15872 	}
15873 
15874 	dtrace_state_destroy(state);
15875 	ASSERT(dtrace_opens > 0);
15876 
15877 	/*
15878 	 * Only relinquish control of the kernel debugger interface when there
15879 	 * are no consumers and no anonymous enablings.
15880 	 */
15881 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15882 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15883 
15884 	if (buf != NULL) {
15885 		kmem_free(buf, dtrace_helptrace_bufsize);
15886 		dtrace_helptrace_disable = 0;
15887 	}
15888 
15889 	mutex_exit(&dtrace_lock);
15890 	mutex_exit(&cpu_lock);
15891 
15892 	return (0);
15893 }
15894 
15895 /*ARGSUSED*/
15896 static int
15897 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15898 {
15899 	int rval;
15900 	dof_helper_t help, *dhp = NULL;
15901 
15902 	switch (cmd) {
15903 	case DTRACEHIOC_ADDDOF:
15904 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15905 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15906 			return (EFAULT);
15907 		}
15908 
15909 		dhp = &help;
15910 		arg = (intptr_t)help.dofhp_dof;
15911 		/*FALLTHROUGH*/
15912 
15913 	case DTRACEHIOC_ADD: {
15914 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15915 
15916 		if (dof == NULL)
15917 			return (rval);
15918 
15919 		mutex_enter(&dtrace_lock);
15920 
15921 		/*
15922 		 * dtrace_helper_slurp() takes responsibility for the dof --
15923 		 * it may free it now or it may save it and free it later.
15924 		 */
15925 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15926 			*rv = rval;
15927 			rval = 0;
15928 		} else {
15929 			rval = EINVAL;
15930 		}
15931 
15932 		mutex_exit(&dtrace_lock);
15933 		return (rval);
15934 	}
15935 
15936 	case DTRACEHIOC_REMOVE: {
15937 		mutex_enter(&dtrace_lock);
15938 		rval = dtrace_helper_destroygen(arg);
15939 		mutex_exit(&dtrace_lock);
15940 
15941 		return (rval);
15942 	}
15943 
15944 	default:
15945 		break;
15946 	}
15947 
15948 	return (ENOTTY);
15949 }
15950 
15951 /*ARGSUSED*/
15952 static int
15953 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15954 {
15955 	minor_t minor = getminor(dev);
15956 	dtrace_state_t *state;
15957 	int rval;
15958 
15959 	if (minor == DTRACEMNRN_HELPER)
15960 		return (dtrace_ioctl_helper(cmd, arg, rv));
15961 
15962 	state = ddi_get_soft_state(dtrace_softstate, minor);
15963 
15964 	if (state->dts_anon) {
15965 		ASSERT(dtrace_anon.dta_state == NULL);
15966 		state = state->dts_anon;
15967 	}
15968 
15969 	switch (cmd) {
15970 	case DTRACEIOC_PROVIDER: {
15971 		dtrace_providerdesc_t pvd;
15972 		dtrace_provider_t *pvp;
15973 
15974 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15975 			return (EFAULT);
15976 
15977 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15978 		mutex_enter(&dtrace_provider_lock);
15979 
15980 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15981 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15982 				break;
15983 		}
15984 
15985 		mutex_exit(&dtrace_provider_lock);
15986 
15987 		if (pvp == NULL)
15988 			return (ESRCH);
15989 
15990 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15991 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15992 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15993 			return (EFAULT);
15994 
15995 		return (0);
15996 	}
15997 
15998 	case DTRACEIOC_EPROBE: {
15999 		dtrace_eprobedesc_t epdesc;
16000 		dtrace_ecb_t *ecb;
16001 		dtrace_action_t *act;
16002 		void *buf;
16003 		size_t size;
16004 		uintptr_t dest;
16005 		int nrecs;
16006 
16007 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
16008 			return (EFAULT);
16009 
16010 		mutex_enter(&dtrace_lock);
16011 
16012 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
16013 			mutex_exit(&dtrace_lock);
16014 			return (EINVAL);
16015 		}
16016 
16017 		if (ecb->dte_probe == NULL) {
16018 			mutex_exit(&dtrace_lock);
16019 			return (EINVAL);
16020 		}
16021 
16022 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16023 		epdesc.dtepd_uarg = ecb->dte_uarg;
16024 		epdesc.dtepd_size = ecb->dte_size;
16025 
16026 		nrecs = epdesc.dtepd_nrecs;
16027 		epdesc.dtepd_nrecs = 0;
16028 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16029 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16030 				continue;
16031 
16032 			epdesc.dtepd_nrecs++;
16033 		}
16034 
16035 		/*
16036 		 * Now that we have the size, we need to allocate a temporary
16037 		 * buffer in which to store the complete description.  We need
16038 		 * the temporary buffer to be able to drop dtrace_lock()
16039 		 * across the copyout(), below.
16040 		 */
16041 		size = sizeof (dtrace_eprobedesc_t) +
16042 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16043 
16044 		buf = kmem_alloc(size, KM_SLEEP);
16045 		dest = (uintptr_t)buf;
16046 
16047 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16048 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16049 
16050 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16051 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16052 				continue;
16053 
16054 			if (nrecs-- == 0)
16055 				break;
16056 
16057 			bcopy(&act->dta_rec, (void *)dest,
16058 			    sizeof (dtrace_recdesc_t));
16059 			dest += sizeof (dtrace_recdesc_t);
16060 		}
16061 
16062 		mutex_exit(&dtrace_lock);
16063 
16064 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16065 			kmem_free(buf, size);
16066 			return (EFAULT);
16067 		}
16068 
16069 		kmem_free(buf, size);
16070 		return (0);
16071 	}
16072 
16073 	case DTRACEIOC_AGGDESC: {
16074 		dtrace_aggdesc_t aggdesc;
16075 		dtrace_action_t *act;
16076 		dtrace_aggregation_t *agg;
16077 		int nrecs;
16078 		uint32_t offs;
16079 		dtrace_recdesc_t *lrec;
16080 		void *buf;
16081 		size_t size;
16082 		uintptr_t dest;
16083 
16084 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16085 			return (EFAULT);
16086 
16087 		mutex_enter(&dtrace_lock);
16088 
16089 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16090 			mutex_exit(&dtrace_lock);
16091 			return (EINVAL);
16092 		}
16093 
16094 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16095 
16096 		nrecs = aggdesc.dtagd_nrecs;
16097 		aggdesc.dtagd_nrecs = 0;
16098 
16099 		offs = agg->dtag_base;
16100 		lrec = &agg->dtag_action.dta_rec;
16101 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16102 
16103 		for (act = agg->dtag_first; ; act = act->dta_next) {
16104 			ASSERT(act->dta_intuple ||
16105 			    DTRACEACT_ISAGG(act->dta_kind));
16106 
16107 			/*
16108 			 * If this action has a record size of zero, it
16109 			 * denotes an argument to the aggregating action.
16110 			 * Because the presence of this record doesn't (or
16111 			 * shouldn't) affect the way the data is interpreted,
16112 			 * we don't copy it out to save user-level the
16113 			 * confusion of dealing with a zero-length record.
16114 			 */
16115 			if (act->dta_rec.dtrd_size == 0) {
16116 				ASSERT(agg->dtag_hasarg);
16117 				continue;
16118 			}
16119 
16120 			aggdesc.dtagd_nrecs++;
16121 
16122 			if (act == &agg->dtag_action)
16123 				break;
16124 		}
16125 
16126 		/*
16127 		 * Now that we have the size, we need to allocate a temporary
16128 		 * buffer in which to store the complete description.  We need
16129 		 * the temporary buffer to be able to drop dtrace_lock()
16130 		 * across the copyout(), below.
16131 		 */
16132 		size = sizeof (dtrace_aggdesc_t) +
16133 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16134 
16135 		buf = kmem_alloc(size, KM_SLEEP);
16136 		dest = (uintptr_t)buf;
16137 
16138 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16139 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16140 
16141 		for (act = agg->dtag_first; ; act = act->dta_next) {
16142 			dtrace_recdesc_t rec = act->dta_rec;
16143 
16144 			/*
16145 			 * See the comment in the above loop for why we pass
16146 			 * over zero-length records.
16147 			 */
16148 			if (rec.dtrd_size == 0) {
16149 				ASSERT(agg->dtag_hasarg);
16150 				continue;
16151 			}
16152 
16153 			if (nrecs-- == 0)
16154 				break;
16155 
16156 			rec.dtrd_offset -= offs;
16157 			bcopy(&rec, (void *)dest, sizeof (rec));
16158 			dest += sizeof (dtrace_recdesc_t);
16159 
16160 			if (act == &agg->dtag_action)
16161 				break;
16162 		}
16163 
16164 		mutex_exit(&dtrace_lock);
16165 
16166 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16167 			kmem_free(buf, size);
16168 			return (EFAULT);
16169 		}
16170 
16171 		kmem_free(buf, size);
16172 		return (0);
16173 	}
16174 
16175 	case DTRACEIOC_ENABLE: {
16176 		dof_hdr_t *dof;
16177 		dtrace_enabling_t *enab = NULL;
16178 		dtrace_vstate_t *vstate;
16179 		int err = 0;
16180 
16181 		*rv = 0;
16182 
16183 		/*
16184 		 * If a NULL argument has been passed, we take this as our
16185 		 * cue to reevaluate our enablings.
16186 		 */
16187 		if (arg == NULL) {
16188 			dtrace_enabling_matchall();
16189 
16190 			return (0);
16191 		}
16192 
16193 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16194 			return (rval);
16195 
16196 		mutex_enter(&cpu_lock);
16197 		mutex_enter(&dtrace_lock);
16198 		vstate = &state->dts_vstate;
16199 
16200 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16201 			mutex_exit(&dtrace_lock);
16202 			mutex_exit(&cpu_lock);
16203 			dtrace_dof_destroy(dof);
16204 			return (EBUSY);
16205 		}
16206 
16207 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16208 			mutex_exit(&dtrace_lock);
16209 			mutex_exit(&cpu_lock);
16210 			dtrace_dof_destroy(dof);
16211 			return (EINVAL);
16212 		}
16213 
16214 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
16215 			dtrace_enabling_destroy(enab);
16216 			mutex_exit(&dtrace_lock);
16217 			mutex_exit(&cpu_lock);
16218 			dtrace_dof_destroy(dof);
16219 			return (rval);
16220 		}
16221 
16222 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16223 			err = dtrace_enabling_retain(enab);
16224 		} else {
16225 			dtrace_enabling_destroy(enab);
16226 		}
16227 
16228 		mutex_exit(&cpu_lock);
16229 		mutex_exit(&dtrace_lock);
16230 		dtrace_dof_destroy(dof);
16231 
16232 		return (err);
16233 	}
16234 
16235 	case DTRACEIOC_REPLICATE: {
16236 		dtrace_repldesc_t desc;
16237 		dtrace_probedesc_t *match = &desc.dtrpd_match;
16238 		dtrace_probedesc_t *create = &desc.dtrpd_create;
16239 		int err;
16240 
16241 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16242 			return (EFAULT);
16243 
16244 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16245 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16246 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16247 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16248 
16249 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16250 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16251 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16252 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16253 
16254 		mutex_enter(&dtrace_lock);
16255 		err = dtrace_enabling_replicate(state, match, create);
16256 		mutex_exit(&dtrace_lock);
16257 
16258 		return (err);
16259 	}
16260 
16261 	case DTRACEIOC_PROBEMATCH:
16262 	case DTRACEIOC_PROBES: {
16263 		dtrace_probe_t *probe = NULL;
16264 		dtrace_probedesc_t desc;
16265 		dtrace_probekey_t pkey;
16266 		dtrace_id_t i;
16267 		int m = 0;
16268 		uint32_t priv;
16269 		uid_t uid;
16270 		zoneid_t zoneid;
16271 
16272 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16273 			return (EFAULT);
16274 
16275 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16276 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16277 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16278 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16279 
16280 		/*
16281 		 * Before we attempt to match this probe, we want to give
16282 		 * all providers the opportunity to provide it.
16283 		 */
16284 		if (desc.dtpd_id == DTRACE_IDNONE) {
16285 			mutex_enter(&dtrace_provider_lock);
16286 			dtrace_probe_provide(&desc, NULL);
16287 			mutex_exit(&dtrace_provider_lock);
16288 			desc.dtpd_id++;
16289 		}
16290 
16291 		if (cmd == DTRACEIOC_PROBEMATCH)  {
16292 			dtrace_probekey(&desc, &pkey);
16293 			pkey.dtpk_id = DTRACE_IDNONE;
16294 		}
16295 
16296 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16297 
16298 		mutex_enter(&dtrace_lock);
16299 
16300 		if (cmd == DTRACEIOC_PROBEMATCH) {
16301 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16302 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16303 				    (m = dtrace_match_probe(probe, &pkey,
16304 				    priv, uid, zoneid)) != 0)
16305 					break;
16306 			}
16307 
16308 			if (m < 0) {
16309 				mutex_exit(&dtrace_lock);
16310 				return (EINVAL);
16311 			}
16312 
16313 		} else {
16314 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16315 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16316 				    dtrace_match_priv(probe, priv, uid, zoneid))
16317 					break;
16318 			}
16319 		}
16320 
16321 		if (probe == NULL) {
16322 			mutex_exit(&dtrace_lock);
16323 			return (ESRCH);
16324 		}
16325 
16326 		dtrace_probe_description(probe, &desc);
16327 		mutex_exit(&dtrace_lock);
16328 
16329 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16330 			return (EFAULT);
16331 
16332 		return (0);
16333 	}
16334 
16335 	case DTRACEIOC_PROBEARG: {
16336 		dtrace_argdesc_t desc;
16337 		dtrace_probe_t *probe;
16338 		dtrace_provider_t *prov;
16339 
16340 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16341 			return (EFAULT);
16342 
16343 		if (desc.dtargd_id == DTRACE_IDNONE)
16344 			return (EINVAL);
16345 
16346 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
16347 			return (EINVAL);
16348 
16349 		mutex_enter(&dtrace_provider_lock);
16350 		mutex_enter(&mod_lock);
16351 		mutex_enter(&dtrace_lock);
16352 
16353 		if (desc.dtargd_id > dtrace_nprobes) {
16354 			mutex_exit(&dtrace_lock);
16355 			mutex_exit(&mod_lock);
16356 			mutex_exit(&dtrace_provider_lock);
16357 			return (EINVAL);
16358 		}
16359 
16360 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16361 			mutex_exit(&dtrace_lock);
16362 			mutex_exit(&mod_lock);
16363 			mutex_exit(&dtrace_provider_lock);
16364 			return (EINVAL);
16365 		}
16366 
16367 		mutex_exit(&dtrace_lock);
16368 
16369 		prov = probe->dtpr_provider;
16370 
16371 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16372 			/*
16373 			 * There isn't any typed information for this probe.
16374 			 * Set the argument number to DTRACE_ARGNONE.
16375 			 */
16376 			desc.dtargd_ndx = DTRACE_ARGNONE;
16377 		} else {
16378 			desc.dtargd_native[0] = '\0';
16379 			desc.dtargd_xlate[0] = '\0';
16380 			desc.dtargd_mapping = desc.dtargd_ndx;
16381 
16382 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16383 			    probe->dtpr_id, probe->dtpr_arg, &desc);
16384 		}
16385 
16386 		mutex_exit(&mod_lock);
16387 		mutex_exit(&dtrace_provider_lock);
16388 
16389 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16390 			return (EFAULT);
16391 
16392 		return (0);
16393 	}
16394 
16395 	case DTRACEIOC_GO: {
16396 		processorid_t cpuid;
16397 		rval = dtrace_state_go(state, &cpuid);
16398 
16399 		if (rval != 0)
16400 			return (rval);
16401 
16402 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16403 			return (EFAULT);
16404 
16405 		return (0);
16406 	}
16407 
16408 	case DTRACEIOC_STOP: {
16409 		processorid_t cpuid;
16410 
16411 		mutex_enter(&dtrace_lock);
16412 		rval = dtrace_state_stop(state, &cpuid);
16413 		mutex_exit(&dtrace_lock);
16414 
16415 		if (rval != 0)
16416 			return (rval);
16417 
16418 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16419 			return (EFAULT);
16420 
16421 		return (0);
16422 	}
16423 
16424 	case DTRACEIOC_DOFGET: {
16425 		dof_hdr_t hdr, *dof;
16426 		uint64_t len;
16427 
16428 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16429 			return (EFAULT);
16430 
16431 		mutex_enter(&dtrace_lock);
16432 		dof = dtrace_dof_create(state);
16433 		mutex_exit(&dtrace_lock);
16434 
16435 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16436 		rval = copyout(dof, (void *)arg, len);
16437 		dtrace_dof_destroy(dof);
16438 
16439 		return (rval == 0 ? 0 : EFAULT);
16440 	}
16441 
16442 	case DTRACEIOC_AGGSNAP:
16443 	case DTRACEIOC_BUFSNAP: {
16444 		dtrace_bufdesc_t desc;
16445 		caddr_t cached;
16446 		dtrace_buffer_t *buf;
16447 
16448 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16449 			return (EFAULT);
16450 
16451 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16452 			return (EINVAL);
16453 
16454 		mutex_enter(&dtrace_lock);
16455 
16456 		if (cmd == DTRACEIOC_BUFSNAP) {
16457 			buf = &state->dts_buffer[desc.dtbd_cpu];
16458 		} else {
16459 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16460 		}
16461 
16462 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16463 			size_t sz = buf->dtb_offset;
16464 
16465 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16466 				mutex_exit(&dtrace_lock);
16467 				return (EBUSY);
16468 			}
16469 
16470 			/*
16471 			 * If this buffer has already been consumed, we're
16472 			 * going to indicate that there's nothing left here
16473 			 * to consume.
16474 			 */
16475 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16476 				mutex_exit(&dtrace_lock);
16477 
16478 				desc.dtbd_size = 0;
16479 				desc.dtbd_drops = 0;
16480 				desc.dtbd_errors = 0;
16481 				desc.dtbd_oldest = 0;
16482 				sz = sizeof (desc);
16483 
16484 				if (copyout(&desc, (void *)arg, sz) != 0)
16485 					return (EFAULT);
16486 
16487 				return (0);
16488 			}
16489 
16490 			/*
16491 			 * If this is a ring buffer that has wrapped, we want
16492 			 * to copy the whole thing out.
16493 			 */
16494 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16495 				dtrace_buffer_polish(buf);
16496 				sz = buf->dtb_size;
16497 			}
16498 
16499 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16500 				mutex_exit(&dtrace_lock);
16501 				return (EFAULT);
16502 			}
16503 
16504 			desc.dtbd_size = sz;
16505 			desc.dtbd_drops = buf->dtb_drops;
16506 			desc.dtbd_errors = buf->dtb_errors;
16507 			desc.dtbd_oldest = buf->dtb_xamot_offset;
16508 			desc.dtbd_timestamp = dtrace_gethrtime();
16509 
16510 			mutex_exit(&dtrace_lock);
16511 
16512 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16513 				return (EFAULT);
16514 
16515 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16516 
16517 			return (0);
16518 		}
16519 
16520 		if (buf->dtb_tomax == NULL) {
16521 			ASSERT(buf->dtb_xamot == NULL);
16522 			mutex_exit(&dtrace_lock);
16523 			return (ENOENT);
16524 		}
16525 
16526 		cached = buf->dtb_tomax;
16527 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16528 
16529 		dtrace_xcall(desc.dtbd_cpu,
16530 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16531 
16532 		state->dts_errors += buf->dtb_xamot_errors;
16533 
16534 		/*
16535 		 * If the buffers did not actually switch, then the cross call
16536 		 * did not take place -- presumably because the given CPU is
16537 		 * not in the ready set.  If this is the case, we'll return
16538 		 * ENOENT.
16539 		 */
16540 		if (buf->dtb_tomax == cached) {
16541 			ASSERT(buf->dtb_xamot != cached);
16542 			mutex_exit(&dtrace_lock);
16543 			return (ENOENT);
16544 		}
16545 
16546 		ASSERT(cached == buf->dtb_xamot);
16547 
16548 		/*
16549 		 * We have our snapshot; now copy it out.
16550 		 */
16551 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16552 		    buf->dtb_xamot_offset) != 0) {
16553 			mutex_exit(&dtrace_lock);
16554 			return (EFAULT);
16555 		}
16556 
16557 		desc.dtbd_size = buf->dtb_xamot_offset;
16558 		desc.dtbd_drops = buf->dtb_xamot_drops;
16559 		desc.dtbd_errors = buf->dtb_xamot_errors;
16560 		desc.dtbd_oldest = 0;
16561 		desc.dtbd_timestamp = buf->dtb_switched;
16562 
16563 		mutex_exit(&dtrace_lock);
16564 
16565 		/*
16566 		 * Finally, copy out the buffer description.
16567 		 */
16568 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16569 			return (EFAULT);
16570 
16571 		return (0);
16572 	}
16573 
16574 	case DTRACEIOC_CONF: {
16575 		dtrace_conf_t conf;
16576 
16577 		bzero(&conf, sizeof (conf));
16578 		conf.dtc_difversion = DIF_VERSION;
16579 		conf.dtc_difintregs = DIF_DIR_NREGS;
16580 		conf.dtc_diftupregs = DIF_DTR_NREGS;
16581 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16582 
16583 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16584 			return (EFAULT);
16585 
16586 		return (0);
16587 	}
16588 
16589 	case DTRACEIOC_STATUS: {
16590 		dtrace_status_t stat;
16591 		dtrace_dstate_t *dstate;
16592 		int i, j;
16593 		uint64_t nerrs;
16594 
16595 		/*
16596 		 * See the comment in dtrace_state_deadman() for the reason
16597 		 * for setting dts_laststatus to INT64_MAX before setting
16598 		 * it to the correct value.
16599 		 */
16600 		state->dts_laststatus = INT64_MAX;
16601 		dtrace_membar_producer();
16602 		state->dts_laststatus = dtrace_gethrtime();
16603 
16604 		bzero(&stat, sizeof (stat));
16605 
16606 		mutex_enter(&dtrace_lock);
16607 
16608 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16609 			mutex_exit(&dtrace_lock);
16610 			return (ENOENT);
16611 		}
16612 
16613 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16614 			stat.dtst_exiting = 1;
16615 
16616 		nerrs = state->dts_errors;
16617 		dstate = &state->dts_vstate.dtvs_dynvars;
16618 
16619 		for (i = 0; i < NCPU; i++) {
16620 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16621 
16622 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16623 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16624 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16625 
16626 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16627 				stat.dtst_filled++;
16628 
16629 			nerrs += state->dts_buffer[i].dtb_errors;
16630 
16631 			for (j = 0; j < state->dts_nspeculations; j++) {
16632 				dtrace_speculation_t *spec;
16633 				dtrace_buffer_t *buf;
16634 
16635 				spec = &state->dts_speculations[j];
16636 				buf = &spec->dtsp_buffer[i];
16637 				stat.dtst_specdrops += buf->dtb_xamot_drops;
16638 			}
16639 		}
16640 
16641 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16642 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16643 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16644 		stat.dtst_dblerrors = state->dts_dblerrors;
16645 		stat.dtst_killed =
16646 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16647 		stat.dtst_errors = nerrs;
16648 
16649 		mutex_exit(&dtrace_lock);
16650 
16651 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16652 			return (EFAULT);
16653 
16654 		return (0);
16655 	}
16656 
16657 	case DTRACEIOC_FORMAT: {
16658 		dtrace_fmtdesc_t fmt;
16659 		char *str;
16660 		int len;
16661 
16662 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16663 			return (EFAULT);
16664 
16665 		mutex_enter(&dtrace_lock);
16666 
16667 		if (fmt.dtfd_format == 0 ||
16668 		    fmt.dtfd_format > state->dts_nformats) {
16669 			mutex_exit(&dtrace_lock);
16670 			return (EINVAL);
16671 		}
16672 
16673 		/*
16674 		 * Format strings are allocated contiguously and they are
16675 		 * never freed; if a format index is less than the number
16676 		 * of formats, we can assert that the format map is non-NULL
16677 		 * and that the format for the specified index is non-NULL.
16678 		 */
16679 		ASSERT(state->dts_formats != NULL);
16680 		str = state->dts_formats[fmt.dtfd_format - 1];
16681 		ASSERT(str != NULL);
16682 
16683 		len = strlen(str) + 1;
16684 
16685 		if (len > fmt.dtfd_length) {
16686 			fmt.dtfd_length = len;
16687 
16688 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16689 				mutex_exit(&dtrace_lock);
16690 				return (EINVAL);
16691 			}
16692 		} else {
16693 			if (copyout(str, fmt.dtfd_string, len) != 0) {
16694 				mutex_exit(&dtrace_lock);
16695 				return (EINVAL);
16696 			}
16697 		}
16698 
16699 		mutex_exit(&dtrace_lock);
16700 		return (0);
16701 	}
16702 
16703 	default:
16704 		break;
16705 	}
16706 
16707 	return (ENOTTY);
16708 }
16709 
16710 /*ARGSUSED*/
16711 static int
16712 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16713 {
16714 	dtrace_state_t *state;
16715 
16716 	switch (cmd) {
16717 	case DDI_DETACH:
16718 		break;
16719 
16720 	case DDI_SUSPEND:
16721 		return (DDI_SUCCESS);
16722 
16723 	default:
16724 		return (DDI_FAILURE);
16725 	}
16726 
16727 	mutex_enter(&cpu_lock);
16728 	mutex_enter(&dtrace_provider_lock);
16729 	mutex_enter(&dtrace_lock);
16730 
16731 	ASSERT(dtrace_opens == 0);
16732 
16733 	if (dtrace_helpers > 0) {
16734 		mutex_exit(&dtrace_provider_lock);
16735 		mutex_exit(&dtrace_lock);
16736 		mutex_exit(&cpu_lock);
16737 		return (DDI_FAILURE);
16738 	}
16739 
16740 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16741 		mutex_exit(&dtrace_provider_lock);
16742 		mutex_exit(&dtrace_lock);
16743 		mutex_exit(&cpu_lock);
16744 		return (DDI_FAILURE);
16745 	}
16746 
16747 	dtrace_provider = NULL;
16748 
16749 	if ((state = dtrace_anon_grab()) != NULL) {
16750 		/*
16751 		 * If there were ECBs on this state, the provider should
16752 		 * have not been allowed to detach; assert that there is
16753 		 * none.
16754 		 */
16755 		ASSERT(state->dts_necbs == 0);
16756 		dtrace_state_destroy(state);
16757 
16758 		/*
16759 		 * If we're being detached with anonymous state, we need to
16760 		 * indicate to the kernel debugger that DTrace is now inactive.
16761 		 */
16762 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16763 	}
16764 
16765 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16766 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16767 	dtrace_cpu_init = NULL;
16768 	dtrace_helpers_cleanup = NULL;
16769 	dtrace_helpers_fork = NULL;
16770 	dtrace_cpustart_init = NULL;
16771 	dtrace_cpustart_fini = NULL;
16772 	dtrace_debugger_init = NULL;
16773 	dtrace_debugger_fini = NULL;
16774 	dtrace_modload = NULL;
16775 	dtrace_modunload = NULL;
16776 
16777 	ASSERT(dtrace_getf == 0);
16778 	ASSERT(dtrace_closef == NULL);
16779 
16780 	mutex_exit(&cpu_lock);
16781 
16782 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16783 	dtrace_probes = NULL;
16784 	dtrace_nprobes = 0;
16785 
16786 	dtrace_hash_destroy(dtrace_bymod);
16787 	dtrace_hash_destroy(dtrace_byfunc);
16788 	dtrace_hash_destroy(dtrace_byname);
16789 	dtrace_bymod = NULL;
16790 	dtrace_byfunc = NULL;
16791 	dtrace_byname = NULL;
16792 
16793 	kmem_cache_destroy(dtrace_state_cache);
16794 	vmem_destroy(dtrace_minor);
16795 	vmem_destroy(dtrace_arena);
16796 
16797 	if (dtrace_toxrange != NULL) {
16798 		kmem_free(dtrace_toxrange,
16799 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16800 		dtrace_toxrange = NULL;
16801 		dtrace_toxranges = 0;
16802 		dtrace_toxranges_max = 0;
16803 	}
16804 
16805 	ddi_remove_minor_node(dtrace_devi, NULL);
16806 	dtrace_devi = NULL;
16807 
16808 	ddi_soft_state_fini(&dtrace_softstate);
16809 
16810 	ASSERT(dtrace_vtime_references == 0);
16811 	ASSERT(dtrace_opens == 0);
16812 	ASSERT(dtrace_retained == NULL);
16813 
16814 	mutex_exit(&dtrace_lock);
16815 	mutex_exit(&dtrace_provider_lock);
16816 
16817 	/*
16818 	 * We don't destroy the task queue until after we have dropped our
16819 	 * locks (taskq_destroy() may block on running tasks).  To prevent
16820 	 * attempting to do work after we have effectively detached but before
16821 	 * the task queue has been destroyed, all tasks dispatched via the
16822 	 * task queue must check that DTrace is still attached before
16823 	 * performing any operation.
16824 	 */
16825 	taskq_destroy(dtrace_taskq);
16826 	dtrace_taskq = NULL;
16827 
16828 	return (DDI_SUCCESS);
16829 }
16830 
16831 /*ARGSUSED*/
16832 static int
16833 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16834 {
16835 	int error;
16836 
16837 	switch (infocmd) {
16838 	case DDI_INFO_DEVT2DEVINFO:
16839 		*result = (void *)dtrace_devi;
16840 		error = DDI_SUCCESS;
16841 		break;
16842 	case DDI_INFO_DEVT2INSTANCE:
16843 		*result = (void *)0;
16844 		error = DDI_SUCCESS;
16845 		break;
16846 	default:
16847 		error = DDI_FAILURE;
16848 	}
16849 	return (error);
16850 }
16851 
16852 static struct cb_ops dtrace_cb_ops = {
16853 	dtrace_open,		/* open */
16854 	dtrace_close,		/* close */
16855 	nulldev,		/* strategy */
16856 	nulldev,		/* print */
16857 	nodev,			/* dump */
16858 	nodev,			/* read */
16859 	nodev,			/* write */
16860 	dtrace_ioctl,		/* ioctl */
16861 	nodev,			/* devmap */
16862 	nodev,			/* mmap */
16863 	nodev,			/* segmap */
16864 	nochpoll,		/* poll */
16865 	ddi_prop_op,		/* cb_prop_op */
16866 	0,			/* streamtab  */
16867 	D_NEW | D_MP		/* Driver compatibility flag */
16868 };
16869 
16870 static struct dev_ops dtrace_ops = {
16871 	DEVO_REV,		/* devo_rev */
16872 	0,			/* refcnt */
16873 	dtrace_info,		/* get_dev_info */
16874 	nulldev,		/* identify */
16875 	nulldev,		/* probe */
16876 	dtrace_attach,		/* attach */
16877 	dtrace_detach,		/* detach */
16878 	nodev,			/* reset */
16879 	&dtrace_cb_ops,		/* driver operations */
16880 	NULL,			/* bus operations */
16881 	nodev,			/* dev power */
16882 	ddi_quiesce_not_needed,		/* quiesce */
16883 };
16884 
16885 static struct modldrv modldrv = {
16886 	&mod_driverops,		/* module type (this is a pseudo driver) */
16887 	"Dynamic Tracing",	/* name of module */
16888 	&dtrace_ops,		/* driver ops */
16889 };
16890 
16891 static struct modlinkage modlinkage = {
16892 	MODREV_1,
16893 	(void *)&modldrv,
16894 	NULL
16895 };
16896 
16897 int
16898 _init(void)
16899 {
16900 	return (mod_install(&modlinkage));
16901 }
16902 
16903 int
16904 _info(struct modinfo *modinfop)
16905 {
16906 	return (mod_info(&modlinkage, modinfop));
16907 }
16908 
16909 int
16910 _fini(void)
16911 {
16912 	return (mod_remove(&modlinkage));
16913 }
16914