1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2021 Joyent, Inc.
25 */
26
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/signal.h>
31 #include <sys/stack.h>
32 #include <sys/pcb.h>
33 #include <sys/user.h>
34 #include <sys/systm.h>
35 #include <sys/sysinfo.h>
36 #include <sys/errno.h>
37 #include <sys/cmn_err.h>
38 #include <sys/cred.h>
39 #include <sys/resource.h>
40 #include <sys/task.h>
41 #include <sys/project.h>
42 #include <sys/proc.h>
43 #include <sys/debug.h>
44 #include <sys/disp.h>
45 #include <sys/class.h>
46 #include <vm/seg_kmem.h>
47 #include <vm/seg_kp.h>
48 #include <sys/machlock.h>
49 #include <sys/kmem.h>
50 #include <sys/varargs.h>
51 #include <sys/turnstile.h>
52 #include <sys/poll.h>
53 #include <sys/vtrace.h>
54 #include <sys/callb.h>
55 #include <c2/audit.h>
56 #include <sys/tnf.h>
57 #include <sys/sobject.h>
58 #include <sys/cpupart.h>
59 #include <sys/pset.h>
60 #include <sys/door.h>
61 #include <sys/spl.h>
62 #include <sys/copyops.h>
63 #include <sys/rctl.h>
64 #include <sys/brand.h>
65 #include <sys/pool.h>
66 #include <sys/zone.h>
67 #include <sys/tsol/label.h>
68 #include <sys/tsol/tndb.h>
69 #include <sys/cpc_impl.h>
70 #include <sys/sdt.h>
71 #include <sys/reboot.h>
72 #include <sys/kdi.h>
73 #include <sys/schedctl.h>
74 #include <sys/waitq.h>
75 #include <sys/cpucaps.h>
76 #include <sys/kiconv.h>
77 #include <sys/ctype.h>
78 #include <sys/smt.h>
79
80 struct kmem_cache *thread_cache; /* cache of free threads */
81 struct kmem_cache *lwp_cache; /* cache of free lwps */
82 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */
83
84 /*
85 * allthreads is only for use by kmem_readers. All kernel loops can use
86 * the current thread as a start/end point.
87 */
88 kthread_t *allthreads = &t0; /* circular list of all threads */
89
90 static kcondvar_t reaper_cv; /* synchronization var */
91 kthread_t *thread_deathrow; /* circular list of reapable threads */
92 kthread_t *lwp_deathrow; /* circular list of reapable threads */
93 kmutex_t reaplock; /* protects lwp and thread deathrows */
94 int thread_reapcnt = 0; /* number of threads on deathrow */
95 int lwp_reapcnt = 0; /* number of lwps on deathrow */
96 int reaplimit = 16; /* delay reaping until reaplimit */
97
98 thread_free_lock_t *thread_free_lock;
99 /* protects tick thread from reaper */
100
101 extern int nthread;
102
103 /* System Scheduling classes. */
104 id_t syscid; /* system scheduling class ID */
105 id_t sysdccid = CLASS_UNUSED; /* reset when SDC loads */
106
107 void *segkp_thread; /* cookie for segkp pool */
108
109 int lwp_cache_sz = 32;
110 int t_cache_sz = 8;
111 static kt_did_t next_t_id = 1;
112
113 /* Default mode for thread binding to CPUs and processor sets */
114 int default_binding_mode = TB_ALLHARD;
115
116 /*
117 * Min/Max stack sizes for stack size parameters
118 */
119 #define MAX_STKSIZE (32 * DEFAULTSTKSZ)
120 #define MIN_STKSIZE DEFAULTSTKSZ
121
122 /*
123 * default_stksize overrides lwp_default_stksize if it is set.
124 */
125 int default_stksize;
126 int lwp_default_stksize;
127
128 static zone_key_t zone_thread_key;
129
130 unsigned int kmem_stackinfo; /* stackinfo feature on-off */
131 kmem_stkinfo_t *kmem_stkinfo_log; /* stackinfo circular log */
132 static kmutex_t kmem_stkinfo_lock; /* protects kmem_stkinfo_log */
133
134 /*
135 * forward declarations for internal thread specific data (tsd)
136 */
137 static void *tsd_realloc(void *, size_t, size_t);
138
139 void thread_reaper(void);
140
141 /* forward declarations for stackinfo feature */
142 static void stkinfo_begin(kthread_t *);
143 static void stkinfo_end(kthread_t *);
144 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t);
145
146 /*ARGSUSED*/
147 static int
turnstile_constructor(void * buf,void * cdrarg,int kmflags)148 turnstile_constructor(void *buf, void *cdrarg, int kmflags)
149 {
150 bzero(buf, sizeof (turnstile_t));
151 return (0);
152 }
153
154 /*ARGSUSED*/
155 static void
turnstile_destructor(void * buf,void * cdrarg)156 turnstile_destructor(void *buf, void *cdrarg)
157 {
158 turnstile_t *ts = buf;
159
160 ASSERT(ts->ts_free == NULL);
161 ASSERT(ts->ts_waiters == 0);
162 ASSERT(ts->ts_inheritor == NULL);
163 ASSERT(ts->ts_sleepq[0].sq_first == NULL);
164 ASSERT(ts->ts_sleepq[1].sq_first == NULL);
165 }
166
167 void
thread_init(void)168 thread_init(void)
169 {
170 kthread_t *tp;
171 extern char sys_name[];
172 extern void idle();
173 struct cpu *cpu = CPU;
174 int i;
175 kmutex_t *lp;
176
177 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL));
178 thread_free_lock =
179 kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP);
180 for (i = 0; i < THREAD_FREE_NUM; i++) {
181 lp = &thread_free_lock[i].tf_lock;
182 mutex_init(lp, NULL, MUTEX_DEFAULT, NULL);
183 }
184
185 #if defined(__x86)
186 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
187 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
188
189 /*
190 * "struct _klwp" includes a "struct pcb", which includes a
191 * "struct fpu", which needs to be 64-byte aligned on amd64
192 * (and even on i386) for xsave/xrstor.
193 */
194 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
195 64, NULL, NULL, NULL, NULL, NULL, 0);
196 #else
197 /*
198 * Allocate thread structures from static_arena. This prevents
199 * issues where a thread tries to relocate its own thread
200 * structure and touches it after the mapping has been suspended.
201 */
202 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
203 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0);
204
205 lwp_stk_cache_init();
206
207 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
208 0, NULL, NULL, NULL, NULL, NULL, 0);
209 #endif
210
211 turnstile_cache = kmem_cache_create("turnstile_cache",
212 sizeof (turnstile_t), 0,
213 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0);
214
215 label_init();
216 cred_init();
217
218 /*
219 * Initialize various resource management facilities.
220 */
221 rctl_init();
222 cpucaps_init();
223 /*
224 * Zone_init() should be called before project_init() so that project ID
225 * for the first project is initialized correctly.
226 */
227 zone_init();
228 project_init();
229 brand_init();
230 kiconv_init();
231 task_init();
232 tcache_init();
233 pool_init();
234
235 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
236
237 /*
238 * Originally, we had two parameters to set default stack
239 * size: one for lwp's (lwp_default_stksize), and one for
240 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz).
241 * Now we have a third parameter that overrides both if it is
242 * set to a legal stack size, called default_stksize.
243 */
244
245 if (default_stksize == 0) {
246 default_stksize = DEFAULTSTKSZ;
247 } else if (default_stksize % PAGESIZE != 0 ||
248 default_stksize > MAX_STKSIZE ||
249 default_stksize < MIN_STKSIZE) {
250 cmn_err(CE_WARN, "Illegal stack size. Using %d",
251 (int)DEFAULTSTKSZ);
252 default_stksize = DEFAULTSTKSZ;
253 } else {
254 lwp_default_stksize = default_stksize;
255 }
256
257 if (lwp_default_stksize == 0) {
258 lwp_default_stksize = default_stksize;
259 } else if (lwp_default_stksize % PAGESIZE != 0 ||
260 lwp_default_stksize > MAX_STKSIZE ||
261 lwp_default_stksize < MIN_STKSIZE) {
262 cmn_err(CE_WARN, "Illegal stack size. Using %d",
263 default_stksize);
264 lwp_default_stksize = default_stksize;
265 }
266
267 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz,
268 lwp_default_stksize,
269 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED));
270
271 segkp_thread = segkp_cache_init(segkp, t_cache_sz,
272 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON);
273
274 (void) getcid(sys_name, &syscid);
275 curthread->t_cid = syscid; /* current thread is t0 */
276
277 /*
278 * Set up the first CPU's idle thread.
279 * It runs whenever the CPU has nothing worthwhile to do.
280 */
281 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1);
282 cpu->cpu_idle_thread = tp;
283 tp->t_preempt = 1;
284 tp->t_disp_queue = cpu->cpu_disp;
285 ASSERT(tp->t_disp_queue != NULL);
286 tp->t_bound_cpu = cpu;
287 tp->t_affinitycnt = 1;
288
289 /*
290 * Registering a thread in the callback table is usually
291 * done in the initialization code of the thread. In this
292 * case, we do it right after thread creation to avoid
293 * blocking idle thread while registering itself. It also
294 * avoids the possibility of reregistration in case a CPU
295 * restarts its idle thread.
296 */
297 CALLB_CPR_INIT_SAFE(tp, "idle");
298
299 /*
300 * Create the thread_reaper daemon. From this point on, exited
301 * threads will get reaped.
302 */
303 (void) thread_create(NULL, 0, (void (*)())thread_reaper,
304 NULL, 0, &p0, TS_RUN, minclsyspri);
305
306 /*
307 * Finish initializing the kernel memory allocator now that
308 * thread_create() is available.
309 */
310 kmem_thread_init();
311
312 if (boothowto & RB_DEBUG)
313 kdi_dvec_thravail();
314 }
315
316 /*
317 * Create a thread.
318 *
319 * thread_create() blocks for memory if necessary. It never fails.
320 *
321 * If stk is NULL, the thread is created at the base of the stack
322 * and cannot be swapped.
323 */
324 kthread_t *
thread_create(caddr_t stk,size_t stksize,void (* proc)(),void * arg,size_t len,proc_t * pp,int state,pri_t pri)325 thread_create(
326 caddr_t stk,
327 size_t stksize,
328 void (*proc)(),
329 void *arg,
330 size_t len,
331 proc_t *pp,
332 int state,
333 pri_t pri)
334 {
335 kthread_t *t;
336 extern struct classfuncs sys_classfuncs;
337 turnstile_t *ts;
338
339 /*
340 * Every thread keeps a turnstile around in case it needs to block.
341 * The only reason the turnstile is not simply part of the thread
342 * structure is that we may have to break the association whenever
343 * more than one thread blocks on a given synchronization object.
344 * From a memory-management standpoint, turnstiles are like the
345 * "attached mblks" that hang off dblks in the streams allocator.
346 */
347 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
348
349 if (stk == NULL) {
350 /*
351 * alloc both thread and stack in segkp chunk
352 */
353
354 if (stksize < default_stksize)
355 stksize = default_stksize;
356
357 if (stksize == default_stksize) {
358 stk = (caddr_t)segkp_cache_get(segkp_thread);
359 } else {
360 stksize = roundup(stksize, PAGESIZE);
361 stk = (caddr_t)segkp_get(segkp, stksize,
362 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
363 }
364
365 ASSERT(stk != NULL);
366
367 /*
368 * The machine-dependent mutex code may require that
369 * thread pointers (since they may be used for mutex owner
370 * fields) have certain alignment requirements.
371 * PTR24_ALIGN is the size of the alignment quanta.
372 * XXX - assumes stack grows toward low addresses.
373 */
374 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
375 cmn_err(CE_PANIC, "thread_create: proposed stack size"
376 " too small to hold thread.");
377 #ifdef STACK_GROWTH_DOWN
378 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
379 stksize &= -PTR24_ALIGN; /* make thread aligned */
380 t = (kthread_t *)(stk + stksize);
381 bzero(t, sizeof (kthread_t));
382 if (audit_active)
383 audit_thread_create(t);
384 t->t_stk = stk + stksize;
385 t->t_stkbase = stk;
386 #else /* stack grows to larger addresses */
387 stksize -= SA(sizeof (kthread_t));
388 t = (kthread_t *)(stk);
389 bzero(t, sizeof (kthread_t));
390 t->t_stk = stk + sizeof (kthread_t);
391 t->t_stkbase = stk + stksize + sizeof (kthread_t);
392 #endif /* STACK_GROWTH_DOWN */
393 t->t_flag |= T_TALLOCSTK;
394 t->t_swap = stk;
395 } else {
396 t = kmem_cache_alloc(thread_cache, KM_SLEEP);
397 bzero(t, sizeof (kthread_t));
398 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0);
399 if (audit_active)
400 audit_thread_create(t);
401 /*
402 * Initialize t_stk to the kernel stack pointer to use
403 * upon entry to the kernel
404 */
405 #ifdef STACK_GROWTH_DOWN
406 t->t_stk = stk + stksize;
407 t->t_stkbase = stk;
408 #else
409 t->t_stk = stk; /* 3b2-like */
410 t->t_stkbase = stk + stksize;
411 #endif /* STACK_GROWTH_DOWN */
412 }
413
414 if (kmem_stackinfo != 0) {
415 stkinfo_begin(t);
416 }
417
418 t->t_ts = ts;
419
420 /*
421 * p_cred could be NULL if it thread_create is called before cred_init
422 * is called in main.
423 */
424 mutex_enter(&pp->p_crlock);
425 if (pp->p_cred)
426 crhold(t->t_cred = pp->p_cred);
427 mutex_exit(&pp->p_crlock);
428 t->t_start = gethrestime_sec();
429 t->t_startpc = proc;
430 t->t_procp = pp;
431 t->t_clfuncs = &sys_classfuncs.thread;
432 t->t_cid = syscid;
433 t->t_pri = pri;
434 t->t_stime = ddi_get_lbolt();
435 t->t_schedflag = TS_LOAD | TS_DONT_SWAP;
436 t->t_bind_cpu = PBIND_NONE;
437 t->t_bindflag = (uchar_t)default_binding_mode;
438 t->t_bind_pset = PS_NONE;
439 t->t_plockp = &pp->p_lock;
440 t->t_copyops = NULL;
441 t->t_taskq = NULL;
442 t->t_anttime = 0;
443 t->t_hatdepth = 0;
444
445 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */
446
447 CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
448 #ifndef NPROBE
449 /* Kernel probe */
450 tnf_thread_create(t);
451 #endif /* NPROBE */
452 LOCK_INIT_CLEAR(&t->t_lock);
453
454 /*
455 * Callers who give us a NULL proc must do their own
456 * stack initialization. e.g. lwp_create()
457 */
458 if (proc != NULL) {
459 t->t_stk = thread_stk_init(t->t_stk);
460 thread_load(t, proc, arg, len);
461 }
462
463 /*
464 * Put a hold on project0. If this thread is actually in a
465 * different project, then t_proj will be changed later in
466 * lwp_create(). All kernel-only threads must be in project 0.
467 */
468 t->t_proj = project_hold(proj0p);
469
470 lgrp_affinity_init(&t->t_lgrp_affinity);
471
472 mutex_enter(&pidlock);
473 nthread++;
474 t->t_did = next_t_id++;
475 t->t_prev = curthread->t_prev;
476 t->t_next = curthread;
477
478 /*
479 * Add the thread to the list of all threads, and initialize
480 * its t_cpu pointer. We need to block preemption since
481 * cpu_offline walks the thread list looking for threads
482 * with t_cpu pointing to the CPU being offlined. We want
483 * to make sure that the list is consistent and that if t_cpu
484 * is set, the thread is on the list.
485 */
486 kpreempt_disable();
487 curthread->t_prev->t_next = t;
488 curthread->t_prev = t;
489
490 /*
491 * We'll always create in the default partition since that's where
492 * kernel threads go (we'll change this later if needed, in
493 * lwp_create()).
494 */
495 t->t_cpupart = &cp_default;
496
497 /*
498 * For now, affiliate this thread with the root lgroup.
499 * Since the kernel does not (presently) allocate its memory
500 * in a locality aware fashion, the root is an appropriate home.
501 * If this thread is later associated with an lwp, it will have
502 * its lgroup re-assigned at that time.
503 */
504 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1);
505
506 /*
507 * If the current CPU is in the default cpupart, use it. Otherwise,
508 * pick one that is; before entering the dispatcher code, we'll
509 * make sure to keep the invariant that ->t_cpu is set. (In fact, we
510 * rely on this, in ht_should_run(), in the call tree of
511 * disp_lowpri_cpu().)
512 */
513 if (CPU->cpu_part == &cp_default) {
514 t->t_cpu = CPU;
515 } else {
516 t->t_cpu = cp_default.cp_cpulist;
517 t->t_cpu = disp_lowpri_cpu(t->t_cpu, t, t->t_pri);
518 }
519
520 t->t_disp_queue = t->t_cpu->cpu_disp;
521 kpreempt_enable();
522
523 /*
524 * Initialize thread state and the dispatcher lock pointer.
525 * Need to hold onto pidlock to block allthreads walkers until
526 * the state is set.
527 */
528 switch (state) {
529 case TS_RUN:
530 curthread->t_oldspl = splhigh(); /* get dispatcher spl */
531 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock);
532 CL_SETRUN(t);
533 thread_unlock(t);
534 break;
535
536 case TS_ONPROC:
537 THREAD_ONPROC(t, t->t_cpu);
538 break;
539
540 case TS_FREE:
541 /*
542 * Free state will be used for intr threads.
543 * The interrupt routine must set the thread dispatcher
544 * lock pointer (t_lockp) if starting on a CPU
545 * other than the current one.
546 */
547 THREAD_FREEINTR(t, CPU);
548 break;
549
550 case TS_STOPPED:
551 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock);
552 break;
553
554 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */
555 cmn_err(CE_PANIC, "thread_create: invalid state %d", state);
556 }
557 mutex_exit(&pidlock);
558 return (t);
559 }
560
561 /*
562 * Move thread to project0 and take care of project reference counters.
563 */
564 void
thread_rele(kthread_t * t)565 thread_rele(kthread_t *t)
566 {
567 kproject_t *kpj;
568
569 thread_lock(t);
570
571 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0);
572 kpj = ttoproj(t);
573 t->t_proj = proj0p;
574
575 thread_unlock(t);
576
577 if (kpj != proj0p) {
578 project_rele(kpj);
579 (void) project_hold(proj0p);
580 }
581 }
582
583 void
thread_exit(void)584 thread_exit(void)
585 {
586 kthread_t *t = curthread;
587
588 if ((t->t_proc_flag & TP_ZTHREAD) != 0)
589 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called");
590
591 tsd_exit(); /* Clean up this thread's TSD */
592
593 kcpc_passivate(); /* clean up performance counter state */
594
595 /*
596 * No kernel thread should have called poll() without arranging
597 * calling pollcleanup() here.
598 */
599 ASSERT(t->t_pollstate == NULL);
600 ASSERT(t->t_schedctl == NULL);
601 if (t->t_door)
602 door_slam(); /* in case thread did an upcall */
603
604 #ifndef NPROBE
605 /* Kernel probe */
606 if (t->t_tnf_tpdp)
607 tnf_thread_exit();
608 #endif /* NPROBE */
609
610 thread_rele(t);
611 t->t_preempt++;
612
613 /*
614 * remove thread from the all threads list so that
615 * death-row can use the same pointers.
616 */
617 mutex_enter(&pidlock);
618 t->t_next->t_prev = t->t_prev;
619 t->t_prev->t_next = t->t_next;
620 ASSERT(allthreads != t); /* t0 never exits */
621 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */
622 mutex_exit(&pidlock);
623
624 if (t->t_ctx != NULL)
625 exitctx(t);
626 if (t->t_procp->p_pctx != NULL)
627 exitpctx(t->t_procp);
628
629 if (kmem_stackinfo != 0) {
630 stkinfo_end(t);
631 }
632
633 t->t_state = TS_ZOMB; /* set zombie thread */
634
635 swtch_from_zombie(); /* give up the CPU */
636 /* NOTREACHED */
637 }
638
639 /*
640 * Check to see if the specified thread is active (defined as being on
641 * the thread list). This is certainly a slow way to do this; if there's
642 * ever a reason to speed it up, we could maintain a hash table of active
643 * threads indexed by their t_did.
644 */
645 static kthread_t *
did_to_thread(kt_did_t tid)646 did_to_thread(kt_did_t tid)
647 {
648 kthread_t *t;
649
650 ASSERT(MUTEX_HELD(&pidlock));
651 for (t = curthread->t_next; t != curthread; t = t->t_next) {
652 if (t->t_did == tid)
653 break;
654 }
655 if (t->t_did == tid)
656 return (t);
657 else
658 return (NULL);
659 }
660
661 /*
662 * Wait for specified thread to exit. Returns immediately if the thread
663 * could not be found, meaning that it has either already exited or never
664 * existed.
665 */
666 void
thread_join(kt_did_t tid)667 thread_join(kt_did_t tid)
668 {
669 kthread_t *t;
670
671 ASSERT(tid != curthread->t_did);
672 ASSERT(tid != t0.t_did);
673
674 mutex_enter(&pidlock);
675 /*
676 * Make sure we check that the thread is on the thread list
677 * before blocking on it; otherwise we could end up blocking on
678 * a cv that's already been freed. In other words, don't cache
679 * the thread pointer across calls to cv_wait.
680 *
681 * The choice of loop invariant means that whenever a thread
682 * is taken off the allthreads list, a cv_broadcast must be
683 * performed on that thread's t_joincv to wake up any waiters.
684 * The broadcast doesn't have to happen right away, but it
685 * shouldn't be postponed indefinitely (e.g., by doing it in
686 * thread_free which may only be executed when the deathrow
687 * queue is processed.
688 */
689 while (t = did_to_thread(tid))
690 cv_wait(&t->t_joincv, &pidlock);
691 mutex_exit(&pidlock);
692 }
693
694 void
thread_free_prevent(kthread_t * t)695 thread_free_prevent(kthread_t *t)
696 {
697 kmutex_t *lp;
698
699 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
700 mutex_enter(lp);
701 }
702
703 void
thread_free_allow(kthread_t * t)704 thread_free_allow(kthread_t *t)
705 {
706 kmutex_t *lp;
707
708 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
709 mutex_exit(lp);
710 }
711
712 static void
thread_free_barrier(kthread_t * t)713 thread_free_barrier(kthread_t *t)
714 {
715 kmutex_t *lp;
716
717 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
718 mutex_enter(lp);
719 mutex_exit(lp);
720 }
721
722 void
thread_free(kthread_t * t)723 thread_free(kthread_t *t)
724 {
725 boolean_t allocstk = (t->t_flag & T_TALLOCSTK);
726 klwp_t *lwp = t->t_lwp;
727 caddr_t swap = t->t_swap;
728
729 ASSERT(t != &t0 && t->t_state == TS_FREE);
730 ASSERT(t->t_door == NULL);
731 ASSERT(t->t_schedctl == NULL);
732 ASSERT(t->t_pollstate == NULL);
733
734 t->t_pri = 0;
735 t->t_pc = 0;
736 t->t_sp = 0;
737 t->t_wchan0 = NULL;
738 t->t_wchan = NULL;
739 if (t->t_cred != NULL) {
740 crfree(t->t_cred);
741 t->t_cred = 0;
742 }
743 if (t->t_pdmsg) {
744 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1);
745 t->t_pdmsg = NULL;
746 }
747 if (audit_active)
748 audit_thread_free(t);
749 #ifndef NPROBE
750 if (t->t_tnf_tpdp)
751 tnf_thread_free(t);
752 #endif /* NPROBE */
753 if (t->t_cldata) {
754 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata);
755 }
756 if (t->t_rprof != NULL) {
757 kmem_free(t->t_rprof, sizeof (*t->t_rprof));
758 t->t_rprof = NULL;
759 }
760 t->t_lockp = NULL; /* nothing should try to lock this thread now */
761 if (lwp)
762 lwp_freeregs(lwp, 0);
763 if (t->t_ctx)
764 freectx(t, 0);
765 t->t_stk = NULL;
766 if (lwp)
767 lwp_stk_fini(lwp);
768 lock_clear(&t->t_lock);
769
770 if (t->t_ts->ts_waiters > 0)
771 panic("thread_free: turnstile still active");
772
773 kmem_cache_free(turnstile_cache, t->t_ts);
774
775 free_afd(&t->t_activefd);
776
777 /*
778 * Barrier for the tick accounting code. The tick accounting code
779 * holds this lock to keep the thread from going away while it's
780 * looking at it.
781 */
782 thread_free_barrier(t);
783
784 ASSERT(ttoproj(t) == proj0p);
785 project_rele(ttoproj(t));
786
787 lgrp_affinity_free(&t->t_lgrp_affinity);
788
789 mutex_enter(&pidlock);
790 nthread--;
791 mutex_exit(&pidlock);
792
793 if (t->t_name != NULL) {
794 kmem_free(t->t_name, THREAD_NAME_MAX);
795 t->t_name = NULL;
796 }
797
798 /*
799 * Free thread, lwp and stack. This needs to be done carefully, since
800 * if T_TALLOCSTK is set, the thread is part of the stack.
801 */
802 t->t_lwp = NULL;
803 t->t_swap = NULL;
804
805 if (swap) {
806 segkp_release(segkp, swap);
807 }
808 if (lwp) {
809 kmem_cache_free(lwp_cache, lwp);
810 }
811 if (!allocstk) {
812 kmem_cache_free(thread_cache, t);
813 }
814 }
815
816 /*
817 * Removes threads associated with the given zone from a deathrow queue.
818 * tp is a pointer to the head of the deathrow queue, and countp is a
819 * pointer to the current deathrow count. Returns a linked list of
820 * threads removed from the list.
821 */
822 static kthread_t *
thread_zone_cleanup(kthread_t ** tp,int * countp,zoneid_t zoneid)823 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid)
824 {
825 kthread_t *tmp, *list = NULL;
826 cred_t *cr;
827
828 ASSERT(MUTEX_HELD(&reaplock));
829 while (*tp != NULL) {
830 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) {
831 tmp = *tp;
832 *tp = tmp->t_forw;
833 tmp->t_forw = list;
834 list = tmp;
835 (*countp)--;
836 } else {
837 tp = &(*tp)->t_forw;
838 }
839 }
840 return (list);
841 }
842
843 static void
thread_reap_list(kthread_t * t)844 thread_reap_list(kthread_t *t)
845 {
846 kthread_t *next;
847
848 while (t != NULL) {
849 next = t->t_forw;
850 thread_free(t);
851 t = next;
852 }
853 }
854
855 /* ARGSUSED */
856 static void
thread_zone_destroy(zoneid_t zoneid,void * unused)857 thread_zone_destroy(zoneid_t zoneid, void *unused)
858 {
859 kthread_t *t, *l;
860
861 mutex_enter(&reaplock);
862 /*
863 * Pull threads and lwps associated with zone off deathrow lists.
864 */
865 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid);
866 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid);
867 mutex_exit(&reaplock);
868
869 /*
870 * Guard against race condition in mutex_owner_running:
871 * thread=owner(mutex)
872 * <interrupt>
873 * thread exits mutex
874 * thread exits
875 * thread reaped
876 * thread struct freed
877 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
878 * A cross call to all cpus will cause the interrupt handler
879 * to reset the PC if it is in mutex_owner_running, refreshing
880 * stale thread pointers.
881 */
882 mutex_sync(); /* sync with mutex code */
883
884 /*
885 * Reap threads
886 */
887 thread_reap_list(t);
888
889 /*
890 * Reap lwps
891 */
892 thread_reap_list(l);
893 }
894
895 /*
896 * cleanup zombie threads that are on deathrow.
897 */
898 void
thread_reaper()899 thread_reaper()
900 {
901 kthread_t *t, *l;
902 callb_cpr_t cprinfo;
903
904 /*
905 * Register callback to clean up threads when zone is destroyed.
906 */
907 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy);
908
909 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper");
910 for (;;) {
911 mutex_enter(&reaplock);
912 while (thread_deathrow == NULL && lwp_deathrow == NULL) {
913 CALLB_CPR_SAFE_BEGIN(&cprinfo);
914 cv_wait(&reaper_cv, &reaplock);
915 CALLB_CPR_SAFE_END(&cprinfo, &reaplock);
916 }
917 /*
918 * mutex_sync() needs to be called when reaping, but
919 * not too often. We limit reaping rate to once
920 * per second. Reaplimit is max rate at which threads can
921 * be freed. Does not impact thread destruction/creation.
922 */
923 t = thread_deathrow;
924 l = lwp_deathrow;
925 thread_deathrow = NULL;
926 lwp_deathrow = NULL;
927 thread_reapcnt = 0;
928 lwp_reapcnt = 0;
929 mutex_exit(&reaplock);
930
931 /*
932 * Guard against race condition in mutex_owner_running:
933 * thread=owner(mutex)
934 * <interrupt>
935 * thread exits mutex
936 * thread exits
937 * thread reaped
938 * thread struct freed
939 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
940 * A cross call to all cpus will cause the interrupt handler
941 * to reset the PC if it is in mutex_owner_running, refreshing
942 * stale thread pointers.
943 */
944 mutex_sync(); /* sync with mutex code */
945 /*
946 * Reap threads
947 */
948 thread_reap_list(t);
949
950 /*
951 * Reap lwps
952 */
953 thread_reap_list(l);
954 delay(hz);
955 }
956 }
957
958 /*
959 * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto
960 * thread_deathrow. The thread's state is changed already TS_FREE to indicate
961 * that is reapable. The thread already holds the reaplock, and was already
962 * freed.
963 */
964 void
reapq_move_lq_to_tq(kthread_t * t)965 reapq_move_lq_to_tq(kthread_t *t)
966 {
967 ASSERT(t->t_state == TS_FREE);
968 ASSERT(MUTEX_HELD(&reaplock));
969 t->t_forw = thread_deathrow;
970 thread_deathrow = t;
971 thread_reapcnt++;
972 if (lwp_reapcnt + thread_reapcnt > reaplimit)
973 cv_signal(&reaper_cv); /* wake the reaper */
974 }
975
976 /*
977 * This is called by resume() to put a zombie thread onto deathrow.
978 * The thread's state is changed to TS_FREE to indicate that is reapable.
979 * This is called from the idle thread so it must not block - just spin.
980 */
981 void
reapq_add(kthread_t * t)982 reapq_add(kthread_t *t)
983 {
984 mutex_enter(&reaplock);
985
986 /*
987 * lwp_deathrow contains threads with lwp linkage and
988 * swappable thread stacks which have the default stacksize.
989 * These threads' lwps and stacks may be reused by lwp_create().
990 *
991 * Anything else goes on thread_deathrow(), where it will eventually
992 * be thread_free()d.
993 */
994 if (t->t_flag & T_LWPREUSE) {
995 ASSERT(ttolwp(t) != NULL);
996 t->t_forw = lwp_deathrow;
997 lwp_deathrow = t;
998 lwp_reapcnt++;
999 } else {
1000 t->t_forw = thread_deathrow;
1001 thread_deathrow = t;
1002 thread_reapcnt++;
1003 }
1004 if (lwp_reapcnt + thread_reapcnt > reaplimit)
1005 cv_signal(&reaper_cv); /* wake the reaper */
1006 t->t_state = TS_FREE;
1007 lock_clear(&t->t_lock);
1008
1009 /*
1010 * Before we return, we need to grab and drop the thread lock for
1011 * the dead thread. At this point, the current thread is the idle
1012 * thread, and the dead thread's CPU lock points to the current
1013 * CPU -- and we must grab and drop the lock to synchronize with
1014 * a racing thread walking a blocking chain that the zombie thread
1015 * was recently in. By this point, that blocking chain is (by
1016 * definition) stale: the dead thread is not holding any locks, and
1017 * is therefore not in any blocking chains -- but if we do not regrab
1018 * our lock before freeing the dead thread's data structures, the
1019 * thread walking the (stale) blocking chain will die on memory
1020 * corruption when it attempts to drop the dead thread's lock. We
1021 * only need do this once because there is no way for the dead thread
1022 * to ever again be on a blocking chain: once we have grabbed and
1023 * dropped the thread lock, we are guaranteed that anyone that could
1024 * have seen this thread in a blocking chain can no longer see it.
1025 */
1026 thread_lock(t);
1027 thread_unlock(t);
1028
1029 mutex_exit(&reaplock);
1030 }
1031
1032 /*
1033 * Provide an allocation function for callers of installctx() that, for
1034 * reasons of incomplete context-op initialization, must call installctx()
1035 * in a kpreempt_disable() block. The caller, therefore, must call this
1036 * without being in such a block.
1037 */
1038 struct ctxop *
installctx_preallocate(void)1039 installctx_preallocate(void)
1040 {
1041 /*
1042 * NOTE: We could ASSERT/VERIFY that we are not in a place where
1043 * a KM_SLEEP allocation could block indefinitely.
1044 *
1045 * ASSERT(curthread->t_preempt == 0);
1046 */
1047
1048 return (kmem_alloc(sizeof (struct ctxop), KM_SLEEP));
1049 }
1050
1051 /*
1052 * Install thread context ops for the current thread.
1053 * The caller can pass in a preallocated struct ctxop, eliminating the need
1054 * for the requirement of entering with kernel preemption still enabled.
1055 */
1056 void
installctx(kthread_t * t,void * arg,void (* save)(void *),void (* restore)(void *),void (* fork)(void *,void *),void (* lwp_create)(void *,void *),void (* exit)(void *),void (* free)(void *,int),struct ctxop * ctx)1057 installctx(
1058 kthread_t *t,
1059 void *arg,
1060 void (*save)(void *),
1061 void (*restore)(void *),
1062 void (*fork)(void *, void *),
1063 void (*lwp_create)(void *, void *),
1064 void (*exit)(void *),
1065 void (*free)(void *, int),
1066 struct ctxop *ctx)
1067 {
1068 if (ctx == NULL)
1069 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP);
1070
1071 ctx->save_op = save;
1072 ctx->restore_op = restore;
1073 ctx->fork_op = fork;
1074 ctx->lwp_create_op = lwp_create;
1075 ctx->exit_op = exit;
1076 ctx->free_op = free;
1077 ctx->arg = arg;
1078 ctx->save_ts = 0;
1079 ctx->restore_ts = 0;
1080
1081 /*
1082 * Keep ctxops in a doubly-linked list to allow traversal in both
1083 * directions. Using only the newest-to-oldest ordering was adequate
1084 * previously, but reversing the order for restore_op actions is
1085 * necessary if later-added ctxops depends on earlier ones.
1086 *
1087 * One example of such a dependency: Hypervisor software handling the
1088 * guest FPU expects that it save FPU state prior to host FPU handling
1089 * and consequently handle the guest logic _after_ the host FPU has
1090 * been restored.
1091 *
1092 * The t_ctx member points to the most recently added ctxop or is NULL
1093 * if no ctxops are associated with the thread. The 'next' pointers
1094 * form a loop of the ctxops in newest-to-oldest order. The 'prev'
1095 * pointers form a loop in the reverse direction, where t_ctx->prev is
1096 * the oldest entry associated with the thread.
1097 *
1098 * The protection of kpreempt_disable is required to safely perform the
1099 * list insertion, since there are inconsistent states between some of
1100 * the pointer assignments.
1101 */
1102 kpreempt_disable();
1103 if (t->t_ctx == NULL) {
1104 ctx->next = ctx;
1105 ctx->prev = ctx;
1106 } else {
1107 struct ctxop *head = t->t_ctx, *tail = t->t_ctx->prev;
1108
1109 ctx->next = head;
1110 ctx->prev = tail;
1111 head->prev = ctx;
1112 tail->next = ctx;
1113 }
1114 t->t_ctx = ctx;
1115 kpreempt_enable();
1116 }
1117
1118 /*
1119 * Remove the thread context ops from a thread.
1120 */
1121 int
removectx(kthread_t * t,void * arg,void (* save)(void *),void (* restore)(void *),void (* fork)(void *,void *),void (* lwp_create)(void *,void *),void (* exit)(void *),void (* free)(void *,int))1122 removectx(
1123 kthread_t *t,
1124 void *arg,
1125 void (*save)(void *),
1126 void (*restore)(void *),
1127 void (*fork)(void *, void *),
1128 void (*lwp_create)(void *, void *),
1129 void (*exit)(void *),
1130 void (*free)(void *, int))
1131 {
1132 struct ctxop *ctx, *head;
1133
1134 /*
1135 * The incoming kthread_t (which is the thread for which the
1136 * context ops will be removed) should be one of the following:
1137 *
1138 * a) the current thread,
1139 *
1140 * b) a thread of a process that's being forked (SIDL),
1141 *
1142 * c) a thread that belongs to the same process as the current
1143 * thread and for which the current thread is the agent thread,
1144 *
1145 * d) a thread that is TS_STOPPED which is indicative of it
1146 * being (if curthread is not an agent) a thread being created
1147 * as part of an lwp creation.
1148 */
1149 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL ||
1150 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1151
1152 /*
1153 * Serialize modifications to t->t_ctx to prevent the agent thread
1154 * and the target thread from racing with each other during lwp exit.
1155 */
1156 mutex_enter(&t->t_ctx_lock);
1157 kpreempt_disable();
1158
1159 if (t->t_ctx == NULL) {
1160 mutex_exit(&t->t_ctx_lock);
1161 kpreempt_enable();
1162 return (0);
1163 }
1164
1165 ctx = head = t->t_ctx;
1166 do {
1167 if (ctx->save_op == save && ctx->restore_op == restore &&
1168 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create &&
1169 ctx->exit_op == exit && ctx->free_op == free &&
1170 ctx->arg == arg) {
1171 ctx->prev->next = ctx->next;
1172 ctx->next->prev = ctx->prev;
1173 if (ctx->next == ctx) {
1174 /* last remaining item */
1175 t->t_ctx = NULL;
1176 } else if (ctx == t->t_ctx) {
1177 /* fix up head of list */
1178 t->t_ctx = ctx->next;
1179 }
1180 ctx->next = ctx->prev = NULL;
1181
1182 mutex_exit(&t->t_ctx_lock);
1183 if (ctx->free_op != NULL)
1184 (ctx->free_op)(ctx->arg, 0);
1185 kmem_free(ctx, sizeof (struct ctxop));
1186 kpreempt_enable();
1187 return (1);
1188 }
1189
1190 ctx = ctx->next;
1191 } while (ctx != head);
1192
1193 mutex_exit(&t->t_ctx_lock);
1194 kpreempt_enable();
1195 return (0);
1196 }
1197
1198 void
savectx(kthread_t * t)1199 savectx(kthread_t *t)
1200 {
1201 ASSERT(t == curthread);
1202
1203 if (t->t_ctx != NULL) {
1204 struct ctxop *ctx, *head;
1205
1206 /* Forward traversal */
1207 ctx = head = t->t_ctx;
1208 do {
1209 if (ctx->save_op != NULL) {
1210 ctx->save_ts = gethrtime_unscaled();
1211 (ctx->save_op)(ctx->arg);
1212 }
1213 ctx = ctx->next;
1214 } while (ctx != head);
1215 }
1216 }
1217
1218 void
restorectx(kthread_t * t)1219 restorectx(kthread_t *t)
1220 {
1221 ASSERT(t == curthread);
1222
1223 if (t->t_ctx != NULL) {
1224 struct ctxop *ctx, *tail;
1225
1226 /* Backward traversal (starting at the tail) */
1227 ctx = tail = t->t_ctx->prev;
1228 do {
1229 if (ctx->restore_op != NULL) {
1230 ctx->restore_ts = gethrtime_unscaled();
1231 (ctx->restore_op)(ctx->arg);
1232 }
1233 ctx = ctx->prev;
1234 } while (ctx != tail);
1235 }
1236 }
1237
1238 void
forkctx(kthread_t * t,kthread_t * ct)1239 forkctx(kthread_t *t, kthread_t *ct)
1240 {
1241 if (t->t_ctx != NULL) {
1242 struct ctxop *ctx, *head;
1243
1244 /* Forward traversal */
1245 ctx = head = t->t_ctx;
1246 do {
1247 if (ctx->fork_op != NULL) {
1248 (ctx->fork_op)(t, ct);
1249 }
1250 ctx = ctx->next;
1251 } while (ctx != head);
1252 }
1253 }
1254
1255 /*
1256 * Note that this operator is only invoked via the _lwp_create
1257 * system call. The system may have other reasons to create lwps
1258 * e.g. the agent lwp or the doors unreferenced lwp.
1259 */
1260 void
lwp_createctx(kthread_t * t,kthread_t * ct)1261 lwp_createctx(kthread_t *t, kthread_t *ct)
1262 {
1263 if (t->t_ctx != NULL) {
1264 struct ctxop *ctx, *head;
1265
1266 /* Forward traversal */
1267 ctx = head = t->t_ctx;
1268 do {
1269 if (ctx->lwp_create_op != NULL) {
1270 (ctx->lwp_create_op)(t, ct);
1271 }
1272 ctx = ctx->next;
1273 } while (ctx != head);
1274 }
1275 }
1276
1277 /*
1278 * exitctx is called from thread_exit() and lwp_exit() to perform any actions
1279 * needed when the thread/LWP leaves the processor for the last time. This
1280 * routine is not intended to deal with freeing memory; freectx() is used for
1281 * that purpose during thread_free(). This routine is provided to allow for
1282 * clean-up that can't wait until thread_free().
1283 */
1284 void
exitctx(kthread_t * t)1285 exitctx(kthread_t *t)
1286 {
1287 if (t->t_ctx != NULL) {
1288 struct ctxop *ctx, *head;
1289
1290 /* Forward traversal */
1291 ctx = head = t->t_ctx;
1292 do {
1293 if (ctx->exit_op != NULL) {
1294 (ctx->exit_op)(t);
1295 }
1296 ctx = ctx->next;
1297 } while (ctx != head);
1298 }
1299 }
1300
1301 /*
1302 * freectx is called from thread_free() and exec() to get
1303 * rid of old thread context ops.
1304 */
1305 void
freectx(kthread_t * t,int isexec)1306 freectx(kthread_t *t, int isexec)
1307 {
1308 kpreempt_disable();
1309 if (t->t_ctx != NULL) {
1310 struct ctxop *ctx, *head;
1311
1312 ctx = head = t->t_ctx;
1313 t->t_ctx = NULL;
1314 do {
1315 struct ctxop *next = ctx->next;
1316
1317 if (ctx->free_op != NULL) {
1318 (ctx->free_op)(ctx->arg, isexec);
1319 }
1320 kmem_free(ctx, sizeof (struct ctxop));
1321 ctx = next;
1322 } while (ctx != head);
1323 }
1324 kpreempt_enable();
1325 }
1326
1327 /*
1328 * freectx_ctx is called from lwp_create() when lwp is reused from
1329 * lwp_deathrow and its thread structure is added to thread_deathrow.
1330 * The thread structure to which this ctx was attached may be already
1331 * freed by the thread reaper so free_op implementations shouldn't rely
1332 * on thread structure to which this ctx was attached still being around.
1333 */
1334 void
freectx_ctx(struct ctxop * ctx)1335 freectx_ctx(struct ctxop *ctx)
1336 {
1337 struct ctxop *head = ctx;
1338
1339 ASSERT(ctx != NULL);
1340
1341 kpreempt_disable();
1342
1343 head = ctx;
1344 do {
1345 struct ctxop *next = ctx->next;
1346
1347 if (ctx->free_op != NULL) {
1348 (ctx->free_op)(ctx->arg, 0);
1349 }
1350 kmem_free(ctx, sizeof (struct ctxop));
1351 ctx = next;
1352 } while (ctx != head);
1353 kpreempt_enable();
1354 }
1355
1356 /*
1357 * Set the thread running; arrange for it to be swapped in if necessary.
1358 */
1359 void
setrun_locked(kthread_t * t)1360 setrun_locked(kthread_t *t)
1361 {
1362 ASSERT(THREAD_LOCK_HELD(t));
1363 if (t->t_state == TS_SLEEP) {
1364 /*
1365 * Take off sleep queue.
1366 */
1367 SOBJ_UNSLEEP(t->t_sobj_ops, t);
1368 } else if (t->t_state & (TS_RUN | TS_ONPROC)) {
1369 /*
1370 * Already on dispatcher queue.
1371 */
1372 return;
1373 } else if (t->t_state == TS_WAIT) {
1374 waitq_setrun(t);
1375 } else if (t->t_state == TS_STOPPED) {
1376 /*
1377 * All of the sending of SIGCONT (TC_XSTART) and /proc
1378 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have
1379 * requested that the thread be run.
1380 * Just calling setrun() is not sufficient to set a stopped
1381 * thread running. TP_TXSTART is always set if the thread
1382 * is not stopped by a jobcontrol stop signal.
1383 * TP_TPSTART is always set if /proc is not controlling it.
1384 * TP_TCSTART is always set if lwp_suspend() didn't stop it.
1385 * The thread won't be stopped unless one of these
1386 * three mechanisms did it.
1387 *
1388 * These flags must be set before calling setrun_locked(t).
1389 * They can't be passed as arguments because the streams
1390 * code calls setrun() indirectly and the mechanism for
1391 * doing so admits only one argument. Note that the
1392 * thread must be locked in order to change t_schedflags.
1393 */
1394 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART)
1395 return;
1396 /*
1397 * Process is no longer stopped (a thread is running).
1398 */
1399 t->t_whystop = 0;
1400 t->t_whatstop = 0;
1401 /*
1402 * Strictly speaking, we do not have to clear these
1403 * flags here; they are cleared on entry to stop().
1404 * However, they are confusing when doing kernel
1405 * debugging or when they are revealed by ps(1).
1406 */
1407 t->t_schedflag &= ~TS_ALLSTART;
1408 THREAD_TRANSITION(t); /* drop stopped-thread lock */
1409 ASSERT(t->t_lockp == &transition_lock);
1410 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
1411 /*
1412 * Let the class put the process on the dispatcher queue.
1413 */
1414 CL_SETRUN(t);
1415 }
1416 }
1417
1418 void
setrun(kthread_t * t)1419 setrun(kthread_t *t)
1420 {
1421 thread_lock(t);
1422 setrun_locked(t);
1423 thread_unlock(t);
1424 }
1425
1426 /*
1427 * Unpin an interrupted thread.
1428 * When an interrupt occurs, the interrupt is handled on the stack
1429 * of an interrupt thread, taken from a pool linked to the CPU structure.
1430 *
1431 * When swtch() is switching away from an interrupt thread because it
1432 * blocked or was preempted, this routine is called to complete the
1433 * saving of the interrupted thread state, and returns the interrupted
1434 * thread pointer so it may be resumed.
1435 *
1436 * Called by swtch() only at high spl.
1437 */
1438 kthread_t *
thread_unpin()1439 thread_unpin()
1440 {
1441 kthread_t *t = curthread; /* current thread */
1442 kthread_t *itp; /* interrupted thread */
1443 int i; /* interrupt level */
1444 extern int intr_passivate();
1445
1446 ASSERT(t->t_intr != NULL);
1447
1448 itp = t->t_intr; /* interrupted thread */
1449 t->t_intr = NULL; /* clear interrupt ptr */
1450
1451 smt_end_intr();
1452
1453 /*
1454 * Get state from interrupt thread for the one
1455 * it interrupted.
1456 */
1457
1458 i = intr_passivate(t, itp);
1459
1460 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE,
1461 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
1462 i, t, t, itp, itp);
1463
1464 /*
1465 * Dissociate the current thread from the interrupted thread's LWP.
1466 */
1467 t->t_lwp = NULL;
1468
1469 /*
1470 * Interrupt handlers above the level that spinlocks block must
1471 * not block.
1472 */
1473 #if DEBUG
1474 if (i < 0 || i > LOCK_LEVEL)
1475 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i);
1476 #endif
1477
1478 /*
1479 * Compute the CPU's base interrupt level based on the active
1480 * interrupts.
1481 */
1482 ASSERT(CPU->cpu_intr_actv & (1 << i));
1483 set_base_spl();
1484
1485 return (itp);
1486 }
1487
1488 /*
1489 * Create and initialize an interrupt thread.
1490 * Returns non-zero on error.
1491 * Called at spl7() or better.
1492 */
1493 void
thread_create_intr(struct cpu * cp)1494 thread_create_intr(struct cpu *cp)
1495 {
1496 kthread_t *tp;
1497
1498 tp = thread_create(NULL, 0,
1499 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0);
1500
1501 /*
1502 * Set the thread in the TS_FREE state. The state will change
1503 * to TS_ONPROC only while the interrupt is active. Think of these
1504 * as being on a private free list for the CPU. Being TS_FREE keeps
1505 * inactive interrupt threads out of debugger thread lists.
1506 *
1507 * We cannot call thread_create with TS_FREE because of the current
1508 * checks there for ONPROC. Fix this when thread_create takes flags.
1509 */
1510 THREAD_FREEINTR(tp, cp);
1511
1512 /*
1513 * Nobody should ever reference the credentials of an interrupt
1514 * thread so make it NULL to catch any such references.
1515 */
1516 tp->t_cred = NULL;
1517 tp->t_flag |= T_INTR_THREAD;
1518 tp->t_cpu = cp;
1519 tp->t_bound_cpu = cp;
1520 tp->t_disp_queue = cp->cpu_disp;
1521 tp->t_affinitycnt = 1;
1522 tp->t_preempt = 1;
1523
1524 /*
1525 * Don't make a user-requested binding on this thread so that
1526 * the processor can be offlined.
1527 */
1528 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */
1529 tp->t_bind_pset = PS_NONE;
1530
1531 #if defined(__x86)
1532 tp->t_stk -= STACK_ALIGN;
1533 *(tp->t_stk) = 0; /* terminate intr thread stack */
1534 #endif
1535
1536 /*
1537 * Link onto CPU's interrupt pool.
1538 */
1539 tp->t_link = cp->cpu_intr_thread;
1540 cp->cpu_intr_thread = tp;
1541 }
1542
1543 /*
1544 * TSD -- THREAD SPECIFIC DATA
1545 */
1546 static kmutex_t tsd_mutex; /* linked list spin lock */
1547 static uint_t tsd_nkeys; /* size of destructor array */
1548 /* per-key destructor funcs */
1549 static void (**tsd_destructor)(void *);
1550 /* list of tsd_thread's */
1551 static struct tsd_thread *tsd_list;
1552
1553 /*
1554 * Default destructor
1555 * Needed because NULL destructor means that the key is unused
1556 */
1557 /* ARGSUSED */
1558 void
tsd_defaultdestructor(void * value)1559 tsd_defaultdestructor(void *value)
1560 {}
1561
1562 /*
1563 * Create a key (index into per thread array)
1564 * Locks out tsd_create, tsd_destroy, and tsd_exit
1565 * May allocate memory with lock held
1566 */
1567 void
tsd_create(uint_t * keyp,void (* destructor)(void *))1568 tsd_create(uint_t *keyp, void (*destructor)(void *))
1569 {
1570 int i;
1571 uint_t nkeys;
1572
1573 /*
1574 * if key is allocated, do nothing
1575 */
1576 mutex_enter(&tsd_mutex);
1577 if (*keyp) {
1578 mutex_exit(&tsd_mutex);
1579 return;
1580 }
1581 /*
1582 * find an unused key
1583 */
1584 if (destructor == NULL)
1585 destructor = tsd_defaultdestructor;
1586
1587 for (i = 0; i < tsd_nkeys; ++i)
1588 if (tsd_destructor[i] == NULL)
1589 break;
1590
1591 /*
1592 * if no unused keys, increase the size of the destructor array
1593 */
1594 if (i == tsd_nkeys) {
1595 if ((nkeys = (tsd_nkeys << 1)) == 0)
1596 nkeys = 1;
1597 tsd_destructor =
1598 (void (**)(void *))tsd_realloc((void *)tsd_destructor,
1599 (size_t)(tsd_nkeys * sizeof (void (*)(void *))),
1600 (size_t)(nkeys * sizeof (void (*)(void *))));
1601 tsd_nkeys = nkeys;
1602 }
1603
1604 /*
1605 * allocate the next available unused key
1606 */
1607 tsd_destructor[i] = destructor;
1608 *keyp = i + 1;
1609 mutex_exit(&tsd_mutex);
1610 }
1611
1612 /*
1613 * Destroy a key -- this is for unloadable modules
1614 *
1615 * Assumes that the caller is preventing tsd_set and tsd_get
1616 * Locks out tsd_create, tsd_destroy, and tsd_exit
1617 * May free memory with lock held
1618 */
1619 void
tsd_destroy(uint_t * keyp)1620 tsd_destroy(uint_t *keyp)
1621 {
1622 uint_t key;
1623 struct tsd_thread *tsd;
1624
1625 /*
1626 * protect the key namespace and our destructor lists
1627 */
1628 mutex_enter(&tsd_mutex);
1629 key = *keyp;
1630 *keyp = 0;
1631
1632 ASSERT(key <= tsd_nkeys);
1633
1634 /*
1635 * if the key is valid
1636 */
1637 if (key != 0) {
1638 uint_t k = key - 1;
1639 /*
1640 * for every thread with TSD, call key's destructor
1641 */
1642 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) {
1643 /*
1644 * no TSD for key in this thread
1645 */
1646 if (key > tsd->ts_nkeys)
1647 continue;
1648 /*
1649 * call destructor for key
1650 */
1651 if (tsd->ts_value[k] && tsd_destructor[k])
1652 (*tsd_destructor[k])(tsd->ts_value[k]);
1653 /*
1654 * reset value for key
1655 */
1656 tsd->ts_value[k] = NULL;
1657 }
1658 /*
1659 * actually free the key (NULL destructor == unused)
1660 */
1661 tsd_destructor[k] = NULL;
1662 }
1663
1664 mutex_exit(&tsd_mutex);
1665 }
1666
1667 /*
1668 * Quickly return the per thread value that was stored with the specified key
1669 * Assumes the caller is protecting key from tsd_create and tsd_destroy
1670 */
1671 void *
tsd_get(uint_t key)1672 tsd_get(uint_t key)
1673 {
1674 return (tsd_agent_get(curthread, key));
1675 }
1676
1677 /*
1678 * Set a per thread value indexed with the specified key
1679 */
1680 int
tsd_set(uint_t key,void * value)1681 tsd_set(uint_t key, void *value)
1682 {
1683 return (tsd_agent_set(curthread, key, value));
1684 }
1685
1686 /*
1687 * Like tsd_get(), except that the agent lwp can get the tsd of
1688 * another thread in the same process (the agent thread only runs when the
1689 * process is completely stopped by /proc), or syslwp is creating a new lwp.
1690 */
1691 void *
tsd_agent_get(kthread_t * t,uint_t key)1692 tsd_agent_get(kthread_t *t, uint_t key)
1693 {
1694 struct tsd_thread *tsd = t->t_tsd;
1695
1696 ASSERT(t == curthread ||
1697 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1698
1699 if (key && tsd != NULL && key <= tsd->ts_nkeys)
1700 return (tsd->ts_value[key - 1]);
1701 return (NULL);
1702 }
1703
1704 /*
1705 * Like tsd_set(), except that the agent lwp can set the tsd of
1706 * another thread in the same process, or syslwp can set the tsd
1707 * of a thread it's in the middle of creating.
1708 *
1709 * Assumes the caller is protecting key from tsd_create and tsd_destroy
1710 * May lock out tsd_destroy (and tsd_create), may allocate memory with
1711 * lock held
1712 */
1713 int
tsd_agent_set(kthread_t * t,uint_t key,void * value)1714 tsd_agent_set(kthread_t *t, uint_t key, void *value)
1715 {
1716 struct tsd_thread *tsd = t->t_tsd;
1717
1718 ASSERT(t == curthread ||
1719 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1720
1721 if (key == 0)
1722 return (EINVAL);
1723 if (tsd == NULL)
1724 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1725 if (key <= tsd->ts_nkeys) {
1726 tsd->ts_value[key - 1] = value;
1727 return (0);
1728 }
1729
1730 ASSERT(key <= tsd_nkeys);
1731
1732 /*
1733 * lock out tsd_destroy()
1734 */
1735 mutex_enter(&tsd_mutex);
1736 if (tsd->ts_nkeys == 0) {
1737 /*
1738 * Link onto list of threads with TSD
1739 */
1740 if ((tsd->ts_next = tsd_list) != NULL)
1741 tsd_list->ts_prev = tsd;
1742 tsd_list = tsd;
1743 }
1744
1745 /*
1746 * Allocate thread local storage and set the value for key
1747 */
1748 tsd->ts_value = tsd_realloc(tsd->ts_value,
1749 tsd->ts_nkeys * sizeof (void *),
1750 key * sizeof (void *));
1751 tsd->ts_nkeys = key;
1752 tsd->ts_value[key - 1] = value;
1753 mutex_exit(&tsd_mutex);
1754
1755 return (0);
1756 }
1757
1758
1759 /*
1760 * Return the per thread value that was stored with the specified key
1761 * If necessary, create the key and the value
1762 * Assumes the caller is protecting *keyp from tsd_destroy
1763 */
1764 void *
tsd_getcreate(uint_t * keyp,void (* destroy)(void *),void * (* allocate)(void))1765 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void))
1766 {
1767 void *value;
1768 uint_t key = *keyp;
1769 struct tsd_thread *tsd = curthread->t_tsd;
1770
1771 if (tsd == NULL)
1772 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1773 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1]))
1774 return (value);
1775 if (key == 0)
1776 tsd_create(keyp, destroy);
1777 (void) tsd_set(*keyp, value = (*allocate)());
1778
1779 return (value);
1780 }
1781
1782 /*
1783 * Called from thread_exit() to run the destructor function for each tsd
1784 * Locks out tsd_create and tsd_destroy
1785 * Assumes that the destructor *DOES NOT* use tsd
1786 */
1787 void
tsd_exit(void)1788 tsd_exit(void)
1789 {
1790 int i;
1791 struct tsd_thread *tsd = curthread->t_tsd;
1792
1793 if (tsd == NULL)
1794 return;
1795
1796 if (tsd->ts_nkeys == 0) {
1797 kmem_free(tsd, sizeof (*tsd));
1798 curthread->t_tsd = NULL;
1799 return;
1800 }
1801
1802 /*
1803 * lock out tsd_create and tsd_destroy, call
1804 * the destructor, and mark the value as destroyed.
1805 */
1806 mutex_enter(&tsd_mutex);
1807
1808 for (i = 0; i < tsd->ts_nkeys; i++) {
1809 if (tsd->ts_value[i] && tsd_destructor[i])
1810 (*tsd_destructor[i])(tsd->ts_value[i]);
1811 tsd->ts_value[i] = NULL;
1812 }
1813
1814 /*
1815 * remove from linked list of threads with TSD
1816 */
1817 if (tsd->ts_next)
1818 tsd->ts_next->ts_prev = tsd->ts_prev;
1819 if (tsd->ts_prev)
1820 tsd->ts_prev->ts_next = tsd->ts_next;
1821 if (tsd_list == tsd)
1822 tsd_list = tsd->ts_next;
1823
1824 mutex_exit(&tsd_mutex);
1825
1826 /*
1827 * free up the TSD
1828 */
1829 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *));
1830 kmem_free(tsd, sizeof (struct tsd_thread));
1831 curthread->t_tsd = NULL;
1832 }
1833
1834 /*
1835 * realloc
1836 */
1837 static void *
tsd_realloc(void * old,size_t osize,size_t nsize)1838 tsd_realloc(void *old, size_t osize, size_t nsize)
1839 {
1840 void *new;
1841
1842 new = kmem_zalloc(nsize, KM_SLEEP);
1843 if (old) {
1844 bcopy(old, new, osize);
1845 kmem_free(old, osize);
1846 }
1847 return (new);
1848 }
1849
1850 /*
1851 * Return non-zero if an interrupt is being serviced.
1852 */
1853 int
servicing_interrupt()1854 servicing_interrupt()
1855 {
1856 int onintr = 0;
1857
1858 /* Are we an interrupt thread */
1859 if (curthread->t_flag & T_INTR_THREAD)
1860 return (1);
1861 /* Are we servicing a high level interrupt? */
1862 if (CPU_ON_INTR(CPU)) {
1863 kpreempt_disable();
1864 onintr = CPU_ON_INTR(CPU);
1865 kpreempt_enable();
1866 }
1867 return (onintr);
1868 }
1869
1870
1871 /*
1872 * Change the dispatch priority of a thread in the system.
1873 * Used when raising or lowering a thread's priority.
1874 * (E.g., priority inheritance)
1875 *
1876 * Since threads are queued according to their priority, we
1877 * we must check the thread's state to determine whether it
1878 * is on a queue somewhere. If it is, we've got to:
1879 *
1880 * o Dequeue the thread.
1881 * o Change its effective priority.
1882 * o Enqueue the thread.
1883 *
1884 * Assumptions: The thread whose priority we wish to change
1885 * must be locked before we call thread_change_(e)pri().
1886 * The thread_change(e)pri() function doesn't drop the thread
1887 * lock--that must be done by its caller.
1888 */
1889 void
thread_change_epri(kthread_t * t,pri_t disp_pri)1890 thread_change_epri(kthread_t *t, pri_t disp_pri)
1891 {
1892 uint_t state;
1893
1894 ASSERT(THREAD_LOCK_HELD(t));
1895
1896 /*
1897 * If the inherited priority hasn't actually changed,
1898 * just return.
1899 */
1900 if (t->t_epri == disp_pri)
1901 return;
1902
1903 state = t->t_state;
1904
1905 /*
1906 * If it's not on a queue, change the priority with impunity.
1907 */
1908 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1909 t->t_epri = disp_pri;
1910 if (state == TS_ONPROC) {
1911 cpu_t *cp = t->t_disp_queue->disp_cpu;
1912
1913 if (t == cp->cpu_dispthread)
1914 cp->cpu_dispatch_pri = DISP_PRIO(t);
1915 }
1916 } else if (state == TS_SLEEP) {
1917 /*
1918 * Take the thread out of its sleep queue.
1919 * Change the inherited priority.
1920 * Re-enqueue the thread.
1921 * Each synchronization object exports a function
1922 * to do this in an appropriate manner.
1923 */
1924 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri);
1925 } else if (state == TS_WAIT) {
1926 /*
1927 * Re-enqueue a thread on the wait queue if its
1928 * effective priority needs to change.
1929 */
1930 if (disp_pri != t->t_epri)
1931 waitq_change_pri(t, disp_pri);
1932 } else {
1933 /*
1934 * The thread is on a run queue.
1935 * Note: setbackdq() may not put the thread
1936 * back on the same run queue where it originally
1937 * resided.
1938 */
1939 (void) dispdeq(t);
1940 t->t_epri = disp_pri;
1941 setbackdq(t);
1942 }
1943 schedctl_set_cidpri(t);
1944 }
1945
1946 /*
1947 * Function: Change the t_pri field of a thread.
1948 * Side Effects: Adjust the thread ordering on a run queue
1949 * or sleep queue, if necessary.
1950 * Returns: 1 if the thread was on a run queue, else 0.
1951 */
1952 int
thread_change_pri(kthread_t * t,pri_t disp_pri,int front)1953 thread_change_pri(kthread_t *t, pri_t disp_pri, int front)
1954 {
1955 uint_t state;
1956 int on_rq = 0;
1957
1958 ASSERT(THREAD_LOCK_HELD(t));
1959
1960 state = t->t_state;
1961 THREAD_WILLCHANGE_PRI(t, disp_pri);
1962
1963 /*
1964 * If it's not on a queue, change the priority with impunity.
1965 */
1966 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1967 t->t_pri = disp_pri;
1968
1969 if (state == TS_ONPROC) {
1970 cpu_t *cp = t->t_disp_queue->disp_cpu;
1971
1972 if (t == cp->cpu_dispthread)
1973 cp->cpu_dispatch_pri = DISP_PRIO(t);
1974 }
1975 } else if (state == TS_SLEEP) {
1976 /*
1977 * If the priority has changed, take the thread out of
1978 * its sleep queue and change the priority.
1979 * Re-enqueue the thread.
1980 * Each synchronization object exports a function
1981 * to do this in an appropriate manner.
1982 */
1983 if (disp_pri != t->t_pri)
1984 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri);
1985 } else if (state == TS_WAIT) {
1986 /*
1987 * Re-enqueue a thread on the wait queue if its
1988 * priority needs to change.
1989 */
1990 if (disp_pri != t->t_pri)
1991 waitq_change_pri(t, disp_pri);
1992 } else {
1993 /*
1994 * The thread is on a run queue.
1995 * Note: setbackdq() may not put the thread
1996 * back on the same run queue where it originally
1997 * resided.
1998 *
1999 * We still requeue the thread even if the priority
2000 * is unchanged to preserve round-robin (and other)
2001 * effects between threads of the same priority.
2002 */
2003 on_rq = dispdeq(t);
2004 ASSERT(on_rq);
2005 t->t_pri = disp_pri;
2006 if (front) {
2007 setfrontdq(t);
2008 } else {
2009 setbackdq(t);
2010 }
2011 }
2012 schedctl_set_cidpri(t);
2013 return (on_rq);
2014 }
2015
2016 /*
2017 * Tunable kmem_stackinfo is set, fill the kernel thread stack with a
2018 * specific pattern.
2019 */
2020 static void
stkinfo_begin(kthread_t * t)2021 stkinfo_begin(kthread_t *t)
2022 {
2023 caddr_t start; /* stack start */
2024 caddr_t end; /* stack end */
2025 uint64_t *ptr; /* pattern pointer */
2026
2027 /*
2028 * Stack grows up or down, see thread_create(),
2029 * compute stack memory area start and end (start < end).
2030 */
2031 if (t->t_stk > t->t_stkbase) {
2032 /* stack grows down */
2033 start = t->t_stkbase;
2034 end = t->t_stk;
2035 } else {
2036 /* stack grows up */
2037 start = t->t_stk;
2038 end = t->t_stkbase;
2039 }
2040
2041 /*
2042 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
2043 * alignement for start and end in stack area boundaries
2044 * (protection against corrupt t_stkbase/t_stk data).
2045 */
2046 if ((((uintptr_t)start) & 0x7) != 0) {
2047 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
2048 }
2049 end = (caddr_t)(((uintptr_t)end) & (~0x7));
2050
2051 if ((end <= start) || (end - start) > (1024 * 1024)) {
2052 /* negative or stack size > 1 meg, assume bogus */
2053 return;
2054 }
2055
2056 /* fill stack area with a pattern (instead of zeros) */
2057 ptr = (uint64_t *)((void *)start);
2058 while (ptr < (uint64_t *)((void *)end)) {
2059 *ptr++ = KMEM_STKINFO_PATTERN;
2060 }
2061 }
2062
2063
2064 /*
2065 * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist,
2066 * compute the percentage of kernel stack really used, and set in the log
2067 * if it's the latest highest percentage.
2068 */
2069 static void
stkinfo_end(kthread_t * t)2070 stkinfo_end(kthread_t *t)
2071 {
2072 caddr_t start; /* stack start */
2073 caddr_t end; /* stack end */
2074 uint64_t *ptr; /* pattern pointer */
2075 size_t stksz; /* stack size */
2076 size_t smallest = 0;
2077 size_t percent = 0;
2078 uint_t index = 0;
2079 uint_t i;
2080 static size_t smallest_percent = (size_t)-1;
2081 static uint_t full = 0;
2082
2083 /* create the stackinfo log, if doesn't already exist */
2084 mutex_enter(&kmem_stkinfo_lock);
2085 if (kmem_stkinfo_log == NULL) {
2086 kmem_stkinfo_log = (kmem_stkinfo_t *)
2087 kmem_zalloc(KMEM_STKINFO_LOG_SIZE *
2088 (sizeof (kmem_stkinfo_t)), KM_NOSLEEP);
2089 if (kmem_stkinfo_log == NULL) {
2090 mutex_exit(&kmem_stkinfo_lock);
2091 return;
2092 }
2093 }
2094 mutex_exit(&kmem_stkinfo_lock);
2095
2096 /*
2097 * Stack grows up or down, see thread_create(),
2098 * compute stack memory area start and end (start < end).
2099 */
2100 if (t->t_stk > t->t_stkbase) {
2101 /* stack grows down */
2102 start = t->t_stkbase;
2103 end = t->t_stk;
2104 } else {
2105 /* stack grows up */
2106 start = t->t_stk;
2107 end = t->t_stkbase;
2108 }
2109
2110 /* stack size as found in kthread_t */
2111 stksz = end - start;
2112
2113 /*
2114 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
2115 * alignement for start and end in stack area boundaries
2116 * (protection against corrupt t_stkbase/t_stk data).
2117 */
2118 if ((((uintptr_t)start) & 0x7) != 0) {
2119 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
2120 }
2121 end = (caddr_t)(((uintptr_t)end) & (~0x7));
2122
2123 if ((end <= start) || (end - start) > (1024 * 1024)) {
2124 /* negative or stack size > 1 meg, assume bogus */
2125 return;
2126 }
2127
2128 /* search until no pattern in the stack */
2129 if (t->t_stk > t->t_stkbase) {
2130 /* stack grows down */
2131 #if defined(__x86)
2132 /*
2133 * 6 longs are pushed on stack, see thread_load(). Skip
2134 * them, so if kthread has never run, percent is zero.
2135 * 8 bytes alignement is preserved for a 32 bit kernel,
2136 * 6 x 4 = 24, 24 is a multiple of 8.
2137 *
2138 */
2139 end -= (6 * sizeof (long));
2140 #endif
2141 ptr = (uint64_t *)((void *)start);
2142 while (ptr < (uint64_t *)((void *)end)) {
2143 if (*ptr != KMEM_STKINFO_PATTERN) {
2144 percent = stkinfo_percent(end,
2145 start, (caddr_t)ptr);
2146 break;
2147 }
2148 ptr++;
2149 }
2150 } else {
2151 /* stack grows up */
2152 ptr = (uint64_t *)((void *)end);
2153 ptr--;
2154 while (ptr >= (uint64_t *)((void *)start)) {
2155 if (*ptr != KMEM_STKINFO_PATTERN) {
2156 percent = stkinfo_percent(start,
2157 end, (caddr_t)ptr);
2158 break;
2159 }
2160 ptr--;
2161 }
2162 }
2163
2164 DTRACE_PROBE3(stack__usage, kthread_t *, t,
2165 size_t, stksz, size_t, percent);
2166
2167 if (percent == 0) {
2168 return;
2169 }
2170
2171 mutex_enter(&kmem_stkinfo_lock);
2172 if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) {
2173 /*
2174 * The log is full and already contains the highest values
2175 */
2176 mutex_exit(&kmem_stkinfo_lock);
2177 return;
2178 }
2179
2180 /* keep a log of the highest used stack */
2181 for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) {
2182 if (kmem_stkinfo_log[i].percent == 0) {
2183 index = i;
2184 full++;
2185 break;
2186 }
2187 if (smallest == 0) {
2188 smallest = kmem_stkinfo_log[i].percent;
2189 index = i;
2190 continue;
2191 }
2192 if (kmem_stkinfo_log[i].percent < smallest) {
2193 smallest = kmem_stkinfo_log[i].percent;
2194 index = i;
2195 }
2196 }
2197
2198 if (percent >= kmem_stkinfo_log[index].percent) {
2199 kmem_stkinfo_log[index].kthread = (caddr_t)t;
2200 kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc;
2201 kmem_stkinfo_log[index].start = start;
2202 kmem_stkinfo_log[index].stksz = stksz;
2203 kmem_stkinfo_log[index].percent = percent;
2204 kmem_stkinfo_log[index].t_tid = t->t_tid;
2205 kmem_stkinfo_log[index].cmd[0] = '\0';
2206 if (t->t_tid != 0) {
2207 stksz = strlen((t->t_procp)->p_user.u_comm);
2208 if (stksz >= KMEM_STKINFO_STR_SIZE) {
2209 stksz = KMEM_STKINFO_STR_SIZE - 1;
2210 kmem_stkinfo_log[index].cmd[stksz] = '\0';
2211 } else {
2212 stksz += 1;
2213 }
2214 (void) memcpy(kmem_stkinfo_log[index].cmd,
2215 (t->t_procp)->p_user.u_comm, stksz);
2216 }
2217 if (percent < smallest_percent) {
2218 smallest_percent = percent;
2219 }
2220 }
2221 mutex_exit(&kmem_stkinfo_lock);
2222 }
2223
2224 /*
2225 * Tunable kmem_stackinfo is set, compute stack utilization percentage.
2226 */
2227 static size_t
stkinfo_percent(caddr_t t_stk,caddr_t t_stkbase,caddr_t sp)2228 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp)
2229 {
2230 size_t percent;
2231 size_t s;
2232
2233 if (t_stk > t_stkbase) {
2234 /* stack grows down */
2235 if (sp > t_stk) {
2236 return (0);
2237 }
2238 if (sp < t_stkbase) {
2239 return (100);
2240 }
2241 percent = t_stk - sp + 1;
2242 s = t_stk - t_stkbase + 1;
2243 } else {
2244 /* stack grows up */
2245 if (sp < t_stk) {
2246 return (0);
2247 }
2248 if (sp > t_stkbase) {
2249 return (100);
2250 }
2251 percent = sp - t_stk + 1;
2252 s = t_stkbase - t_stk + 1;
2253 }
2254 percent = ((100 * percent) / s) + 1;
2255 if (percent > 100) {
2256 percent = 100;
2257 }
2258 return (percent);
2259 }
2260
2261 /*
2262 * NOTE: This will silently truncate a name > THREAD_NAME_MAX - 1 characters
2263 * long. It is expected that callers (acting on behalf of userland clients)
2264 * will perform any required checks to return the correct error semantics.
2265 * It is also expected callers on behalf of userland clients have done
2266 * any necessary permission checks.
2267 */
2268 int
thread_setname(kthread_t * t,const char * name)2269 thread_setname(kthread_t *t, const char *name)
2270 {
2271 char *buf = NULL;
2272
2273 /*
2274 * We optimistically assume that a thread's name will only be set
2275 * once and so allocate memory in preparation of setting t_name.
2276 * If it turns out a name has already been set, we just discard (free)
2277 * the buffer we just allocated and reuse the current buffer
2278 * (as all should be THREAD_NAME_MAX large).
2279 *
2280 * Such an arrangement means over the lifetime of a kthread_t, t_name
2281 * is either NULL or has one value (the address of the buffer holding
2282 * the current thread name). The assumption is that most kthread_t
2283 * instances will not have a name assigned, so dynamically allocating
2284 * the memory should minimize the footprint of this feature, but by
2285 * having the buffer persist for the life of the thread, it simplifies
2286 * usage in highly constrained situations (e.g. dtrace).
2287 */
2288 if (name != NULL && name[0] != '\0') {
2289 for (size_t i = 0; name[i] != '\0'; i++) {
2290 if (!isprint(name[i]))
2291 return (EINVAL);
2292 }
2293
2294 buf = kmem_zalloc(THREAD_NAME_MAX, KM_SLEEP);
2295 (void) strlcpy(buf, name, THREAD_NAME_MAX);
2296 }
2297
2298 mutex_enter(&ttoproc(t)->p_lock);
2299 if (t->t_name == NULL) {
2300 t->t_name = buf;
2301 } else {
2302 if (buf != NULL) {
2303 (void) strlcpy(t->t_name, name, THREAD_NAME_MAX);
2304 kmem_free(buf, THREAD_NAME_MAX);
2305 } else {
2306 bzero(t->t_name, THREAD_NAME_MAX);
2307 }
2308 }
2309 mutex_exit(&ttoproc(t)->p_lock);
2310 return (0);
2311 }
2312
2313 int
thread_vsetname(kthread_t * t,const char * fmt,...)2314 thread_vsetname(kthread_t *t, const char *fmt, ...)
2315 {
2316 char name[THREAD_NAME_MAX];
2317 va_list va;
2318 int rc;
2319
2320 va_start(va, fmt);
2321 rc = vsnprintf(name, sizeof (name), fmt, va);
2322 va_end(va);
2323
2324 if (rc < 0)
2325 return (EINVAL);
2326
2327 if (rc >= sizeof (name))
2328 return (ENAMETOOLONG);
2329
2330 return (thread_setname(t, name));
2331 }
2332