xref: /illumos-gate/usr/src/uts/common/crypto/api/kcf_random.c (revision 717fae565868e87932422076eb52d99f1b7af64b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
24  */
25 
26 /*
27  * This file implements the interfaces that the /dev/random
28  * driver uses for read(2), write(2) and poll(2) on /dev/random or
29  * /dev/urandom. It also implements the kernel API - random_add_entropy(),
30  * random_add_pseudo_entropy(), random_get_pseudo_bytes()
31  * and random_get_bytes().
32  *
33  * We periodically collect random bits from providers which are registered
34  * with the Kernel Cryptographic Framework (kCF) as capable of random
35  * number generation. The random bits are maintained in a cache and
36  * it is used for high quality random numbers (/dev/random) requests.
37  * We pick a provider and call its SPI routine, if the cache does not have
38  * enough bytes to satisfy a request.
39  *
40  * /dev/urandom requests use a software-based generator algorithm that uses the
41  * random bits in the cache as a seed. We create one pseudo-random generator
42  * (for /dev/urandom) per possible CPU on the system, and use it,
43  * kmem-magazine-style, to avoid cache line contention.
44  *
45  * LOCKING HIERARCHY:
46  *	1) rmp->rm_mag.rm_lock protects the per-cpu pseudo-random generators.
47  * 	2) rndpool_lock protects the high-quality randomness pool.
48  *		It may be locked while a rmp->rm_mag.rm_lock is held.
49  *
50  * A history note: The kernel API and the software-based algorithms in this
51  * file used to be part of the /dev/random driver.
52  */
53 
54 #include <sys/types.h>
55 #include <sys/conf.h>
56 #include <sys/sunddi.h>
57 #include <sys/disp.h>
58 #include <sys/modctl.h>
59 #include <sys/ddi.h>
60 #include <sys/crypto/common.h>
61 #include <sys/crypto/api.h>
62 #include <sys/crypto/impl.h>
63 #include <sys/crypto/sched_impl.h>
64 #include <sys/crypto/ioctladmin.h>
65 #include <sys/random.h>
66 #include <sys/sha1.h>
67 #include <sys/time.h>
68 #include <sys/sysmacros.h>
69 #include <sys/cpuvar.h>
70 #include <sys/taskq.h>
71 #include <rng/fips_random.h>
72 
73 #define	RNDPOOLSIZE		1024	/* Pool size in bytes */
74 #define	MINEXTRACTBYTES		20
75 #define	MAXEXTRACTBYTES		1024
76 #define	PRNG_MAXOBLOCKS		1310720	/* Max output block per prng key */
77 #define	TIMEOUT_INTERVAL	5	/* Periodic mixing interval in secs */
78 
79 typedef enum    extract_type {
80 	NONBLOCK_EXTRACT,
81 	BLOCKING_EXTRACT,
82 	ALWAYS_EXTRACT
83 } extract_type_t;
84 
85 /*
86  * Hash-algo generic definitions. For now, they are SHA1's. We use SHA1
87  * routines directly instead of using k-API because we can't return any
88  * error code in /dev/urandom case and we can get an error using k-API
89  * if a mechanism is disabled.
90  */
91 #define	HASHSIZE		20
92 #define	HASH_CTX		SHA1_CTX
93 #define	HashInit(ctx)		SHA1Init((ctx))
94 #define	HashUpdate(ctx, p, s)	SHA1Update((ctx), (p), (s))
95 #define	HashFinal(d, ctx)	SHA1Final((d), (ctx))
96 
97 /* HMAC-SHA1 */
98 #define	HMAC_KEYSIZE			20
99 
100 /*
101  * Cache of random bytes implemented as a circular buffer. findex and rindex
102  * track the front and back of the circular buffer.
103  */
104 uint8_t rndpool[RNDPOOLSIZE];
105 static int findex, rindex;
106 static int rnbyte_cnt;		/* Number of bytes in the cache */
107 
108 static kmutex_t rndpool_lock;	/* protects r/w accesses to the cache, */
109 				/* and the global variables */
110 static kcondvar_t rndpool_read_cv; /* serializes poll/read syscalls */
111 static int num_waiters;		/* #threads waiting to read from /dev/random */
112 
113 static struct pollhead rnd_pollhead;
114 /* LINTED E_STATIC_UNUSED */
115 static timeout_id_t kcf_rndtimeout_id;
116 static crypto_mech_type_t rngmech_type = CRYPTO_MECH_INVALID;
117 rnd_stats_t rnd_stats;
118 static boolean_t rng_prov_found = B_TRUE;
119 static boolean_t rng_ok_to_log = B_TRUE;
120 static boolean_t rngprov_task_idle = B_TRUE;
121 
122 static void rndc_addbytes(uint8_t *, size_t);
123 static void rndc_getbytes(uint8_t *ptr, size_t len);
124 static void rnd_handler(void *);
125 static void rnd_alloc_magazines(void);
126 static void rnd_fips_discard_initial(void);
127 static void rnd_init2(void *);
128 static void rnd_schedule_timeout(void);
129 
130 /*
131  * Called from kcf:_init()
132  */
133 void
134 kcf_rnd_init()
135 {
136 	hrtime_t ts;
137 	time_t now;
138 
139 	mutex_init(&rndpool_lock, NULL, MUTEX_DEFAULT, NULL);
140 	cv_init(&rndpool_read_cv, NULL, CV_DEFAULT, NULL);
141 
142 	/*
143 	 * Add bytes to the cache using
144 	 * . 2 unpredictable times: high resolution time since the boot-time,
145 	 *   and the current time-of-the day.
146 	 * This is used only to make the timeout value in the timer
147 	 * unpredictable.
148 	 */
149 	ts = gethrtime();
150 	rndc_addbytes((uint8_t *)&ts, sizeof (ts));
151 
152 	(void) drv_getparm(TIME, &now);
153 	rndc_addbytes((uint8_t *)&now, sizeof (now));
154 
155 	rnbyte_cnt = 0;
156 	findex = rindex = 0;
157 	num_waiters = 0;
158 
159 	rnd_alloc_magazines();
160 
161 	(void) taskq_dispatch(system_taskq, rnd_init2, NULL, TQ_SLEEP);
162 }
163 
164 /*
165  * This is called via the system taskq, so that we can do further
166  * initializations that have to wait until the kcf module itself is
167  * done loading.  (After kcf:_init returns.)
168  */
169 static void
170 rnd_init2(void *unused)
171 {
172 
173 	_NOTE(ARGUNUSED(unused));
174 
175 	/*
176 	 * This will load a randomness provider; typically "swrand",
177 	 * but could be another provider if so configured.
178 	 */
179 	rngmech_type = crypto_mech2id(SUN_RANDOM);
180 
181 	/* Update rng_prov_found etc. */
182 	(void) kcf_rngprov_check();
183 
184 	/* FIPS 140-2 init. */
185 	rnd_fips_discard_initial();
186 
187 	/* Start rnd_handler calls. */
188 	rnd_schedule_timeout();
189 }
190 
191 /*
192  * Return TRUE if at least one provider exists that can
193  * supply random numbers.
194  */
195 boolean_t
196 kcf_rngprov_check(void)
197 {
198 	int rv;
199 	kcf_provider_desc_t *pd;
200 
201 	if ((pd = kcf_get_mech_provider(rngmech_type, NULL, NULL, &rv,
202 	    NULL, CRYPTO_FG_RANDOM, 0)) != NULL) {
203 		KCF_PROV_REFRELE(pd);
204 		/*
205 		 * We logged a warning once about no provider being available
206 		 * and now a provider became available. So, set the flag so
207 		 * that we can log again if the problem recurs.
208 		 */
209 		rng_ok_to_log = B_TRUE;
210 		rng_prov_found = B_TRUE;
211 		return (B_TRUE);
212 	} else {
213 		rng_prov_found = B_FALSE;
214 		return (B_FALSE);
215 	}
216 }
217 
218 /*
219  * Pick a software-based provider and submit a request to seed
220  * its random number generator.
221  */
222 static void
223 rngprov_seed(uint8_t *buf, int len, uint_t entropy_est, uint32_t flags)
224 {
225 	kcf_provider_desc_t *pd = NULL;
226 
227 	if (kcf_get_sw_prov(rngmech_type, &pd, NULL, B_FALSE) ==
228 	    CRYPTO_SUCCESS) {
229 		(void) KCF_PROV_SEED_RANDOM(pd, pd->pd_sid, buf, len,
230 		    entropy_est, flags, NULL);
231 		KCF_PROV_REFRELE(pd);
232 	}
233 }
234 
235 /*
236  * This routine is called for blocking reads.
237  *
238  * The argument is_taskq_thr indicates whether the caller is
239  * the taskq thread dispatched by the timeout handler routine.
240  * In this case, we cycle through all the providers
241  * submitting a request to each provider to generate random numbers.
242  *
243  * For other cases, we pick a provider and submit a request to generate
244  * random numbers. We retry using another provider if we get an error.
245  *
246  * Returns the number of bytes that are written to 'ptr'. Returns -1
247  * if no provider is found. ptr and need are unchanged.
248  */
249 static int
250 rngprov_getbytes(uint8_t *ptr, size_t need, boolean_t is_taskq_thr)
251 {
252 	int rv;
253 	int prov_cnt = 0;
254 	int total_bytes = 0;
255 	kcf_provider_desc_t *pd;
256 	kcf_req_params_t params;
257 	kcf_prov_tried_t *list = NULL;
258 
259 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, NULL, &rv,
260 	    list, CRYPTO_FG_RANDOM, 0)) != NULL) {
261 
262 		prov_cnt++;
263 
264 		KCF_WRAP_RANDOM_OPS_PARAMS(&params, KCF_OP_RANDOM_GENERATE,
265 		    pd->pd_sid, ptr, need, 0, 0);
266 		rv = kcf_submit_request(pd, NULL, NULL, &params, B_FALSE);
267 		ASSERT(rv != CRYPTO_QUEUED);
268 
269 		if (rv == CRYPTO_SUCCESS) {
270 			total_bytes += need;
271 			if (is_taskq_thr)
272 				rndc_addbytes(ptr, need);
273 			else {
274 				KCF_PROV_REFRELE(pd);
275 				break;
276 			}
277 		}
278 
279 		if (is_taskq_thr || rv != CRYPTO_SUCCESS) {
280 			/* Add pd to the linked list of providers tried. */
281 			if (kcf_insert_triedlist(&list, pd, KM_SLEEP) == NULL) {
282 				KCF_PROV_REFRELE(pd);
283 				break;
284 			}
285 		}
286 
287 	}
288 
289 	if (list != NULL)
290 		kcf_free_triedlist(list);
291 
292 	if (prov_cnt == 0) { /* no provider could be found. */
293 		rng_prov_found = B_FALSE;
294 		return (-1);
295 	} else {
296 		rng_prov_found = B_TRUE;
297 		/* See comments in kcf_rngprov_check() */
298 		rng_ok_to_log = B_TRUE;
299 	}
300 
301 	return (total_bytes);
302 }
303 
304 static void
305 notify_done(void *arg, int rv)
306 {
307 	uchar_t *rndbuf = arg;
308 
309 	if (rv == CRYPTO_SUCCESS)
310 		rndc_addbytes(rndbuf, MINEXTRACTBYTES);
311 
312 	bzero(rndbuf, MINEXTRACTBYTES);
313 	kmem_free(rndbuf, MINEXTRACTBYTES);
314 }
315 
316 /*
317  * Cycle through all the providers submitting a request to each provider
318  * to generate random numbers. This is called for the modes - NONBLOCK_EXTRACT
319  * and ALWAYS_EXTRACT.
320  *
321  * Returns the number of bytes that are written to 'ptr'. Returns -1
322  * if no provider is found. ptr and len are unchanged.
323  */
324 static int
325 rngprov_getbytes_nblk(uint8_t *ptr, size_t len)
326 {
327 	int rv, total_bytes;
328 	size_t blen;
329 	uchar_t *rndbuf;
330 	kcf_provider_desc_t *pd;
331 	kcf_req_params_t params;
332 	crypto_call_req_t req;
333 	kcf_prov_tried_t *list = NULL;
334 	int prov_cnt = 0;
335 
336 	blen = 0;
337 	total_bytes = 0;
338 	req.cr_flag = CRYPTO_SKIP_REQID;
339 	req.cr_callback_func = notify_done;
340 
341 	while ((pd = kcf_get_mech_provider(rngmech_type, NULL, NULL, &rv,
342 	    list, CRYPTO_FG_RANDOM, 0)) != NULL) {
343 
344 		prov_cnt ++;
345 		switch (pd->pd_prov_type) {
346 		case CRYPTO_HW_PROVIDER:
347 			/*
348 			 * We have to allocate a buffer here as we can not
349 			 * assume that the input buffer will remain valid
350 			 * when the callback comes. We use a fixed size buffer
351 			 * to simplify the book keeping.
352 			 */
353 			rndbuf = kmem_alloc(MINEXTRACTBYTES, KM_NOSLEEP);
354 			if (rndbuf == NULL) {
355 				KCF_PROV_REFRELE(pd);
356 				if (list != NULL)
357 					kcf_free_triedlist(list);
358 				return (total_bytes);
359 			}
360 			req.cr_callback_arg = rndbuf;
361 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
362 			    KCF_OP_RANDOM_GENERATE,
363 			    pd->pd_sid, rndbuf, MINEXTRACTBYTES, 0, 0);
364 			break;
365 
366 		case CRYPTO_SW_PROVIDER:
367 			/*
368 			 * We do not need to allocate a buffer in the software
369 			 * provider case as there is no callback involved. We
370 			 * avoid any extra data copy by directly passing 'ptr'.
371 			 */
372 			KCF_WRAP_RANDOM_OPS_PARAMS(&params,
373 			    KCF_OP_RANDOM_GENERATE,
374 			    pd->pd_sid, ptr, len, 0, 0);
375 			break;
376 		}
377 
378 		rv = kcf_submit_request(pd, NULL, &req, &params, B_FALSE);
379 		if (rv == CRYPTO_SUCCESS) {
380 			switch (pd->pd_prov_type) {
381 			case CRYPTO_HW_PROVIDER:
382 				/*
383 				 * Since we have the input buffer handy,
384 				 * we directly copy to it rather than
385 				 * adding to the pool.
386 				 */
387 				blen = min(MINEXTRACTBYTES, len);
388 				bcopy(rndbuf, ptr, blen);
389 				if (len < MINEXTRACTBYTES)
390 					rndc_addbytes(rndbuf + len,
391 					    MINEXTRACTBYTES - len);
392 				ptr += blen;
393 				len -= blen;
394 				total_bytes += blen;
395 				break;
396 
397 			case CRYPTO_SW_PROVIDER:
398 				total_bytes += len;
399 				len = 0;
400 				break;
401 			}
402 		}
403 
404 		/*
405 		 * We free the buffer in the callback routine
406 		 * for the CRYPTO_QUEUED case.
407 		 */
408 		if (pd->pd_prov_type == CRYPTO_HW_PROVIDER &&
409 		    rv != CRYPTO_QUEUED) {
410 			bzero(rndbuf, MINEXTRACTBYTES);
411 			kmem_free(rndbuf, MINEXTRACTBYTES);
412 		}
413 
414 		if (len == 0) {
415 			KCF_PROV_REFRELE(pd);
416 			break;
417 		}
418 
419 		if (rv != CRYPTO_SUCCESS) {
420 			/* Add pd to the linked list of providers tried. */
421 			if (kcf_insert_triedlist(&list, pd, KM_NOSLEEP) ==
422 			    NULL) {
423 				KCF_PROV_REFRELE(pd);
424 				break;
425 			}
426 		}
427 	}
428 
429 	if (list != NULL) {
430 		kcf_free_triedlist(list);
431 	}
432 
433 	if (prov_cnt == 0) { /* no provider could be found. */
434 		rng_prov_found = B_FALSE;
435 		return (-1);
436 	} else {
437 		rng_prov_found = B_TRUE;
438 		/* See comments in kcf_rngprov_check() */
439 		rng_ok_to_log = B_TRUE;
440 	}
441 
442 	return (total_bytes);
443 }
444 
445 static void
446 rngprov_task(void *arg)
447 {
448 	int len = (int)(uintptr_t)arg;
449 	uchar_t tbuf[MAXEXTRACTBYTES];
450 
451 	ASSERT(len <= MAXEXTRACTBYTES);
452 	(void) rngprov_getbytes(tbuf, len, B_TRUE);
453 	rngprov_task_idle = B_TRUE;
454 }
455 
456 /*
457  * Returns "len" random or pseudo-random bytes in *ptr.
458  * Will block if not enough random bytes are available and the
459  * call is blocking.
460  *
461  * Called with rndpool_lock held (allowing caller to do optimistic locking;
462  * releases the lock before return).
463  */
464 static int
465 rnd_get_bytes(uint8_t *ptr, size_t len, extract_type_t how)
466 {
467 	size_t	bytes;
468 	int	got;
469 
470 	ASSERT(mutex_owned(&rndpool_lock));
471 	/*
472 	 * Check if the request can be satisfied from the cache
473 	 * of random bytes.
474 	 */
475 	if (len <= rnbyte_cnt) {
476 		rndc_getbytes(ptr, len);
477 		mutex_exit(&rndpool_lock);
478 		return (0);
479 	}
480 	mutex_exit(&rndpool_lock);
481 
482 	switch (how) {
483 	case BLOCKING_EXTRACT:
484 		if ((got = rngprov_getbytes(ptr, len, B_FALSE)) == -1)
485 			break;	/* No provider found */
486 
487 		if (got == len)
488 			return (0);
489 		len -= got;
490 		ptr += got;
491 		break;
492 
493 	case NONBLOCK_EXTRACT:
494 	case ALWAYS_EXTRACT:
495 		if ((got = rngprov_getbytes_nblk(ptr, len)) == -1) {
496 			/* No provider found */
497 			if (how == NONBLOCK_EXTRACT) {
498 				return (EAGAIN);
499 			}
500 		} else {
501 			if (got == len)
502 				return (0);
503 			len -= got;
504 			ptr += got;
505 		}
506 		if (how == NONBLOCK_EXTRACT && (rnbyte_cnt < len))
507 			return (EAGAIN);
508 		break;
509 	}
510 
511 	mutex_enter(&rndpool_lock);
512 	while (len > 0) {
513 		if (how == BLOCKING_EXTRACT) {
514 			/* Check if there is enough */
515 			while (rnbyte_cnt < MINEXTRACTBYTES) {
516 				num_waiters++;
517 				if (cv_wait_sig(&rndpool_read_cv,
518 				    &rndpool_lock) == 0) {
519 					num_waiters--;
520 					mutex_exit(&rndpool_lock);
521 					return (EINTR);
522 				}
523 				num_waiters--;
524 			}
525 		}
526 
527 		/* Figure out how many bytes to extract */
528 		bytes = min(len, rnbyte_cnt);
529 		rndc_getbytes(ptr, bytes);
530 
531 		len -= bytes;
532 		ptr += bytes;
533 
534 		if (len > 0 && how == ALWAYS_EXTRACT) {
535 			/*
536 			 * There are not enough bytes, but we can not block.
537 			 * This only happens in the case of /dev/urandom which
538 			 * runs an additional generation algorithm. So, there
539 			 * is no problem.
540 			 */
541 			while (len > 0) {
542 				*ptr = rndpool[findex];
543 				ptr++; len--;
544 				rindex = findex = (findex + 1) &
545 				    (RNDPOOLSIZE - 1);
546 			}
547 			break;
548 		}
549 	}
550 
551 	mutex_exit(&rndpool_lock);
552 	return (0);
553 }
554 
555 int
556 kcf_rnd_get_bytes(uint8_t *ptr, size_t len, boolean_t noblock)
557 {
558 	extract_type_t how;
559 	int error;
560 
561 	how = noblock ? NONBLOCK_EXTRACT : BLOCKING_EXTRACT;
562 	mutex_enter(&rndpool_lock);
563 	if ((error = rnd_get_bytes(ptr, len, how)) != 0)
564 		return (error);
565 
566 	BUMP_RND_STATS(rs_rndOut, len);
567 	return (0);
568 }
569 
570 /*
571  * Revisit this if the structs grow or we come up with a better way
572  * of cache-line-padding structures.
573  */
574 #define	RND_CPU_CACHE_SIZE	64
575 #define	RND_CPU_PAD_SIZE	RND_CPU_CACHE_SIZE*6
576 #define	RND_CPU_PAD (RND_CPU_PAD_SIZE - \
577 	sizeof (rndmag_t))
578 /*
579  * Per-CPU random state.  Somewhat like like kmem's magazines, this provides
580  * a per-CPU instance of the pseudo-random generator.  We have it much easier
581  * than kmem, as we can afford to "leak" random bits if a CPU is DR'ed out.
582  *
583  * Note that this usage is preemption-safe; a thread
584  * entering a critical section remembers which generator it locked
585  * and unlocks the same one; should it be preempted and wind up running on
586  * a different CPU, there will be a brief period of increased contention
587  * before it exits the critical section but nothing will melt.
588  */
589 typedef struct rndmag_s
590 {
591 	kmutex_t	rm_lock;
592 	uint8_t		*rm_buffer;	/* Start of buffer */
593 	uint8_t		*rm_eptr;	/* End of buffer */
594 	uint8_t		*rm_rptr;	/* Current read pointer */
595 	uint32_t	rm_oblocks;	/* time to rekey? */
596 	uint32_t	rm_ofuzz;	/* Rekey backoff state */
597 	uint32_t	rm_olimit;	/* Hard rekey limit */
598 	rnd_stats_t	rm_stats;	/* Per-CPU Statistics */
599 	uint32_t	rm_key[HASHSIZE/BYTES_IN_WORD];	/* FIPS XKEY */
600 	uint32_t	rm_seed[HASHSIZE/BYTES_IN_WORD]; /* seed for rekey */
601 	uint32_t	rm_previous[HASHSIZE/BYTES_IN_WORD]; /* prev random */
602 } rndmag_t;
603 
604 typedef struct rndmag_pad_s
605 {
606 	rndmag_t	rm_mag;
607 	uint8_t		rm_pad[RND_CPU_PAD];
608 } rndmag_pad_t;
609 
610 /*
611  * Generate random bytes for /dev/urandom by applying the
612  * FIPS 186-2 algorithm with a key created from bytes extracted
613  * from the pool.  A maximum of PRNG_MAXOBLOCKS output blocks
614  * is generated before a new key is obtained.
615  *
616  * Note that callers to this routine are likely to assume it can't fail.
617  *
618  * Called with rmp locked; releases lock.
619  */
620 static int
621 rnd_generate_pseudo_bytes(rndmag_pad_t *rmp, uint8_t *ptr, size_t len)
622 {
623 	size_t bytes = len, size;
624 	int nblock;
625 	uint32_t oblocks;
626 	uint32_t tempout[HASHSIZE/BYTES_IN_WORD];
627 	uint32_t seed[HASHSIZE/BYTES_IN_WORD];
628 	int i;
629 	hrtime_t timestamp;
630 	uint8_t *src, *dst;
631 
632 	ASSERT(mutex_owned(&rmp->rm_mag.rm_lock));
633 
634 	/* Nothing is being asked */
635 	if (len == 0) {
636 		mutex_exit(&rmp->rm_mag.rm_lock);
637 		return (0);
638 	}
639 
640 	nblock = howmany(len, HASHSIZE);
641 
642 	rmp->rm_mag.rm_oblocks += nblock;
643 	oblocks = rmp->rm_mag.rm_oblocks;
644 
645 	do {
646 		if (oblocks >= rmp->rm_mag.rm_olimit) {
647 
648 			/*
649 			 * Contention-avoiding rekey: see if
650 			 * the pool is locked, and if so, wait a bit.
651 			 * Do an 'exponential back-in' to ensure we don't
652 			 * run too long without rekey.
653 			 */
654 			if (rmp->rm_mag.rm_ofuzz) {
655 				/*
656 				 * Decaying exponential back-in for rekey.
657 				 */
658 				if ((rnbyte_cnt < MINEXTRACTBYTES) ||
659 				    (!mutex_tryenter(&rndpool_lock))) {
660 					rmp->rm_mag.rm_olimit +=
661 					    rmp->rm_mag.rm_ofuzz;
662 					rmp->rm_mag.rm_ofuzz >>= 1;
663 					goto punt;
664 				}
665 			} else {
666 				mutex_enter(&rndpool_lock);
667 			}
668 
669 			/* Get a new chunk of entropy */
670 			(void) rnd_get_bytes((uint8_t *)rmp->rm_mag.rm_key,
671 			    HMAC_KEYSIZE, ALWAYS_EXTRACT);
672 
673 			rmp->rm_mag.rm_olimit = PRNG_MAXOBLOCKS/2;
674 			rmp->rm_mag.rm_ofuzz = PRNG_MAXOBLOCKS/4;
675 			oblocks = 0;
676 			rmp->rm_mag.rm_oblocks = nblock;
677 		}
678 punt:
679 		timestamp = gethrtime();
680 
681 		src = (uint8_t *)&timestamp;
682 		dst = (uint8_t *)rmp->rm_mag.rm_seed;
683 
684 		for (i = 0; i < HASHSIZE; i++) {
685 			dst[i] ^= src[i % sizeof (timestamp)];
686 		}
687 
688 		bcopy(rmp->rm_mag.rm_seed, seed, HASHSIZE);
689 
690 		fips_random_inner(rmp->rm_mag.rm_key, tempout,
691 		    seed);
692 
693 		if (bytes >= HASHSIZE) {
694 			size = HASHSIZE;
695 		} else {
696 			size = min(bytes, HASHSIZE);
697 		}
698 
699 		/*
700 		 * FIPS 140-2: Continuous RNG test - each generation
701 		 * of an n-bit block shall be compared with the previously
702 		 * generated block. Test shall fail if any two compared
703 		 * n-bit blocks are equal.
704 		 */
705 		for (i = 0; i < HASHSIZE/BYTES_IN_WORD; i++) {
706 			if (tempout[i] != rmp->rm_mag.rm_previous[i])
707 				break;
708 		}
709 		if (i == HASHSIZE/BYTES_IN_WORD) {
710 			cmn_err(CE_WARN, "kcf_random: The value of 160-bit "
711 			    "block random bytes are same as the previous "
712 			    "one.\n");
713 			/* discard random bytes and return error */
714 			mutex_exit(&rmp->rm_mag.rm_lock);
715 			return (EIO);
716 		}
717 
718 		bcopy(tempout, rmp->rm_mag.rm_previous,
719 		    HASHSIZE);
720 
721 		bcopy(tempout, ptr, size);
722 		ptr += size;
723 		bytes -= size;
724 		oblocks++;
725 		nblock--;
726 	} while (bytes > 0);
727 
728 	/* Zero out sensitive information */
729 	bzero(seed, HASHSIZE);
730 	bzero(tempout, HASHSIZE);
731 	mutex_exit(&rmp->rm_mag.rm_lock);
732 	return (0);
733 }
734 
735 /*
736  * Per-CPU Random magazines.
737  */
738 static rndmag_pad_t *rndmag;
739 static uint8_t	*rndbuf;
740 static size_t 	rndmag_total;
741 /*
742  * common/os/cpu.c says that platform support code can shrinkwrap
743  * max_ncpus.  On the off chance that we get loaded very early, we
744  * read it exactly once, to copy it here.
745  */
746 static uint32_t	random_max_ncpus = 0;
747 
748 /*
749  * Boot-time tunables, for experimentation.
750  */
751 size_t	rndmag_threshold = 2560;
752 size_t	rndbuf_len = 5120;
753 size_t	rndmag_size = 1280;
754 
755 
756 int
757 kcf_rnd_get_pseudo_bytes(uint8_t *ptr, size_t len)
758 {
759 	rndmag_pad_t *rmp;
760 	uint8_t *cptr, *eptr;
761 
762 	/*
763 	 * Anyone who asks for zero bytes of randomness should get slapped.
764 	 */
765 	ASSERT(len > 0);
766 
767 	/*
768 	 * Fast path.
769 	 */
770 	for (;;) {
771 		rmp = &rndmag[CPU->cpu_seqid];
772 		mutex_enter(&rmp->rm_mag.rm_lock);
773 
774 		/*
775 		 * Big requests bypass buffer and tail-call the
776 		 * generate routine directly.
777 		 */
778 		if (len > rndmag_threshold) {
779 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
780 			return (rnd_generate_pseudo_bytes(rmp, ptr, len));
781 		}
782 
783 		cptr = rmp->rm_mag.rm_rptr;
784 		eptr = cptr + len;
785 
786 		if (eptr <= rmp->rm_mag.rm_eptr) {
787 			rmp->rm_mag.rm_rptr = eptr;
788 			bcopy(cptr, ptr, len);
789 			BUMP_CPU_RND_STATS(rmp, rs_urndOut, len);
790 			mutex_exit(&rmp->rm_mag.rm_lock);
791 
792 			return (0);
793 		}
794 		/*
795 		 * End fast path.
796 		 */
797 		rmp->rm_mag.rm_rptr = rmp->rm_mag.rm_buffer;
798 		/*
799 		 * Note:  We assume the generate routine always succeeds
800 		 * in this case (because it does at present..)
801 		 * It also always releases rm_lock.
802 		 */
803 		(void) rnd_generate_pseudo_bytes(rmp, rmp->rm_mag.rm_buffer,
804 		    rndbuf_len);
805 	}
806 }
807 
808 /*
809  * We set up (empty) magazines for all of max_ncpus, possibly wasting a
810  * little memory on big systems that don't have the full set installed.
811  * See above;  "empty" means "rptr equal to eptr"; this will trigger the
812  * refill path in rnd_get_pseudo_bytes above on the first call for each CPU.
813  *
814  * TODO: make rndmag_size tunable at run time!
815  */
816 static void
817 rnd_alloc_magazines()
818 {
819 	rndmag_pad_t *rmp;
820 	int i;
821 
822 	rndbuf_len = roundup(rndbuf_len, HASHSIZE);
823 	if (rndmag_size < rndbuf_len)
824 		rndmag_size = rndbuf_len;
825 	rndmag_size = roundup(rndmag_size, RND_CPU_CACHE_SIZE);
826 
827 	random_max_ncpus = max_ncpus;
828 	rndmag_total = rndmag_size * random_max_ncpus;
829 
830 	rndbuf = kmem_alloc(rndmag_total, KM_SLEEP);
831 	rndmag = kmem_zalloc(sizeof (rndmag_pad_t) * random_max_ncpus,
832 	    KM_SLEEP);
833 
834 	for (i = 0; i < random_max_ncpus; i++) {
835 		uint8_t *buf;
836 
837 		rmp = &rndmag[i];
838 		mutex_init(&rmp->rm_mag.rm_lock, NULL, MUTEX_DRIVER, NULL);
839 
840 		buf = rndbuf + i * rndmag_size;
841 
842 		rmp->rm_mag.rm_buffer = buf;
843 		rmp->rm_mag.rm_eptr = buf + rndbuf_len;
844 		rmp->rm_mag.rm_rptr = buf + rndbuf_len;
845 		rmp->rm_mag.rm_oblocks = 1;
846 	}
847 }
848 
849 /*
850  * FIPS 140-2: the first n-bit (n > 15) block generated
851  * after power-up, initialization, or reset shall not
852  * be used, but shall be saved for comparison.
853  */
854 static void
855 rnd_fips_discard_initial(void)
856 {
857 	uint8_t discard_buf[HASHSIZE];
858 	rndmag_pad_t *rmp;
859 	int i;
860 
861 	for (i = 0; i < random_max_ncpus; i++) {
862 		rmp = &rndmag[i];
863 
864 		/* rnd_get_bytes() will call mutex_exit(&rndpool_lock) */
865 		mutex_enter(&rndpool_lock);
866 		(void) rnd_get_bytes(discard_buf,
867 		    HMAC_KEYSIZE, ALWAYS_EXTRACT);
868 		bcopy(discard_buf, rmp->rm_mag.rm_previous,
869 		    HMAC_KEYSIZE);
870 		/* rnd_get_bytes() will call mutex_exit(&rndpool_lock) */
871 		mutex_enter(&rndpool_lock);
872 		(void) rnd_get_bytes((uint8_t *)rmp->rm_mag.rm_key,
873 		    HMAC_KEYSIZE, ALWAYS_EXTRACT);
874 		/* rnd_get_bytes() will call mutex_exit(&rndpool_lock) */
875 		mutex_enter(&rndpool_lock);
876 		(void) rnd_get_bytes((uint8_t *)rmp->rm_mag.rm_seed,
877 		    HMAC_KEYSIZE, ALWAYS_EXTRACT);
878 	}
879 }
880 
881 static void
882 rnd_schedule_timeout(void)
883 {
884 	clock_t ut;	/* time in microseconds */
885 
886 	/*
887 	 * The new timeout value is taken from the buffer of random bytes.
888 	 * We're merely reading the first 32 bits from the buffer here, not
889 	 * consuming any random bytes.
890 	 * The timeout multiplier value is a random value between 0.5 sec and
891 	 * 1.544480 sec (0.5 sec + 0xFF000 microseconds).
892 	 * The new timeout is TIMEOUT_INTERVAL times that multiplier.
893 	 */
894 	ut = 500000 + (clock_t)((((uint32_t)rndpool[findex]) << 12) & 0xFF000);
895 	kcf_rndtimeout_id = timeout(rnd_handler, NULL,
896 	    TIMEOUT_INTERVAL * drv_usectohz(ut));
897 }
898 
899 /*
900  * Called from the driver for a poll on /dev/random
901  * . POLLOUT always succeeds.
902  * . POLLIN and POLLRDNORM will block until a
903  *   minimum amount of entropy is available.
904  *
905  * &rnd_pollhead is passed in *phpp in order to indicate the calling thread
906  * will block. When enough random bytes are available, later, the timeout
907  * handler routine will issue the pollwakeup() calls.
908  */
909 void
910 kcf_rnd_chpoll(short events, int anyyet, short *reventsp,
911     struct pollhead **phpp)
912 {
913 	*reventsp = events & POLLOUT;
914 
915 	if (events & (POLLIN | POLLRDNORM)) {
916 		/*
917 		 * Sampling of rnbyte_cnt is an atomic
918 		 * operation. Hence we do not need any locking.
919 		 */
920 		if (rnbyte_cnt >= MINEXTRACTBYTES)
921 			*reventsp |= (events & (POLLIN | POLLRDNORM));
922 	}
923 
924 	if (*reventsp == 0 && !anyyet)
925 		*phpp = &rnd_pollhead;
926 }
927 
928 /*ARGSUSED*/
929 static void
930 rnd_handler(void *arg)
931 {
932 	int len = 0;
933 
934 	if (!rng_prov_found && rng_ok_to_log) {
935 		cmn_err(CE_WARN, "No randomness provider enabled for "
936 		    "/dev/random. Use cryptoadm(1M) to enable a provider.");
937 		rng_ok_to_log = B_FALSE;
938 	}
939 
940 	if (num_waiters > 0)
941 		/*
942 		 * Note: len has no relationship with how many bytes
943 		 * a poll thread needs.
944 		 */
945 		len = MAXEXTRACTBYTES;
946 	else if (rnbyte_cnt < RNDPOOLSIZE)
947 		len = MINEXTRACTBYTES;
948 
949 	/*
950 	 * Only one thread gets to set rngprov_task_idle at a given point
951 	 * of time and the order of the writes is defined. Also, it is OK
952 	 * if we read an older value of it and skip the dispatch once
953 	 * since we will get the correct value during the next time here.
954 	 * So, no locking is needed here.
955 	 */
956 	if (len > 0 && rngprov_task_idle) {
957 		rngprov_task_idle = B_FALSE;
958 
959 		/*
960 		 * It is OK if taskq_dispatch fails here. We will retry
961 		 * the next time around. Meanwhile, a thread doing a
962 		 * read() will go to the provider directly, if the
963 		 * cache becomes empty.
964 		 */
965 		if (taskq_dispatch(system_taskq, rngprov_task,
966 		    (void *)(uintptr_t)len, TQ_NOSLEEP | TQ_NOQUEUE) == 0) {
967 			rngprov_task_idle = B_TRUE;
968 		}
969 	}
970 
971 	mutex_enter(&rndpool_lock);
972 	/*
973 	 * Wake up threads waiting in poll() or for enough accumulated
974 	 * random bytes to read from /dev/random. In case a poll() is
975 	 * concurrent with a read(), the polling process may be woken up
976 	 * indicating that enough randomness is now available for reading,
977 	 * and another process *steals* the bits from the pool, causing the
978 	 * subsequent read() from the first process to block. It is acceptable
979 	 * since the blocking will eventually end, after the timeout
980 	 * has expired enough times to honor the read.
981 	 *
982 	 * Note - Since we hold the rndpool_lock across the pollwakeup() call
983 	 * we MUST NOT grab the rndpool_lock in kcf_rndchpoll().
984 	 */
985 	if (rnbyte_cnt >= MINEXTRACTBYTES)
986 		pollwakeup(&rnd_pollhead, POLLIN | POLLRDNORM);
987 
988 	if (num_waiters > 0)
989 		cv_broadcast(&rndpool_read_cv);
990 	mutex_exit(&rndpool_lock);
991 
992 	rnd_schedule_timeout();
993 }
994 
995 static void
996 rndc_addbytes(uint8_t *ptr, size_t len)
997 {
998 	ASSERT(ptr != NULL && len > 0);
999 	ASSERT(rnbyte_cnt <= RNDPOOLSIZE);
1000 
1001 	mutex_enter(&rndpool_lock);
1002 	while ((len > 0) && (rnbyte_cnt < RNDPOOLSIZE)) {
1003 		rndpool[rindex] ^= *ptr;
1004 		ptr++; len--;
1005 		rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
1006 		rnbyte_cnt++;
1007 	}
1008 
1009 	/* Handle buffer full case */
1010 	while (len > 0) {
1011 		rndpool[rindex] ^= *ptr;
1012 		ptr++; len--;
1013 		findex = rindex = (rindex + 1) & (RNDPOOLSIZE - 1);
1014 	}
1015 	mutex_exit(&rndpool_lock);
1016 }
1017 
1018 /*
1019  * Caller should check len <= rnbyte_cnt under the
1020  * rndpool_lock before calling.
1021  */
1022 static void
1023 rndc_getbytes(uint8_t *ptr, size_t len)
1024 {
1025 	ASSERT(MUTEX_HELD(&rndpool_lock));
1026 	ASSERT(len <= rnbyte_cnt && rnbyte_cnt <= RNDPOOLSIZE);
1027 
1028 	BUMP_RND_STATS(rs_rndcOut, len);
1029 
1030 	while (len > 0) {
1031 		*ptr = rndpool[findex];
1032 		ptr++; len--;
1033 		findex = (findex + 1) & (RNDPOOLSIZE - 1);
1034 		rnbyte_cnt--;
1035 	}
1036 }
1037 
1038 /* Random number exported entry points */
1039 
1040 /*
1041  * Mix the supplied bytes into the entropy pool of a kCF
1042  * RNG provider.
1043  */
1044 int
1045 random_add_pseudo_entropy(uint8_t *ptr, size_t len, uint_t entropy_est)
1046 {
1047 	if (len < 1)
1048 		return (-1);
1049 
1050 	rngprov_seed(ptr, len, entropy_est, 0);
1051 
1052 	return (0);
1053 }
1054 
1055 /*
1056  * Mix the supplied bytes into the entropy pool of a kCF
1057  * RNG provider. Mix immediately.
1058  */
1059 int
1060 random_add_entropy(uint8_t *ptr, size_t len, uint_t entropy_est)
1061 {
1062 	if (len < 1)
1063 		return (-1);
1064 
1065 	rngprov_seed(ptr, len, entropy_est, CRYPTO_SEED_NOW);
1066 
1067 	return (0);
1068 }
1069 
1070 /*
1071  * Get bytes from the /dev/urandom generator. This function
1072  * always succeeds. Returns 0.
1073  */
1074 int
1075 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
1076 {
1077 	ASSERT(!mutex_owned(&rndpool_lock));
1078 
1079 	if (len < 1)
1080 		return (0);
1081 	return (kcf_rnd_get_pseudo_bytes(ptr, len));
1082 }
1083 
1084 /*
1085  * Get bytes from the /dev/random generator. Returns 0
1086  * on success. Returns EAGAIN if there is insufficient entropy.
1087  */
1088 int
1089 random_get_bytes(uint8_t *ptr, size_t len)
1090 {
1091 	ASSERT(!mutex_owned(&rndpool_lock));
1092 
1093 	if (len < 1)
1094 		return (0);
1095 	return (kcf_rnd_get_bytes(ptr, len, B_TRUE));
1096 }
1097