libzfs_import.c revision bd0f709169e67f4bd34526e186a7c34f595f0d9b
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 * Copyright 2015 RackTop Systems.
27 */
28
29/*
30 * Pool import support functions.
31 *
32 * To import a pool, we rely on reading the configuration information from the
33 * ZFS label of each device.  If we successfully read the label, then we
34 * organize the configuration information in the following hierarchy:
35 *
36 * 	pool guid -> toplevel vdev guid -> label txg
37 *
38 * Duplicate entries matching this same tuple will be discarded.  Once we have
39 * examined every device, we pick the best label txg config for each toplevel
40 * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
41 * update any paths that have changed.  Finally, we attempt to import the pool
42 * using our derived config, and record the results.
43 */
44
45#include <ctype.h>
46#include <devid.h>
47#include <dirent.h>
48#include <errno.h>
49#include <libintl.h>
50#include <stddef.h>
51#include <stdlib.h>
52#include <string.h>
53#include <sys/stat.h>
54#include <unistd.h>
55#include <fcntl.h>
56#include <sys/vtoc.h>
57#include <sys/dktp/fdisk.h>
58#include <sys/efi_partition.h>
59#include <thread_pool.h>
60
61#include <sys/vdev_impl.h>
62
63#include "libzfs.h"
64#include "libzfs_impl.h"
65
66/*
67 * Intermediate structures used to gather configuration information.
68 */
69typedef struct config_entry {
70	uint64_t		ce_txg;
71	nvlist_t		*ce_config;
72	struct config_entry	*ce_next;
73} config_entry_t;
74
75typedef struct vdev_entry {
76	uint64_t		ve_guid;
77	config_entry_t		*ve_configs;
78	struct vdev_entry	*ve_next;
79} vdev_entry_t;
80
81typedef struct pool_entry {
82	uint64_t		pe_guid;
83	vdev_entry_t		*pe_vdevs;
84	struct pool_entry	*pe_next;
85} pool_entry_t;
86
87typedef struct name_entry {
88	char			*ne_name;
89	uint64_t		ne_guid;
90	struct name_entry	*ne_next;
91} name_entry_t;
92
93typedef struct pool_list {
94	pool_entry_t		*pools;
95	name_entry_t		*names;
96} pool_list_t;
97
98static char *
99get_devid(const char *path)
100{
101	int fd;
102	ddi_devid_t devid;
103	char *minor, *ret;
104
105	if ((fd = open(path, O_RDONLY)) < 0)
106		return (NULL);
107
108	minor = NULL;
109	ret = NULL;
110	if (devid_get(fd, &devid) == 0) {
111		if (devid_get_minor_name(fd, &minor) == 0)
112			ret = devid_str_encode(devid, minor);
113		if (minor != NULL)
114			devid_str_free(minor);
115		devid_free(devid);
116	}
117	(void) close(fd);
118
119	return (ret);
120}
121
122
123/*
124 * Go through and fix up any path and/or devid information for the given vdev
125 * configuration.
126 */
127static int
128fix_paths(nvlist_t *nv, name_entry_t *names)
129{
130	nvlist_t **child;
131	uint_t c, children;
132	uint64_t guid;
133	name_entry_t *ne, *best;
134	char *path, *devid;
135	int matched;
136
137	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
138	    &child, &children) == 0) {
139		for (c = 0; c < children; c++)
140			if (fix_paths(child[c], names) != 0)
141				return (-1);
142		return (0);
143	}
144
145	/*
146	 * This is a leaf (file or disk) vdev.  In either case, go through
147	 * the name list and see if we find a matching guid.  If so, replace
148	 * the path and see if we can calculate a new devid.
149	 *
150	 * There may be multiple names associated with a particular guid, in
151	 * which case we have overlapping slices or multiple paths to the same
152	 * disk.  If this is the case, then we want to pick the path that is
153	 * the most similar to the original, where "most similar" is the number
154	 * of matching characters starting from the end of the path.  This will
155	 * preserve slice numbers even if the disks have been reorganized, and
156	 * will also catch preferred disk names if multiple paths exist.
157	 */
158	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
159	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
160		path = NULL;
161
162	matched = 0;
163	best = NULL;
164	for (ne = names; ne != NULL; ne = ne->ne_next) {
165		if (ne->ne_guid == guid) {
166			const char *src, *dst;
167			int count;
168
169			if (path == NULL) {
170				best = ne;
171				break;
172			}
173
174			src = ne->ne_name + strlen(ne->ne_name) - 1;
175			dst = path + strlen(path) - 1;
176			for (count = 0; src >= ne->ne_name && dst >= path;
177			    src--, dst--, count++)
178				if (*src != *dst)
179					break;
180
181			/*
182			 * At this point, 'count' is the number of characters
183			 * matched from the end.
184			 */
185			if (count > matched || best == NULL) {
186				best = ne;
187				matched = count;
188			}
189		}
190	}
191
192	if (best == NULL)
193		return (0);
194
195	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
196		return (-1);
197
198	if ((devid = get_devid(best->ne_name)) == NULL) {
199		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
200	} else {
201		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
202			devid_str_free(devid);
203			return (-1);
204		}
205		devid_str_free(devid);
206	}
207
208	return (0);
209}
210
211/*
212 * Add the given configuration to the list of known devices.
213 */
214static int
215add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
216    nvlist_t *config)
217{
218	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
219	pool_entry_t *pe;
220	vdev_entry_t *ve;
221	config_entry_t *ce;
222	name_entry_t *ne;
223
224	/*
225	 * If this is a hot spare not currently in use or level 2 cache
226	 * device, add it to the list of names to translate, but don't do
227	 * anything else.
228	 */
229	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
230	    &state) == 0 &&
231	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
232	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
233		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
234			return (-1);
235
236		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
237			free(ne);
238			return (-1);
239		}
240		ne->ne_guid = vdev_guid;
241		ne->ne_next = pl->names;
242		pl->names = ne;
243		return (0);
244	}
245
246	/*
247	 * If we have a valid config but cannot read any of these fields, then
248	 * it means we have a half-initialized label.  In vdev_label_init()
249	 * we write a label with txg == 0 so that we can identify the device
250	 * in case the user refers to the same disk later on.  If we fail to
251	 * create the pool, we'll be left with a label in this state
252	 * which should not be considered part of a valid pool.
253	 */
254	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
255	    &pool_guid) != 0 ||
256	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
257	    &vdev_guid) != 0 ||
258	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
259	    &top_guid) != 0 ||
260	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
261	    &txg) != 0 || txg == 0) {
262		nvlist_free(config);
263		return (0);
264	}
265
266	/*
267	 * First, see if we know about this pool.  If not, then add it to the
268	 * list of known pools.
269	 */
270	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
271		if (pe->pe_guid == pool_guid)
272			break;
273	}
274
275	if (pe == NULL) {
276		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
277			nvlist_free(config);
278			return (-1);
279		}
280		pe->pe_guid = pool_guid;
281		pe->pe_next = pl->pools;
282		pl->pools = pe;
283	}
284
285	/*
286	 * Second, see if we know about this toplevel vdev.  Add it if its
287	 * missing.
288	 */
289	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
290		if (ve->ve_guid == top_guid)
291			break;
292	}
293
294	if (ve == NULL) {
295		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
296			nvlist_free(config);
297			return (-1);
298		}
299		ve->ve_guid = top_guid;
300		ve->ve_next = pe->pe_vdevs;
301		pe->pe_vdevs = ve;
302	}
303
304	/*
305	 * Third, see if we have a config with a matching transaction group.  If
306	 * so, then we do nothing.  Otherwise, add it to the list of known
307	 * configs.
308	 */
309	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
310		if (ce->ce_txg == txg)
311			break;
312	}
313
314	if (ce == NULL) {
315		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
316			nvlist_free(config);
317			return (-1);
318		}
319		ce->ce_txg = txg;
320		ce->ce_config = config;
321		ce->ce_next = ve->ve_configs;
322		ve->ve_configs = ce;
323	} else {
324		nvlist_free(config);
325	}
326
327	/*
328	 * At this point we've successfully added our config to the list of
329	 * known configs.  The last thing to do is add the vdev guid -> path
330	 * mappings so that we can fix up the configuration as necessary before
331	 * doing the import.
332	 */
333	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
334		return (-1);
335
336	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
337		free(ne);
338		return (-1);
339	}
340
341	ne->ne_guid = vdev_guid;
342	ne->ne_next = pl->names;
343	pl->names = ne;
344
345	return (0);
346}
347
348/*
349 * Returns true if the named pool matches the given GUID.
350 */
351static int
352pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
353    boolean_t *isactive)
354{
355	zpool_handle_t *zhp;
356	uint64_t theguid;
357
358	if (zpool_open_silent(hdl, name, &zhp) != 0)
359		return (-1);
360
361	if (zhp == NULL) {
362		*isactive = B_FALSE;
363		return (0);
364	}
365
366	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
367	    &theguid) == 0);
368
369	zpool_close(zhp);
370
371	*isactive = (theguid == guid);
372	return (0);
373}
374
375static nvlist_t *
376refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
377{
378	nvlist_t *nvl;
379	zfs_cmd_t zc = { 0 };
380	int err;
381
382	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
383		return (NULL);
384
385	if (zcmd_alloc_dst_nvlist(hdl, &zc,
386	    zc.zc_nvlist_conf_size * 2) != 0) {
387		zcmd_free_nvlists(&zc);
388		return (NULL);
389	}
390
391	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
392	    &zc)) != 0 && errno == ENOMEM) {
393		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
394			zcmd_free_nvlists(&zc);
395			return (NULL);
396		}
397	}
398
399	if (err) {
400		zcmd_free_nvlists(&zc);
401		return (NULL);
402	}
403
404	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
405		zcmd_free_nvlists(&zc);
406		return (NULL);
407	}
408
409	zcmd_free_nvlists(&zc);
410	return (nvl);
411}
412
413/*
414 * Determine if the vdev id is a hole in the namespace.
415 */
416boolean_t
417vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
418{
419	for (int c = 0; c < holes; c++) {
420
421		/* Top-level is a hole */
422		if (hole_array[c] == id)
423			return (B_TRUE);
424	}
425	return (B_FALSE);
426}
427
428/*
429 * Convert our list of pools into the definitive set of configurations.  We
430 * start by picking the best config for each toplevel vdev.  Once that's done,
431 * we assemble the toplevel vdevs into a full config for the pool.  We make a
432 * pass to fix up any incorrect paths, and then add it to the main list to
433 * return to the user.
434 */
435static nvlist_t *
436get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
437{
438	pool_entry_t *pe;
439	vdev_entry_t *ve;
440	config_entry_t *ce;
441	nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
442	nvlist_t **spares, **l2cache;
443	uint_t i, nspares, nl2cache;
444	boolean_t config_seen;
445	uint64_t best_txg;
446	char *name, *hostname;
447	uint64_t guid;
448	uint_t children = 0;
449	nvlist_t **child = NULL;
450	uint_t holes;
451	uint64_t *hole_array, max_id;
452	uint_t c;
453	boolean_t isactive;
454	uint64_t hostid;
455	nvlist_t *nvl;
456	boolean_t found_one = B_FALSE;
457	boolean_t valid_top_config = B_FALSE;
458
459	if (nvlist_alloc(&ret, 0, 0) != 0)
460		goto nomem;
461
462	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
463		uint64_t id, max_txg = 0;
464
465		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
466			goto nomem;
467		config_seen = B_FALSE;
468
469		/*
470		 * Iterate over all toplevel vdevs.  Grab the pool configuration
471		 * from the first one we find, and then go through the rest and
472		 * add them as necessary to the 'vdevs' member of the config.
473		 */
474		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
475
476			/*
477			 * Determine the best configuration for this vdev by
478			 * selecting the config with the latest transaction
479			 * group.
480			 */
481			best_txg = 0;
482			for (ce = ve->ve_configs; ce != NULL;
483			    ce = ce->ce_next) {
484
485				if (ce->ce_txg > best_txg) {
486					tmp = ce->ce_config;
487					best_txg = ce->ce_txg;
488				}
489			}
490
491			/*
492			 * We rely on the fact that the max txg for the
493			 * pool will contain the most up-to-date information
494			 * about the valid top-levels in the vdev namespace.
495			 */
496			if (best_txg > max_txg) {
497				(void) nvlist_remove(config,
498				    ZPOOL_CONFIG_VDEV_CHILDREN,
499				    DATA_TYPE_UINT64);
500				(void) nvlist_remove(config,
501				    ZPOOL_CONFIG_HOLE_ARRAY,
502				    DATA_TYPE_UINT64_ARRAY);
503
504				max_txg = best_txg;
505				hole_array = NULL;
506				holes = 0;
507				max_id = 0;
508				valid_top_config = B_FALSE;
509
510				if (nvlist_lookup_uint64(tmp,
511				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
512					verify(nvlist_add_uint64(config,
513					    ZPOOL_CONFIG_VDEV_CHILDREN,
514					    max_id) == 0);
515					valid_top_config = B_TRUE;
516				}
517
518				if (nvlist_lookup_uint64_array(tmp,
519				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
520				    &holes) == 0) {
521					verify(nvlist_add_uint64_array(config,
522					    ZPOOL_CONFIG_HOLE_ARRAY,
523					    hole_array, holes) == 0);
524				}
525			}
526
527			if (!config_seen) {
528				/*
529				 * Copy the relevant pieces of data to the pool
530				 * configuration:
531				 *
532				 *	version
533				 *	pool guid
534				 *	name
535				 *	comment (if available)
536				 *	pool state
537				 *	hostid (if available)
538				 *	hostname (if available)
539				 */
540				uint64_t state, version;
541				char *comment = NULL;
542
543				version = fnvlist_lookup_uint64(tmp,
544				    ZPOOL_CONFIG_VERSION);
545				fnvlist_add_uint64(config,
546				    ZPOOL_CONFIG_VERSION, version);
547				guid = fnvlist_lookup_uint64(tmp,
548				    ZPOOL_CONFIG_POOL_GUID);
549				fnvlist_add_uint64(config,
550				    ZPOOL_CONFIG_POOL_GUID, guid);
551				name = fnvlist_lookup_string(tmp,
552				    ZPOOL_CONFIG_POOL_NAME);
553				fnvlist_add_string(config,
554				    ZPOOL_CONFIG_POOL_NAME, name);
555
556				if (nvlist_lookup_string(tmp,
557				    ZPOOL_CONFIG_COMMENT, &comment) == 0)
558					fnvlist_add_string(config,
559					    ZPOOL_CONFIG_COMMENT, comment);
560
561				state = fnvlist_lookup_uint64(tmp,
562				    ZPOOL_CONFIG_POOL_STATE);
563				fnvlist_add_uint64(config,
564				    ZPOOL_CONFIG_POOL_STATE, state);
565
566				hostid = 0;
567				if (nvlist_lookup_uint64(tmp,
568				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
569					fnvlist_add_uint64(config,
570					    ZPOOL_CONFIG_HOSTID, hostid);
571					hostname = fnvlist_lookup_string(tmp,
572					    ZPOOL_CONFIG_HOSTNAME);
573					fnvlist_add_string(config,
574					    ZPOOL_CONFIG_HOSTNAME, hostname);
575				}
576
577				config_seen = B_TRUE;
578			}
579
580			/*
581			 * Add this top-level vdev to the child array.
582			 */
583			verify(nvlist_lookup_nvlist(tmp,
584			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
585			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
586			    &id) == 0);
587
588			if (id >= children) {
589				nvlist_t **newchild;
590
591				newchild = zfs_alloc(hdl, (id + 1) *
592				    sizeof (nvlist_t *));
593				if (newchild == NULL)
594					goto nomem;
595
596				for (c = 0; c < children; c++)
597					newchild[c] = child[c];
598
599				free(child);
600				child = newchild;
601				children = id + 1;
602			}
603			if (nvlist_dup(nvtop, &child[id], 0) != 0)
604				goto nomem;
605
606		}
607
608		/*
609		 * If we have information about all the top-levels then
610		 * clean up the nvlist which we've constructed. This
611		 * means removing any extraneous devices that are
612		 * beyond the valid range or adding devices to the end
613		 * of our array which appear to be missing.
614		 */
615		if (valid_top_config) {
616			if (max_id < children) {
617				for (c = max_id; c < children; c++)
618					nvlist_free(child[c]);
619				children = max_id;
620			} else if (max_id > children) {
621				nvlist_t **newchild;
622
623				newchild = zfs_alloc(hdl, (max_id) *
624				    sizeof (nvlist_t *));
625				if (newchild == NULL)
626					goto nomem;
627
628				for (c = 0; c < children; c++)
629					newchild[c] = child[c];
630
631				free(child);
632				child = newchild;
633				children = max_id;
634			}
635		}
636
637		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
638		    &guid) == 0);
639
640		/*
641		 * The vdev namespace may contain holes as a result of
642		 * device removal. We must add them back into the vdev
643		 * tree before we process any missing devices.
644		 */
645		if (holes > 0) {
646			ASSERT(valid_top_config);
647
648			for (c = 0; c < children; c++) {
649				nvlist_t *holey;
650
651				if (child[c] != NULL ||
652				    !vdev_is_hole(hole_array, holes, c))
653					continue;
654
655				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
656				    0) != 0)
657					goto nomem;
658
659				/*
660				 * Holes in the namespace are treated as
661				 * "hole" top-level vdevs and have a
662				 * special flag set on them.
663				 */
664				if (nvlist_add_string(holey,
665				    ZPOOL_CONFIG_TYPE,
666				    VDEV_TYPE_HOLE) != 0 ||
667				    nvlist_add_uint64(holey,
668				    ZPOOL_CONFIG_ID, c) != 0 ||
669				    nvlist_add_uint64(holey,
670				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
671					nvlist_free(holey);
672					goto nomem;
673				}
674				child[c] = holey;
675			}
676		}
677
678		/*
679		 * Look for any missing top-level vdevs.  If this is the case,
680		 * create a faked up 'missing' vdev as a placeholder.  We cannot
681		 * simply compress the child array, because the kernel performs
682		 * certain checks to make sure the vdev IDs match their location
683		 * in the configuration.
684		 */
685		for (c = 0; c < children; c++) {
686			if (child[c] == NULL) {
687				nvlist_t *missing;
688				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
689				    0) != 0)
690					goto nomem;
691				if (nvlist_add_string(missing,
692				    ZPOOL_CONFIG_TYPE,
693				    VDEV_TYPE_MISSING) != 0 ||
694				    nvlist_add_uint64(missing,
695				    ZPOOL_CONFIG_ID, c) != 0 ||
696				    nvlist_add_uint64(missing,
697				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
698					nvlist_free(missing);
699					goto nomem;
700				}
701				child[c] = missing;
702			}
703		}
704
705		/*
706		 * Put all of this pool's top-level vdevs into a root vdev.
707		 */
708		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
709			goto nomem;
710		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
711		    VDEV_TYPE_ROOT) != 0 ||
712		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
713		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
714		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
715		    child, children) != 0) {
716			nvlist_free(nvroot);
717			goto nomem;
718		}
719
720		for (c = 0; c < children; c++)
721			nvlist_free(child[c]);
722		free(child);
723		children = 0;
724		child = NULL;
725
726		/*
727		 * Go through and fix up any paths and/or devids based on our
728		 * known list of vdev GUID -> path mappings.
729		 */
730		if (fix_paths(nvroot, pl->names) != 0) {
731			nvlist_free(nvroot);
732			goto nomem;
733		}
734
735		/*
736		 * Add the root vdev to this pool's configuration.
737		 */
738		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
739		    nvroot) != 0) {
740			nvlist_free(nvroot);
741			goto nomem;
742		}
743		nvlist_free(nvroot);
744
745		/*
746		 * zdb uses this path to report on active pools that were
747		 * imported or created using -R.
748		 */
749		if (active_ok)
750			goto add_pool;
751
752		/*
753		 * Determine if this pool is currently active, in which case we
754		 * can't actually import it.
755		 */
756		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
757		    &name) == 0);
758		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
759		    &guid) == 0);
760
761		if (pool_active(hdl, name, guid, &isactive) != 0)
762			goto error;
763
764		if (isactive) {
765			nvlist_free(config);
766			config = NULL;
767			continue;
768		}
769
770		if ((nvl = refresh_config(hdl, config)) == NULL) {
771			nvlist_free(config);
772			config = NULL;
773			continue;
774		}
775
776		nvlist_free(config);
777		config = nvl;
778
779		/*
780		 * Go through and update the paths for spares, now that we have
781		 * them.
782		 */
783		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
784		    &nvroot) == 0);
785		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
786		    &spares, &nspares) == 0) {
787			for (i = 0; i < nspares; i++) {
788				if (fix_paths(spares[i], pl->names) != 0)
789					goto nomem;
790			}
791		}
792
793		/*
794		 * Update the paths for l2cache devices.
795		 */
796		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
797		    &l2cache, &nl2cache) == 0) {
798			for (i = 0; i < nl2cache; i++) {
799				if (fix_paths(l2cache[i], pl->names) != 0)
800					goto nomem;
801			}
802		}
803
804		/*
805		 * Restore the original information read from the actual label.
806		 */
807		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
808		    DATA_TYPE_UINT64);
809		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
810		    DATA_TYPE_STRING);
811		if (hostid != 0) {
812			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
813			    hostid) == 0);
814			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
815			    hostname) == 0);
816		}
817
818add_pool:
819		/*
820		 * Add this pool to the list of configs.
821		 */
822		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
823		    &name) == 0);
824		if (nvlist_add_nvlist(ret, name, config) != 0)
825			goto nomem;
826
827		found_one = B_TRUE;
828		nvlist_free(config);
829		config = NULL;
830	}
831
832	if (!found_one) {
833		nvlist_free(ret);
834		ret = NULL;
835	}
836
837	return (ret);
838
839nomem:
840	(void) no_memory(hdl);
841error:
842	nvlist_free(config);
843	nvlist_free(ret);
844	for (c = 0; c < children; c++)
845		nvlist_free(child[c]);
846	free(child);
847
848	return (NULL);
849}
850
851/*
852 * Return the offset of the given label.
853 */
854static uint64_t
855label_offset(uint64_t size, int l)
856{
857	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
858	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
859	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
860}
861
862/*
863 * Given a file descriptor, read the label information and return an nvlist
864 * describing the configuration, if there is one.
865 */
866int
867zpool_read_label(int fd, nvlist_t **config)
868{
869	struct stat64 statbuf;
870	int l;
871	vdev_label_t *label;
872	uint64_t state, txg, size;
873
874	*config = NULL;
875
876	if (fstat64(fd, &statbuf) == -1)
877		return (0);
878	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
879
880	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
881		return (-1);
882
883	for (l = 0; l < VDEV_LABELS; l++) {
884		if (pread64(fd, label, sizeof (vdev_label_t),
885		    label_offset(size, l)) != sizeof (vdev_label_t))
886			continue;
887
888		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
889		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
890			continue;
891
892		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
893		    &state) != 0 || state > POOL_STATE_L2CACHE) {
894			nvlist_free(*config);
895			continue;
896		}
897
898		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
899		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
900		    &txg) != 0 || txg == 0)) {
901			nvlist_free(*config);
902			continue;
903		}
904
905		free(label);
906		return (0);
907	}
908
909	free(label);
910	*config = NULL;
911	return (0);
912}
913
914typedef struct rdsk_node {
915	char *rn_name;
916	int rn_dfd;
917	libzfs_handle_t *rn_hdl;
918	nvlist_t *rn_config;
919	avl_tree_t *rn_avl;
920	avl_node_t rn_node;
921	boolean_t rn_nozpool;
922} rdsk_node_t;
923
924static int
925slice_cache_compare(const void *arg1, const void *arg2)
926{
927	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
928	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
929	char *nm1slice, *nm2slice;
930	int rv;
931
932	/*
933	 * slices zero and two are the most likely to provide results,
934	 * so put those first
935	 */
936	nm1slice = strstr(nm1, "s0");
937	nm2slice = strstr(nm2, "s0");
938	if (nm1slice && !nm2slice) {
939		return (-1);
940	}
941	if (!nm1slice && nm2slice) {
942		return (1);
943	}
944	nm1slice = strstr(nm1, "s2");
945	nm2slice = strstr(nm2, "s2");
946	if (nm1slice && !nm2slice) {
947		return (-1);
948	}
949	if (!nm1slice && nm2slice) {
950		return (1);
951	}
952
953	rv = strcmp(nm1, nm2);
954	if (rv == 0)
955		return (0);
956	return (rv > 0 ? 1 : -1);
957}
958
959static void
960check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
961    diskaddr_t size, uint_t blksz)
962{
963	rdsk_node_t tmpnode;
964	rdsk_node_t *node;
965	char sname[MAXNAMELEN];
966
967	tmpnode.rn_name = &sname[0];
968	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
969	    diskname, partno);
970	/*
971	 * protect against division by zero for disk labels that
972	 * contain a bogus sector size
973	 */
974	if (blksz == 0)
975		blksz = DEV_BSIZE;
976	/* too small to contain a zpool? */
977	if ((size < (SPA_MINDEVSIZE / blksz)) &&
978	    (node = avl_find(r, &tmpnode, NULL)))
979		node->rn_nozpool = B_TRUE;
980}
981
982static void
983nozpool_all_slices(avl_tree_t *r, const char *sname)
984{
985	char diskname[MAXNAMELEN];
986	char *ptr;
987	int i;
988
989	(void) strncpy(diskname, sname, MAXNAMELEN);
990	if (((ptr = strrchr(diskname, 's')) == NULL) &&
991	    ((ptr = strrchr(diskname, 'p')) == NULL))
992		return;
993	ptr[0] = 's';
994	ptr[1] = '\0';
995	for (i = 0; i < NDKMAP; i++)
996		check_one_slice(r, diskname, i, 0, 1);
997	ptr[0] = 'p';
998	for (i = 0; i <= FD_NUMPART; i++)
999		check_one_slice(r, diskname, i, 0, 1);
1000}
1001
1002static void
1003check_slices(avl_tree_t *r, int fd, const char *sname)
1004{
1005	struct extvtoc vtoc;
1006	struct dk_gpt *gpt;
1007	char diskname[MAXNAMELEN];
1008	char *ptr;
1009	int i;
1010
1011	(void) strncpy(diskname, sname, MAXNAMELEN);
1012	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1013		return;
1014	ptr[1] = '\0';
1015
1016	if (read_extvtoc(fd, &vtoc) >= 0) {
1017		for (i = 0; i < NDKMAP; i++)
1018			check_one_slice(r, diskname, i,
1019			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1020	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1021		/*
1022		 * on x86 we'll still have leftover links that point
1023		 * to slices s[9-15], so use NDKMAP instead
1024		 */
1025		for (i = 0; i < NDKMAP; i++)
1026			check_one_slice(r, diskname, i,
1027			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1028		/* nodes p[1-4] are never used with EFI labels */
1029		ptr[0] = 'p';
1030		for (i = 1; i <= FD_NUMPART; i++)
1031			check_one_slice(r, diskname, i, 0, 1);
1032		efi_free(gpt);
1033	}
1034}
1035
1036static void
1037zpool_open_func(void *arg)
1038{
1039	rdsk_node_t *rn = arg;
1040	struct stat64 statbuf;
1041	nvlist_t *config;
1042	int fd;
1043
1044	if (rn->rn_nozpool)
1045		return;
1046	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1047		/* symlink to a device that's no longer there */
1048		if (errno == ENOENT)
1049			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1050		return;
1051	}
1052	/*
1053	 * Ignore failed stats.  We only want regular
1054	 * files, character devs and block devs.
1055	 */
1056	if (fstat64(fd, &statbuf) != 0 ||
1057	    (!S_ISREG(statbuf.st_mode) &&
1058	    !S_ISCHR(statbuf.st_mode) &&
1059	    !S_ISBLK(statbuf.st_mode))) {
1060		(void) close(fd);
1061		return;
1062	}
1063	/* this file is too small to hold a zpool */
1064	if (S_ISREG(statbuf.st_mode) &&
1065	    statbuf.st_size < SPA_MINDEVSIZE) {
1066		(void) close(fd);
1067		return;
1068	} else if (!S_ISREG(statbuf.st_mode)) {
1069		/*
1070		 * Try to read the disk label first so we don't have to
1071		 * open a bunch of minor nodes that can't have a zpool.
1072		 */
1073		check_slices(rn->rn_avl, fd, rn->rn_name);
1074	}
1075
1076	if ((zpool_read_label(fd, &config)) != 0) {
1077		(void) close(fd);
1078		(void) no_memory(rn->rn_hdl);
1079		return;
1080	}
1081	(void) close(fd);
1082
1083	rn->rn_config = config;
1084}
1085
1086/*
1087 * Given a file descriptor, clear (zero) the label information.  This function
1088 * is currently only used in the appliance stack as part of the ZFS sysevent
1089 * module.
1090 */
1091int
1092zpool_clear_label(int fd)
1093{
1094	struct stat64 statbuf;
1095	int l;
1096	vdev_label_t *label;
1097	uint64_t size;
1098
1099	if (fstat64(fd, &statbuf) == -1)
1100		return (0);
1101	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1102
1103	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1104		return (-1);
1105
1106	for (l = 0; l < VDEV_LABELS; l++) {
1107		if (pwrite64(fd, label, sizeof (vdev_label_t),
1108		    label_offset(size, l)) != sizeof (vdev_label_t)) {
1109			free(label);
1110			return (-1);
1111		}
1112	}
1113
1114	free(label);
1115	return (0);
1116}
1117
1118/*
1119 * Given a list of directories to search, find all pools stored on disk.  This
1120 * includes partial pools which are not available to import.  If no args are
1121 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1122 * poolname or guid (but not both) are provided by the caller when trying
1123 * to import a specific pool.
1124 */
1125static nvlist_t *
1126zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1127{
1128	int i, dirs = iarg->paths;
1129	struct dirent64 *dp;
1130	char path[MAXPATHLEN];
1131	char *end, **dir = iarg->path;
1132	size_t pathleft;
1133	nvlist_t *ret = NULL;
1134	static char *default_dir = "/dev/dsk";
1135	pool_list_t pools = { 0 };
1136	pool_entry_t *pe, *penext;
1137	vdev_entry_t *ve, *venext;
1138	config_entry_t *ce, *cenext;
1139	name_entry_t *ne, *nenext;
1140	avl_tree_t slice_cache;
1141	rdsk_node_t *slice;
1142	void *cookie;
1143
1144	if (dirs == 0) {
1145		dirs = 1;
1146		dir = &default_dir;
1147	}
1148
1149	/*
1150	 * Go through and read the label configuration information from every
1151	 * possible device, organizing the information according to pool GUID
1152	 * and toplevel GUID.
1153	 */
1154	for (i = 0; i < dirs; i++) {
1155		tpool_t *t;
1156		char *rdsk;
1157		int dfd;
1158		boolean_t config_failed = B_FALSE;
1159		DIR *dirp;
1160
1161		/* use realpath to normalize the path */
1162		if (realpath(dir[i], path) == 0) {
1163			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1164			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1165			goto error;
1166		}
1167		end = &path[strlen(path)];
1168		*end++ = '/';
1169		*end = 0;
1170		pathleft = &path[sizeof (path)] - end;
1171
1172		/*
1173		 * Using raw devices instead of block devices when we're
1174		 * reading the labels skips a bunch of slow operations during
1175		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1176		 */
1177		if (strcmp(path, "/dev/dsk/") == 0)
1178			rdsk = "/dev/rdsk/";
1179		else
1180			rdsk = path;
1181
1182		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1183		    (dirp = fdopendir(dfd)) == NULL) {
1184			if (dfd >= 0)
1185				(void) close(dfd);
1186			zfs_error_aux(hdl, strerror(errno));
1187			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1188			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1189			    rdsk);
1190			goto error;
1191		}
1192
1193		avl_create(&slice_cache, slice_cache_compare,
1194		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1195		/*
1196		 * This is not MT-safe, but we have no MT consumers of libzfs
1197		 */
1198		while ((dp = readdir64(dirp)) != NULL) {
1199			const char *name = dp->d_name;
1200			if (name[0] == '.' &&
1201			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1202				continue;
1203
1204			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1205			slice->rn_name = zfs_strdup(hdl, name);
1206			slice->rn_avl = &slice_cache;
1207			slice->rn_dfd = dfd;
1208			slice->rn_hdl = hdl;
1209			slice->rn_nozpool = B_FALSE;
1210			avl_add(&slice_cache, slice);
1211		}
1212		/*
1213		 * create a thread pool to do all of this in parallel;
1214		 * rn_nozpool is not protected, so this is racy in that
1215		 * multiple tasks could decide that the same slice can
1216		 * not hold a zpool, which is benign.  Also choose
1217		 * double the number of processors; we hold a lot of
1218		 * locks in the kernel, so going beyond this doesn't
1219		 * buy us much.
1220		 */
1221		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1222		    0, NULL);
1223		for (slice = avl_first(&slice_cache); slice;
1224		    (slice = avl_walk(&slice_cache, slice,
1225		    AVL_AFTER)))
1226			(void) tpool_dispatch(t, zpool_open_func, slice);
1227		tpool_wait(t);
1228		tpool_destroy(t);
1229
1230		cookie = NULL;
1231		while ((slice = avl_destroy_nodes(&slice_cache,
1232		    &cookie)) != NULL) {
1233			if (slice->rn_config != NULL && !config_failed) {
1234				nvlist_t *config = slice->rn_config;
1235				boolean_t matched = B_TRUE;
1236
1237				if (iarg->poolname != NULL) {
1238					char *pname;
1239
1240					matched = nvlist_lookup_string(config,
1241					    ZPOOL_CONFIG_POOL_NAME,
1242					    &pname) == 0 &&
1243					    strcmp(iarg->poolname, pname) == 0;
1244				} else if (iarg->guid != 0) {
1245					uint64_t this_guid;
1246
1247					matched = nvlist_lookup_uint64(config,
1248					    ZPOOL_CONFIG_POOL_GUID,
1249					    &this_guid) == 0 &&
1250					    iarg->guid == this_guid;
1251				}
1252				if (!matched) {
1253					nvlist_free(config);
1254				} else {
1255					/*
1256					 * use the non-raw path for the config
1257					 */
1258					(void) strlcpy(end, slice->rn_name,
1259					    pathleft);
1260					if (add_config(hdl, &pools, path,
1261					    config) != 0)
1262						config_failed = B_TRUE;
1263				}
1264			}
1265			free(slice->rn_name);
1266			free(slice);
1267		}
1268		avl_destroy(&slice_cache);
1269
1270		(void) closedir(dirp);
1271
1272		if (config_failed)
1273			goto error;
1274	}
1275
1276	ret = get_configs(hdl, &pools, iarg->can_be_active);
1277
1278error:
1279	for (pe = pools.pools; pe != NULL; pe = penext) {
1280		penext = pe->pe_next;
1281		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1282			venext = ve->ve_next;
1283			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1284				cenext = ce->ce_next;
1285				if (ce->ce_config)
1286					nvlist_free(ce->ce_config);
1287				free(ce);
1288			}
1289			free(ve);
1290		}
1291		free(pe);
1292	}
1293
1294	for (ne = pools.names; ne != NULL; ne = nenext) {
1295		nenext = ne->ne_next;
1296		free(ne->ne_name);
1297		free(ne);
1298	}
1299
1300	return (ret);
1301}
1302
1303nvlist_t *
1304zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1305{
1306	importargs_t iarg = { 0 };
1307
1308	iarg.paths = argc;
1309	iarg.path = argv;
1310
1311	return (zpool_find_import_impl(hdl, &iarg));
1312}
1313
1314/*
1315 * Given a cache file, return the contents as a list of importable pools.
1316 * poolname or guid (but not both) are provided by the caller when trying
1317 * to import a specific pool.
1318 */
1319nvlist_t *
1320zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1321    char *poolname, uint64_t guid)
1322{
1323	char *buf;
1324	int fd;
1325	struct stat64 statbuf;
1326	nvlist_t *raw, *src, *dst;
1327	nvlist_t *pools;
1328	nvpair_t *elem;
1329	char *name;
1330	uint64_t this_guid;
1331	boolean_t active;
1332
1333	verify(poolname == NULL || guid == 0);
1334
1335	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1336		zfs_error_aux(hdl, "%s", strerror(errno));
1337		(void) zfs_error(hdl, EZFS_BADCACHE,
1338		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1339		return (NULL);
1340	}
1341
1342	if (fstat64(fd, &statbuf) != 0) {
1343		zfs_error_aux(hdl, "%s", strerror(errno));
1344		(void) close(fd);
1345		(void) zfs_error(hdl, EZFS_BADCACHE,
1346		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1347		return (NULL);
1348	}
1349
1350	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1351		(void) close(fd);
1352		return (NULL);
1353	}
1354
1355	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1356		(void) close(fd);
1357		free(buf);
1358		(void) zfs_error(hdl, EZFS_BADCACHE,
1359		    dgettext(TEXT_DOMAIN,
1360		    "failed to read cache file contents"));
1361		return (NULL);
1362	}
1363
1364	(void) close(fd);
1365
1366	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1367		free(buf);
1368		(void) zfs_error(hdl, EZFS_BADCACHE,
1369		    dgettext(TEXT_DOMAIN,
1370		    "invalid or corrupt cache file contents"));
1371		return (NULL);
1372	}
1373
1374	free(buf);
1375
1376	/*
1377	 * Go through and get the current state of the pools and refresh their
1378	 * state.
1379	 */
1380	if (nvlist_alloc(&pools, 0, 0) != 0) {
1381		(void) no_memory(hdl);
1382		nvlist_free(raw);
1383		return (NULL);
1384	}
1385
1386	elem = NULL;
1387	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1388		src = fnvpair_value_nvlist(elem);
1389
1390		name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1391		if (poolname != NULL && strcmp(poolname, name) != 0)
1392			continue;
1393
1394		this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1395		if (guid != 0 && guid != this_guid)
1396			continue;
1397
1398		if (pool_active(hdl, name, this_guid, &active) != 0) {
1399			nvlist_free(raw);
1400			nvlist_free(pools);
1401			return (NULL);
1402		}
1403
1404		if (active)
1405			continue;
1406
1407		if ((dst = refresh_config(hdl, src)) == NULL) {
1408			nvlist_free(raw);
1409			nvlist_free(pools);
1410			return (NULL);
1411		}
1412
1413		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1414			(void) no_memory(hdl);
1415			nvlist_free(dst);
1416			nvlist_free(raw);
1417			nvlist_free(pools);
1418			return (NULL);
1419		}
1420		nvlist_free(dst);
1421	}
1422
1423	nvlist_free(raw);
1424	return (pools);
1425}
1426
1427static int
1428name_or_guid_exists(zpool_handle_t *zhp, void *data)
1429{
1430	importargs_t *import = data;
1431	int found = 0;
1432
1433	if (import->poolname != NULL) {
1434		char *pool_name;
1435
1436		verify(nvlist_lookup_string(zhp->zpool_config,
1437		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1438		if (strcmp(pool_name, import->poolname) == 0)
1439			found = 1;
1440	} else {
1441		uint64_t pool_guid;
1442
1443		verify(nvlist_lookup_uint64(zhp->zpool_config,
1444		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1445		if (pool_guid == import->guid)
1446			found = 1;
1447	}
1448
1449	zpool_close(zhp);
1450	return (found);
1451}
1452
1453nvlist_t *
1454zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1455{
1456	verify(import->poolname == NULL || import->guid == 0);
1457
1458	if (import->unique)
1459		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1460
1461	if (import->cachefile != NULL)
1462		return (zpool_find_import_cached(hdl, import->cachefile,
1463		    import->poolname, import->guid));
1464
1465	return (zpool_find_import_impl(hdl, import));
1466}
1467
1468boolean_t
1469find_guid(nvlist_t *nv, uint64_t guid)
1470{
1471	uint64_t tmp;
1472	nvlist_t **child;
1473	uint_t c, children;
1474
1475	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1476	if (tmp == guid)
1477		return (B_TRUE);
1478
1479	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1480	    &child, &children) == 0) {
1481		for (c = 0; c < children; c++)
1482			if (find_guid(child[c], guid))
1483				return (B_TRUE);
1484	}
1485
1486	return (B_FALSE);
1487}
1488
1489typedef struct aux_cbdata {
1490	const char	*cb_type;
1491	uint64_t	cb_guid;
1492	zpool_handle_t	*cb_zhp;
1493} aux_cbdata_t;
1494
1495static int
1496find_aux(zpool_handle_t *zhp, void *data)
1497{
1498	aux_cbdata_t *cbp = data;
1499	nvlist_t **list;
1500	uint_t i, count;
1501	uint64_t guid;
1502	nvlist_t *nvroot;
1503
1504	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1505	    &nvroot) == 0);
1506
1507	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1508	    &list, &count) == 0) {
1509		for (i = 0; i < count; i++) {
1510			verify(nvlist_lookup_uint64(list[i],
1511			    ZPOOL_CONFIG_GUID, &guid) == 0);
1512			if (guid == cbp->cb_guid) {
1513				cbp->cb_zhp = zhp;
1514				return (1);
1515			}
1516		}
1517	}
1518
1519	zpool_close(zhp);
1520	return (0);
1521}
1522
1523/*
1524 * Determines if the pool is in use.  If so, it returns true and the state of
1525 * the pool as well as the name of the pool.  Both strings are allocated and
1526 * must be freed by the caller.
1527 */
1528int
1529zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1530    boolean_t *inuse)
1531{
1532	nvlist_t *config;
1533	char *name;
1534	boolean_t ret;
1535	uint64_t guid, vdev_guid;
1536	zpool_handle_t *zhp;
1537	nvlist_t *pool_config;
1538	uint64_t stateval, isspare;
1539	aux_cbdata_t cb = { 0 };
1540	boolean_t isactive;
1541
1542	*inuse = B_FALSE;
1543
1544	if (zpool_read_label(fd, &config) != 0) {
1545		(void) no_memory(hdl);
1546		return (-1);
1547	}
1548
1549	if (config == NULL)
1550		return (0);
1551
1552	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1553	    &stateval) == 0);
1554	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1555	    &vdev_guid) == 0);
1556
1557	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1558		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1559		    &name) == 0);
1560		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1561		    &guid) == 0);
1562	}
1563
1564	switch (stateval) {
1565	case POOL_STATE_EXPORTED:
1566		/*
1567		 * A pool with an exported state may in fact be imported
1568		 * read-only, so check the in-core state to see if it's
1569		 * active and imported read-only.  If it is, set
1570		 * its state to active.
1571		 */
1572		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1573		    (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1574			if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1575				stateval = POOL_STATE_ACTIVE;
1576
1577			/*
1578			 * All we needed the zpool handle for is the
1579			 * readonly prop check.
1580			 */
1581			zpool_close(zhp);
1582		}
1583
1584		ret = B_TRUE;
1585		break;
1586
1587	case POOL_STATE_ACTIVE:
1588		/*
1589		 * For an active pool, we have to determine if it's really part
1590		 * of a currently active pool (in which case the pool will exist
1591		 * and the guid will be the same), or whether it's part of an
1592		 * active pool that was disconnected without being explicitly
1593		 * exported.
1594		 */
1595		if (pool_active(hdl, name, guid, &isactive) != 0) {
1596			nvlist_free(config);
1597			return (-1);
1598		}
1599
1600		if (isactive) {
1601			/*
1602			 * Because the device may have been removed while
1603			 * offlined, we only report it as active if the vdev is
1604			 * still present in the config.  Otherwise, pretend like
1605			 * it's not in use.
1606			 */
1607			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1608			    (pool_config = zpool_get_config(zhp, NULL))
1609			    != NULL) {
1610				nvlist_t *nvroot;
1611
1612				verify(nvlist_lookup_nvlist(pool_config,
1613				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1614				ret = find_guid(nvroot, vdev_guid);
1615			} else {
1616				ret = B_FALSE;
1617			}
1618
1619			/*
1620			 * If this is an active spare within another pool, we
1621			 * treat it like an unused hot spare.  This allows the
1622			 * user to create a pool with a hot spare that currently
1623			 * in use within another pool.  Since we return B_TRUE,
1624			 * libdiskmgt will continue to prevent generic consumers
1625			 * from using the device.
1626			 */
1627			if (ret && nvlist_lookup_uint64(config,
1628			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1629				stateval = POOL_STATE_SPARE;
1630
1631			if (zhp != NULL)
1632				zpool_close(zhp);
1633		} else {
1634			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1635			ret = B_TRUE;
1636		}
1637		break;
1638
1639	case POOL_STATE_SPARE:
1640		/*
1641		 * For a hot spare, it can be either definitively in use, or
1642		 * potentially active.  To determine if it's in use, we iterate
1643		 * over all pools in the system and search for one with a spare
1644		 * with a matching guid.
1645		 *
1646		 * Due to the shared nature of spares, we don't actually report
1647		 * the potentially active case as in use.  This means the user
1648		 * can freely create pools on the hot spares of exported pools,
1649		 * but to do otherwise makes the resulting code complicated, and
1650		 * we end up having to deal with this case anyway.
1651		 */
1652		cb.cb_zhp = NULL;
1653		cb.cb_guid = vdev_guid;
1654		cb.cb_type = ZPOOL_CONFIG_SPARES;
1655		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1656			name = (char *)zpool_get_name(cb.cb_zhp);
1657			ret = B_TRUE;
1658		} else {
1659			ret = B_FALSE;
1660		}
1661		break;
1662
1663	case POOL_STATE_L2CACHE:
1664
1665		/*
1666		 * Check if any pool is currently using this l2cache device.
1667		 */
1668		cb.cb_zhp = NULL;
1669		cb.cb_guid = vdev_guid;
1670		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1671		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1672			name = (char *)zpool_get_name(cb.cb_zhp);
1673			ret = B_TRUE;
1674		} else {
1675			ret = B_FALSE;
1676		}
1677		break;
1678
1679	default:
1680		ret = B_FALSE;
1681	}
1682
1683
1684	if (ret) {
1685		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1686			if (cb.cb_zhp)
1687				zpool_close(cb.cb_zhp);
1688			nvlist_free(config);
1689			return (-1);
1690		}
1691		*state = (pool_state_t)stateval;
1692	}
1693
1694	if (cb.cb_zhp)
1695		zpool_close(cb.cb_zhp);
1696
1697	nvlist_free(config);
1698	*inuse = ret;
1699	return (0);
1700}
1701