xref: /illumos-gate/usr/src/lib/libzfs/common/libzfs_import.c (revision 99653d4ee642c6528e88224f12409a5f23060994)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Pool import support functions.
30  *
31  * To import a pool, we rely on reading the configuration information from the
32  * ZFS label of each device.  If we successfully read the label, then we
33  * organize the configuration information in the following hierarchy:
34  *
35  * 	pool guid -> toplevel vdev guid -> label txg
36  *
37  * Duplicate entries matching this same tuple will be discarded.  Once we have
38  * examined every device, we pick the best label txg config for each toplevel
39  * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
40  * update any paths that have changed.  Finally, we attempt to import the pool
41  * using our derived config, and record the results.
42  */
43 
44 #include <devid.h>
45 #include <dirent.h>
46 #include <errno.h>
47 #include <libintl.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #include <sys/stat.h>
51 #include <unistd.h>
52 #include <fcntl.h>
53 
54 #include <sys/vdev_impl.h>
55 
56 #include "libzfs.h"
57 #include "libzfs_impl.h"
58 
59 /*
60  * Intermediate structures used to gather configuration information.
61  */
62 typedef struct config_entry {
63 	uint64_t		ce_txg;
64 	nvlist_t		*ce_config;
65 	struct config_entry	*ce_next;
66 } config_entry_t;
67 
68 typedef struct vdev_entry {
69 	uint64_t		ve_guid;
70 	config_entry_t		*ve_configs;
71 	struct vdev_entry	*ve_next;
72 } vdev_entry_t;
73 
74 typedef struct pool_entry {
75 	uint64_t		pe_guid;
76 	vdev_entry_t		*pe_vdevs;
77 	struct pool_entry	*pe_next;
78 } pool_entry_t;
79 
80 typedef struct name_entry {
81 	char			*ne_name;
82 	uint64_t		ne_guid;
83 	struct name_entry	*ne_next;
84 } name_entry_t;
85 
86 typedef struct pool_list {
87 	pool_entry_t		*pools;
88 	name_entry_t		*names;
89 } pool_list_t;
90 
91 static char *
92 get_devid(const char *path)
93 {
94 	int fd;
95 	ddi_devid_t devid;
96 	char *minor, *ret;
97 
98 	if ((fd = open(path, O_RDONLY)) < 0)
99 		return (NULL);
100 
101 	minor = NULL;
102 	ret = NULL;
103 	if (devid_get(fd, &devid) == 0) {
104 		if (devid_get_minor_name(fd, &minor) == 0)
105 			ret = devid_str_encode(devid, minor);
106 		if (minor != NULL)
107 			devid_str_free(minor);
108 		devid_free(devid);
109 	}
110 	(void) close(fd);
111 
112 	return (ret);
113 }
114 
115 
116 /*
117  * Go through and fix up any path and/or devid information for the given vdev
118  * configuration.
119  */
120 static int
121 fix_paths(nvlist_t *nv, name_entry_t *names)
122 {
123 	nvlist_t **child;
124 	uint_t c, children;
125 	uint64_t guid;
126 	name_entry_t *ne, *best;
127 	char *path, *devid;
128 	int matched;
129 
130 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
131 	    &child, &children) == 0) {
132 		for (c = 0; c < children; c++)
133 			if (fix_paths(child[c], names) != 0)
134 				return (-1);
135 		return (0);
136 	}
137 
138 	/*
139 	 * This is a leaf (file or disk) vdev.  In either case, go through
140 	 * the name list and see if we find a matching guid.  If so, replace
141 	 * the path and see if we can calculate a new devid.
142 	 *
143 	 * There may be multiple names associated with a particular guid, in
144 	 * which case we have overlapping slices or multiple paths to the same
145 	 * disk.  If this is the case, then we want to pick the path that is
146 	 * the most similar to the original, where "most similar" is the number
147 	 * of matching characters starting from the end of the path.  This will
148 	 * preserve slice numbers even if the disks have been reorganized, and
149 	 * will also catch preferred disk names if multiple paths exist.
150 	 */
151 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
152 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
153 		path = NULL;
154 
155 	matched = 0;
156 	best = NULL;
157 	for (ne = names; ne != NULL; ne = ne->ne_next) {
158 		if (ne->ne_guid == guid) {
159 			const char *src, *dst;
160 			int count;
161 
162 			if (path == NULL) {
163 				best = ne;
164 				break;
165 			}
166 
167 			src = ne->ne_name + strlen(ne->ne_name) - 1;
168 			dst = path + strlen(path) - 1;
169 			for (count = 0; src >= ne->ne_name && dst >= path;
170 			    src--, dst--, count++)
171 				if (*src != *dst)
172 					break;
173 
174 			/*
175 			 * At this point, 'count' is the number of characters
176 			 * matched from the end.
177 			 */
178 			if (count > matched || best == NULL) {
179 				best = ne;
180 				matched = count;
181 			}
182 		}
183 	}
184 
185 	if (best == NULL)
186 		return (0);
187 
188 	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
189 		return (-1);
190 
191 	if ((devid = get_devid(best->ne_name)) == NULL) {
192 		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
193 	} else {
194 		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
195 			return (-1);
196 		devid_str_free(devid);
197 	}
198 
199 	return (0);
200 }
201 
202 /*
203  * Add the given configuration to the list of known devices.
204  */
205 static int
206 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
207     nvlist_t *config)
208 {
209 	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
210 	pool_entry_t *pe;
211 	vdev_entry_t *ve;
212 	config_entry_t *ce;
213 	name_entry_t *ne;
214 
215 	/*
216 	 * If this is a hot spare not currently in use, add it to the list of
217 	 * names to translate, but don't do anything else.
218 	 */
219 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
220 	    &state) == 0 && state == POOL_STATE_SPARE &&
221 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
222 		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
223 		    return (-1);
224 
225 		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
226 			free(ne);
227 			return (-1);
228 		}
229 		ne->ne_guid = vdev_guid;
230 		ne->ne_next = pl->names;
231 		pl->names = ne;
232 		return (0);
233 	}
234 
235 	/*
236 	 * If we have a valid config but cannot read any of these fields, then
237 	 * it means we have a half-initialized label.  In vdev_label_init()
238 	 * we write a label with txg == 0 so that we can identify the device
239 	 * in case the user refers to the same disk later on.  If we fail to
240 	 * create the pool, we'll be left with a label in this state
241 	 * which should not be considered part of a valid pool.
242 	 */
243 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
244 	    &pool_guid) != 0 ||
245 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
246 	    &vdev_guid) != 0 ||
247 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
248 	    &top_guid) != 0 ||
249 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
250 	    &txg) != 0 || txg == 0) {
251 		nvlist_free(config);
252 		return (0);
253 	}
254 
255 	/*
256 	 * First, see if we know about this pool.  If not, then add it to the
257 	 * list of known pools.
258 	 */
259 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
260 		if (pe->pe_guid == pool_guid)
261 			break;
262 	}
263 
264 	if (pe == NULL) {
265 		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
266 			nvlist_free(config);
267 			return (-1);
268 		}
269 		pe->pe_guid = pool_guid;
270 		pe->pe_next = pl->pools;
271 		pl->pools = pe;
272 	}
273 
274 	/*
275 	 * Second, see if we know about this toplevel vdev.  Add it if its
276 	 * missing.
277 	 */
278 	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
279 		if (ve->ve_guid == top_guid)
280 			break;
281 	}
282 
283 	if (ve == NULL) {
284 		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
285 			nvlist_free(config);
286 			return (-1);
287 		}
288 		ve->ve_guid = top_guid;
289 		ve->ve_next = pe->pe_vdevs;
290 		pe->pe_vdevs = ve;
291 	}
292 
293 	/*
294 	 * Third, see if we have a config with a matching transaction group.  If
295 	 * so, then we do nothing.  Otherwise, add it to the list of known
296 	 * configs.
297 	 */
298 	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
299 		if (ce->ce_txg == txg)
300 			break;
301 	}
302 
303 	if (ce == NULL) {
304 		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
305 			nvlist_free(config);
306 			return (-1);
307 		}
308 		ce->ce_txg = txg;
309 		ce->ce_config = config;
310 		ce->ce_next = ve->ve_configs;
311 		ve->ve_configs = ce;
312 	} else {
313 		nvlist_free(config);
314 	}
315 
316 	/*
317 	 * At this point we've successfully added our config to the list of
318 	 * known configs.  The last thing to do is add the vdev guid -> path
319 	 * mappings so that we can fix up the configuration as necessary before
320 	 * doing the import.
321 	 */
322 	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
323 		return (-1);
324 
325 	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
326 		free(ne);
327 		return (-1);
328 	}
329 
330 	ne->ne_guid = vdev_guid;
331 	ne->ne_next = pl->names;
332 	pl->names = ne;
333 
334 	return (0);
335 }
336 
337 /*
338  * Returns true if the named pool matches the given GUID.
339  */
340 static boolean_t
341 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid)
342 {
343 	zpool_handle_t *zhp;
344 	uint64_t theguid;
345 
346 	if ((zhp = zpool_open_silent(hdl, name)) == NULL)
347 		return (B_FALSE);
348 
349 	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
350 	    &theguid) == 0);
351 
352 	zpool_close(zhp);
353 
354 	return (theguid == guid);
355 }
356 
357 /*
358  * Convert our list of pools into the definitive set of configurations.  We
359  * start by picking the best config for each toplevel vdev.  Once that's done,
360  * we assemble the toplevel vdevs into a full config for the pool.  We make a
361  * pass to fix up any incorrect paths, and then add it to the main list to
362  * return to the user.
363  */
364 static nvlist_t *
365 get_configs(libzfs_handle_t *hdl, pool_list_t *pl)
366 {
367 	pool_entry_t *pe;
368 	vdev_entry_t *ve;
369 	config_entry_t *ce;
370 	nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
371 	nvlist_t **spares;
372 	uint_t i, nspares;
373 	boolean_t config_seen;
374 	uint64_t best_txg;
375 	char *name;
376 	zfs_cmd_t zc = { 0 };
377 	uint64_t version, guid;
378 	char *packed;
379 	size_t len;
380 	int err;
381 	uint_t children = 0;
382 	nvlist_t **child = NULL;
383 	uint_t c;
384 
385 	if (nvlist_alloc(&ret, 0, 0) != 0)
386 		goto nomem;
387 
388 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
389 		uint64_t id;
390 
391 		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
392 			goto nomem;
393 		config_seen = B_FALSE;
394 
395 		/*
396 		 * Iterate over all toplevel vdevs.  Grab the pool configuration
397 		 * from the first one we find, and then go through the rest and
398 		 * add them as necessary to the 'vdevs' member of the config.
399 		 */
400 		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
401 
402 			/*
403 			 * Determine the best configuration for this vdev by
404 			 * selecting the config with the latest transaction
405 			 * group.
406 			 */
407 			best_txg = 0;
408 			for (ce = ve->ve_configs; ce != NULL;
409 			    ce = ce->ce_next) {
410 
411 				if (ce->ce_txg > best_txg) {
412 					tmp = ce->ce_config;
413 					best_txg = ce->ce_txg;
414 				}
415 			}
416 
417 			if (!config_seen) {
418 				/*
419 				 * Copy the relevant pieces of data to the pool
420 				 * configuration:
421 				 *
422 				 *	version
423 				 * 	pool guid
424 				 * 	name
425 				 * 	pool state
426 				 */
427 				uint64_t state;
428 
429 				verify(nvlist_lookup_uint64(tmp,
430 				    ZPOOL_CONFIG_VERSION, &version) == 0);
431 				if (nvlist_add_uint64(config,
432 				    ZPOOL_CONFIG_VERSION, version) != 0)
433 					goto nomem;
434 				verify(nvlist_lookup_uint64(tmp,
435 				    ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
436 				if (nvlist_add_uint64(config,
437 				    ZPOOL_CONFIG_POOL_GUID, guid) != 0)
438 					goto nomem;
439 				verify(nvlist_lookup_string(tmp,
440 				    ZPOOL_CONFIG_POOL_NAME, &name) == 0);
441 				if (nvlist_add_string(config,
442 				    ZPOOL_CONFIG_POOL_NAME, name) != 0)
443 					goto nomem;
444 				verify(nvlist_lookup_uint64(tmp,
445 				    ZPOOL_CONFIG_POOL_STATE, &state) == 0);
446 				if (nvlist_add_uint64(config,
447 				    ZPOOL_CONFIG_POOL_STATE, state) != 0)
448 					goto nomem;
449 
450 				config_seen = B_TRUE;
451 			}
452 
453 			/*
454 			 * Add this top-level vdev to the child array.
455 			 */
456 			verify(nvlist_lookup_nvlist(tmp,
457 			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
458 			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
459 			    &id) == 0);
460 			if (id >= children) {
461 				nvlist_t **newchild;
462 
463 				newchild = zfs_alloc(hdl, (id + 1) *
464 				    sizeof (nvlist_t *));
465 				if (newchild == NULL)
466 					goto nomem;
467 
468 				for (c = 0; c < children; c++)
469 					newchild[c] = child[c];
470 
471 				free(child);
472 				child = newchild;
473 				children = id + 1;
474 			}
475 			if (nvlist_dup(nvtop, &child[id], 0) != 0)
476 				goto nomem;
477 
478 		}
479 
480 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
481 		    &guid) == 0);
482 
483 		/*
484 		 * Look for any missing top-level vdevs.  If this is the case,
485 		 * create a faked up 'missing' vdev as a placeholder.  We cannot
486 		 * simply compress the child array, because the kernel performs
487 		 * certain checks to make sure the vdev IDs match their location
488 		 * in the configuration.
489 		 */
490 		for (c = 0; c < children; c++)
491 			if (child[c] == NULL) {
492 				nvlist_t *missing;
493 				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
494 				    0) != 0)
495 					goto nomem;
496 				if (nvlist_add_string(missing,
497 				    ZPOOL_CONFIG_TYPE,
498 				    VDEV_TYPE_MISSING) != 0 ||
499 				    nvlist_add_uint64(missing,
500 				    ZPOOL_CONFIG_ID, c) != 0 ||
501 				    nvlist_add_uint64(missing,
502 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
503 					nvlist_free(missing);
504 					goto nomem;
505 				}
506 				child[c] = missing;
507 			}
508 
509 		/*
510 		 * Put all of this pool's top-level vdevs into a root vdev.
511 		 */
512 		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
513 			goto nomem;
514 		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
515 		    VDEV_TYPE_ROOT) != 0 ||
516 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
517 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
518 		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
519 		    child, children) != 0) {
520 			nvlist_free(nvroot);
521 			goto nomem;
522 		}
523 
524 		for (c = 0; c < children; c++)
525 			nvlist_free(child[c]);
526 		free(child);
527 		children = 0;
528 		child = NULL;
529 
530 		/*
531 		 * Go through and fix up any paths and/or devids based on our
532 		 * known list of vdev GUID -> path mappings.
533 		 */
534 		if (fix_paths(nvroot, pl->names) != 0) {
535 			nvlist_free(nvroot);
536 			goto nomem;
537 		}
538 
539 		/*
540 		 * Add the root vdev to this pool's configuration.
541 		 */
542 		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
543 		    nvroot) != 0) {
544 			nvlist_free(nvroot);
545 			goto nomem;
546 		}
547 		nvlist_free(nvroot);
548 
549 		/*
550 		 * Determine if this pool is currently active, in which case we
551 		 * can't actually import it.
552 		 */
553 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
554 		    &name) == 0);
555 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
556 		    &guid) == 0);
557 
558 		if (pool_active(hdl, name, guid)) {
559 			nvlist_free(config);
560 			config = NULL;
561 			continue;
562 		}
563 
564 		/*
565 		 * Try to do the import in order to get vdev state.
566 		 */
567 		if ((err = nvlist_size(config, &len, NV_ENCODE_NATIVE)) != 0)
568 			goto nomem;
569 
570 		if ((packed = zfs_alloc(hdl, len)) == NULL)
571 			goto nomem;
572 
573 		if ((err = nvlist_pack(config, &packed, &len,
574 		    NV_ENCODE_NATIVE, 0)) != 0)
575 			goto nomem;
576 
577 		nvlist_free(config);
578 		config = NULL;
579 
580 		zc.zc_config_src_size = len;
581 		zc.zc_config_src = (uint64_t)(uintptr_t)packed;
582 
583 		zc.zc_config_dst_size = 2 * len;
584 		if ((zc.zc_config_dst = (uint64_t)(uintptr_t)
585 		    zfs_alloc(hdl, zc.zc_config_dst_size)) == NULL)
586 			goto nomem;
587 
588 		while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
589 		    &zc)) != 0 && errno == ENOMEM) {
590 			free((void *)(uintptr_t)zc.zc_config_dst);
591 			if ((zc.zc_config_dst = (uint64_t)(uintptr_t)
592 			    zfs_alloc(hdl, zc.zc_config_dst_size)) == NULL)
593 				goto nomem;
594 		}
595 
596 		free(packed);
597 
598 		if (err) {
599 			(void) zpool_standard_error(hdl, errno,
600 			    dgettext(TEXT_DOMAIN, "cannot discover pools"));
601 			free((void *)(uintptr_t)zc.zc_config_dst);
602 			goto error;
603 		}
604 
605 		if (nvlist_unpack((void *)(uintptr_t)zc.zc_config_dst,
606 		    zc.zc_config_dst_size, &config, 0) != 0) {
607 			free((void *)(uintptr_t)zc.zc_config_dst);
608 			goto nomem;
609 		}
610 		free((void *)(uintptr_t)zc.zc_config_dst);
611 
612 		/*
613 		 * Go through and update the paths for spares, now that we have
614 		 * them.
615 		 */
616 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
617 		    &nvroot) == 0);
618 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
619 		    &spares, &nspares) == 0) {
620 			for (i = 0; i < nspares; i++) {
621 				if (fix_paths(spares[i], pl->names) != 0)
622 					goto nomem;
623 			}
624 		}
625 
626 		if (set_pool_health(config) != 0)
627 			goto nomem;
628 
629 		/*
630 		 * Add this pool to the list of configs.
631 		 */
632 		if (nvlist_add_nvlist(ret, name, config) != 0)
633 			goto nomem;
634 
635 		nvlist_free(config);
636 		config = NULL;
637 	}
638 
639 	return (ret);
640 
641 nomem:
642 	(void) no_memory(hdl);
643 error:
644 	if (config)
645 		nvlist_free(config);
646 	if (ret)
647 		nvlist_free(ret);
648 	for (c = 0; c < children; c++)
649 		nvlist_free(child[c]);
650 	if (child)
651 		free(child);
652 
653 	return (NULL);
654 }
655 
656 /*
657  * Return the offset of the given label.
658  */
659 static uint64_t
660 label_offset(size_t size, int l)
661 {
662 	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
663 	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
664 }
665 
666 /*
667  * Given a file descriptor, read the label information and return an nvlist
668  * describing the configuration, if there is one.
669  */
670 int
671 zpool_read_label(int fd, nvlist_t **config)
672 {
673 	struct stat64 statbuf;
674 	int l;
675 	vdev_label_t *label;
676 	uint64_t state, txg;
677 
678 	*config = NULL;
679 
680 	if (fstat64(fd, &statbuf) == -1)
681 		return (0);
682 
683 	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
684 		return (-1);
685 
686 	for (l = 0; l < VDEV_LABELS; l++) {
687 		if (pread(fd, label, sizeof (vdev_label_t),
688 		    label_offset(statbuf.st_size, l)) != sizeof (vdev_label_t))
689 			continue;
690 
691 		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
692 		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
693 			continue;
694 
695 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
696 		    &state) != 0 || state > POOL_STATE_SPARE) {
697 			nvlist_free(*config);
698 			continue;
699 		}
700 
701 		if (state != POOL_STATE_SPARE &&
702 		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
703 		    &txg) != 0 || txg == 0)) {
704 			nvlist_free(*config);
705 			continue;
706 		}
707 
708 		free(label);
709 		return (0);
710 	}
711 
712 	free(label);
713 	*config = NULL;
714 	return (0);
715 }
716 
717 /*
718  * Given a list of directories to search, find all pools stored on disk.  This
719  * includes partial pools which are not available to import.  If no args are
720  * given (argc is 0), then the default directory (/dev/dsk) is searched.
721  */
722 nvlist_t *
723 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
724 {
725 	int i;
726 	DIR *dirp;
727 	struct dirent64 *dp;
728 	char path[MAXPATHLEN];
729 	struct stat64 statbuf;
730 	nvlist_t *ret = NULL, *config;
731 	static char *default_dir = "/dev/dsk";
732 	int fd;
733 	pool_list_t pools = { 0 };
734 	pool_entry_t *pe, *penext;
735 	vdev_entry_t *ve, *venext;
736 	config_entry_t *ce, *cenext;
737 	name_entry_t *ne, *nenext;
738 
739 
740 	if (argc == 0) {
741 		argc = 1;
742 		argv = &default_dir;
743 	}
744 
745 	/*
746 	 * Go through and read the label configuration information from every
747 	 * possible device, organizing the information according to pool GUID
748 	 * and toplevel GUID.
749 	 */
750 	for (i = 0; i < argc; i++) {
751 		if (argv[i][0] != '/') {
752 			(void) zfs_error(hdl, EZFS_BADPATH,
753 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
754 			    argv[i]);
755 			goto error;
756 		}
757 
758 		if ((dirp = opendir(argv[i])) == NULL) {
759 			zfs_error_aux(hdl, strerror(errno));
760 			(void) zfs_error(hdl, EZFS_BADPATH,
761 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
762 			    argv[i]);
763 			goto error;
764 		}
765 
766 		/*
767 		 * This is not MT-safe, but we have no MT consumers of libzfs
768 		 */
769 		while ((dp = readdir64(dirp)) != NULL) {
770 
771 			(void) snprintf(path, sizeof (path), "%s/%s",
772 			    argv[i], dp->d_name);
773 
774 			if (stat64(path, &statbuf) != 0)
775 				continue;
776 
777 			/*
778 			 * Ignore directories (which includes "." and "..").
779 			 */
780 			if (S_ISDIR(statbuf.st_mode))
781 				continue;
782 
783 			if ((fd = open64(path, O_RDONLY)) < 0)
784 				continue;
785 
786 			if ((zpool_read_label(fd, &config)) != 0) {
787 				(void) no_memory(hdl);
788 				goto error;
789 			}
790 
791 			(void) close(fd);
792 
793 			if (config != NULL)
794 				if (add_config(hdl, &pools, path, config) != 0)
795 					goto error;
796 		}
797 	}
798 
799 	ret = get_configs(hdl, &pools);
800 
801 error:
802 	for (pe = pools.pools; pe != NULL; pe = penext) {
803 		penext = pe->pe_next;
804 		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
805 			venext = ve->ve_next;
806 			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
807 				cenext = ce->ce_next;
808 				if (ce->ce_config)
809 					nvlist_free(ce->ce_config);
810 				free(ce);
811 			}
812 			free(ve);
813 		}
814 		free(pe);
815 	}
816 
817 	for (ne = pools.names; ne != NULL; ne = nenext) {
818 		nenext = ne->ne_next;
819 		if (ne->ne_name)
820 			free(ne->ne_name);
821 		free(ne);
822 	}
823 
824 
825 	return (ret);
826 }
827 
828 boolean_t
829 find_guid(nvlist_t *nv, uint64_t guid)
830 {
831 	uint64_t tmp;
832 	nvlist_t **child;
833 	uint_t c, children;
834 
835 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
836 	if (tmp == guid)
837 		return (B_TRUE);
838 
839 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
840 	    &child, &children) == 0) {
841 		for (c = 0; c < children; c++)
842 			if (find_guid(child[c], guid))
843 				return (B_TRUE);
844 	}
845 
846 	return (B_FALSE);
847 }
848 
849 typedef struct spare_cbdata {
850 	uint64_t	cb_guid;
851 	zpool_handle_t	*cb_zhp;
852 } spare_cbdata_t;
853 
854 static int
855 find_spare(zpool_handle_t *zhp, void *data)
856 {
857 	spare_cbdata_t *cbp = data;
858 	nvlist_t **spares;
859 	uint_t i, nspares;
860 	uint64_t guid;
861 	nvlist_t *nvroot;
862 
863 	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
864 	    &nvroot) == 0);
865 
866 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
867 	    &spares, &nspares) == 0) {
868 		for (i = 0; i < nspares; i++) {
869 			verify(nvlist_lookup_uint64(spares[i],
870 			    ZPOOL_CONFIG_GUID, &guid) == 0);
871 			if (guid == cbp->cb_guid) {
872 				cbp->cb_zhp = zhp;
873 				return (1);
874 			}
875 		}
876 	}
877 
878 	zpool_close(zhp);
879 	return (0);
880 }
881 
882 /*
883  * Determines if the pool is in use.  If so, it returns true and the state of
884  * the pool as well as the name of the pool.  Both strings are allocated and
885  * must be freed by the caller.
886  */
887 int
888 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
889     boolean_t *inuse)
890 {
891 	nvlist_t *config;
892 	char *name;
893 	boolean_t ret;
894 	uint64_t guid, vdev_guid;
895 	zpool_handle_t *zhp;
896 	nvlist_t *pool_config;
897 	uint64_t stateval;
898 	spare_cbdata_t cb = { 0 };
899 
900 	*inuse = B_FALSE;
901 
902 	if (zpool_read_label(fd, &config) != 0) {
903 		(void) no_memory(hdl);
904 		return (-1);
905 	}
906 
907 	if (config == NULL)
908 		return (0);
909 
910 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
911 	    &stateval) == 0);
912 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
913 	    &vdev_guid) == 0);
914 
915 	if (stateval != POOL_STATE_SPARE) {
916 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
917 		    &name) == 0);
918 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
919 		    &guid) == 0);
920 	}
921 
922 	switch (stateval) {
923 	case POOL_STATE_EXPORTED:
924 		ret = B_TRUE;
925 		break;
926 
927 	case POOL_STATE_ACTIVE:
928 		/*
929 		 * For an active pool, we have to determine if it's really part
930 		 * of a currently active pool (in which case the pool will exist
931 		 * and the guid will be the same), or whether it's part of an
932 		 * active pool that was disconnected without being explicitly
933 		 * exported.
934 		 */
935 		if (pool_active(hdl, name, guid)) {
936 			/*
937 			 * Because the device may have been removed while
938 			 * offlined, we only report it as active if the vdev is
939 			 * still present in the config.  Otherwise, pretend like
940 			 * it's not in use.
941 			 */
942 			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
943 			    (pool_config = zpool_get_config(zhp, NULL))
944 			    != NULL) {
945 				nvlist_t *nvroot;
946 
947 				verify(nvlist_lookup_nvlist(pool_config,
948 				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
949 				ret = find_guid(nvroot, vdev_guid);
950 			} else {
951 				ret = B_FALSE;
952 			}
953 
954 			if (zhp != NULL)
955 				zpool_close(zhp);
956 		} else {
957 			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
958 			ret = B_TRUE;
959 		}
960 		break;
961 
962 	case POOL_STATE_SPARE:
963 		/*
964 		 * For a hot spare, it can be either definitively in use, or
965 		 * potentially active.  To determine if it's in use, we iterate
966 		 * over all pools in the system and search for one with a spare
967 		 * with a matching guid.
968 		 *
969 		 * Due to the shared nature of spares, we don't actually report
970 		 * the potentially active case as in use.  This means the user
971 		 * can freely create pools on the hot spares of exported pools,
972 		 * but to do otherwise makes the resulting code complicated, and
973 		 * we end up having to deal with this case anyway.
974 		 */
975 		cb.cb_zhp = NULL;
976 		cb.cb_guid = vdev_guid;
977 		if (zpool_iter(hdl, find_spare, &cb) == 1) {
978 			name = (char *)zpool_get_name(cb.cb_zhp);
979 			ret = TRUE;
980 		} else {
981 			ret = FALSE;
982 		}
983 		break;
984 
985 	default:
986 		ret = B_FALSE;
987 	}
988 
989 
990 	if (ret) {
991 		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
992 			nvlist_free(config);
993 			return (-1);
994 		}
995 		*state = (pool_state_t)stateval;
996 	}
997 
998 	if (cb.cb_zhp)
999 		zpool_close(cb.cb_zhp);
1000 
1001 	nvlist_free(config);
1002 	*inuse = ret;
1003 	return (0);
1004 }
1005