xref: /illumos-gate/usr/src/lib/libzfs/common/libzfs_import.c (revision 8b65a70b763232c90a91f31eb2010314c02ed338)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25  * Copyright 2015 RackTop Systems.
26  * Copyright 2016 Nexenta Systems, Inc.
27  */
28 
29 /*
30  * Pool import support functions.
31  *
32  * To import a pool, we rely on reading the configuration information from the
33  * ZFS label of each device.  If we successfully read the label, then we
34  * organize the configuration information in the following hierarchy:
35  *
36  * 	pool guid -> toplevel vdev guid -> label txg
37  *
38  * Duplicate entries matching this same tuple will be discarded.  Once we have
39  * examined every device, we pick the best label txg config for each toplevel
40  * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
41  * update any paths that have changed.  Finally, we attempt to import the pool
42  * using our derived config, and record the results.
43  */
44 
45 #include <ctype.h>
46 #include <devid.h>
47 #include <dirent.h>
48 #include <errno.h>
49 #include <libintl.h>
50 #include <stddef.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <sys/stat.h>
54 #include <unistd.h>
55 #include <fcntl.h>
56 #include <sys/vtoc.h>
57 #include <sys/dktp/fdisk.h>
58 #include <sys/efi_partition.h>
59 #include <thread_pool.h>
60 
61 #include <sys/vdev_impl.h>
62 
63 #include "libzfs.h"
64 #include "libzfs_impl.h"
65 
66 /*
67  * Intermediate structures used to gather configuration information.
68  */
69 typedef struct config_entry {
70 	uint64_t		ce_txg;
71 	nvlist_t		*ce_config;
72 	struct config_entry	*ce_next;
73 } config_entry_t;
74 
75 typedef struct vdev_entry {
76 	uint64_t		ve_guid;
77 	config_entry_t		*ve_configs;
78 	struct vdev_entry	*ve_next;
79 } vdev_entry_t;
80 
81 typedef struct pool_entry {
82 	uint64_t		pe_guid;
83 	vdev_entry_t		*pe_vdevs;
84 	struct pool_entry	*pe_next;
85 } pool_entry_t;
86 
87 typedef struct name_entry {
88 	char			*ne_name;
89 	uint64_t		ne_guid;
90 	struct name_entry	*ne_next;
91 } name_entry_t;
92 
93 typedef struct pool_list {
94 	pool_entry_t		*pools;
95 	name_entry_t		*names;
96 } pool_list_t;
97 
98 static char *
99 get_devid(const char *path)
100 {
101 	int fd;
102 	ddi_devid_t devid;
103 	char *minor, *ret;
104 
105 	if ((fd = open(path, O_RDONLY)) < 0)
106 		return (NULL);
107 
108 	minor = NULL;
109 	ret = NULL;
110 	if (devid_get(fd, &devid) == 0) {
111 		if (devid_get_minor_name(fd, &minor) == 0)
112 			ret = devid_str_encode(devid, minor);
113 		if (minor != NULL)
114 			devid_str_free(minor);
115 		devid_free(devid);
116 	}
117 	(void) close(fd);
118 
119 	return (ret);
120 }
121 
122 
123 /*
124  * Go through and fix up any path and/or devid information for the given vdev
125  * configuration.
126  */
127 static int
128 fix_paths(nvlist_t *nv, name_entry_t *names)
129 {
130 	nvlist_t **child;
131 	uint_t c, children;
132 	uint64_t guid;
133 	name_entry_t *ne, *best;
134 	char *path, *devid;
135 	int matched;
136 
137 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
138 	    &child, &children) == 0) {
139 		for (c = 0; c < children; c++)
140 			if (fix_paths(child[c], names) != 0)
141 				return (-1);
142 		return (0);
143 	}
144 
145 	/*
146 	 * This is a leaf (file or disk) vdev.  In either case, go through
147 	 * the name list and see if we find a matching guid.  If so, replace
148 	 * the path and see if we can calculate a new devid.
149 	 *
150 	 * There may be multiple names associated with a particular guid, in
151 	 * which case we have overlapping slices or multiple paths to the same
152 	 * disk.  If this is the case, then we want to pick the path that is
153 	 * the most similar to the original, where "most similar" is the number
154 	 * of matching characters starting from the end of the path.  This will
155 	 * preserve slice numbers even if the disks have been reorganized, and
156 	 * will also catch preferred disk names if multiple paths exist.
157 	 */
158 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
159 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
160 		path = NULL;
161 
162 	matched = 0;
163 	best = NULL;
164 	for (ne = names; ne != NULL; ne = ne->ne_next) {
165 		if (ne->ne_guid == guid) {
166 			const char *src, *dst;
167 			int count;
168 
169 			if (path == NULL) {
170 				best = ne;
171 				break;
172 			}
173 
174 			src = ne->ne_name + strlen(ne->ne_name) - 1;
175 			dst = path + strlen(path) - 1;
176 			for (count = 0; src >= ne->ne_name && dst >= path;
177 			    src--, dst--, count++)
178 				if (*src != *dst)
179 					break;
180 
181 			/*
182 			 * At this point, 'count' is the number of characters
183 			 * matched from the end.
184 			 */
185 			if (count > matched || best == NULL) {
186 				best = ne;
187 				matched = count;
188 			}
189 		}
190 	}
191 
192 	if (best == NULL)
193 		return (0);
194 
195 	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
196 		return (-1);
197 
198 	if ((devid = get_devid(best->ne_name)) == NULL) {
199 		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
200 	} else {
201 		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
202 			devid_str_free(devid);
203 			return (-1);
204 		}
205 		devid_str_free(devid);
206 	}
207 
208 	return (0);
209 }
210 
211 /*
212  * Add the given configuration to the list of known devices.
213  */
214 static int
215 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
216     nvlist_t *config)
217 {
218 	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
219 	pool_entry_t *pe;
220 	vdev_entry_t *ve;
221 	config_entry_t *ce;
222 	name_entry_t *ne;
223 
224 	/*
225 	 * If this is a hot spare not currently in use or level 2 cache
226 	 * device, add it to the list of names to translate, but don't do
227 	 * anything else.
228 	 */
229 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
230 	    &state) == 0 &&
231 	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
232 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
233 		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
234 			return (-1);
235 
236 		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
237 			free(ne);
238 			return (-1);
239 		}
240 
241 		ne->ne_guid = vdev_guid;
242 		ne->ne_next = pl->names;
243 		pl->names = ne;
244 
245 		nvlist_free(config);
246 		return (0);
247 	}
248 
249 	/*
250 	 * If we have a valid config but cannot read any of these fields, then
251 	 * it means we have a half-initialized label.  In vdev_label_init()
252 	 * we write a label with txg == 0 so that we can identify the device
253 	 * in case the user refers to the same disk later on.  If we fail to
254 	 * create the pool, we'll be left with a label in this state
255 	 * which should not be considered part of a valid pool.
256 	 */
257 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
258 	    &pool_guid) != 0 ||
259 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
260 	    &vdev_guid) != 0 ||
261 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
262 	    &top_guid) != 0 ||
263 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
264 	    &txg) != 0 || txg == 0) {
265 		nvlist_free(config);
266 		return (0);
267 	}
268 
269 	/*
270 	 * First, see if we know about this pool.  If not, then add it to the
271 	 * list of known pools.
272 	 */
273 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
274 		if (pe->pe_guid == pool_guid)
275 			break;
276 	}
277 
278 	if (pe == NULL) {
279 		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
280 			nvlist_free(config);
281 			return (-1);
282 		}
283 		pe->pe_guid = pool_guid;
284 		pe->pe_next = pl->pools;
285 		pl->pools = pe;
286 	}
287 
288 	/*
289 	 * Second, see if we know about this toplevel vdev.  Add it if its
290 	 * missing.
291 	 */
292 	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
293 		if (ve->ve_guid == top_guid)
294 			break;
295 	}
296 
297 	if (ve == NULL) {
298 		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
299 			nvlist_free(config);
300 			return (-1);
301 		}
302 		ve->ve_guid = top_guid;
303 		ve->ve_next = pe->pe_vdevs;
304 		pe->pe_vdevs = ve;
305 	}
306 
307 	/*
308 	 * Third, see if we have a config with a matching transaction group.  If
309 	 * so, then we do nothing.  Otherwise, add it to the list of known
310 	 * configs.
311 	 */
312 	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
313 		if (ce->ce_txg == txg)
314 			break;
315 	}
316 
317 	if (ce == NULL) {
318 		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
319 			nvlist_free(config);
320 			return (-1);
321 		}
322 		ce->ce_txg = txg;
323 		ce->ce_config = config;
324 		ce->ce_next = ve->ve_configs;
325 		ve->ve_configs = ce;
326 	} else {
327 		nvlist_free(config);
328 	}
329 
330 	/*
331 	 * At this point we've successfully added our config to the list of
332 	 * known configs.  The last thing to do is add the vdev guid -> path
333 	 * mappings so that we can fix up the configuration as necessary before
334 	 * doing the import.
335 	 */
336 	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
337 		return (-1);
338 
339 	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
340 		free(ne);
341 		return (-1);
342 	}
343 
344 	ne->ne_guid = vdev_guid;
345 	ne->ne_next = pl->names;
346 	pl->names = ne;
347 
348 	return (0);
349 }
350 
351 /*
352  * Returns true if the named pool matches the given GUID.
353  */
354 static int
355 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
356     boolean_t *isactive)
357 {
358 	zpool_handle_t *zhp;
359 	uint64_t theguid;
360 
361 	if (zpool_open_silent(hdl, name, &zhp) != 0)
362 		return (-1);
363 
364 	if (zhp == NULL) {
365 		*isactive = B_FALSE;
366 		return (0);
367 	}
368 
369 	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
370 	    &theguid) == 0);
371 
372 	zpool_close(zhp);
373 
374 	*isactive = (theguid == guid);
375 	return (0);
376 }
377 
378 static nvlist_t *
379 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
380 {
381 	nvlist_t *nvl;
382 	zfs_cmd_t zc = { 0 };
383 	int err, dstbuf_size;
384 
385 	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
386 		return (NULL);
387 
388 	dstbuf_size = MAX(CONFIG_BUF_MINSIZE, zc.zc_nvlist_conf_size * 4);
389 
390 	if (zcmd_alloc_dst_nvlist(hdl, &zc, dstbuf_size) != 0) {
391 		zcmd_free_nvlists(&zc);
392 		return (NULL);
393 	}
394 
395 	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
396 	    &zc)) != 0 && errno == ENOMEM) {
397 		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
398 			zcmd_free_nvlists(&zc);
399 			return (NULL);
400 		}
401 	}
402 
403 	if (err) {
404 		zcmd_free_nvlists(&zc);
405 		return (NULL);
406 	}
407 
408 	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
409 		zcmd_free_nvlists(&zc);
410 		return (NULL);
411 	}
412 
413 	zcmd_free_nvlists(&zc);
414 	return (nvl);
415 }
416 
417 /*
418  * Determine if the vdev id is a hole in the namespace.
419  */
420 boolean_t
421 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
422 {
423 	for (int c = 0; c < holes; c++) {
424 
425 		/* Top-level is a hole */
426 		if (hole_array[c] == id)
427 			return (B_TRUE);
428 	}
429 	return (B_FALSE);
430 }
431 
432 /*
433  * Convert our list of pools into the definitive set of configurations.  We
434  * start by picking the best config for each toplevel vdev.  Once that's done,
435  * we assemble the toplevel vdevs into a full config for the pool.  We make a
436  * pass to fix up any incorrect paths, and then add it to the main list to
437  * return to the user.
438  */
439 static nvlist_t *
440 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
441 {
442 	pool_entry_t *pe;
443 	vdev_entry_t *ve;
444 	config_entry_t *ce;
445 	nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
446 	nvlist_t **spares, **l2cache;
447 	uint_t i, nspares, nl2cache;
448 	boolean_t config_seen;
449 	uint64_t best_txg;
450 	char *name, *hostname = NULL;
451 	uint64_t guid;
452 	uint_t children = 0;
453 	nvlist_t **child = NULL;
454 	uint_t holes;
455 	uint64_t *hole_array, max_id;
456 	uint_t c;
457 	boolean_t isactive;
458 	uint64_t hostid;
459 	nvlist_t *nvl;
460 	boolean_t found_one = B_FALSE;
461 	boolean_t valid_top_config = B_FALSE;
462 
463 	if (nvlist_alloc(&ret, 0, 0) != 0)
464 		goto nomem;
465 
466 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
467 		uint64_t id, max_txg = 0;
468 
469 		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
470 			goto nomem;
471 		config_seen = B_FALSE;
472 
473 		/*
474 		 * Iterate over all toplevel vdevs.  Grab the pool configuration
475 		 * from the first one we find, and then go through the rest and
476 		 * add them as necessary to the 'vdevs' member of the config.
477 		 */
478 		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
479 
480 			/*
481 			 * Determine the best configuration for this vdev by
482 			 * selecting the config with the latest transaction
483 			 * group.
484 			 */
485 			best_txg = 0;
486 			for (ce = ve->ve_configs; ce != NULL;
487 			    ce = ce->ce_next) {
488 
489 				if (ce->ce_txg > best_txg) {
490 					tmp = ce->ce_config;
491 					best_txg = ce->ce_txg;
492 				}
493 			}
494 
495 			/*
496 			 * We rely on the fact that the max txg for the
497 			 * pool will contain the most up-to-date information
498 			 * about the valid top-levels in the vdev namespace.
499 			 */
500 			if (best_txg > max_txg) {
501 				(void) nvlist_remove(config,
502 				    ZPOOL_CONFIG_VDEV_CHILDREN,
503 				    DATA_TYPE_UINT64);
504 				(void) nvlist_remove(config,
505 				    ZPOOL_CONFIG_HOLE_ARRAY,
506 				    DATA_TYPE_UINT64_ARRAY);
507 
508 				max_txg = best_txg;
509 				hole_array = NULL;
510 				holes = 0;
511 				max_id = 0;
512 				valid_top_config = B_FALSE;
513 
514 				if (nvlist_lookup_uint64(tmp,
515 				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
516 					verify(nvlist_add_uint64(config,
517 					    ZPOOL_CONFIG_VDEV_CHILDREN,
518 					    max_id) == 0);
519 					valid_top_config = B_TRUE;
520 				}
521 
522 				if (nvlist_lookup_uint64_array(tmp,
523 				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
524 				    &holes) == 0) {
525 					verify(nvlist_add_uint64_array(config,
526 					    ZPOOL_CONFIG_HOLE_ARRAY,
527 					    hole_array, holes) == 0);
528 				}
529 			}
530 
531 			if (!config_seen) {
532 				/*
533 				 * Copy the relevant pieces of data to the pool
534 				 * configuration:
535 				 *
536 				 *	version
537 				 *	pool guid
538 				 *	name
539 				 *	comment (if available)
540 				 *	pool state
541 				 *	hostid (if available)
542 				 *	hostname (if available)
543 				 */
544 				uint64_t state, version;
545 				char *comment = NULL;
546 
547 				version = fnvlist_lookup_uint64(tmp,
548 				    ZPOOL_CONFIG_VERSION);
549 				fnvlist_add_uint64(config,
550 				    ZPOOL_CONFIG_VERSION, version);
551 				guid = fnvlist_lookup_uint64(tmp,
552 				    ZPOOL_CONFIG_POOL_GUID);
553 				fnvlist_add_uint64(config,
554 				    ZPOOL_CONFIG_POOL_GUID, guid);
555 				name = fnvlist_lookup_string(tmp,
556 				    ZPOOL_CONFIG_POOL_NAME);
557 				fnvlist_add_string(config,
558 				    ZPOOL_CONFIG_POOL_NAME, name);
559 
560 				if (nvlist_lookup_string(tmp,
561 				    ZPOOL_CONFIG_COMMENT, &comment) == 0)
562 					fnvlist_add_string(config,
563 					    ZPOOL_CONFIG_COMMENT, comment);
564 
565 				state = fnvlist_lookup_uint64(tmp,
566 				    ZPOOL_CONFIG_POOL_STATE);
567 				fnvlist_add_uint64(config,
568 				    ZPOOL_CONFIG_POOL_STATE, state);
569 
570 				hostid = 0;
571 				if (nvlist_lookup_uint64(tmp,
572 				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
573 					fnvlist_add_uint64(config,
574 					    ZPOOL_CONFIG_HOSTID, hostid);
575 					hostname = fnvlist_lookup_string(tmp,
576 					    ZPOOL_CONFIG_HOSTNAME);
577 					fnvlist_add_string(config,
578 					    ZPOOL_CONFIG_HOSTNAME, hostname);
579 				}
580 
581 				config_seen = B_TRUE;
582 			}
583 
584 			/*
585 			 * Add this top-level vdev to the child array.
586 			 */
587 			verify(nvlist_lookup_nvlist(tmp,
588 			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
589 			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
590 			    &id) == 0);
591 
592 			if (id >= children) {
593 				nvlist_t **newchild;
594 
595 				newchild = zfs_alloc(hdl, (id + 1) *
596 				    sizeof (nvlist_t *));
597 				if (newchild == NULL)
598 					goto nomem;
599 
600 				for (c = 0; c < children; c++)
601 					newchild[c] = child[c];
602 
603 				free(child);
604 				child = newchild;
605 				children = id + 1;
606 			}
607 			if (nvlist_dup(nvtop, &child[id], 0) != 0)
608 				goto nomem;
609 
610 		}
611 
612 		/*
613 		 * If we have information about all the top-levels then
614 		 * clean up the nvlist which we've constructed. This
615 		 * means removing any extraneous devices that are
616 		 * beyond the valid range or adding devices to the end
617 		 * of our array which appear to be missing.
618 		 */
619 		if (valid_top_config) {
620 			if (max_id < children) {
621 				for (c = max_id; c < children; c++)
622 					nvlist_free(child[c]);
623 				children = max_id;
624 			} else if (max_id > children) {
625 				nvlist_t **newchild;
626 
627 				newchild = zfs_alloc(hdl, (max_id) *
628 				    sizeof (nvlist_t *));
629 				if (newchild == NULL)
630 					goto nomem;
631 
632 				for (c = 0; c < children; c++)
633 					newchild[c] = child[c];
634 
635 				free(child);
636 				child = newchild;
637 				children = max_id;
638 			}
639 		}
640 
641 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
642 		    &guid) == 0);
643 
644 		/*
645 		 * The vdev namespace may contain holes as a result of
646 		 * device removal. We must add them back into the vdev
647 		 * tree before we process any missing devices.
648 		 */
649 		if (holes > 0) {
650 			ASSERT(valid_top_config);
651 
652 			for (c = 0; c < children; c++) {
653 				nvlist_t *holey;
654 
655 				if (child[c] != NULL ||
656 				    !vdev_is_hole(hole_array, holes, c))
657 					continue;
658 
659 				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
660 				    0) != 0)
661 					goto nomem;
662 
663 				/*
664 				 * Holes in the namespace are treated as
665 				 * "hole" top-level vdevs and have a
666 				 * special flag set on them.
667 				 */
668 				if (nvlist_add_string(holey,
669 				    ZPOOL_CONFIG_TYPE,
670 				    VDEV_TYPE_HOLE) != 0 ||
671 				    nvlist_add_uint64(holey,
672 				    ZPOOL_CONFIG_ID, c) != 0 ||
673 				    nvlist_add_uint64(holey,
674 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
675 					nvlist_free(holey);
676 					goto nomem;
677 				}
678 				child[c] = holey;
679 			}
680 		}
681 
682 		/*
683 		 * Look for any missing top-level vdevs.  If this is the case,
684 		 * create a faked up 'missing' vdev as a placeholder.  We cannot
685 		 * simply compress the child array, because the kernel performs
686 		 * certain checks to make sure the vdev IDs match their location
687 		 * in the configuration.
688 		 */
689 		for (c = 0; c < children; c++) {
690 			if (child[c] == NULL) {
691 				nvlist_t *missing;
692 				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
693 				    0) != 0)
694 					goto nomem;
695 				if (nvlist_add_string(missing,
696 				    ZPOOL_CONFIG_TYPE,
697 				    VDEV_TYPE_MISSING) != 0 ||
698 				    nvlist_add_uint64(missing,
699 				    ZPOOL_CONFIG_ID, c) != 0 ||
700 				    nvlist_add_uint64(missing,
701 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
702 					nvlist_free(missing);
703 					goto nomem;
704 				}
705 				child[c] = missing;
706 			}
707 		}
708 
709 		/*
710 		 * Put all of this pool's top-level vdevs into a root vdev.
711 		 */
712 		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
713 			goto nomem;
714 		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
715 		    VDEV_TYPE_ROOT) != 0 ||
716 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
717 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
718 		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
719 		    child, children) != 0) {
720 			nvlist_free(nvroot);
721 			goto nomem;
722 		}
723 
724 		for (c = 0; c < children; c++)
725 			nvlist_free(child[c]);
726 		free(child);
727 		children = 0;
728 		child = NULL;
729 
730 		/*
731 		 * Go through and fix up any paths and/or devids based on our
732 		 * known list of vdev GUID -> path mappings.
733 		 */
734 		if (fix_paths(nvroot, pl->names) != 0) {
735 			nvlist_free(nvroot);
736 			goto nomem;
737 		}
738 
739 		/*
740 		 * Add the root vdev to this pool's configuration.
741 		 */
742 		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
743 		    nvroot) != 0) {
744 			nvlist_free(nvroot);
745 			goto nomem;
746 		}
747 		nvlist_free(nvroot);
748 
749 		/*
750 		 * zdb uses this path to report on active pools that were
751 		 * imported or created using -R.
752 		 */
753 		if (active_ok)
754 			goto add_pool;
755 
756 		/*
757 		 * Determine if this pool is currently active, in which case we
758 		 * can't actually import it.
759 		 */
760 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
761 		    &name) == 0);
762 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
763 		    &guid) == 0);
764 
765 		if (pool_active(hdl, name, guid, &isactive) != 0)
766 			goto error;
767 
768 		if (isactive) {
769 			nvlist_free(config);
770 			config = NULL;
771 			continue;
772 		}
773 
774 		if ((nvl = refresh_config(hdl, config)) == NULL) {
775 			nvlist_free(config);
776 			config = NULL;
777 			continue;
778 		}
779 
780 		nvlist_free(config);
781 		config = nvl;
782 
783 		/*
784 		 * Go through and update the paths for spares, now that we have
785 		 * them.
786 		 */
787 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
788 		    &nvroot) == 0);
789 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
790 		    &spares, &nspares) == 0) {
791 			for (i = 0; i < nspares; i++) {
792 				if (fix_paths(spares[i], pl->names) != 0)
793 					goto nomem;
794 			}
795 		}
796 
797 		/*
798 		 * Update the paths for l2cache devices.
799 		 */
800 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
801 		    &l2cache, &nl2cache) == 0) {
802 			for (i = 0; i < nl2cache; i++) {
803 				if (fix_paths(l2cache[i], pl->names) != 0)
804 					goto nomem;
805 			}
806 		}
807 
808 		/*
809 		 * Restore the original information read from the actual label.
810 		 */
811 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
812 		    DATA_TYPE_UINT64);
813 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
814 		    DATA_TYPE_STRING);
815 		if (hostid != 0) {
816 			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
817 			    hostid) == 0);
818 			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
819 			    hostname) == 0);
820 		}
821 
822 add_pool:
823 		/*
824 		 * Add this pool to the list of configs.
825 		 */
826 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
827 		    &name) == 0);
828 		if (nvlist_add_nvlist(ret, name, config) != 0)
829 			goto nomem;
830 
831 		found_one = B_TRUE;
832 		nvlist_free(config);
833 		config = NULL;
834 	}
835 
836 	if (!found_one) {
837 		nvlist_free(ret);
838 		ret = NULL;
839 	}
840 
841 	return (ret);
842 
843 nomem:
844 	(void) no_memory(hdl);
845 error:
846 	nvlist_free(config);
847 	nvlist_free(ret);
848 	for (c = 0; c < children; c++)
849 		nvlist_free(child[c]);
850 	free(child);
851 
852 	return (NULL);
853 }
854 
855 /*
856  * Return the offset of the given label.
857  */
858 static uint64_t
859 label_offset(uint64_t size, int l)
860 {
861 	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
862 	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
863 	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
864 }
865 
866 /*
867  * Given a file descriptor, read the label information and return an nvlist
868  * describing the configuration, if there is one.
869  */
870 int
871 zpool_read_label(int fd, nvlist_t **config)
872 {
873 	struct stat64 statbuf;
874 	int l;
875 	vdev_label_t *label;
876 	uint64_t state, txg, size;
877 
878 	*config = NULL;
879 
880 	if (fstat64(fd, &statbuf) == -1)
881 		return (0);
882 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
883 
884 	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
885 		return (-1);
886 
887 	for (l = 0; l < VDEV_LABELS; l++) {
888 		if (pread64(fd, label, sizeof (vdev_label_t),
889 		    label_offset(size, l)) != sizeof (vdev_label_t))
890 			continue;
891 
892 		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
893 		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
894 			continue;
895 
896 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
897 		    &state) != 0 || state > POOL_STATE_L2CACHE) {
898 			nvlist_free(*config);
899 			continue;
900 		}
901 
902 		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
903 		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
904 		    &txg) != 0 || txg == 0)) {
905 			nvlist_free(*config);
906 			continue;
907 		}
908 
909 		free(label);
910 		return (0);
911 	}
912 
913 	free(label);
914 	*config = NULL;
915 	return (0);
916 }
917 
918 typedef struct rdsk_node {
919 	char *rn_name;
920 	int rn_dfd;
921 	libzfs_handle_t *rn_hdl;
922 	nvlist_t *rn_config;
923 	avl_tree_t *rn_avl;
924 	avl_node_t rn_node;
925 	boolean_t rn_nozpool;
926 } rdsk_node_t;
927 
928 static int
929 slice_cache_compare(const void *arg1, const void *arg2)
930 {
931 	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
932 	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
933 	char *nm1slice, *nm2slice;
934 	int rv;
935 
936 	/*
937 	 * slices zero and two are the most likely to provide results,
938 	 * so put those first
939 	 */
940 	nm1slice = strstr(nm1, "s0");
941 	nm2slice = strstr(nm2, "s0");
942 	if (nm1slice && !nm2slice) {
943 		return (-1);
944 	}
945 	if (!nm1slice && nm2slice) {
946 		return (1);
947 	}
948 	nm1slice = strstr(nm1, "s2");
949 	nm2slice = strstr(nm2, "s2");
950 	if (nm1slice && !nm2slice) {
951 		return (-1);
952 	}
953 	if (!nm1slice && nm2slice) {
954 		return (1);
955 	}
956 
957 	rv = strcmp(nm1, nm2);
958 	if (rv == 0)
959 		return (0);
960 	return (rv > 0 ? 1 : -1);
961 }
962 
963 static void
964 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
965     diskaddr_t size, uint_t blksz)
966 {
967 	rdsk_node_t tmpnode;
968 	rdsk_node_t *node;
969 	char sname[MAXNAMELEN];
970 
971 	tmpnode.rn_name = &sname[0];
972 	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
973 	    diskname, partno);
974 	/*
975 	 * protect against division by zero for disk labels that
976 	 * contain a bogus sector size
977 	 */
978 	if (blksz == 0)
979 		blksz = DEV_BSIZE;
980 	/* too small to contain a zpool? */
981 	if ((size < (SPA_MINDEVSIZE / blksz)) &&
982 	    (node = avl_find(r, &tmpnode, NULL)))
983 		node->rn_nozpool = B_TRUE;
984 }
985 
986 static void
987 nozpool_all_slices(avl_tree_t *r, const char *sname)
988 {
989 	char diskname[MAXNAMELEN];
990 	char *ptr;
991 	int i;
992 
993 	(void) strncpy(diskname, sname, MAXNAMELEN);
994 	if (((ptr = strrchr(diskname, 's')) == NULL) &&
995 	    ((ptr = strrchr(diskname, 'p')) == NULL))
996 		return;
997 	ptr[0] = 's';
998 	ptr[1] = '\0';
999 	for (i = 0; i < NDKMAP; i++)
1000 		check_one_slice(r, diskname, i, 0, 1);
1001 	ptr[0] = 'p';
1002 	for (i = 0; i <= FD_NUMPART; i++)
1003 		check_one_slice(r, diskname, i, 0, 1);
1004 }
1005 
1006 static void
1007 check_slices(avl_tree_t *r, int fd, const char *sname)
1008 {
1009 	struct extvtoc vtoc;
1010 	struct dk_gpt *gpt;
1011 	char diskname[MAXNAMELEN];
1012 	char *ptr;
1013 	int i;
1014 
1015 	(void) strncpy(diskname, sname, MAXNAMELEN);
1016 	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1017 		return;
1018 	ptr[1] = '\0';
1019 
1020 	if (read_extvtoc(fd, &vtoc) >= 0) {
1021 		for (i = 0; i < NDKMAP; i++)
1022 			check_one_slice(r, diskname, i,
1023 			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1024 	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1025 		/*
1026 		 * on x86 we'll still have leftover links that point
1027 		 * to slices s[9-15], so use NDKMAP instead
1028 		 */
1029 		for (i = 0; i < NDKMAP; i++)
1030 			check_one_slice(r, diskname, i,
1031 			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1032 		/* nodes p[1-4] are never used with EFI labels */
1033 		ptr[0] = 'p';
1034 		for (i = 1; i <= FD_NUMPART; i++)
1035 			check_one_slice(r, diskname, i, 0, 1);
1036 		efi_free(gpt);
1037 	}
1038 }
1039 
1040 static void
1041 zpool_open_func(void *arg)
1042 {
1043 	rdsk_node_t *rn = arg;
1044 	struct stat64 statbuf;
1045 	nvlist_t *config;
1046 	int fd;
1047 
1048 	if (rn->rn_nozpool)
1049 		return;
1050 	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1051 		/* symlink to a device that's no longer there */
1052 		if (errno == ENOENT)
1053 			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1054 		return;
1055 	}
1056 	/*
1057 	 * Ignore failed stats.  We only want regular
1058 	 * files, character devs and block devs.
1059 	 */
1060 	if (fstat64(fd, &statbuf) != 0 ||
1061 	    (!S_ISREG(statbuf.st_mode) &&
1062 	    !S_ISCHR(statbuf.st_mode) &&
1063 	    !S_ISBLK(statbuf.st_mode))) {
1064 		(void) close(fd);
1065 		return;
1066 	}
1067 	/* this file is too small to hold a zpool */
1068 	if (S_ISREG(statbuf.st_mode) &&
1069 	    statbuf.st_size < SPA_MINDEVSIZE) {
1070 		(void) close(fd);
1071 		return;
1072 	} else if (!S_ISREG(statbuf.st_mode)) {
1073 		/*
1074 		 * Try to read the disk label first so we don't have to
1075 		 * open a bunch of minor nodes that can't have a zpool.
1076 		 */
1077 		check_slices(rn->rn_avl, fd, rn->rn_name);
1078 	}
1079 
1080 	if ((zpool_read_label(fd, &config)) != 0) {
1081 		(void) close(fd);
1082 		(void) no_memory(rn->rn_hdl);
1083 		return;
1084 	}
1085 	(void) close(fd);
1086 
1087 	rn->rn_config = config;
1088 }
1089 
1090 /*
1091  * Given a file descriptor, clear (zero) the label information.
1092  */
1093 int
1094 zpool_clear_label(int fd)
1095 {
1096 	struct stat64 statbuf;
1097 	int l;
1098 	vdev_label_t *label;
1099 	uint64_t size;
1100 
1101 	if (fstat64(fd, &statbuf) == -1)
1102 		return (0);
1103 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1104 
1105 	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1106 		return (-1);
1107 
1108 	for (l = 0; l < VDEV_LABELS; l++) {
1109 		if (pwrite64(fd, label, sizeof (vdev_label_t),
1110 		    label_offset(size, l)) != sizeof (vdev_label_t)) {
1111 			free(label);
1112 			return (-1);
1113 		}
1114 	}
1115 
1116 	free(label);
1117 	return (0);
1118 }
1119 
1120 /*
1121  * Given a list of directories to search, find all pools stored on disk.  This
1122  * includes partial pools which are not available to import.  If no args are
1123  * given (argc is 0), then the default directory (/dev/dsk) is searched.
1124  * poolname or guid (but not both) are provided by the caller when trying
1125  * to import a specific pool.
1126  */
1127 static nvlist_t *
1128 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1129 {
1130 	int i, dirs = iarg->paths;
1131 	struct dirent64 *dp;
1132 	char path[MAXPATHLEN];
1133 	char *end, **dir = iarg->path;
1134 	size_t pathleft;
1135 	nvlist_t *ret = NULL;
1136 	static char *default_dir = ZFS_DISK_ROOT;
1137 	pool_list_t pools = { 0 };
1138 	pool_entry_t *pe, *penext;
1139 	vdev_entry_t *ve, *venext;
1140 	config_entry_t *ce, *cenext;
1141 	name_entry_t *ne, *nenext;
1142 	avl_tree_t slice_cache;
1143 	rdsk_node_t *slice;
1144 	void *cookie;
1145 
1146 	if (dirs == 0) {
1147 		dirs = 1;
1148 		dir = &default_dir;
1149 	}
1150 
1151 	/*
1152 	 * Go through and read the label configuration information from every
1153 	 * possible device, organizing the information according to pool GUID
1154 	 * and toplevel GUID.
1155 	 */
1156 	for (i = 0; i < dirs; i++) {
1157 		tpool_t *t;
1158 		char rdsk[MAXPATHLEN];
1159 		int dfd;
1160 		boolean_t config_failed = B_FALSE;
1161 		DIR *dirp;
1162 
1163 		/* use realpath to normalize the path */
1164 		if (realpath(dir[i], path) == 0) {
1165 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1166 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1167 			goto error;
1168 		}
1169 		end = &path[strlen(path)];
1170 		*end++ = '/';
1171 		*end = 0;
1172 		pathleft = &path[sizeof (path)] - end;
1173 
1174 		/*
1175 		 * Using raw devices instead of block devices when we're
1176 		 * reading the labels skips a bunch of slow operations during
1177 		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1178 		 */
1179 		if (strcmp(path, ZFS_DISK_ROOTD) == 0)
1180 			(void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk));
1181 		else
1182 			(void) strlcpy(rdsk, path, sizeof (rdsk));
1183 
1184 		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1185 		    (dirp = fdopendir(dfd)) == NULL) {
1186 			if (dfd >= 0)
1187 				(void) close(dfd);
1188 			zfs_error_aux(hdl, strerror(errno));
1189 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1190 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1191 			    rdsk);
1192 			goto error;
1193 		}
1194 
1195 		avl_create(&slice_cache, slice_cache_compare,
1196 		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1197 		/*
1198 		 * This is not MT-safe, but we have no MT consumers of libzfs
1199 		 */
1200 		while ((dp = readdir64(dirp)) != NULL) {
1201 			const char *name = dp->d_name;
1202 			if (name[0] == '.' &&
1203 			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1204 				continue;
1205 
1206 			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1207 			slice->rn_name = zfs_strdup(hdl, name);
1208 			slice->rn_avl = &slice_cache;
1209 			slice->rn_dfd = dfd;
1210 			slice->rn_hdl = hdl;
1211 			slice->rn_nozpool = B_FALSE;
1212 			avl_add(&slice_cache, slice);
1213 		}
1214 		/*
1215 		 * create a thread pool to do all of this in parallel;
1216 		 * rn_nozpool is not protected, so this is racy in that
1217 		 * multiple tasks could decide that the same slice can
1218 		 * not hold a zpool, which is benign.  Also choose
1219 		 * double the number of processors; we hold a lot of
1220 		 * locks in the kernel, so going beyond this doesn't
1221 		 * buy us much.
1222 		 */
1223 		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1224 		    0, NULL);
1225 		for (slice = avl_first(&slice_cache); slice;
1226 		    (slice = avl_walk(&slice_cache, slice,
1227 		    AVL_AFTER)))
1228 			(void) tpool_dispatch(t, zpool_open_func, slice);
1229 		tpool_wait(t);
1230 		tpool_destroy(t);
1231 
1232 		cookie = NULL;
1233 		while ((slice = avl_destroy_nodes(&slice_cache,
1234 		    &cookie)) != NULL) {
1235 			if (slice->rn_config != NULL && !config_failed) {
1236 				nvlist_t *config = slice->rn_config;
1237 				boolean_t matched = B_TRUE;
1238 
1239 				if (iarg->poolname != NULL) {
1240 					char *pname;
1241 
1242 					matched = nvlist_lookup_string(config,
1243 					    ZPOOL_CONFIG_POOL_NAME,
1244 					    &pname) == 0 &&
1245 					    strcmp(iarg->poolname, pname) == 0;
1246 				} else if (iarg->guid != 0) {
1247 					uint64_t this_guid;
1248 
1249 					matched = nvlist_lookup_uint64(config,
1250 					    ZPOOL_CONFIG_POOL_GUID,
1251 					    &this_guid) == 0 &&
1252 					    iarg->guid == this_guid;
1253 				}
1254 				if (!matched) {
1255 					nvlist_free(config);
1256 				} else {
1257 					/*
1258 					 * use the non-raw path for the config
1259 					 */
1260 					(void) strlcpy(end, slice->rn_name,
1261 					    pathleft);
1262 					if (add_config(hdl, &pools, path,
1263 					    config) != 0)
1264 						config_failed = B_TRUE;
1265 				}
1266 			}
1267 			free(slice->rn_name);
1268 			free(slice);
1269 		}
1270 		avl_destroy(&slice_cache);
1271 
1272 		(void) closedir(dirp);
1273 
1274 		if (config_failed)
1275 			goto error;
1276 	}
1277 
1278 	ret = get_configs(hdl, &pools, iarg->can_be_active);
1279 
1280 error:
1281 	for (pe = pools.pools; pe != NULL; pe = penext) {
1282 		penext = pe->pe_next;
1283 		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1284 			venext = ve->ve_next;
1285 			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1286 				cenext = ce->ce_next;
1287 				nvlist_free(ce->ce_config);
1288 				free(ce);
1289 			}
1290 			free(ve);
1291 		}
1292 		free(pe);
1293 	}
1294 
1295 	for (ne = pools.names; ne != NULL; ne = nenext) {
1296 		nenext = ne->ne_next;
1297 		free(ne->ne_name);
1298 		free(ne);
1299 	}
1300 
1301 	return (ret);
1302 }
1303 
1304 nvlist_t *
1305 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1306 {
1307 	importargs_t iarg = { 0 };
1308 
1309 	iarg.paths = argc;
1310 	iarg.path = argv;
1311 
1312 	return (zpool_find_import_impl(hdl, &iarg));
1313 }
1314 
1315 /*
1316  * Given a cache file, return the contents as a list of importable pools.
1317  * poolname or guid (but not both) are provided by the caller when trying
1318  * to import a specific pool.
1319  */
1320 nvlist_t *
1321 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1322     char *poolname, uint64_t guid)
1323 {
1324 	char *buf;
1325 	int fd;
1326 	struct stat64 statbuf;
1327 	nvlist_t *raw, *src, *dst;
1328 	nvlist_t *pools;
1329 	nvpair_t *elem;
1330 	char *name;
1331 	uint64_t this_guid;
1332 	boolean_t active;
1333 
1334 	verify(poolname == NULL || guid == 0);
1335 
1336 	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1337 		zfs_error_aux(hdl, "%s", strerror(errno));
1338 		(void) zfs_error(hdl, EZFS_BADCACHE,
1339 		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1340 		return (NULL);
1341 	}
1342 
1343 	if (fstat64(fd, &statbuf) != 0) {
1344 		zfs_error_aux(hdl, "%s", strerror(errno));
1345 		(void) close(fd);
1346 		(void) zfs_error(hdl, EZFS_BADCACHE,
1347 		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1348 		return (NULL);
1349 	}
1350 
1351 	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1352 		(void) close(fd);
1353 		return (NULL);
1354 	}
1355 
1356 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1357 		(void) close(fd);
1358 		free(buf);
1359 		(void) zfs_error(hdl, EZFS_BADCACHE,
1360 		    dgettext(TEXT_DOMAIN,
1361 		    "failed to read cache file contents"));
1362 		return (NULL);
1363 	}
1364 
1365 	(void) close(fd);
1366 
1367 	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1368 		free(buf);
1369 		(void) zfs_error(hdl, EZFS_BADCACHE,
1370 		    dgettext(TEXT_DOMAIN,
1371 		    "invalid or corrupt cache file contents"));
1372 		return (NULL);
1373 	}
1374 
1375 	free(buf);
1376 
1377 	/*
1378 	 * Go through and get the current state of the pools and refresh their
1379 	 * state.
1380 	 */
1381 	if (nvlist_alloc(&pools, 0, 0) != 0) {
1382 		(void) no_memory(hdl);
1383 		nvlist_free(raw);
1384 		return (NULL);
1385 	}
1386 
1387 	elem = NULL;
1388 	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1389 		src = fnvpair_value_nvlist(elem);
1390 
1391 		name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1392 		if (poolname != NULL && strcmp(poolname, name) != 0)
1393 			continue;
1394 
1395 		this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1396 		if (guid != 0 && guid != this_guid)
1397 			continue;
1398 
1399 		if (pool_active(hdl, name, this_guid, &active) != 0) {
1400 			nvlist_free(raw);
1401 			nvlist_free(pools);
1402 			return (NULL);
1403 		}
1404 
1405 		if (active)
1406 			continue;
1407 
1408 		if ((dst = refresh_config(hdl, src)) == NULL) {
1409 			nvlist_free(raw);
1410 			nvlist_free(pools);
1411 			return (NULL);
1412 		}
1413 
1414 		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1415 			(void) no_memory(hdl);
1416 			nvlist_free(dst);
1417 			nvlist_free(raw);
1418 			nvlist_free(pools);
1419 			return (NULL);
1420 		}
1421 		nvlist_free(dst);
1422 	}
1423 
1424 	nvlist_free(raw);
1425 	return (pools);
1426 }
1427 
1428 static int
1429 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1430 {
1431 	importargs_t *import = data;
1432 	int found = 0;
1433 
1434 	if (import->poolname != NULL) {
1435 		char *pool_name;
1436 
1437 		verify(nvlist_lookup_string(zhp->zpool_config,
1438 		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1439 		if (strcmp(pool_name, import->poolname) == 0)
1440 			found = 1;
1441 	} else {
1442 		uint64_t pool_guid;
1443 
1444 		verify(nvlist_lookup_uint64(zhp->zpool_config,
1445 		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1446 		if (pool_guid == import->guid)
1447 			found = 1;
1448 	}
1449 
1450 	zpool_close(zhp);
1451 	return (found);
1452 }
1453 
1454 nvlist_t *
1455 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1456 {
1457 	verify(import->poolname == NULL || import->guid == 0);
1458 
1459 	if (import->unique)
1460 		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1461 
1462 	if (import->cachefile != NULL)
1463 		return (zpool_find_import_cached(hdl, import->cachefile,
1464 		    import->poolname, import->guid));
1465 
1466 	return (zpool_find_import_impl(hdl, import));
1467 }
1468 
1469 boolean_t
1470 find_guid(nvlist_t *nv, uint64_t guid)
1471 {
1472 	uint64_t tmp;
1473 	nvlist_t **child;
1474 	uint_t c, children;
1475 
1476 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1477 	if (tmp == guid)
1478 		return (B_TRUE);
1479 
1480 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1481 	    &child, &children) == 0) {
1482 		for (c = 0; c < children; c++)
1483 			if (find_guid(child[c], guid))
1484 				return (B_TRUE);
1485 	}
1486 
1487 	return (B_FALSE);
1488 }
1489 
1490 typedef struct aux_cbdata {
1491 	const char	*cb_type;
1492 	uint64_t	cb_guid;
1493 	zpool_handle_t	*cb_zhp;
1494 } aux_cbdata_t;
1495 
1496 static int
1497 find_aux(zpool_handle_t *zhp, void *data)
1498 {
1499 	aux_cbdata_t *cbp = data;
1500 	nvlist_t **list;
1501 	uint_t i, count;
1502 	uint64_t guid;
1503 	nvlist_t *nvroot;
1504 
1505 	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1506 	    &nvroot) == 0);
1507 
1508 	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1509 	    &list, &count) == 0) {
1510 		for (i = 0; i < count; i++) {
1511 			verify(nvlist_lookup_uint64(list[i],
1512 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1513 			if (guid == cbp->cb_guid) {
1514 				cbp->cb_zhp = zhp;
1515 				return (1);
1516 			}
1517 		}
1518 	}
1519 
1520 	zpool_close(zhp);
1521 	return (0);
1522 }
1523 
1524 /*
1525  * Determines if the pool is in use.  If so, it returns true and the state of
1526  * the pool as well as the name of the pool.  Both strings are allocated and
1527  * must be freed by the caller.
1528  */
1529 int
1530 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1531     boolean_t *inuse)
1532 {
1533 	nvlist_t *config;
1534 	char *name;
1535 	boolean_t ret;
1536 	uint64_t guid, vdev_guid;
1537 	zpool_handle_t *zhp;
1538 	nvlist_t *pool_config;
1539 	uint64_t stateval, isspare;
1540 	aux_cbdata_t cb = { 0 };
1541 	boolean_t isactive;
1542 
1543 	*inuse = B_FALSE;
1544 
1545 	if (zpool_read_label(fd, &config) != 0) {
1546 		(void) no_memory(hdl);
1547 		return (-1);
1548 	}
1549 
1550 	if (config == NULL)
1551 		return (0);
1552 
1553 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1554 	    &stateval) == 0);
1555 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1556 	    &vdev_guid) == 0);
1557 
1558 	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1559 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1560 		    &name) == 0);
1561 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1562 		    &guid) == 0);
1563 	}
1564 
1565 	switch (stateval) {
1566 	case POOL_STATE_EXPORTED:
1567 		/*
1568 		 * A pool with an exported state may in fact be imported
1569 		 * read-only, so check the in-core state to see if it's
1570 		 * active and imported read-only.  If it is, set
1571 		 * its state to active.
1572 		 */
1573 		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1574 		    (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1575 			if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1576 				stateval = POOL_STATE_ACTIVE;
1577 
1578 			/*
1579 			 * All we needed the zpool handle for is the
1580 			 * readonly prop check.
1581 			 */
1582 			zpool_close(zhp);
1583 		}
1584 
1585 		ret = B_TRUE;
1586 		break;
1587 
1588 	case POOL_STATE_ACTIVE:
1589 		/*
1590 		 * For an active pool, we have to determine if it's really part
1591 		 * of a currently active pool (in which case the pool will exist
1592 		 * and the guid will be the same), or whether it's part of an
1593 		 * active pool that was disconnected without being explicitly
1594 		 * exported.
1595 		 */
1596 		if (pool_active(hdl, name, guid, &isactive) != 0) {
1597 			nvlist_free(config);
1598 			return (-1);
1599 		}
1600 
1601 		if (isactive) {
1602 			/*
1603 			 * Because the device may have been removed while
1604 			 * offlined, we only report it as active if the vdev is
1605 			 * still present in the config.  Otherwise, pretend like
1606 			 * it's not in use.
1607 			 */
1608 			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1609 			    (pool_config = zpool_get_config(zhp, NULL))
1610 			    != NULL) {
1611 				nvlist_t *nvroot;
1612 
1613 				verify(nvlist_lookup_nvlist(pool_config,
1614 				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1615 				ret = find_guid(nvroot, vdev_guid);
1616 			} else {
1617 				ret = B_FALSE;
1618 			}
1619 
1620 			/*
1621 			 * If this is an active spare within another pool, we
1622 			 * treat it like an unused hot spare.  This allows the
1623 			 * user to create a pool with a hot spare that currently
1624 			 * in use within another pool.  Since we return B_TRUE,
1625 			 * libdiskmgt will continue to prevent generic consumers
1626 			 * from using the device.
1627 			 */
1628 			if (ret && nvlist_lookup_uint64(config,
1629 			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1630 				stateval = POOL_STATE_SPARE;
1631 
1632 			if (zhp != NULL)
1633 				zpool_close(zhp);
1634 		} else {
1635 			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1636 			ret = B_TRUE;
1637 		}
1638 		break;
1639 
1640 	case POOL_STATE_SPARE:
1641 		/*
1642 		 * For a hot spare, it can be either definitively in use, or
1643 		 * potentially active.  To determine if it's in use, we iterate
1644 		 * over all pools in the system and search for one with a spare
1645 		 * with a matching guid.
1646 		 *
1647 		 * Due to the shared nature of spares, we don't actually report
1648 		 * the potentially active case as in use.  This means the user
1649 		 * can freely create pools on the hot spares of exported pools,
1650 		 * but to do otherwise makes the resulting code complicated, and
1651 		 * we end up having to deal with this case anyway.
1652 		 */
1653 		cb.cb_zhp = NULL;
1654 		cb.cb_guid = vdev_guid;
1655 		cb.cb_type = ZPOOL_CONFIG_SPARES;
1656 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1657 			name = (char *)zpool_get_name(cb.cb_zhp);
1658 			ret = B_TRUE;
1659 		} else {
1660 			ret = B_FALSE;
1661 		}
1662 		break;
1663 
1664 	case POOL_STATE_L2CACHE:
1665 
1666 		/*
1667 		 * Check if any pool is currently using this l2cache device.
1668 		 */
1669 		cb.cb_zhp = NULL;
1670 		cb.cb_guid = vdev_guid;
1671 		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1672 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1673 			name = (char *)zpool_get_name(cb.cb_zhp);
1674 			ret = B_TRUE;
1675 		} else {
1676 			ret = B_FALSE;
1677 		}
1678 		break;
1679 
1680 	default:
1681 		ret = B_FALSE;
1682 	}
1683 
1684 
1685 	if (ret) {
1686 		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1687 			if (cb.cb_zhp)
1688 				zpool_close(cb.cb_zhp);
1689 			nvlist_free(config);
1690 			return (-1);
1691 		}
1692 		*state = (pool_state_t)stateval;
1693 	}
1694 
1695 	if (cb.cb_zhp)
1696 		zpool_close(cb.cb_zhp);
1697 
1698 	nvlist_free(config);
1699 	*inuse = ret;
1700 	return (0);
1701 }
1702