libzfs_import.c revision 16d2251e8bfa8576e38e3c44e646c89b396b3ee2
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Pool import support functions.
28 *
29 * To import a pool, we rely on reading the configuration information from the
30 * ZFS label of each device.  If we successfully read the label, then we
31 * organize the configuration information in the following hierarchy:
32 *
33 * 	pool guid -> toplevel vdev guid -> label txg
34 *
35 * Duplicate entries matching this same tuple will be discarded.  Once we have
36 * examined every device, we pick the best label txg config for each toplevel
37 * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
38 * update any paths that have changed.  Finally, we attempt to import the pool
39 * using our derived config, and record the results.
40 */
41
42#include <ctype.h>
43#include <devid.h>
44#include <dirent.h>
45#include <errno.h>
46#include <libintl.h>
47#include <stddef.h>
48#include <stdlib.h>
49#include <string.h>
50#include <sys/stat.h>
51#include <unistd.h>
52#include <fcntl.h>
53#include <sys/vtoc.h>
54#include <sys/dktp/fdisk.h>
55#include <sys/efi_partition.h>
56#include <thread_pool.h>
57
58#include <sys/vdev_impl.h>
59
60#include "libzfs.h"
61#include "libzfs_impl.h"
62
63/*
64 * Intermediate structures used to gather configuration information.
65 */
66typedef struct config_entry {
67	uint64_t		ce_txg;
68	nvlist_t		*ce_config;
69	struct config_entry	*ce_next;
70} config_entry_t;
71
72typedef struct vdev_entry {
73	uint64_t		ve_guid;
74	config_entry_t		*ve_configs;
75	struct vdev_entry	*ve_next;
76} vdev_entry_t;
77
78typedef struct pool_entry {
79	uint64_t		pe_guid;
80	vdev_entry_t		*pe_vdevs;
81	struct pool_entry	*pe_next;
82} pool_entry_t;
83
84typedef struct name_entry {
85	char			*ne_name;
86	uint64_t		ne_guid;
87	struct name_entry	*ne_next;
88} name_entry_t;
89
90typedef struct pool_list {
91	pool_entry_t		*pools;
92	name_entry_t		*names;
93} pool_list_t;
94
95static char *
96get_devid(const char *path)
97{
98	int fd;
99	ddi_devid_t devid;
100	char *minor, *ret;
101
102	if ((fd = open(path, O_RDONLY)) < 0)
103		return (NULL);
104
105	minor = NULL;
106	ret = NULL;
107	if (devid_get(fd, &devid) == 0) {
108		if (devid_get_minor_name(fd, &minor) == 0)
109			ret = devid_str_encode(devid, minor);
110		if (minor != NULL)
111			devid_str_free(minor);
112		devid_free(devid);
113	}
114	(void) close(fd);
115
116	return (ret);
117}
118
119
120/*
121 * Go through and fix up any path and/or devid information for the given vdev
122 * configuration.
123 */
124static int
125fix_paths(nvlist_t *nv, name_entry_t *names)
126{
127	nvlist_t **child;
128	uint_t c, children;
129	uint64_t guid;
130	name_entry_t *ne, *best;
131	char *path, *devid;
132	int matched;
133
134	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
135	    &child, &children) == 0) {
136		for (c = 0; c < children; c++)
137			if (fix_paths(child[c], names) != 0)
138				return (-1);
139		return (0);
140	}
141
142	/*
143	 * This is a leaf (file or disk) vdev.  In either case, go through
144	 * the name list and see if we find a matching guid.  If so, replace
145	 * the path and see if we can calculate a new devid.
146	 *
147	 * There may be multiple names associated with a particular guid, in
148	 * which case we have overlapping slices or multiple paths to the same
149	 * disk.  If this is the case, then we want to pick the path that is
150	 * the most similar to the original, where "most similar" is the number
151	 * of matching characters starting from the end of the path.  This will
152	 * preserve slice numbers even if the disks have been reorganized, and
153	 * will also catch preferred disk names if multiple paths exist.
154	 */
155	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
156	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
157		path = NULL;
158
159	matched = 0;
160	best = NULL;
161	for (ne = names; ne != NULL; ne = ne->ne_next) {
162		if (ne->ne_guid == guid) {
163			const char *src, *dst;
164			int count;
165
166			if (path == NULL) {
167				best = ne;
168				break;
169			}
170
171			src = ne->ne_name + strlen(ne->ne_name) - 1;
172			dst = path + strlen(path) - 1;
173			for (count = 0; src >= ne->ne_name && dst >= path;
174			    src--, dst--, count++)
175				if (*src != *dst)
176					break;
177
178			/*
179			 * At this point, 'count' is the number of characters
180			 * matched from the end.
181			 */
182			if (count > matched || best == NULL) {
183				best = ne;
184				matched = count;
185			}
186		}
187	}
188
189	if (best == NULL)
190		return (0);
191
192	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
193		return (-1);
194
195	if ((devid = get_devid(best->ne_name)) == NULL) {
196		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
197	} else {
198		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
199			return (-1);
200		devid_str_free(devid);
201	}
202
203	return (0);
204}
205
206/*
207 * Add the given configuration to the list of known devices.
208 */
209static int
210add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
211    nvlist_t *config)
212{
213	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
214	pool_entry_t *pe;
215	vdev_entry_t *ve;
216	config_entry_t *ce;
217	name_entry_t *ne;
218
219	/*
220	 * If this is a hot spare not currently in use or level 2 cache
221	 * device, add it to the list of names to translate, but don't do
222	 * anything else.
223	 */
224	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
225	    &state) == 0 &&
226	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
227	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
228		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
229			return (-1);
230
231		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
232			free(ne);
233			return (-1);
234		}
235		ne->ne_guid = vdev_guid;
236		ne->ne_next = pl->names;
237		pl->names = ne;
238		return (0);
239	}
240
241	/*
242	 * If we have a valid config but cannot read any of these fields, then
243	 * it means we have a half-initialized label.  In vdev_label_init()
244	 * we write a label with txg == 0 so that we can identify the device
245	 * in case the user refers to the same disk later on.  If we fail to
246	 * create the pool, we'll be left with a label in this state
247	 * which should not be considered part of a valid pool.
248	 */
249	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
250	    &pool_guid) != 0 ||
251	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
252	    &vdev_guid) != 0 ||
253	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
254	    &top_guid) != 0 ||
255	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
256	    &txg) != 0 || txg == 0) {
257		nvlist_free(config);
258		return (0);
259	}
260
261	/*
262	 * First, see if we know about this pool.  If not, then add it to the
263	 * list of known pools.
264	 */
265	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
266		if (pe->pe_guid == pool_guid)
267			break;
268	}
269
270	if (pe == NULL) {
271		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
272			nvlist_free(config);
273			return (-1);
274		}
275		pe->pe_guid = pool_guid;
276		pe->pe_next = pl->pools;
277		pl->pools = pe;
278	}
279
280	/*
281	 * Second, see if we know about this toplevel vdev.  Add it if its
282	 * missing.
283	 */
284	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
285		if (ve->ve_guid == top_guid)
286			break;
287	}
288
289	if (ve == NULL) {
290		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
291			nvlist_free(config);
292			return (-1);
293		}
294		ve->ve_guid = top_guid;
295		ve->ve_next = pe->pe_vdevs;
296		pe->pe_vdevs = ve;
297	}
298
299	/*
300	 * Third, see if we have a config with a matching transaction group.  If
301	 * so, then we do nothing.  Otherwise, add it to the list of known
302	 * configs.
303	 */
304	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
305		if (ce->ce_txg == txg)
306			break;
307	}
308
309	if (ce == NULL) {
310		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
311			nvlist_free(config);
312			return (-1);
313		}
314		ce->ce_txg = txg;
315		ce->ce_config = config;
316		ce->ce_next = ve->ve_configs;
317		ve->ve_configs = ce;
318	} else {
319		nvlist_free(config);
320	}
321
322	/*
323	 * At this point we've successfully added our config to the list of
324	 * known configs.  The last thing to do is add the vdev guid -> path
325	 * mappings so that we can fix up the configuration as necessary before
326	 * doing the import.
327	 */
328	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
329		return (-1);
330
331	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
332		free(ne);
333		return (-1);
334	}
335
336	ne->ne_guid = vdev_guid;
337	ne->ne_next = pl->names;
338	pl->names = ne;
339
340	return (0);
341}
342
343/*
344 * Returns true if the named pool matches the given GUID.
345 */
346static int
347pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
348    boolean_t *isactive)
349{
350	zpool_handle_t *zhp;
351	uint64_t theguid;
352
353	if (zpool_open_silent(hdl, name, &zhp) != 0)
354		return (-1);
355
356	if (zhp == NULL) {
357		*isactive = B_FALSE;
358		return (0);
359	}
360
361	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
362	    &theguid) == 0);
363
364	zpool_close(zhp);
365
366	*isactive = (theguid == guid);
367	return (0);
368}
369
370static nvlist_t *
371refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
372{
373	nvlist_t *nvl;
374	zfs_cmd_t zc = { 0 };
375	int err;
376
377	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
378		return (NULL);
379
380	if (zcmd_alloc_dst_nvlist(hdl, &zc,
381	    zc.zc_nvlist_conf_size * 2) != 0) {
382		zcmd_free_nvlists(&zc);
383		return (NULL);
384	}
385
386	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
387	    &zc)) != 0 && errno == ENOMEM) {
388		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
389			zcmd_free_nvlists(&zc);
390			return (NULL);
391		}
392	}
393
394	if (err) {
395		zcmd_free_nvlists(&zc);
396		return (NULL);
397	}
398
399	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
400		zcmd_free_nvlists(&zc);
401		return (NULL);
402	}
403
404	zcmd_free_nvlists(&zc);
405	return (nvl);
406}
407
408/*
409 * Determine if the vdev id is a hole in the namespace.
410 */
411boolean_t
412vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
413{
414	for (int c = 0; c < holes; c++) {
415
416		/* Top-level is a hole */
417		if (hole_array[c] == id)
418			return (B_TRUE);
419	}
420	return (B_FALSE);
421}
422
423/*
424 * Convert our list of pools into the definitive set of configurations.  We
425 * start by picking the best config for each toplevel vdev.  Once that's done,
426 * we assemble the toplevel vdevs into a full config for the pool.  We make a
427 * pass to fix up any incorrect paths, and then add it to the main list to
428 * return to the user.
429 */
430static nvlist_t *
431get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
432{
433	pool_entry_t *pe;
434	vdev_entry_t *ve;
435	config_entry_t *ce;
436	nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
437	nvlist_t **spares, **l2cache;
438	uint_t i, nspares, nl2cache;
439	boolean_t config_seen;
440	uint64_t best_txg;
441	char *name, *hostname;
442	uint64_t version, guid;
443	uint_t children = 0;
444	nvlist_t **child = NULL;
445	uint_t holes;
446	uint64_t *hole_array, max_id;
447	uint_t c;
448	boolean_t isactive;
449	uint64_t hostid;
450	nvlist_t *nvl;
451	boolean_t found_one = B_FALSE;
452	boolean_t valid_top_config = B_FALSE;
453
454	if (nvlist_alloc(&ret, 0, 0) != 0)
455		goto nomem;
456
457	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
458		uint64_t id, max_txg = 0;
459
460		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
461			goto nomem;
462		config_seen = B_FALSE;
463
464		/*
465		 * Iterate over all toplevel vdevs.  Grab the pool configuration
466		 * from the first one we find, and then go through the rest and
467		 * add them as necessary to the 'vdevs' member of the config.
468		 */
469		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
470
471			/*
472			 * Determine the best configuration for this vdev by
473			 * selecting the config with the latest transaction
474			 * group.
475			 */
476			best_txg = 0;
477			for (ce = ve->ve_configs; ce != NULL;
478			    ce = ce->ce_next) {
479
480				if (ce->ce_txg > best_txg) {
481					tmp = ce->ce_config;
482					best_txg = ce->ce_txg;
483				}
484			}
485
486			/*
487			 * We rely on the fact that the max txg for the
488			 * pool will contain the most up-to-date information
489			 * about the valid top-levels in the vdev namespace.
490			 */
491			if (best_txg > max_txg) {
492				(void) nvlist_remove(config,
493				    ZPOOL_CONFIG_VDEV_CHILDREN,
494				    DATA_TYPE_UINT64);
495				(void) nvlist_remove(config,
496				    ZPOOL_CONFIG_HOLE_ARRAY,
497				    DATA_TYPE_UINT64_ARRAY);
498
499				max_txg = best_txg;
500				hole_array = NULL;
501				holes = 0;
502				max_id = 0;
503				valid_top_config = B_FALSE;
504
505				if (nvlist_lookup_uint64(tmp,
506				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
507					verify(nvlist_add_uint64(config,
508					    ZPOOL_CONFIG_VDEV_CHILDREN,
509					    max_id) == 0);
510					valid_top_config = B_TRUE;
511				}
512
513				if (nvlist_lookup_uint64_array(tmp,
514				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
515				    &holes) == 0) {
516					verify(nvlist_add_uint64_array(config,
517					    ZPOOL_CONFIG_HOLE_ARRAY,
518					    hole_array, holes) == 0);
519				}
520			}
521
522			if (!config_seen) {
523				/*
524				 * Copy the relevant pieces of data to the pool
525				 * configuration:
526				 *
527				 *	version
528				 * 	pool guid
529				 * 	name
530				 * 	pool state
531				 *	hostid (if available)
532				 *	hostname (if available)
533				 */
534				uint64_t state;
535
536				verify(nvlist_lookup_uint64(tmp,
537				    ZPOOL_CONFIG_VERSION, &version) == 0);
538				if (nvlist_add_uint64(config,
539				    ZPOOL_CONFIG_VERSION, version) != 0)
540					goto nomem;
541				verify(nvlist_lookup_uint64(tmp,
542				    ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
543				if (nvlist_add_uint64(config,
544				    ZPOOL_CONFIG_POOL_GUID, guid) != 0)
545					goto nomem;
546				verify(nvlist_lookup_string(tmp,
547				    ZPOOL_CONFIG_POOL_NAME, &name) == 0);
548				if (nvlist_add_string(config,
549				    ZPOOL_CONFIG_POOL_NAME, name) != 0)
550					goto nomem;
551				verify(nvlist_lookup_uint64(tmp,
552				    ZPOOL_CONFIG_POOL_STATE, &state) == 0);
553				if (nvlist_add_uint64(config,
554				    ZPOOL_CONFIG_POOL_STATE, state) != 0)
555					goto nomem;
556				hostid = 0;
557				if (nvlist_lookup_uint64(tmp,
558				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
559					if (nvlist_add_uint64(config,
560					    ZPOOL_CONFIG_HOSTID, hostid) != 0)
561						goto nomem;
562					verify(nvlist_lookup_string(tmp,
563					    ZPOOL_CONFIG_HOSTNAME,
564					    &hostname) == 0);
565					if (nvlist_add_string(config,
566					    ZPOOL_CONFIG_HOSTNAME,
567					    hostname) != 0)
568						goto nomem;
569				}
570
571				config_seen = B_TRUE;
572			}
573
574			/*
575			 * Add this top-level vdev to the child array.
576			 */
577			verify(nvlist_lookup_nvlist(tmp,
578			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
579			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
580			    &id) == 0);
581
582			if (id >= children) {
583				nvlist_t **newchild;
584
585				newchild = zfs_alloc(hdl, (id + 1) *
586				    sizeof (nvlist_t *));
587				if (newchild == NULL)
588					goto nomem;
589
590				for (c = 0; c < children; c++)
591					newchild[c] = child[c];
592
593				free(child);
594				child = newchild;
595				children = id + 1;
596			}
597			if (nvlist_dup(nvtop, &child[id], 0) != 0)
598				goto nomem;
599
600		}
601
602		/*
603		 * If we have information about all the top-levels then
604		 * clean up the nvlist which we've constructed. This
605		 * means removing any extraneous devices that are
606		 * beyond the valid range or adding devices to the end
607		 * of our array which appear to be missing.
608		 */
609		if (valid_top_config) {
610			if (max_id < children) {
611				for (c = max_id; c < children; c++)
612					nvlist_free(child[c]);
613				children = max_id;
614			} else if (max_id > children) {
615				nvlist_t **newchild;
616
617				newchild = zfs_alloc(hdl, (max_id) *
618				    sizeof (nvlist_t *));
619				if (newchild == NULL)
620					goto nomem;
621
622				for (c = 0; c < children; c++)
623					newchild[c] = child[c];
624
625				free(child);
626				child = newchild;
627				children = max_id;
628			}
629		}
630
631		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
632		    &guid) == 0);
633
634		/*
635		 * The vdev namespace may contain holes as a result of
636		 * device removal. We must add them back into the vdev
637		 * tree before we process any missing devices.
638		 */
639		if (holes > 0) {
640			ASSERT(valid_top_config);
641
642			for (c = 0; c < children; c++) {
643				nvlist_t *holey;
644
645				if (child[c] != NULL ||
646				    !vdev_is_hole(hole_array, holes, c))
647					continue;
648
649				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
650				    0) != 0)
651					goto nomem;
652
653				/*
654				 * Holes in the namespace are treated as
655				 * "hole" top-level vdevs and have a
656				 * special flag set on them.
657				 */
658				if (nvlist_add_string(holey,
659				    ZPOOL_CONFIG_TYPE,
660				    VDEV_TYPE_HOLE) != 0 ||
661				    nvlist_add_uint64(holey,
662				    ZPOOL_CONFIG_ID, c) != 0 ||
663				    nvlist_add_uint64(holey,
664				    ZPOOL_CONFIG_GUID, 0ULL) != 0)
665					goto nomem;
666				child[c] = holey;
667			}
668		}
669
670		/*
671		 * Look for any missing top-level vdevs.  If this is the case,
672		 * create a faked up 'missing' vdev as a placeholder.  We cannot
673		 * simply compress the child array, because the kernel performs
674		 * certain checks to make sure the vdev IDs match their location
675		 * in the configuration.
676		 */
677		for (c = 0; c < children; c++) {
678			if (child[c] == NULL) {
679				nvlist_t *missing;
680				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
681				    0) != 0)
682					goto nomem;
683				if (nvlist_add_string(missing,
684				    ZPOOL_CONFIG_TYPE,
685				    VDEV_TYPE_MISSING) != 0 ||
686				    nvlist_add_uint64(missing,
687				    ZPOOL_CONFIG_ID, c) != 0 ||
688				    nvlist_add_uint64(missing,
689				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
690					nvlist_free(missing);
691					goto nomem;
692				}
693				child[c] = missing;
694			}
695		}
696
697		/*
698		 * Put all of this pool's top-level vdevs into a root vdev.
699		 */
700		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
701			goto nomem;
702		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
703		    VDEV_TYPE_ROOT) != 0 ||
704		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
705		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
706		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
707		    child, children) != 0) {
708			nvlist_free(nvroot);
709			goto nomem;
710		}
711
712		for (c = 0; c < children; c++)
713			nvlist_free(child[c]);
714		free(child);
715		children = 0;
716		child = NULL;
717
718		/*
719		 * Go through and fix up any paths and/or devids based on our
720		 * known list of vdev GUID -> path mappings.
721		 */
722		if (fix_paths(nvroot, pl->names) != 0) {
723			nvlist_free(nvroot);
724			goto nomem;
725		}
726
727		/*
728		 * Add the root vdev to this pool's configuration.
729		 */
730		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
731		    nvroot) != 0) {
732			nvlist_free(nvroot);
733			goto nomem;
734		}
735		nvlist_free(nvroot);
736
737		/*
738		 * zdb uses this path to report on active pools that were
739		 * imported or created using -R.
740		 */
741		if (active_ok)
742			goto add_pool;
743
744		/*
745		 * Determine if this pool is currently active, in which case we
746		 * can't actually import it.
747		 */
748		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
749		    &name) == 0);
750		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
751		    &guid) == 0);
752
753		if (pool_active(hdl, name, guid, &isactive) != 0)
754			goto error;
755
756		if (isactive) {
757			nvlist_free(config);
758			config = NULL;
759			continue;
760		}
761
762		if ((nvl = refresh_config(hdl, config)) == NULL) {
763			nvlist_free(config);
764			config = NULL;
765			continue;
766		}
767
768		nvlist_free(config);
769		config = nvl;
770
771		/*
772		 * Go through and update the paths for spares, now that we have
773		 * them.
774		 */
775		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
776		    &nvroot) == 0);
777		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
778		    &spares, &nspares) == 0) {
779			for (i = 0; i < nspares; i++) {
780				if (fix_paths(spares[i], pl->names) != 0)
781					goto nomem;
782			}
783		}
784
785		/*
786		 * Update the paths for l2cache devices.
787		 */
788		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
789		    &l2cache, &nl2cache) == 0) {
790			for (i = 0; i < nl2cache; i++) {
791				if (fix_paths(l2cache[i], pl->names) != 0)
792					goto nomem;
793			}
794		}
795
796		/*
797		 * Restore the original information read from the actual label.
798		 */
799		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
800		    DATA_TYPE_UINT64);
801		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
802		    DATA_TYPE_STRING);
803		if (hostid != 0) {
804			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
805			    hostid) == 0);
806			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
807			    hostname) == 0);
808		}
809
810add_pool:
811		/*
812		 * Add this pool to the list of configs.
813		 */
814		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
815		    &name) == 0);
816		if (nvlist_add_nvlist(ret, name, config) != 0)
817			goto nomem;
818
819		found_one = B_TRUE;
820		nvlist_free(config);
821		config = NULL;
822	}
823
824	if (!found_one) {
825		nvlist_free(ret);
826		ret = NULL;
827	}
828
829	return (ret);
830
831nomem:
832	(void) no_memory(hdl);
833error:
834	nvlist_free(config);
835	nvlist_free(ret);
836	for (c = 0; c < children; c++)
837		nvlist_free(child[c]);
838	free(child);
839
840	return (NULL);
841}
842
843/*
844 * Return the offset of the given label.
845 */
846static uint64_t
847label_offset(uint64_t size, int l)
848{
849	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
850	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
851	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
852}
853
854/*
855 * Given a file descriptor, read the label information and return an nvlist
856 * describing the configuration, if there is one.
857 */
858int
859zpool_read_label(int fd, nvlist_t **config)
860{
861	struct stat64 statbuf;
862	int l;
863	vdev_label_t *label;
864	uint64_t state, txg, size;
865
866	*config = NULL;
867
868	if (fstat64(fd, &statbuf) == -1)
869		return (0);
870	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
871
872	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
873		return (-1);
874
875	for (l = 0; l < VDEV_LABELS; l++) {
876		if (pread64(fd, label, sizeof (vdev_label_t),
877		    label_offset(size, l)) != sizeof (vdev_label_t))
878			continue;
879
880		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
881		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
882			continue;
883
884		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
885		    &state) != 0 || state > POOL_STATE_L2CACHE) {
886			nvlist_free(*config);
887			continue;
888		}
889
890		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
891		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
892		    &txg) != 0 || txg == 0)) {
893			nvlist_free(*config);
894			continue;
895		}
896
897		free(label);
898		return (0);
899	}
900
901	free(label);
902	*config = NULL;
903	return (0);
904}
905
906typedef struct rdsk_node {
907	char *rn_name;
908	int rn_dfd;
909	libzfs_handle_t *rn_hdl;
910	nvlist_t *rn_config;
911	avl_tree_t *rn_avl;
912	avl_node_t rn_node;
913	boolean_t rn_nozpool;
914} rdsk_node_t;
915
916static int
917slice_cache_compare(const void *arg1, const void *arg2)
918{
919	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
920	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
921	char *nm1slice, *nm2slice;
922	int rv;
923
924	/*
925	 * slices zero and two are the most likely to provide results,
926	 * so put those first
927	 */
928	nm1slice = strstr(nm1, "s0");
929	nm2slice = strstr(nm2, "s0");
930	if (nm1slice && !nm2slice) {
931		return (-1);
932	}
933	if (!nm1slice && nm2slice) {
934		return (1);
935	}
936	nm1slice = strstr(nm1, "s2");
937	nm2slice = strstr(nm2, "s2");
938	if (nm1slice && !nm2slice) {
939		return (-1);
940	}
941	if (!nm1slice && nm2slice) {
942		return (1);
943	}
944
945	rv = strcmp(nm1, nm2);
946	if (rv == 0)
947		return (0);
948	return (rv > 0 ? 1 : -1);
949}
950
951static void
952check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
953    diskaddr_t size, uint_t blksz)
954{
955	rdsk_node_t tmpnode;
956	rdsk_node_t *node;
957	char sname[MAXNAMELEN];
958
959	tmpnode.rn_name = &sname[0];
960	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
961	    diskname, partno);
962	/*
963	 * protect against division by zero for disk labels that
964	 * contain a bogus sector size
965	 */
966	if (blksz == 0)
967		blksz = DEV_BSIZE;
968	/* too small to contain a zpool? */
969	if ((size < (SPA_MINDEVSIZE / blksz)) &&
970	    (node = avl_find(r, &tmpnode, NULL)))
971		node->rn_nozpool = B_TRUE;
972}
973
974static void
975nozpool_all_slices(avl_tree_t *r, const char *sname)
976{
977	char diskname[MAXNAMELEN];
978	char *ptr;
979	int i;
980
981	(void) strncpy(diskname, sname, MAXNAMELEN);
982	if (((ptr = strrchr(diskname, 's')) == NULL) &&
983	    ((ptr = strrchr(diskname, 'p')) == NULL))
984		return;
985	ptr[0] = 's';
986	ptr[1] = '\0';
987	for (i = 0; i < NDKMAP; i++)
988		check_one_slice(r, diskname, i, 0, 1);
989	ptr[0] = 'p';
990	for (i = 0; i <= FD_NUMPART; i++)
991		check_one_slice(r, diskname, i, 0, 1);
992}
993
994static void
995check_slices(avl_tree_t *r, int fd, const char *sname)
996{
997	struct extvtoc vtoc;
998	struct dk_gpt *gpt;
999	char diskname[MAXNAMELEN];
1000	char *ptr;
1001	int i;
1002
1003	(void) strncpy(diskname, sname, MAXNAMELEN);
1004	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1005		return;
1006	ptr[1] = '\0';
1007
1008	if (read_extvtoc(fd, &vtoc) >= 0) {
1009		for (i = 0; i < NDKMAP; i++)
1010			check_one_slice(r, diskname, i,
1011			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1012	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1013		/*
1014		 * on x86 we'll still have leftover links that point
1015		 * to slices s[9-15], so use NDKMAP instead
1016		 */
1017		for (i = 0; i < NDKMAP; i++)
1018			check_one_slice(r, diskname, i,
1019			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1020		/* nodes p[1-4] are never used with EFI labels */
1021		ptr[0] = 'p';
1022		for (i = 1; i <= FD_NUMPART; i++)
1023			check_one_slice(r, diskname, i, 0, 1);
1024		efi_free(gpt);
1025	}
1026}
1027
1028static void
1029zpool_open_func(void *arg)
1030{
1031	rdsk_node_t *rn = arg;
1032	struct stat64 statbuf;
1033	nvlist_t *config;
1034	int fd;
1035
1036	if (rn->rn_nozpool)
1037		return;
1038	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1039		/* symlink to a device that's no longer there */
1040		if (errno == ENOENT)
1041			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1042		return;
1043	}
1044	/*
1045	 * Ignore failed stats.  We only want regular
1046	 * files, character devs and block devs.
1047	 */
1048	if (fstat64(fd, &statbuf) != 0 ||
1049	    (!S_ISREG(statbuf.st_mode) &&
1050	    !S_ISCHR(statbuf.st_mode) &&
1051	    !S_ISBLK(statbuf.st_mode))) {
1052		(void) close(fd);
1053		return;
1054	}
1055	/* this file is too small to hold a zpool */
1056	if (S_ISREG(statbuf.st_mode) &&
1057	    statbuf.st_size < SPA_MINDEVSIZE) {
1058		(void) close(fd);
1059		return;
1060	} else if (!S_ISREG(statbuf.st_mode)) {
1061		/*
1062		 * Try to read the disk label first so we don't have to
1063		 * open a bunch of minor nodes that can't have a zpool.
1064		 */
1065		check_slices(rn->rn_avl, fd, rn->rn_name);
1066	}
1067
1068	if ((zpool_read_label(fd, &config)) != 0) {
1069		(void) close(fd);
1070		(void) no_memory(rn->rn_hdl);
1071		return;
1072	}
1073	(void) close(fd);
1074
1075
1076	rn->rn_config = config;
1077	if (config != NULL) {
1078		assert(rn->rn_nozpool == B_FALSE);
1079	}
1080}
1081
1082/*
1083 * Given a file descriptor, clear (zero) the label information.  This function
1084 * is currently only used in the appliance stack as part of the ZFS sysevent
1085 * module.
1086 */
1087int
1088zpool_clear_label(int fd)
1089{
1090	struct stat64 statbuf;
1091	int l;
1092	vdev_label_t *label;
1093	uint64_t size;
1094
1095	if (fstat64(fd, &statbuf) == -1)
1096		return (0);
1097	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1098
1099	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1100		return (-1);
1101
1102	for (l = 0; l < VDEV_LABELS; l++) {
1103		if (pwrite64(fd, label, sizeof (vdev_label_t),
1104		    label_offset(size, l)) != sizeof (vdev_label_t))
1105			return (-1);
1106	}
1107
1108	free(label);
1109	return (0);
1110}
1111
1112/*
1113 * Given a list of directories to search, find all pools stored on disk.  This
1114 * includes partial pools which are not available to import.  If no args are
1115 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1116 * poolname or guid (but not both) are provided by the caller when trying
1117 * to import a specific pool.
1118 */
1119static nvlist_t *
1120zpool_find_import_impl(libzfs_handle_t *hdl, int argc, char **argv,
1121    boolean_t active_ok, char *poolname, uint64_t guid)
1122{
1123	int i;
1124	DIR *dirp = NULL;
1125	struct dirent64 *dp;
1126	char path[MAXPATHLEN];
1127	char *end;
1128	size_t pathleft;
1129	nvlist_t *ret = NULL;
1130	static char *default_dir = "/dev/dsk";
1131	pool_list_t pools = { 0 };
1132	pool_entry_t *pe, *penext;
1133	vdev_entry_t *ve, *venext;
1134	config_entry_t *ce, *cenext;
1135	name_entry_t *ne, *nenext;
1136	avl_tree_t slice_cache;
1137	rdsk_node_t *slice;
1138	void *cookie;
1139
1140	verify(poolname == NULL || guid == 0);
1141
1142	if (argc == 0) {
1143		argc = 1;
1144		argv = &default_dir;
1145	}
1146
1147	/*
1148	 * Go through and read the label configuration information from every
1149	 * possible device, organizing the information according to pool GUID
1150	 * and toplevel GUID.
1151	 */
1152	for (i = 0; i < argc; i++) {
1153		tpool_t *t;
1154		char *rdsk;
1155		int dfd;
1156
1157		/* use realpath to normalize the path */
1158		if (realpath(argv[i], path) == 0) {
1159			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1160			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1161			    argv[i]);
1162			goto error;
1163		}
1164		end = &path[strlen(path)];
1165		*end++ = '/';
1166		*end = 0;
1167		pathleft = &path[sizeof (path)] - end;
1168
1169		/*
1170		 * Using raw devices instead of block devices when we're
1171		 * reading the labels skips a bunch of slow operations during
1172		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1173		 */
1174		if (strcmp(path, "/dev/dsk/") == 0)
1175			rdsk = "/dev/rdsk/";
1176		else
1177			rdsk = path;
1178
1179		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1180		    (dirp = fdopendir(dfd)) == NULL) {
1181			zfs_error_aux(hdl, strerror(errno));
1182			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1183			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1184			    rdsk);
1185			goto error;
1186		}
1187
1188		avl_create(&slice_cache, slice_cache_compare,
1189		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1190		/*
1191		 * This is not MT-safe, but we have no MT consumers of libzfs
1192		 */
1193		while ((dp = readdir64(dirp)) != NULL) {
1194			const char *name = dp->d_name;
1195			if (name[0] == '.' &&
1196			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1197				continue;
1198
1199			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1200			slice->rn_name = zfs_strdup(hdl, name);
1201			slice->rn_avl = &slice_cache;
1202			slice->rn_dfd = dfd;
1203			slice->rn_hdl = hdl;
1204			slice->rn_nozpool = B_FALSE;
1205			avl_add(&slice_cache, slice);
1206		}
1207		/*
1208		 * create a thread pool to do all of this in parallel;
1209		 * rn_nozpool is not protected, so this is racy in that
1210		 * multiple tasks could decide that the same slice can
1211		 * not hold a zpool, which is benign.  Also choose
1212		 * double the number of processors; we hold a lot of
1213		 * locks in the kernel, so going beyond this doesn't
1214		 * buy us much.
1215		 */
1216		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1217		    0, NULL);
1218		for (slice = avl_first(&slice_cache); slice;
1219		    (slice = avl_walk(&slice_cache, slice,
1220		    AVL_AFTER)))
1221			(void) tpool_dispatch(t, zpool_open_func, slice);
1222		tpool_wait(t);
1223		tpool_destroy(t);
1224
1225		cookie = NULL;
1226		while ((slice = avl_destroy_nodes(&slice_cache,
1227		    &cookie)) != NULL) {
1228			if (slice->rn_config != NULL) {
1229				nvlist_t *config = slice->rn_config;
1230				boolean_t matched = B_TRUE;
1231
1232				if (poolname != NULL) {
1233					char *pname;
1234
1235					matched = nvlist_lookup_string(config,
1236					    ZPOOL_CONFIG_POOL_NAME,
1237					    &pname) == 0 &&
1238					    strcmp(poolname, pname) == 0;
1239				} else if (guid != 0) {
1240					uint64_t this_guid;
1241
1242					matched = nvlist_lookup_uint64(config,
1243					    ZPOOL_CONFIG_POOL_GUID,
1244					    &this_guid) == 0 &&
1245					    guid == this_guid;
1246				}
1247				if (!matched) {
1248					nvlist_free(config);
1249					config = NULL;
1250					continue;
1251				}
1252				/* use the non-raw path for the config */
1253				(void) strlcpy(end, slice->rn_name, pathleft);
1254				if (add_config(hdl, &pools, path, config) != 0)
1255					goto error;
1256			}
1257			free(slice->rn_name);
1258			free(slice);
1259		}
1260		avl_destroy(&slice_cache);
1261
1262		(void) closedir(dirp);
1263		dirp = NULL;
1264	}
1265
1266	ret = get_configs(hdl, &pools, active_ok);
1267
1268error:
1269	for (pe = pools.pools; pe != NULL; pe = penext) {
1270		penext = pe->pe_next;
1271		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1272			venext = ve->ve_next;
1273			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1274				cenext = ce->ce_next;
1275				if (ce->ce_config)
1276					nvlist_free(ce->ce_config);
1277				free(ce);
1278			}
1279			free(ve);
1280		}
1281		free(pe);
1282	}
1283
1284	for (ne = pools.names; ne != NULL; ne = nenext) {
1285		nenext = ne->ne_next;
1286		if (ne->ne_name)
1287			free(ne->ne_name);
1288		free(ne);
1289	}
1290
1291	if (dirp)
1292		(void) closedir(dirp);
1293
1294	return (ret);
1295}
1296
1297nvlist_t *
1298zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1299{
1300	return (zpool_find_import_impl(hdl, argc, argv, B_FALSE, NULL, 0));
1301}
1302
1303nvlist_t *
1304zpool_find_import_byname(libzfs_handle_t *hdl, int argc, char **argv,
1305    char *pool)
1306{
1307	return (zpool_find_import_impl(hdl, argc, argv, B_FALSE, pool, 0));
1308}
1309
1310nvlist_t *
1311zpool_find_import_byguid(libzfs_handle_t *hdl, int argc, char **argv,
1312    uint64_t guid)
1313{
1314	return (zpool_find_import_impl(hdl, argc, argv, B_FALSE, NULL, guid));
1315}
1316
1317nvlist_t *
1318zpool_find_import_activeok(libzfs_handle_t *hdl, int argc, char **argv)
1319{
1320	return (zpool_find_import_impl(hdl, argc, argv, B_TRUE, NULL, 0));
1321}
1322
1323/*
1324 * Given a cache file, return the contents as a list of importable pools.
1325 * poolname or guid (but not both) are provided by the caller when trying
1326 * to import a specific pool.
1327 */
1328nvlist_t *
1329zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1330    char *poolname, uint64_t guid)
1331{
1332	char *buf;
1333	int fd;
1334	struct stat64 statbuf;
1335	nvlist_t *raw, *src, *dst;
1336	nvlist_t *pools;
1337	nvpair_t *elem;
1338	char *name;
1339	uint64_t this_guid;
1340	boolean_t active;
1341
1342	verify(poolname == NULL || guid == 0);
1343
1344	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1345		zfs_error_aux(hdl, "%s", strerror(errno));
1346		(void) zfs_error(hdl, EZFS_BADCACHE,
1347		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1348		return (NULL);
1349	}
1350
1351	if (fstat64(fd, &statbuf) != 0) {
1352		zfs_error_aux(hdl, "%s", strerror(errno));
1353		(void) close(fd);
1354		(void) zfs_error(hdl, EZFS_BADCACHE,
1355		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1356		return (NULL);
1357	}
1358
1359	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1360		(void) close(fd);
1361		return (NULL);
1362	}
1363
1364	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1365		(void) close(fd);
1366		free(buf);
1367		(void) zfs_error(hdl, EZFS_BADCACHE,
1368		    dgettext(TEXT_DOMAIN,
1369		    "failed to read cache file contents"));
1370		return (NULL);
1371	}
1372
1373	(void) close(fd);
1374
1375	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1376		free(buf);
1377		(void) zfs_error(hdl, EZFS_BADCACHE,
1378		    dgettext(TEXT_DOMAIN,
1379		    "invalid or corrupt cache file contents"));
1380		return (NULL);
1381	}
1382
1383	free(buf);
1384
1385	/*
1386	 * Go through and get the current state of the pools and refresh their
1387	 * state.
1388	 */
1389	if (nvlist_alloc(&pools, 0, 0) != 0) {
1390		(void) no_memory(hdl);
1391		nvlist_free(raw);
1392		return (NULL);
1393	}
1394
1395	elem = NULL;
1396	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1397		verify(nvpair_value_nvlist(elem, &src) == 0);
1398
1399		verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1400		    &name) == 0);
1401		if (poolname != NULL && strcmp(poolname, name) != 0)
1402			continue;
1403
1404		verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1405		    &this_guid) == 0);
1406		if (guid != 0) {
1407			verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1408			    &this_guid) == 0);
1409			if (guid != this_guid)
1410				continue;
1411		}
1412
1413		if (pool_active(hdl, name, this_guid, &active) != 0) {
1414			nvlist_free(raw);
1415			nvlist_free(pools);
1416			return (NULL);
1417		}
1418
1419		if (active)
1420			continue;
1421
1422		if ((dst = refresh_config(hdl, src)) == NULL) {
1423			nvlist_free(raw);
1424			nvlist_free(pools);
1425			return (NULL);
1426		}
1427
1428		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1429			(void) no_memory(hdl);
1430			nvlist_free(dst);
1431			nvlist_free(raw);
1432			nvlist_free(pools);
1433			return (NULL);
1434		}
1435		nvlist_free(dst);
1436	}
1437
1438	nvlist_free(raw);
1439	return (pools);
1440}
1441
1442
1443boolean_t
1444find_guid(nvlist_t *nv, uint64_t guid)
1445{
1446	uint64_t tmp;
1447	nvlist_t **child;
1448	uint_t c, children;
1449
1450	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1451	if (tmp == guid)
1452		return (B_TRUE);
1453
1454	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1455	    &child, &children) == 0) {
1456		for (c = 0; c < children; c++)
1457			if (find_guid(child[c], guid))
1458				return (B_TRUE);
1459	}
1460
1461	return (B_FALSE);
1462}
1463
1464typedef struct aux_cbdata {
1465	const char	*cb_type;
1466	uint64_t	cb_guid;
1467	zpool_handle_t	*cb_zhp;
1468} aux_cbdata_t;
1469
1470static int
1471find_aux(zpool_handle_t *zhp, void *data)
1472{
1473	aux_cbdata_t *cbp = data;
1474	nvlist_t **list;
1475	uint_t i, count;
1476	uint64_t guid;
1477	nvlist_t *nvroot;
1478
1479	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1480	    &nvroot) == 0);
1481
1482	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1483	    &list, &count) == 0) {
1484		for (i = 0; i < count; i++) {
1485			verify(nvlist_lookup_uint64(list[i],
1486			    ZPOOL_CONFIG_GUID, &guid) == 0);
1487			if (guid == cbp->cb_guid) {
1488				cbp->cb_zhp = zhp;
1489				return (1);
1490			}
1491		}
1492	}
1493
1494	zpool_close(zhp);
1495	return (0);
1496}
1497
1498/*
1499 * Determines if the pool is in use.  If so, it returns true and the state of
1500 * the pool as well as the name of the pool.  Both strings are allocated and
1501 * must be freed by the caller.
1502 */
1503int
1504zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1505    boolean_t *inuse)
1506{
1507	nvlist_t *config;
1508	char *name;
1509	boolean_t ret;
1510	uint64_t guid, vdev_guid;
1511	zpool_handle_t *zhp;
1512	nvlist_t *pool_config;
1513	uint64_t stateval, isspare;
1514	aux_cbdata_t cb = { 0 };
1515	boolean_t isactive;
1516
1517	*inuse = B_FALSE;
1518
1519	if (zpool_read_label(fd, &config) != 0) {
1520		(void) no_memory(hdl);
1521		return (-1);
1522	}
1523
1524	if (config == NULL)
1525		return (0);
1526
1527	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1528	    &stateval) == 0);
1529	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1530	    &vdev_guid) == 0);
1531
1532	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1533		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1534		    &name) == 0);
1535		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1536		    &guid) == 0);
1537	}
1538
1539	switch (stateval) {
1540	case POOL_STATE_EXPORTED:
1541		ret = B_TRUE;
1542		break;
1543
1544	case POOL_STATE_ACTIVE:
1545		/*
1546		 * For an active pool, we have to determine if it's really part
1547		 * of a currently active pool (in which case the pool will exist
1548		 * and the guid will be the same), or whether it's part of an
1549		 * active pool that was disconnected without being explicitly
1550		 * exported.
1551		 */
1552		if (pool_active(hdl, name, guid, &isactive) != 0) {
1553			nvlist_free(config);
1554			return (-1);
1555		}
1556
1557		if (isactive) {
1558			/*
1559			 * Because the device may have been removed while
1560			 * offlined, we only report it as active if the vdev is
1561			 * still present in the config.  Otherwise, pretend like
1562			 * it's not in use.
1563			 */
1564			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1565			    (pool_config = zpool_get_config(zhp, NULL))
1566			    != NULL) {
1567				nvlist_t *nvroot;
1568
1569				verify(nvlist_lookup_nvlist(pool_config,
1570				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1571				ret = find_guid(nvroot, vdev_guid);
1572			} else {
1573				ret = B_FALSE;
1574			}
1575
1576			/*
1577			 * If this is an active spare within another pool, we
1578			 * treat it like an unused hot spare.  This allows the
1579			 * user to create a pool with a hot spare that currently
1580			 * in use within another pool.  Since we return B_TRUE,
1581			 * libdiskmgt will continue to prevent generic consumers
1582			 * from using the device.
1583			 */
1584			if (ret && nvlist_lookup_uint64(config,
1585			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1586				stateval = POOL_STATE_SPARE;
1587
1588			if (zhp != NULL)
1589				zpool_close(zhp);
1590		} else {
1591			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1592			ret = B_TRUE;
1593		}
1594		break;
1595
1596	case POOL_STATE_SPARE:
1597		/*
1598		 * For a hot spare, it can be either definitively in use, or
1599		 * potentially active.  To determine if it's in use, we iterate
1600		 * over all pools in the system and search for one with a spare
1601		 * with a matching guid.
1602		 *
1603		 * Due to the shared nature of spares, we don't actually report
1604		 * the potentially active case as in use.  This means the user
1605		 * can freely create pools on the hot spares of exported pools,
1606		 * but to do otherwise makes the resulting code complicated, and
1607		 * we end up having to deal with this case anyway.
1608		 */
1609		cb.cb_zhp = NULL;
1610		cb.cb_guid = vdev_guid;
1611		cb.cb_type = ZPOOL_CONFIG_SPARES;
1612		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1613			name = (char *)zpool_get_name(cb.cb_zhp);
1614			ret = TRUE;
1615		} else {
1616			ret = FALSE;
1617		}
1618		break;
1619
1620	case POOL_STATE_L2CACHE:
1621
1622		/*
1623		 * Check if any pool is currently using this l2cache device.
1624		 */
1625		cb.cb_zhp = NULL;
1626		cb.cb_guid = vdev_guid;
1627		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1628		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1629			name = (char *)zpool_get_name(cb.cb_zhp);
1630			ret = TRUE;
1631		} else {
1632			ret = FALSE;
1633		}
1634		break;
1635
1636	default:
1637		ret = B_FALSE;
1638	}
1639
1640
1641	if (ret) {
1642		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1643			if (cb.cb_zhp)
1644				zpool_close(cb.cb_zhp);
1645			nvlist_free(config);
1646			return (-1);
1647		}
1648		*state = (pool_state_t)stateval;
1649	}
1650
1651	if (cb.cb_zhp)
1652		zpool_close(cb.cb_zhp);
1653
1654	nvlist_free(config);
1655	*inuse = ret;
1656	return (0);
1657}
1658