1/*
2** This file contains all sources (including headers) to the LEMON
3** LALR(1) parser generator.  The sources have been combined into a
4** single file to make it easy to include LEMON in the source tree
5** and Makefile of another program.
6**
7** The author of this program disclaims copyright.
8*/
9#include <stdio.h>
10#include <stdarg.h>
11#include <string.h>
12#include <ctype.h>
13#include <stdlib.h>
14
15#ifndef __WIN32__
16#   if defined(_WIN32) || defined(WIN32)
17#	define __WIN32__
18#   endif
19#endif
20
21/* #define PRIVATE static */
22#define PRIVATE
23
24#ifdef TEST
25#define MAXRHS 5       /* Set low to exercise exception code */
26#else
27#define MAXRHS 1000
28#endif
29
30char *msort();
31extern void *malloc();
32
33/******** From the file "action.h" *************************************/
34struct action *Action_new();
35struct action *Action_sort();
36
37/********* From the file "assert.h" ************************************/
38void myassert();
39#ifndef NDEBUG
40#  define assert(X) if(!(X))myassert(__FILE__,__LINE__)
41#else
42#  define assert(X)
43#endif
44
45/********** From the file "build.h" ************************************/
46void FindRulePrecedences();
47void FindFirstSets();
48void FindStates();
49void FindLinks();
50void FindFollowSets();
51void FindActions();
52
53/********* From the file "configlist.h" *********************************/
54void Configlist_init(/* void */);
55struct config *Configlist_add(/* struct rule *, int */);
56struct config *Configlist_addbasis(/* struct rule *, int */);
57void Configlist_closure(/* void */);
58void Configlist_sort(/* void */);
59void Configlist_sortbasis(/* void */);
60struct config *Configlist_return(/* void */);
61struct config *Configlist_basis(/* void */);
62void Configlist_eat(/* struct config * */);
63void Configlist_reset(/* void */);
64
65/********* From the file "error.h" ***************************************/
66void ErrorMsg(const char *, int,const char *, ...);
67
68/****** From the file "option.h" ******************************************/
69struct s_options {
70  enum { OPT_FLAG=1,  OPT_INT,  OPT_DBL,  OPT_STR,
71         OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR} type;
72  char *label;
73  char *arg;
74  char *message;
75};
76int    OptInit(/* char**,struct s_options*,FILE* */);
77int    OptNArgs(/* void */);
78char  *OptArg(/* int */);
79void   OptErr(/* int */);
80void   OptPrint(/* void */);
81
82/******** From the file "parse.h" *****************************************/
83void Parse(/* struct lemon *lemp */);
84
85/********* From the file "plink.h" ***************************************/
86struct plink *Plink_new(/* void */);
87void Plink_add(/* struct plink **, struct config * */);
88void Plink_copy(/* struct plink **, struct plink * */);
89void Plink_delete(/* struct plink * */);
90
91/********** From the file "report.h" *************************************/
92void Reprint(/* struct lemon * */);
93void ReportOutput(/* struct lemon * */);
94void ReportTable(/* struct lemon * */);
95void ReportHeader(/* struct lemon * */);
96void CompressTables(/* struct lemon * */);
97
98/********** From the file "set.h" ****************************************/
99void  SetSize(/* int N */);             /* All sets will be of size N */
100char *SetNew(/* void */);               /* A new set for element 0..N */
101void  SetFree(/* char* */);             /* Deallocate a set */
102
103int SetAdd(/* char*,int */);            /* Add element to a set */
104int SetUnion(/* char *A,char *B */);    /* A <- A U B, thru element N */
105
106#define SetFind(X,Y) (X[Y])       /* True if Y is in set X */
107
108/********** From the file "struct.h" *************************************/
109/*
110** Principal data structures for the LEMON parser generator.
111*/
112
113typedef enum {B_FALSE=0, B_TRUE} Boolean;
114
115/* Symbols (terminals and nonterminals) of the grammar are stored
116** in the following: */
117struct symbol {
118  char *name;              /* Name of the symbol */
119  int index;               /* Index number for this symbol */
120  enum {
121    TERMINAL,
122    NONTERMINAL
123  } type;                  /* Symbols are all either TERMINALS or NTs */
124  struct rule *rule;       /* Linked list of rules of this (if an NT) */
125  struct symbol *fallback; /* fallback token in case this token doesn't parse */
126  int prec;                /* Precedence if defined (-1 otherwise) */
127  enum e_assoc {
128    LEFT,
129    RIGHT,
130    NONE,
131    UNK
132  } assoc;                 /* Associativity if predecence is defined */
133  char *firstset;          /* First-set for all rules of this symbol */
134  Boolean lambda;          /* True if NT and can generate an empty string */
135  char *destructor;        /* Code which executes whenever this symbol is
136                           ** popped from the stack during error processing */
137  int destructorln;        /* Line number of destructor code */
138  char *datatype;          /* The data type of information held by this
139                           ** object. Only used if type==NONTERMINAL */
140  int dtnum;               /* The data type number.  In the parser, the value
141                           ** stack is a union.  The .yy%d element of this
142                           ** union is the correct data type for this object */
143};
144
145/* Each production rule in the grammar is stored in the following
146** structure.  */
147struct rule {
148  struct symbol *lhs;      /* Left-hand side of the rule */
149  char *lhsalias;          /* Alias for the LHS (NULL if none) */
150  int ruleline;            /* Line number for the rule */
151  int nrhs;                /* Number of RHS symbols */
152  struct symbol **rhs;     /* The RHS symbols */
153  char **rhsalias;         /* An alias for each RHS symbol (NULL if none) */
154  int line;                /* Line number at which code begins */
155  char *code;              /* The code executed when this rule is reduced */
156  struct symbol *precsym;  /* Precedence symbol for this rule */
157  int index;               /* An index number for this rule */
158  Boolean canReduce;       /* True if this rule is ever reduced */
159  struct rule *nextlhs;    /* Next rule with the same LHS */
160  struct rule *next;       /* Next rule in the global list */
161};
162
163/* A configuration is a production rule of the grammar together with
164** a mark (dot) showing how much of that rule has been processed so far.
165** Configurations also contain a follow-set which is a list of terminal
166** symbols which are allowed to immediately follow the end of the rule.
167** Every configuration is recorded as an instance of the following: */
168struct config {
169  struct rule *rp;         /* The rule upon which the configuration is based */
170  int dot;                 /* The parse point */
171  char *fws;               /* Follow-set for this configuration only */
172  struct plink *fplp;      /* Follow-set forward propagation links */
173  struct plink *bplp;      /* Follow-set backwards propagation links */
174  struct state *stp;       /* Pointer to state which contains this */
175  enum {
176    COMPLETE,              /* The status is used during followset and */
177    INCOMPLETE             /*    shift computations */
178  } status;
179  struct config *next;     /* Next configuration in the state */
180  struct config *bp;       /* The next basis configuration */
181};
182
183/* Every shift or reduce operation is stored as one of the following */
184struct action {
185  struct symbol *sp;       /* The look-ahead symbol */
186  enum e_action {
187    SHIFT,
188    ACCEPT,
189    REDUCE,
190    ERROR,
191    CONFLICT,                /* Was a reduce, but part of a conflict */
192    SH_RESOLVED,             /* Was a shift.  Precedence resolved conflict */
193    RD_RESOLVED,             /* Was reduce.  Precedence resolved conflict */
194    NOT_USED                 /* Deleted by compression */
195  } type;
196  union {
197    struct state *stp;     /* The new state, if a shift */
198    struct rule *rp;       /* The rule, if a reduce */
199  } x;
200  struct action *next;     /* Next action for this state */
201  struct action *collide;  /* Next action with the same hash */
202};
203
204/* Each state of the generated parser's finite state machine
205** is encoded as an instance of the following structure. */
206struct state {
207  struct config *bp;       /* The basis configurations for this state */
208  struct config *cfp;      /* All configurations in this set */
209  int index;               /* Sequencial number for this state */
210  struct action *ap;       /* Array of actions for this state */
211  int nTknAct, nNtAct;     /* Number of actions on terminals and nonterminals */
212  int iTknOfst, iNtOfst;   /* yy_action[] offset for terminals and nonterms */
213  int iDflt;               /* Default action */
214};
215#define NO_OFFSET (-2147483647)
216
217/* A followset propagation link indicates that the contents of one
218** configuration followset should be propagated to another whenever
219** the first changes. */
220struct plink {
221  struct config *cfp;      /* The configuration to which linked */
222  struct plink *next;      /* The next propagate link */
223};
224
225/* The state vector for the entire parser generator is recorded as
226** follows.  (LEMON uses no global variables and makes little use of
227** static variables.  Fields in the following structure can be thought
228** of as begin global variables in the program.) */
229struct lemon {
230  struct state **sorted;   /* Table of states sorted by state number */
231  struct rule *rule;       /* List of all rules */
232  int nstate;              /* Number of states */
233  int nrule;               /* Number of rules */
234  int nsymbol;             /* Number of terminal and nonterminal symbols */
235  int nterminal;           /* Number of terminal symbols */
236  struct symbol **symbols; /* Sorted array of pointers to symbols */
237  int errorcnt;            /* Number of errors */
238  struct symbol *errsym;   /* The error symbol */
239  char *name;              /* Name of the generated parser */
240  char *arg;               /* Declaration of the 3th argument to parser */
241  char *tokentype;         /* Type of terminal symbols in the parser stack */
242  char *vartype;           /* The default type of non-terminal symbols */
243  char *start;             /* Name of the start symbol for the grammar */
244  char *stacksize;         /* Size of the parser stack */
245  char *include;           /* Code to put at the start of the C file */
246  int  includeln;          /* Line number for start of include code */
247  char *error;             /* Code to execute when an error is seen */
248  int  errorln;            /* Line number for start of error code */
249  char *overflow;          /* Code to execute on a stack overflow */
250  int  overflowln;         /* Line number for start of overflow code */
251  char *failure;           /* Code to execute on parser failure */
252  int  failureln;          /* Line number for start of failure code */
253  char *accept;            /* Code to execute when the parser excepts */
254  int  acceptln;           /* Line number for the start of accept code */
255  char *extracode;         /* Code appended to the generated file */
256  int  extracodeln;        /* Line number for the start of the extra code */
257  char *tokendest;         /* Code to execute to destroy token data */
258  int  tokendestln;        /* Line number for token destroyer code */
259  char *vardest;           /* Code for the default non-terminal destructor */
260  int  vardestln;          /* Line number for default non-term destructor code*/
261  char *filename;          /* Name of the input file */
262  char *outname;           /* Name of the current output file */
263  char *tokenprefix;       /* A prefix added to token names in the .h file */
264  int nconflict;           /* Number of parsing conflicts */
265  int tablesize;           /* Size of the parse tables */
266  int basisflag;           /* Print only basis configurations */
267  int has_fallback;        /* True if any %fallback is seen in the grammer */
268  char *argv0;             /* Name of the program */
269};
270
271#define MemoryCheck(X) if((X)==0){ \
272  extern void memory_error(); \
273  memory_error(); \
274}
275
276/**************** From the file "table.h" *********************************/
277/*
278** All code in this file has been automatically generated
279** from a specification in the file
280**              "table.q"
281** by the associative array code building program "aagen".
282** Do not edit this file!  Instead, edit the specification
283** file, then rerun aagen.
284*/
285/*
286** Code for processing tables in the LEMON parser generator.
287*/
288
289/* Routines for handling a strings */
290
291char *Strsafe();
292
293void Strsafe_init(/* void */);
294int Strsafe_insert(/* char * */);
295char *Strsafe_find(/* char * */);
296
297/* Routines for handling symbols of the grammar */
298
299struct symbol *Symbol_new();
300int Symbolcmpp(/* struct symbol **, struct symbol ** */);
301void Symbol_init(/* void */);
302int Symbol_insert(/* struct symbol *, char * */);
303struct symbol *Symbol_find(/* char * */);
304struct symbol *Symbol_Nth(/* int */);
305int Symbol_count(/*  */);
306struct symbol **Symbol_arrayof(/*  */);
307
308/* Routines to manage the state table */
309
310int Configcmp(/* struct config *, struct config * */);
311struct state *State_new();
312void State_init(/* void */);
313int State_insert(/* struct state *, struct config * */);
314struct state *State_find(/* struct config * */);
315struct state **State_arrayof(/*  */);
316
317/* Routines used for efficiency in Configlist_add */
318
319void Configtable_init(/* void */);
320int Configtable_insert(/* struct config * */);
321struct config *Configtable_find(/* struct config * */);
322void Configtable_clear(/* int(*)(struct config *) */);
323/****************** From the file "action.c" *******************************/
324/*
325** Routines processing parser actions in the LEMON parser generator.
326*/
327
328/* Allocate a new parser action */
329struct action *Action_new(){
330  static struct action *freelist = 0;
331  struct action *new;
332
333  if( freelist==0 ){
334    int i;
335    int amt = 100;
336    freelist = (struct action *)malloc( sizeof(struct action)*amt );
337    if( freelist==0 ){
338      fprintf(stderr,"Unable to allocate memory for a new parser action.");
339      exit(1);
340    }
341    for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
342    freelist[amt-1].next = 0;
343  }
344  new = freelist;
345  freelist = freelist->next;
346  return new;
347}
348
349/* Compare two actions */
350static int actioncmp(ap1,ap2)
351struct action *ap1;
352struct action *ap2;
353{
354  int rc;
355  rc = ap1->sp->index - ap2->sp->index;
356  if( rc==0 ) rc = (int)ap1->type - (int)ap2->type;
357  if( rc==0 ){
358    assert( ap1->type==REDUCE || ap1->type==RD_RESOLVED || ap1->type==CONFLICT);
359    assert( ap2->type==REDUCE || ap2->type==RD_RESOLVED || ap2->type==CONFLICT);
360    rc = ap1->x.rp->index - ap2->x.rp->index;
361  }
362  return rc;
363}
364
365/* Sort parser actions */
366struct action *Action_sort(ap)
367struct action *ap;
368{
369  ap = (struct action *)msort((char *)ap,(char **)&ap->next,actioncmp);
370  return ap;
371}
372
373void Action_add(app,type,sp,arg)
374struct action **app;
375enum e_action type;
376struct symbol *sp;
377char *arg;
378{
379  struct action *new;
380  new = Action_new();
381  new->next = *app;
382  *app = new;
383  new->type = type;
384  new->sp = sp;
385  if( type==SHIFT ){
386    new->x.stp = (struct state *)arg;
387  }else{
388    new->x.rp = (struct rule *)arg;
389  }
390}
391/********************** New code to implement the "acttab" module ***********/
392/*
393** This module implements routines use to construct the yy_action[] table.
394*/
395
396/*
397** The state of the yy_action table under construction is an instance of
398** the following structure
399*/
400typedef struct acttab acttab;
401struct acttab {
402  int nAction;                 /* Number of used slots in aAction[] */
403  int nActionAlloc;            /* Slots allocated for aAction[] */
404  struct {
405    int lookahead;             /* Value of the lookahead token */
406    int action;                /* Action to take on the given lookahead */
407  } *aAction,                  /* The yy_action[] table under construction */
408    *aLookahead;               /* A single new transaction set */
409  int mnLookahead;             /* Minimum aLookahead[].lookahead */
410  int mnAction;                /* Action associated with mnLookahead */
411  int mxLookahead;             /* Maximum aLookahead[].lookahead */
412  int nLookahead;              /* Used slots in aLookahead[] */
413  int nLookaheadAlloc;         /* Slots allocated in aLookahead[] */
414};
415
416/* Return the number of entries in the yy_action table */
417#define acttab_size(X) ((X)->nAction)
418
419/* The value for the N-th entry in yy_action */
420#define acttab_yyaction(X,N)  ((X)->aAction[N].action)
421
422/* The value for the N-th entry in yy_lookahead */
423#define acttab_yylookahead(X,N)  ((X)->aAction[N].lookahead)
424
425/* Free all memory associated with the given acttab */
426void acttab_free(acttab *p){
427  free( p->aAction );
428  free( p->aLookahead );
429  free( p );
430}
431
432/* Allocate a new acttab structure */
433acttab *acttab_alloc(void){
434  acttab *p = malloc( sizeof(*p) );
435  if( p==0 ){
436    fprintf(stderr,"Unable to allocate memory for a new acttab.");
437    exit(1);
438  }
439  memset(p, 0, sizeof(*p));
440  return p;
441}
442
443/* Add a new action to the current transaction set
444*/
445void acttab_action(acttab *p, int lookahead, int action){
446  if( p->nLookahead>=p->nLookaheadAlloc ){
447    p->nLookaheadAlloc += 25;
448    p->aLookahead = realloc( p->aLookahead,
449                             sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
450    if( p->aLookahead==0 ){
451      fprintf(stderr,"malloc failed\n");
452      exit(1);
453    }
454  }
455  if( p->nLookahead==0 ){
456    p->mxLookahead = lookahead;
457    p->mnLookahead = lookahead;
458    p->mnAction = action;
459  }else{
460    if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
461    if( p->mnLookahead>lookahead ){
462      p->mnLookahead = lookahead;
463      p->mnAction = action;
464    }
465  }
466  p->aLookahead[p->nLookahead].lookahead = lookahead;
467  p->aLookahead[p->nLookahead].action = action;
468  p->nLookahead++;
469}
470
471/*
472** Add the transaction set built up with prior calls to acttab_action()
473** into the current action table.  Then reset the transaction set back
474** to an empty set in preparation for a new round of acttab_action() calls.
475**
476** Return the offset into the action table of the new transaction.
477*/
478int acttab_insert(acttab *p){
479  int i, j, k, n;
480  assert( p->nLookahead>0 );
481
482  /* Make sure we have enough space to hold the expanded action table
483  ** in the worst case.  The worst case occurs if the transaction set
484  ** must be appended to the current action table
485  */
486  n = p->mxLookahead + 1;
487  if( p->nAction + n >= p->nActionAlloc ){
488    int oldAlloc = p->nActionAlloc;
489    p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
490    p->aAction = realloc( p->aAction,
491                          sizeof(p->aAction[0])*p->nActionAlloc);
492    if( p->aAction==0 ){
493      fprintf(stderr,"malloc failed\n");
494      exit(1);
495    }
496    for(i=oldAlloc; i<p->nActionAlloc; i++){
497      p->aAction[i].lookahead = -1;
498      p->aAction[i].action = -1;
499    }
500  }
501
502  /* Scan the existing action table looking for an offset where we can
503  ** insert the current transaction set.  Fall out of the loop when that
504  ** offset is found.  In the worst case, we fall out of the loop when
505  ** i reaches p->nAction, which means we append the new transaction set.
506  **
507  ** i is the index in p->aAction[] where p->mnLookahead is inserted.
508  */
509  for(i=0; i<p->nAction+p->mnLookahead; i++){
510    if( p->aAction[i].lookahead<0 ){
511      for(j=0; j<p->nLookahead; j++){
512        k = p->aLookahead[j].lookahead - p->mnLookahead + i;
513        if( k<0 ) break;
514        if( p->aAction[k].lookahead>=0 ) break;
515      }
516      if( j<p->nLookahead ) continue;
517      for(j=0; j<p->nAction; j++){
518        if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
519      }
520      if( j==p->nAction ){
521        break;  /* Fits in empty slots */
522      }
523    }else if( p->aAction[i].lookahead==p->mnLookahead ){
524      if( p->aAction[i].action!=p->mnAction ) continue;
525      for(j=0; j<p->nLookahead; j++){
526        k = p->aLookahead[j].lookahead - p->mnLookahead + i;
527        if( k<0 || k>=p->nAction ) break;
528        if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
529        if( p->aLookahead[j].action!=p->aAction[k].action ) break;
530      }
531      if( j<p->nLookahead ) continue;
532      n = 0;
533      for(j=0; j<p->nAction; j++){
534        if( p->aAction[j].lookahead<0 ) continue;
535        if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
536      }
537      if( n==p->nLookahead ){
538        break;  /* Same as a prior transaction set */
539      }
540    }
541  }
542  /* Insert transaction set at index i. */
543  for(j=0; j<p->nLookahead; j++){
544    k = p->aLookahead[j].lookahead - p->mnLookahead + i;
545    p->aAction[k] = p->aLookahead[j];
546    if( k>=p->nAction ) p->nAction = k+1;
547  }
548  p->nLookahead = 0;
549
550  /* Return the offset that is added to the lookahead in order to get the
551  ** index into yy_action of the action */
552  return i - p->mnLookahead;
553}
554
555/********************** From the file "assert.c" ****************************/
556/*
557** A more efficient way of handling assertions.
558*/
559void myassert(file,line)
560char *file;
561int line;
562{
563  fprintf(stderr,"Assertion failed on line %d of file \"%s\"\n",line,file);
564  exit(1);
565}
566/********************** From the file "build.c" *****************************/
567/*
568** Routines to construction the finite state machine for the LEMON
569** parser generator.
570*/
571
572/* Find a precedence symbol of every rule in the grammar.
573**
574** Those rules which have a precedence symbol coded in the input
575** grammar using the "[symbol]" construct will already have the
576** rp->precsym field filled.  Other rules take as their precedence
577** symbol the first RHS symbol with a defined precedence.  If there
578** are not RHS symbols with a defined precedence, the precedence
579** symbol field is left blank.
580*/
581void FindRulePrecedences(xp)
582struct lemon *xp;
583{
584  struct rule *rp;
585  for(rp=xp->rule; rp; rp=rp->next){
586    if( rp->precsym==0 ){
587      int i;
588      for(i=0; i<rp->nrhs; i++){
589        if( rp->rhs[i]->prec>=0 ){
590          rp->precsym = rp->rhs[i];
591          break;
592	}
593      }
594    }
595  }
596  return;
597}
598
599/* Find all nonterminals which will generate the empty string.
600** Then go back and compute the first sets of every nonterminal.
601** The first set is the set of all terminal symbols which can begin
602** a string generated by that nonterminal.
603*/
604void FindFirstSets(lemp)
605struct lemon *lemp;
606{
607  int i;
608  struct rule *rp;
609  int progress;
610
611  for(i=0; i<lemp->nsymbol; i++){
612    lemp->symbols[i]->lambda = B_FALSE;
613  }
614  for(i=lemp->nterminal; i<lemp->nsymbol; i++){
615    lemp->symbols[i]->firstset = SetNew();
616  }
617
618  /* First compute all lambdas */
619  do{
620    progress = 0;
621    for(rp=lemp->rule; rp; rp=rp->next){
622      if( rp->lhs->lambda ) continue;
623      for(i=0; i<rp->nrhs; i++){
624         if( rp->rhs[i]->lambda==B_FALSE ) break;
625      }
626      if( i==rp->nrhs ){
627        rp->lhs->lambda = B_TRUE;
628        progress = 1;
629      }
630    }
631  }while( progress );
632
633  /* Now compute all first sets */
634  do{
635    struct symbol *s1, *s2;
636    progress = 0;
637    for(rp=lemp->rule; rp; rp=rp->next){
638      s1 = rp->lhs;
639      for(i=0; i<rp->nrhs; i++){
640        s2 = rp->rhs[i];
641        if( s2->type==TERMINAL ){
642          progress += SetAdd(s1->firstset,s2->index);
643          break;
644	}else if( s1==s2 ){
645          if( s1->lambda==B_FALSE ) break;
646	}else{
647          progress += SetUnion(s1->firstset,s2->firstset);
648          if( s2->lambda==B_FALSE ) break;
649	}
650      }
651    }
652  }while( progress );
653  return;
654}
655
656/* Compute all LR(0) states for the grammar.  Links
657** are added to between some states so that the LR(1) follow sets
658** can be computed later.
659*/
660PRIVATE struct state *getstate(/* struct lemon * */);  /* forward reference */
661void FindStates(lemp)
662struct lemon *lemp;
663{
664  struct symbol *sp;
665  struct rule *rp;
666
667  Configlist_init();
668
669  /* Find the start symbol */
670  if( lemp->start ){
671    sp = Symbol_find(lemp->start);
672    if( sp==0 ){
673      ErrorMsg(lemp->filename,0,
674"The specified start symbol \"%s\" is not \
675in a nonterminal of the grammar.  \"%s\" will be used as the start \
676symbol instead.",lemp->start,lemp->rule->lhs->name);
677      lemp->errorcnt++;
678      sp = lemp->rule->lhs;
679    }
680  }else{
681    sp = lemp->rule->lhs;
682  }
683
684  /* Make sure the start symbol doesn't occur on the right-hand side of
685  ** any rule.  Report an error if it does.  (YACC would generate a new
686  ** start symbol in this case.) */
687  for(rp=lemp->rule; rp; rp=rp->next){
688    int i;
689    for(i=0; i<rp->nrhs; i++){
690      if( rp->rhs[i]==sp ){
691        ErrorMsg(lemp->filename,0,
692"The start symbol \"%s\" occurs on the \
693right-hand side of a rule. This will result in a parser which \
694does not work properly.",sp->name);
695        lemp->errorcnt++;
696      }
697    }
698  }
699
700  /* The basis configuration set for the first state
701  ** is all rules which have the start symbol as their
702  ** left-hand side */
703  for(rp=sp->rule; rp; rp=rp->nextlhs){
704    struct config *newcfp;
705    newcfp = Configlist_addbasis(rp,0);
706    SetAdd(newcfp->fws,0);
707  }
708
709  /* Compute the first state.  All other states will be
710  ** computed automatically during the computation of the first one.
711  ** The returned pointer to the first state is not used. */
712  (void)getstate(lemp);
713  return;
714}
715
716/* Return a pointer to a state which is described by the configuration
717** list which has been built from calls to Configlist_add.
718*/
719PRIVATE void buildshifts(/* struct lemon *, struct state * */); /* Forwd ref */
720PRIVATE struct state *getstate(lemp)
721struct lemon *lemp;
722{
723  struct config *cfp, *bp;
724  struct state *stp;
725
726  /* Extract the sorted basis of the new state.  The basis was constructed
727  ** by prior calls to "Configlist_addbasis()". */
728  Configlist_sortbasis();
729  bp = Configlist_basis();
730
731  /* Get a state with the same basis */
732  stp = State_find(bp);
733  if( stp ){
734    /* A state with the same basis already exists!  Copy all the follow-set
735    ** propagation links from the state under construction into the
736    ** preexisting state, then return a pointer to the preexisting state */
737    struct config *x, *y;
738    for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
739      Plink_copy(&y->bplp,x->bplp);
740      Plink_delete(x->fplp);
741      x->fplp = x->bplp = 0;
742    }
743    cfp = Configlist_return();
744    Configlist_eat(cfp);
745  }else{
746    /* This really is a new state.  Construct all the details */
747    Configlist_closure(lemp);    /* Compute the configuration closure */
748    Configlist_sort();           /* Sort the configuration closure */
749    cfp = Configlist_return();   /* Get a pointer to the config list */
750    stp = State_new();           /* A new state structure */
751    MemoryCheck(stp);
752    stp->bp = bp;                /* Remember the configuration basis */
753    stp->cfp = cfp;              /* Remember the configuration closure */
754    stp->index = lemp->nstate++; /* Every state gets a sequence number */
755    stp->ap = 0;                 /* No actions, yet. */
756    State_insert(stp,stp->bp);   /* Add to the state table */
757    buildshifts(lemp,stp);       /* Recursively compute successor states */
758  }
759  return stp;
760}
761
762/* Construct all successor states to the given state.  A "successor"
763** state is any state which can be reached by a shift action.
764*/
765PRIVATE void buildshifts(lemp,stp)
766struct lemon *lemp;
767struct state *stp;     /* The state from which successors are computed */
768{
769  struct config *cfp;  /* For looping thru the config closure of "stp" */
770  struct config *bcfp; /* For the inner loop on config closure of "stp" */
771  struct config *new;  /* */
772  struct symbol *sp;   /* Symbol following the dot in configuration "cfp" */
773  struct symbol *bsp;  /* Symbol following the dot in configuration "bcfp" */
774  struct state *newstp; /* A pointer to a successor state */
775
776  /* Each configuration becomes complete after it contibutes to a successor
777  ** state.  Initially, all configurations are incomplete */
778  for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
779
780  /* Loop through all configurations of the state "stp" */
781  for(cfp=stp->cfp; cfp; cfp=cfp->next){
782    if( cfp->status==COMPLETE ) continue;    /* Already used by inner loop */
783    if( cfp->dot>=cfp->rp->nrhs ) continue;  /* Can't shift this config */
784    Configlist_reset();                      /* Reset the new config set */
785    sp = cfp->rp->rhs[cfp->dot];             /* Symbol after the dot */
786
787    /* For every configuration in the state "stp" which has the symbol "sp"
788    ** following its dot, add the same configuration to the basis set under
789    ** construction but with the dot shifted one symbol to the right. */
790    for(bcfp=cfp; bcfp; bcfp=bcfp->next){
791      if( bcfp->status==COMPLETE ) continue;    /* Already used */
792      if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
793      bsp = bcfp->rp->rhs[bcfp->dot];           /* Get symbol after dot */
794      if( bsp!=sp ) continue;                   /* Must be same as for "cfp" */
795      bcfp->status = COMPLETE;                  /* Mark this config as used */
796      new = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
797      Plink_add(&new->bplp,bcfp);
798    }
799
800    /* Get a pointer to the state described by the basis configuration set
801    ** constructed in the preceding loop */
802    newstp = getstate(lemp);
803
804    /* The state "newstp" is reached from the state "stp" by a shift action
805    ** on the symbol "sp" */
806    Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
807  }
808}
809
810/*
811** Construct the propagation links
812*/
813void FindLinks(lemp)
814struct lemon *lemp;
815{
816  int i;
817  struct config *cfp, *other;
818  struct state *stp;
819  struct plink *plp;
820
821  /* Housekeeping detail:
822  ** Add to every propagate link a pointer back to the state to
823  ** which the link is attached. */
824  for(i=0; i<lemp->nstate; i++){
825    stp = lemp->sorted[i];
826    for(cfp=stp->cfp; cfp; cfp=cfp->next){
827      cfp->stp = stp;
828    }
829  }
830
831  /* Convert all backlinks into forward links.  Only the forward
832  ** links are used in the follow-set computation. */
833  for(i=0; i<lemp->nstate; i++){
834    stp = lemp->sorted[i];
835    for(cfp=stp->cfp; cfp; cfp=cfp->next){
836      for(plp=cfp->bplp; plp; plp=plp->next){
837        other = plp->cfp;
838        Plink_add(&other->fplp,cfp);
839      }
840    }
841  }
842}
843
844/* Compute all followsets.
845**
846** A followset is the set of all symbols which can come immediately
847** after a configuration.
848*/
849void FindFollowSets(lemp)
850struct lemon *lemp;
851{
852  int i;
853  struct config *cfp;
854  struct plink *plp;
855  int progress;
856  int change;
857
858  for(i=0; i<lemp->nstate; i++){
859    for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
860      cfp->status = INCOMPLETE;
861    }
862  }
863
864  do{
865    progress = 0;
866    for(i=0; i<lemp->nstate; i++){
867      for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
868        if( cfp->status==COMPLETE ) continue;
869        for(plp=cfp->fplp; plp; plp=plp->next){
870          change = SetUnion(plp->cfp->fws,cfp->fws);
871          if( change ){
872            plp->cfp->status = INCOMPLETE;
873            progress = 1;
874	  }
875	}
876        cfp->status = COMPLETE;
877      }
878    }
879  }while( progress );
880}
881
882static int resolve_conflict();
883
884/* Compute the reduce actions, and resolve conflicts.
885*/
886void FindActions(lemp)
887struct lemon *lemp;
888{
889  int i,j;
890  struct config *cfp;
891  struct state *stp;
892  struct symbol *sp;
893  struct rule *rp;
894
895  /* Add all of the reduce actions
896  ** A reduce action is added for each element of the followset of
897  ** a configuration which has its dot at the extreme right.
898  */
899  for(i=0; i<lemp->nstate; i++){   /* Loop over all states */
900    stp = lemp->sorted[i];
901    for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */
902      if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */
903        for(j=0; j<lemp->nterminal; j++){
904          if( SetFind(cfp->fws,j) ){
905            /* Add a reduce action to the state "stp" which will reduce by the
906            ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
907            Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
908          }
909	}
910      }
911    }
912  }
913
914  /* Add the accepting token */
915  if( lemp->start ){
916    sp = Symbol_find(lemp->start);
917    if( sp==0 ) sp = lemp->rule->lhs;
918  }else{
919    sp = lemp->rule->lhs;
920  }
921  /* Add to the first state (which is always the starting state of the
922  ** finite state machine) an action to ACCEPT if the lookahead is the
923  ** start nonterminal.  */
924  Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
925
926  /* Resolve conflicts */
927  for(i=0; i<lemp->nstate; i++){
928    struct action *ap, *nap;
929    struct state *stp;
930    stp = lemp->sorted[i];
931    assert( stp->ap );
932    stp->ap = Action_sort(stp->ap);
933    for(ap=stp->ap; ap && ap->next; ap=ap->next){
934      for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
935         /* The two actions "ap" and "nap" have the same lookahead.
936         ** Figure out which one should be used */
937         lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym);
938      }
939    }
940  }
941
942  /* Report an error for each rule that can never be reduced. */
943  for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = B_FALSE;
944  for(i=0; i<lemp->nstate; i++){
945    struct action *ap;
946    for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
947      if( ap->type==REDUCE ) ap->x.rp->canReduce = B_TRUE;
948    }
949  }
950  for(rp=lemp->rule; rp; rp=rp->next){
951    if( rp->canReduce ) continue;
952    ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
953    lemp->errorcnt++;
954  }
955}
956
957/* Resolve a conflict between the two given actions.  If the
958** conflict can't be resolve, return non-zero.
959**
960** NO LONGER TRUE:
961**   To resolve a conflict, first look to see if either action
962**   is on an error rule.  In that case, take the action which
963**   is not associated with the error rule.  If neither or both
964**   actions are associated with an error rule, then try to
965**   use precedence to resolve the conflict.
966**
967** If either action is a SHIFT, then it must be apx.  This
968** function won't work if apx->type==REDUCE and apy->type==SHIFT.
969*/
970static int resolve_conflict(apx,apy,errsym)
971struct action *apx;
972struct action *apy;
973struct symbol *errsym;   /* The error symbol (if defined.  NULL otherwise) */
974{
975  struct symbol *spx, *spy;
976  int errcnt = 0;
977  assert( apx->sp==apy->sp );  /* Otherwise there would be no conflict */
978  if( apx->type==SHIFT && apy->type==REDUCE ){
979    spx = apx->sp;
980    spy = apy->x.rp->precsym;
981    if( spy==0 || spx->prec<0 || spy->prec<0 ){
982      /* Not enough precedence information. */
983      apy->type = CONFLICT;
984      errcnt++;
985    }else if( spx->prec>spy->prec ){    /* Lower precedence wins */
986      apy->type = RD_RESOLVED;
987    }else if( spx->prec<spy->prec ){
988      apx->type = SH_RESOLVED;
989    }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
990      apy->type = RD_RESOLVED;                             /* associativity */
991    }else if( spx->prec==spy->prec && spx->assoc==LEFT ){  /* to break tie */
992      apx->type = SH_RESOLVED;
993    }else{
994      assert( spx->prec==spy->prec && spx->assoc==NONE );
995      apy->type = CONFLICT;
996      errcnt++;
997    }
998  }else if( apx->type==REDUCE && apy->type==REDUCE ){
999    spx = apx->x.rp->precsym;
1000    spy = apy->x.rp->precsym;
1001    if( spx==0 || spy==0 || spx->prec<0 ||
1002    spy->prec<0 || spx->prec==spy->prec ){
1003      apy->type = CONFLICT;
1004      errcnt++;
1005    }else if( spx->prec>spy->prec ){
1006      apy->type = RD_RESOLVED;
1007    }else if( spx->prec<spy->prec ){
1008      apx->type = RD_RESOLVED;
1009    }
1010  }else{
1011    assert(
1012      apx->type==SH_RESOLVED ||
1013      apx->type==RD_RESOLVED ||
1014      apx->type==CONFLICT ||
1015      apy->type==SH_RESOLVED ||
1016      apy->type==RD_RESOLVED ||
1017      apy->type==CONFLICT
1018    );
1019    /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1020    ** REDUCEs on the list.  If we reach this point it must be because
1021    ** the parser conflict had already been resolved. */
1022  }
1023  return errcnt;
1024}
1025/********************* From the file "configlist.c" *************************/
1026/*
1027** Routines to processing a configuration list and building a state
1028** in the LEMON parser generator.
1029*/
1030
1031static struct config *freelist = 0;      /* List of free configurations */
1032static struct config *current = 0;       /* Top of list of configurations */
1033static struct config **currentend = 0;   /* Last on list of configs */
1034static struct config *basis = 0;         /* Top of list of basis configs */
1035static struct config **basisend = 0;     /* End of list of basis configs */
1036
1037/* Return a pointer to a new configuration */
1038PRIVATE struct config *newconfig(){
1039  struct config *new;
1040  if( freelist==0 ){
1041    int i;
1042    int amt = 3;
1043    freelist = (struct config *)malloc( sizeof(struct config)*amt );
1044    if( freelist==0 ){
1045      fprintf(stderr,"Unable to allocate memory for a new configuration.");
1046      exit(1);
1047    }
1048    for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
1049    freelist[amt-1].next = 0;
1050  }
1051  new = freelist;
1052  freelist = freelist->next;
1053  return new;
1054}
1055
1056/* The configuration "old" is no longer used */
1057PRIVATE void deleteconfig(old)
1058struct config *old;
1059{
1060  old->next = freelist;
1061  freelist = old;
1062}
1063
1064/* Initialized the configuration list builder */
1065void Configlist_init(){
1066  current = 0;
1067  currentend = &current;
1068  basis = 0;
1069  basisend = &basis;
1070  Configtable_init();
1071  return;
1072}
1073
1074/* Initialized the configuration list builder */
1075void Configlist_reset(){
1076  current = 0;
1077  currentend = &current;
1078  basis = 0;
1079  basisend = &basis;
1080  Configtable_clear(0);
1081  return;
1082}
1083
1084/* Add another configuration to the configuration list */
1085struct config *Configlist_add(rp,dot)
1086struct rule *rp;    /* The rule */
1087int dot;            /* Index into the RHS of the rule where the dot goes */
1088{
1089  struct config *cfp, model;
1090
1091  assert( currentend!=0 );
1092  model.rp = rp;
1093  model.dot = dot;
1094  cfp = Configtable_find(&model);
1095  if( cfp==0 ){
1096    cfp = newconfig();
1097    cfp->rp = rp;
1098    cfp->dot = dot;
1099    cfp->fws = SetNew();
1100    cfp->stp = 0;
1101    cfp->fplp = cfp->bplp = 0;
1102    cfp->next = 0;
1103    cfp->bp = 0;
1104    *currentend = cfp;
1105    currentend = &cfp->next;
1106    Configtable_insert(cfp);
1107  }
1108  return cfp;
1109}
1110
1111/* Add a basis configuration to the configuration list */
1112struct config *Configlist_addbasis(rp,dot)
1113struct rule *rp;
1114int dot;
1115{
1116  struct config *cfp, model;
1117
1118  assert( basisend!=0 );
1119  assert( currentend!=0 );
1120  model.rp = rp;
1121  model.dot = dot;
1122  cfp = Configtable_find(&model);
1123  if( cfp==0 ){
1124    cfp = newconfig();
1125    cfp->rp = rp;
1126    cfp->dot = dot;
1127    cfp->fws = SetNew();
1128    cfp->stp = 0;
1129    cfp->fplp = cfp->bplp = 0;
1130    cfp->next = 0;
1131    cfp->bp = 0;
1132    *currentend = cfp;
1133    currentend = &cfp->next;
1134    *basisend = cfp;
1135    basisend = &cfp->bp;
1136    Configtable_insert(cfp);
1137  }
1138  return cfp;
1139}
1140
1141/* Compute the closure of the configuration list */
1142void Configlist_closure(lemp)
1143struct lemon *lemp;
1144{
1145  struct config *cfp, *newcfp;
1146  struct rule *rp, *newrp;
1147  struct symbol *sp, *xsp;
1148  int i, dot;
1149
1150  assert( currentend!=0 );
1151  for(cfp=current; cfp; cfp=cfp->next){
1152    rp = cfp->rp;
1153    dot = cfp->dot;
1154    if( dot>=rp->nrhs ) continue;
1155    sp = rp->rhs[dot];
1156    if( sp->type==NONTERMINAL ){
1157      if( sp->rule==0 && sp!=lemp->errsym ){
1158        ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
1159          sp->name);
1160        lemp->errorcnt++;
1161      }
1162      for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
1163        newcfp = Configlist_add(newrp,0);
1164        for(i=dot+1; i<rp->nrhs; i++){
1165          xsp = rp->rhs[i];
1166          if( xsp->type==TERMINAL ){
1167            SetAdd(newcfp->fws,xsp->index);
1168            break;
1169	  }else{
1170            SetUnion(newcfp->fws,xsp->firstset);
1171            if( xsp->lambda==B_FALSE ) break;
1172	  }
1173	}
1174        if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
1175      }
1176    }
1177  }
1178  return;
1179}
1180
1181/* Sort the configuration list */
1182void Configlist_sort(){
1183  current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp);
1184  currentend = 0;
1185  return;
1186}
1187
1188/* Sort the basis configuration list */
1189void Configlist_sortbasis(){
1190  basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp);
1191  basisend = 0;
1192  return;
1193}
1194
1195/* Return a pointer to the head of the configuration list and
1196** reset the list */
1197struct config *Configlist_return(){
1198  struct config *old;
1199  old = current;
1200  current = 0;
1201  currentend = 0;
1202  return old;
1203}
1204
1205/* Return a pointer to the head of the configuration list and
1206** reset the list */
1207struct config *Configlist_basis(){
1208  struct config *old;
1209  old = basis;
1210  basis = 0;
1211  basisend = 0;
1212  return old;
1213}
1214
1215/* Free all elements of the given configuration list */
1216void Configlist_eat(cfp)
1217struct config *cfp;
1218{
1219  struct config *nextcfp;
1220  for(; cfp; cfp=nextcfp){
1221    nextcfp = cfp->next;
1222    assert( cfp->fplp==0 );
1223    assert( cfp->bplp==0 );
1224    if( cfp->fws ) SetFree(cfp->fws);
1225    deleteconfig(cfp);
1226  }
1227  return;
1228}
1229/***************** From the file "error.c" *********************************/
1230/*
1231** Code for printing error message.
1232*/
1233
1234/* Find a good place to break "msg" so that its length is at least "min"
1235** but no more than "max".  Make the point as close to max as possible.
1236*/
1237static int findbreak(msg,min,max)
1238char *msg;
1239int min;
1240int max;
1241{
1242  int i,spot;
1243  char c;
1244  for(i=spot=min; i<=max; i++){
1245    c = msg[i];
1246    if( c=='\t' ) msg[i] = ' ';
1247    if( c=='\n' ){ msg[i] = ' '; spot = i; break; }
1248    if( c==0 ){ spot = i; break; }
1249    if( c=='-' && i<max-1 ) spot = i+1;
1250    if( c==' ' ) spot = i;
1251  }
1252  return spot;
1253}
1254
1255/*
1256** The error message is split across multiple lines if necessary.  The
1257** splits occur at a space, if there is a space available near the end
1258** of the line.
1259*/
1260#define ERRMSGSIZE  10000 /* Hope this is big enough.  No way to error check */
1261#define LINEWIDTH      79 /* Max width of any output line */
1262#define PREFIXLIMIT    30 /* Max width of the prefix on each line */
1263void ErrorMsg(const char *filename, int lineno, const char *format, ...){
1264  char errmsg[ERRMSGSIZE];
1265  char prefix[PREFIXLIMIT+10];
1266  int errmsgsize;
1267  int prefixsize;
1268  int availablewidth;
1269  va_list ap;
1270  int end, restart, base;
1271
1272  va_start(ap, format);
1273  /* Prepare a prefix to be prepended to every output line */
1274  if( lineno>0 ){
1275    sprintf(prefix,"%.*s:%d: ",PREFIXLIMIT-10,filename,lineno);
1276  }else{
1277    sprintf(prefix,"%.*s: ",PREFIXLIMIT-10,filename);
1278  }
1279  prefixsize = strlen(prefix);
1280  availablewidth = LINEWIDTH - prefixsize;
1281
1282  /* Generate the error message */
1283  vsprintf(errmsg,format,ap);
1284  va_end(ap);
1285  errmsgsize = strlen(errmsg);
1286  /* Remove trailing '\n's from the error message. */
1287  while( errmsgsize>0 && errmsg[errmsgsize-1]=='\n' ){
1288     errmsg[--errmsgsize] = 0;
1289  }
1290
1291  /* Print the error message */
1292  base = 0;
1293  while( errmsg[base]!=0 ){
1294    end = restart = findbreak(&errmsg[base],0,availablewidth);
1295    restart += base;
1296    while( errmsg[restart]==' ' ) restart++;
1297    fprintf(stdout,"%s%.*s\n",prefix,end,&errmsg[base]);
1298    base = restart;
1299  }
1300}
1301/**************** From the file "main.c" ************************************/
1302/*
1303** Main program file for the LEMON parser generator.
1304*/
1305
1306/* Report an out-of-memory condition and abort.  This function
1307** is used mostly by the "MemoryCheck" macro in struct.h
1308*/
1309void memory_error(){
1310  fprintf(stderr,"Out of memory.  Aborting...\n");
1311  exit(1);
1312}
1313
1314
1315/* The main program.  Parse the command line and do it... */
1316int main(argc,argv)
1317int argc;
1318char **argv;
1319{
1320  static int version = 0;
1321  static int rpflag = 0;
1322  static int basisflag = 0;
1323  static int compress = 0;
1324  static int quiet = 0;
1325  static int statistics = 0;
1326  static int mhflag = 0;
1327  static struct s_options options[] = {
1328    {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
1329    {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
1330    {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
1331    {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file"},
1332    {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
1333    {OPT_FLAG, "s", (char*)&statistics, "Print parser stats to standard output."},
1334    {OPT_FLAG, "x", (char*)&version, "Print the version number."},
1335    {OPT_FLAG,0,0,0}
1336  };
1337  int i;
1338  struct lemon lem;
1339
1340  OptInit(argv,options,stderr);
1341  if( version ){
1342     printf("Lemon version 1.0\n");
1343     exit(0);
1344  }
1345  if( OptNArgs()!=1 ){
1346    fprintf(stderr,"Exactly one filename argument is required.\n");
1347    exit(1);
1348  }
1349  lem.errorcnt = 0;
1350
1351  /* Initialize the machine */
1352  Strsafe_init();
1353  Symbol_init();
1354  State_init();
1355  lem.argv0 = argv[0];
1356  lem.filename = OptArg(0);
1357  lem.basisflag = basisflag;
1358  lem.has_fallback = 0;
1359  lem.nconflict = 0;
1360  lem.name = lem.include = lem.arg = lem.tokentype = lem.start = 0;
1361  lem.vartype = 0;
1362  lem.stacksize = 0;
1363  lem.error = lem.overflow = lem.failure = lem.accept = lem.tokendest =
1364     lem.tokenprefix = lem.outname = lem.extracode = 0;
1365  lem.vardest = 0;
1366  lem.tablesize = 0;
1367  Symbol_new("$");
1368  lem.errsym = Symbol_new("error");
1369
1370  /* Parse the input file */
1371  Parse(&lem);
1372  if( lem.errorcnt ) exit(lem.errorcnt);
1373  if( lem.rule==0 ){
1374    fprintf(stderr,"Empty grammar.\n");
1375    exit(1);
1376  }
1377
1378  /* Count and index the symbols of the grammar */
1379  lem.nsymbol = Symbol_count();
1380  Symbol_new("{default}");
1381  lem.symbols = Symbol_arrayof();
1382  for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
1383  qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*),
1384        (int(*)())Symbolcmpp);
1385  for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
1386  for(i=1; isupper(lem.symbols[i]->name[0]); i++);
1387  lem.nterminal = i;
1388
1389  /* Generate a reprint of the grammar, if requested on the command line */
1390  if( rpflag ){
1391    Reprint(&lem);
1392  }else{
1393    /* Initialize the size for all follow and first sets */
1394    SetSize(lem.nterminal);
1395
1396    /* Find the precedence for every production rule (that has one) */
1397    FindRulePrecedences(&lem);
1398
1399    /* Compute the lambda-nonterminals and the first-sets for every
1400    ** nonterminal */
1401    FindFirstSets(&lem);
1402
1403    /* Compute all LR(0) states.  Also record follow-set propagation
1404    ** links so that the follow-set can be computed later */
1405    lem.nstate = 0;
1406    FindStates(&lem);
1407    lem.sorted = State_arrayof();
1408
1409    /* Tie up loose ends on the propagation links */
1410    FindLinks(&lem);
1411
1412    /* Compute the follow set of every reducible configuration */
1413    FindFollowSets(&lem);
1414
1415    /* Compute the action tables */
1416    FindActions(&lem);
1417
1418    /* Compress the action tables */
1419    if( compress==0 ) CompressTables(&lem);
1420
1421    /* Generate a report of the parser generated.  (the "y.output" file) */
1422    if( !quiet ) ReportOutput(&lem);
1423
1424    /* Generate the source code for the parser */
1425    ReportTable(&lem, mhflag);
1426
1427    /* Produce a header file for use by the scanner.  (This step is
1428    ** omitted if the "-m" option is used because makeheaders will
1429    ** generate the file for us.) */
1430    if( !mhflag ) ReportHeader(&lem);
1431  }
1432  if( statistics ){
1433    printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
1434      lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
1435    printf("                   %d states, %d parser table entries, %d conflicts\n",
1436      lem.nstate, lem.tablesize, lem.nconflict);
1437  }
1438  if( lem.nconflict ){
1439    fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
1440  }
1441  exit(lem.errorcnt + lem.nconflict);
1442  return (lem.errorcnt + lem.nconflict);
1443}
1444/******************** From the file "msort.c" *******************************/
1445/*
1446** A generic merge-sort program.
1447**
1448** USAGE:
1449** Let "ptr" be a pointer to some structure which is at the head of
1450** a null-terminated list.  Then to sort the list call:
1451**
1452**     ptr = msort(ptr,&(ptr->next),cmpfnc);
1453**
1454** In the above, "cmpfnc" is a pointer to a function which compares
1455** two instances of the structure and returns an integer, as in
1456** strcmp.  The second argument is a pointer to the pointer to the
1457** second element of the linked list.  This address is used to compute
1458** the offset to the "next" field within the structure.  The offset to
1459** the "next" field must be constant for all structures in the list.
1460**
1461** The function returns a new pointer which is the head of the list
1462** after sorting.
1463**
1464** ALGORITHM:
1465** Merge-sort.
1466*/
1467
1468/*
1469** Return a pointer to the next structure in the linked list.
1470*/
1471#define NEXT(A) (*(char**)(((unsigned long)A)+offset))
1472
1473/*
1474** Inputs:
1475**   a:       A sorted, null-terminated linked list.  (May be null).
1476**   b:       A sorted, null-terminated linked list.  (May be null).
1477**   cmp:     A pointer to the comparison function.
1478**   offset:  Offset in the structure to the "next" field.
1479**
1480** Return Value:
1481**   A pointer to the head of a sorted list containing the elements
1482**   of both a and b.
1483**
1484** Side effects:
1485**   The "next" pointers for elements in the lists a and b are
1486**   changed.
1487*/
1488static char *merge(a,b,cmp,offset)
1489char *a;
1490char *b;
1491int (*cmp)();
1492int offset;
1493{
1494  char *ptr, *head;
1495
1496  if( a==0 ){
1497    head = b;
1498  }else if( b==0 ){
1499    head = a;
1500  }else{
1501    if( (*cmp)(a,b)<0 ){
1502      ptr = a;
1503      a = NEXT(a);
1504    }else{
1505      ptr = b;
1506      b = NEXT(b);
1507    }
1508    head = ptr;
1509    while( a && b ){
1510      if( (*cmp)(a,b)<0 ){
1511        NEXT(ptr) = a;
1512        ptr = a;
1513        a = NEXT(a);
1514      }else{
1515        NEXT(ptr) = b;
1516        ptr = b;
1517        b = NEXT(b);
1518      }
1519    }
1520    if( a ) NEXT(ptr) = a;
1521    else    NEXT(ptr) = b;
1522  }
1523  return head;
1524}
1525
1526/*
1527** Inputs:
1528**   list:      Pointer to a singly-linked list of structures.
1529**   next:      Pointer to pointer to the second element of the list.
1530**   cmp:       A comparison function.
1531**
1532** Return Value:
1533**   A pointer to the head of a sorted list containing the elements
1534**   orginally in list.
1535**
1536** Side effects:
1537**   The "next" pointers for elements in list are changed.
1538*/
1539#define LISTSIZE 30
1540char *msort(list,next,cmp)
1541char *list;
1542char **next;
1543int (*cmp)();
1544{
1545  unsigned long offset;
1546  char *ep;
1547  char *set[LISTSIZE];
1548  int i;
1549  offset = (unsigned long)next - (unsigned long)list;
1550  for(i=0; i<LISTSIZE; i++) set[i] = 0;
1551  while( list ){
1552    ep = list;
1553    list = NEXT(list);
1554    NEXT(ep) = 0;
1555    for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
1556      ep = merge(ep,set[i],cmp,offset);
1557      set[i] = 0;
1558    }
1559    set[i] = ep;
1560  }
1561  ep = 0;
1562  for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(ep,set[i],cmp,offset);
1563  return ep;
1564}
1565/************************ From the file "option.c" **************************/
1566static char **argv;
1567static struct s_options *op;
1568static FILE *errstream;
1569
1570#define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1571
1572/*
1573** Print the command line with a carrot pointing to the k-th character
1574** of the n-th field.
1575*/
1576static void errline(n,k,err)
1577int n;
1578int k;
1579FILE *err;
1580{
1581  int spcnt, i;
1582  spcnt = 0;
1583  if( argv[0] ) fprintf(err,"%s",argv[0]);
1584  spcnt = strlen(argv[0]) + 1;
1585  for(i=1; i<n && argv[i]; i++){
1586    fprintf(err," %s",argv[i]);
1587    spcnt += strlen(argv[i]+1);
1588  }
1589  spcnt += k;
1590  for(; argv[i]; i++) fprintf(err," %s",argv[i]);
1591  if( spcnt<20 ){
1592    fprintf(err,"\n%*s^-- here\n",spcnt,"");
1593  }else{
1594    fprintf(err,"\n%*shere --^\n",spcnt-7,"");
1595  }
1596}
1597
1598/*
1599** Return the index of the N-th non-switch argument.  Return -1
1600** if N is out of range.
1601*/
1602static int argindex(n)
1603int n;
1604{
1605  int i;
1606  int dashdash = 0;
1607  if( argv!=0 && *argv!=0 ){
1608    for(i=1; argv[i]; i++){
1609      if( dashdash || !ISOPT(argv[i]) ){
1610        if( n==0 ) return i;
1611        n--;
1612      }
1613      if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1614    }
1615  }
1616  return -1;
1617}
1618
1619static char emsg[] = "Command line syntax error: ";
1620
1621/*
1622** Process a flag command line argument.
1623*/
1624static int handleflags(i,err)
1625int i;
1626FILE *err;
1627{
1628  int v;
1629  int errcnt = 0;
1630  int j;
1631  for(j=0; op[j].label; j++){
1632    if( strcmp(&argv[i][1],op[j].label)==0 ) break;
1633  }
1634  v = argv[i][0]=='-' ? 1 : 0;
1635  if( op[j].label==0 ){
1636    if( err ){
1637      fprintf(err,"%sundefined option.\n",emsg);
1638      errline(i,1,err);
1639    }
1640    errcnt++;
1641  }else if( op[j].type==OPT_FLAG ){
1642    *((int*)op[j].arg) = v;
1643  }else if( op[j].type==OPT_FFLAG ){
1644    (*(void(*)())(op[j].arg))(v);
1645  }else{
1646    if( err ){
1647      fprintf(err,"%smissing argument on switch.\n",emsg);
1648      errline(i,1,err);
1649    }
1650    errcnt++;
1651  }
1652  return errcnt;
1653}
1654
1655/*
1656** Process a command line switch which has an argument.
1657*/
1658static int handleswitch(i,err)
1659int i;
1660FILE *err;
1661{
1662  int lv = 0;
1663  double dv = 0.0;
1664  char *sv = 0, *end;
1665  char *cp;
1666  int j;
1667  int errcnt = 0;
1668  cp = strchr(argv[i],'=');
1669  *cp = 0;
1670  for(j=0; op[j].label; j++){
1671    if( strcmp(argv[i],op[j].label)==0 ) break;
1672  }
1673  *cp = '=';
1674  if( op[j].label==0 ){
1675    if( err ){
1676      fprintf(err,"%sundefined option.\n",emsg);
1677      errline(i,0,err);
1678    }
1679    errcnt++;
1680  }else{
1681    cp++;
1682    switch( op[j].type ){
1683      case OPT_FLAG:
1684      case OPT_FFLAG:
1685        if( err ){
1686          fprintf(err,"%soption requires an argument.\n",emsg);
1687          errline(i,0,err);
1688        }
1689        errcnt++;
1690        break;
1691      case OPT_DBL:
1692      case OPT_FDBL:
1693        dv = strtod(cp,&end);
1694        if( *end ){
1695          if( err ){
1696            fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
1697            errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1698          }
1699          errcnt++;
1700        }
1701        break;
1702      case OPT_INT:
1703      case OPT_FINT:
1704        lv = strtol(cp,&end,0);
1705        if( *end ){
1706          if( err ){
1707            fprintf(err,"%sillegal character in integer argument.\n",emsg);
1708            errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1709          }
1710          errcnt++;
1711        }
1712        break;
1713      case OPT_STR:
1714      case OPT_FSTR:
1715        sv = cp;
1716        break;
1717    }
1718    switch( op[j].type ){
1719      case OPT_FLAG:
1720      case OPT_FFLAG:
1721        break;
1722      case OPT_DBL:
1723        *(double*)(op[j].arg) = dv;
1724        break;
1725      case OPT_FDBL:
1726        (*(void(*)())(op[j].arg))(dv);
1727        break;
1728      case OPT_INT:
1729        *(int*)(op[j].arg) = lv;
1730        break;
1731      case OPT_FINT:
1732        (*(void(*)())(op[j].arg))((int)lv);
1733        break;
1734      case OPT_STR:
1735        *(char**)(op[j].arg) = sv;
1736        break;
1737      case OPT_FSTR:
1738        (*(void(*)())(op[j].arg))(sv);
1739        break;
1740    }
1741  }
1742  return errcnt;
1743}
1744
1745int OptInit(a,o,err)
1746char **a;
1747struct s_options *o;
1748FILE *err;
1749{
1750  int errcnt = 0;
1751  argv = a;
1752  op = o;
1753  errstream = err;
1754  if( argv && *argv && op ){
1755    int i;
1756    for(i=1; argv[i]; i++){
1757      if( argv[i][0]=='+' || argv[i][0]=='-' ){
1758        errcnt += handleflags(i,err);
1759      }else if( strchr(argv[i],'=') ){
1760        errcnt += handleswitch(i,err);
1761      }
1762    }
1763  }
1764  if( errcnt>0 ){
1765    fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
1766    OptPrint();
1767    exit(1);
1768  }
1769  return 0;
1770}
1771
1772int OptNArgs(){
1773  int cnt = 0;
1774  int dashdash = 0;
1775  int i;
1776  if( argv!=0 && argv[0]!=0 ){
1777    for(i=1; argv[i]; i++){
1778      if( dashdash || !ISOPT(argv[i]) ) cnt++;
1779      if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1780    }
1781  }
1782  return cnt;
1783}
1784
1785char *OptArg(n)
1786int n;
1787{
1788  int i;
1789  i = argindex(n);
1790  return i>=0 ? argv[i] : 0;
1791}
1792
1793void OptErr(n)
1794int n;
1795{
1796  int i;
1797  i = argindex(n);
1798  if( i>=0 ) errline(i,0,errstream);
1799}
1800
1801void OptPrint(){
1802  int i;
1803  int max, len;
1804  max = 0;
1805  for(i=0; op[i].label; i++){
1806    len = strlen(op[i].label) + 1;
1807    switch( op[i].type ){
1808      case OPT_FLAG:
1809      case OPT_FFLAG:
1810        break;
1811      case OPT_INT:
1812      case OPT_FINT:
1813        len += 9;       /* length of "<integer>" */
1814        break;
1815      case OPT_DBL:
1816      case OPT_FDBL:
1817        len += 6;       /* length of "<real>" */
1818        break;
1819      case OPT_STR:
1820      case OPT_FSTR:
1821        len += 8;       /* length of "<string>" */
1822        break;
1823    }
1824    if( len>max ) max = len;
1825  }
1826  for(i=0; op[i].label; i++){
1827    switch( op[i].type ){
1828      case OPT_FLAG:
1829      case OPT_FFLAG:
1830        fprintf(errstream,"  -%-*s  %s\n",max,op[i].label,op[i].message);
1831        break;
1832      case OPT_INT:
1833      case OPT_FINT:
1834        fprintf(errstream,"  %s=<integer>%*s  %s\n",op[i].label,
1835          (int)(max-strlen(op[i].label)-9),"",op[i].message);
1836        break;
1837      case OPT_DBL:
1838      case OPT_FDBL:
1839        fprintf(errstream,"  %s=<real>%*s  %s\n",op[i].label,
1840          (int)(max-strlen(op[i].label)-6),"",op[i].message);
1841        break;
1842      case OPT_STR:
1843      case OPT_FSTR:
1844        fprintf(errstream,"  %s=<string>%*s  %s\n",op[i].label,
1845          (int)(max-strlen(op[i].label)-8),"",op[i].message);
1846        break;
1847    }
1848  }
1849}
1850/*********************** From the file "parse.c" ****************************/
1851/*
1852** Input file parser for the LEMON parser generator.
1853*/
1854
1855/* The state of the parser */
1856struct pstate {
1857  char *filename;       /* Name of the input file */
1858  int tokenlineno;      /* Linenumber at which current token starts */
1859  int errorcnt;         /* Number of errors so far */
1860  char *tokenstart;     /* Text of current token */
1861  struct lemon *gp;     /* Global state vector */
1862  enum e_state {
1863    INITIALIZE,
1864    WAITING_FOR_DECL_OR_RULE,
1865    WAITING_FOR_DECL_KEYWORD,
1866    WAITING_FOR_DECL_ARG,
1867    WAITING_FOR_PRECEDENCE_SYMBOL,
1868    WAITING_FOR_ARROW,
1869    IN_RHS,
1870    LHS_ALIAS_1,
1871    LHS_ALIAS_2,
1872    LHS_ALIAS_3,
1873    RHS_ALIAS_1,
1874    RHS_ALIAS_2,
1875    PRECEDENCE_MARK_1,
1876    PRECEDENCE_MARK_2,
1877    RESYNC_AFTER_RULE_ERROR,
1878    RESYNC_AFTER_DECL_ERROR,
1879    WAITING_FOR_DESTRUCTOR_SYMBOL,
1880    WAITING_FOR_DATATYPE_SYMBOL,
1881    WAITING_FOR_FALLBACK_ID
1882  } state;                   /* The state of the parser */
1883  struct symbol *fallback;   /* The fallback token */
1884  struct symbol *lhs;        /* Left-hand side of current rule */
1885  char *lhsalias;            /* Alias for the LHS */
1886  int nrhs;                  /* Number of right-hand side symbols seen */
1887  struct symbol *rhs[MAXRHS];  /* RHS symbols */
1888  char *alias[MAXRHS];       /* Aliases for each RHS symbol (or NULL) */
1889  struct rule *prevrule;     /* Previous rule parsed */
1890  char *declkeyword;         /* Keyword of a declaration */
1891  char **declargslot;        /* Where the declaration argument should be put */
1892  int *decllnslot;           /* Where the declaration linenumber is put */
1893  enum e_assoc declassoc;    /* Assign this association to decl arguments */
1894  int preccounter;           /* Assign this precedence to decl arguments */
1895  struct rule *firstrule;    /* Pointer to first rule in the grammar */
1896  struct rule *lastrule;     /* Pointer to the most recently parsed rule */
1897};
1898
1899/* Parse a single token */
1900static void parseonetoken(psp)
1901struct pstate *psp;
1902{
1903  char *x;
1904  x = Strsafe(psp->tokenstart);     /* Save the token permanently */
1905#if 0
1906  printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
1907    x,psp->state);
1908#endif
1909  switch( psp->state ){
1910    case INITIALIZE:
1911      psp->prevrule = 0;
1912      psp->preccounter = 0;
1913      psp->firstrule = psp->lastrule = 0;
1914      psp->gp->nrule = 0;
1915      /* FALLTHROUGH */
1916    case WAITING_FOR_DECL_OR_RULE:
1917      if( x[0]=='%' ){
1918        psp->state = WAITING_FOR_DECL_KEYWORD;
1919      }else if( islower(x[0]) ){
1920        psp->lhs = Symbol_new(x);
1921        psp->nrhs = 0;
1922        psp->lhsalias = 0;
1923        psp->state = WAITING_FOR_ARROW;
1924      }else if( x[0]=='{' ){
1925        if( psp->prevrule==0 ){
1926          ErrorMsg(psp->filename,psp->tokenlineno,
1927"There is not prior rule opon which to attach the code \
1928fragment which begins on this line.");
1929          psp->errorcnt++;
1930	}else if( psp->prevrule->code!=0 ){
1931          ErrorMsg(psp->filename,psp->tokenlineno,
1932"Code fragment beginning on this line is not the first \
1933to follow the previous rule.");
1934          psp->errorcnt++;
1935        }else{
1936          psp->prevrule->line = psp->tokenlineno;
1937          psp->prevrule->code = &x[1];
1938	}
1939      }else if( x[0]=='[' ){
1940        psp->state = PRECEDENCE_MARK_1;
1941      }else{
1942        ErrorMsg(psp->filename,psp->tokenlineno,
1943          "Token \"%s\" should be either \"%%\" or a nonterminal name.",
1944          x);
1945        psp->errorcnt++;
1946      }
1947      break;
1948    case PRECEDENCE_MARK_1:
1949      if( !isupper(x[0]) ){
1950        ErrorMsg(psp->filename,psp->tokenlineno,
1951          "The precedence symbol must be a terminal.");
1952        psp->errorcnt++;
1953      }else if( psp->prevrule==0 ){
1954        ErrorMsg(psp->filename,psp->tokenlineno,
1955          "There is no prior rule to assign precedence \"[%s]\".",x);
1956        psp->errorcnt++;
1957      }else if( psp->prevrule->precsym!=0 ){
1958        ErrorMsg(psp->filename,psp->tokenlineno,
1959"Precedence mark on this line is not the first \
1960to follow the previous rule.");
1961        psp->errorcnt++;
1962      }else{
1963        psp->prevrule->precsym = Symbol_new(x);
1964      }
1965      psp->state = PRECEDENCE_MARK_2;
1966      break;
1967    case PRECEDENCE_MARK_2:
1968      if( x[0]!=']' ){
1969        ErrorMsg(psp->filename,psp->tokenlineno,
1970          "Missing \"]\" on precedence mark.");
1971        psp->errorcnt++;
1972      }
1973      psp->state = WAITING_FOR_DECL_OR_RULE;
1974      break;
1975    case WAITING_FOR_ARROW:
1976      if( x[0]==':' && x[1]==':' && x[2]=='=' ){
1977        psp->state = IN_RHS;
1978      }else if( x[0]=='(' ){
1979        psp->state = LHS_ALIAS_1;
1980      }else{
1981        ErrorMsg(psp->filename,psp->tokenlineno,
1982          "Expected to see a \":\" following the LHS symbol \"%s\".",
1983          psp->lhs->name);
1984        psp->errorcnt++;
1985        psp->state = RESYNC_AFTER_RULE_ERROR;
1986      }
1987      break;
1988    case LHS_ALIAS_1:
1989      if( isalpha(x[0]) ){
1990        psp->lhsalias = x;
1991        psp->state = LHS_ALIAS_2;
1992      }else{
1993        ErrorMsg(psp->filename,psp->tokenlineno,
1994          "\"%s\" is not a valid alias for the LHS \"%s\"\n",
1995          x,psp->lhs->name);
1996        psp->errorcnt++;
1997        psp->state = RESYNC_AFTER_RULE_ERROR;
1998      }
1999      break;
2000    case LHS_ALIAS_2:
2001      if( x[0]==')' ){
2002        psp->state = LHS_ALIAS_3;
2003      }else{
2004        ErrorMsg(psp->filename,psp->tokenlineno,
2005          "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2006        psp->errorcnt++;
2007        psp->state = RESYNC_AFTER_RULE_ERROR;
2008      }
2009      break;
2010    case LHS_ALIAS_3:
2011      if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2012        psp->state = IN_RHS;
2013      }else{
2014        ErrorMsg(psp->filename,psp->tokenlineno,
2015          "Missing \"->\" following: \"%s(%s)\".",
2016           psp->lhs->name,psp->lhsalias);
2017        psp->errorcnt++;
2018        psp->state = RESYNC_AFTER_RULE_ERROR;
2019      }
2020      break;
2021    case IN_RHS:
2022      if( x[0]=='.' ){
2023        struct rule *rp;
2024        rp = (struct rule *)malloc( sizeof(struct rule) +
2025             sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs );
2026        if( rp==0 ){
2027          ErrorMsg(psp->filename,psp->tokenlineno,
2028            "Can't allocate enough memory for this rule.");
2029          psp->errorcnt++;
2030          psp->prevrule = 0;
2031	}else{
2032          int i;
2033          rp->ruleline = psp->tokenlineno;
2034          rp->rhs = (struct symbol**)&rp[1];
2035          rp->rhsalias = (char**)&(rp->rhs[psp->nrhs]);
2036          for(i=0; i<psp->nrhs; i++){
2037            rp->rhs[i] = psp->rhs[i];
2038            rp->rhsalias[i] = psp->alias[i];
2039	  }
2040          rp->lhs = psp->lhs;
2041          rp->lhsalias = psp->lhsalias;
2042          rp->nrhs = psp->nrhs;
2043          rp->code = 0;
2044          rp->precsym = 0;
2045          rp->index = psp->gp->nrule++;
2046          rp->nextlhs = rp->lhs->rule;
2047          rp->lhs->rule = rp;
2048          rp->next = 0;
2049          if( psp->firstrule==0 ){
2050            psp->firstrule = psp->lastrule = rp;
2051	  }else{
2052            psp->lastrule->next = rp;
2053            psp->lastrule = rp;
2054	  }
2055          psp->prevrule = rp;
2056	}
2057        psp->state = WAITING_FOR_DECL_OR_RULE;
2058      }else if( isalpha(x[0]) ){
2059        if( psp->nrhs>=MAXRHS ){
2060          ErrorMsg(psp->filename,psp->tokenlineno,
2061            "Too many symbol on RHS or rule beginning at \"%s\".",
2062            x);
2063          psp->errorcnt++;
2064          psp->state = RESYNC_AFTER_RULE_ERROR;
2065	}else{
2066          psp->rhs[psp->nrhs] = Symbol_new(x);
2067          psp->alias[psp->nrhs] = 0;
2068          psp->nrhs++;
2069	}
2070      }else if( x[0]=='(' && psp->nrhs>0 ){
2071        psp->state = RHS_ALIAS_1;
2072      }else{
2073        ErrorMsg(psp->filename,psp->tokenlineno,
2074          "Illegal character on RHS of rule: \"%s\".",x);
2075        psp->errorcnt++;
2076        psp->state = RESYNC_AFTER_RULE_ERROR;
2077      }
2078      break;
2079    case RHS_ALIAS_1:
2080      if( isalpha(x[0]) ){
2081        psp->alias[psp->nrhs-1] = x;
2082        psp->state = RHS_ALIAS_2;
2083      }else{
2084        ErrorMsg(psp->filename,psp->tokenlineno,
2085          "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2086          x,psp->rhs[psp->nrhs-1]->name);
2087        psp->errorcnt++;
2088        psp->state = RESYNC_AFTER_RULE_ERROR;
2089      }
2090      break;
2091    case RHS_ALIAS_2:
2092      if( x[0]==')' ){
2093        psp->state = IN_RHS;
2094      }else{
2095        ErrorMsg(psp->filename,psp->tokenlineno,
2096          "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2097        psp->errorcnt++;
2098        psp->state = RESYNC_AFTER_RULE_ERROR;
2099      }
2100      break;
2101    case WAITING_FOR_DECL_KEYWORD:
2102      if( isalpha(x[0]) ){
2103        psp->declkeyword = x;
2104        psp->declargslot = 0;
2105        psp->decllnslot = 0;
2106        psp->state = WAITING_FOR_DECL_ARG;
2107        if( strcmp(x,"name")==0 ){
2108          psp->declargslot = &(psp->gp->name);
2109	}else if( strcmp(x,"include")==0 ){
2110          psp->declargslot = &(psp->gp->include);
2111          psp->decllnslot = &psp->gp->includeln;
2112	}else if( strcmp(x,"code")==0 ){
2113          psp->declargslot = &(psp->gp->extracode);
2114          psp->decllnslot = &psp->gp->extracodeln;
2115	}else if( strcmp(x,"token_destructor")==0 ){
2116          psp->declargslot = &psp->gp->tokendest;
2117          psp->decllnslot = &psp->gp->tokendestln;
2118	}else if( strcmp(x,"default_destructor")==0 ){
2119          psp->declargslot = &psp->gp->vardest;
2120          psp->decllnslot = &psp->gp->vardestln;
2121	}else if( strcmp(x,"token_prefix")==0 ){
2122          psp->declargslot = &psp->gp->tokenprefix;
2123	}else if( strcmp(x,"syntax_error")==0 ){
2124          psp->declargslot = &(psp->gp->error);
2125          psp->decllnslot = &psp->gp->errorln;
2126	}else if( strcmp(x,"parse_accept")==0 ){
2127          psp->declargslot = &(psp->gp->accept);
2128          psp->decllnslot = &psp->gp->acceptln;
2129	}else if( strcmp(x,"parse_failure")==0 ){
2130          psp->declargslot = &(psp->gp->failure);
2131          psp->decllnslot = &psp->gp->failureln;
2132	}else if( strcmp(x,"stack_overflow")==0 ){
2133          psp->declargslot = &(psp->gp->overflow);
2134          psp->decllnslot = &psp->gp->overflowln;
2135        }else if( strcmp(x,"extra_argument")==0 ){
2136          psp->declargslot = &(psp->gp->arg);
2137        }else if( strcmp(x,"token_type")==0 ){
2138          psp->declargslot = &(psp->gp->tokentype);
2139        }else if( strcmp(x,"default_type")==0 ){
2140          psp->declargslot = &(psp->gp->vartype);
2141        }else if( strcmp(x,"stack_size")==0 ){
2142          psp->declargslot = &(psp->gp->stacksize);
2143        }else if( strcmp(x,"start_symbol")==0 ){
2144          psp->declargslot = &(psp->gp->start);
2145        }else if( strcmp(x,"left")==0 ){
2146          psp->preccounter++;
2147          psp->declassoc = LEFT;
2148          psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2149        }else if( strcmp(x,"right")==0 ){
2150          psp->preccounter++;
2151          psp->declassoc = RIGHT;
2152          psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2153        }else if( strcmp(x,"nonassoc")==0 ){
2154          psp->preccounter++;
2155          psp->declassoc = NONE;
2156          psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2157	}else if( strcmp(x,"destructor")==0 ){
2158          psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
2159	}else if( strcmp(x,"type")==0 ){
2160          psp->state = WAITING_FOR_DATATYPE_SYMBOL;
2161        }else if( strcmp(x,"fallback")==0 ){
2162          psp->fallback = 0;
2163          psp->state = WAITING_FOR_FALLBACK_ID;
2164        }else{
2165          ErrorMsg(psp->filename,psp->tokenlineno,
2166            "Unknown declaration keyword: \"%%%s\".",x);
2167          psp->errorcnt++;
2168          psp->state = RESYNC_AFTER_DECL_ERROR;
2169	}
2170      }else{
2171        ErrorMsg(psp->filename,psp->tokenlineno,
2172          "Illegal declaration keyword: \"%s\".",x);
2173        psp->errorcnt++;
2174        psp->state = RESYNC_AFTER_DECL_ERROR;
2175      }
2176      break;
2177    case WAITING_FOR_DESTRUCTOR_SYMBOL:
2178      if( !isalpha(x[0]) ){
2179        ErrorMsg(psp->filename,psp->tokenlineno,
2180          "Symbol name missing after %destructor keyword");
2181        psp->errorcnt++;
2182        psp->state = RESYNC_AFTER_DECL_ERROR;
2183      }else{
2184        struct symbol *sp = Symbol_new(x);
2185        psp->declargslot = &sp->destructor;
2186        psp->decllnslot = &sp->destructorln;
2187        psp->state = WAITING_FOR_DECL_ARG;
2188      }
2189      break;
2190    case WAITING_FOR_DATATYPE_SYMBOL:
2191      if( !isalpha(x[0]) ){
2192        ErrorMsg(psp->filename,psp->tokenlineno,
2193          "Symbol name missing after %destructor keyword");
2194        psp->errorcnt++;
2195        psp->state = RESYNC_AFTER_DECL_ERROR;
2196      }else{
2197        struct symbol *sp = Symbol_new(x);
2198        psp->declargslot = &sp->datatype;
2199        psp->decllnslot = 0;
2200        psp->state = WAITING_FOR_DECL_ARG;
2201      }
2202      break;
2203    case WAITING_FOR_PRECEDENCE_SYMBOL:
2204      if( x[0]=='.' ){
2205        psp->state = WAITING_FOR_DECL_OR_RULE;
2206      }else if( isupper(x[0]) ){
2207        struct symbol *sp;
2208        sp = Symbol_new(x);
2209        if( sp->prec>=0 ){
2210          ErrorMsg(psp->filename,psp->tokenlineno,
2211            "Symbol \"%s\" has already be given a precedence.",x);
2212          psp->errorcnt++;
2213	}else{
2214          sp->prec = psp->preccounter;
2215          sp->assoc = psp->declassoc;
2216	}
2217      }else{
2218        ErrorMsg(psp->filename,psp->tokenlineno,
2219          "Can't assign a precedence to \"%s\".",x);
2220        psp->errorcnt++;
2221      }
2222      break;
2223    case WAITING_FOR_DECL_ARG:
2224      if( (x[0]=='{' || x[0]=='\"' || isalnum(x[0])) ){
2225        if( *(psp->declargslot)!=0 ){
2226          ErrorMsg(psp->filename,psp->tokenlineno,
2227            "The argument \"%s\" to declaration \"%%%s\" is not the first.",
2228            x[0]=='\"' ? &x[1] : x,psp->declkeyword);
2229          psp->errorcnt++;
2230          psp->state = RESYNC_AFTER_DECL_ERROR;
2231	}else{
2232          *(psp->declargslot) = (x[0]=='\"' || x[0]=='{') ? &x[1] : x;
2233          if( psp->decllnslot ) *psp->decllnslot = psp->tokenlineno;
2234          psp->state = WAITING_FOR_DECL_OR_RULE;
2235	}
2236      }else{
2237        ErrorMsg(psp->filename,psp->tokenlineno,
2238          "Illegal argument to %%%s: %s",psp->declkeyword,x);
2239        psp->errorcnt++;
2240        psp->state = RESYNC_AFTER_DECL_ERROR;
2241      }
2242      break;
2243    case WAITING_FOR_FALLBACK_ID:
2244      if( x[0]=='.' ){
2245        psp->state = WAITING_FOR_DECL_OR_RULE;
2246      }else if( !isupper(x[0]) ){
2247        ErrorMsg(psp->filename, psp->tokenlineno,
2248          "%%fallback argument \"%s\" should be a token", x);
2249        psp->errorcnt++;
2250      }else{
2251        struct symbol *sp = Symbol_new(x);
2252        if( psp->fallback==0 ){
2253          psp->fallback = sp;
2254        }else if( sp->fallback ){
2255          ErrorMsg(psp->filename, psp->tokenlineno,
2256            "More than one fallback assigned to token %s", x);
2257          psp->errorcnt++;
2258        }else{
2259          sp->fallback = psp->fallback;
2260          psp->gp->has_fallback = 1;
2261        }
2262      }
2263      break;
2264    case RESYNC_AFTER_RULE_ERROR:
2265/*      if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2266**      break; */
2267    case RESYNC_AFTER_DECL_ERROR:
2268      if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2269      if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
2270      break;
2271  }
2272}
2273
2274/* In spite of its name, this function is really a scanner.  It read
2275** in the entire input file (all at once) then tokenizes it.  Each
2276** token is passed to the function "parseonetoken" which builds all
2277** the appropriate data structures in the global state vector "gp".
2278*/
2279void Parse(gp)
2280struct lemon *gp;
2281{
2282  struct pstate ps;
2283  FILE *fp;
2284  char *filebuf;
2285  int filesize;
2286  int lineno;
2287  int c;
2288  char *cp, *nextcp;
2289  int startline = 0;
2290
2291  ps.gp = gp;
2292  ps.filename = gp->filename;
2293  ps.errorcnt = 0;
2294  ps.state = INITIALIZE;
2295
2296  /* Begin by reading the input file */
2297  fp = fopen(ps.filename,"rb");
2298  if( fp==0 ){
2299    ErrorMsg(ps.filename,0,"Can't open this file for reading.");
2300    gp->errorcnt++;
2301    return;
2302  }
2303  fseek(fp,0,2);
2304  filesize = ftell(fp);
2305  rewind(fp);
2306  filebuf = (char *)malloc( filesize+1 );
2307  if( filebuf==0 ){
2308    ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
2309      filesize+1);
2310    gp->errorcnt++;
2311    return;
2312  }
2313  if( fread(filebuf,1,filesize,fp)!=filesize ){
2314    ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
2315      filesize);
2316    free(filebuf);
2317    gp->errorcnt++;
2318    return;
2319  }
2320  fclose(fp);
2321  filebuf[filesize] = 0;
2322
2323  /* Now scan the text of the input file */
2324  lineno = 1;
2325  for(cp=filebuf; (c= *cp)!=0; ){
2326    if( c=='\n' ) lineno++;              /* Keep track of the line number */
2327    if( isspace(c) ){ cp++; continue; }  /* Skip all white space */
2328    if( c=='/' && cp[1]=='/' ){          /* Skip C++ style comments */
2329      cp+=2;
2330      while( (c= *cp)!=0 && c!='\n' ) cp++;
2331      continue;
2332    }
2333    if( c=='/' && cp[1]=='*' ){          /* Skip C style comments */
2334      cp+=2;
2335      while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
2336        if( c=='\n' ) lineno++;
2337        cp++;
2338      }
2339      if( c ) cp++;
2340      continue;
2341    }
2342    ps.tokenstart = cp;                /* Mark the beginning of the token */
2343    ps.tokenlineno = lineno;           /* Linenumber on which token begins */
2344    if( c=='\"' ){                     /* String literals */
2345      cp++;
2346      while( (c= *cp)!=0 && c!='\"' ){
2347        if( c=='\n' ) lineno++;
2348        cp++;
2349      }
2350      if( c==0 ){
2351        ErrorMsg(ps.filename,startline,
2352"String starting on this line is not terminated before the end of the file.");
2353        ps.errorcnt++;
2354        nextcp = cp;
2355      }else{
2356        nextcp = cp+1;
2357      }
2358    }else if( c=='{' ){               /* A block of C code */
2359      int level;
2360      cp++;
2361      for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
2362        if( c=='\n' ) lineno++;
2363        else if( c=='{' ) level++;
2364        else if( c=='}' ) level--;
2365        else if( c=='/' && cp[1]=='*' ){  /* Skip comments */
2366          int prevc;
2367          cp = &cp[2];
2368          prevc = 0;
2369          while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
2370            if( c=='\n' ) lineno++;
2371            prevc = c;
2372            cp++;
2373	  }
2374	}else if( c=='/' && cp[1]=='/' ){  /* Skip C++ style comments too */
2375          cp = &cp[2];
2376          while( (c= *cp)!=0 && c!='\n' ) cp++;
2377          if( c ) lineno++;
2378	}else if( c=='\'' || c=='\"' ){    /* String a character literals */
2379          int startchar, prevc;
2380          startchar = c;
2381          prevc = 0;
2382          for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
2383            if( c=='\n' ) lineno++;
2384            if( prevc=='\\' ) prevc = 0;
2385            else              prevc = c;
2386	  }
2387	}
2388      }
2389      if( c==0 ){
2390        ErrorMsg(ps.filename,ps.tokenlineno,
2391"C code starting on this line is not terminated before the end of the file.");
2392        ps.errorcnt++;
2393        nextcp = cp;
2394      }else{
2395        nextcp = cp+1;
2396      }
2397    }else if( isalnum(c) ){          /* Identifiers */
2398      while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
2399      nextcp = cp;
2400    }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
2401      cp += 3;
2402      nextcp = cp;
2403    }else{                          /* All other (one character) operators */
2404      cp++;
2405      nextcp = cp;
2406    }
2407    c = *cp;
2408    *cp = 0;                        /* Null terminate the token */
2409    parseonetoken(&ps);             /* Parse the token */
2410    *cp = c;                        /* Restore the buffer */
2411    cp = nextcp;
2412  }
2413  free(filebuf);                    /* Release the buffer after parsing */
2414  gp->rule = ps.firstrule;
2415  gp->errorcnt = ps.errorcnt;
2416}
2417/*************************** From the file "plink.c" *********************/
2418/*
2419** Routines processing configuration follow-set propagation links
2420** in the LEMON parser generator.
2421*/
2422static struct plink *plink_freelist = 0;
2423
2424/* Allocate a new plink */
2425struct plink *Plink_new(){
2426  struct plink *new;
2427
2428  if( plink_freelist==0 ){
2429    int i;
2430    int amt = 100;
2431    plink_freelist = (struct plink *)malloc( sizeof(struct plink)*amt );
2432    if( plink_freelist==0 ){
2433      fprintf(stderr,
2434      "Unable to allocate memory for a new follow-set propagation link.\n");
2435      exit(1);
2436    }
2437    for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
2438    plink_freelist[amt-1].next = 0;
2439  }
2440  new = plink_freelist;
2441  plink_freelist = plink_freelist->next;
2442  return new;
2443}
2444
2445/* Add a plink to a plink list */
2446void Plink_add(plpp,cfp)
2447struct plink **plpp;
2448struct config *cfp;
2449{
2450  struct plink *new;
2451  new = Plink_new();
2452  new->next = *plpp;
2453  *plpp = new;
2454  new->cfp = cfp;
2455}
2456
2457/* Transfer every plink on the list "from" to the list "to" */
2458void Plink_copy(to,from)
2459struct plink **to;
2460struct plink *from;
2461{
2462  struct plink *nextpl;
2463  while( from ){
2464    nextpl = from->next;
2465    from->next = *to;
2466    *to = from;
2467    from = nextpl;
2468  }
2469}
2470
2471/* Delete every plink on the list */
2472void Plink_delete(plp)
2473struct plink *plp;
2474{
2475  struct plink *nextpl;
2476
2477  while( plp ){
2478    nextpl = plp->next;
2479    plp->next = plink_freelist;
2480    plink_freelist = plp;
2481    plp = nextpl;
2482  }
2483}
2484/*********************** From the file "report.c" **************************/
2485/*
2486** Procedures for generating reports and tables in the LEMON parser generator.
2487*/
2488
2489/* Generate a filename with the given suffix.  Space to hold the
2490** name comes from malloc() and must be freed by the calling
2491** function.
2492*/
2493PRIVATE char *file_makename(lemp,suffix)
2494struct lemon *lemp;
2495char *suffix;
2496{
2497  char *name;
2498  char *cp;
2499
2500  name = malloc( strlen(lemp->filename) + strlen(suffix) + 5 );
2501  if( name==0 ){
2502    fprintf(stderr,"Can't allocate space for a filename.\n");
2503    exit(1);
2504  }
2505  strcpy(name,lemp->filename);
2506  cp = strrchr(name,'.');
2507  if( cp ) *cp = 0;
2508  strcat(name,suffix);
2509  return name;
2510}
2511
2512/* Open a file with a name based on the name of the input file,
2513** but with a different (specified) suffix, and return a pointer
2514** to the stream */
2515PRIVATE FILE *file_open(lemp,suffix,mode)
2516struct lemon *lemp;
2517char *suffix;
2518char *mode;
2519{
2520  FILE *fp;
2521
2522  if( lemp->outname ) free(lemp->outname);
2523  lemp->outname = file_makename(lemp, suffix);
2524  fp = fopen(lemp->outname,mode);
2525  if( fp==0 && *mode=='w' ){
2526    fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
2527    lemp->errorcnt++;
2528    return 0;
2529  }
2530  return fp;
2531}
2532
2533/* Duplicate the input file without comments and without actions
2534** on rules */
2535void Reprint(lemp)
2536struct lemon *lemp;
2537{
2538  struct rule *rp;
2539  struct symbol *sp;
2540  int i, j, maxlen, len, ncolumns, skip;
2541  printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
2542  maxlen = 10;
2543  for(i=0; i<lemp->nsymbol; i++){
2544    sp = lemp->symbols[i];
2545    len = strlen(sp->name);
2546    if( len>maxlen ) maxlen = len;
2547  }
2548  ncolumns = 76/(maxlen+5);
2549  if( ncolumns<1 ) ncolumns = 1;
2550  skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
2551  for(i=0; i<skip; i++){
2552    printf("//");
2553    for(j=i; j<lemp->nsymbol; j+=skip){
2554      sp = lemp->symbols[j];
2555      assert( sp->index==j );
2556      printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
2557    }
2558    printf("\n");
2559  }
2560  for(rp=lemp->rule; rp; rp=rp->next){
2561    printf("%s",rp->lhs->name);
2562/*    if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
2563    printf(" ::=");
2564    for(i=0; i<rp->nrhs; i++){
2565      printf(" %s",rp->rhs[i]->name);
2566/*      if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
2567    }
2568    printf(".");
2569    if( rp->precsym ) printf(" [%s]",rp->precsym->name);
2570/*    if( rp->code ) printf("\n    %s",rp->code); */
2571    printf("\n");
2572  }
2573}
2574
2575void ConfigPrint(fp,cfp)
2576FILE *fp;
2577struct config *cfp;
2578{
2579  struct rule *rp;
2580  int i;
2581  rp = cfp->rp;
2582  fprintf(fp,"%s ::=",rp->lhs->name);
2583  for(i=0; i<=rp->nrhs; i++){
2584    if( i==cfp->dot ) fprintf(fp," *");
2585    if( i==rp->nrhs ) break;
2586    fprintf(fp," %s",rp->rhs[i]->name);
2587  }
2588}
2589
2590/* #define TEST */
2591#ifdef TEST
2592/* Print a set */
2593PRIVATE void SetPrint(out,set,lemp)
2594FILE *out;
2595char *set;
2596struct lemon *lemp;
2597{
2598  int i;
2599  char *spacer;
2600  spacer = "";
2601  fprintf(out,"%12s[","");
2602  for(i=0; i<lemp->nterminal; i++){
2603    if( SetFind(set,i) ){
2604      fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
2605      spacer = " ";
2606    }
2607  }
2608  fprintf(out,"]\n");
2609}
2610
2611/* Print a plink chain */
2612PRIVATE void PlinkPrint(out,plp,tag)
2613FILE *out;
2614struct plink *plp;
2615char *tag;
2616{
2617  while( plp ){
2618    fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->index);
2619    ConfigPrint(out,plp->cfp);
2620    fprintf(out,"\n");
2621    plp = plp->next;
2622  }
2623}
2624#endif
2625
2626/* Print an action to the given file descriptor.  Return FALSE if
2627** nothing was actually printed.
2628*/
2629int PrintAction(struct action *ap, FILE *fp, int indent){
2630  int result = 1;
2631  switch( ap->type ){
2632    case SHIFT:
2633      fprintf(fp,"%*s shift  %d",indent,ap->sp->name,ap->x.stp->index);
2634      break;
2635    case REDUCE:
2636      fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
2637      break;
2638    case ACCEPT:
2639      fprintf(fp,"%*s accept",indent,ap->sp->name);
2640      break;
2641    case ERROR:
2642      fprintf(fp,"%*s error",indent,ap->sp->name);
2643      break;
2644    case CONFLICT:
2645      fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
2646        indent,ap->sp->name,ap->x.rp->index);
2647      break;
2648    case SH_RESOLVED:
2649    case RD_RESOLVED:
2650    case NOT_USED:
2651      result = 0;
2652      break;
2653  }
2654  return result;
2655}
2656
2657/* Generate the "y.output" log file */
2658void ReportOutput(lemp)
2659struct lemon *lemp;
2660{
2661  int i;
2662  struct state *stp;
2663  struct config *cfp;
2664  struct action *ap;
2665  FILE *fp;
2666
2667  fp = file_open(lemp,".out","w");
2668  if( fp==0 ) return;
2669  fprintf(fp," \b");
2670  for(i=0; i<lemp->nstate; i++){
2671    stp = lemp->sorted[i];
2672    fprintf(fp,"State %d:\n",stp->index);
2673    if( lemp->basisflag ) cfp=stp->bp;
2674    else                  cfp=stp->cfp;
2675    while( cfp ){
2676      char buf[20];
2677      if( cfp->dot==cfp->rp->nrhs ){
2678        sprintf(buf,"(%d)",cfp->rp->index);
2679        fprintf(fp,"    %5s ",buf);
2680      }else{
2681        fprintf(fp,"          ");
2682      }
2683      ConfigPrint(fp,cfp);
2684      fprintf(fp,"\n");
2685#ifdef TEST
2686      SetPrint(fp,cfp->fws,lemp);
2687      PlinkPrint(fp,cfp->fplp,"To  ");
2688      PlinkPrint(fp,cfp->bplp,"From");
2689#endif
2690      if( lemp->basisflag ) cfp=cfp->bp;
2691      else                  cfp=cfp->next;
2692    }
2693    fprintf(fp,"\n");
2694    for(ap=stp->ap; ap; ap=ap->next){
2695      if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
2696    }
2697    fprintf(fp,"\n");
2698  }
2699  fclose(fp);
2700  return;
2701}
2702
2703/* Search for the file "name" which is in the same directory as
2704** the exacutable */
2705PRIVATE char *pathsearch(argv0,name,modemask)
2706char *argv0;
2707char *name;
2708int modemask;
2709{
2710  char *pathlist;
2711  char *path,*cp;
2712  char c;
2713  extern int access();
2714
2715#ifdef __WIN32__
2716  cp = strrchr(argv0,'\\');
2717#else
2718  cp = strrchr(argv0,'/');
2719#endif
2720  if( cp ){
2721    c = *cp;
2722    *cp = 0;
2723    path = (char *)malloc( strlen(argv0) + strlen(name) + 2 );
2724    if( path ) sprintf(path,"%s/%s",argv0,name);
2725    *cp = c;
2726  }else{
2727    extern char *getenv();
2728    pathlist = getenv("PATH");
2729    if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
2730    path = (char *)malloc( strlen(pathlist)+strlen(name)+2 );
2731    if( path!=0 ){
2732      while( *pathlist ){
2733        cp = strchr(pathlist,':');
2734        if( cp==0 ) cp = &pathlist[strlen(pathlist)];
2735        c = *cp;
2736        *cp = 0;
2737        sprintf(path,"%s/%s",pathlist,name);
2738        *cp = c;
2739        if( c==0 ) pathlist = "";
2740        else pathlist = &cp[1];
2741        if( access(path,modemask)==0 ) break;
2742      }
2743    }
2744  }
2745  return path;
2746}
2747
2748/* Given an action, compute the integer value for that action
2749** which is to be put in the action table of the generated machine.
2750** Return negative if no action should be generated.
2751*/
2752PRIVATE int compute_action(lemp,ap)
2753struct lemon *lemp;
2754struct action *ap;
2755{
2756  int act;
2757  switch( ap->type ){
2758    case SHIFT:  act = ap->x.stp->index;               break;
2759    case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
2760    case ERROR:  act = lemp->nstate + lemp->nrule;     break;
2761    case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
2762    default:     act = -1; break;
2763  }
2764  return act;
2765}
2766
2767#define LINESIZE 1000
2768/* The next cluster of routines are for reading the template file
2769** and writing the results to the generated parser */
2770/* The first function transfers data from "in" to "out" until
2771** a line is seen which begins with "%%".  The line number is
2772** tracked.
2773**
2774** if name!=0, then any word that begin with "Parse" is changed to
2775** begin with *name instead.
2776*/
2777PRIVATE void tplt_xfer(name,in,out,lineno)
2778char *name;
2779FILE *in;
2780FILE *out;
2781int *lineno;
2782{
2783  int i, iStart;
2784  char line[LINESIZE];
2785  while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
2786    (*lineno)++;
2787    iStart = 0;
2788    if( name ){
2789      for(i=0; line[i]; i++){
2790        if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
2791          && (i==0 || !isalpha(line[i-1]))
2792        ){
2793          if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
2794          fprintf(out,"%s",name);
2795          i += 4;
2796          iStart = i+1;
2797        }
2798      }
2799    }
2800    fprintf(out,"%s",&line[iStart]);
2801  }
2802}
2803
2804/* The next function finds the template file and opens it, returning
2805** a pointer to the opened file. */
2806PRIVATE FILE *tplt_open(lemp)
2807struct lemon *lemp;
2808{
2809  static char templatename[] = "lempar.c";
2810  char buf[1000];
2811  FILE *in;
2812  char *tpltname;
2813  char *cp;
2814
2815  cp = strrchr(lemp->filename,'.');
2816  if( cp ){
2817    sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
2818  }else{
2819    sprintf(buf,"%s.lt",lemp->filename);
2820  }
2821  if( access(buf,004)==0 ){
2822    tpltname = buf;
2823  }else if( access(templatename,004)==0 ){
2824    tpltname = templatename;
2825  }else{
2826    tpltname = pathsearch(lemp->argv0,templatename,0);
2827  }
2828  if( tpltname==0 ){
2829    fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
2830    templatename);
2831    lemp->errorcnt++;
2832    return 0;
2833  }
2834  in = fopen(tpltname,"r");
2835  if( in==0 ){
2836    fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
2837    lemp->errorcnt++;
2838    return 0;
2839  }
2840  return in;
2841}
2842
2843/* Print a string to the file and keep the linenumber up to date */
2844PRIVATE void tplt_print(out,lemp,str,strln,lineno)
2845FILE *out;
2846struct lemon *lemp;
2847char *str;
2848int strln;
2849int *lineno;
2850{
2851  if( str==0 ) return;
2852  fprintf(out,"#line %d \"%s\"\n",strln,lemp->filename); (*lineno)++;
2853  while( *str ){
2854    if( *str=='\n' ) (*lineno)++;
2855    putc(*str,out);
2856    str++;
2857  }
2858  fprintf(out,"\n#line %d \"%s\"\n",*lineno+2,lemp->outname); (*lineno)+=2;
2859  return;
2860}
2861
2862/*
2863** The following routine emits code for the destructor for the
2864** symbol sp
2865*/
2866void emit_destructor_code(out,sp,lemp,lineno)
2867FILE *out;
2868struct symbol *sp;
2869struct lemon *lemp;
2870int *lineno;
2871{
2872 char *cp = 0;
2873
2874 int linecnt = 0;
2875 if( sp->type==TERMINAL ){
2876   cp = lemp->tokendest;
2877   if( cp==0 ) return;
2878   fprintf(out,"#line %d \"%s\"\n{",lemp->tokendestln,lemp->filename);
2879 }else if( sp->destructor ){
2880   cp = sp->destructor;
2881   fprintf(out,"#line %d \"%s\"\n{",sp->destructorln,lemp->filename);
2882 }else if( lemp->vardest ){
2883   cp = lemp->vardest;
2884   if( cp==0 ) return;
2885   fprintf(out,"#line %d \"%s\"\n{",lemp->vardestln,lemp->filename);
2886 }else{
2887   assert( 0 );  /* Cannot happen */
2888 }
2889 for(; *cp; cp++){
2890   if( *cp=='$' && cp[1]=='$' ){
2891     fprintf(out,"(yypminor->yy%d)",sp->dtnum);
2892     cp++;
2893     continue;
2894   }
2895   if( *cp=='\n' ) linecnt++;
2896   fputc(*cp,out);
2897 }
2898 (*lineno) += 3 + linecnt;
2899 fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname);
2900 return;
2901}
2902
2903/*
2904** Return TRUE (non-zero) if the given symbol has a destructor.
2905*/
2906int has_destructor(sp, lemp)
2907struct symbol *sp;
2908struct lemon *lemp;
2909{
2910  int ret;
2911  if( sp->type==TERMINAL ){
2912    ret = lemp->tokendest!=0;
2913  }else{
2914    ret = lemp->vardest!=0 || sp->destructor!=0;
2915  }
2916  return ret;
2917}
2918
2919/*
2920** Generate code which executes when the rule "rp" is reduced.  Write
2921** the code to "out".  Make sure lineno stays up-to-date.
2922*/
2923PRIVATE void emit_code(out,rp,lemp,lineno)
2924FILE *out;
2925struct rule *rp;
2926struct lemon *lemp;
2927int *lineno;
2928{
2929 char *cp, *xp;
2930 int linecnt = 0;
2931 int i;
2932 char lhsused = 0;    /* True if the LHS element has been used */
2933 char used[MAXRHS];   /* True for each RHS element which is used */
2934
2935 for(i=0; i<rp->nrhs; i++) used[i] = 0;
2936 lhsused = 0;
2937
2938 /* Generate code to do the reduce action */
2939 if( rp->code ){
2940   fprintf(out,"#line %d \"%s\"\n{",rp->line,lemp->filename);
2941   for(cp=rp->code; *cp; cp++){
2942     if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
2943       char saved;
2944       for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
2945       saved = *xp;
2946       *xp = 0;
2947       if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
2948         fprintf(out,"yygotominor.yy%d",rp->lhs->dtnum);
2949         cp = xp;
2950         lhsused = 1;
2951       }else{
2952         for(i=0; i<rp->nrhs; i++){
2953           if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
2954             fprintf(out,"yymsp[%d].minor.yy%d",i-rp->nrhs+1,rp->rhs[i]->dtnum);
2955             cp = xp;
2956             used[i] = 1;
2957             break;
2958           }
2959         }
2960       }
2961       *xp = saved;
2962     }
2963     if( *cp=='\n' ) linecnt++;
2964     fputc(*cp,out);
2965   } /* End loop */
2966   (*lineno) += 3 + linecnt;
2967   fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname);
2968 } /* End if( rp->code ) */
2969
2970 /* Check to make sure the LHS has been used */
2971 if( rp->lhsalias && !lhsused ){
2972   ErrorMsg(lemp->filename,rp->ruleline,
2973     "Label \"%s\" for \"%s(%s)\" is never used.",
2974       rp->lhsalias,rp->lhs->name,rp->lhsalias);
2975   lemp->errorcnt++;
2976 }
2977
2978 /* Generate destructor code for RHS symbols which are not used in the
2979 ** reduce code */
2980 for(i=0; i<rp->nrhs; i++){
2981   if( rp->rhsalias[i] && !used[i] ){
2982     ErrorMsg(lemp->filename,rp->ruleline,
2983       "Label %s for \"%s(%s)\" is never used.",
2984       rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
2985     lemp->errorcnt++;
2986   }else if( rp->rhsalias[i]==0 ){
2987     if( has_destructor(rp->rhs[i],lemp) ){
2988       fprintf(out,"  yy_destructor(%d,&yymsp[%d].minor);\n",
2989          rp->rhs[i]->index,i-rp->nrhs+1); (*lineno)++;
2990     }else{
2991       fprintf(out,"        /* No destructor defined for %s */\n",
2992        rp->rhs[i]->name);
2993        (*lineno)++;
2994     }
2995   }
2996 }
2997 return;
2998}
2999
3000/*
3001** Print the definition of the union used for the parser's data stack.
3002** This union contains fields for every possible data type for tokens
3003** and nonterminals.  In the process of computing and printing this
3004** union, also set the ".dtnum" field of every terminal and nonterminal
3005** symbol.
3006*/
3007void print_stack_union(out,lemp,plineno,mhflag)
3008FILE *out;                  /* The output stream */
3009struct lemon *lemp;         /* The main info structure for this parser */
3010int *plineno;               /* Pointer to the line number */
3011int mhflag;                 /* True if generating makeheaders output */
3012{
3013  int lineno = *plineno;    /* The line number of the output */
3014  char **types;             /* A hash table of datatypes */
3015  int arraysize;            /* Size of the "types" array */
3016  int maxdtlength;          /* Maximum length of any ".datatype" field. */
3017  char *stddt;              /* Standardized name for a datatype */
3018  int i,j;                  /* Loop counters */
3019  int hash;                 /* For hashing the name of a type */
3020  char *name;               /* Name of the parser */
3021
3022  /* Allocate and initialize types[] and allocate stddt[] */
3023  arraysize = lemp->nsymbol * 2;
3024  types = (char**)malloc( arraysize * sizeof(char*) );
3025  for(i=0; i<arraysize; i++) types[i] = 0;
3026  maxdtlength = 0;
3027  if( lemp->vartype ){
3028    maxdtlength = strlen(lemp->vartype);
3029  }
3030  for(i=0; i<lemp->nsymbol; i++){
3031    int len;
3032    struct symbol *sp = lemp->symbols[i];
3033    if( sp->datatype==0 ) continue;
3034    len = strlen(sp->datatype);
3035    if( len>maxdtlength ) maxdtlength = len;
3036  }
3037  stddt = (char*)malloc( maxdtlength*2 + 1 );
3038  if( types==0 || stddt==0 ){
3039    fprintf(stderr,"Out of memory.\n");
3040    exit(1);
3041  }
3042
3043  /* Build a hash table of datatypes. The ".dtnum" field of each symbol
3044  ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is
3045  ** used for terminal symbols.  If there is no %default_type defined then
3046  ** 0 is also used as the .dtnum value for nonterminals which do not specify
3047  ** a datatype using the %type directive.
3048  */
3049  for(i=0; i<lemp->nsymbol; i++){
3050    struct symbol *sp = lemp->symbols[i];
3051    char *cp;
3052    if( sp==lemp->errsym ){
3053      sp->dtnum = arraysize+1;
3054      continue;
3055    }
3056    if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
3057      sp->dtnum = 0;
3058      continue;
3059    }
3060    cp = sp->datatype;
3061    if( cp==0 ) cp = lemp->vartype;
3062    j = 0;
3063    while( isspace(*cp) ) cp++;
3064    while( *cp ) stddt[j++] = *cp++;
3065    while( j>0 && isspace(stddt[j-1]) ) j--;
3066    stddt[j] = 0;
3067    hash = 0;
3068    for(j=0; stddt[j]; j++){
3069      hash = hash*53 + stddt[j];
3070    }
3071    hash = (hash & 0x7fffffff)%arraysize;
3072    while( types[hash] ){
3073      if( strcmp(types[hash],stddt)==0 ){
3074        sp->dtnum = hash + 1;
3075        break;
3076      }
3077      hash++;
3078      if( hash>=arraysize ) hash = 0;
3079    }
3080    if( types[hash]==0 ){
3081      sp->dtnum = hash + 1;
3082      types[hash] = (char*)malloc( strlen(stddt)+1 );
3083      if( types[hash]==0 ){
3084        fprintf(stderr,"Out of memory.\n");
3085        exit(1);
3086      }
3087      strcpy(types[hash],stddt);
3088    }
3089  }
3090
3091  /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
3092  name = lemp->name ? lemp->name : "Parse";
3093  lineno = *plineno;
3094  if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
3095  fprintf(out,"#define %sTOKENTYPE %s\n",name,
3096    lemp->tokentype?lemp->tokentype:"void*");  lineno++;
3097  if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
3098  fprintf(out,"typedef union {\n"); lineno++;
3099  fprintf(out,"  %sTOKENTYPE yy0;\n",name); lineno++;
3100  for(i=0; i<arraysize; i++){
3101    if( types[i]==0 ) continue;
3102    fprintf(out,"  %s yy%d;\n",types[i],i+1); lineno++;
3103    free(types[i]);
3104  }
3105  fprintf(out,"  int yy%d;\n",lemp->errsym->dtnum); lineno++;
3106  free(stddt);
3107  free(types);
3108  fprintf(out,"} YYMINORTYPE;\n"); lineno++;
3109  *plineno = lineno;
3110}
3111
3112/*
3113** Return the name of a C datatype able to represent values between
3114** lwr and upr, inclusive.
3115*/
3116static const char *minimum_size_type(int lwr, int upr){
3117  if( lwr>=0 ){
3118    if( upr<=255 ){
3119      return "unsigned char";
3120    }else if( upr<65535 ){
3121      return "unsigned short int";
3122    }else{
3123      return "unsigned int";
3124    }
3125  }else if( lwr>=-127 && upr<=127 ){
3126    return "signed char";
3127  }else if( lwr>=-32767 && upr<32767 ){
3128    return "short";
3129  }else{
3130    return "int";
3131  }
3132}
3133
3134/*
3135** Each state contains a set of token transaction and a set of
3136** nonterminal transactions.  Each of these sets makes an instance
3137** of the following structure.  An array of these structures is used
3138** to order the creation of entries in the yy_action[] table.
3139*/
3140struct axset {
3141  struct state *stp;   /* A pointer to a state */
3142  int isTkn;           /* True to use tokens.  False for non-terminals */
3143  int nAction;         /* Number of actions */
3144};
3145
3146/*
3147** Compare to axset structures for sorting purposes
3148*/
3149static int axset_compare(const void *a, const void *b){
3150  struct axset *p1 = (struct axset*)a;
3151  struct axset *p2 = (struct axset*)b;
3152  return p2->nAction - p1->nAction;
3153}
3154
3155/* Generate C source code for the parser */
3156void ReportTable(lemp, mhflag)
3157struct lemon *lemp;
3158int mhflag;     /* Output in makeheaders format if true */
3159{
3160  FILE *out, *in;
3161  char line[LINESIZE];
3162  int  lineno;
3163  struct state *stp;
3164  struct action *ap;
3165  struct rule *rp;
3166  struct acttab *pActtab;
3167  int i, j, n;
3168  char *name;
3169  int mnTknOfst, mxTknOfst;
3170  int mnNtOfst, mxNtOfst;
3171  struct axset *ax;
3172
3173  in = tplt_open(lemp);
3174  if( in==0 ) return;
3175  out = file_open(lemp,".c","w");
3176  if( out==0 ){
3177    fclose(in);
3178    return;
3179  }
3180  lineno = 1;
3181  tplt_xfer(lemp->name,in,out,&lineno);
3182
3183  /* Generate the include code, if any */
3184  tplt_print(out,lemp,lemp->include,lemp->includeln,&lineno);
3185  if( mhflag ){
3186    char *name = file_makename(lemp, ".h");
3187    fprintf(out,"#include \"%s\"\n", name); lineno++;
3188    free(name);
3189  }
3190  tplt_xfer(lemp->name,in,out,&lineno);
3191
3192  /* Generate #defines for all tokens */
3193  if( mhflag ){
3194    char *prefix;
3195    fprintf(out,"#if INTERFACE\n"); lineno++;
3196    if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
3197    else                    prefix = "";
3198    for(i=1; i<lemp->nterminal; i++){
3199      fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3200      lineno++;
3201    }
3202    fprintf(out,"#endif\n"); lineno++;
3203  }
3204  tplt_xfer(lemp->name,in,out,&lineno);
3205
3206  /* Generate the defines */
3207  fprintf(out,"/* \001 */\n");
3208  fprintf(out,"#define YYCODETYPE %s\n",
3209    minimum_size_type(0, lemp->nsymbol+5)); lineno++;
3210  fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1);  lineno++;
3211  fprintf(out,"#define YYACTIONTYPE %s\n",
3212    minimum_size_type(0, lemp->nstate+lemp->nrule+5));  lineno++;
3213  print_stack_union(out,lemp,&lineno,mhflag);
3214  if( lemp->stacksize ){
3215    if( atoi(lemp->stacksize)<=0 ){
3216      ErrorMsg(lemp->filename,0,
3217"Illegal stack size: [%s].  The stack size should be an integer constant.",
3218        lemp->stacksize);
3219      lemp->errorcnt++;
3220      lemp->stacksize = "100";
3221    }
3222    fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize);  lineno++;
3223  }else{
3224    fprintf(out,"#define YYSTACKDEPTH 100\n");  lineno++;
3225  }
3226  if( mhflag ){
3227    fprintf(out,"#if INTERFACE\n"); lineno++;
3228  }
3229  name = lemp->name ? lemp->name : "Parse";
3230  if( lemp->arg && lemp->arg[0] ){
3231    int i;
3232    i = strlen(lemp->arg);
3233    while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
3234    while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
3235    fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg);  lineno++;
3236    fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg);  lineno++;
3237    fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
3238                 name,lemp->arg,&lemp->arg[i]);  lineno++;
3239    fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
3240                 name,&lemp->arg[i],&lemp->arg[i]);  lineno++;
3241  }else{
3242    fprintf(out,"#define %sARG_SDECL\n",name);  lineno++;
3243    fprintf(out,"#define %sARG_PDECL\n",name);  lineno++;
3244    fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
3245    fprintf(out,"#define %sARG_STORE\n",name); lineno++;
3246  }
3247  if( mhflag ){
3248    fprintf(out,"#endif\n"); lineno++;
3249  }
3250  fprintf(out,"#define YYNSTATE %d\n",lemp->nstate);  lineno++;
3251  fprintf(out,"#define YYNRULE %d\n",lemp->nrule);  lineno++;
3252  fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index);  lineno++;
3253  fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum);  lineno++;
3254  if( lemp->has_fallback ){
3255    fprintf(out,"#define YYFALLBACK 1\n");  lineno++;
3256  }
3257  tplt_xfer(lemp->name,in,out,&lineno);
3258
3259  /* Generate the action table and its associates:
3260  **
3261  **  yy_action[]        A single table containing all actions.
3262  **  yy_lookahead[]     A table containing the lookahead for each entry in
3263  **                     yy_action.  Used to detect hash collisions.
3264  **  yy_shift_ofst[]    For each state, the offset into yy_action for
3265  **                     shifting terminals.
3266  **  yy_reduce_ofst[]   For each state, the offset into yy_action for
3267  **                     shifting non-terminals after a reduce.
3268  **  yy_default[]       Default action for each state.
3269  */
3270
3271  /* Compute the actions on all states and count them up */
3272  ax = malloc( sizeof(ax[0])*lemp->nstate*2 );
3273  if( ax==0 ){
3274    fprintf(stderr,"malloc failed\n");
3275    exit(1);
3276  }
3277  for(i=0; i<lemp->nstate; i++){
3278    stp = lemp->sorted[i];
3279    stp->nTknAct = stp->nNtAct = 0;
3280    stp->iDflt = lemp->nstate + lemp->nrule;
3281    stp->iTknOfst = NO_OFFSET;
3282    stp->iNtOfst = NO_OFFSET;
3283    for(ap=stp->ap; ap; ap=ap->next){
3284      if( compute_action(lemp,ap)>=0 ){
3285        if( ap->sp->index<lemp->nterminal ){
3286          stp->nTknAct++;
3287        }else if( ap->sp->index<lemp->nsymbol ){
3288          stp->nNtAct++;
3289        }else{
3290          stp->iDflt = compute_action(lemp, ap);
3291        }
3292      }
3293    }
3294    ax[i*2].stp = stp;
3295    ax[i*2].isTkn = 1;
3296    ax[i*2].nAction = stp->nTknAct;
3297    ax[i*2+1].stp = stp;
3298    ax[i*2+1].isTkn = 0;
3299    ax[i*2+1].nAction = stp->nNtAct;
3300  }
3301  mxTknOfst = mnTknOfst = 0;
3302  mxNtOfst = mnNtOfst = 0;
3303
3304  /* Compute the action table.  In order to try to keep the size of the
3305  ** action table to a minimum, the heuristic of placing the largest action
3306  ** sets first is used.
3307  */
3308  qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
3309  pActtab = acttab_alloc();
3310  for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
3311    stp = ax[i].stp;
3312    if( ax[i].isTkn ){
3313      for(ap=stp->ap; ap; ap=ap->next){
3314        int action;
3315        if( ap->sp->index>=lemp->nterminal ) continue;
3316        action = compute_action(lemp, ap);
3317        if( action<0 ) continue;
3318        acttab_action(pActtab, ap->sp->index, action);
3319      }
3320      stp->iTknOfst = acttab_insert(pActtab);
3321      if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
3322      if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
3323    }else{
3324      for(ap=stp->ap; ap; ap=ap->next){
3325        int action;
3326        if( ap->sp->index<lemp->nterminal ) continue;
3327        if( ap->sp->index==lemp->nsymbol ) continue;
3328        action = compute_action(lemp, ap);
3329        if( action<0 ) continue;
3330        acttab_action(pActtab, ap->sp->index, action);
3331      }
3332      stp->iNtOfst = acttab_insert(pActtab);
3333      if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
3334      if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
3335    }
3336  }
3337  free(ax);
3338
3339  /* Output the yy_action table */
3340  fprintf(out,"static YYACTIONTYPE yy_action[] = {\n"); lineno++;
3341  n = acttab_size(pActtab);
3342  for(i=j=0; i<n; i++){
3343    int action = acttab_yyaction(pActtab, i);
3344    if( action<0 ) action = lemp->nsymbol + lemp->nrule + 2;
3345    if( j==0 ) fprintf(out," /* %5d */ ", i);
3346    fprintf(out, " %4d,", action);
3347    if( j==9 || i==n-1 ){
3348      fprintf(out, "\n"); lineno++;
3349      j = 0;
3350    }else{
3351      j++;
3352    }
3353  }
3354  fprintf(out, "};\n"); lineno++;
3355
3356  /* Output the yy_lookahead table */
3357  fprintf(out,"static YYCODETYPE yy_lookahead[] = {\n"); lineno++;
3358  for(i=j=0; i<n; i++){
3359    int la = acttab_yylookahead(pActtab, i);
3360    if( la<0 ) la = lemp->nsymbol;
3361    if( j==0 ) fprintf(out," /* %5d */ ", i);
3362    fprintf(out, " %4d,", la);
3363    if( j==9 || i==n-1 ){
3364      fprintf(out, "\n"); lineno++;
3365      j = 0;
3366    }else{
3367      j++;
3368    }
3369  }
3370  fprintf(out, "};\n"); lineno++;
3371
3372  /* Output the yy_shift_ofst[] table */
3373  fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
3374  fprintf(out, "static %s yy_shift_ofst[] = {\n",
3375          minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
3376  n = lemp->nstate;
3377  for(i=j=0; i<n; i++){
3378    int ofst;
3379    stp = lemp->sorted[i];
3380    ofst = stp->iTknOfst;
3381    if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
3382    if( j==0 ) fprintf(out," /* %5d */ ", i);
3383    fprintf(out, " %4d,", ofst);
3384    if( j==9 || i==n-1 ){
3385      fprintf(out, "\n"); lineno++;
3386      j = 0;
3387    }else{
3388      j++;
3389    }
3390  }
3391  fprintf(out, "};\n"); lineno++;
3392
3393  /* Output the yy_reduce_ofst[] table */
3394  fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
3395  fprintf(out, "static %s yy_reduce_ofst[] = {\n",
3396          minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
3397  n = lemp->nstate;
3398  for(i=j=0; i<n; i++){
3399    int ofst;
3400    stp = lemp->sorted[i];
3401    ofst = stp->iNtOfst;
3402    if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
3403    if( j==0 ) fprintf(out," /* %5d */ ", i);
3404    fprintf(out, " %4d,", ofst);
3405    if( j==9 || i==n-1 ){
3406      fprintf(out, "\n"); lineno++;
3407      j = 0;
3408    }else{
3409      j++;
3410    }
3411  }
3412  fprintf(out, "};\n"); lineno++;
3413
3414  /* Output the default action table */
3415  fprintf(out, "static YYACTIONTYPE yy_default[] = {\n"); lineno++;
3416  n = lemp->nstate;
3417  for(i=j=0; i<n; i++){
3418    stp = lemp->sorted[i];
3419    if( j==0 ) fprintf(out," /* %5d */ ", i);
3420    fprintf(out, " %4d,", stp->iDflt);
3421    if( j==9 || i==n-1 ){
3422      fprintf(out, "\n"); lineno++;
3423      j = 0;
3424    }else{
3425      j++;
3426    }
3427  }
3428  fprintf(out, "};\n"); lineno++;
3429  tplt_xfer(lemp->name,in,out,&lineno);
3430
3431  /* Generate the table of fallback tokens.
3432  */
3433  if( lemp->has_fallback ){
3434    for(i=0; i<lemp->nterminal; i++){
3435      struct symbol *p = lemp->symbols[i];
3436      if( p->fallback==0 ){
3437        fprintf(out, "    0,  /* %10s => nothing */\n", p->name);
3438      }else{
3439        fprintf(out, "  %3d,  /* %10s => %s */\n", p->fallback->index,
3440          p->name, p->fallback->name);
3441      }
3442      lineno++;
3443    }
3444  }
3445  tplt_xfer(lemp->name, in, out, &lineno);
3446
3447  /* Generate a table containing the symbolic name of every symbol
3448  */
3449  for(i=0; i<lemp->nsymbol; i++){
3450    sprintf(line,"\"%s\",",lemp->symbols[i]->name);
3451    fprintf(out,"  %-15s",line);
3452    if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
3453  }
3454  if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
3455  tplt_xfer(lemp->name,in,out,&lineno);
3456
3457  /* Generate a table containing a text string that describes every
3458  ** rule in the rule set of the grammer.  This information is used
3459  ** when tracing REDUCE actions.
3460  */
3461  for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
3462    assert( rp->index==i );
3463    fprintf(out," /* %3d */ \"%s ::=", i, rp->lhs->name);
3464    for(j=0; j<rp->nrhs; j++) fprintf(out," %s",rp->rhs[j]->name);
3465    fprintf(out,"\",\n"); lineno++;
3466  }
3467  tplt_xfer(lemp->name,in,out,&lineno);
3468
3469  /* Generate code which executes every time a symbol is popped from
3470  ** the stack while processing errors or while destroying the parser.
3471  ** (In other words, generate the %destructor actions)
3472  */
3473  if( lemp->tokendest ){
3474    for(i=0; i<lemp->nsymbol; i++){
3475      struct symbol *sp = lemp->symbols[i];
3476      if( sp==0 || sp->type!=TERMINAL ) continue;
3477      fprintf(out,"    case %d:\n",sp->index); lineno++;
3478    }
3479    for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
3480    if( i<lemp->nsymbol ){
3481      emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
3482      fprintf(out,"      break;\n"); lineno++;
3483    }
3484  }
3485  for(i=0; i<lemp->nsymbol; i++){
3486    struct symbol *sp = lemp->symbols[i];
3487    if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
3488    fprintf(out,"    case %d:\n",sp->index); lineno++;
3489    emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
3490    fprintf(out,"      break;\n"); lineno++;
3491  }
3492  if( lemp->vardest ){
3493    struct symbol *dflt_sp = 0;
3494    for(i=0; i<lemp->nsymbol; i++){
3495      struct symbol *sp = lemp->symbols[i];
3496      if( sp==0 || sp->type==TERMINAL ||
3497          sp->index<=0 || sp->destructor!=0 ) continue;
3498      fprintf(out,"    case %d:\n",sp->index); lineno++;
3499      dflt_sp = sp;
3500    }
3501    if( dflt_sp!=0 ){
3502      emit_destructor_code(out,dflt_sp,lemp,&lineno);
3503      fprintf(out,"      break;\n"); lineno++;
3504    }
3505  }
3506  tplt_xfer(lemp->name,in,out,&lineno);
3507
3508  /* Generate code which executes whenever the parser stack overflows */
3509  tplt_print(out,lemp,lemp->overflow,lemp->overflowln,&lineno);
3510  tplt_xfer(lemp->name,in,out,&lineno);
3511
3512  /* Generate the table of rule information
3513  **
3514  ** Note: This code depends on the fact that rules are number
3515  ** sequentually beginning with 0.
3516  */
3517  for(rp=lemp->rule; rp; rp=rp->next){
3518    fprintf(out,"  { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
3519  }
3520  tplt_xfer(lemp->name,in,out,&lineno);
3521
3522  /* Generate code which execution during each REDUCE action */
3523  for(rp=lemp->rule; rp; rp=rp->next){
3524    fprintf(out,"      case %d:\n",rp->index); lineno++;
3525    emit_code(out,rp,lemp,&lineno);
3526    fprintf(out,"        break;\n"); lineno++;
3527  }
3528  tplt_xfer(lemp->name,in,out,&lineno);
3529
3530  /* Generate code which executes if a parse fails */
3531  tplt_print(out,lemp,lemp->failure,lemp->failureln,&lineno);
3532  tplt_xfer(lemp->name,in,out,&lineno);
3533
3534  /* Generate code which executes when a syntax error occurs */
3535  tplt_print(out,lemp,lemp->error,lemp->errorln,&lineno);
3536  tplt_xfer(lemp->name,in,out,&lineno);
3537
3538  /* Generate code which executes when the parser accepts its input */
3539  tplt_print(out,lemp,lemp->accept,lemp->acceptln,&lineno);
3540  tplt_xfer(lemp->name,in,out,&lineno);
3541
3542  /* Append any addition code the user desires */
3543  tplt_print(out,lemp,lemp->extracode,lemp->extracodeln,&lineno);
3544
3545  fclose(in);
3546  fclose(out);
3547  return;
3548}
3549
3550/* Generate a header file for the parser */
3551void ReportHeader(lemp)
3552struct lemon *lemp;
3553{
3554  FILE *out, *in;
3555  char *prefix;
3556  char line[LINESIZE];
3557  char pattern[LINESIZE];
3558  int i;
3559
3560  if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
3561  else                    prefix = "";
3562  in = file_open(lemp,".h","r");
3563  if( in ){
3564    for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
3565      sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3566      if( strcmp(line,pattern) ) break;
3567    }
3568    fclose(in);
3569    if( i==lemp->nterminal ){
3570      /* No change in the file.  Don't rewrite it. */
3571      return;
3572    }
3573  }
3574  out = file_open(lemp,".h","w");
3575  if( out ){
3576    for(i=1; i<lemp->nterminal; i++){
3577      fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3578    }
3579    fclose(out);
3580  }
3581  return;
3582}
3583
3584/* Reduce the size of the action tables, if possible, by making use
3585** of defaults.
3586**
3587** In this version, we take the most frequent REDUCE action and make
3588** it the default.  Only default a reduce if there are more than one.
3589*/
3590void CompressTables(lemp)
3591struct lemon *lemp;
3592{
3593  struct state *stp;
3594  struct action *ap, *ap2;
3595  struct rule *rp, *rp2, *rbest;
3596  int nbest, n;
3597  int i;
3598
3599  for(i=0; i<lemp->nstate; i++){
3600    stp = lemp->sorted[i];
3601    nbest = 0;
3602    rbest = 0;
3603
3604    for(ap=stp->ap; ap; ap=ap->next){
3605      if( ap->type!=REDUCE ) continue;
3606      rp = ap->x.rp;
3607      if( rp==rbest ) continue;
3608      n = 1;
3609      for(ap2=ap->next; ap2; ap2=ap2->next){
3610        if( ap2->type!=REDUCE ) continue;
3611        rp2 = ap2->x.rp;
3612        if( rp2==rbest ) continue;
3613        if( rp2==rp ) n++;
3614      }
3615      if( n>nbest ){
3616        nbest = n;
3617        rbest = rp;
3618      }
3619    }
3620
3621    /* Do not make a default if the number of rules to default
3622    ** is not at least 2 */
3623    if( nbest<2 ) continue;
3624
3625
3626    /* Combine matching REDUCE actions into a single default */
3627    for(ap=stp->ap; ap; ap=ap->next){
3628      if( ap->type==REDUCE && ap->x.rp==rbest ) break;
3629    }
3630    assert( ap );
3631    ap->sp = Symbol_new("{default}");
3632    for(ap=ap->next; ap; ap=ap->next){
3633      if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
3634    }
3635    stp->ap = Action_sort(stp->ap);
3636  }
3637}
3638
3639/***************** From the file "set.c" ************************************/
3640/*
3641** Set manipulation routines for the LEMON parser generator.
3642*/
3643
3644static int size = 0;
3645
3646/* Set the set size */
3647void SetSize(n)
3648int n;
3649{
3650  size = n+1;
3651}
3652
3653/* Allocate a new set */
3654char *SetNew(){
3655  char *s;
3656  int i;
3657  s = (char*)malloc( size );
3658  if( s==0 ){
3659    extern void memory_error();
3660    memory_error();
3661  }
3662  for(i=0; i<size; i++) s[i] = 0;
3663  return s;
3664}
3665
3666/* Deallocate a set */
3667void SetFree(s)
3668char *s;
3669{
3670  free(s);
3671}
3672
3673/* Add a new element to the set.  Return TRUE if the element was added
3674** and FALSE if it was already there. */
3675int SetAdd(s,e)
3676char *s;
3677int e;
3678{
3679  int rv;
3680  rv = s[e];
3681  s[e] = 1;
3682  return !rv;
3683}
3684
3685/* Add every element of s2 to s1.  Return TRUE if s1 changes. */
3686int SetUnion(s1,s2)
3687char *s1;
3688char *s2;
3689{
3690  int i, progress;
3691  progress = 0;
3692  for(i=0; i<size; i++){
3693    if( s2[i]==0 ) continue;
3694    if( s1[i]==0 ){
3695      progress = 1;
3696      s1[i] = 1;
3697    }
3698  }
3699  return progress;
3700}
3701/********************** From the file "table.c" ****************************/
3702/*
3703** All code in this file has been automatically generated
3704** from a specification in the file
3705**              "table.q"
3706** by the associative array code building program "aagen".
3707** Do not edit this file!  Instead, edit the specification
3708** file, then rerun aagen.
3709*/
3710/*
3711** Code for processing tables in the LEMON parser generator.
3712*/
3713
3714PRIVATE int strhash(x)
3715char *x;
3716{
3717  int h = 0;
3718  while( *x) h = h*13 + *(x++);
3719  return h;
3720}
3721
3722/* Works like strdup, sort of.  Save a string in malloced memory, but
3723** keep strings in a table so that the same string is not in more
3724** than one place.
3725*/
3726char *Strsafe(y)
3727char *y;
3728{
3729  char *z;
3730
3731  z = Strsafe_find(y);
3732  if( z==0 && (z=malloc( strlen(y)+1 ))!=0 ){
3733    strcpy(z,y);
3734    Strsafe_insert(z);
3735  }
3736  MemoryCheck(z);
3737  return z;
3738}
3739
3740/* There is one instance of the following structure for each
3741** associative array of type "x1".
3742*/
3743struct s_x1 {
3744  int size;               /* The number of available slots. */
3745                          /*   Must be a power of 2 greater than or */
3746                          /*   equal to 1 */
3747  int count;              /* Number of currently slots filled */
3748  struct s_x1node *tbl;  /* The data stored here */
3749  struct s_x1node **ht;  /* Hash table for lookups */
3750};
3751
3752/* There is one instance of this structure for every data element
3753** in an associative array of type "x1".
3754*/
3755typedef struct s_x1node {
3756  char *data;                  /* The data */
3757  struct s_x1node *next;   /* Next entry with the same hash */
3758  struct s_x1node **from;  /* Previous link */
3759} x1node;
3760
3761/* There is only one instance of the array, which is the following */
3762static struct s_x1 *x1a;
3763
3764/* Allocate a new associative array */
3765void Strsafe_init(){
3766  if( x1a ) return;
3767  x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
3768  if( x1a ){
3769    x1a->size = 1024;
3770    x1a->count = 0;
3771    x1a->tbl = (x1node*)malloc(
3772      (sizeof(x1node) + sizeof(x1node*))*1024 );
3773    if( x1a->tbl==0 ){
3774      free(x1a);
3775      x1a = 0;
3776    }else{
3777      int i;
3778      x1a->ht = (x1node**)&(x1a->tbl[1024]);
3779      for(i=0; i<1024; i++) x1a->ht[i] = 0;
3780    }
3781  }
3782}
3783/* Insert a new record into the array.  Return TRUE if successful.
3784** Prior data with the same key is NOT overwritten */
3785int Strsafe_insert(data)
3786char *data;
3787{
3788  x1node *np;
3789  int h;
3790  int ph;
3791
3792  if( x1a==0 ) return 0;
3793  ph = strhash(data);
3794  h = ph & (x1a->size-1);
3795  np = x1a->ht[h];
3796  while( np ){
3797    if( strcmp(np->data,data)==0 ){
3798      /* An existing entry with the same key is found. */
3799      /* Fail because overwrite is not allows. */
3800      return 0;
3801    }
3802    np = np->next;
3803  }
3804  if( x1a->count>=x1a->size ){
3805    /* Need to make the hash table bigger */
3806    int i,size;
3807    struct s_x1 array;
3808    array.size = size = x1a->size*2;
3809    array.count = x1a->count;
3810    array.tbl = (x1node*)malloc(
3811      (sizeof(x1node) + sizeof(x1node*))*size );
3812    if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
3813    array.ht = (x1node**)&(array.tbl[size]);
3814    for(i=0; i<size; i++) array.ht[i] = 0;
3815    for(i=0; i<x1a->count; i++){
3816      x1node *oldnp, *newnp;
3817      oldnp = &(x1a->tbl[i]);
3818      h = strhash(oldnp->data) & (size-1);
3819      newnp = &(array.tbl[i]);
3820      if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
3821      newnp->next = array.ht[h];
3822      newnp->data = oldnp->data;
3823      newnp->from = &(array.ht[h]);
3824      array.ht[h] = newnp;
3825    }
3826    free(x1a->tbl);
3827    *x1a = array;
3828  }
3829  /* Insert the new data */
3830  h = ph & (x1a->size-1);
3831  np = &(x1a->tbl[x1a->count++]);
3832  np->data = data;
3833  if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
3834  np->next = x1a->ht[h];
3835  x1a->ht[h] = np;
3836  np->from = &(x1a->ht[h]);
3837  return 1;
3838}
3839
3840/* Return a pointer to data assigned to the given key.  Return NULL
3841** if no such key. */
3842char *Strsafe_find(key)
3843char *key;
3844{
3845  int h;
3846  x1node *np;
3847
3848  if( x1a==0 ) return 0;
3849  h = strhash(key) & (x1a->size-1);
3850  np = x1a->ht[h];
3851  while( np ){
3852    if( strcmp(np->data,key)==0 ) break;
3853    np = np->next;
3854  }
3855  return np ? np->data : 0;
3856}
3857
3858/* Return a pointer to the (terminal or nonterminal) symbol "x".
3859** Create a new symbol if this is the first time "x" has been seen.
3860*/
3861struct symbol *Symbol_new(x)
3862char *x;
3863{
3864  struct symbol *sp;
3865
3866  sp = Symbol_find(x);
3867  if( sp==0 ){
3868    sp = (struct symbol *)malloc( sizeof(struct symbol) );
3869    MemoryCheck(sp);
3870    sp->name = Strsafe(x);
3871    sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
3872    sp->rule = 0;
3873    sp->fallback = 0;
3874    sp->prec = -1;
3875    sp->assoc = UNK;
3876    sp->firstset = 0;
3877    sp->lambda = B_FALSE;
3878    sp->destructor = 0;
3879    sp->datatype = 0;
3880    Symbol_insert(sp,sp->name);
3881  }
3882  return sp;
3883}
3884
3885/* Compare two symbols for working purposes
3886**
3887** Symbols that begin with upper case letters (terminals or tokens)
3888** must sort before symbols that begin with lower case letters
3889** (non-terminals).  Other than that, the order does not matter.
3890**
3891** We find experimentally that leaving the symbols in their original
3892** order (the order they appeared in the grammar file) gives the
3893** smallest parser tables in SQLite.
3894*/
3895int Symbolcmpp(struct symbol **a, struct symbol **b){
3896  int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
3897  int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
3898  return i1-i2;
3899}
3900
3901/* There is one instance of the following structure for each
3902** associative array of type "x2".
3903*/
3904struct s_x2 {
3905  int size;               /* The number of available slots. */
3906                          /*   Must be a power of 2 greater than or */
3907                          /*   equal to 1 */
3908  int count;              /* Number of currently slots filled */
3909  struct s_x2node *tbl;  /* The data stored here */
3910  struct s_x2node **ht;  /* Hash table for lookups */
3911};
3912
3913/* There is one instance of this structure for every data element
3914** in an associative array of type "x2".
3915*/
3916typedef struct s_x2node {
3917  struct symbol *data;                  /* The data */
3918  char *key;                   /* The key */
3919  struct s_x2node *next;   /* Next entry with the same hash */
3920  struct s_x2node **from;  /* Previous link */
3921} x2node;
3922
3923/* There is only one instance of the array, which is the following */
3924static struct s_x2 *x2a;
3925
3926/* Allocate a new associative array */
3927void Symbol_init(){
3928  if( x2a ) return;
3929  x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
3930  if( x2a ){
3931    x2a->size = 128;
3932    x2a->count = 0;
3933    x2a->tbl = (x2node*)malloc(
3934      (sizeof(x2node) + sizeof(x2node*))*128 );
3935    if( x2a->tbl==0 ){
3936      free(x2a);
3937      x2a = 0;
3938    }else{
3939      int i;
3940      x2a->ht = (x2node**)&(x2a->tbl[128]);
3941      for(i=0; i<128; i++) x2a->ht[i] = 0;
3942    }
3943  }
3944}
3945/* Insert a new record into the array.  Return TRUE if successful.
3946** Prior data with the same key is NOT overwritten */
3947int Symbol_insert(data,key)
3948struct symbol *data;
3949char *key;
3950{
3951  x2node *np;
3952  int h;
3953  int ph;
3954
3955  if( x2a==0 ) return 0;
3956  ph = strhash(key);
3957  h = ph & (x2a->size-1);
3958  np = x2a->ht[h];
3959  while( np ){
3960    if( strcmp(np->key,key)==0 ){
3961      /* An existing entry with the same key is found. */
3962      /* Fail because overwrite is not allows. */
3963      return 0;
3964    }
3965    np = np->next;
3966  }
3967  if( x2a->count>=x2a->size ){
3968    /* Need to make the hash table bigger */
3969    int i,size;
3970    struct s_x2 array;
3971    array.size = size = x2a->size*2;
3972    array.count = x2a->count;
3973    array.tbl = (x2node*)malloc(
3974      (sizeof(x2node) + sizeof(x2node*))*size );
3975    if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
3976    array.ht = (x2node**)&(array.tbl[size]);
3977    for(i=0; i<size; i++) array.ht[i] = 0;
3978    for(i=0; i<x2a->count; i++){
3979      x2node *oldnp, *newnp;
3980      oldnp = &(x2a->tbl[i]);
3981      h = strhash(oldnp->key) & (size-1);
3982      newnp = &(array.tbl[i]);
3983      if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
3984      newnp->next = array.ht[h];
3985      newnp->key = oldnp->key;
3986      newnp->data = oldnp->data;
3987      newnp->from = &(array.ht[h]);
3988      array.ht[h] = newnp;
3989    }
3990    free(x2a->tbl);
3991    *x2a = array;
3992  }
3993  /* Insert the new data */
3994  h = ph & (x2a->size-1);
3995  np = &(x2a->tbl[x2a->count++]);
3996  np->key = key;
3997  np->data = data;
3998  if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
3999  np->next = x2a->ht[h];
4000  x2a->ht[h] = np;
4001  np->from = &(x2a->ht[h]);
4002  return 1;
4003}
4004
4005/* Return a pointer to data assigned to the given key.  Return NULL
4006** if no such key. */
4007struct symbol *Symbol_find(key)
4008char *key;
4009{
4010  int h;
4011  x2node *np;
4012
4013  if( x2a==0 ) return 0;
4014  h = strhash(key) & (x2a->size-1);
4015  np = x2a->ht[h];
4016  while( np ){
4017    if( strcmp(np->key,key)==0 ) break;
4018    np = np->next;
4019  }
4020  return np ? np->data : 0;
4021}
4022
4023/* Return the n-th data.  Return NULL if n is out of range. */
4024struct symbol *Symbol_Nth(n)
4025int n;
4026{
4027  struct symbol *data;
4028  if( x2a && n>0 && n<=x2a->count ){
4029    data = x2a->tbl[n-1].data;
4030  }else{
4031    data = 0;
4032  }
4033  return data;
4034}
4035
4036/* Return the size of the array */
4037int Symbol_count()
4038{
4039  return x2a ? x2a->count : 0;
4040}
4041
4042/* Return an array of pointers to all data in the table.
4043** The array is obtained from malloc.  Return NULL if memory allocation
4044** problems, or if the array is empty. */
4045struct symbol **Symbol_arrayof()
4046{
4047  struct symbol **array;
4048  int i,size;
4049  if( x2a==0 ) return 0;
4050  size = x2a->count;
4051  array = (struct symbol **)malloc( sizeof(struct symbol *)*size );
4052  if( array ){
4053    for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
4054  }
4055  return array;
4056}
4057
4058/* Compare two configurations */
4059int Configcmp(a,b)
4060struct config *a;
4061struct config *b;
4062{
4063  int x;
4064  x = a->rp->index - b->rp->index;
4065  if( x==0 ) x = a->dot - b->dot;
4066  return x;
4067}
4068
4069/* Compare two states */
4070PRIVATE int statecmp(a,b)
4071struct config *a;
4072struct config *b;
4073{
4074  int rc;
4075  for(rc=0; rc==0 && a && b;  a=a->bp, b=b->bp){
4076    rc = a->rp->index - b->rp->index;
4077    if( rc==0 ) rc = a->dot - b->dot;
4078  }
4079  if( rc==0 ){
4080    if( a ) rc = 1;
4081    if( b ) rc = -1;
4082  }
4083  return rc;
4084}
4085
4086/* Hash a state */
4087PRIVATE int statehash(a)
4088struct config *a;
4089{
4090  int h=0;
4091  while( a ){
4092    h = h*571 + a->rp->index*37 + a->dot;
4093    a = a->bp;
4094  }
4095  return h;
4096}
4097
4098/* Allocate a new state structure */
4099struct state *State_new()
4100{
4101  struct state *new;
4102  new = (struct state *)malloc( sizeof(struct state) );
4103  MemoryCheck(new);
4104  return new;
4105}
4106
4107/* There is one instance of the following structure for each
4108** associative array of type "x3".
4109*/
4110struct s_x3 {
4111  int size;               /* The number of available slots. */
4112                          /*   Must be a power of 2 greater than or */
4113                          /*   equal to 1 */
4114  int count;              /* Number of currently slots filled */
4115  struct s_x3node *tbl;  /* The data stored here */
4116  struct s_x3node **ht;  /* Hash table for lookups */
4117};
4118
4119/* There is one instance of this structure for every data element
4120** in an associative array of type "x3".
4121*/
4122typedef struct s_x3node {
4123  struct state *data;                  /* The data */
4124  struct config *key;                   /* The key */
4125  struct s_x3node *next;   /* Next entry with the same hash */
4126  struct s_x3node **from;  /* Previous link */
4127} x3node;
4128
4129/* There is only one instance of the array, which is the following */
4130static struct s_x3 *x3a;
4131
4132/* Allocate a new associative array */
4133void State_init(){
4134  if( x3a ) return;
4135  x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
4136  if( x3a ){
4137    x3a->size = 128;
4138    x3a->count = 0;
4139    x3a->tbl = (x3node*)malloc(
4140      (sizeof(x3node) + sizeof(x3node*))*128 );
4141    if( x3a->tbl==0 ){
4142      free(x3a);
4143      x3a = 0;
4144    }else{
4145      int i;
4146      x3a->ht = (x3node**)&(x3a->tbl[128]);
4147      for(i=0; i<128; i++) x3a->ht[i] = 0;
4148    }
4149  }
4150}
4151/* Insert a new record into the array.  Return TRUE if successful.
4152** Prior data with the same key is NOT overwritten */
4153int State_insert(data,key)
4154struct state *data;
4155struct config *key;
4156{
4157  x3node *np;
4158  int h;
4159  int ph;
4160
4161  if( x3a==0 ) return 0;
4162  ph = statehash(key);
4163  h = ph & (x3a->size-1);
4164  np = x3a->ht[h];
4165  while( np ){
4166    if( statecmp(np->key,key)==0 ){
4167      /* An existing entry with the same key is found. */
4168      /* Fail because overwrite is not allows. */
4169      return 0;
4170    }
4171    np = np->next;
4172  }
4173  if( x3a->count>=x3a->size ){
4174    /* Need to make the hash table bigger */
4175    int i,size;
4176    struct s_x3 array;
4177    array.size = size = x3a->size*2;
4178    array.count = x3a->count;
4179    array.tbl = (x3node*)malloc(
4180      (sizeof(x3node) + sizeof(x3node*))*size );
4181    if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
4182    array.ht = (x3node**)&(array.tbl[size]);
4183    for(i=0; i<size; i++) array.ht[i] = 0;
4184    for(i=0; i<x3a->count; i++){
4185      x3node *oldnp, *newnp;
4186      oldnp = &(x3a->tbl[i]);
4187      h = statehash(oldnp->key) & (size-1);
4188      newnp = &(array.tbl[i]);
4189      if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4190      newnp->next = array.ht[h];
4191      newnp->key = oldnp->key;
4192      newnp->data = oldnp->data;
4193      newnp->from = &(array.ht[h]);
4194      array.ht[h] = newnp;
4195    }
4196    free(x3a->tbl);
4197    *x3a = array;
4198  }
4199  /* Insert the new data */
4200  h = ph & (x3a->size-1);
4201  np = &(x3a->tbl[x3a->count++]);
4202  np->key = key;
4203  np->data = data;
4204  if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
4205  np->next = x3a->ht[h];
4206  x3a->ht[h] = np;
4207  np->from = &(x3a->ht[h]);
4208  return 1;
4209}
4210
4211/* Return a pointer to data assigned to the given key.  Return NULL
4212** if no such key. */
4213struct state *State_find(key)
4214struct config *key;
4215{
4216  int h;
4217  x3node *np;
4218
4219  if( x3a==0 ) return 0;
4220  h = statehash(key) & (x3a->size-1);
4221  np = x3a->ht[h];
4222  while( np ){
4223    if( statecmp(np->key,key)==0 ) break;
4224    np = np->next;
4225  }
4226  return np ? np->data : 0;
4227}
4228
4229/* Return an array of pointers to all data in the table.
4230** The array is obtained from malloc.  Return NULL if memory allocation
4231** problems, or if the array is empty. */
4232struct state **State_arrayof()
4233{
4234  struct state **array;
4235  int i,size;
4236  if( x3a==0 ) return 0;
4237  size = x3a->count;
4238  array = (struct state **)malloc( sizeof(struct state *)*size );
4239  if( array ){
4240    for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
4241  }
4242  return array;
4243}
4244
4245/* Hash a configuration */
4246PRIVATE int confighash(a)
4247struct config *a;
4248{
4249  int h=0;
4250  h = h*571 + a->rp->index*37 + a->dot;
4251  return h;
4252}
4253
4254/* There is one instance of the following structure for each
4255** associative array of type "x4".
4256*/
4257struct s_x4 {
4258  int size;               /* The number of available slots. */
4259                          /*   Must be a power of 2 greater than or */
4260                          /*   equal to 1 */
4261  int count;              /* Number of currently slots filled */
4262  struct s_x4node *tbl;  /* The data stored here */
4263  struct s_x4node **ht;  /* Hash table for lookups */
4264};
4265
4266/* There is one instance of this structure for every data element
4267** in an associative array of type "x4".
4268*/
4269typedef struct s_x4node {
4270  struct config *data;                  /* The data */
4271  struct s_x4node *next;   /* Next entry with the same hash */
4272  struct s_x4node **from;  /* Previous link */
4273} x4node;
4274
4275/* There is only one instance of the array, which is the following */
4276static struct s_x4 *x4a;
4277
4278/* Allocate a new associative array */
4279void Configtable_init(){
4280  if( x4a ) return;
4281  x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
4282  if( x4a ){
4283    x4a->size = 64;
4284    x4a->count = 0;
4285    x4a->tbl = (x4node*)malloc(
4286      (sizeof(x4node) + sizeof(x4node*))*64 );
4287    if( x4a->tbl==0 ){
4288      free(x4a);
4289      x4a = 0;
4290    }else{
4291      int i;
4292      x4a->ht = (x4node**)&(x4a->tbl[64]);
4293      for(i=0; i<64; i++) x4a->ht[i] = 0;
4294    }
4295  }
4296}
4297/* Insert a new record into the array.  Return TRUE if successful.
4298** Prior data with the same key is NOT overwritten */
4299int Configtable_insert(data)
4300struct config *data;
4301{
4302  x4node *np;
4303  int h;
4304  int ph;
4305
4306  if( x4a==0 ) return 0;
4307  ph = confighash(data);
4308  h = ph & (x4a->size-1);
4309  np = x4a->ht[h];
4310  while( np ){
4311    if( Configcmp(np->data,data)==0 ){
4312      /* An existing entry with the same key is found. */
4313      /* Fail because overwrite is not allows. */
4314      return 0;
4315    }
4316    np = np->next;
4317  }
4318  if( x4a->count>=x4a->size ){
4319    /* Need to make the hash table bigger */
4320    int i,size;
4321    struct s_x4 array;
4322    array.size = size = x4a->size*2;
4323    array.count = x4a->count;
4324    array.tbl = (x4node*)malloc(
4325      (sizeof(x4node) + sizeof(x4node*))*size );
4326    if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
4327    array.ht = (x4node**)&(array.tbl[size]);
4328    for(i=0; i<size; i++) array.ht[i] = 0;
4329    for(i=0; i<x4a->count; i++){
4330      x4node *oldnp, *newnp;
4331      oldnp = &(x4a->tbl[i]);
4332      h = confighash(oldnp->data) & (size-1);
4333      newnp = &(array.tbl[i]);
4334      if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4335      newnp->next = array.ht[h];
4336      newnp->data = oldnp->data;
4337      newnp->from = &(array.ht[h]);
4338      array.ht[h] = newnp;
4339    }
4340    free(x4a->tbl);
4341    *x4a = array;
4342  }
4343  /* Insert the new data */
4344  h = ph & (x4a->size-1);
4345  np = &(x4a->tbl[x4a->count++]);
4346  np->data = data;
4347  if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
4348  np->next = x4a->ht[h];
4349  x4a->ht[h] = np;
4350  np->from = &(x4a->ht[h]);
4351  return 1;
4352}
4353
4354/* Return a pointer to data assigned to the given key.  Return NULL
4355** if no such key. */
4356struct config *Configtable_find(key)
4357struct config *key;
4358{
4359  int h;
4360  x4node *np;
4361
4362  if( x4a==0 ) return 0;
4363  h = confighash(key) & (x4a->size-1);
4364  np = x4a->ht[h];
4365  while( np ){
4366    if( Configcmp(np->data,key)==0 ) break;
4367    np = np->next;
4368  }
4369  return np ? np->data : 0;
4370}
4371
4372/* Remove all data from the table.  Pass each data to the function "f"
4373** as it is removed.  ("f" may be null to avoid this step.) */
4374void Configtable_clear(f)
4375int(*f)(/* struct config * */);
4376{
4377  int i;
4378  if( x4a==0 || x4a->count==0 ) return;
4379  if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
4380  for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
4381  x4a->count = 0;
4382  return;
4383}
4384