xref: /illumos-gate/usr/src/lib/libsqlite/src/date.c (revision 1da57d55)
1 /*
2 ** 2003 October 31
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
14 **
15 ** There is only one exported symbol in this file - the function
16 ** sqliteRegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
18 **
19 ** $Id: date.c,v 1.16.2.2 2004/07/20 00:40:01 drh Exp $
20 **
21 ** NOTES:
22 **
23 ** SQLite processes all times and dates as Julian Day numbers.  The
24 ** dates and times are stored as the number of days since noon
25 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
26 ** calendar system.
27 **
28 ** 1970-01-01 00:00:00 is JD 2440587.5
29 ** 2000-01-01 00:00:00 is JD 2451544.5
30 **
31 ** This implemention requires years to be expressed as a 4-digit number
32 ** which means that only dates between 0000-01-01 and 9999-12-31 can
33 ** be represented, even though julian day numbers allow a much wider
34 ** range of dates.
35 **
36 ** The Gregorian calendar system is used for all dates and times,
37 ** even those that predate the Gregorian calendar.  Historians usually
38 ** use the Julian calendar for dates prior to 1582-10-15 and for some
39 ** dates afterwards, depending on locale.  Beware of this difference.
40 **
41 ** The conversion algorithms are implemented based on descriptions
42 ** in the following text:
43 **
44 **      Jean Meeus
45 **      Astronomical Algorithms, 2nd Edition, 1998
46 **      ISBM 0-943396-61-1
47 **      Willmann-Bell, Inc
48 **      Richmond, Virginia (USA)
49 */
50 #include "os.h"
51 #include "sqliteInt.h"
52 #include <ctype.h>
53 #include <stdlib.h>
54 #include <assert.h>
55 #include <time.h>
56 
57 #ifndef SQLITE_OMIT_DATETIME_FUNCS
58 
59 /*
60 ** A structure for holding a single date and time.
61 */
62 typedef struct DateTime DateTime;
63 struct DateTime {
64   double rJD;      /* The julian day number */
65   int Y, M, D;     /* Year, month, and day */
66   int h, m;        /* Hour and minutes */
67   int tz;          /* Timezone offset in minutes */
68   double s;        /* Seconds */
69   char validYMD;   /* True if Y,M,D are valid */
70   char validHMS;   /* True if h,m,s are valid */
71   char validJD;    /* True if rJD is valid */
72   char validTZ;    /* True if tz is valid */
73 };
74 
75 
76 /*
77 ** Convert zDate into one or more integers.  Additional arguments
78 ** come in groups of 5 as follows:
79 **
80 **       N       number of digits in the integer
81 **       min     minimum allowed value of the integer
82 **       max     maximum allowed value of the integer
83 **       nextC   first character after the integer
84 **       pVal    where to write the integers value.
85 **
86 ** Conversions continue until one with nextC==0 is encountered.
87 ** The function returns the number of successful conversions.
88 */
getDigits(const char * zDate,...)89 static int getDigits(const char *zDate, ...){
90   va_list ap;
91   int val;
92   int N;
93   int min;
94   int max;
95   int nextC;
96   int *pVal;
97   int cnt = 0;
98   va_start(ap, zDate);
99   do{
100     N = va_arg(ap, int);
101     min = va_arg(ap, int);
102     max = va_arg(ap, int);
103     nextC = va_arg(ap, int);
104     pVal = va_arg(ap, int*);
105     val = 0;
106     while( N-- ){
107       if( !isdigit(*zDate) ){
108         return cnt;
109       }
110       val = val*10 + *zDate - '0';
111       zDate++;
112     }
113     if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
114       return cnt;
115     }
116     *pVal = val;
117     zDate++;
118     cnt++;
119   }while( nextC );
120   return cnt;
121 }
122 
123 /*
124 ** Read text from z[] and convert into a floating point number.  Return
125 ** the number of digits converted.
126 */
getValue(const char * z,double * pR)127 static int getValue(const char *z, double *pR){
128   const char *zEnd;
129   *pR = sqliteAtoF(z, &zEnd);
130   return zEnd - z;
131 }
132 
133 /*
134 ** Parse a timezone extension on the end of a date-time.
135 ** The extension is of the form:
136 **
137 **        (+/-)HH:MM
138 **
139 ** If the parse is successful, write the number of minutes
140 ** of change in *pnMin and return 0.  If a parser error occurs,
141 ** return 0.
142 **
143 ** A missing specifier is not considered an error.
144 */
parseTimezone(const char * zDate,DateTime * p)145 static int parseTimezone(const char *zDate, DateTime *p){
146   int sgn = 0;
147   int nHr, nMn;
148   while( isspace(*zDate) ){ zDate++; }
149   p->tz = 0;
150   if( *zDate=='-' ){
151     sgn = -1;
152   }else if( *zDate=='+' ){
153     sgn = +1;
154   }else{
155     return *zDate!=0;
156   }
157   zDate++;
158   if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
159     return 1;
160   }
161   zDate += 5;
162   p->tz = sgn*(nMn + nHr*60);
163   while( isspace(*zDate) ){ zDate++; }
164   return *zDate!=0;
165 }
166 
167 /*
168 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
169 ** The HH, MM, and SS must each be exactly 2 digits.  The
170 ** fractional seconds FFFF can be one or more digits.
171 **
172 ** Return 1 if there is a parsing error and 0 on success.
173 */
parseHhMmSs(const char * zDate,DateTime * p)174 static int parseHhMmSs(const char *zDate, DateTime *p){
175   int h, m, s;
176   double ms = 0.0;
177   if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
178     return 1;
179   }
180   zDate += 5;
181   if( *zDate==':' ){
182     zDate++;
183     if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
184       return 1;
185     }
186     zDate += 2;
187     if( *zDate=='.' && isdigit(zDate[1]) ){
188       double rScale = 1.0;
189       zDate++;
190       while( isdigit(*zDate) ){
191         ms = ms*10.0 + *zDate - '0';
192         rScale *= 10.0;
193         zDate++;
194       }
195       ms /= rScale;
196     }
197   }else{
198     s = 0;
199   }
200   p->validJD = 0;
201   p->validHMS = 1;
202   p->h = h;
203   p->m = m;
204   p->s = s + ms;
205   if( parseTimezone(zDate, p) ) return 1;
206   p->validTZ = p->tz!=0;
207   return 0;
208 }
209 
210 /*
211 ** Convert from YYYY-MM-DD HH:MM:SS to julian day.  We always assume
212 ** that the YYYY-MM-DD is according to the Gregorian calendar.
213 **
214 ** Reference:  Meeus page 61
215 */
computeJD(DateTime * p)216 static void computeJD(DateTime *p){
217   int Y, M, D, A, B, X1, X2;
218 
219   if( p->validJD ) return;
220   if( p->validYMD ){
221     Y = p->Y;
222     M = p->M;
223     D = p->D;
224   }else{
225     Y = 2000;  /* If no YMD specified, assume 2000-Jan-01 */
226     M = 1;
227     D = 1;
228   }
229   if( M<=2 ){
230     Y--;
231     M += 12;
232   }
233   A = Y/100;
234   B = 2 - A + (A/4);
235   X1 = 365.25*(Y+4716);
236   X2 = 30.6001*(M+1);
237   p->rJD = X1 + X2 + D + B - 1524.5;
238   p->validJD = 1;
239   p->validYMD = 0;
240   if( p->validHMS ){
241     p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
242     if( p->validTZ ){
243       p->rJD += p->tz*60/86400.0;
244       p->validHMS = 0;
245       p->validTZ = 0;
246     }
247   }
248 }
249 
250 /*
251 ** Parse dates of the form
252 **
253 **     YYYY-MM-DD HH:MM:SS.FFF
254 **     YYYY-MM-DD HH:MM:SS
255 **     YYYY-MM-DD HH:MM
256 **     YYYY-MM-DD
257 **
258 ** Write the result into the DateTime structure and return 0
259 ** on success and 1 if the input string is not a well-formed
260 ** date.
261 */
parseYyyyMmDd(const char * zDate,DateTime * p)262 static int parseYyyyMmDd(const char *zDate, DateTime *p){
263   int Y, M, D, neg;
264 
265   if( zDate[0]=='-' ){
266     zDate++;
267     neg = 1;
268   }else{
269     neg = 0;
270   }
271   if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
272     return 1;
273   }
274   zDate += 10;
275   while( isspace(*zDate) ){ zDate++; }
276   if( parseHhMmSs(zDate, p)==0 ){
277     /* We got the time */
278   }else if( *zDate==0 ){
279     p->validHMS = 0;
280   }else{
281     return 1;
282   }
283   p->validJD = 0;
284   p->validYMD = 1;
285   p->Y = neg ? -Y : Y;
286   p->M = M;
287   p->D = D;
288   if( p->validTZ ){
289     computeJD(p);
290   }
291   return 0;
292 }
293 
294 /*
295 ** Attempt to parse the given string into a Julian Day Number.  Return
296 ** the number of errors.
297 **
298 ** The following are acceptable forms for the input string:
299 **
300 **      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
301 **      DDDD.DD
302 **      now
303 **
304 ** In the first form, the +/-HH:MM is always optional.  The fractional
305 ** seconds extension (the ".FFF") is optional.  The seconds portion
306 ** (":SS.FFF") is option.  The year and date can be omitted as long
307 ** as there is a time string.  The time string can be omitted as long
308 ** as there is a year and date.
309 */
parseDateOrTime(const char * zDate,DateTime * p)310 static int parseDateOrTime(const char *zDate, DateTime *p){
311   memset(p, 0, sizeof(*p));
312   if( parseYyyyMmDd(zDate,p)==0 ){
313     return 0;
314   }else if( parseHhMmSs(zDate, p)==0 ){
315     return 0;
316   }else if( sqliteStrICmp(zDate,"now")==0){
317     double r;
318     if( sqliteOsCurrentTime(&r)==0 ){
319       p->rJD = r;
320       p->validJD = 1;
321       return 0;
322     }
323     return 1;
324   }else if( sqliteIsNumber(zDate) ){
325     p->rJD = sqliteAtoF(zDate, 0);
326     p->validJD = 1;
327     return 0;
328   }
329   return 1;
330 }
331 
332 /*
333 ** Compute the Year, Month, and Day from the julian day number.
334 */
computeYMD(DateTime * p)335 static void computeYMD(DateTime *p){
336   int Z, A, B, C, D, E, X1;
337   if( p->validYMD ) return;
338   if( !p->validJD ){
339     p->Y = 2000;
340     p->M = 1;
341     p->D = 1;
342   }else{
343     Z = p->rJD + 0.5;
344     A = (Z - 1867216.25)/36524.25;
345     A = Z + 1 + A - (A/4);
346     B = A + 1524;
347     C = (B - 122.1)/365.25;
348     D = 365.25*C;
349     E = (B-D)/30.6001;
350     X1 = 30.6001*E;
351     p->D = B - D - X1;
352     p->M = E<14 ? E-1 : E-13;
353     p->Y = p->M>2 ? C - 4716 : C - 4715;
354   }
355   p->validYMD = 1;
356 }
357 
358 /*
359 ** Compute the Hour, Minute, and Seconds from the julian day number.
360 */
computeHMS(DateTime * p)361 static void computeHMS(DateTime *p){
362   int Z, s;
363   if( p->validHMS ) return;
364   Z = p->rJD + 0.5;
365   s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
366   p->s = 0.001*s;
367   s = p->s;
368   p->s -= s;
369   p->h = s/3600;
370   s -= p->h*3600;
371   p->m = s/60;
372   p->s += s - p->m*60;
373   p->validHMS = 1;
374 }
375 
376 /*
377 ** Compute both YMD and HMS
378 */
computeYMD_HMS(DateTime * p)379 static void computeYMD_HMS(DateTime *p){
380   computeYMD(p);
381   computeHMS(p);
382 }
383 
384 /*
385 ** Clear the YMD and HMS and the TZ
386 */
clearYMD_HMS_TZ(DateTime * p)387 static void clearYMD_HMS_TZ(DateTime *p){
388   p->validYMD = 0;
389   p->validHMS = 0;
390   p->validTZ = 0;
391 }
392 
393 /*
394 ** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
395 ** for the time value p where p is in UTC.
396 */
localtimeOffset(DateTime * p)397 static double localtimeOffset(DateTime *p){
398   DateTime x, y;
399   time_t t;
400   struct tm *pTm;
401   x = *p;
402   computeYMD_HMS(&x);
403   if( x.Y<1971 || x.Y>=2038 ){
404     x.Y = 2000;
405     x.M = 1;
406     x.D = 1;
407     x.h = 0;
408     x.m = 0;
409     x.s = 0.0;
410   } else {
411     int s = x.s + 0.5;
412     x.s = s;
413   }
414   x.tz = 0;
415   x.validJD = 0;
416   computeJD(&x);
417   t = (x.rJD-2440587.5)*86400.0 + 0.5;
418   sqliteOsEnterMutex();
419   pTm = localtime(&t);
420   y.Y = pTm->tm_year + 1900;
421   y.M = pTm->tm_mon + 1;
422   y.D = pTm->tm_mday;
423   y.h = pTm->tm_hour;
424   y.m = pTm->tm_min;
425   y.s = pTm->tm_sec;
426   sqliteOsLeaveMutex();
427   y.validYMD = 1;
428   y.validHMS = 1;
429   y.validJD = 0;
430   y.validTZ = 0;
431   computeJD(&y);
432   return y.rJD - x.rJD;
433 }
434 
435 /*
436 ** Process a modifier to a date-time stamp.  The modifiers are
437 ** as follows:
438 **
439 **     NNN days
440 **     NNN hours
441 **     NNN minutes
442 **     NNN.NNNN seconds
443 **     NNN months
444 **     NNN years
445 **     start of month
446 **     start of year
447 **     start of week
448 **     start of day
449 **     weekday N
450 **     unixepoch
451 **     localtime
452 **     utc
453 **
454 ** Return 0 on success and 1 if there is any kind of error.
455 */
parseModifier(const char * zMod,DateTime * p)456 static int parseModifier(const char *zMod, DateTime *p){
457   int rc = 1;
458   int n;
459   double r;
460   char *z, zBuf[30];
461   z = zBuf;
462   for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
463     z[n] = tolower(zMod[n]);
464   }
465   z[n] = 0;
466   switch( z[0] ){
467     case 'l': {
468       /*    localtime
469       **
470       ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
471       ** show local time.
472       */
473       if( strcmp(z, "localtime")==0 ){
474         computeJD(p);
475         p->rJD += localtimeOffset(p);
476         clearYMD_HMS_TZ(p);
477         rc = 0;
478       }
479       break;
480     }
481     case 'u': {
482       /*
483       **    unixepoch
484       **
485       ** Treat the current value of p->rJD as the number of
486       ** seconds since 1970.  Convert to a real julian day number.
487       */
488       if( strcmp(z, "unixepoch")==0 && p->validJD ){
489         p->rJD = p->rJD/86400.0 + 2440587.5;
490         clearYMD_HMS_TZ(p);
491         rc = 0;
492       }else if( strcmp(z, "utc")==0 ){
493         double c1;
494         computeJD(p);
495         c1 = localtimeOffset(p);
496         p->rJD -= c1;
497         clearYMD_HMS_TZ(p);
498         p->rJD += c1 - localtimeOffset(p);
499         rc = 0;
500       }
501       break;
502     }
503     case 'w': {
504       /*
505       **    weekday N
506       **
507       ** Move the date to the same time on the next occurrance of
508       ** weekday N where 0==Sunday, 1==Monday, and so forth.  If the
509       ** date is already on the appropriate weekday, this is a no-op.
510       */
511       if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
512                  && (n=r)==r && n>=0 && r<7 ){
513         int Z;
514         computeYMD_HMS(p);
515         p->validTZ = 0;
516         p->validJD = 0;
517         computeJD(p);
518         Z = p->rJD + 1.5;
519         Z %= 7;
520         if( Z>n ) Z -= 7;
521         p->rJD += n - Z;
522         clearYMD_HMS_TZ(p);
523         rc = 0;
524       }
525       break;
526     }
527     case 's': {
528       /*
529       **    start of TTTTT
530       **
531       ** Move the date backwards to the beginning of the current day,
532       ** or month or year.
533       */
534       if( strncmp(z, "start of ", 9)!=0 ) break;
535       z += 9;
536       computeYMD(p);
537       p->validHMS = 1;
538       p->h = p->m = 0;
539       p->s = 0.0;
540       p->validTZ = 0;
541       p->validJD = 0;
542       if( strcmp(z,"month")==0 ){
543         p->D = 1;
544         rc = 0;
545       }else if( strcmp(z,"year")==0 ){
546         computeYMD(p);
547         p->M = 1;
548         p->D = 1;
549         rc = 0;
550       }else if( strcmp(z,"day")==0 ){
551         rc = 0;
552       }
553       break;
554     }
555     case '+':
556     case '-':
557     case '0':
558     case '1':
559     case '2':
560     case '3':
561     case '4':
562     case '5':
563     case '6':
564     case '7':
565     case '8':
566     case '9': {
567       n = getValue(z, &r);
568       if( n<=0 ) break;
569       if( z[n]==':' ){
570         /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
571         ** specified number of hours, minutes, seconds, and fractional seconds
572         ** to the time.  The ".FFF" may be omitted.  The ":SS.FFF" may be
573         ** omitted.
574         */
575         const char *z2 = z;
576         DateTime tx;
577         int day;
578         if( !isdigit(*z2) ) z2++;
579         memset(&tx, 0, sizeof(tx));
580         if( parseHhMmSs(z2, &tx) ) break;
581         computeJD(&tx);
582         tx.rJD -= 0.5;
583         day = (int)tx.rJD;
584         tx.rJD -= day;
585         if( z[0]=='-' ) tx.rJD = -tx.rJD;
586         computeJD(p);
587         clearYMD_HMS_TZ(p);
588        p->rJD += tx.rJD;
589         rc = 0;
590         break;
591       }
592       z += n;
593       while( isspace(z[0]) ) z++;
594       n = strlen(z);
595       if( n>10 || n<3 ) break;
596       if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
597       computeJD(p);
598       rc = 0;
599       if( n==3 && strcmp(z,"day")==0 ){
600         p->rJD += r;
601       }else if( n==4 && strcmp(z,"hour")==0 ){
602         p->rJD += r/24.0;
603       }else if( n==6 && strcmp(z,"minute")==0 ){
604         p->rJD += r/(24.0*60.0);
605       }else if( n==6 && strcmp(z,"second")==0 ){
606         p->rJD += r/(24.0*60.0*60.0);
607       }else if( n==5 && strcmp(z,"month")==0 ){
608         int x, y;
609         computeYMD_HMS(p);
610         p->M += r;
611         x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
612         p->Y += x;
613         p->M -= x*12;
614         p->validJD = 0;
615         computeJD(p);
616         y = r;
617         if( y!=r ){
618           p->rJD += (r - y)*30.0;
619         }
620       }else if( n==4 && strcmp(z,"year")==0 ){
621         computeYMD_HMS(p);
622         p->Y += r;
623         p->validJD = 0;
624         computeJD(p);
625       }else{
626         rc = 1;
627       }
628       clearYMD_HMS_TZ(p);
629       break;
630     }
631     default: {
632       break;
633     }
634   }
635   return rc;
636 }
637 
638 /*
639 ** Process time function arguments.  argv[0] is a date-time stamp.
640 ** argv[1] and following are modifiers.  Parse them all and write
641 ** the resulting time into the DateTime structure p.  Return 0
642 ** on success and 1 if there are any errors.
643 */
isDate(int argc,const char ** argv,DateTime * p)644 static int isDate(int argc, const char **argv, DateTime *p){
645   int i;
646   if( argc==0 ) return 1;
647   if( argv[0]==0 || parseDateOrTime(argv[0], p) ) return 1;
648   for(i=1; i<argc; i++){
649     if( argv[i]==0 || parseModifier(argv[i], p) ) return 1;
650   }
651   return 0;
652 }
653 
654 
655 /*
656 ** The following routines implement the various date and time functions
657 ** of SQLite.
658 */
659 
660 /*
661 **    julianday( TIMESTRING, MOD, MOD, ...)
662 **
663 ** Return the julian day number of the date specified in the arguments
664 */
juliandayFunc(sqlite_func * context,int argc,const char ** argv)665 static void juliandayFunc(sqlite_func *context, int argc, const char **argv){
666   DateTime x;
667   if( isDate(argc, argv, &x)==0 ){
668     computeJD(&x);
669     sqlite_set_result_double(context, x.rJD);
670   }
671 }
672 
673 /*
674 **    datetime( TIMESTRING, MOD, MOD, ...)
675 **
676 ** Return YYYY-MM-DD HH:MM:SS
677 */
datetimeFunc(sqlite_func * context,int argc,const char ** argv)678 static void datetimeFunc(sqlite_func *context, int argc, const char **argv){
679   DateTime x;
680   if( isDate(argc, argv, &x)==0 ){
681     char zBuf[100];
682     computeYMD_HMS(&x);
683     sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m,
684            (int)(x.s));
685     sqlite_set_result_string(context, zBuf, -1);
686   }
687 }
688 
689 /*
690 **    time( TIMESTRING, MOD, MOD, ...)
691 **
692 ** Return HH:MM:SS
693 */
timeFunc(sqlite_func * context,int argc,const char ** argv)694 static void timeFunc(sqlite_func *context, int argc, const char **argv){
695   DateTime x;
696   if( isDate(argc, argv, &x)==0 ){
697     char zBuf[100];
698     computeHMS(&x);
699     sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
700     sqlite_set_result_string(context, zBuf, -1);
701   }
702 }
703 
704 /*
705 **    date( TIMESTRING, MOD, MOD, ...)
706 **
707 ** Return YYYY-MM-DD
708 */
dateFunc(sqlite_func * context,int argc,const char ** argv)709 static void dateFunc(sqlite_func *context, int argc, const char **argv){
710   DateTime x;
711   if( isDate(argc, argv, &x)==0 ){
712     char zBuf[100];
713     computeYMD(&x);
714     sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
715     sqlite_set_result_string(context, zBuf, -1);
716   }
717 }
718 
719 /*
720 **    strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
721 **
722 ** Return a string described by FORMAT.  Conversions as follows:
723 **
724 **   %d  day of month
725 **   %f  ** fractional seconds  SS.SSS
726 **   %H  hour 00-24
727 **   %j  day of year 000-366
728 **   %J  ** Julian day number
729 **   %m  month 01-12
730 **   %M  minute 00-59
731 **   %s  seconds since 1970-01-01
732 **   %S  seconds 00-59
733 **   %w  day of week 0-6  sunday==0
734 **   %W  week of year 00-53
735 **   %Y  year 0000-9999
736 **   %%  %
737 */
strftimeFunc(sqlite_func * context,int argc,const char ** argv)738 static void strftimeFunc(sqlite_func *context, int argc, const char **argv){
739   DateTime x;
740   int n, i, j;
741   char *z;
742   const char *zFmt = argv[0];
743   char zBuf[100];
744   if( argv[0]==0 || isDate(argc-1, argv+1, &x) ) return;
745   for(i=0, n=1; zFmt[i]; i++, n++){
746     if( zFmt[i]=='%' ){
747       switch( zFmt[i+1] ){
748         case 'd':
749         case 'H':
750         case 'm':
751         case 'M':
752         case 'S':
753         case 'W':
754           n++;
755           /* fall thru */
756         case 'w':
757         case '%':
758           break;
759         case 'f':
760           n += 8;
761           break;
762         case 'j':
763           n += 3;
764           break;
765         case 'Y':
766           n += 8;
767           break;
768         case 's':
769         case 'J':
770           n += 50;
771           break;
772         default:
773           return;  /* ERROR.  return a NULL */
774       }
775       i++;
776     }
777   }
778   if( n<sizeof(zBuf) ){
779     z = zBuf;
780   }else{
781     z = sqliteMalloc( n );
782     if( z==0 ) return;
783   }
784   computeJD(&x);
785   computeYMD_HMS(&x);
786   for(i=j=0; zFmt[i]; i++){
787     if( zFmt[i]!='%' ){
788       z[j++] = zFmt[i];
789     }else{
790       i++;
791       switch( zFmt[i] ){
792         case 'd':  sprintf(&z[j],"%02d",x.D); j+=2; break;
793         case 'f': {
794           int s = x.s;
795           int ms = (x.s - s)*1000.0;
796           sprintf(&z[j],"%02d.%03d",s,ms);
797           j += strlen(&z[j]);
798           break;
799         }
800         case 'H':  sprintf(&z[j],"%02d",x.h); j+=2; break;
801         case 'W': /* Fall thru */
802         case 'j': {
803           int n;             /* Number of days since 1st day of year */
804           DateTime y = x;
805           y.validJD = 0;
806           y.M = 1;
807           y.D = 1;
808           computeJD(&y);
809           n = x.rJD - y.rJD;
810           if( zFmt[i]=='W' ){
811             int wd;   /* 0=Monday, 1=Tuesday, ... 6=Sunday */
812             wd = ((int)(x.rJD+0.5)) % 7;
813             sprintf(&z[j],"%02d",(n+7-wd)/7);
814             j += 2;
815           }else{
816             sprintf(&z[j],"%03d",n+1);
817             j += 3;
818           }
819           break;
820         }
821         case 'J':  sprintf(&z[j],"%.16g",x.rJD); j+=strlen(&z[j]); break;
822         case 'm':  sprintf(&z[j],"%02d",x.M); j+=2; break;
823         case 'M':  sprintf(&z[j],"%02d",x.m); j+=2; break;
824         case 's': {
825           sprintf(&z[j],"%d",(int)((x.rJD-2440587.5)*86400.0 + 0.5));
826           j += strlen(&z[j]);
827           break;
828         }
829         case 'S':  sprintf(&z[j],"%02d",(int)(x.s+0.5)); j+=2; break;
830         case 'w':  z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
831         case 'Y':  sprintf(&z[j],"%04d",x.Y); j+=strlen(&z[j]); break;
832         case '%':  z[j++] = '%'; break;
833       }
834     }
835   }
836   z[j] = 0;
837   sqlite_set_result_string(context, z, -1);
838   if( z!=zBuf ){
839     sqliteFree(z);
840   }
841 }
842 
843 
844 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
845 
846 /*
847 ** This function registered all of the above C functions as SQL
848 ** functions.  This should be the only routine in this file with
849 ** external linkage.
850 */
sqliteRegisterDateTimeFunctions(sqlite * db)851 void sqliteRegisterDateTimeFunctions(sqlite *db){
852 #ifndef SQLITE_OMIT_DATETIME_FUNCS
853   static struct {
854      char *zName;
855      int nArg;
856      int dataType;
857      void (*xFunc)(sqlite_func*,int,const char**);
858   } aFuncs[] = {
859     { "julianday", -1, SQLITE_NUMERIC, juliandayFunc   },
860     { "date",      -1, SQLITE_TEXT,    dateFunc        },
861     { "time",      -1, SQLITE_TEXT,    timeFunc        },
862     { "datetime",  -1, SQLITE_TEXT,    datetimeFunc    },
863     { "strftime",  -1, SQLITE_TEXT,    strftimeFunc    },
864   };
865   int i;
866 
867   for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
868     sqlite_create_function(db, aFuncs[i].zName,
869            aFuncs[i].nArg, aFuncs[i].xFunc, 0);
870     if( aFuncs[i].xFunc ){
871       sqlite_function_type(db, aFuncs[i].zName, aFuncs[i].dataType);
872     }
873   }
874 #endif
875 }
876