xref: /illumos-gate/usr/src/lib/libproc/common/Psymtab.c (revision 5fccf8b44261688c0ead8d8d22fc89b66f9bfbf4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <assert.h>
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <stddef.h>
33 #include <unistd.h>
34 #include <ctype.h>
35 #include <fcntl.h>
36 #include <string.h>
37 #include <strings.h>
38 #include <memory.h>
39 #include <errno.h>
40 #include <dirent.h>
41 #include <signal.h>
42 #include <limits.h>
43 #include <libgen.h>
44 #include <zone.h>
45 #include <sys/types.h>
46 #include <sys/stat.h>
47 #include <sys/systeminfo.h>
48 #include <sys/sysmacros.h>
49 
50 #include "libproc.h"
51 #include "Pcontrol.h"
52 #include "Putil.h"
53 
54 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *);
55 static map_info_t *exec_map(struct ps_prochandle *);
56 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *);
57 static map_info_t *object_name_to_map(struct ps_prochandle *,
58 	Lmid_t, const char *);
59 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *);
60 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *,
61     uintptr_t);
62 #ifdef _LP64
63 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *,
64     uintptr_t);
65 #endif
66 
67 #define	DATA_TYPES	\
68 	((1 << STT_OBJECT) | (1 << STT_FUNC) | \
69 	(1 << STT_COMMON) | (1 << STT_TLS))
70 #define	IS_DATA_TYPE(tp)	(((1 << (tp)) & DATA_TYPES) != 0)
71 
72 #define	MA_RWX	(MA_READ | MA_WRITE | MA_EXEC)
73 
74 typedef enum {
75 	PRO_NATURAL,
76 	PRO_BYADDR,
77 	PRO_BYNAME
78 } pr_order_t;
79 
80 static int
81 addr_cmp(const void *aa, const void *bb)
82 {
83 	uintptr_t a = *((uintptr_t *)aa);
84 	uintptr_t b = *((uintptr_t *)bb);
85 
86 	if (a > b)
87 		return (1);
88 	if (a < b)
89 		return (-1);
90 	return (0);
91 }
92 
93 /*
94  * This function creates a list of addresses for a load object's sections.
95  * The list is in ascending address order and alternates start address
96  * then end address for each section we're interested in. The function
97  * returns a pointer to the list, which must be freed by the caller.
98  */
99 static uintptr_t *
100 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n)
101 {
102 	uintptr_t a, addr, *addrs, last = 0;
103 	uint_t i, naddrs = 0, unordered = 0;
104 
105 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
106 		Elf32_Ehdr ehdr;
107 		Elf32_Phdr phdr;
108 		uint_t phnum;
109 
110 		if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0)
111 			return (NULL);
112 
113 		addrs = malloc(sizeof (uintptr_t) * phnum * 2);
114 		a = ehdr_start + ehdr.e_phoff;
115 		for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
116 			if (Pread(P, &phdr, sizeof (phdr), a) !=
117 			    sizeof (phdr)) {
118 				free(addrs);
119 				return (NULL);
120 			}
121 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
122 				continue;
123 
124 			addr = phdr.p_vaddr;
125 			if (ehdr.e_type == ET_DYN)
126 				addr += ehdr_start;
127 			if (last > addr)
128 				unordered = 1;
129 			addrs[naddrs++] = addr;
130 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
131 		}
132 #ifdef _LP64
133 	} else {
134 		Elf64_Ehdr ehdr;
135 		Elf64_Phdr phdr;
136 		uint_t phnum;
137 
138 		if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0)
139 			return (NULL);
140 
141 		addrs = malloc(sizeof (uintptr_t) * phnum * 2);
142 		a = ehdr_start + ehdr.e_phoff;
143 		for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
144 			if (Pread(P, &phdr, sizeof (phdr), a) !=
145 			    sizeof (phdr)) {
146 				free(addrs);
147 				return (NULL);
148 			}
149 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
150 				continue;
151 
152 			addr = phdr.p_vaddr;
153 			if (ehdr.e_type == ET_DYN)
154 				addr += ehdr_start;
155 			if (last > addr)
156 				unordered = 1;
157 			addrs[naddrs++] = addr;
158 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
159 		}
160 #endif
161 	}
162 
163 	if (unordered)
164 		qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp);
165 
166 	*n = naddrs;
167 	return (addrs);
168 }
169 
170 /*
171  * Allocation function for a new file_info_t
172  */
173 static file_info_t *
174 file_info_new(struct ps_prochandle *P, map_info_t *mptr)
175 {
176 	file_info_t *fptr;
177 	map_info_t *mp;
178 	uintptr_t addr;
179 	uint_t i, j;
180 
181 	if ((fptr = calloc(1, sizeof (file_info_t))) == NULL)
182 		return (NULL);
183 
184 	list_link(fptr, &P->file_head);
185 	(void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname);
186 	mptr->map_file = fptr;
187 	fptr->file_ref = 1;
188 	fptr->file_fd = -1;
189 	P->num_files++;
190 
191 	/*
192 	 * To figure out which map_info_t instances correspond to the mappings
193 	 * for this load object we try to obtain the start and end address
194 	 * for each section of our in-memory ELF image. If successful, we
195 	 * walk down the list of addresses and the list of map_info_t
196 	 * instances in lock step to correctly find the mappings that
197 	 * correspond to this load object.
198 	 */
199 	if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr,
200 	    &fptr->file_nsaddrs)) == NULL)
201 		return (fptr);
202 
203 	i = j = 0;
204 	mp = P->mappings;
205 	while (j < P->map_count && i < fptr->file_nsaddrs) {
206 		addr = fptr->file_saddrs[i];
207 		if (addr >= mp->map_pmap.pr_vaddr &&
208 		    addr < mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size &&
209 		    mp->map_file == NULL) {
210 			mp->map_file = fptr;
211 			fptr->file_ref++;
212 		}
213 
214 		if (addr < mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size) {
215 			i++;
216 		} else {
217 			mp++;
218 			j++;
219 		}
220 	}
221 
222 	return (fptr);
223 }
224 
225 /*
226  * Deallocation function for a file_info_t
227  */
228 static void
229 file_info_free(struct ps_prochandle *P, file_info_t *fptr)
230 {
231 	if (--fptr->file_ref == 0) {
232 		list_unlink(fptr);
233 		if (fptr->file_symtab.sym_elf) {
234 			(void) elf_end(fptr->file_symtab.sym_elf);
235 			free(fptr->file_symtab.sym_elfmem);
236 		}
237 		if (fptr->file_symtab.sym_byname)
238 			free(fptr->file_symtab.sym_byname);
239 		if (fptr->file_symtab.sym_byaddr)
240 			free(fptr->file_symtab.sym_byaddr);
241 
242 		if (fptr->file_dynsym.sym_elf) {
243 			(void) elf_end(fptr->file_dynsym.sym_elf);
244 			free(fptr->file_dynsym.sym_elfmem);
245 		}
246 		if (fptr->file_dynsym.sym_byname)
247 			free(fptr->file_dynsym.sym_byname);
248 		if (fptr->file_dynsym.sym_byaddr)
249 			free(fptr->file_dynsym.sym_byaddr);
250 
251 		if (fptr->file_lo)
252 			free(fptr->file_lo);
253 		if (fptr->file_lname)
254 			free(fptr->file_lname);
255 		if (fptr->file_elf)
256 			(void) elf_end(fptr->file_elf);
257 		if (fptr->file_elfmem != NULL)
258 			free(fptr->file_elfmem);
259 		if (fptr->file_fd >= 0)
260 			(void) close(fptr->file_fd);
261 		if (fptr->file_ctfp) {
262 			ctf_close(fptr->file_ctfp);
263 			free(fptr->file_ctf_buf);
264 		}
265 		if (fptr->file_saddrs)
266 			free(fptr->file_saddrs);
267 		free(fptr);
268 		P->num_files--;
269 	}
270 }
271 
272 /*
273  * Deallocation function for a map_info_t
274  */
275 static void
276 map_info_free(struct ps_prochandle *P, map_info_t *mptr)
277 {
278 	file_info_t *fptr;
279 
280 	if ((fptr = mptr->map_file) != NULL) {
281 		if (fptr->file_map == mptr)
282 			fptr->file_map = NULL;
283 		file_info_free(P, fptr);
284 	}
285 	if (P->execname && mptr == P->map_exec) {
286 		free(P->execname);
287 		P->execname = NULL;
288 	}
289 	if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) {
290 		free(P->auxv);
291 		P->auxv = NULL;
292 		P->nauxv = 0;
293 	}
294 	if (mptr == P->map_exec)
295 		P->map_exec = NULL;
296 	if (mptr == P->map_ldso)
297 		P->map_ldso = NULL;
298 }
299 
300 /*
301  * Call-back function for librtld_db to iterate through all of its shared
302  * libraries.  We use this to get the load object names for the mappings.
303  */
304 static int
305 map_iter(const rd_loadobj_t *lop, void *cd)
306 {
307 	char buf[PATH_MAX];
308 	struct ps_prochandle *P = cd;
309 	map_info_t *mptr;
310 	file_info_t *fptr;
311 
312 	dprintf("encountered rd object at %p\n", (void *)lop->rl_base);
313 
314 	if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) {
315 		dprintf("map_iter: base address doesn't match any mapping\n");
316 		return (1); /* Base address does not match any mapping */
317 	}
318 
319 	if ((fptr = mptr->map_file) == NULL &&
320 	    (fptr = file_info_new(P, mptr)) == NULL) {
321 		dprintf("map_iter: failed to allocate a new file_info_t\n");
322 		return (1); /* Failed to allocate a new file_info_t */
323 	}
324 
325 	if ((fptr->file_lo == NULL) &&
326 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
327 		dprintf("map_iter: failed to allocate rd_loadobj_t\n");
328 		file_info_free(P, fptr);
329 		return (1); /* Failed to allocate rd_loadobj_t */
330 	}
331 
332 	fptr->file_map = mptr;
333 	*fptr->file_lo = *lop;
334 
335 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
336 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
337 
338 	if (fptr->file_lname) {
339 		free(fptr->file_lname);
340 		fptr->file_lname = NULL;
341 	}
342 
343 	if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) {
344 		if ((fptr->file_lname = strdup(buf)) != NULL)
345 			fptr->file_lbase = basename(fptr->file_lname);
346 	} else {
347 		dprintf("map_iter: failed to read string at %p\n",
348 		    (void *)lop->rl_nameaddr);
349 	}
350 
351 	dprintf("loaded rd object %s lmid %lx\n",
352 	    fptr->file_lname ? fptr->file_lname : "<NULL>", lop->rl_lmident);
353 	return (1);
354 }
355 
356 static void
357 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname)
358 {
359 	file_info_t *fptr;
360 
361 	if ((fptr = mptr->map_file) == NULL &&
362 	    (fptr = file_info_new(P, mptr)) == NULL)
363 		return; /* Failed to allocate a new file_info_t */
364 
365 	fptr->file_map = mptr;
366 
367 	if ((fptr->file_lo == NULL) &&
368 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
369 		file_info_free(P, fptr);
370 		return; /* Failed to allocate rd_loadobj_t */
371 	}
372 
373 	(void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t));
374 	fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr;
375 	fptr->file_lo->rl_bend =
376 	    mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
377 
378 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
379 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
380 
381 	if (fptr->file_lname == NULL &&
382 	    (fptr->file_lname = strdup(lname)) != NULL)
383 		fptr->file_lbase = basename(fptr->file_lname);
384 }
385 
386 static void
387 load_static_maps(struct ps_prochandle *P)
388 {
389 	map_info_t *mptr;
390 
391 	/*
392 	 * Construct the map for the a.out.
393 	 */
394 	if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL)
395 		map_set(P, mptr, "a.out");
396 
397 	/*
398 	 * If the dynamic linker exists for this process,
399 	 * construct the map for it.
400 	 */
401 	if (Pgetauxval(P, AT_BASE) != -1L &&
402 	    (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL)
403 		map_set(P, mptr, "ld.so.1");
404 }
405 
406 /*
407  * Go through all the address space mappings, validating or updating
408  * the information already gathered, or gathering new information.
409  *
410  * This function is only called when we suspect that the mappings have changed
411  * because this is the first time we're calling it or because of rtld activity.
412  */
413 void
414 Pupdate_maps(struct ps_prochandle *P)
415 {
416 	char mapfile[PATH_MAX];
417 	int mapfd;
418 	struct stat statb;
419 	prmap_t *Pmap = NULL;
420 	prmap_t *pmap;
421 	ssize_t nmap;
422 	int i;
423 	uint_t oldmapcount;
424 	map_info_t *newmap, *newp;
425 	map_info_t *mptr;
426 
427 	if (P->info_valid || P->state == PS_UNDEAD)
428 		return;
429 
430 	Preadauxvec(P);
431 
432 	(void) snprintf(mapfile, sizeof (mapfile), "%s/%d/map",
433 	    procfs_path, (int)P->pid);
434 	if ((mapfd = open(mapfile, O_RDONLY)) < 0 ||
435 	    fstat(mapfd, &statb) != 0 ||
436 	    statb.st_size < sizeof (prmap_t) ||
437 	    (Pmap = malloc(statb.st_size)) == NULL ||
438 	    (nmap = pread(mapfd, Pmap, statb.st_size, 0L)) <= 0 ||
439 	    (nmap /= sizeof (prmap_t)) == 0) {
440 		if (Pmap != NULL)
441 			free(Pmap);
442 		if (mapfd >= 0)
443 			(void) close(mapfd);
444 		Preset_maps(P);	/* utter failure; destroy tables */
445 		return;
446 	}
447 	(void) close(mapfd);
448 
449 	if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL)
450 		return;
451 
452 	/*
453 	 * We try to merge any file information we may have for existing
454 	 * mappings, to avoid having to rebuild the file info.
455 	 */
456 	mptr = P->mappings;
457 	pmap = Pmap;
458 	newp = newmap;
459 	oldmapcount = P->map_count;
460 	for (i = 0; i < nmap; i++, pmap++, newp++) {
461 
462 		if (oldmapcount == 0) {
463 			/*
464 			 * We've exhausted all the old mappings.  Every new
465 			 * mapping should be added.
466 			 */
467 			newp->map_pmap = *pmap;
468 
469 		} else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr &&
470 		    pmap->pr_size == mptr->map_pmap.pr_size &&
471 		    pmap->pr_offset == mptr->map_pmap.pr_offset &&
472 		    (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) ==
473 		    (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) &&
474 		    pmap->pr_pagesize == mptr->map_pmap.pr_pagesize &&
475 		    pmap->pr_shmid == mptr->map_pmap.pr_shmid &&
476 		    strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) {
477 
478 			/*
479 			 * This mapping matches exactly.  Copy over the old
480 			 * mapping, taking care to get the latest flags.
481 			 * Make sure the associated file_info_t is updated
482 			 * appropriately.
483 			 */
484 			*newp = *mptr;
485 			if (P->map_exec == mptr)
486 				P->map_exec = newp;
487 			if (P->map_ldso == mptr)
488 				P->map_ldso = newp;
489 			newp->map_pmap.pr_mflags = pmap->pr_mflags;
490 			if (mptr->map_file != NULL &&
491 			    mptr->map_file->file_map == mptr)
492 				mptr->map_file->file_map = newp;
493 			oldmapcount--;
494 			mptr++;
495 
496 		} else if (pmap->pr_vaddr + pmap->pr_size >
497 		    mptr->map_pmap.pr_vaddr) {
498 
499 			/*
500 			 * The old mapping doesn't exist any more, remove it
501 			 * from the list.
502 			 */
503 			map_info_free(P, mptr);
504 			oldmapcount--;
505 			i--;
506 			newp--;
507 			pmap--;
508 			mptr++;
509 
510 		} else {
511 
512 			/*
513 			 * This is a new mapping, add it directly.
514 			 */
515 			newp->map_pmap = *pmap;
516 		}
517 	}
518 
519 	/*
520 	 * Free any old maps
521 	 */
522 	while (oldmapcount) {
523 		map_info_free(P, mptr);
524 		oldmapcount--;
525 		mptr++;
526 	}
527 
528 	free(Pmap);
529 	if (P->mappings != NULL)
530 		free(P->mappings);
531 	P->mappings = newmap;
532 	P->map_count = P->map_alloc = nmap;
533 	P->info_valid = 1;
534 
535 	/*
536 	 * Consult librtld_db to get the load object
537 	 * names for all of the shared libraries.
538 	 */
539 	if (P->rap != NULL)
540 		(void) rd_loadobj_iter(P->rap, map_iter, P);
541 }
542 
543 /*
544  * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then
545  * forcibly cache all of the symbol tables associated with all object files.
546  */
547 void
548 Pupdate_syms(struct ps_prochandle *P)
549 {
550 	file_info_t *fptr = list_next(&P->file_head);
551 	int i;
552 
553 	Pupdate_maps(P);
554 
555 	for (i = 0; i < P->num_files; i++, fptr = list_next(fptr)) {
556 		Pbuild_file_symtab(P, fptr);
557 		(void) Pbuild_file_ctf(P, fptr);
558 	}
559 }
560 
561 /*
562  * Return the librtld_db agent handle for the victim process.
563  * The handle will become invalid at the next successful exec() and the
564  * client (caller of proc_rd_agent()) must not use it beyond that point.
565  * If the process is already dead, we've already tried our best to
566  * create the agent during core file initialization.
567  */
568 rd_agent_t *
569 Prd_agent(struct ps_prochandle *P)
570 {
571 	if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) {
572 		Pupdate_maps(P);
573 		if (P->num_files == 0)
574 			load_static_maps(P);
575 		rd_log(_libproc_debug);
576 		if ((P->rap = rd_new(P)) != NULL)
577 			(void) rd_loadobj_iter(P->rap, map_iter, P);
578 	}
579 	return (P->rap);
580 }
581 
582 /*
583  * Return the prmap_t structure containing 'addr', but only if it
584  * is in the dynamic linker's link map and is the text section.
585  */
586 const prmap_t *
587 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr)
588 {
589 	map_info_t *mptr;
590 
591 	if (!P->info_valid)
592 		Pupdate_maps(P);
593 
594 	if ((mptr = Paddr2mptr(P, addr)) != NULL) {
595 		file_info_t *fptr = build_map_symtab(P, mptr);
596 		const prmap_t *pmp = &mptr->map_pmap;
597 
598 		if (fptr != NULL && fptr->file_lo != NULL &&
599 		    fptr->file_lo->rl_base >= pmp->pr_vaddr &&
600 		    fptr->file_lo->rl_base < pmp->pr_vaddr + pmp->pr_size)
601 			return (pmp);
602 	}
603 
604 	return (NULL);
605 }
606 
607 /*
608  * Return the prmap_t structure containing 'addr' (no restrictions on
609  * the type of mapping).
610  */
611 const prmap_t *
612 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr)
613 {
614 	map_info_t *mptr;
615 
616 	if (!P->info_valid)
617 		Pupdate_maps(P);
618 
619 	if ((mptr = Paddr2mptr(P, addr)) != NULL)
620 		return (&mptr->map_pmap);
621 
622 	return (NULL);
623 }
624 
625 /*
626  * Convert a full or partial load object name to the prmap_t for its
627  * corresponding primary text mapping.
628  */
629 const prmap_t *
630 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
631 {
632 	map_info_t *mptr;
633 
634 	if (name == PR_OBJ_EVERY)
635 		return (NULL); /* A reasonable mistake */
636 
637 	if ((mptr = object_name_to_map(P, lmid, name)) != NULL)
638 		return (&mptr->map_pmap);
639 
640 	return (NULL);
641 }
642 
643 const prmap_t *
644 Pname_to_map(struct ps_prochandle *P, const char *name)
645 {
646 	return (Plmid_to_map(P, PR_LMID_EVERY, name));
647 }
648 
649 const rd_loadobj_t *
650 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr)
651 {
652 	map_info_t *mptr;
653 
654 	if (!P->info_valid)
655 		Pupdate_maps(P);
656 
657 	if ((mptr = Paddr2mptr(P, addr)) == NULL)
658 		return (NULL);
659 
660 	/*
661 	 * By building the symbol table, we implicitly bring the PLT
662 	 * information up to date in the load object.
663 	 */
664 	(void) build_map_symtab(P, mptr);
665 
666 	return (mptr->map_file->file_lo);
667 }
668 
669 const rd_loadobj_t *
670 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name)
671 {
672 	map_info_t *mptr;
673 
674 	if (name == PR_OBJ_EVERY)
675 		return (NULL);
676 
677 	if ((mptr = object_name_to_map(P, lmid, name)) == NULL)
678 		return (NULL);
679 
680 	/*
681 	 * By building the symbol table, we implicitly bring the PLT
682 	 * information up to date in the load object.
683 	 */
684 	(void) build_map_symtab(P, mptr);
685 
686 	return (mptr->map_file->file_lo);
687 }
688 
689 const rd_loadobj_t *
690 Pname_to_loadobj(struct ps_prochandle *P, const char *name)
691 {
692 	return (Plmid_to_loadobj(P, PR_LMID_EVERY, name));
693 }
694 
695 ctf_file_t *
696 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr)
697 {
698 	ctf_sect_t ctdata, symtab, strtab;
699 	sym_tbl_t *symp;
700 	int err;
701 
702 	if (fptr->file_ctfp != NULL)
703 		return (fptr->file_ctfp);
704 
705 	Pbuild_file_symtab(P, fptr);
706 
707 	if (fptr->file_ctf_size == 0)
708 		return (NULL);
709 
710 	symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab;
711 	if (symp->sym_data == NULL)
712 		return (NULL);
713 
714 	/*
715 	 * The buffer may alread be allocated if this is a core file that
716 	 * contained CTF data for this file.
717 	 */
718 	if (fptr->file_ctf_buf == NULL) {
719 		fptr->file_ctf_buf = malloc(fptr->file_ctf_size);
720 		if (fptr->file_ctf_buf == NULL) {
721 			dprintf("failed to allocate ctf buffer\n");
722 			return (NULL);
723 		}
724 
725 		if (pread(fptr->file_fd, fptr->file_ctf_buf,
726 		    fptr->file_ctf_size, fptr->file_ctf_off) !=
727 		    fptr->file_ctf_size) {
728 			free(fptr->file_ctf_buf);
729 			fptr->file_ctf_buf = NULL;
730 			dprintf("failed to read ctf data\n");
731 			return (NULL);
732 		}
733 	}
734 
735 	ctdata.cts_name = ".SUNW_ctf";
736 	ctdata.cts_type = SHT_PROGBITS;
737 	ctdata.cts_flags = 0;
738 	ctdata.cts_data = fptr->file_ctf_buf;
739 	ctdata.cts_size = fptr->file_ctf_size;
740 	ctdata.cts_entsize = 1;
741 	ctdata.cts_offset = 0;
742 
743 	symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab";
744 	symtab.cts_type = symp->sym_hdr.sh_type;
745 	symtab.cts_flags = symp->sym_hdr.sh_flags;
746 	symtab.cts_data = symp->sym_data->d_buf;
747 	symtab.cts_size = symp->sym_hdr.sh_size;
748 	symtab.cts_entsize = symp->sym_hdr.sh_entsize;
749 	symtab.cts_offset = symp->sym_hdr.sh_offset;
750 
751 	strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab";
752 	strtab.cts_type = symp->sym_strhdr.sh_type;
753 	strtab.cts_flags = symp->sym_strhdr.sh_flags;
754 	strtab.cts_data = symp->sym_strs;
755 	strtab.cts_size = symp->sym_strhdr.sh_size;
756 	strtab.cts_entsize = symp->sym_strhdr.sh_entsize;
757 	strtab.cts_offset = symp->sym_strhdr.sh_offset;
758 
759 	fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err);
760 	if (fptr->file_ctfp == NULL) {
761 		free(fptr->file_ctf_buf);
762 		fptr->file_ctf_buf = NULL;
763 		return (NULL);
764 	}
765 
766 	dprintf("loaded %lu bytes of CTF data for %s\n",
767 	    (ulong_t)fptr->file_ctf_size, fptr->file_pname);
768 
769 	return (fptr->file_ctfp);
770 }
771 
772 ctf_file_t *
773 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr)
774 {
775 	map_info_t *mptr;
776 	file_info_t *fptr;
777 
778 	if (!P->info_valid)
779 		Pupdate_maps(P);
780 
781 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||
782 	    (fptr = mptr->map_file) == NULL)
783 		return (NULL);
784 
785 	return (Pbuild_file_ctf(P, fptr));
786 }
787 
788 ctf_file_t *
789 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name)
790 {
791 	map_info_t *mptr;
792 	file_info_t *fptr;
793 
794 	if (name == PR_OBJ_EVERY)
795 		return (NULL);
796 
797 	if ((mptr = object_name_to_map(P, lmid, name)) == NULL ||
798 	    (fptr = mptr->map_file) == NULL)
799 		return (NULL);
800 
801 	return (Pbuild_file_ctf(P, fptr));
802 }
803 
804 ctf_file_t *
805 Pname_to_ctf(struct ps_prochandle *P, const char *name)
806 {
807 	return (Plmid_to_ctf(P, PR_LMID_EVERY, name));
808 }
809 
810 /*
811  * If we're not a core file, re-read the /proc/<pid>/auxv file and store
812  * its contents in P->auxv.  In the case of a core file, we either
813  * initialized P->auxv in Pcore() from the NT_AUXV, or we don't have an
814  * auxv because the note was missing.
815  */
816 void
817 Preadauxvec(struct ps_prochandle *P)
818 {
819 	char auxfile[64];
820 	struct stat statb;
821 	ssize_t naux;
822 	int fd;
823 
824 	if (P->state == PS_DEAD)
825 		return; /* Already read during Pgrab_core() */
826 	if (P->state == PS_IDLE)
827 		return; /* No aux vec for Pgrab_file() */
828 
829 	if (P->auxv != NULL) {
830 		free(P->auxv);
831 		P->auxv = NULL;
832 		P->nauxv = 0;
833 	}
834 
835 	(void) snprintf(auxfile, sizeof (auxfile), "%s/%d/auxv",
836 	    procfs_path, (int)P->pid);
837 	if ((fd = open(auxfile, O_RDONLY)) < 0)
838 		return;
839 
840 	if (fstat(fd, &statb) == 0 &&
841 	    statb.st_size >= sizeof (auxv_t) &&
842 	    (P->auxv = malloc(statb.st_size + sizeof (auxv_t))) != NULL) {
843 		if ((naux = read(fd, P->auxv, statb.st_size)) < 0 ||
844 		    (naux /= sizeof (auxv_t)) < 1) {
845 			free(P->auxv);
846 			P->auxv = NULL;
847 		} else {
848 			P->auxv[naux].a_type = AT_NULL;
849 			P->auxv[naux].a_un.a_val = 0L;
850 			P->nauxv = (int)naux;
851 		}
852 	}
853 
854 	(void) close(fd);
855 }
856 
857 /*
858  * Return a requested element from the process's aux vector.
859  * Return -1 on failure (this is adequate for our purposes).
860  */
861 long
862 Pgetauxval(struct ps_prochandle *P, int type)
863 {
864 	auxv_t *auxv;
865 
866 	if (P->auxv == NULL)
867 		Preadauxvec(P);
868 
869 	if (P->auxv == NULL)
870 		return (-1);
871 
872 	for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) {
873 		if (auxv->a_type == type)
874 			return (auxv->a_un.a_val);
875 	}
876 
877 	return (-1);
878 }
879 
880 /*
881  * Return a pointer to our internal copy of the process's aux vector.
882  * The caller should not hold on to this pointer across any libproc calls.
883  */
884 const auxv_t *
885 Pgetauxvec(struct ps_prochandle *P)
886 {
887 	static const auxv_t empty = { AT_NULL, 0L };
888 
889 	if (P->auxv == NULL)
890 		Preadauxvec(P);
891 
892 	if (P->auxv == NULL)
893 		return (&empty);
894 
895 	return (P->auxv);
896 }
897 
898 /*
899  * Return 1 if the given mapping corresponds to the given file_info_t's
900  * load object; return 0 otherwise.
901  */
902 static int
903 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr)
904 {
905 	prmap_t *pmap = &mptr->map_pmap;
906 	rd_loadobj_t *lop = fptr->file_lo;
907 	uint_t i;
908 
909 	/*
910 	 * We can get for free the start address of the text and data
911 	 * sections of the load object. Start by seeing if the mapping
912 	 * encloses either of these.
913 	 */
914 	if ((pmap->pr_vaddr <= lop->rl_base &&
915 	    lop->rl_base < pmap->pr_vaddr + pmap->pr_size) ||
916 	    (pmap->pr_vaddr <= lop->rl_data_base &&
917 	    lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size))
918 		return (1);
919 
920 	/*
921 	 * It's still possible that this mapping correponds to the load
922 	 * object. Consider the example of a mapping whose start and end
923 	 * addresses correspond to those of the load object's text section.
924 	 * If the mapping splits, e.g. as a result of a segment demotion,
925 	 * then although both mappings are still backed by the same section,
926 	 * only one will be seen to enclose that section's start address.
927 	 * Thus, to be rigorous, we ask not whether this mapping encloses
928 	 * the start of a section, but whether there exists a section that
929 	 * encloses the start of this mapping.
930 	 *
931 	 * If we don't already have the section addresses, and we successfully
932 	 * get them, then we cache them in case we come here again.
933 	 */
934 	if (fptr->file_saddrs == NULL &&
935 	    (fptr->file_saddrs = get_saddrs(P,
936 	    fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL)
937 		return (0);
938 	for (i = 0; i < fptr->file_nsaddrs; i += 2) {
939 		/* Does this section enclose the start of the mapping? */
940 		if (fptr->file_saddrs[i] <= pmap->pr_vaddr &&
941 		    fptr->file_saddrs[i + 1] > pmap->pr_vaddr)
942 			return (1);
943 	}
944 
945 	return (0);
946 }
947 
948 /*
949  * Find or build the symbol table for the given mapping.
950  */
951 static file_info_t *
952 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr)
953 {
954 	prmap_t *pmap = &mptr->map_pmap;
955 	file_info_t *fptr;
956 	uint_t i;
957 
958 	if ((fptr = mptr->map_file) != NULL) {
959 		Pbuild_file_symtab(P, fptr);
960 		return (fptr);
961 	}
962 
963 	if (pmap->pr_mapname[0] == '\0')
964 		return (NULL);
965 
966 	/*
967 	 * Attempt to find a matching file.
968 	 * (A file can be mapped at several different addresses.)
969 	 */
970 	for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
971 	    i++, fptr = list_next(fptr)) {
972 		if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 &&
973 		    fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) {
974 			mptr->map_file = fptr;
975 			fptr->file_ref++;
976 			Pbuild_file_symtab(P, fptr);
977 			return (fptr);
978 		}
979 	}
980 
981 	/*
982 	 * If we need to create a new file_info structure, iterate
983 	 * through the load objects in order to attempt to connect
984 	 * this new file with its primary text mapping.  We again
985 	 * need to handle ld.so as a special case because we need
986 	 * to be able to bootstrap librtld_db.
987 	 */
988 	if ((fptr = file_info_new(P, mptr)) == NULL)
989 		return (NULL);
990 
991 	if (P->map_ldso != mptr) {
992 		if (P->rap != NULL)
993 			(void) rd_loadobj_iter(P->rap, map_iter, P);
994 		else
995 			(void) Prd_agent(P);
996 	} else {
997 		fptr->file_map = mptr;
998 	}
999 
1000 	/*
1001 	 * If librtld_db wasn't able to help us connect the file to a primary
1002 	 * text mapping, set file_map to the current mapping because we require
1003 	 * fptr->file_map to be set in Pbuild_file_symtab.  librtld_db may be
1004 	 * unaware of what's going on in the rare case that a legitimate ELF
1005 	 * file has been mmap(2)ed into the process address space *without*
1006 	 * the use of dlopen(3x).
1007 	 */
1008 	if (fptr->file_map == NULL)
1009 		fptr->file_map = mptr;
1010 
1011 	Pbuild_file_symtab(P, fptr);
1012 
1013 	return (fptr);
1014 }
1015 
1016 static int
1017 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum,
1018     uintptr_t addr)
1019 {
1020 	if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr))
1021 		return (-1);
1022 
1023 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1024 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1025 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1026 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1027 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
1028 #ifdef _BIG_ENDIAN
1029 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1030 #else
1031 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1032 #endif
1033 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1034 		return (-1);
1035 
1036 	if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1037 		Elf32_Shdr shdr0;
1038 
1039 		if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1040 		    Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1041 		    sizeof (shdr0))
1042 			return (-1);
1043 
1044 		if (shdr0.sh_info != 0)
1045 			*phnum = shdr0.sh_info;
1046 	}
1047 
1048 	return (0);
1049 }
1050 
1051 static int
1052 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr,
1053     uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr)
1054 {
1055 	uint_t i;
1056 
1057 	for (i = 0; i < phnum; i++) {
1058 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1059 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1060 			return (-1);
1061 
1062 		if (phdr->p_type == PT_DYNAMIC)
1063 			return (0);
1064 	}
1065 
1066 	return (-1);
1067 }
1068 
1069 #ifdef _LP64
1070 static int
1071 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum,
1072     uintptr_t addr)
1073 {
1074 	if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr))
1075 		return (-1);
1076 
1077 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1078 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1079 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1080 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1081 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
1082 #ifdef _BIG_ENDIAN
1083 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1084 #else
1085 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1086 #endif
1087 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1088 		return (-1);
1089 
1090 	if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1091 		Elf64_Shdr shdr0;
1092 
1093 		if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1094 		    Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1095 		    sizeof (shdr0))
1096 			return (-1);
1097 
1098 		if (shdr0.sh_info != 0)
1099 			*phnum = shdr0.sh_info;
1100 	}
1101 
1102 	return (0);
1103 }
1104 
1105 static int
1106 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr,
1107     uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr)
1108 {
1109 	uint_t i;
1110 
1111 	for (i = 0; i < phnum; i++) {
1112 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1113 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1114 			return (-1);
1115 
1116 		if (phdr->p_type == PT_DYNAMIC)
1117 			return (0);
1118 	}
1119 
1120 	return (-1);
1121 }
1122 #endif	/* _LP64 */
1123 
1124 /*
1125  * The text segment for each load object contains the elf header and
1126  * program headers. We can use this information to determine if the
1127  * file that corresponds to the load object is the same file that
1128  * was loaded into the process's address space. There can be a discrepency
1129  * if a file is recompiled after the process is started or if the target
1130  * represents a core file from a differently configured system -- two
1131  * common examples. The DT_CHECKSUM entry in the dynamic section
1132  * provides an easy method of comparison. It is important to note that
1133  * the dynamic section usually lives in the data segment, but the meta
1134  * data we use to find the dynamic section lives in the text segment so
1135  * if either of those segments is absent we can't proceed.
1136  *
1137  * We're looking through the elf file for several items: the symbol tables
1138  * (both dynsym and symtab), the procedure linkage table (PLT) base,
1139  * size, and relocation base, and the CTF information. Most of this can
1140  * be recovered from the loaded image of the file itself, the exceptions
1141  * being the symtab and CTF data.
1142  *
1143  * First we try to open the file that we think corresponds to the load
1144  * object, if the DT_CHECKSUM values match, we're all set, and can simply
1145  * recover all the information we need from the file. If the values of
1146  * DT_CHECKSUM don't match, or if we can't access the file for whatever
1147  * reasaon, we fake up a elf file to use in its stead. If we can't read
1148  * the elf data in the process's address space, we fall back to using
1149  * the file even though it may give inaccurate information.
1150  *
1151  * The elf file that we fake up has to consist of sections for the
1152  * dynsym, the PLT and the dynamic section. Note that in the case of a
1153  * core file, we'll get the CTF data in the file_info_t later on from
1154  * a section embedded the core file (if it's present).
1155  *
1156  * file_differs() conservatively looks for mismatched files, identifying
1157  * a match when there is any ambiguity (since that's the legacy behavior).
1158  */
1159 static int
1160 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr)
1161 {
1162 	Elf_Scn *scn;
1163 	GElf_Shdr shdr;
1164 	GElf_Dyn dyn;
1165 	Elf_Data *data;
1166 	uint_t i, ndyn;
1167 	GElf_Xword cksum;
1168 	uintptr_t addr;
1169 
1170 	if (fptr->file_map == NULL)
1171 		return (0);
1172 
1173 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1174 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1175 		return (0);
1176 
1177 	/*
1178 	 * First, we find the checksum value in the elf file.
1179 	 */
1180 	scn = NULL;
1181 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1182 		if (gelf_getshdr(scn, &shdr) != NULL &&
1183 		    shdr.sh_type == SHT_DYNAMIC)
1184 			goto found_shdr;
1185 	}
1186 	return (0);
1187 
1188 found_shdr:
1189 	if ((data = elf_getdata(scn, NULL)) == NULL)
1190 		return (0);
1191 
1192 	if (P->status.pr_dmodel == PR_MODEL_ILP32)
1193 		ndyn = shdr.sh_size / sizeof (Elf32_Dyn);
1194 #ifdef _LP64
1195 	else if (P->status.pr_dmodel == PR_MODEL_LP64)
1196 		ndyn = shdr.sh_size / sizeof (Elf64_Dyn);
1197 #endif
1198 	else
1199 		return (0);
1200 
1201 	for (i = 0; i < ndyn; i++) {
1202 		if (gelf_getdyn(data, i, &dyn) != NULL &&
1203 		    dyn.d_tag == DT_CHECKSUM)
1204 			goto found_cksum;
1205 	}
1206 
1207 	/*
1208 	 * The in-memory ELF has no DT_CHECKSUM section, but we will report it
1209 	 * as matching the file anyhow.
1210 	 */
1211 	return (0);
1212 
1213 found_cksum:
1214 	cksum = dyn.d_un.d_val;
1215 	dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum);
1216 
1217 	/*
1218 	 * Get the base of the text mapping that corresponds to this file.
1219 	 */
1220 	addr = fptr->file_map->map_pmap.pr_vaddr;
1221 
1222 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1223 		Elf32_Ehdr ehdr;
1224 		Elf32_Phdr phdr;
1225 		Elf32_Dyn dync, *dynp;
1226 		uint_t phnum, i;
1227 
1228 		if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 ||
1229 		    read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1230 			return (0);
1231 
1232 		if (ehdr.e_type == ET_DYN)
1233 			phdr.p_vaddr += addr;
1234 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1235 			return (0);
1236 		dync.d_tag = DT_NULL;
1237 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1238 		    phdr.p_filesz) {
1239 			free(dynp);
1240 			return (0);
1241 		}
1242 
1243 		for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1244 			if (dynp[i].d_tag == DT_CHECKSUM)
1245 				dync = dynp[i];
1246 		}
1247 
1248 		free(dynp);
1249 
1250 		if (dync.d_tag != DT_CHECKSUM)
1251 			return (0);
1252 
1253 		dprintf("image cksum value is %llx\n",
1254 		    (u_longlong_t)dync.d_un.d_val);
1255 		return (dync.d_un.d_val != cksum);
1256 #ifdef _LP64
1257 	} else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1258 		Elf64_Ehdr ehdr;
1259 		Elf64_Phdr phdr;
1260 		Elf64_Dyn dync, *dynp;
1261 		uint_t phnum, i;
1262 
1263 		if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1264 		    read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1265 			return (0);
1266 
1267 		if (ehdr.e_type == ET_DYN)
1268 			phdr.p_vaddr += addr;
1269 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1270 			return (0);
1271 		dync.d_tag = DT_NULL;
1272 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1273 		    phdr.p_filesz) {
1274 			free(dynp);
1275 			return (0);
1276 		}
1277 
1278 		for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1279 			if (dynp[i].d_tag == DT_CHECKSUM)
1280 				dync = dynp[i];
1281 		}
1282 
1283 		free(dynp);
1284 
1285 		if (dync.d_tag != DT_CHECKSUM)
1286 			return (0);
1287 
1288 		dprintf("image cksum value is %llx\n",
1289 		    (u_longlong_t)dync.d_un.d_val);
1290 		return (dync.d_un.d_val != cksum);
1291 #endif	/* _LP64 */
1292 	}
1293 
1294 	return (0);
1295 }
1296 
1297 static Elf *
1298 fake_elf(struct ps_prochandle *P, file_info_t *fptr)
1299 {
1300 	enum {
1301 		DI_PLTGOT = 0,
1302 		DI_JMPREL,
1303 		DI_PLTRELSZ,
1304 		DI_PLTREL,
1305 		DI_SYMTAB,
1306 		DI_HASH,
1307 		DI_SYMENT,
1308 		DI_STRTAB,
1309 		DI_STRSZ,
1310 		DI_NENT
1311 	};
1312 	uintptr_t addr;
1313 	size_t size = 0;
1314 	caddr_t elfdata = NULL;
1315 	Elf *elf;
1316 	Elf32_Word nchain;
1317 	static char shstr[] = ".shstrtab\0.dynsym\0.dynstr\0.dynamic\0.plt";
1318 
1319 	if (fptr->file_map == NULL)
1320 		return (NULL);
1321 
1322 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1323 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1324 		return (NULL);
1325 
1326 	addr = fptr->file_map->map_pmap.pr_vaddr;
1327 
1328 	/*
1329 	 * We're building a in memory elf file that will let us use libelf
1330 	 * for most of the work we need to later (e.g. symbol table lookups).
1331 	 * We need sections for the dynsym, dynstr, and plt, and we need
1332 	 * the program headers from the text section. The former is used in
1333 	 * Pbuild_file_symtab(); the latter is used in several functions in
1334 	 * Pcore.c to reconstruct the origin of each mapping from the load
1335 	 * object that spawned it.
1336 	 *
1337 	 * Here are some useful pieces of elf trivia that will help
1338 	 * to elucidate this code.
1339 	 *
1340 	 * All the information we need about the dynstr can be found in these
1341 	 * two entries in the dynamic section:
1342 	 *
1343 	 *	DT_STRTAB	base of dynstr
1344 	 *	DT_STRSZ	size of dynstr
1345 	 *
1346 	 * So deciphering the dynstr is pretty straightforward.
1347 	 *
1348 	 * The dynsym is a little trickier.
1349 	 *
1350 	 *	DT_SYMTAB	base of dynsym
1351 	 *	DT_SYMENT	size of a dynstr entry (Elf{32,64}_Sym)
1352 	 *	DT_HASH		base of hash table for dynamic lookups
1353 	 *
1354 	 * The DT_SYMTAB entry gives us any easy way of getting to the base
1355 	 * of the dynsym, but getting the size involves rooting around in the
1356 	 * dynamic lookup hash table. Here's the layout of the hash table:
1357 	 *
1358 	 *		+-------------------+
1359 	 *		|	nbucket	    |	All values are of type
1360 	 *		+-------------------+	Elf32_Word
1361 	 *		|	nchain	    |
1362 	 *		+-------------------+
1363 	 *		|	bucket[0]   |
1364 	 *		|	. . .	    |
1365 	 *		| bucket[nbucket-1] |
1366 	 *		+-------------------+
1367 	 *		|	chain[0]    |
1368 	 *		|	. . .	    |
1369 	 *		|  chain[nchain-1]  |
1370 	 *		+-------------------+
1371 	 *	(figure 5-12 from the SYS V Generic ABI)
1372 	 *
1373 	 * Symbols names are hashed into a particular bucket which contains
1374 	 * an index into the symbol table. Each entry in the symbol table
1375 	 * has a corresponding entry in the chain table which tells the
1376 	 * consumer where the next entry in the hash chain is. We can use
1377 	 * the nchain field to find out the size of the dynsym.
1378 	 *
1379 	 * We can figure out the size of the .plt section, but it takes some
1380 	 * doing. We need to use the following information:
1381 	 *
1382 	 *	DT_PLTGOT	base of the PLT
1383 	 *	DT_JMPREL	base of the PLT's relocation section
1384 	 *	DT_PLTRELSZ	size of the PLT's relocation section
1385 	 *	DT_PLTREL	type of the PLT's relocation section
1386 	 *
1387 	 * We can use the relocation section to figure out the address of the
1388 	 * last entry and subtract off the value of DT_PLTGOT to calculate
1389 	 * the size of the PLT.
1390 	 *
1391 	 * For more information, check out the System V Generic ABI.
1392 	 */
1393 
1394 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1395 		Elf32_Ehdr ehdr, *ep;
1396 		Elf32_Phdr phdr;
1397 		Elf32_Shdr *sp;
1398 		Elf32_Dyn *dp;
1399 		Elf32_Dyn *d[DI_NENT] = { 0 };
1400 		uint_t phnum, i, dcount = 0;
1401 		uint32_t off;
1402 		size_t pltsz = 0, pltentsz;
1403 
1404 		if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) ||
1405 		    read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1406 			return (NULL);
1407 
1408 		if (ehdr.e_type == ET_DYN)
1409 			phdr.p_vaddr += addr;
1410 
1411 		if ((dp = malloc(phdr.p_filesz)) == NULL)
1412 			return (NULL);
1413 
1414 		if (Pread(P, dp, phdr.p_filesz, phdr.p_vaddr) !=
1415 		    phdr.p_filesz)
1416 			goto bad32;
1417 
1418 		/*
1419 		 * Allow librtld_db the opportunity to "fix" the program
1420 		 * headers, if it needs to, before we process them.
1421 		 */
1422 		if (P->rap != NULL && ehdr.e_type == ET_DYN) {
1423 			rd_fix_phdrs(P->rap, dp, phdr.p_filesz, addr);
1424 		}
1425 
1426 		for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1427 			switch (dp[i].d_tag) {
1428 			/*
1429 			 * For the .plt section.
1430 			 */
1431 			case DT_PLTGOT:
1432 				d[DI_PLTGOT] = &dp[i];
1433 				continue;
1434 			case DT_JMPREL:
1435 				d[DI_JMPREL] = &dp[i];
1436 				continue;
1437 			case DT_PLTRELSZ:
1438 				d[DI_PLTRELSZ] = &dp[i];
1439 				continue;
1440 			case DT_PLTREL:
1441 				d[DI_PLTREL] = &dp[i];
1442 				continue;
1443 			default:
1444 				continue;
1445 
1446 			/*
1447 			 * For the .dynsym section.
1448 			 */
1449 			case DT_SYMTAB:
1450 				d[DI_SYMTAB] = &dp[i];
1451 				break;
1452 			case DT_HASH:
1453 				d[DI_HASH] = &dp[i];
1454 				break;
1455 			case DT_SYMENT:
1456 				d[DI_SYMENT] = &dp[i];
1457 				break;
1458 
1459 			/*
1460 			 * For the .dynstr section.
1461 			 */
1462 			case DT_STRTAB:
1463 				d[DI_STRTAB] = &dp[i];
1464 				break;
1465 			case DT_STRSZ:
1466 				d[DI_STRSZ] = &dp[i];
1467 				break;
1468 			}
1469 
1470 			dcount++;
1471 		}
1472 
1473 		/*
1474 		 * We need all of those dynamic entries in order to put
1475 		 * together a complete set of elf sections, but we'll
1476 		 * let the PLT section slide if need be. The dynsym- and
1477 		 * dynstr-related dynamic entries are mandatory in both
1478 		 * executables and shared objects so if one of those is
1479 		 * missing, we're in some trouble and should abort.
1480 		 */
1481 		if (dcount + 4 != DI_NENT) {
1482 			dprintf("text section missing required dynamic "
1483 			    "entries\n");
1484 			goto bad32;
1485 		}
1486 
1487 		if (ehdr.e_type == ET_DYN) {
1488 			if (d[DI_PLTGOT] != NULL)
1489 				d[DI_PLTGOT]->d_un.d_ptr += addr;
1490 			if (d[DI_JMPREL] != NULL)
1491 				d[DI_JMPREL]->d_un.d_ptr += addr;
1492 			d[DI_SYMTAB]->d_un.d_ptr += addr;
1493 			d[DI_HASH]->d_un.d_ptr += addr;
1494 			d[DI_STRTAB]->d_un.d_ptr += addr;
1495 		}
1496 
1497 		/* elf header */
1498 		size = sizeof (Elf32_Ehdr);
1499 
1500 		/* program headers from in-core elf fragment */
1501 		size += phnum * ehdr.e_phentsize;
1502 
1503 		/* unused shdr, and .shstrtab section */
1504 		size += sizeof (Elf32_Shdr);
1505 		size += sizeof (Elf32_Shdr);
1506 		size += roundup(sizeof (shstr), 4);
1507 
1508 		/* .dynsym section */
1509 		size += sizeof (Elf32_Shdr);
1510 		if (Pread(P, &nchain, sizeof (nchain),
1511 		    d[DI_HASH]->d_un.d_ptr + 4) != sizeof (nchain)) {
1512 			dprintf("Pread of .dynsym at %lx failed\n",
1513 			    (long)(d[DI_HASH]->d_un.d_val + 4));
1514 			goto bad32;
1515 		}
1516 		size += sizeof (Elf32_Sym) * nchain;
1517 
1518 		/* .dynstr section */
1519 		size += sizeof (Elf32_Shdr);
1520 		size += roundup(d[DI_STRSZ]->d_un.d_val, 4);
1521 
1522 		/* .dynamic section */
1523 		size += sizeof (Elf32_Shdr);
1524 		size += roundup(phdr.p_filesz, 4);
1525 
1526 		/* .plt section */
1527 		if (d[DI_PLTGOT] != NULL && d[DI_JMPREL] != NULL &&
1528 		    d[DI_PLTRELSZ] != NULL && d[DI_PLTREL] != NULL) {
1529 			uintptr_t penult, ult;
1530 			uintptr_t jmprel = d[DI_JMPREL]->d_un.d_ptr;
1531 			size_t pltrelsz = d[DI_PLTRELSZ]->d_un.d_val;
1532 
1533 			if (d[DI_PLTREL]->d_un.d_val == DT_RELA) {
1534 				uint_t ndx = pltrelsz / sizeof (Elf32_Rela) - 2;
1535 				Elf32_Rela r[2];
1536 
1537 				if (Pread(P, r, sizeof (r), jmprel +
1538 				    sizeof (r[0]) * ndx) != sizeof (r)) {
1539 					dprintf("Pread of DT_RELA failed\n");
1540 					goto bad32;
1541 				}
1542 
1543 				penult = r[0].r_offset;
1544 				ult = r[1].r_offset;
1545 
1546 			} else if (d[DI_PLTREL]->d_un.d_val == DT_REL) {
1547 				uint_t ndx = pltrelsz / sizeof (Elf32_Rel) - 2;
1548 				Elf32_Rel r[2];
1549 
1550 				if (Pread(P, r, sizeof (r), jmprel +
1551 				    sizeof (r[0]) * ndx) != sizeof (r)) {
1552 					dprintf("Pread of DT_REL failed\n");
1553 					goto bad32;
1554 				}
1555 
1556 				penult = r[0].r_offset;
1557 				ult = r[1].r_offset;
1558 			} else {
1559 				dprintf(".plt: unknown jmprel value\n");
1560 				goto bad32;
1561 			}
1562 
1563 			pltentsz = ult - penult;
1564 
1565 			if (ehdr.e_type == ET_DYN)
1566 				ult += addr;
1567 
1568 			pltsz = ult - d[DI_PLTGOT]->d_un.d_ptr + pltentsz;
1569 
1570 			size += sizeof (Elf32_Shdr);
1571 			size += roundup(pltsz, 4);
1572 		}
1573 
1574 		if ((elfdata = calloc(1, size)) == NULL)
1575 			goto bad32;
1576 
1577 		/* LINTED - alignment */
1578 		ep = (Elf32_Ehdr *)elfdata;
1579 		(void) memcpy(ep, &ehdr, offsetof(Elf32_Ehdr, e_phoff));
1580 
1581 		ep->e_ehsize = sizeof (Elf32_Ehdr);
1582 		ep->e_phoff = sizeof (Elf32_Ehdr);
1583 		ep->e_phentsize = ehdr.e_phentsize;
1584 		ep->e_phnum = phnum;
1585 		ep->e_shoff = ep->e_phoff + phnum * ep->e_phentsize;
1586 		ep->e_shentsize = sizeof (Elf32_Shdr);
1587 		ep->e_shnum = (pltsz == 0) ? 5 : 6;
1588 		ep->e_shstrndx = 1;
1589 
1590 		/* LINTED - alignment */
1591 		sp = (Elf32_Shdr *)(elfdata + ep->e_shoff);
1592 		off = ep->e_shoff + ep->e_shentsize * ep->e_shnum;
1593 
1594 		/*
1595 		 * Copying the program headers directly from the process's
1596 		 * address space is a little suspect, but since we only
1597 		 * use them for their address and size values, this is fine.
1598 		 */
1599 		if (Pread(P, &elfdata[ep->e_phoff], phnum * ep->e_phentsize,
1600 		    addr + ehdr.e_phoff) != phnum * ep->e_phentsize) {
1601 			free(elfdata);
1602 			dprintf("failed to read program headers\n");
1603 			goto bad32;
1604 		}
1605 
1606 		/*
1607 		 * The first elf section is always skipped.
1608 		 */
1609 		sp++;
1610 
1611 		/*
1612 		 * Section Header[1]  sh_name: .shstrtab
1613 		 */
1614 		sp->sh_name = 0;
1615 		sp->sh_type = SHT_STRTAB;
1616 		sp->sh_flags = SHF_STRINGS;
1617 		sp->sh_addr = 0;
1618 		sp->sh_offset = off;
1619 		sp->sh_size = sizeof (shstr);
1620 		sp->sh_link = 0;
1621 		sp->sh_info = 0;
1622 		sp->sh_addralign = 1;
1623 		sp->sh_entsize = 0;
1624 
1625 		(void) memcpy(&elfdata[off], shstr, sizeof (shstr));
1626 		off += roundup(sp->sh_size, 4);
1627 		sp++;
1628 
1629 		/*
1630 		 * Section Header[2]  sh_name: .dynsym
1631 		 */
1632 		sp->sh_name = 10;
1633 		sp->sh_type = SHT_DYNSYM;
1634 		sp->sh_flags = SHF_ALLOC;
1635 		sp->sh_addr = d[DI_SYMTAB]->d_un.d_ptr;
1636 		if (ehdr.e_type == ET_DYN)
1637 			sp->sh_addr -= addr;
1638 		sp->sh_offset = off;
1639 		sp->sh_size = nchain * sizeof (Elf32_Sym);
1640 		sp->sh_link = 3;
1641 		sp->sh_info = 1;
1642 		sp->sh_addralign = 4;
1643 		sp->sh_entsize = sizeof (Elf32_Sym);
1644 
1645 		if (Pread(P, &elfdata[off], sp->sh_size,
1646 		    d[DI_SYMTAB]->d_un.d_ptr) != sp->sh_size) {
1647 			free(elfdata);
1648 			dprintf("failed to read .dynsym at %lx\n",
1649 			    (long)d[DI_SYMTAB]->d_un.d_ptr);
1650 			goto bad32;
1651 		}
1652 
1653 		off += roundup(sp->sh_size, 4);
1654 		sp++;
1655 
1656 		/*
1657 		 * Section Header[3]  sh_name: .dynstr
1658 		 */
1659 		sp->sh_name = 18;
1660 		sp->sh_type = SHT_STRTAB;
1661 		sp->sh_flags = SHF_ALLOC | SHF_STRINGS;
1662 		sp->sh_addr = d[DI_STRTAB]->d_un.d_ptr;
1663 		if (ehdr.e_type == ET_DYN)
1664 			sp->sh_addr -= addr;
1665 		sp->sh_offset = off;
1666 		sp->sh_size = d[DI_STRSZ]->d_un.d_val;
1667 		sp->sh_link = 0;
1668 		sp->sh_info = 0;
1669 		sp->sh_addralign = 1;
1670 		sp->sh_entsize = 0;
1671 
1672 		if (Pread(P, &elfdata[off], sp->sh_size,
1673 		    d[DI_STRTAB]->d_un.d_ptr) != sp->sh_size) {
1674 			free(elfdata);
1675 			dprintf("failed to read .dynstr\n");
1676 			goto bad32;
1677 		}
1678 		off += roundup(sp->sh_size, 4);
1679 		sp++;
1680 
1681 		/*
1682 		 * Section Header[4]  sh_name: .dynamic
1683 		 */
1684 		sp->sh_name = 26;
1685 		sp->sh_type = SHT_DYNAMIC;
1686 		sp->sh_flags = SHF_WRITE | SHF_ALLOC;
1687 		sp->sh_addr = phdr.p_vaddr;
1688 		if (ehdr.e_type == ET_DYN)
1689 			sp->sh_addr -= addr;
1690 		sp->sh_offset = off;
1691 		sp->sh_size = phdr.p_filesz;
1692 		sp->sh_link = 3;
1693 		sp->sh_info = 0;
1694 		sp->sh_addralign = 4;
1695 		sp->sh_entsize = sizeof (Elf32_Dyn);
1696 
1697 		(void) memcpy(&elfdata[off], dp, sp->sh_size);
1698 		off += roundup(sp->sh_size, 4);
1699 		sp++;
1700 
1701 		/*
1702 		 * Section Header[5]  sh_name: .plt
1703 		 */
1704 		if (pltsz != 0) {
1705 			sp->sh_name = 35;
1706 			sp->sh_type = SHT_PROGBITS;
1707 			sp->sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR;
1708 			sp->sh_addr = d[DI_PLTGOT]->d_un.d_ptr;
1709 			if (ehdr.e_type == ET_DYN)
1710 				sp->sh_addr -= addr;
1711 			sp->sh_offset = off;
1712 			sp->sh_size = pltsz;
1713 			sp->sh_link = 0;
1714 			sp->sh_info = 0;
1715 			sp->sh_addralign = 4;
1716 			sp->sh_entsize = pltentsz;
1717 
1718 			if (Pread(P, &elfdata[off], sp->sh_size,
1719 			    d[DI_PLTGOT]->d_un.d_ptr) != sp->sh_size) {
1720 				free(elfdata);
1721 				dprintf("failed to read .plt\n");
1722 				goto bad32;
1723 			}
1724 			off += roundup(sp->sh_size, 4);
1725 			sp++;
1726 		}
1727 
1728 		free(dp);
1729 		goto good;
1730 
1731 bad32:
1732 		free(dp);
1733 		return (NULL);
1734 #ifdef _LP64
1735 	} else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1736 		Elf64_Ehdr ehdr, *ep;
1737 		Elf64_Phdr phdr;
1738 		Elf64_Shdr *sp;
1739 		Elf64_Dyn *dp;
1740 		Elf64_Dyn *d[DI_NENT] = { 0 };
1741 		uint_t phnum, i, dcount = 0;
1742 		uint64_t off;
1743 		size_t pltsz = 0, pltentsz;
1744 
1745 		if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1746 		    read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1747 			return (NULL);
1748 
1749 		if (ehdr.e_type == ET_DYN)
1750 			phdr.p_vaddr += addr;
1751 
1752 		if ((dp = malloc(phdr.p_filesz)) == NULL)
1753 			return (NULL);
1754 
1755 		if (Pread(P, dp, phdr.p_filesz, phdr.p_vaddr) !=
1756 		    phdr.p_filesz)
1757 			goto bad64;
1758 
1759 		for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1760 			switch (dp[i].d_tag) {
1761 			/*
1762 			 * For the .plt section.
1763 			 */
1764 			case DT_PLTGOT:
1765 				d[DI_PLTGOT] = &dp[i];
1766 				continue;
1767 			case DT_JMPREL:
1768 				d[DI_JMPREL] = &dp[i];
1769 				continue;
1770 			case DT_PLTRELSZ:
1771 				d[DI_PLTRELSZ] = &dp[i];
1772 				continue;
1773 			case DT_PLTREL:
1774 				d[DI_PLTREL] = &dp[i];
1775 				continue;
1776 			default:
1777 				continue;
1778 
1779 			/*
1780 			 * For the .dynsym section.
1781 			 */
1782 			case DT_SYMTAB:
1783 				d[DI_SYMTAB] = &dp[i];
1784 				break;
1785 			case DT_HASH:
1786 				d[DI_HASH] = &dp[i];
1787 				break;
1788 			case DT_SYMENT:
1789 				d[DI_SYMENT] = &dp[i];
1790 				break;
1791 
1792 			/*
1793 			 * For the .dynstr section.
1794 			 */
1795 			case DT_STRTAB:
1796 				d[DI_STRTAB] = &dp[i];
1797 				break;
1798 			case DT_STRSZ:
1799 				d[DI_STRSZ] = &dp[i];
1800 				break;
1801 			}
1802 
1803 			dcount++;
1804 		}
1805 
1806 		/*
1807 		 * We need all of those dynamic entries in order to put
1808 		 * together a complete set of elf sections, but we'll
1809 		 * let the PLT section slide if need be. The dynsym- and
1810 		 * dynstr-related dynamic entries are mandatory in both
1811 		 * executables and shared objects so if one of those is
1812 		 * missing, we're in some trouble and should abort.
1813 		 */
1814 		if (dcount + 4 != DI_NENT) {
1815 			dprintf("text section missing required dynamic "
1816 			    "entries\n");
1817 			goto bad64;
1818 		}
1819 
1820 		if (ehdr.e_type == ET_DYN) {
1821 			if (d[DI_PLTGOT] != NULL)
1822 				d[DI_PLTGOT]->d_un.d_ptr += addr;
1823 			if (d[DI_JMPREL] != NULL)
1824 				d[DI_JMPREL]->d_un.d_ptr += addr;
1825 			d[DI_SYMTAB]->d_un.d_ptr += addr;
1826 			d[DI_HASH]->d_un.d_ptr += addr;
1827 			d[DI_STRTAB]->d_un.d_ptr += addr;
1828 		}
1829 
1830 		/* elf header */
1831 		size = sizeof (Elf64_Ehdr);
1832 
1833 		/* program headers from in-core elf fragment */
1834 		size += phnum * ehdr.e_phentsize;
1835 
1836 		/* unused shdr, and .shstrtab section */
1837 		size += sizeof (Elf64_Shdr);
1838 		size += sizeof (Elf64_Shdr);
1839 		size += roundup(sizeof (shstr), 8);
1840 
1841 		/* .dynsym section */
1842 		size += sizeof (Elf64_Shdr);
1843 		if (Pread(P, &nchain, sizeof (nchain),
1844 		    d[DI_HASH]->d_un.d_ptr + 4) != sizeof (nchain))
1845 			goto bad64;
1846 		size += sizeof (Elf64_Sym) * nchain;
1847 
1848 		/* .dynstr section */
1849 		size += sizeof (Elf64_Shdr);
1850 		size += roundup(d[DI_STRSZ]->d_un.d_val, 8);
1851 
1852 		/* .dynamic section */
1853 		size += sizeof (Elf64_Shdr);
1854 		size += roundup(phdr.p_filesz, 8);
1855 
1856 		/* .plt section */
1857 		if (d[DI_PLTGOT] != NULL && d[DI_JMPREL] != NULL &&
1858 		    d[DI_PLTRELSZ] != NULL && d[DI_PLTREL] != NULL) {
1859 			uintptr_t penult, ult;
1860 			uintptr_t jmprel = d[DI_JMPREL]->d_un.d_ptr;
1861 			size_t pltrelsz = d[DI_PLTRELSZ]->d_un.d_val;
1862 
1863 			if (d[DI_PLTREL]->d_un.d_val == DT_RELA) {
1864 				uint_t ndx = pltrelsz / sizeof (Elf64_Rela) - 2;
1865 				Elf64_Rela r[2];
1866 
1867 				if (Pread(P, r, sizeof (r), jmprel +
1868 				    sizeof (r[0]) * ndx) != sizeof (r)) {
1869 					dprintf("Pread jmprel DT_RELA at %p "
1870 					    "failed\n",
1871 					    (void *)(jmprel +
1872 						sizeof (r[0]) * ndx));
1873 					goto bad64;
1874 				}
1875 
1876 				penult = r[0].r_offset;
1877 				ult = r[1].r_offset;
1878 
1879 			} else if (d[DI_PLTREL]->d_un.d_val == DT_REL) {
1880 				uint_t ndx = pltrelsz / sizeof (Elf64_Rel) - 2;
1881 				Elf64_Rel r[2];
1882 
1883 				if (Pread(P, r, sizeof (r), jmprel +
1884 				    sizeof (r[0]) * ndx) != sizeof (r)) {
1885 					dprintf("Pread jmprel DT_REL at %p "
1886 					    "failed\n",
1887 					    (void *)(jmprel +
1888 						sizeof (r[0]) * ndx));
1889 					goto bad64;
1890 				}
1891 
1892 				penult = r[0].r_offset;
1893 				ult = r[1].r_offset;
1894 			} else {
1895 				dprintf("DT_PLTREL value %p unknown\n",
1896 				    (void *)d[DI_PLTREL]->d_un.d_ptr);
1897 				goto bad64;
1898 			}
1899 
1900 			pltentsz = ult - penult;
1901 
1902 			if (ehdr.e_type == ET_DYN)
1903 				ult += addr;
1904 
1905 			pltsz = ult - d[DI_PLTGOT]->d_un.d_ptr + pltentsz;
1906 
1907 			size += sizeof (Elf64_Shdr);
1908 			size += roundup(pltsz, 8);
1909 		}
1910 
1911 		if ((elfdata = calloc(1, size)) == NULL)
1912 			goto bad64;
1913 
1914 		/* LINTED - alignment */
1915 		ep = (Elf64_Ehdr *)elfdata;
1916 		(void) memcpy(ep, &ehdr, offsetof(Elf64_Ehdr, e_phoff));
1917 
1918 		ep->e_ehsize = sizeof (Elf64_Ehdr);
1919 		ep->e_phoff = sizeof (Elf64_Ehdr);
1920 		ep->e_phentsize = ehdr.e_phentsize;
1921 		ep->e_phnum = phnum;
1922 		ep->e_shoff = ep->e_phoff + phnum * ep->e_phentsize;
1923 		ep->e_shentsize = sizeof (Elf64_Shdr);
1924 		ep->e_shnum = (pltsz == 0) ? 5 : 6;
1925 		ep->e_shstrndx = 1;
1926 
1927 		/* LINTED - alignment */
1928 		sp = (Elf64_Shdr *)(elfdata + ep->e_shoff);
1929 		off = ep->e_shoff + ep->e_shentsize * ep->e_shnum;
1930 
1931 		/*
1932 		 * Copying the program headers directly from the process's
1933 		 * address space is a little suspect, but since we only
1934 		 * use them for their address and size values, this is fine.
1935 		 */
1936 		if (Pread(P, &elfdata[ep->e_phoff], phnum * ep->e_phentsize,
1937 		    addr + ehdr.e_phoff) != phnum * ep->e_phentsize) {
1938 			free(elfdata);
1939 			goto bad64;
1940 		}
1941 
1942 		/*
1943 		 * The first elf section is always skipped.
1944 		 */
1945 		sp++;
1946 
1947 		/*
1948 		 * Section Header[1]  sh_name: .shstrtab
1949 		 */
1950 		sp->sh_name = 0;
1951 		sp->sh_type = SHT_STRTAB;
1952 		sp->sh_flags = SHF_STRINGS;
1953 		sp->sh_addr = 0;
1954 		sp->sh_offset = off;
1955 		sp->sh_size = sizeof (shstr);
1956 		sp->sh_link = 0;
1957 		sp->sh_info = 0;
1958 		sp->sh_addralign = 1;
1959 		sp->sh_entsize = 0;
1960 
1961 		(void) memcpy(&elfdata[off], shstr, sizeof (shstr));
1962 		off += roundup(sp->sh_size, 8);
1963 		sp++;
1964 
1965 		/*
1966 		 * Section Header[2]  sh_name: .dynsym
1967 		 */
1968 		sp->sh_name = 10;
1969 		sp->sh_type = SHT_DYNSYM;
1970 		sp->sh_flags = SHF_ALLOC;
1971 		sp->sh_addr = d[DI_SYMTAB]->d_un.d_ptr;
1972 		if (ehdr.e_type == ET_DYN)
1973 			sp->sh_addr -= addr;
1974 		sp->sh_offset = off;
1975 		sp->sh_size = nchain * sizeof (Elf64_Sym);
1976 		sp->sh_link = 3;
1977 		sp->sh_info = 1;
1978 		sp->sh_addralign = 8;
1979 		sp->sh_entsize = sizeof (Elf64_Sym);
1980 
1981 		if (Pread(P, &elfdata[off], sp->sh_size,
1982 		    d[DI_SYMTAB]->d_un.d_ptr) != sp->sh_size) {
1983 			free(elfdata);
1984 			goto bad64;
1985 		}
1986 
1987 		off += roundup(sp->sh_size, 8);
1988 		sp++;
1989 
1990 		/*
1991 		 * Section Header[3]  sh_name: .dynstr
1992 		 */
1993 		sp->sh_name = 18;
1994 		sp->sh_type = SHT_STRTAB;
1995 		sp->sh_flags = SHF_ALLOC | SHF_STRINGS;
1996 		sp->sh_addr = d[DI_STRTAB]->d_un.d_ptr;
1997 		if (ehdr.e_type == ET_DYN)
1998 			sp->sh_addr -= addr;
1999 		sp->sh_offset = off;
2000 		sp->sh_size = d[DI_STRSZ]->d_un.d_val;
2001 		sp->sh_link = 0;
2002 		sp->sh_info = 0;
2003 		sp->sh_addralign = 1;
2004 		sp->sh_entsize = 0;
2005 
2006 		if (Pread(P, &elfdata[off], sp->sh_size,
2007 		    d[DI_STRTAB]->d_un.d_ptr) != sp->sh_size) {
2008 			free(elfdata);
2009 			goto bad64;
2010 		}
2011 		off += roundup(sp->sh_size, 8);
2012 		sp++;
2013 
2014 		/*
2015 		 * Section Header[4]  sh_name: .dynamic
2016 		 */
2017 		sp->sh_name = 26;
2018 		sp->sh_type = SHT_DYNAMIC;
2019 		sp->sh_flags = SHF_WRITE | SHF_ALLOC;
2020 		sp->sh_addr = phdr.p_vaddr;
2021 		if (ehdr.e_type == ET_DYN)
2022 			sp->sh_addr -= addr;
2023 		sp->sh_offset = off;
2024 		sp->sh_size = phdr.p_filesz;
2025 		sp->sh_link = 3;
2026 		sp->sh_info = 0;
2027 		sp->sh_addralign = 8;
2028 		sp->sh_entsize = sizeof (Elf64_Dyn);
2029 
2030 		(void) memcpy(&elfdata[off], dp, sp->sh_size);
2031 		off += roundup(sp->sh_size, 8);
2032 		sp++;
2033 
2034 		/*
2035 		 * Section Header[5]  sh_name: .plt
2036 		 */
2037 		if (pltsz != 0) {
2038 			sp->sh_name = 35;
2039 			sp->sh_type = SHT_PROGBITS;
2040 			sp->sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR;
2041 			sp->sh_addr = d[DI_PLTGOT]->d_un.d_ptr;
2042 			if (ehdr.e_type == ET_DYN)
2043 				sp->sh_addr -= addr;
2044 			sp->sh_offset = off;
2045 			sp->sh_size = pltsz;
2046 			sp->sh_link = 0;
2047 			sp->sh_info = 0;
2048 			sp->sh_addralign = 8;
2049 			sp->sh_entsize = pltentsz;
2050 
2051 			if (Pread(P, &elfdata[off], sp->sh_size,
2052 			    d[DI_PLTGOT]->d_un.d_ptr) != sp->sh_size) {
2053 				free(elfdata);
2054 				goto bad64;
2055 			}
2056 			off += roundup(sp->sh_size, 8);
2057 			sp++;
2058 		}
2059 
2060 		free(dp);
2061 		goto good;
2062 
2063 bad64:
2064 		free(dp);
2065 		return (NULL);
2066 #endif	/* _LP64 */
2067 	}
2068 good:
2069 	if ((elf = elf_memory(elfdata, size)) == NULL) {
2070 		free(elfdata);
2071 		return (NULL);
2072 	}
2073 
2074 	fptr->file_elfmem = elfdata;
2075 
2076 	return (elf);
2077 }
2078 
2079 /*
2080  * We wouldn't need these if qsort(3C) took an argument for the callback...
2081  */
2082 static mutex_t sort_mtx = DEFAULTMUTEX;
2083 static char *sort_strs;
2084 static GElf_Sym *sort_syms;
2085 
2086 int
2087 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname)
2088 {
2089 	if (a->st_value < b->st_value)
2090 		return (-1);
2091 	if (a->st_value > b->st_value)
2092 		return (1);
2093 
2094 	/*
2095 	 * Prefer the function to the non-function.
2096 	 */
2097 	if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) {
2098 		if (GELF_ST_TYPE(a->st_info) == STT_FUNC)
2099 			return (-1);
2100 		if (GELF_ST_TYPE(b->st_info) == STT_FUNC)
2101 			return (1);
2102 	}
2103 
2104 	/*
2105 	 * Prefer the weak or strong global symbol to the local symbol.
2106 	 */
2107 	if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) {
2108 		if (GELF_ST_BIND(b->st_info) == STB_LOCAL)
2109 			return (-1);
2110 		if (GELF_ST_BIND(a->st_info) == STB_LOCAL)
2111 			return (1);
2112 	}
2113 
2114 	/*
2115 	 * Prefer the symbol that doesn't begin with a '$' since compilers and
2116 	 * other symbol generators often use it as a prefix.
2117 	 */
2118 	if (*bname == '$')
2119 		return (-1);
2120 	if (*aname == '$')
2121 		return (1);
2122 
2123 	/*
2124 	 * Prefer the name with fewer leading underscores in the name.
2125 	 */
2126 	while (*aname == '_' && *bname == '_') {
2127 		aname++;
2128 		bname++;
2129 	}
2130 
2131 	if (*bname == '_')
2132 		return (-1);
2133 	if (*aname == '_')
2134 		return (1);
2135 
2136 	/*
2137 	 * Prefer the symbol with the smaller size.
2138 	 */
2139 	if (a->st_size < b->st_size)
2140 		return (-1);
2141 	if (a->st_size > b->st_size)
2142 		return (1);
2143 
2144 	/*
2145 	 * All other factors being equal, fall back to lexicographic order.
2146 	 */
2147 	return (strcmp(aname, bname));
2148 }
2149 
2150 static int
2151 byaddr_cmp(const void *aa, const void *bb)
2152 {
2153 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
2154 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
2155 	char *aname = sort_strs + a->st_name;
2156 	char *bname = sort_strs + b->st_name;
2157 
2158 	return (byaddr_cmp_common(a, aname, b, bname));
2159 }
2160 
2161 static int
2162 byname_cmp(const void *aa, const void *bb)
2163 {
2164 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
2165 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
2166 	char *aname = sort_strs + a->st_name;
2167 	char *bname = sort_strs + b->st_name;
2168 
2169 	return (strcmp(aname, bname));
2170 }
2171 
2172 void
2173 optimize_symtab(sym_tbl_t *symtab)
2174 {
2175 	GElf_Sym *symp, *syms;
2176 	uint_t i, *indexa, *indexb;
2177 	Elf_Data *data;
2178 	size_t symn, strsz, count;
2179 
2180 	if (symtab == NULL || symtab->sym_data == NULL ||
2181 	    symtab->sym_byaddr != NULL)
2182 		return;
2183 
2184 	data = symtab->sym_data;
2185 	symn = symtab->sym_symn;
2186 	strsz = symtab->sym_strsz;
2187 
2188 	symp = syms = malloc(sizeof (GElf_Sym) * symn);
2189 
2190 	/*
2191 	 * First record all the symbols into a table and count up the ones
2192 	 * that we're interested in. We mark symbols as invalid by setting
2193 	 * the st_name to an illegal value.
2194 	 */
2195 	for (i = 0, count = 0; i < symn; i++, symp++) {
2196 		if (gelf_getsym(data, i, symp) != NULL &&
2197 		    symp->st_name < strsz &&
2198 		    IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info)))
2199 			count++;
2200 		else
2201 			symp->st_name = strsz;
2202 	}
2203 
2204 	/*
2205 	 * Allocate sufficient space for both tables and populate them
2206 	 * with the same symbols we just counted.
2207 	 */
2208 	symtab->sym_count = count;
2209 	indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count);
2210 	indexb = symtab->sym_byname = calloc(sizeof (uint_t), count);
2211 
2212 	for (i = 0, symp = syms; i < symn; i++, symp++) {
2213 		if (symp->st_name < strsz)
2214 			*indexa++ = *indexb++ = i;
2215 	}
2216 
2217 	/*
2218 	 * Sort the two tables according to the appropriate criteria.
2219 	 */
2220 	(void) mutex_lock(&sort_mtx);
2221 	sort_strs = symtab->sym_strs;
2222 	sort_syms = syms;
2223 
2224 	qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp);
2225 	qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp);
2226 
2227 	sort_strs = NULL;
2228 	sort_syms = NULL;
2229 	(void) mutex_unlock(&sort_mtx);
2230 
2231 	free(syms);
2232 }
2233 
2234 /*
2235  * Build the symbol table for the given mapped file.
2236  */
2237 void
2238 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr)
2239 {
2240 	char objectfile[PATH_MAX];
2241 	uint_t i;
2242 
2243 	GElf_Ehdr ehdr;
2244 	GElf_Sym s;
2245 
2246 	Elf_Data *shdata;
2247 	Elf_Scn *scn;
2248 	Elf *elf;
2249 	size_t nshdrs, shstrndx;
2250 
2251 	struct {
2252 		GElf_Shdr c_shdr;
2253 		Elf_Data *c_data;
2254 		const char *c_name;
2255 	} *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL;
2256 
2257 	if (fptr->file_init)
2258 		return;	/* We've already processed this file */
2259 
2260 	/*
2261 	 * Mark the file_info struct as having the symbol table initialized
2262 	 * even if we fail below.  We tried once; we don't try again.
2263 	 */
2264 	fptr->file_init = 1;
2265 
2266 	if (elf_version(EV_CURRENT) == EV_NONE) {
2267 		dprintf("libproc ELF version is more recent than libelf\n");
2268 		return;
2269 	}
2270 
2271 	if (P->state == PS_DEAD || P->state == PS_IDLE) {
2272 		/*
2273 		 * If we're a not live, we can't open files from the /proc
2274 		 * object directory; we have only the mapping and file names
2275 		 * to guide us.  We prefer the file_lname, but need to handle
2276 		 * the case of it being NULL in order to bootstrap: we first
2277 		 * come here during rd_new() when the only information we have
2278 		 * is interpreter name associated with the AT_BASE mapping.
2279 		 */
2280 		(void) snprintf(objectfile, sizeof (objectfile), "%s",
2281 		    fptr->file_lname ? fptr->file_lname : fptr->file_pname);
2282 	} else {
2283 		(void) snprintf(objectfile, sizeof (objectfile),
2284 		    "%s/%d/object/%s",
2285 		    procfs_path, (int)P->pid, fptr->file_pname);
2286 	}
2287 
2288 	/*
2289 	 * Open the object file, create the elf file, and then get the elf
2290 	 * header and .shstrtab data buffer so we can process sections by
2291 	 * name. If anything goes wrong try to fake up an elf file from
2292 	 * the in-core elf image.
2293 	 */
2294 	if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) {
2295 		dprintf("Pbuild_file_symtab: failed to open %s: %s\n",
2296 		    objectfile, strerror(errno));
2297 
2298 		if ((elf = fake_elf(P, fptr)) == NULL ||
2299 		    elf_kind(elf) != ELF_K_ELF ||
2300 		    gelf_getehdr(elf, &ehdr) == NULL ||
2301 		    elf_getshnum(elf, &nshdrs) == 0 ||
2302 		    elf_getshstrndx(elf, &shstrndx) == 0 ||
2303 		    (scn = elf_getscn(elf, shstrndx)) == NULL ||
2304 		    (shdata = elf_getdata(scn, NULL)) == NULL) {
2305 			dprintf("failed to fake up ELF file\n");
2306 			return;
2307 		}
2308 
2309 	} else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL ||
2310 	    elf_kind(elf) != ELF_K_ELF ||
2311 	    gelf_getehdr(elf, &ehdr) == NULL ||
2312 	    elf_getshnum(elf, &nshdrs) == 0 ||
2313 	    elf_getshstrndx(elf, &shstrndx) == 0 ||
2314 	    (scn = elf_getscn(elf, shstrndx)) == NULL ||
2315 	    (shdata = elf_getdata(scn, NULL)) == NULL) {
2316 		int err = elf_errno();
2317 
2318 		dprintf("failed to process ELF file %s: %s\n",
2319 		    objectfile, (err == 0) ? "<null>" : elf_errmsg(err));
2320 
2321 		if ((elf = fake_elf(P, fptr)) == NULL ||
2322 		    elf_kind(elf) != ELF_K_ELF ||
2323 		    gelf_getehdr(elf, &ehdr) == NULL ||
2324 		    elf_getshnum(elf, &nshdrs) == 0 ||
2325 		    elf_getshstrndx(elf, &shstrndx) == 0 ||
2326 		    (scn = elf_getscn(elf, shstrndx)) == NULL ||
2327 		    (shdata = elf_getdata(scn, NULL)) == NULL) {
2328 			dprintf("failed to fake up ELF file\n");
2329 			goto bad;
2330 		}
2331 
2332 	} else if (file_differs(P, elf, fptr)) {
2333 		Elf *newelf;
2334 
2335 		/*
2336 		 * Before we get too excited about this elf file, we'll check
2337 		 * its checksum value against the value we have in memory. If
2338 		 * they don't agree, we try to fake up a new elf file and
2339 		 * proceed with that instead.
2340 		 */
2341 
2342 		dprintf("ELF file %s (%lx) doesn't match in-core image\n",
2343 		    fptr->file_pname,
2344 		    (ulong_t)fptr->file_map->map_pmap.pr_vaddr);
2345 
2346 		if ((newelf = fake_elf(P, fptr)) == NULL ||
2347 		    elf_kind(newelf) != ELF_K_ELF ||
2348 		    gelf_getehdr(newelf, &ehdr) == NULL ||
2349 		    elf_getshnum(newelf, &nshdrs) == 0 ||
2350 		    elf_getshstrndx(newelf, &shstrndx) == 0 ||
2351 		    (scn = elf_getscn(newelf, shstrndx)) == NULL ||
2352 		    (shdata = elf_getdata(scn, NULL)) == NULL) {
2353 			dprintf("failed to fake up ELF file\n");
2354 		} else {
2355 			(void) elf_end(elf);
2356 			elf = newelf;
2357 
2358 			dprintf("switched to faked up ELF file\n");
2359 		}
2360 	}
2361 
2362 	if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) {
2363 		dprintf("failed to malloc section cache for %s\n", objectfile);
2364 		goto bad;
2365 	}
2366 
2367 	dprintf("processing ELF file %s\n", objectfile);
2368 	fptr->file_class = ehdr.e_ident[EI_CLASS];
2369 	fptr->file_etype = ehdr.e_type;
2370 	fptr->file_elf = elf;
2371 	fptr->file_shstrs = shdata->d_buf;
2372 	fptr->file_shstrsz = shdata->d_size;
2373 
2374 	/*
2375 	 * Iterate through each section, caching its section header, data
2376 	 * pointer, and name.  We use this for handling sh_link values below.
2377 	 */
2378 	for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) {
2379 		if (gelf_getshdr(scn, &cp->c_shdr) == NULL) {
2380 			dprintf("Pbuild_file_symtab: Failed to get section "
2381 			    "header\n");
2382 			goto bad; /* Failed to get section header */
2383 		}
2384 
2385 		if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) {
2386 			dprintf("Pbuild_file_symtab: Failed to get section "
2387 			    "data\n");
2388 			goto bad; /* Failed to get section data */
2389 		}
2390 
2391 		if (cp->c_shdr.sh_name >= shdata->d_size) {
2392 			dprintf("Pbuild_file_symtab: corrupt section name");
2393 			goto bad; /* Corrupt section name */
2394 		}
2395 
2396 		cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name;
2397 	}
2398 
2399 	/*
2400 	 * Now iterate through the section cache in order to locate info
2401 	 * for the .symtab, .dynsym, .dynamic, .plt, and .SUNW_ctf sections:
2402 	 */
2403 	for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) {
2404 		GElf_Shdr *shp = &cp->c_shdr;
2405 
2406 		if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) {
2407 			sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ?
2408 			    &fptr->file_symtab : &fptr->file_dynsym;
2409 			/*
2410 			 * It's possible that the we already got the symbol
2411 			 * table from the core file itself. Either the file
2412 			 * differs in which case our faked up elf file will
2413 			 * only contain the dynsym (not the symtab) or the
2414 			 * file matches in which case we'll just be replacing
2415 			 * the symbol table we pulled out of the core file
2416 			 * with an equivalent one. In either case, this
2417 			 * check isn't essential, but it's a good idea.
2418 			 */
2419 			if (symp->sym_data == NULL) {
2420 				dprintf("Symbol table found for %s\n",
2421 				    objectfile);
2422 				symp->sym_data = cp->c_data;
2423 				symp->sym_symn = shp->sh_size / shp->sh_entsize;
2424 				symp->sym_strs =
2425 				    cache[shp->sh_link].c_data->d_buf;
2426 				symp->sym_strsz =
2427 				    cache[shp->sh_link].c_data->d_size;
2428 				symp->sym_hdr = cp->c_shdr;
2429 				symp->sym_strhdr = cache[shp->sh_link].c_shdr;
2430 			} else {
2431 				dprintf("Symbol table already there for %s\n",
2432 				    objectfile);
2433 			}
2434 
2435 		} else if (shp->sh_type == SHT_DYNAMIC) {
2436 			dyn = cp;
2437 		} else if (strcmp(cp->c_name, ".plt") == 0) {
2438 			plt = cp;
2439 		} else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) {
2440 			/*
2441 			 * Skip over bogus CTF sections so they don't come back
2442 			 * to haunt us later.
2443 			 */
2444 			if (shp->sh_link == 0 ||
2445 			    shp->sh_link >= nshdrs ||
2446 			    (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM &&
2447 			    cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) {
2448 				dprintf("Bad sh_link %d for "
2449 				    "CTF\n", shp->sh_link);
2450 				continue;
2451 			}
2452 			ctf = cp;
2453 		}
2454 	}
2455 
2456 	/*
2457 	 * At this point, we've found all the symbol tables we're ever going
2458 	 * to find: the ones in the loop above and possibly the symtab that
2459 	 * was included in the core file. Before we perform any lookups, we
2460 	 * create sorted versions to optimize for lookups.
2461 	 */
2462 	optimize_symtab(&fptr->file_symtab);
2463 	optimize_symtab(&fptr->file_dynsym);
2464 
2465 	/*
2466 	 * Fill in the base address of the text mapping for shared libraries.
2467 	 * This allows us to translate symbols before librtld_db is ready.
2468 	 */
2469 	if (fptr->file_etype == ET_DYN) {
2470 		fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr -
2471 		    fptr->file_map->map_pmap.pr_offset;
2472 		dprintf("setting file_dyn_base for %s to %lx\n",
2473 		    objectfile, (long)fptr->file_dyn_base);
2474 	}
2475 
2476 	/*
2477 	 * Record the CTF section information in the file info structure.
2478 	 */
2479 	if (ctf != NULL) {
2480 		fptr->file_ctf_off = ctf->c_shdr.sh_offset;
2481 		fptr->file_ctf_size = ctf->c_shdr.sh_size;
2482 		if (ctf->c_shdr.sh_link != 0 &&
2483 		    cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM)
2484 			fptr->file_ctf_dyn = 1;
2485 	}
2486 
2487 	if (fptr->file_lo == NULL)
2488 		goto done; /* Nothing else to do if no load object info */
2489 
2490 	/*
2491 	 * If the object is a shared library and we have a different rl_base
2492 	 * value, reset file_dyn_base according to librtld_db's information.
2493 	 */
2494 	if (fptr->file_etype == ET_DYN &&
2495 	    fptr->file_lo->rl_base != fptr->file_dyn_base) {
2496 		dprintf("resetting file_dyn_base for %s to %lx\n",
2497 		    objectfile, (long)fptr->file_lo->rl_base);
2498 		fptr->file_dyn_base = fptr->file_lo->rl_base;
2499 	}
2500 
2501 	/*
2502 	 * Fill in the PLT information for this file if a PLT symbol is found.
2503 	 */
2504 	if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s,
2505 	    NULL) != NULL) {
2506 		fptr->file_plt_base = s.st_value + fptr->file_dyn_base;
2507 		fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0;
2508 
2509 		/*
2510 		 * Bring the load object up to date; it is the only way the
2511 		 * user has to access the PLT data. The PLT information in the
2512 		 * rd_loadobj_t is not set in the call to map_iter() (the
2513 		 * callback for rd_loadobj_iter) where we set file_lo.
2514 		 */
2515 		fptr->file_lo->rl_plt_base = fptr->file_plt_base;
2516 		fptr->file_lo->rl_plt_size = fptr->file_plt_size;
2517 
2518 		dprintf("PLT found at %p, size = %lu\n",
2519 		    (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size);
2520 	}
2521 
2522 	/*
2523 	 * Fill in the PLT information.
2524 	 */
2525 	if (dyn != NULL) {
2526 		uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base;
2527 		size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize;
2528 		GElf_Dyn d;
2529 
2530 		for (i = 0; i < ndyn; i++) {
2531 			if (gelf_getdyn(dyn->c_data, i, &d) != NULL &&
2532 			    d.d_tag == DT_JMPREL) {
2533 				dprintf("DT_JMPREL is %p\n",
2534 				    (void *)(uintptr_t)d.d_un.d_ptr);
2535 				fptr->file_jmp_rel =
2536 				    d.d_un.d_ptr + fptr->file_dyn_base;
2537 				break;
2538 			}
2539 		}
2540 
2541 		dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n",
2542 		    (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel);
2543 	}
2544 
2545 done:
2546 	free(cache);
2547 	return;
2548 
2549 bad:
2550 	if (cache != NULL)
2551 		free(cache);
2552 
2553 	(void) elf_end(elf);
2554 	fptr->file_elf = NULL;
2555 	if (fptr->file_elfmem != NULL) {
2556 		free(fptr->file_elfmem);
2557 		fptr->file_elfmem = NULL;
2558 	}
2559 	(void) close(fptr->file_fd);
2560 	fptr->file_fd = -1;
2561 }
2562 
2563 /*
2564  * Given a process virtual address, return the map_info_t containing it.
2565  * If none found, return NULL.
2566  */
2567 map_info_t *
2568 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr)
2569 {
2570 	int lo = 0;
2571 	int hi = P->map_count - 1;
2572 	int mid;
2573 	map_info_t *mp;
2574 
2575 	while (lo <= hi) {
2576 
2577 		mid = (lo + hi) / 2;
2578 		mp = &P->mappings[mid];
2579 
2580 		/* check that addr is in [vaddr, vaddr + size) */
2581 		if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size)
2582 			return (mp);
2583 
2584 		if (addr < mp->map_pmap.pr_vaddr)
2585 			hi = mid - 1;
2586 		else
2587 			lo = mid + 1;
2588 	}
2589 
2590 	return (NULL);
2591 }
2592 
2593 /*
2594  * Return the map_info_t for the executable file.
2595  * If not found, return NULL.
2596  */
2597 static map_info_t *
2598 exec_map(struct ps_prochandle *P)
2599 {
2600 	uint_t i;
2601 	map_info_t *mptr;
2602 	map_info_t *mold = NULL;
2603 	file_info_t *fptr;
2604 	uintptr_t base;
2605 
2606 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2607 		if (mptr->map_pmap.pr_mapname[0] == '\0')
2608 			continue;
2609 		if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) {
2610 			if ((fptr = mptr->map_file) != NULL &&
2611 			    fptr->file_lo != NULL) {
2612 				base = fptr->file_lo->rl_base;
2613 				if (base >= mptr->map_pmap.pr_vaddr &&
2614 				    base < mptr->map_pmap.pr_vaddr +
2615 				    mptr->map_pmap.pr_size)	/* text space */
2616 					return (mptr);
2617 				mold = mptr;	/* must be the data */
2618 				continue;
2619 			}
2620 			/* This is a poor way to test for text space */
2621 			if (!(mptr->map_pmap.pr_mflags & MA_EXEC) ||
2622 			    (mptr->map_pmap.pr_mflags & MA_WRITE)) {
2623 				mold = mptr;
2624 				continue;
2625 			}
2626 			return (mptr);
2627 		}
2628 	}
2629 
2630 	return (mold);
2631 }
2632 
2633 /*
2634  * Given a shared object name, return the map_info_t for it.  If no matching
2635  * object is found, return NULL.  Normally, the link maps contain the full
2636  * object pathname, e.g. /usr/lib/libc.so.1.  We allow the object name to
2637  * take one of the following forms:
2638  *
2639  * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1"
2640  * 2. An exact basename match: "libc.so.1"
2641  * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc"
2642  * 4. The literal string "a.out" is an alias for the executable mapping
2643  *
2644  * The third case is a convenience for callers and may not be necessary.
2645  *
2646  * As the exact same object name may be loaded on different link maps (see
2647  * dlmopen(3DL)), we also allow the caller to resolve the object name by
2648  * specifying a particular link map id.  If lmid is PR_LMID_EVERY, the
2649  * first matching name will be returned, regardless of the link map id.
2650  */
2651 static map_info_t *
2652 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname)
2653 {
2654 	map_info_t *mp;
2655 	file_info_t *fp;
2656 	size_t objlen;
2657 	uint_t i;
2658 
2659 	/*
2660 	 * If we have no rtld_db, then always treat a request as one for all
2661 	 * link maps.
2662 	 */
2663 	if (P->rap == NULL)
2664 		lmid = PR_LMID_EVERY;
2665 
2666 	/*
2667 	 * First pass: look for exact matches of the entire pathname or
2668 	 * basename (cases 1 and 2 above):
2669 	 */
2670 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2671 
2672 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2673 		    (fp = mp->map_file) == NULL || fp->file_lname == NULL)
2674 			continue;
2675 
2676 		if (lmid != PR_LMID_EVERY &&
2677 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2678 			continue;
2679 
2680 		/*
2681 		 * If we match, return the primary text mapping; otherwise
2682 		 * just return the mapping we matched.
2683 		 */
2684 		if (strcmp(fp->file_lname, objname) == 0 ||
2685 		    strcmp(fp->file_lbase, objname) == 0)
2686 			return (fp->file_map ? fp->file_map : mp);
2687 	}
2688 
2689 	objlen = strlen(objname);
2690 
2691 	/*
2692 	 * Second pass: look for partial matches (case 3 above):
2693 	 */
2694 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2695 
2696 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2697 		    (fp = mp->map_file) == NULL || fp->file_lname == NULL)
2698 			continue;
2699 
2700 		if (lmid != PR_LMID_EVERY &&
2701 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2702 			continue;
2703 
2704 		/*
2705 		 * If we match, return the primary text mapping; otherwise
2706 		 * just return the mapping we matched.
2707 		 */
2708 		if (strncmp(fp->file_lbase, objname, objlen) == 0 &&
2709 		    fp->file_lbase[objlen] == '.')
2710 			return (fp->file_map ? fp->file_map : mp);
2711 	}
2712 
2713 	/*
2714 	 * One last check: we allow "a.out" to always alias the executable,
2715 	 * assuming this name was not in use for something else.
2716 	 */
2717 	if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) &&
2718 	    (strcmp(objname, "a.out") == 0))
2719 		return (P->map_exec);
2720 
2721 	return (NULL);
2722 }
2723 
2724 static map_info_t *
2725 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
2726 {
2727 	map_info_t *mptr;
2728 
2729 	if (!P->info_valid)
2730 		Pupdate_maps(P);
2731 
2732 	if (P->map_exec == NULL && ((mptr = Paddr2mptr(P,
2733 	    Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL))
2734 		P->map_exec = mptr;
2735 
2736 	if (P->map_ldso == NULL && (mptr = Paddr2mptr(P,
2737 	    Pgetauxval(P, AT_BASE))) != NULL)
2738 		P->map_ldso = mptr;
2739 
2740 	if (name == PR_OBJ_EXEC)
2741 		mptr = P->map_exec;
2742 	else if (name == PR_OBJ_LDSO)
2743 		mptr = P->map_ldso;
2744 	else if (Prd_agent(P) != NULL || P->state == PS_IDLE)
2745 		mptr = object_to_map(P, lmid, name);
2746 	else
2747 		mptr = NULL;
2748 
2749 	return (mptr);
2750 }
2751 
2752 /*
2753  * When two symbols are found by address, decide which one is to be preferred.
2754  */
2755 static GElf_Sym *
2756 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2)
2757 {
2758 	/*
2759 	 * Prefer the non-NULL symbol.
2760 	 */
2761 	if (sym1 == NULL)
2762 		return (sym2);
2763 	if (sym2 == NULL)
2764 		return (sym1);
2765 
2766 	/*
2767 	 * Defer to the sort ordering...
2768 	 */
2769 	return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2);
2770 }
2771 
2772 /*
2773  * Look up a symbol by address in the specified symbol table.
2774  * Adjustment to 'addr' must already have been made for the
2775  * offset of the symbol if this is a dynamic library symbol table.
2776  */
2777 static GElf_Sym *
2778 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp)
2779 {
2780 	Elf_Data *data = symtab->sym_data;
2781 	GElf_Sym sym, osym;
2782 	uint_t i, oid, *byaddr = symtab->sym_byaddr;
2783 	int min, max, mid, omid, found = 0;
2784 
2785 	if (data == NULL)
2786 		return (NULL);
2787 
2788 	min = 0;
2789 	max = symtab->sym_count - 1;
2790 	osym.st_value = 0;
2791 
2792 	/*
2793 	 * We can't return when we've found a match, we have to continue
2794 	 * searching for the closest matching symbol.
2795 	 */
2796 	while (min <= max) {
2797 		mid = (max + min) / 2;
2798 
2799 		i = byaddr[mid];
2800 		(void) gelf_getsym(data, i, &sym);
2801 
2802 		if (addr >= sym.st_value &&
2803 		    addr < sym.st_value + sym.st_size &&
2804 		    (!found || sym.st_value > osym.st_value)) {
2805 			osym = sym;
2806 			omid = mid;
2807 			oid = i;
2808 			found = 1;
2809 		}
2810 
2811 		if (addr < sym.st_value)
2812 			max = mid - 1;
2813 		else
2814 			min = mid + 1;
2815 	}
2816 
2817 	if (!found)
2818 		return (NULL);
2819 
2820 	/*
2821 	 * There may be many symbols with identical values so we walk
2822 	 * backward in the byaddr table to find the best match.
2823 	 */
2824 	do {
2825 		sym = osym;
2826 		i = oid;
2827 
2828 		if (omid == 0)
2829 			break;
2830 
2831 		oid = byaddr[--omid];
2832 		(void) gelf_getsym(data, oid, &osym);
2833 	} while (addr >= osym.st_value &&
2834 	    addr < sym.st_value + osym.st_size &&
2835 	    osym.st_value == sym.st_value);
2836 
2837 	*symp = sym;
2838 	if (idp != NULL)
2839 		*idp = i;
2840 	return (symp);
2841 }
2842 
2843 /*
2844  * Look up a symbol by name in the specified symbol table.
2845  */
2846 static GElf_Sym *
2847 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp)
2848 {
2849 	Elf_Data *data = symtab->sym_data;
2850 	char *strs = symtab->sym_strs;
2851 	uint_t i, *byname = symtab->sym_byname;
2852 	int min, mid, max, cmp;
2853 
2854 	if (data == NULL || strs == NULL)
2855 		return (NULL);
2856 
2857 	min = 0;
2858 	max = symtab->sym_count - 1;
2859 
2860 	while (min <= max) {
2861 		mid = (max + min) / 2;
2862 
2863 		i = byname[mid];
2864 		(void) gelf_getsym(data, i, symp);
2865 
2866 		if ((cmp = strcmp(name, strs + symp->st_name)) == 0) {
2867 			if (idp != NULL)
2868 				*idp = i;
2869 			return (symp);
2870 		}
2871 
2872 		if (cmp < 0)
2873 			max = mid - 1;
2874 		else
2875 			min = mid + 1;
2876 	}
2877 
2878 	return (NULL);
2879 }
2880 
2881 /*
2882  * Search the process symbol tables looking for a symbol whose
2883  * value to value+size contain the address specified by addr.
2884  * Return values are:
2885  *	sym_name_buffer containing the symbol name
2886  *	GElf_Sym symbol table entry
2887  *	prsyminfo_t ancillary symbol information
2888  * Returns 0 on success, -1 on failure.
2889  */
2890 int
2891 Pxlookup_by_addr(
2892 	struct ps_prochandle *P,
2893 	uintptr_t addr,			/* process address being sought */
2894 	char *sym_name_buffer,		/* buffer for the symbol name */
2895 	size_t bufsize,			/* size of sym_name_buffer */
2896 	GElf_Sym *symbolp,		/* returned symbol table entry */
2897 	prsyminfo_t *sip)		/* returned symbol info */
2898 {
2899 	GElf_Sym	*symp;
2900 	char		*name;
2901 	GElf_Sym	sym1, *sym1p = NULL;
2902 	GElf_Sym	sym2, *sym2p = NULL;
2903 	char		*name1 = NULL;
2904 	char		*name2 = NULL;
2905 	uint_t		i1;
2906 	uint_t		i2;
2907 	map_info_t	*mptr;
2908 	file_info_t	*fptr;
2909 
2910 	(void) Prd_agent(P);
2911 
2912 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||	/* no such address */
2913 	    (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2914 	    fptr->file_elf == NULL)			/* not an ELF file */
2915 		return (-1);
2916 
2917 	/*
2918 	 * Adjust the address by the load object base address in
2919 	 * case the address turns out to be in a shared library.
2920 	 */
2921 	addr -= fptr->file_dyn_base;
2922 
2923 	/*
2924 	 * Search both symbol tables, symtab first, then dynsym.
2925 	 */
2926 	if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL)
2927 		name1 = fptr->file_symtab.sym_strs + sym1.st_name;
2928 	if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL)
2929 		name2 = fptr->file_dynsym.sym_strs + sym2.st_name;
2930 
2931 	if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL)
2932 		return (-1);
2933 
2934 	name = (symp == sym1p) ? name1 : name2;
2935 	if (bufsize > 0) {
2936 		(void) strncpy(sym_name_buffer, name, bufsize);
2937 		sym_name_buffer[bufsize - 1] = '\0';
2938 	}
2939 
2940 	*symbolp = *symp;
2941 	if (sip != NULL) {
2942 		sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer;
2943 		sip->prs_object = fptr->file_lbase;
2944 		sip->prs_id = (symp == sym1p) ? i1 : i2;
2945 		sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM;
2946 		sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE :
2947 		    fptr->file_lo->rl_lmident;
2948 	}
2949 
2950 	if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS)
2951 		symbolp->st_value += fptr->file_dyn_base;
2952 
2953 	return (0);
2954 }
2955 
2956 int
2957 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf, size_t size,
2958     GElf_Sym *symp)
2959 {
2960 	return (Pxlookup_by_addr(P, addr, buf, size, symp, NULL));
2961 }
2962 
2963 /*
2964  * Search the process symbol tables looking for a symbol whose name matches the
2965  * specified name and whose object and link map optionally match the specified
2966  * parameters.  On success, the function returns 0 and fills in the GElf_Sym
2967  * symbol table entry.  On failure, -1 is returned.
2968  */
2969 int
2970 Pxlookup_by_name(
2971 	struct ps_prochandle *P,
2972 	Lmid_t lmid,			/* link map to match, or -1 for any */
2973 	const char *oname,		/* load object name */
2974 	const char *sname,		/* symbol name */
2975 	GElf_Sym *symp,			/* returned symbol table entry */
2976 	prsyminfo_t *sip)		/* returned symbol info */
2977 {
2978 	map_info_t *mptr;
2979 	file_info_t *fptr;
2980 	int cnt;
2981 
2982 	GElf_Sym sym;
2983 	prsyminfo_t si;
2984 	int rv = -1;
2985 	uint_t id;
2986 
2987 	if (oname == PR_OBJ_EVERY) {
2988 		/* create all the file_info_t's for all the mappings */
2989 		(void) Prd_agent(P);
2990 		cnt = P->num_files;
2991 		fptr = list_next(&P->file_head);
2992 	} else {
2993 		cnt = 1;
2994 		if ((mptr = object_name_to_map(P, lmid, oname)) == NULL ||
2995 		    (fptr = build_map_symtab(P, mptr)) == NULL)
2996 			return (-1);
2997 	}
2998 
2999 	/*
3000 	 * Iterate through the loaded object files and look for the symbol
3001 	 * name in the .symtab and .dynsym of each.  If we encounter a match
3002 	 * with SHN_UNDEF, keep looking in hopes of finding a better match.
3003 	 * This means that a name such as "puts" will match the puts function
3004 	 * in libc instead of matching the puts PLT entry in the a.out file.
3005 	 */
3006 	for (; cnt > 0; cnt--, fptr = list_next(fptr)) {
3007 		Pbuild_file_symtab(P, fptr);
3008 
3009 		if (fptr->file_elf == NULL)
3010 			continue;
3011 
3012 		if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL &&
3013 		    lmid != fptr->file_lo->rl_lmident)
3014 			continue;
3015 
3016 		if (fptr->file_symtab.sym_data != NULL &&
3017 		    sym_by_name(&fptr->file_symtab, sname, symp, &id)) {
3018 			if (sip != NULL) {
3019 				sip->prs_id = id;
3020 				sip->prs_table = PR_SYMTAB;
3021 				sip->prs_object = oname;
3022 				sip->prs_name = sname;
3023 				sip->prs_lmid = fptr->file_lo == NULL ?
3024 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
3025 			}
3026 		} else if (fptr->file_dynsym.sym_data != NULL &&
3027 		    sym_by_name(&fptr->file_dynsym, sname, symp, &id)) {
3028 			if (sip != NULL) {
3029 				sip->prs_id = id;
3030 				sip->prs_table = PR_DYNSYM;
3031 				sip->prs_object = oname;
3032 				sip->prs_name = sname;
3033 				sip->prs_lmid = fptr->file_lo == NULL ?
3034 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
3035 			}
3036 		} else {
3037 			continue;
3038 		}
3039 
3040 		if (GELF_ST_TYPE(symp->st_info) != STT_TLS)
3041 			symp->st_value += fptr->file_dyn_base;
3042 
3043 		if (symp->st_shndx != SHN_UNDEF)
3044 			return (0);
3045 
3046 		if (rv != 0) {
3047 			if (sip != NULL)
3048 				si = *sip;
3049 			sym = *symp;
3050 			rv = 0;
3051 		}
3052 	}
3053 
3054 	if (rv == 0) {
3055 		if (sip != NULL)
3056 			*sip = si;
3057 		*symp = sym;
3058 	}
3059 
3060 	return (rv);
3061 }
3062 
3063 /*
3064  * Search the process symbol tables looking for a symbol whose name matches the
3065  * specified name, but without any restriction on the link map id.
3066  */
3067 int
3068 Plookup_by_name(struct ps_prochandle *P, const char *object,
3069 	const char *symbol, GElf_Sym *symp)
3070 {
3071 	return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL));
3072 }
3073 
3074 /*
3075  * Iterate over the process's address space mappings.
3076  */
3077 int
3078 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
3079 {
3080 	map_info_t *mptr;
3081 	file_info_t *fptr;
3082 	char *object_name;
3083 	int rc = 0;
3084 	int i;
3085 
3086 	/* create all the file_info_t's for all the mappings */
3087 	(void) Prd_agent(P);
3088 
3089 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
3090 		if ((fptr = mptr->map_file) == NULL)
3091 			object_name = NULL;
3092 		else
3093 			object_name = fptr->file_lname;
3094 		if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0)
3095 			return (rc);
3096 	}
3097 	return (0);
3098 }
3099 
3100 /*
3101  * Iterate over the process's mapped objects.
3102  */
3103 int
3104 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
3105 {
3106 	map_info_t *mptr;
3107 	file_info_t *fptr;
3108 	uint_t cnt;
3109 	int rc = 0;
3110 
3111 	(void) Prd_agent(P); /* create file_info_t's for all the mappings */
3112 	Pupdate_maps(P);
3113 
3114 	for (cnt = P->num_files, fptr = list_next(&P->file_head);
3115 	    cnt; cnt--, fptr = list_next(fptr)) {
3116 
3117 		const char *lname = fptr->file_lname ? fptr->file_lname : "";
3118 
3119 		if ((mptr = fptr->file_map) == NULL)
3120 			continue;
3121 
3122 		if ((rc = func(cd, &mptr->map_pmap, lname)) != 0)
3123 			return (rc);
3124 	}
3125 	return (0);
3126 }
3127 
3128 /*
3129  * Given a virtual address, return the name of the underlying
3130  * mapped object (file), as provided by the dynamic linker.
3131  * Return NULL on failure (no underlying shared library).
3132  */
3133 char *
3134 Pobjname(struct ps_prochandle *P, uintptr_t addr,
3135 	char *buffer, size_t bufsize)
3136 {
3137 	map_info_t *mptr;
3138 	file_info_t *fptr;
3139 
3140 	/* create all the file_info_t's for all the mappings */
3141 	(void) Prd_agent(P);
3142 
3143 	if ((mptr = Paddr2mptr(P, addr)) != NULL &&
3144 	    (fptr = mptr->map_file) != NULL &&
3145 	    fptr->file_lname != NULL) {
3146 		(void) strncpy(buffer, fptr->file_lname, bufsize);
3147 		if (strlen(fptr->file_lname) >= bufsize)
3148 			buffer[bufsize-1] = '\0';
3149 		return (buffer);
3150 	}
3151 	return (NULL);
3152 }
3153 
3154 /*
3155  * Given a virtual address, return the link map id of the underlying mapped
3156  * object (file), as provided by the dynamic linker.  Return -1 on failure.
3157  */
3158 int
3159 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp)
3160 {
3161 	map_info_t *mptr;
3162 	file_info_t *fptr;
3163 
3164 	/* create all the file_info_t's for all the mappings */
3165 	(void) Prd_agent(P);
3166 
3167 	if ((mptr = Paddr2mptr(P, addr)) != NULL &&
3168 	    (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) {
3169 		*lmidp = fptr->file_lo->rl_lmident;
3170 		return (0);
3171 	}
3172 
3173 	return (-1);
3174 }
3175 
3176 /*
3177  * Given an object name and optional lmid, iterate over the object's symbols.
3178  * If which == PR_SYMTAB, search the normal symbol table.
3179  * If which == PR_DYNSYM, search the dynamic symbol table.
3180  */
3181 static int
3182 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
3183     int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd)
3184 {
3185 	GElf_Sym sym;
3186 	GElf_Shdr shdr;
3187 	map_info_t *mptr;
3188 	file_info_t *fptr;
3189 	sym_tbl_t *symtab;
3190 	Elf_Data *data;
3191 	size_t symn;
3192 	const char *strs;
3193 	size_t strsz;
3194 	prsyminfo_t si;
3195 	int rv;
3196 	uint_t *map, i, count, ndx;
3197 
3198 	if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL)
3199 		return (-1);
3200 
3201 	if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
3202 	    fptr->file_elf == NULL)			/* not an ELF file */
3203 		return (-1);
3204 
3205 	/*
3206 	 * Search the specified symbol table.
3207 	 */
3208 	switch (which) {
3209 	case PR_SYMTAB:
3210 		symtab = &fptr->file_symtab;
3211 		si.prs_table = PR_SYMTAB;
3212 		break;
3213 	case PR_DYNSYM:
3214 		symtab = &fptr->file_dynsym;
3215 		si.prs_table = PR_DYNSYM;
3216 		break;
3217 	default:
3218 		return (-1);
3219 	}
3220 
3221 	si.prs_object = object_name;
3222 	si.prs_lmid = fptr->file_lo == NULL ?
3223 	    LM_ID_BASE : fptr->file_lo->rl_lmident;
3224 
3225 	data = symtab->sym_data;
3226 	symn = symtab->sym_symn;
3227 	strs = symtab->sym_strs;
3228 	strsz = symtab->sym_strsz;
3229 
3230 	if (data == NULL || strs == NULL)
3231 		return (-1);
3232 
3233 	switch (order) {
3234 	case PRO_NATURAL:
3235 		map = NULL;
3236 		count = symn;
3237 		break;
3238 	case PRO_BYNAME:
3239 		map = symtab->sym_byname;
3240 		count = symtab->sym_count;
3241 		break;
3242 	case PRO_BYADDR:
3243 		map = symtab->sym_byaddr;
3244 		count = symtab->sym_count;
3245 		break;
3246 	default:
3247 		return (-1);
3248 	}
3249 
3250 	rv = 0;
3251 
3252 	for (i = 0; i < count; i++) {
3253 		ndx = map == NULL ? i : map[i];
3254 		if (gelf_getsym(data, ndx, &sym) != NULL) {
3255 			uint_t s_bind, s_type, type;
3256 
3257 			if (sym.st_name >= strsz)	/* invalid st_name */
3258 				continue;
3259 
3260 			s_bind = GELF_ST_BIND(sym.st_info);
3261 			s_type = GELF_ST_TYPE(sym.st_info);
3262 
3263 			/*
3264 			 * In case you haven't already guessed, this relies on
3265 			 * the bitmask used in <libproc.h> for encoding symbol
3266 			 * type and binding matching the order of STB and STT
3267 			 * constants in <sys/elf.h>.  ELF can't change without
3268 			 * breaking binary compatibility, so I think this is
3269 			 * reasonably fair game.
3270 			 */
3271 			if (s_bind < STB_NUM && s_type < STT_NUM) {
3272 				type = (1 << (s_type + 8)) | (1 << s_bind);
3273 				if ((type & ~mask) != 0)
3274 					continue;
3275 			} else
3276 				continue; /* Invalid type or binding */
3277 
3278 			if (GELF_ST_TYPE(sym.st_info) != STT_TLS)
3279 				sym.st_value += fptr->file_dyn_base;
3280 
3281 			si.prs_name = strs + sym.st_name;
3282 
3283 			/*
3284 			 * If symbol's type is STT_SECTION, then try to lookup
3285 			 * the name of the corresponding section.
3286 			 */
3287 			if (GELF_ST_TYPE(sym.st_info) == STT_SECTION &&
3288 			    fptr->file_shstrs != NULL &&
3289 			    gelf_getshdr(elf_getscn(fptr->file_elf,
3290 			    sym.st_shndx), &shdr) != NULL &&
3291 			    shdr.sh_name != 0 &&
3292 			    shdr.sh_name < fptr->file_shstrsz)
3293 				si.prs_name = fptr->file_shstrs + shdr.sh_name;
3294 
3295 			si.prs_id = ndx;
3296 			if ((rv = func(cd, &sym, si.prs_name, &si)) != 0)
3297 				break;
3298 		}
3299 	}
3300 
3301 	return (rv);
3302 }
3303 
3304 int
3305 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
3306     int which, int mask, proc_xsym_f *func, void *cd)
3307 {
3308 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
3309 	    PRO_NATURAL, func, cd));
3310 }
3311 
3312 int
3313 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid,
3314     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3315 {
3316 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
3317 	    PRO_NATURAL, (proc_xsym_f *)func, cd));
3318 }
3319 
3320 int
3321 Psymbol_iter(struct ps_prochandle *P,
3322     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3323 {
3324 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3325 	    PRO_NATURAL, (proc_xsym_f *)func, cd));
3326 }
3327 
3328 int
3329 Psymbol_iter_by_addr(struct ps_prochandle *P,
3330     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3331 {
3332 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3333 	    PRO_BYADDR, (proc_xsym_f *)func, cd));
3334 }
3335 
3336 int
3337 Psymbol_iter_by_name(struct ps_prochandle *P,
3338     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3339 {
3340 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3341 	    PRO_BYNAME, (proc_xsym_f *)func, cd));
3342 }
3343 
3344 /*
3345  * Get the platform string from the core file if we have it;
3346  * just perform the system call for the caller if this is a live process.
3347  */
3348 char *
3349 Pplatform(struct ps_prochandle *P, char *s, size_t n)
3350 {
3351 	if (P->state == PS_IDLE) {
3352 		errno = ENODATA;
3353 		return (NULL);
3354 	}
3355 
3356 	if (P->state == PS_DEAD) {
3357 		if (P->core->core_platform == NULL) {
3358 			errno = ENODATA;
3359 			return (NULL);
3360 		}
3361 		(void) strncpy(s, P->core->core_platform, n - 1);
3362 		s[n - 1] = '\0';
3363 
3364 	} else if (sysinfo(SI_PLATFORM, s, n) == -1)
3365 		return (NULL);
3366 
3367 	return (s);
3368 }
3369 
3370 /*
3371  * Get the uname(2) information from the core file if we have it;
3372  * just perform the system call for the caller if this is a live process.
3373  */
3374 int
3375 Puname(struct ps_prochandle *P, struct utsname *u)
3376 {
3377 	if (P->state == PS_IDLE) {
3378 		errno = ENODATA;
3379 		return (-1);
3380 	}
3381 
3382 	if (P->state == PS_DEAD) {
3383 		if (P->core->core_uts == NULL) {
3384 			errno = ENODATA;
3385 			return (-1);
3386 		}
3387 		(void) memcpy(u, P->core->core_uts, sizeof (struct utsname));
3388 		return (0);
3389 	}
3390 	return (uname(u));
3391 }
3392 
3393 /*
3394  * Get the zone name from the core file if we have it; look up the
3395  * name based on the zone id if this is a live process.
3396  */
3397 char *
3398 Pzonename(struct ps_prochandle *P, char *s, size_t n)
3399 {
3400 	if (P->state == PS_IDLE) {
3401 		errno = ENODATA;
3402 		return (NULL);
3403 	}
3404 
3405 	if (P->state == PS_DEAD) {
3406 		if (P->core->core_zonename == NULL) {
3407 			errno = ENODATA;
3408 			return (NULL);
3409 		}
3410 		(void) strlcpy(s, P->core->core_zonename, n);
3411 	} else {
3412 		if (getzonenamebyid(P->status.pr_zoneid, s, n) < 0)
3413 			return (NULL);
3414 		s[n - 1] = '\0';
3415 	}
3416 	return (s);
3417 }
3418 
3419 /*
3420  * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize
3421  * the symbol table heads in the new ps_prochandle.
3422  */
3423 void
3424 Pinitsym(struct ps_prochandle *P)
3425 {
3426 	P->num_files = 0;
3427 	list_link(&P->file_head, NULL);
3428 }
3429 
3430 /*
3431  * Called from Prelease() to destroy the symbol tables.
3432  * Must be called by the client after an exec() in the victim process.
3433  */
3434 void
3435 Preset_maps(struct ps_prochandle *P)
3436 {
3437 	int i;
3438 
3439 	if (P->rap != NULL) {
3440 		rd_delete(P->rap);
3441 		P->rap = NULL;
3442 	}
3443 
3444 	if (P->execname != NULL) {
3445 		free(P->execname);
3446 		P->execname = NULL;
3447 	}
3448 
3449 	if (P->auxv != NULL) {
3450 		free(P->auxv);
3451 		P->auxv = NULL;
3452 		P->nauxv = 0;
3453 	}
3454 
3455 	for (i = 0; i < P->map_count; i++)
3456 		map_info_free(P, &P->mappings[i]);
3457 
3458 	if (P->mappings != NULL) {
3459 		free(P->mappings);
3460 		P->mappings = NULL;
3461 	}
3462 	P->map_count = P->map_alloc = 0;
3463 
3464 	P->info_valid = 0;
3465 }
3466 
3467 typedef struct getenv_data {
3468 	char *buf;
3469 	size_t bufsize;
3470 	const char *search;
3471 	size_t searchlen;
3472 } getenv_data_t;
3473 
3474 /*ARGSUSED*/
3475 static int
3476 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr,
3477     const char *nameval)
3478 {
3479 	getenv_data_t *d = data;
3480 	size_t len;
3481 
3482 	if (nameval == NULL)
3483 		return (0);
3484 
3485 	if (d->searchlen < strlen(nameval) &&
3486 	    strncmp(nameval, d->search, d->searchlen) == 0 &&
3487 	    nameval[d->searchlen] == '=') {
3488 		len = MIN(strlen(nameval), d->bufsize - 1);
3489 		(void) strncpy(d->buf, nameval, len);
3490 		d->buf[len] = '\0';
3491 		return (1);
3492 	}
3493 
3494 	return (0);
3495 }
3496 
3497 char *
3498 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen)
3499 {
3500 	getenv_data_t d;
3501 
3502 	d.buf = buf;
3503 	d.bufsize = buflen;
3504 	d.search = name;
3505 	d.searchlen = strlen(name);
3506 
3507 	if (Penv_iter(P, getenv_func, &d) == 1) {
3508 		char *equals = strchr(d.buf, '=');
3509 
3510 		if (equals != NULL) {
3511 			(void) memmove(d.buf, equals + 1,
3512 			    d.buf + buflen - equals - 1);
3513 			d.buf[d.buf + buflen - equals] = '\0';
3514 
3515 			return (buf);
3516 		}
3517 	}
3518 
3519 	return (NULL);
3520 }
3521 
3522 /* number of argument or environment pointers to read all at once */
3523 #define	NARG	100
3524 
3525 int
3526 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data)
3527 {
3528 	const psinfo_t *psp;
3529 	uintptr_t envpoff;
3530 	GElf_Sym sym;
3531 	int ret;
3532 	char *buf, *nameval;
3533 	size_t buflen;
3534 
3535 	int nenv = NARG;
3536 	long envp[NARG];
3537 
3538 	/*
3539 	 * Attempt to find the "_environ" variable in the process.
3540 	 * Failing that, use the original value provided by Ppsinfo().
3541 	 */
3542 	if ((psp = Ppsinfo(P)) == NULL)
3543 		return (-1);
3544 
3545 	envpoff = psp->pr_envp; /* Default if no _environ found */
3546 
3547 	if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) {
3548 		if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3549 			if (Pread(P, &envpoff, sizeof (envpoff),
3550 			    sym.st_value) != sizeof (envpoff))
3551 				envpoff = psp->pr_envp;
3552 		} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3553 			uint32_t envpoff32;
3554 
3555 			if (Pread(P, &envpoff32, sizeof (envpoff32),
3556 			    sym.st_value) != sizeof (envpoff32))
3557 				envpoff = psp->pr_envp;
3558 			else
3559 				envpoff = envpoff32;
3560 		}
3561 	}
3562 
3563 	buflen = 128;
3564 	buf = malloc(buflen);
3565 
3566 	ret = 0;
3567 	for (;;) {
3568 		uintptr_t envoff;
3569 
3570 		if (nenv == NARG) {
3571 			(void) memset(envp, 0, sizeof (envp));
3572 			if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3573 				if (Pread(P, envp,
3574 				    sizeof (envp), envpoff) <= 0) {
3575 					ret = -1;
3576 					break;
3577 				}
3578 			} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3579 				uint32_t e32[NARG];
3580 				int i;
3581 
3582 				(void) memset(e32, 0, sizeof (e32));
3583 				if (Pread(P, e32, sizeof (e32), envpoff) <= 0) {
3584 					ret = -1;
3585 					break;
3586 				}
3587 				for (i = 0; i < NARG; i++)
3588 					envp[i] = e32[i];
3589 			}
3590 			nenv = 0;
3591 		}
3592 
3593 		if ((envoff = envp[nenv++]) == NULL)
3594 			break;
3595 
3596 		/*
3597 		 * Attempt to read the string from the process.
3598 		 */
3599 again:
3600 		ret = Pread_string(P, buf, buflen, envoff);
3601 
3602 		if (ret <= 0) {
3603 			nameval = NULL;
3604 		} else if (ret == buflen - 1) {
3605 			free(buf);
3606 			/*
3607 			 * Bail if we have a corrupted environment
3608 			 */
3609 			if (buflen >= ARG_MAX)
3610 				return (-1);
3611 			buflen *= 2;
3612 			buf = malloc(buflen);
3613 			goto again;
3614 		} else {
3615 			nameval = buf;
3616 		}
3617 
3618 		if ((ret = func(data, P, envoff, nameval)) != 0)
3619 			break;
3620 
3621 		envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4;
3622 	}
3623 
3624 	free(buf);
3625 
3626 	return (ret);
3627 }
3628