1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
27 * Copyright (c) 2018, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2013 by Delphix. All rights reserved.
29 * Copyright 2015 Gary Mills
30 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
31 * Copyright 2021 Oxide Computer Company
32 */
33
34 #include <sys/types.h>
35 #include <sys/utsname.h>
36 #include <sys/sysmacros.h>
37 #include <sys/proc.h>
38
39 #include <alloca.h>
40 #include <rtld_db.h>
41 #include <libgen.h>
42 #include <limits.h>
43 #include <string.h>
44 #include <stdlib.h>
45 #include <unistd.h>
46 #include <errno.h>
47 #include <gelf.h>
48 #include <stddef.h>
49 #include <signal.h>
50
51 #include "libproc.h"
52 #include "Pcontrol.h"
53 #include "P32ton.h"
54 #include "Putil.h"
55 #include "proc_fd.h"
56 #ifdef __x86
57 #include "Pcore_linux.h"
58 #endif
59
60 /*
61 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We
62 * allocate an additional structure to hold information from the core
63 * file, and attach this to the standard ps_prochandle in place of the
64 * ability to examine /proc/<pid>/ files.
65 */
66
67 /*
68 * Basic i/o function for reading and writing from the process address space
69 * stored in the core file and associated shared libraries. We compute the
70 * appropriate fd and offsets, and let the provided prw function do the rest.
71 */
72 static ssize_t
core_rw(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr,ssize_t (* prw)(int,void *,size_t,off64_t))73 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
74 ssize_t (*prw)(int, void *, size_t, off64_t))
75 {
76 ssize_t resid = n;
77
78 while (resid != 0) {
79 map_info_t *mp = Paddr2mptr(P, addr);
80
81 uintptr_t mapoff;
82 ssize_t len;
83 off64_t off;
84 int fd;
85
86 if (mp == NULL)
87 break; /* No mapping for this address */
88
89 if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
90 if (mp->map_file == NULL || mp->map_file->file_fd < 0)
91 break; /* No file or file not open */
92
93 fd = mp->map_file->file_fd;
94 } else
95 fd = P->asfd;
96
97 mapoff = addr - mp->map_pmap.pr_vaddr;
98 len = MIN(resid, mp->map_pmap.pr_size - mapoff);
99 off = mp->map_offset + mapoff;
100
101 if ((len = prw(fd, buf, len, off)) <= 0)
102 break;
103
104 resid -= len;
105 addr += len;
106 buf = (char *)buf + len;
107 }
108
109 /*
110 * Important: Be consistent with the behavior of i/o on the as file:
111 * writing to an invalid address yields EIO; reading from an invalid
112 * address falls through to returning success and zero bytes.
113 */
114 if (resid == n && n != 0 && prw != pread64) {
115 errno = EIO;
116 return (-1);
117 }
118
119 return (n - resid);
120 }
121
122 /*ARGSUSED*/
123 static ssize_t
Pread_core(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr,void * data)124 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
125 void *data)
126 {
127 return (core_rw(P, buf, n, addr, pread64));
128 }
129
130 /*ARGSUSED*/
131 static ssize_t
Pwrite_core(struct ps_prochandle * P,const void * buf,size_t n,uintptr_t addr,void * data)132 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr,
133 void *data)
134 {
135 return (core_rw(P, (void *)buf, n, addr,
136 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
137 }
138
139 /*ARGSUSED*/
140 static int
Pcred_core(struct ps_prochandle * P,prcred_t * pcrp,int ngroups,void * data)141 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data)
142 {
143 core_info_t *core = data;
144
145 if (core->core_cred != NULL) {
146 /*
147 * Avoid returning more supplementary group data than the
148 * caller has allocated in their buffer. We expect them to
149 * check pr_ngroups afterward and potentially call us again.
150 */
151 ngroups = MIN(ngroups, core->core_cred->pr_ngroups);
152
153 (void) memcpy(pcrp, core->core_cred,
154 sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
155
156 return (0);
157 }
158
159 errno = ENODATA;
160 return (-1);
161 }
162
163 /*ARGSUSED*/
164 static int
Psecflags_core(struct ps_prochandle * P,prsecflags_t ** psf,void * data)165 Psecflags_core(struct ps_prochandle *P, prsecflags_t **psf, void *data)
166 {
167 core_info_t *core = data;
168
169 if (core->core_secflags == NULL) {
170 errno = ENODATA;
171 return (-1);
172 }
173
174 if ((*psf = calloc(1, sizeof (prsecflags_t))) == NULL)
175 return (-1);
176
177 (void) memcpy(*psf, core->core_secflags, sizeof (prsecflags_t));
178
179 return (0);
180 }
181
182 /*ARGSUSED*/
183 static int
Ppriv_core(struct ps_prochandle * P,prpriv_t ** pprv,void * data)184 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data)
185 {
186 core_info_t *core = data;
187
188 if (core->core_priv == NULL) {
189 errno = ENODATA;
190 return (-1);
191 }
192
193 *pprv = malloc(core->core_priv_size);
194 if (*pprv == NULL) {
195 return (-1);
196 }
197
198 (void) memcpy(*pprv, core->core_priv, core->core_priv_size);
199 return (0);
200 }
201
202 /*ARGSUSED*/
203 static const psinfo_t *
Ppsinfo_core(struct ps_prochandle * P,psinfo_t * psinfo,void * data)204 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data)
205 {
206 return (&P->psinfo);
207 }
208
209 /*ARGSUSED*/
210 static void
Pfini_core(struct ps_prochandle * P,void * data)211 Pfini_core(struct ps_prochandle *P, void *data)
212 {
213 core_info_t *core = data;
214
215 if (core != NULL) {
216 extern void __priv_free_info(void *);
217 lwp_info_t *lwp;
218
219 while ((lwp = list_remove_head(&core->core_lwp_head)) != NULL) {
220 #ifdef __sparc
221 if (lwp->lwp_gwins != NULL)
222 free(lwp->lwp_gwins);
223 if (lwp->lwp_xregs != NULL)
224 free(lwp->lwp_xregs);
225 if (lwp->lwp_asrs != NULL)
226 free(lwp->lwp_asrs);
227 #endif
228 free(lwp);
229 }
230
231 if (core->core_platform != NULL)
232 free(core->core_platform);
233 if (core->core_uts != NULL)
234 free(core->core_uts);
235 if (core->core_cred != NULL)
236 free(core->core_cred);
237 if (core->core_priv != NULL)
238 free(core->core_priv);
239 if (core->core_privinfo != NULL)
240 __priv_free_info(core->core_privinfo);
241 if (core->core_ppii != NULL)
242 free(core->core_ppii);
243 if (core->core_zonename != NULL)
244 free(core->core_zonename);
245 if (core->core_secflags != NULL)
246 free(core->core_secflags);
247 if (core->core_upanic != NULL)
248 free(core->core_upanic);
249 #ifdef __x86
250 if (core->core_ldt != NULL)
251 free(core->core_ldt);
252 #endif
253
254 free(core);
255 }
256 }
257
258 /*ARGSUSED*/
259 static char *
Pplatform_core(struct ps_prochandle * P,char * s,size_t n,void * data)260 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data)
261 {
262 core_info_t *core = data;
263
264 if (core->core_platform == NULL) {
265 errno = ENODATA;
266 return (NULL);
267 }
268 (void) strncpy(s, core->core_platform, n - 1);
269 s[n - 1] = '\0';
270 return (s);
271 }
272
273 /*ARGSUSED*/
274 static int
Puname_core(struct ps_prochandle * P,struct utsname * u,void * data)275 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data)
276 {
277 core_info_t *core = data;
278
279 if (core->core_uts == NULL) {
280 errno = ENODATA;
281 return (-1);
282 }
283 (void) memcpy(u, core->core_uts, sizeof (struct utsname));
284 return (0);
285 }
286
287 /*ARGSUSED*/
288 static char *
Pzonename_core(struct ps_prochandle * P,char * s,size_t n,void * data)289 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data)
290 {
291 core_info_t *core = data;
292
293 if (core->core_zonename == NULL) {
294 errno = ENODATA;
295 return (NULL);
296 }
297 (void) strlcpy(s, core->core_zonename, n);
298 return (s);
299 }
300
301 #ifdef __x86
302 /*ARGSUSED*/
303 static int
Pldt_core(struct ps_prochandle * P,struct ssd * pldt,int nldt,void * data)304 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
305 {
306 core_info_t *core = data;
307
308 if (pldt == NULL || nldt == 0)
309 return (core->core_nldt);
310
311 if (core->core_ldt != NULL) {
312 nldt = MIN(nldt, core->core_nldt);
313
314 (void) memcpy(pldt, core->core_ldt,
315 nldt * sizeof (struct ssd));
316
317 return (nldt);
318 }
319
320 errno = ENODATA;
321 return (-1);
322 }
323 #endif
324
325 static const ps_ops_t P_core_ops = {
326 .pop_pread = Pread_core,
327 .pop_pwrite = Pwrite_core,
328 .pop_cred = Pcred_core,
329 .pop_priv = Ppriv_core,
330 .pop_psinfo = Ppsinfo_core,
331 .pop_fini = Pfini_core,
332 .pop_platform = Pplatform_core,
333 .pop_uname = Puname_core,
334 .pop_zonename = Pzonename_core,
335 .pop_secflags = Psecflags_core,
336 #ifdef __x86
337 .pop_ldt = Pldt_core
338 #endif
339 };
340
341 /*
342 * Return the lwp_info_t for the given lwpid. If no such lwpid has been
343 * encountered yet, allocate a new structure and return a pointer to it.
344 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
345 */
346 static lwp_info_t *
lwpid2info(struct ps_prochandle * P,lwpid_t id)347 lwpid2info(struct ps_prochandle *P, lwpid_t id)
348 {
349 core_info_t *core = P->data;
350 lwp_info_t *lwp, *prev;
351
352 for (lwp = list_head(&core->core_lwp_head); lwp != NULL;
353 lwp = list_next(&core->core_lwp_head, lwp)) {
354 if (lwp->lwp_id == id) {
355 core->core_lwp = lwp;
356 return (lwp);
357 }
358 if (lwp->lwp_id < id) {
359 break;
360 }
361 }
362
363 prev = lwp;
364 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
365 return (NULL);
366
367 list_insert_before(&core->core_lwp_head, prev, lwp);
368 lwp->lwp_id = id;
369
370 core->core_lwp = lwp;
371
372 return (lwp);
373 }
374
375 /*
376 * The core file itself contains a series of NOTE segments containing saved
377 * structures from /proc at the time the process died. For each note we
378 * comprehend, we define a function to read it in from the core file,
379 * convert it to our native data model if necessary, and store it inside
380 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the
381 * seek pointer on P->asfd positioned appropriately. We populate a table
382 * of pointers to these note functions below.
383 */
384
385 static int
note_pstatus(struct ps_prochandle * P,size_t nbytes)386 note_pstatus(struct ps_prochandle *P, size_t nbytes)
387 {
388 #ifdef _LP64
389 core_info_t *core = P->data;
390
391 if (core->core_dmodel == PR_MODEL_ILP32) {
392 pstatus32_t ps32;
393
394 if (nbytes < sizeof (pstatus32_t) ||
395 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
396 goto err;
397
398 pstatus_32_to_n(&ps32, &P->status);
399
400 } else
401 #endif
402 if (nbytes < sizeof (pstatus_t) ||
403 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
404 goto err;
405
406 P->orig_status = P->status;
407 P->pid = P->status.pr_pid;
408
409 return (0);
410
411 err:
412 dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
413 return (-1);
414 }
415
416 static int
note_lwpstatus(struct ps_prochandle * P,size_t nbytes)417 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
418 {
419 lwp_info_t *lwp;
420 lwpstatus_t lps;
421
422 #ifdef _LP64
423 core_info_t *core = P->data;
424
425 if (core->core_dmodel == PR_MODEL_ILP32) {
426 lwpstatus32_t l32;
427
428 if (nbytes < sizeof (lwpstatus32_t) ||
429 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
430 goto err;
431
432 lwpstatus_32_to_n(&l32, &lps);
433 } else
434 #endif
435 if (nbytes < sizeof (lwpstatus_t) ||
436 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
437 goto err;
438
439 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
440 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
441 return (-1);
442 }
443
444 /*
445 * Erase a useless and confusing artifact of the kernel implementation:
446 * the lwps which did *not* create the core will show SIGKILL. We can
447 * be assured this is bogus because SIGKILL can't produce core files.
448 */
449 if (lps.pr_cursig == SIGKILL)
450 lps.pr_cursig = 0;
451
452 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
453 return (0);
454
455 err:
456 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
457 return (-1);
458 }
459
460 #ifdef __x86
461
462 static void
lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t * p32,psinfo_t * psinfo)463 lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo)
464 {
465 psinfo->pr_flag = p32->pr_flag;
466 psinfo->pr_pid = p32->pr_pid;
467 psinfo->pr_ppid = p32->pr_ppid;
468 psinfo->pr_uid = p32->pr_uid;
469 psinfo->pr_gid = p32->pr_gid;
470 psinfo->pr_sid = p32->pr_sid;
471 psinfo->pr_pgid = p32->pr_pgrp;
472
473 (void) memcpy(psinfo->pr_fname, p32->pr_fname,
474 sizeof (psinfo->pr_fname));
475 (void) memcpy(psinfo->pr_psargs, p32->pr_psargs,
476 sizeof (psinfo->pr_psargs));
477 }
478
479 static void
lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t * p64,psinfo_t * psinfo)480 lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t *p64, psinfo_t *psinfo)
481 {
482 psinfo->pr_flag = p64->pr_flag;
483 psinfo->pr_pid = p64->pr_pid;
484 psinfo->pr_ppid = p64->pr_ppid;
485 psinfo->pr_uid = p64->pr_uid;
486 psinfo->pr_gid = p64->pr_gid;
487 psinfo->pr_sid = p64->pr_sid;
488 psinfo->pr_pgid = p64->pr_pgrp;
489 psinfo->pr_pgid = p64->pr_pgrp;
490
491 (void) memcpy(psinfo->pr_fname, p64->pr_fname,
492 sizeof (psinfo->pr_fname));
493 (void) memcpy(psinfo->pr_psargs, p64->pr_psargs,
494 sizeof (psinfo->pr_psargs));
495 }
496
497 static int
note_linux_psinfo(struct ps_prochandle * P,size_t nbytes)498 note_linux_psinfo(struct ps_prochandle *P, size_t nbytes)
499 {
500 core_info_t *core = P->data;
501 lx_prpsinfo32_t p32;
502 lx_prpsinfo64_t p64;
503
504 if (core->core_dmodel == PR_MODEL_ILP32) {
505 if (nbytes < sizeof (p32) ||
506 read(P->asfd, &p32, sizeof (p32)) != sizeof (p32))
507 goto err;
508
509 lx_prpsinfo32_to_psinfo(&p32, &P->psinfo);
510 } else {
511 if (nbytes < sizeof (p64) ||
512 read(P->asfd, &p64, sizeof (p64)) != sizeof (p64))
513 goto err;
514
515 lx_prpsinfo64_to_psinfo(&p64, &P->psinfo);
516 }
517
518
519 P->status.pr_pid = P->psinfo.pr_pid;
520 P->status.pr_ppid = P->psinfo.pr_ppid;
521 P->status.pr_pgid = P->psinfo.pr_pgid;
522 P->status.pr_sid = P->psinfo.pr_sid;
523
524 P->psinfo.pr_nlwp = 0;
525 P->status.pr_nlwp = 0;
526
527 return (0);
528 err:
529 dprintf("Pgrab_core: failed to read NT_PSINFO\n");
530 return (-1);
531 }
532
533 static void
lx_prstatus64_to_lwp(lx_prstatus64_t * prs64,lwp_info_t * lwp)534 lx_prstatus64_to_lwp(lx_prstatus64_t *prs64, lwp_info_t *lwp)
535 {
536 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs64->pr_utime);
537 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs64->pr_stime);
538
539 lwp->lwp_status.pr_reg[REG_R15] = prs64->pr_reg.lxr_r15;
540 lwp->lwp_status.pr_reg[REG_R14] = prs64->pr_reg.lxr_r14;
541 lwp->lwp_status.pr_reg[REG_R13] = prs64->pr_reg.lxr_r13;
542 lwp->lwp_status.pr_reg[REG_R12] = prs64->pr_reg.lxr_r12;
543 lwp->lwp_status.pr_reg[REG_R11] = prs64->pr_reg.lxr_r11;
544 lwp->lwp_status.pr_reg[REG_R10] = prs64->pr_reg.lxr_r10;
545 lwp->lwp_status.pr_reg[REG_R9] = prs64->pr_reg.lxr_r9;
546 lwp->lwp_status.pr_reg[REG_R8] = prs64->pr_reg.lxr_r8;
547
548 lwp->lwp_status.pr_reg[REG_RDI] = prs64->pr_reg.lxr_rdi;
549 lwp->lwp_status.pr_reg[REG_RSI] = prs64->pr_reg.lxr_rsi;
550 lwp->lwp_status.pr_reg[REG_RBP] = prs64->pr_reg.lxr_rbp;
551 lwp->lwp_status.pr_reg[REG_RBX] = prs64->pr_reg.lxr_rbx;
552 lwp->lwp_status.pr_reg[REG_RDX] = prs64->pr_reg.lxr_rdx;
553 lwp->lwp_status.pr_reg[REG_RCX] = prs64->pr_reg.lxr_rcx;
554 lwp->lwp_status.pr_reg[REG_RAX] = prs64->pr_reg.lxr_rax;
555
556 lwp->lwp_status.pr_reg[REG_RIP] = prs64->pr_reg.lxr_rip;
557 lwp->lwp_status.pr_reg[REG_CS] = prs64->pr_reg.lxr_cs;
558 lwp->lwp_status.pr_reg[REG_RSP] = prs64->pr_reg.lxr_rsp;
559 lwp->lwp_status.pr_reg[REG_FS] = prs64->pr_reg.lxr_fs;
560 lwp->lwp_status.pr_reg[REG_SS] = prs64->pr_reg.lxr_ss;
561 lwp->lwp_status.pr_reg[REG_GS] = prs64->pr_reg.lxr_gs;
562 lwp->lwp_status.pr_reg[REG_ES] = prs64->pr_reg.lxr_es;
563 lwp->lwp_status.pr_reg[REG_DS] = prs64->pr_reg.lxr_ds;
564
565 lwp->lwp_status.pr_reg[REG_GSBASE] = prs64->pr_reg.lxr_gs_base;
566 lwp->lwp_status.pr_reg[REG_FSBASE] = prs64->pr_reg.lxr_fs_base;
567 }
568
569 static void
lx_prstatus32_to_lwp(lx_prstatus32_t * prs32,lwp_info_t * lwp)570 lx_prstatus32_to_lwp(lx_prstatus32_t *prs32, lwp_info_t *lwp)
571 {
572 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs32->pr_utime);
573 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs32->pr_stime);
574
575 #ifdef __amd64
576 lwp->lwp_status.pr_reg[REG_GS] = prs32->pr_reg.lxr_gs;
577 lwp->lwp_status.pr_reg[REG_FS] = prs32->pr_reg.lxr_fs;
578 lwp->lwp_status.pr_reg[REG_DS] = prs32->pr_reg.lxr_ds;
579 lwp->lwp_status.pr_reg[REG_ES] = prs32->pr_reg.lxr_es;
580 lwp->lwp_status.pr_reg[REG_RDI] = prs32->pr_reg.lxr_di;
581 lwp->lwp_status.pr_reg[REG_RSI] = prs32->pr_reg.lxr_si;
582 lwp->lwp_status.pr_reg[REG_RBP] = prs32->pr_reg.lxr_bp;
583 lwp->lwp_status.pr_reg[REG_RBX] = prs32->pr_reg.lxr_bx;
584 lwp->lwp_status.pr_reg[REG_RDX] = prs32->pr_reg.lxr_dx;
585 lwp->lwp_status.pr_reg[REG_RCX] = prs32->pr_reg.lxr_cx;
586 lwp->lwp_status.pr_reg[REG_RAX] = prs32->pr_reg.lxr_ax;
587 lwp->lwp_status.pr_reg[REG_RIP] = prs32->pr_reg.lxr_ip;
588 lwp->lwp_status.pr_reg[REG_CS] = prs32->pr_reg.lxr_cs;
589 lwp->lwp_status.pr_reg[REG_RFL] = prs32->pr_reg.lxr_flags;
590 lwp->lwp_status.pr_reg[REG_RSP] = prs32->pr_reg.lxr_sp;
591 lwp->lwp_status.pr_reg[REG_SS] = prs32->pr_reg.lxr_ss;
592 #else /* __amd64 */
593 lwp->lwp_status.pr_reg[EBX] = prs32->pr_reg.lxr_bx;
594 lwp->lwp_status.pr_reg[ECX] = prs32->pr_reg.lxr_cx;
595 lwp->lwp_status.pr_reg[EDX] = prs32->pr_reg.lxr_dx;
596 lwp->lwp_status.pr_reg[ESI] = prs32->pr_reg.lxr_si;
597 lwp->lwp_status.pr_reg[EDI] = prs32->pr_reg.lxr_di;
598 lwp->lwp_status.pr_reg[EBP] = prs32->pr_reg.lxr_bp;
599 lwp->lwp_status.pr_reg[EAX] = prs32->pr_reg.lxr_ax;
600 lwp->lwp_status.pr_reg[EIP] = prs32->pr_reg.lxr_ip;
601 lwp->lwp_status.pr_reg[UESP] = prs32->pr_reg.lxr_sp;
602
603 lwp->lwp_status.pr_reg[DS] = prs32->pr_reg.lxr_ds;
604 lwp->lwp_status.pr_reg[ES] = prs32->pr_reg.lxr_es;
605 lwp->lwp_status.pr_reg[FS] = prs32->pr_reg.lxr_fs;
606 lwp->lwp_status.pr_reg[GS] = prs32->pr_reg.lxr_gs;
607 lwp->lwp_status.pr_reg[CS] = prs32->pr_reg.lxr_cs;
608 lwp->lwp_status.pr_reg[SS] = prs32->pr_reg.lxr_ss;
609
610 lwp->lwp_status.pr_reg[EFL] = prs32->pr_reg.lxr_flags;
611 #endif /* !__amd64 */
612 }
613
614 static int
note_linux_prstatus(struct ps_prochandle * P,size_t nbytes)615 note_linux_prstatus(struct ps_prochandle *P, size_t nbytes)
616 {
617 core_info_t *core = P->data;
618
619 lx_prstatus64_t prs64;
620 lx_prstatus32_t prs32;
621 lwp_info_t *lwp;
622 lwpid_t tid;
623
624 dprintf("looking for model %d, %ld/%ld\n", core->core_dmodel,
625 (ulong_t)nbytes, (ulong_t)sizeof (prs32));
626 if (core->core_dmodel == PR_MODEL_ILP32) {
627 if (nbytes < sizeof (prs32) ||
628 read(P->asfd, &prs32, sizeof (prs32)) != nbytes)
629 goto err;
630 tid = prs32.pr_pid;
631 } else {
632 if (nbytes < sizeof (prs64) ||
633 read(P->asfd, &prs64, sizeof (prs64)) != nbytes)
634 goto err;
635 tid = prs64.pr_pid;
636 }
637
638 if ((lwp = lwpid2info(P, tid)) == NULL) {
639 dprintf("Pgrab_core: failed to add lwpid2info "
640 "linux_prstatus\n");
641 return (-1);
642 }
643
644 P->psinfo.pr_nlwp++;
645 P->status.pr_nlwp++;
646
647 lwp->lwp_status.pr_lwpid = tid;
648
649 if (core->core_dmodel == PR_MODEL_ILP32)
650 lx_prstatus32_to_lwp(&prs32, lwp);
651 else
652 lx_prstatus64_to_lwp(&prs64, lwp);
653
654 return (0);
655 err:
656 dprintf("Pgrab_core: failed to read NT_PRSTATUS\n");
657 return (-1);
658 }
659
660 #endif /* __x86 */
661
662 static int
note_psinfo(struct ps_prochandle * P,size_t nbytes)663 note_psinfo(struct ps_prochandle *P, size_t nbytes)
664 {
665 #ifdef _LP64
666 core_info_t *core = P->data;
667
668 if (core->core_dmodel == PR_MODEL_ILP32) {
669 psinfo32_t ps32;
670
671 if (nbytes < sizeof (psinfo32_t) ||
672 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
673 goto err;
674
675 psinfo_32_to_n(&ps32, &P->psinfo);
676 } else
677 #endif
678 if (nbytes < sizeof (psinfo_t) ||
679 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
680 goto err;
681
682 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
683 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
684 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
685
686 return (0);
687
688 err:
689 dprintf("Pgrab_core: failed to read NT_PSINFO\n");
690 return (-1);
691 }
692
693 static int
note_lwpsinfo(struct ps_prochandle * P,size_t nbytes)694 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
695 {
696 lwp_info_t *lwp;
697 lwpsinfo_t lps;
698
699 #ifdef _LP64
700 core_info_t *core = P->data;
701
702 if (core->core_dmodel == PR_MODEL_ILP32) {
703 lwpsinfo32_t l32;
704
705 if (nbytes < sizeof (lwpsinfo32_t) ||
706 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
707 goto err;
708
709 lwpsinfo_32_to_n(&l32, &lps);
710 } else
711 #endif
712 if (nbytes < sizeof (lwpsinfo_t) ||
713 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
714 goto err;
715
716 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
717 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
718 return (-1);
719 }
720
721 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
722 return (0);
723
724 err:
725 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
726 return (-1);
727 }
728
729 static int
note_lwpname(struct ps_prochandle * P,size_t nbytes)730 note_lwpname(struct ps_prochandle *P, size_t nbytes)
731 {
732 prlwpname_t name;
733 lwp_info_t *lwp;
734
735 if (nbytes != sizeof (name) ||
736 read(P->asfd, &name, sizeof (name)) != sizeof (name))
737 goto err;
738
739 if ((lwp = lwpid2info(P, name.pr_lwpid)) == NULL)
740 goto err;
741
742 if (strlcpy(lwp->lwp_name, name.pr_lwpname,
743 sizeof (lwp->lwp_name)) >= sizeof (lwp->lwp_name)) {
744 errno = ENAMETOOLONG;
745 goto err;
746 }
747
748 return (0);
749
750 err:
751 dprintf("Pgrab_core: failed to read NT_LWPNAME\n");
752 return (-1);
753 }
754
755 static int
note_fdinfo(struct ps_prochandle * P,size_t nbytes)756 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
757 {
758 prfdinfo_core_t prfd;
759 fd_info_t *fip;
760
761 if ((nbytes < sizeof (prfd)) ||
762 (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
763 dprintf("Pgrab_core: failed to read NT_FDINFO\n");
764 return (-1);
765 }
766
767 if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
768 dprintf("Pgrab_core: failed to add NT_FDINFO\n");
769 return (-1);
770 }
771 if (fip->fd_info == NULL) {
772 if (proc_fdinfo_from_core(&prfd, &fip->fd_info) != 0) {
773 dprintf("Pgrab_core: failed to convert NT_FDINFO\n");
774 return (-1);
775 }
776 }
777
778 return (0);
779 }
780
781 static int
note_platform(struct ps_prochandle * P,size_t nbytes)782 note_platform(struct ps_prochandle *P, size_t nbytes)
783 {
784 core_info_t *core = P->data;
785 char *plat;
786
787 if (core->core_platform != NULL)
788 return (0); /* Already seen */
789
790 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
791 if (read(P->asfd, plat, nbytes) != nbytes) {
792 dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
793 free(plat);
794 return (-1);
795 }
796 plat[nbytes - 1] = '\0';
797 core->core_platform = plat;
798 }
799
800 return (0);
801 }
802
803 static int
note_secflags(struct ps_prochandle * P,size_t nbytes)804 note_secflags(struct ps_prochandle *P, size_t nbytes)
805 {
806 core_info_t *core = P->data;
807 prsecflags_t *psf;
808
809 if (core->core_secflags != NULL)
810 return (0); /* Already seen */
811
812 if (sizeof (*psf) != nbytes) {
813 dprintf("Pgrab_core: NT_SECFLAGS changed size."
814 " Need to handle a version change?\n");
815 return (-1);
816 }
817
818 if (nbytes != 0 && ((psf = malloc(nbytes)) != NULL)) {
819 if (read(P->asfd, psf, nbytes) != nbytes) {
820 dprintf("Pgrab_core: failed to read NT_SECFLAGS\n");
821 free(psf);
822 return (-1);
823 }
824
825 core->core_secflags = psf;
826 }
827
828 return (0);
829 }
830
831 static int
note_utsname(struct ps_prochandle * P,size_t nbytes)832 note_utsname(struct ps_prochandle *P, size_t nbytes)
833 {
834 core_info_t *core = P->data;
835 size_t ubytes = sizeof (struct utsname);
836 struct utsname *utsp;
837
838 if (core->core_uts != NULL || nbytes < ubytes)
839 return (0); /* Already seen or bad size */
840
841 if ((utsp = malloc(ubytes)) == NULL)
842 return (-1);
843
844 if (read(P->asfd, utsp, ubytes) != ubytes) {
845 dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
846 free(utsp);
847 return (-1);
848 }
849
850 if (_libproc_debug) {
851 dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
852 dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
853 dprintf("uts.release = \"%s\"\n", utsp->release);
854 dprintf("uts.version = \"%s\"\n", utsp->version);
855 dprintf("uts.machine = \"%s\"\n", utsp->machine);
856 }
857
858 core->core_uts = utsp;
859 return (0);
860 }
861
862 static int
note_content(struct ps_prochandle * P,size_t nbytes)863 note_content(struct ps_prochandle *P, size_t nbytes)
864 {
865 core_info_t *core = P->data;
866 core_content_t content;
867
868 if (sizeof (core->core_content) != nbytes)
869 return (-1);
870
871 if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
872 return (-1);
873
874 core->core_content = content;
875
876 dprintf("core content = %llx\n", content);
877
878 return (0);
879 }
880
881 static int
note_cred(struct ps_prochandle * P,size_t nbytes)882 note_cred(struct ps_prochandle *P, size_t nbytes)
883 {
884 core_info_t *core = P->data;
885 prcred_t *pcrp;
886 int ngroups;
887 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
888
889 /*
890 * We allow for prcred_t notes that are actually smaller than a
891 * prcred_t since the last member isn't essential if there are
892 * no group memberships. This allows for more flexibility when it
893 * comes to slightly malformed -- but still valid -- notes.
894 */
895 if (core->core_cred != NULL || nbytes < min_size)
896 return (0); /* Already seen or bad size */
897
898 ngroups = (nbytes - min_size) / sizeof (gid_t);
899 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
900
901 if ((pcrp = malloc(nbytes)) == NULL)
902 return (-1);
903
904 if (read(P->asfd, pcrp, nbytes) != nbytes) {
905 dprintf("Pgrab_core: failed to read NT_PRCRED\n");
906 free(pcrp);
907 return (-1);
908 }
909
910 if (pcrp->pr_ngroups > ngroups) {
911 dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
912 pcrp->pr_ngroups, ngroups);
913 pcrp->pr_ngroups = ngroups;
914 }
915
916 core->core_cred = pcrp;
917 return (0);
918 }
919
920 #ifdef __x86
921 static int
note_ldt(struct ps_prochandle * P,size_t nbytes)922 note_ldt(struct ps_prochandle *P, size_t nbytes)
923 {
924 core_info_t *core = P->data;
925 struct ssd *pldt;
926 uint_t nldt;
927
928 if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
929 return (0); /* Already seen or bad size */
930
931 nldt = nbytes / sizeof (struct ssd);
932 nbytes = nldt * sizeof (struct ssd);
933
934 if ((pldt = malloc(nbytes)) == NULL)
935 return (-1);
936
937 if (read(P->asfd, pldt, nbytes) != nbytes) {
938 dprintf("Pgrab_core: failed to read NT_LDT\n");
939 free(pldt);
940 return (-1);
941 }
942
943 core->core_ldt = pldt;
944 core->core_nldt = nldt;
945 return (0);
946 }
947 #endif /* __i386 */
948
949 static int
note_priv(struct ps_prochandle * P,size_t nbytes)950 note_priv(struct ps_prochandle *P, size_t nbytes)
951 {
952 core_info_t *core = P->data;
953 prpriv_t *pprvp;
954
955 if (core->core_priv != NULL || nbytes < sizeof (prpriv_t))
956 return (0); /* Already seen or bad size */
957
958 if ((pprvp = malloc(nbytes)) == NULL)
959 return (-1);
960
961 if (read(P->asfd, pprvp, nbytes) != nbytes) {
962 dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
963 free(pprvp);
964 return (-1);
965 }
966
967 core->core_priv = pprvp;
968 core->core_priv_size = nbytes;
969 return (0);
970 }
971
972 static int
note_priv_info(struct ps_prochandle * P,size_t nbytes)973 note_priv_info(struct ps_prochandle *P, size_t nbytes)
974 {
975 core_info_t *core = P->data;
976 extern void *__priv_parse_info();
977 priv_impl_info_t *ppii;
978
979 if (core->core_privinfo != NULL ||
980 nbytes < sizeof (priv_impl_info_t))
981 return (0); /* Already seen or bad size */
982
983 if ((ppii = malloc(nbytes)) == NULL)
984 return (-1);
985
986 if (read(P->asfd, ppii, nbytes) != nbytes ||
987 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
988 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
989 free(ppii);
990 return (-1);
991 }
992
993 core->core_privinfo = __priv_parse_info(ppii);
994 core->core_ppii = ppii;
995 return (0);
996 }
997
998 static int
note_zonename(struct ps_prochandle * P,size_t nbytes)999 note_zonename(struct ps_prochandle *P, size_t nbytes)
1000 {
1001 core_info_t *core = P->data;
1002 char *zonename;
1003
1004 if (core->core_zonename != NULL)
1005 return (0); /* Already seen */
1006
1007 if (nbytes != 0) {
1008 if ((zonename = malloc(nbytes)) == NULL)
1009 return (-1);
1010 if (read(P->asfd, zonename, nbytes) != nbytes) {
1011 dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
1012 free(zonename);
1013 return (-1);
1014 }
1015 zonename[nbytes - 1] = '\0';
1016 core->core_zonename = zonename;
1017 }
1018
1019 return (0);
1020 }
1021
1022 static int
note_auxv(struct ps_prochandle * P,size_t nbytes)1023 note_auxv(struct ps_prochandle *P, size_t nbytes)
1024 {
1025 size_t n, i;
1026
1027 #ifdef _LP64
1028 core_info_t *core = P->data;
1029
1030 if (core->core_dmodel == PR_MODEL_ILP32) {
1031 auxv32_t *a32;
1032
1033 n = nbytes / sizeof (auxv32_t);
1034 nbytes = n * sizeof (auxv32_t);
1035 a32 = alloca(nbytes);
1036
1037 if (read(P->asfd, a32, nbytes) != nbytes) {
1038 dprintf("Pgrab_core: failed to read NT_AUXV\n");
1039 return (-1);
1040 }
1041
1042 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
1043 return (-1);
1044
1045 for (i = 0; i < n; i++)
1046 auxv_32_to_n(&a32[i], &P->auxv[i]);
1047
1048 } else {
1049 #endif
1050 n = nbytes / sizeof (auxv_t);
1051 nbytes = n * sizeof (auxv_t);
1052
1053 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
1054 return (-1);
1055
1056 if (read(P->asfd, P->auxv, nbytes) != nbytes) {
1057 free(P->auxv);
1058 P->auxv = NULL;
1059 return (-1);
1060 }
1061 #ifdef _LP64
1062 }
1063 #endif
1064
1065 if (_libproc_debug) {
1066 for (i = 0; i < n; i++) {
1067 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
1068 P->auxv[i].a_type, P->auxv[i].a_un.a_val);
1069 }
1070 }
1071
1072 /*
1073 * Defensive coding for loops which depend upon the auxv array being
1074 * terminated by an AT_NULL element; in each case, we've allocated
1075 * P->auxv to have an additional element which we force to be AT_NULL.
1076 */
1077 P->auxv[n].a_type = AT_NULL;
1078 P->auxv[n].a_un.a_val = 0L;
1079 P->nauxv = (int)n;
1080
1081 return (0);
1082 }
1083
1084 #ifdef __sparc
1085 static int
note_xreg(struct ps_prochandle * P,size_t nbytes)1086 note_xreg(struct ps_prochandle *P, size_t nbytes)
1087 {
1088 core_info_t *core = P->data;
1089 lwp_info_t *lwp = core->core_lwp;
1090 size_t xbytes = sizeof (prxregset_t);
1091 prxregset_t *xregs;
1092
1093 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
1094 return (0); /* No lwp yet, already seen, or bad size */
1095
1096 if ((xregs = malloc(xbytes)) == NULL)
1097 return (-1);
1098
1099 if (read(P->asfd, xregs, xbytes) != xbytes) {
1100 dprintf("Pgrab_core: failed to read NT_PRXREG\n");
1101 free(xregs);
1102 return (-1);
1103 }
1104
1105 lwp->lwp_xregs = xregs;
1106 return (0);
1107 }
1108
1109 static int
note_gwindows(struct ps_prochandle * P,size_t nbytes)1110 note_gwindows(struct ps_prochandle *P, size_t nbytes)
1111 {
1112 core_info_t *core = P->data;
1113 lwp_info_t *lwp = core->core_lwp;
1114
1115 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
1116 return (0); /* No lwp yet or already seen or no data */
1117
1118 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
1119 return (-1);
1120
1121 /*
1122 * Since the amount of gwindows data varies with how many windows were
1123 * actually saved, we just read up to the minimum of the note size
1124 * and the size of the gwindows_t type. It doesn't matter if the read
1125 * fails since we have to zero out gwindows first anyway.
1126 */
1127 #ifdef _LP64
1128 if (core->core_dmodel == PR_MODEL_ILP32) {
1129 gwindows32_t g32;
1130
1131 (void) memset(&g32, 0, sizeof (g32));
1132 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
1133 gwindows_32_to_n(&g32, lwp->lwp_gwins);
1134
1135 } else {
1136 #endif
1137 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
1138 (void) read(P->asfd, lwp->lwp_gwins,
1139 MIN(nbytes, sizeof (gwindows_t)));
1140 #ifdef _LP64
1141 }
1142 #endif
1143 return (0);
1144 }
1145
1146 #ifdef __sparcv9
1147 static int
note_asrs(struct ps_prochandle * P,size_t nbytes)1148 note_asrs(struct ps_prochandle *P, size_t nbytes)
1149 {
1150 core_info_t *core = P->data;
1151 lwp_info_t *lwp = core->core_lwp;
1152 int64_t *asrs;
1153
1154 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
1155 return (0); /* No lwp yet, already seen, or bad size */
1156
1157 if ((asrs = malloc(sizeof (asrset_t))) == NULL)
1158 return (-1);
1159
1160 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
1161 dprintf("Pgrab_core: failed to read NT_ASRS\n");
1162 free(asrs);
1163 return (-1);
1164 }
1165
1166 lwp->lwp_asrs = asrs;
1167 return (0);
1168 }
1169 #endif /* __sparcv9 */
1170 #endif /* __sparc */
1171
1172 static int
note_spymaster(struct ps_prochandle * P,size_t nbytes)1173 note_spymaster(struct ps_prochandle *P, size_t nbytes)
1174 {
1175 #ifdef _LP64
1176 core_info_t *core = P->data;
1177
1178 if (core->core_dmodel == PR_MODEL_ILP32) {
1179 psinfo32_t ps32;
1180
1181 if (nbytes < sizeof (psinfo32_t) ||
1182 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
1183 goto err;
1184
1185 psinfo_32_to_n(&ps32, &P->spymaster);
1186 } else
1187 #endif
1188 if (nbytes < sizeof (psinfo_t) || read(P->asfd,
1189 &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
1190 goto err;
1191
1192 dprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
1193 dprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
1194 dprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
1195
1196 return (0);
1197
1198 err:
1199 dprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
1200 return (-1);
1201 }
1202
1203 static int
note_upanic(struct ps_prochandle * P,size_t nbytes)1204 note_upanic(struct ps_prochandle *P, size_t nbytes)
1205 {
1206 core_info_t *core = P->data;
1207 prupanic_t *pru;
1208
1209 if (core->core_upanic != NULL)
1210 return (0);
1211
1212 if (sizeof (*pru) != nbytes) {
1213 dprintf("Pgrab_core: NT_UPANIC changed size."
1214 " Need to handle a version change?\n");
1215 return (-1);
1216 }
1217
1218 if (nbytes != 0 && ((pru = malloc(nbytes)) != NULL)) {
1219 if (read(P->asfd, pru, nbytes) != nbytes) {
1220 dprintf("Pgrab_core: failed to read NT_UPANIC\n");
1221 free(pru);
1222 return (-1);
1223 }
1224
1225 core->core_upanic = pru;
1226 }
1227
1228 return (0);
1229 }
1230
1231 /*ARGSUSED*/
1232 static int
note_notsup(struct ps_prochandle * P,size_t nbytes)1233 note_notsup(struct ps_prochandle *P, size_t nbytes)
1234 {
1235 dprintf("skipping unsupported note type of size %ld bytes\n",
1236 (ulong_t)nbytes);
1237 return (0);
1238 }
1239
1240 /*
1241 * Populate a table of function pointers indexed by Note type with our
1242 * functions to process each type of core file note:
1243 */
1244 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
1245 note_notsup, /* 0 unassigned */
1246 #ifdef __x86
1247 note_linux_prstatus, /* 1 NT_PRSTATUS (old) */
1248 #else
1249 note_notsup, /* 1 NT_PRSTATUS (old) */
1250 #endif
1251 note_notsup, /* 2 NT_PRFPREG (old) */
1252 #ifdef __x86
1253 note_linux_psinfo, /* 3 NT_PRPSINFO (old) */
1254 #else
1255 note_notsup, /* 3 NT_PRPSINFO (old) */
1256 #endif
1257 #ifdef __sparc
1258 note_xreg, /* 4 NT_PRXREG */
1259 #else
1260 note_notsup, /* 4 NT_PRXREG */
1261 #endif
1262 note_platform, /* 5 NT_PLATFORM */
1263 note_auxv, /* 6 NT_AUXV */
1264 #ifdef __sparc
1265 note_gwindows, /* 7 NT_GWINDOWS */
1266 #ifdef __sparcv9
1267 note_asrs, /* 8 NT_ASRS */
1268 #else
1269 note_notsup, /* 8 NT_ASRS */
1270 #endif
1271 #else
1272 note_notsup, /* 7 NT_GWINDOWS */
1273 note_notsup, /* 8 NT_ASRS */
1274 #endif
1275 #ifdef __x86
1276 note_ldt, /* 9 NT_LDT */
1277 #else
1278 note_notsup, /* 9 NT_LDT */
1279 #endif
1280 note_pstatus, /* 10 NT_PSTATUS */
1281 note_notsup, /* 11 unassigned */
1282 note_notsup, /* 12 unassigned */
1283 note_psinfo, /* 13 NT_PSINFO */
1284 note_cred, /* 14 NT_PRCRED */
1285 note_utsname, /* 15 NT_UTSNAME */
1286 note_lwpstatus, /* 16 NT_LWPSTATUS */
1287 note_lwpsinfo, /* 17 NT_LWPSINFO */
1288 note_priv, /* 18 NT_PRPRIV */
1289 note_priv_info, /* 19 NT_PRPRIVINFO */
1290 note_content, /* 20 NT_CONTENT */
1291 note_zonename, /* 21 NT_ZONENAME */
1292 note_fdinfo, /* 22 NT_FDINFO */
1293 note_spymaster, /* 23 NT_SPYMASTER */
1294 note_secflags, /* 24 NT_SECFLAGS */
1295 note_lwpname, /* 25 NT_LWPNAME */
1296 note_upanic /* 26 NT_UPANIC */
1297 };
1298
1299 static void
core_report_mapping(struct ps_prochandle * P,GElf_Phdr * php)1300 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1301 {
1302 prkillinfo_t killinfo;
1303 siginfo_t *si = &killinfo.prk_info;
1304 char signame[SIG2STR_MAX], sig[64], info[64];
1305 void *addr = (void *)(uintptr_t)php->p_vaddr;
1306
1307 const char *errfmt = "core file data for mapping at %p not saved: %s\n";
1308 const char *incfmt = "core file incomplete due to %s%s\n";
1309 const char *msgfmt = "mappings at and above %p are missing\n";
1310
1311 if (!(php->p_flags & PF_SUNW_KILLED)) {
1312 int err = 0;
1313
1314 (void) pread64(P->asfd, &err,
1315 sizeof (err), (off64_t)php->p_offset);
1316
1317 Perror_printf(P, errfmt, addr, strerror(err));
1318 dprintf(errfmt, addr, strerror(err));
1319 return;
1320 }
1321
1322 if (!(php->p_flags & PF_SUNW_SIGINFO))
1323 return;
1324
1325 (void) memset(&killinfo, 0, sizeof (killinfo));
1326
1327 (void) pread64(P->asfd, &killinfo,
1328 sizeof (killinfo), (off64_t)php->p_offset);
1329
1330 /*
1331 * While there is (or at least should be) only one segment that has
1332 * PF_SUNW_SIGINFO set, the signal information there is globally
1333 * useful (even if only to those debugging libproc consumers); we hang
1334 * the signal information gleaned here off of the ps_prochandle.
1335 */
1336 P->map_missing = php->p_vaddr;
1337 P->killinfo = killinfo.prk_info;
1338
1339 if (sig2str(si->si_signo, signame) == -1) {
1340 (void) snprintf(sig, sizeof (sig),
1341 "<Unknown signal: 0x%x>, ", si->si_signo);
1342 } else {
1343 (void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
1344 }
1345
1346 if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1347 (void) snprintf(info, sizeof (info),
1348 "pid=%d uid=%d zone=%d ctid=%d",
1349 si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
1350 } else {
1351 (void) snprintf(info, sizeof (info),
1352 "code=%d", si->si_code);
1353 }
1354
1355 Perror_printf(P, incfmt, sig, info);
1356 Perror_printf(P, msgfmt, addr);
1357
1358 dprintf(incfmt, sig, info);
1359 dprintf(msgfmt, addr);
1360 }
1361
1362 /*
1363 * Add information on the address space mapping described by the given
1364 * PT_LOAD program header. We fill in more information on the mapping later.
1365 */
1366 static int
core_add_mapping(struct ps_prochandle * P,GElf_Phdr * php)1367 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1368 {
1369 core_info_t *core = P->data;
1370 prmap_t pmap;
1371
1372 dprintf("mapping base %llx filesz %llx memsz %llx offset %llx\n",
1373 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
1374 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
1375
1376 pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
1377 pmap.pr_size = php->p_memsz;
1378
1379 /*
1380 * If Pgcore() or elfcore() fail to write a mapping, they will set
1381 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
1382 */
1383 if (php->p_flags & PF_SUNW_FAILURE) {
1384 core_report_mapping(P, php);
1385 } else if (php->p_filesz != 0 && php->p_offset >= core->core_size) {
1386 Perror_printf(P, "core file may be corrupt -- data for mapping "
1387 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1388 dprintf("core file may be corrupt -- data for mapping "
1389 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1390 }
1391
1392 /*
1393 * The mapping name and offset will hopefully be filled in
1394 * by the librtld_db agent. Unfortunately, if it isn't a
1395 * shared library mapping, this information is gone forever.
1396 */
1397 pmap.pr_mapname[0] = '\0';
1398 pmap.pr_offset = 0;
1399
1400 pmap.pr_mflags = 0;
1401 if (php->p_flags & PF_R)
1402 pmap.pr_mflags |= MA_READ;
1403 if (php->p_flags & PF_W)
1404 pmap.pr_mflags |= MA_WRITE;
1405 if (php->p_flags & PF_X)
1406 pmap.pr_mflags |= MA_EXEC;
1407
1408 if (php->p_filesz == 0)
1409 pmap.pr_mflags |= MA_RESERVED1;
1410
1411 /*
1412 * At the time of adding this mapping, we just zero the pagesize.
1413 * Once we've processed more of the core file, we'll have the
1414 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
1415 */
1416 pmap.pr_pagesize = 0;
1417
1418 /*
1419 * Unfortunately whether or not the mapping was a System V
1420 * shared memory segment is lost. We use -1 to mark it as not shm.
1421 */
1422 pmap.pr_shmid = -1;
1423
1424 return (Padd_mapping(P, php->p_offset, NULL, &pmap));
1425 }
1426
1427 /*
1428 * Given a virtual address, name the mapping at that address using the
1429 * specified name, and return the map_info_t pointer.
1430 */
1431 static map_info_t *
core_name_mapping(struct ps_prochandle * P,uintptr_t addr,const char * name)1432 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
1433 {
1434 map_info_t *mp = Paddr2mptr(P, addr);
1435
1436 if (mp != NULL) {
1437 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
1438 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1439 }
1440
1441 return (mp);
1442 }
1443
1444 /*
1445 * libproc uses libelf for all of its symbol table manipulation. This function
1446 * takes a symbol table and string table from a core file and places them
1447 * in a memory backed elf file.
1448 */
1449 static void
fake_up_symtab(struct ps_prochandle * P,const elf_file_header_t * ehdr,GElf_Shdr * symtab,GElf_Shdr * strtab)1450 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
1451 GElf_Shdr *symtab, GElf_Shdr *strtab)
1452 {
1453 size_t size;
1454 off64_t off, base;
1455 map_info_t *mp;
1456 file_info_t *fp;
1457 Elf_Scn *scn;
1458 Elf_Data *data;
1459
1460 if (symtab->sh_addr == 0 ||
1461 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
1462 (fp = mp->map_file) == NULL) {
1463 dprintf("fake_up_symtab: invalid section\n");
1464 return;
1465 }
1466
1467 if (fp->file_symtab.sym_data_pri != NULL) {
1468 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
1469 (long)symtab->sh_addr);
1470 return;
1471 }
1472
1473 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1474 struct {
1475 Elf32_Ehdr ehdr;
1476 Elf32_Shdr shdr[3];
1477 char data[1];
1478 } *b;
1479
1480 base = sizeof (b->ehdr) + sizeof (b->shdr);
1481 size = base + symtab->sh_size + strtab->sh_size;
1482
1483 if ((b = calloc(1, size)) == NULL)
1484 return;
1485
1486 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1487 sizeof (ehdr->e_ident));
1488 b->ehdr.e_type = ehdr->e_type;
1489 b->ehdr.e_machine = ehdr->e_machine;
1490 b->ehdr.e_version = ehdr->e_version;
1491 b->ehdr.e_flags = ehdr->e_flags;
1492 b->ehdr.e_ehsize = sizeof (b->ehdr);
1493 b->ehdr.e_shoff = sizeof (b->ehdr);
1494 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1495 b->ehdr.e_shnum = 3;
1496 off = 0;
1497
1498 b->shdr[1].sh_size = symtab->sh_size;
1499 b->shdr[1].sh_type = SHT_SYMTAB;
1500 b->shdr[1].sh_offset = off + base;
1501 b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
1502 b->shdr[1].sh_link = 2;
1503 b->shdr[1].sh_info = symtab->sh_info;
1504 b->shdr[1].sh_addralign = symtab->sh_addralign;
1505
1506 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1507 symtab->sh_offset) != b->shdr[1].sh_size) {
1508 dprintf("fake_up_symtab: pread of symtab[1] failed\n");
1509 free(b);
1510 return;
1511 }
1512
1513 off += b->shdr[1].sh_size;
1514
1515 b->shdr[2].sh_flags = SHF_STRINGS;
1516 b->shdr[2].sh_size = strtab->sh_size;
1517 b->shdr[2].sh_type = SHT_STRTAB;
1518 b->shdr[2].sh_offset = off + base;
1519 b->shdr[2].sh_info = strtab->sh_info;
1520 b->shdr[2].sh_addralign = 1;
1521
1522 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1523 strtab->sh_offset) != b->shdr[2].sh_size) {
1524 dprintf("fake_up_symtab: pread of symtab[2] failed\n");
1525 free(b);
1526 return;
1527 }
1528
1529 off += b->shdr[2].sh_size;
1530
1531 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1532 if (fp->file_symtab.sym_elf == NULL) {
1533 free(b);
1534 return;
1535 }
1536
1537 fp->file_symtab.sym_elfmem = b;
1538 #ifdef _LP64
1539 } else {
1540 struct {
1541 Elf64_Ehdr ehdr;
1542 Elf64_Shdr shdr[3];
1543 char data[1];
1544 } *b;
1545
1546 base = sizeof (b->ehdr) + sizeof (b->shdr);
1547 size = base + symtab->sh_size + strtab->sh_size;
1548
1549 if ((b = calloc(1, size)) == NULL)
1550 return;
1551
1552 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1553 sizeof (ehdr->e_ident));
1554 b->ehdr.e_type = ehdr->e_type;
1555 b->ehdr.e_machine = ehdr->e_machine;
1556 b->ehdr.e_version = ehdr->e_version;
1557 b->ehdr.e_flags = ehdr->e_flags;
1558 b->ehdr.e_ehsize = sizeof (b->ehdr);
1559 b->ehdr.e_shoff = sizeof (b->ehdr);
1560 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1561 b->ehdr.e_shnum = 3;
1562 off = 0;
1563
1564 b->shdr[1].sh_size = symtab->sh_size;
1565 b->shdr[1].sh_type = SHT_SYMTAB;
1566 b->shdr[1].sh_offset = off + base;
1567 b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1568 b->shdr[1].sh_link = 2;
1569 b->shdr[1].sh_info = symtab->sh_info;
1570 b->shdr[1].sh_addralign = symtab->sh_addralign;
1571
1572 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1573 symtab->sh_offset) != b->shdr[1].sh_size) {
1574 free(b);
1575 return;
1576 }
1577
1578 off += b->shdr[1].sh_size;
1579
1580 b->shdr[2].sh_flags = SHF_STRINGS;
1581 b->shdr[2].sh_size = strtab->sh_size;
1582 b->shdr[2].sh_type = SHT_STRTAB;
1583 b->shdr[2].sh_offset = off + base;
1584 b->shdr[2].sh_info = strtab->sh_info;
1585 b->shdr[2].sh_addralign = 1;
1586
1587 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1588 strtab->sh_offset) != b->shdr[2].sh_size) {
1589 free(b);
1590 return;
1591 }
1592
1593 off += b->shdr[2].sh_size;
1594
1595 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1596 if (fp->file_symtab.sym_elf == NULL) {
1597 free(b);
1598 return;
1599 }
1600
1601 fp->file_symtab.sym_elfmem = b;
1602 #endif
1603 }
1604
1605 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1606 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1607 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1608 (data = elf_getdata(scn, NULL)) == NULL) {
1609 dprintf("fake_up_symtab: failed to get section data at %p\n",
1610 (void *)scn);
1611 goto err;
1612 }
1613
1614 fp->file_symtab.sym_strs = data->d_buf;
1615 fp->file_symtab.sym_strsz = data->d_size;
1616 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1617 fp->file_symtab.sym_hdr_pri = *symtab;
1618 fp->file_symtab.sym_strhdr = *strtab;
1619
1620 optimize_symtab(&fp->file_symtab);
1621
1622 return;
1623 err:
1624 (void) elf_end(fp->file_symtab.sym_elf);
1625 free(fp->file_symtab.sym_elfmem);
1626 fp->file_symtab.sym_elf = NULL;
1627 fp->file_symtab.sym_elfmem = NULL;
1628 }
1629
1630 static void
core_phdr_to_gelf(const Elf32_Phdr * src,GElf_Phdr * dst)1631 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1632 {
1633 dst->p_type = src->p_type;
1634 dst->p_flags = src->p_flags;
1635 dst->p_offset = (Elf64_Off)src->p_offset;
1636 dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1637 dst->p_paddr = (Elf64_Addr)src->p_paddr;
1638 dst->p_filesz = (Elf64_Xword)src->p_filesz;
1639 dst->p_memsz = (Elf64_Xword)src->p_memsz;
1640 dst->p_align = (Elf64_Xword)src->p_align;
1641 }
1642
1643 static void
core_shdr_to_gelf(const Elf32_Shdr * src,GElf_Shdr * dst)1644 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1645 {
1646 dst->sh_name = src->sh_name;
1647 dst->sh_type = src->sh_type;
1648 dst->sh_flags = (Elf64_Xword)src->sh_flags;
1649 dst->sh_addr = (Elf64_Addr)src->sh_addr;
1650 dst->sh_offset = (Elf64_Off)src->sh_offset;
1651 dst->sh_size = (Elf64_Xword)src->sh_size;
1652 dst->sh_link = src->sh_link;
1653 dst->sh_info = src->sh_info;
1654 dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1655 dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1656 }
1657
1658 /*
1659 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1660 */
1661 static int
core_elf_fdopen(elf_file_t * efp,GElf_Half type,int * perr)1662 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1663 {
1664 #ifdef _BIG_ENDIAN
1665 uchar_t order = ELFDATA2MSB;
1666 #else
1667 uchar_t order = ELFDATA2LSB;
1668 #endif
1669 Elf32_Ehdr e32;
1670 int is_noelf = -1;
1671 int isa_err = 0;
1672
1673 /*
1674 * Because 32-bit libelf cannot deal with large files, we need to read,
1675 * check, and convert the file header manually in case type == ET_CORE.
1676 */
1677 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1678 if (perr != NULL)
1679 *perr = G_FORMAT;
1680 goto err;
1681 }
1682 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1683 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1684 e32.e_version != EV_CURRENT) {
1685 if (perr != NULL) {
1686 if (is_noelf == 0 && isa_err) {
1687 *perr = G_ISAINVAL;
1688 } else {
1689 *perr = G_FORMAT;
1690 }
1691 }
1692 goto err;
1693 }
1694
1695 /*
1696 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the
1697 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1698 * and convert it to a elf_file_header_t. Otherwise, the file is
1699 * 32-bit, so convert e32 to a elf_file_header_t.
1700 */
1701 if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1702 #ifdef _LP64
1703 Elf64_Ehdr e64;
1704
1705 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1706 if (perr != NULL)
1707 *perr = G_FORMAT;
1708 goto err;
1709 }
1710
1711 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1712 efp->e_hdr.e_type = e64.e_type;
1713 efp->e_hdr.e_machine = e64.e_machine;
1714 efp->e_hdr.e_version = e64.e_version;
1715 efp->e_hdr.e_entry = e64.e_entry;
1716 efp->e_hdr.e_phoff = e64.e_phoff;
1717 efp->e_hdr.e_shoff = e64.e_shoff;
1718 efp->e_hdr.e_flags = e64.e_flags;
1719 efp->e_hdr.e_ehsize = e64.e_ehsize;
1720 efp->e_hdr.e_phentsize = e64.e_phentsize;
1721 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1722 efp->e_hdr.e_shentsize = e64.e_shentsize;
1723 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1724 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1725 #else /* _LP64 */
1726 if (perr != NULL)
1727 *perr = G_LP64;
1728 goto err;
1729 #endif /* _LP64 */
1730 } else {
1731 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1732 efp->e_hdr.e_type = e32.e_type;
1733 efp->e_hdr.e_machine = e32.e_machine;
1734 efp->e_hdr.e_version = e32.e_version;
1735 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1736 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1737 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1738 efp->e_hdr.e_flags = e32.e_flags;
1739 efp->e_hdr.e_ehsize = e32.e_ehsize;
1740 efp->e_hdr.e_phentsize = e32.e_phentsize;
1741 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1742 efp->e_hdr.e_shentsize = e32.e_shentsize;
1743 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1744 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1745 }
1746
1747 /*
1748 * If the number of section headers or program headers or the section
1749 * header string table index would overflow their respective fields
1750 * in the ELF header, they're stored in the section header at index
1751 * zero. To simplify use elsewhere, we look for those sentinel values
1752 * here.
1753 */
1754 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1755 efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1756 efp->e_hdr.e_phnum == PN_XNUM) {
1757 GElf_Shdr shdr;
1758
1759 dprintf("extended ELF header\n");
1760
1761 if (efp->e_hdr.e_shoff == 0) {
1762 if (perr != NULL)
1763 *perr = G_FORMAT;
1764 goto err;
1765 }
1766
1767 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1768 Elf32_Shdr shdr32;
1769
1770 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1771 efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1772 if (perr != NULL)
1773 *perr = G_FORMAT;
1774 goto err;
1775 }
1776
1777 core_shdr_to_gelf(&shdr32, &shdr);
1778 } else {
1779 if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1780 efp->e_hdr.e_shoff) != sizeof (shdr)) {
1781 if (perr != NULL)
1782 *perr = G_FORMAT;
1783 goto err;
1784 }
1785 }
1786
1787 if (efp->e_hdr.e_shnum == 0) {
1788 efp->e_hdr.e_shnum = shdr.sh_size;
1789 dprintf("section header count %lu\n",
1790 (ulong_t)shdr.sh_size);
1791 }
1792
1793 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1794 efp->e_hdr.e_shstrndx = shdr.sh_link;
1795 dprintf("section string index %u\n", shdr.sh_link);
1796 }
1797
1798 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1799 efp->e_hdr.e_phnum = shdr.sh_info;
1800 dprintf("program header count %u\n", shdr.sh_info);
1801 }
1802
1803 } else if (efp->e_hdr.e_phoff != 0) {
1804 GElf_Phdr phdr;
1805 uint64_t phnum;
1806
1807 /*
1808 * It's possible this core file came from a system that
1809 * accidentally truncated the e_phnum field without correctly
1810 * using the extended format in the section header at index
1811 * zero. We try to detect and correct that specific type of
1812 * corruption by using the knowledge that the core dump
1813 * routines usually place the data referenced by the first
1814 * program header immediately after the last header element.
1815 */
1816 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1817 Elf32_Phdr phdr32;
1818
1819 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1820 efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1821 if (perr != NULL)
1822 *perr = G_FORMAT;
1823 goto err;
1824 }
1825
1826 core_phdr_to_gelf(&phdr32, &phdr);
1827 } else {
1828 if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1829 efp->e_hdr.e_phoff) != sizeof (phdr)) {
1830 if (perr != NULL)
1831 *perr = G_FORMAT;
1832 goto err;
1833 }
1834 }
1835
1836 phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1837 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1838 phnum /= efp->e_hdr.e_phentsize;
1839
1840 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1841 dprintf("suspicious program header count %u %u\n",
1842 (uint_t)phnum, efp->e_hdr.e_phnum);
1843
1844 /*
1845 * If the new program header count we computed doesn't
1846 * jive with count in the ELF header, we'll use the
1847 * data that's there and hope for the best.
1848 *
1849 * If it does, it's also possible that the section
1850 * header offset is incorrect; we'll check that and
1851 * possibly try to fix it.
1852 */
1853 if (phnum <= INT_MAX &&
1854 (uint16_t)phnum == efp->e_hdr.e_phnum) {
1855
1856 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1857 efp->e_hdr.e_phentsize *
1858 (uint_t)efp->e_hdr.e_phnum) {
1859 efp->e_hdr.e_shoff =
1860 efp->e_hdr.e_phoff +
1861 efp->e_hdr.e_phentsize * phnum;
1862 }
1863
1864 efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1865 dprintf("using new program header count\n");
1866 } else {
1867 dprintf("inconsistent program header count\n");
1868 }
1869 }
1870 }
1871
1872 /*
1873 * The libelf implementation was never ported to be large-file aware.
1874 * This is typically not a problem for your average executable or
1875 * shared library, but a large 32-bit core file can exceed 2GB in size.
1876 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1877 * in Pfgrab_core() below will do its own i/o and struct conversion.
1878 */
1879
1880 if (type == ET_CORE) {
1881 efp->e_elf = NULL;
1882 return (0);
1883 }
1884
1885 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1886 if (perr != NULL)
1887 *perr = G_ELF;
1888 goto err;
1889 }
1890
1891 return (0);
1892
1893 err:
1894 efp->e_elf = NULL;
1895 return (-1);
1896 }
1897
1898 /*
1899 * Open the specified file and then do a core_elf_fdopen on it.
1900 */
1901 static int
core_elf_open(elf_file_t * efp,const char * path,GElf_Half type,int * perr)1902 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1903 {
1904 (void) memset(efp, 0, sizeof (elf_file_t));
1905
1906 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1907 if (core_elf_fdopen(efp, type, perr) == 0)
1908 return (0);
1909
1910 (void) close(efp->e_fd);
1911 efp->e_fd = -1;
1912 }
1913
1914 return (-1);
1915 }
1916
1917 /*
1918 * Close the ELF handle and file descriptor.
1919 */
1920 static void
core_elf_close(elf_file_t * efp)1921 core_elf_close(elf_file_t *efp)
1922 {
1923 if (efp->e_elf != NULL) {
1924 (void) elf_end(efp->e_elf);
1925 efp->e_elf = NULL;
1926 }
1927
1928 if (efp->e_fd != -1) {
1929 (void) close(efp->e_fd);
1930 efp->e_fd = -1;
1931 }
1932 }
1933
1934 /*
1935 * Given an ELF file for a statically linked executable, locate the likely
1936 * primary text section and fill in rl_base with its virtual address.
1937 */
1938 static map_info_t *
core_find_text(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)1939 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1940 {
1941 GElf_Phdr phdr;
1942 uint_t i;
1943 size_t nphdrs;
1944
1945 if (elf_getphdrnum(elf, &nphdrs) == -1)
1946 return (NULL);
1947
1948 for (i = 0; i < nphdrs; i++) {
1949 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1950 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1951 rlp->rl_base = phdr.p_vaddr;
1952 return (Paddr2mptr(P, rlp->rl_base));
1953 }
1954 }
1955
1956 return (NULL);
1957 }
1958
1959 /*
1960 * Given an ELF file and the librtld_db structure corresponding to its primary
1961 * text mapping, deduce where its data segment was loaded and fill in
1962 * rl_data_base and prmap_t.pr_offset accordingly.
1963 */
1964 static map_info_t *
core_find_data(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)1965 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1966 {
1967 GElf_Ehdr ehdr;
1968 GElf_Phdr phdr;
1969 map_info_t *mp;
1970 uint_t i, pagemask;
1971 size_t nphdrs;
1972
1973 rlp->rl_data_base = (uintptr_t)NULL;
1974
1975 /*
1976 * Find the first loadable, writeable Phdr and compute rl_data_base
1977 * as the virtual address at which is was loaded.
1978 */
1979 if (gelf_getehdr(elf, &ehdr) == NULL ||
1980 elf_getphdrnum(elf, &nphdrs) == -1)
1981 return (NULL);
1982
1983 for (i = 0; i < nphdrs; i++) {
1984 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1985 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
1986 rlp->rl_data_base = phdr.p_vaddr;
1987 if (ehdr.e_type == ET_DYN)
1988 rlp->rl_data_base += rlp->rl_base;
1989 break;
1990 }
1991 }
1992
1993 /*
1994 * If we didn't find an appropriate phdr or if the address we
1995 * computed has no mapping, return NULL.
1996 */
1997 if (rlp->rl_data_base == (uintptr_t)NULL ||
1998 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
1999 return (NULL);
2000
2001 /*
2002 * It wouldn't be procfs-related code if we didn't make use of
2003 * unclean knowledge of segvn, even in userland ... the prmap_t's
2004 * pr_offset field will be the segvn offset from mmap(2)ing the
2005 * data section, which will be the file offset & PAGEMASK.
2006 */
2007 pagemask = ~(mp->map_pmap.pr_pagesize - 1);
2008 mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
2009
2010 return (mp);
2011 }
2012
2013 /*
2014 * Librtld_db agent callback for iterating over load object mappings.
2015 * For each load object, we allocate a new file_info_t, perform naming,
2016 * and attempt to construct a symbol table for the load object.
2017 */
2018 static int
core_iter_mapping(const rd_loadobj_t * rlp,struct ps_prochandle * P)2019 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
2020 {
2021 core_info_t *core = P->data;
2022 char lname[PATH_MAX], buf[PATH_MAX];
2023 file_info_t *fp;
2024 map_info_t *mp;
2025
2026 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
2027 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
2028 return (1); /* Keep going; forget this if we can't get a name */
2029 }
2030
2031 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
2032 lname, (void *)rlp->rl_base);
2033
2034 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
2035 dprintf("no mapping for %p\n", (void *)rlp->rl_base);
2036 return (1); /* No mapping; advance to next mapping */
2037 }
2038
2039 /*
2040 * Create a new file_info_t for this mapping, and therefore for
2041 * this load object.
2042 *
2043 * If there's an ELF header at the beginning of this mapping,
2044 * file_info_new() will try to use its section headers to
2045 * identify any other mappings that belong to this load object.
2046 */
2047 if ((fp = mp->map_file) == NULL &&
2048 (fp = file_info_new(P, mp)) == NULL) {
2049 core->core_errno = errno;
2050 dprintf("failed to malloc mapping data\n");
2051 return (0); /* Abort */
2052 }
2053 fp->file_map = mp;
2054
2055 /* Create a local copy of the load object representation */
2056 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
2057 core->core_errno = errno;
2058 dprintf("failed to malloc mapping data\n");
2059 return (0); /* Abort */
2060 }
2061 *fp->file_lo = *rlp;
2062
2063 if (lname[0] != '\0') {
2064 /*
2065 * Naming dance part 1: if we got a name from librtld_db, then
2066 * copy this name to the prmap_t if it is unnamed. If the
2067 * file_info_t is unnamed, name it after the lname.
2068 */
2069 if (mp->map_pmap.pr_mapname[0] == '\0') {
2070 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
2071 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2072 }
2073
2074 if (fp->file_lname == NULL)
2075 fp->file_lname = strdup(lname);
2076
2077 } else if (fp->file_lname == NULL &&
2078 mp->map_pmap.pr_mapname[0] != '\0') {
2079 /*
2080 * Naming dance part 2: if the mapping is named and the
2081 * file_info_t is not, name the file after the mapping.
2082 */
2083 fp->file_lname = strdup(mp->map_pmap.pr_mapname);
2084 }
2085
2086 if ((fp->file_rname == NULL) &&
2087 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
2088 fp->file_rname = strdup(buf);
2089
2090 if (fp->file_lname != NULL)
2091 fp->file_lbase = basename(fp->file_lname);
2092 if (fp->file_rname != NULL)
2093 fp->file_rbase = basename(fp->file_rname);
2094
2095 /* Associate the file and the mapping. */
2096 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
2097 fp->file_pname[PRMAPSZ - 1] = '\0';
2098
2099 /*
2100 * If no section headers were available then we'll have to
2101 * identify this load object's other mappings with what we've
2102 * got: the start and end of the object's corresponding
2103 * address space.
2104 */
2105 if (fp->file_saddrs == NULL) {
2106 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
2107 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
2108
2109 if (mp->map_file == NULL) {
2110 dprintf("core_iter_mapping %s: associating "
2111 "segment at %p\n",
2112 fp->file_pname,
2113 (void *)mp->map_pmap.pr_vaddr);
2114 mp->map_file = fp;
2115 fp->file_ref++;
2116 } else {
2117 dprintf("core_iter_mapping %s: segment at "
2118 "%p already associated with %s\n",
2119 fp->file_pname,
2120 (void *)mp->map_pmap.pr_vaddr,
2121 (mp == fp->file_map ? "this file" :
2122 mp->map_file->file_pname));
2123 }
2124 }
2125 }
2126
2127 /* Ensure that all this file's mappings are named. */
2128 for (mp = fp->file_map; mp < P->mappings + P->map_count &&
2129 mp->map_file == fp; mp++) {
2130 if (mp->map_pmap.pr_mapname[0] == '\0' &&
2131 !(mp->map_pmap.pr_mflags & MA_BREAK)) {
2132 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
2133 PRMAPSZ);
2134 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2135 }
2136 }
2137
2138 /* Attempt to build a symbol table for this file. */
2139 Pbuild_file_symtab(P, fp);
2140 if (fp->file_elf == NULL)
2141 dprintf("core_iter_mapping: no symtab for %s\n",
2142 fp->file_pname);
2143
2144 /* Locate the start of a data segment associated with this file. */
2145 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
2146 dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
2147 fp->file_pname, (void *)fp->file_lo->rl_data_base,
2148 mp->map_pmap.pr_offset);
2149 } else {
2150 dprintf("core_iter_mapping: no data found for %s\n",
2151 fp->file_pname);
2152 }
2153
2154 return (1); /* Advance to next mapping */
2155 }
2156
2157 /*
2158 * Callback function for Pfindexec(). In order to confirm a given pathname,
2159 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
2160 */
2161 static int
core_exec_open(const char * path,void * efp)2162 core_exec_open(const char *path, void *efp)
2163 {
2164 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
2165 return (1);
2166 if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
2167 return (1);
2168 return (0);
2169 }
2170
2171 /*
2172 * Attempt to load any section headers found in the core file. If present,
2173 * this will refer to non-loadable data added to the core file by the kernel
2174 * based on coreadm(1M) settings, including CTF data and the symbol table.
2175 */
2176 static void
core_load_shdrs(struct ps_prochandle * P,elf_file_t * efp)2177 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
2178 {
2179 GElf_Shdr *shp, *shdrs = NULL;
2180 char *shstrtab = NULL;
2181 ulong_t shstrtabsz;
2182 const char *name;
2183 map_info_t *mp;
2184
2185 size_t nbytes;
2186 void *buf;
2187 int i;
2188
2189 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
2190 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
2191 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
2192 return;
2193 }
2194
2195 /*
2196 * Read the section header table from the core file and then iterate
2197 * over the section headers, converting each to a GElf_Shdr.
2198 */
2199 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
2200 dprintf("failed to malloc %u section headers: %s\n",
2201 (uint_t)efp->e_hdr.e_shnum, strerror(errno));
2202 return;
2203 }
2204
2205 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
2206 if ((buf = malloc(nbytes)) == NULL) {
2207 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
2208 strerror(errno));
2209 free(shdrs);
2210 goto out;
2211 }
2212
2213 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
2214 dprintf("failed to read section headers at off %lld: %s\n",
2215 (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
2216 free(buf);
2217 goto out;
2218 }
2219
2220 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2221 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
2222
2223 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
2224 core_shdr_to_gelf(p, &shdrs[i]);
2225 else
2226 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
2227 }
2228
2229 free(buf);
2230 buf = NULL;
2231
2232 /*
2233 * Read the .shstrtab section from the core file, terminating it with
2234 * an extra \0 so that a corrupt section will not cause us to die.
2235 */
2236 shp = &shdrs[efp->e_hdr.e_shstrndx];
2237 shstrtabsz = shp->sh_size;
2238
2239 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
2240 dprintf("failed to allocate %lu bytes for shstrtab\n",
2241 (ulong_t)shstrtabsz);
2242 goto out;
2243 }
2244
2245 if (pread64(efp->e_fd, shstrtab, shstrtabsz,
2246 shp->sh_offset) != shstrtabsz) {
2247 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
2248 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
2249 goto out;
2250 }
2251
2252 shstrtab[shstrtabsz] = '\0';
2253
2254 /*
2255 * Now iterate over each section in the section header table, locating
2256 * sections of interest and initializing more of the ps_prochandle.
2257 */
2258 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2259 shp = &shdrs[i];
2260 name = shstrtab + shp->sh_name;
2261
2262 if (shp->sh_name >= shstrtabsz) {
2263 dprintf("skipping section [%d]: corrupt sh_name\n", i);
2264 continue;
2265 }
2266
2267 if (shp->sh_link >= efp->e_hdr.e_shnum) {
2268 dprintf("skipping section [%d]: corrupt sh_link\n", i);
2269 continue;
2270 }
2271
2272 dprintf("found section header %s (sh_addr 0x%llx)\n",
2273 name, (u_longlong_t)shp->sh_addr);
2274
2275 if (strcmp(name, ".SUNW_ctf") == 0) {
2276 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
2277 dprintf("no map at addr 0x%llx for %s [%d]\n",
2278 (u_longlong_t)shp->sh_addr, name, i);
2279 continue;
2280 }
2281
2282 if (mp->map_file == NULL ||
2283 mp->map_file->file_ctf_buf != NULL) {
2284 dprintf("no mapping file or duplicate buffer "
2285 "for %s [%d]\n", name, i);
2286 continue;
2287 }
2288
2289 if ((buf = malloc(shp->sh_size)) == NULL ||
2290 pread64(efp->e_fd, buf, shp->sh_size,
2291 shp->sh_offset) != shp->sh_size) {
2292 dprintf("skipping section %s [%d]: %s\n",
2293 name, i, strerror(errno));
2294 free(buf);
2295 continue;
2296 }
2297
2298 mp->map_file->file_ctf_size = shp->sh_size;
2299 mp->map_file->file_ctf_buf = buf;
2300
2301 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
2302 mp->map_file->file_ctf_dyn = 1;
2303
2304 } else if (strcmp(name, ".symtab") == 0) {
2305 fake_up_symtab(P, &efp->e_hdr,
2306 shp, &shdrs[shp->sh_link]);
2307 }
2308 }
2309 out:
2310 free(shstrtab);
2311 free(shdrs);
2312 }
2313
2314 /*
2315 * Main engine for core file initialization: given an fd for the core file
2316 * and an optional pathname, construct the ps_prochandle. The aout_path can
2317 * either be a suggested executable pathname, or a suggested directory to
2318 * use as a possible current working directory.
2319 */
2320 struct ps_prochandle *
Pfgrab_core(int core_fd,const char * aout_path,int * perr)2321 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
2322 {
2323 struct ps_prochandle *P;
2324 core_info_t *core_info;
2325 map_info_t *stk_mp, *brk_mp;
2326 const char *execname;
2327 char *interp;
2328 int i, notes, pagesize;
2329 uintptr_t addr, base_addr;
2330 struct stat64 stbuf;
2331 void *phbuf, *php;
2332 size_t nbytes;
2333 #ifdef __x86
2334 boolean_t from_linux = B_FALSE;
2335 #endif
2336
2337 elf_file_t aout;
2338 elf_file_t core;
2339
2340 Elf_Scn *scn, *intp_scn = NULL;
2341 Elf_Data *dp;
2342
2343 GElf_Phdr phdr, note_phdr;
2344 GElf_Shdr shdr;
2345 GElf_Xword nleft;
2346
2347 if (elf_version(EV_CURRENT) == EV_NONE) {
2348 dprintf("libproc ELF version is more recent than libelf\n");
2349 *perr = G_ELF;
2350 return (NULL);
2351 }
2352
2353 aout.e_elf = NULL;
2354 aout.e_fd = -1;
2355
2356 core.e_elf = NULL;
2357 core.e_fd = core_fd;
2358
2359 /*
2360 * Allocate and initialize a ps_prochandle structure for the core.
2361 * There are several key pieces of initialization here:
2362 *
2363 * 1. The PS_DEAD state flag marks this prochandle as a core file.
2364 * PS_DEAD also thus prevents all operations which require state
2365 * to be PS_STOP from operating on this handle.
2366 *
2367 * 2. We keep the core file fd in P->asfd since the core file contains
2368 * the remnants of the process address space.
2369 *
2370 * 3. We set the P->info_valid bit because all information about the
2371 * core is determined by the end of this function; there is no need
2372 * for proc_update_maps() to reload mappings at any later point.
2373 *
2374 * 4. The read/write ops vector uses our core_rw() function defined
2375 * above to handle i/o requests.
2376 */
2377 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2378 *perr = G_STRANGE;
2379 return (NULL);
2380 }
2381
2382 (void) memset(P, 0, sizeof (struct ps_prochandle));
2383 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2384 P->state = PS_DEAD;
2385 P->pid = (pid_t)-1;
2386 P->asfd = core.e_fd;
2387 P->ctlfd = -1;
2388 P->statfd = -1;
2389 P->agentctlfd = -1;
2390 P->agentstatfd = -1;
2391 P->zoneroot = NULL;
2392 P->info_valid = 1;
2393 Pinit_ops(&P->ops, &P_core_ops);
2394
2395 Pinitsym(P);
2396 Pinitfd(P);
2397
2398 /*
2399 * Fstat and open the core file and make sure it is a valid ELF core.
2400 */
2401 if (fstat64(P->asfd, &stbuf) == -1) {
2402 *perr = G_STRANGE;
2403 goto err;
2404 }
2405
2406 if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2407 goto err;
2408
2409 /*
2410 * Allocate and initialize a core_info_t to hang off the ps_prochandle
2411 * structure. We keep all core-specific information in this structure.
2412 */
2413 if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2414 *perr = G_STRANGE;
2415 goto err;
2416 }
2417
2418 P->data = core_info;
2419 list_create(&core_info->core_lwp_head, sizeof (lwp_info_t),
2420 offsetof(lwp_info_t, lwp_list));
2421 core_info->core_size = stbuf.st_size;
2422 /*
2423 * In the days before adjustable core file content, this was the
2424 * default core file content. For new core files, this value will
2425 * be overwritten by the NT_CONTENT note section.
2426 */
2427 core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2428 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2429 CC_CONTENT_SHANON;
2430
2431 switch (core.e_hdr.e_ident[EI_CLASS]) {
2432 case ELFCLASS32:
2433 core_info->core_dmodel = PR_MODEL_ILP32;
2434 break;
2435 case ELFCLASS64:
2436 core_info->core_dmodel = PR_MODEL_LP64;
2437 break;
2438 default:
2439 *perr = G_FORMAT;
2440 goto err;
2441 }
2442 core_info->core_osabi = core.e_hdr.e_ident[EI_OSABI];
2443
2444 /*
2445 * Because the core file may be a large file, we can't use libelf to
2446 * read the Phdrs. We use e_phnum and e_phentsize to simplify things.
2447 */
2448 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
2449
2450 if ((phbuf = malloc(nbytes)) == NULL) {
2451 *perr = G_STRANGE;
2452 goto err;
2453 }
2454
2455 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2456 *perr = G_STRANGE;
2457 free(phbuf);
2458 goto err;
2459 }
2460
2461 /*
2462 * Iterate through the program headers in the core file.
2463 * We're interested in two types of Phdrs: PT_NOTE (which
2464 * contains a set of saved /proc structures), and PT_LOAD (which
2465 * represents a memory mapping from the process's address space).
2466 * In the case of PT_NOTE, we're interested in the last PT_NOTE
2467 * in the core file; currently the first PT_NOTE (if present)
2468 * contains /proc structs in the pre-2.6 unstructured /proc format.
2469 */
2470 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2471 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2472 (void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2473 else
2474 core_phdr_to_gelf(php, &phdr);
2475
2476 switch (phdr.p_type) {
2477 case PT_NOTE:
2478 note_phdr = phdr;
2479 notes++;
2480 break;
2481
2482 case PT_LOAD:
2483 if (core_add_mapping(P, &phdr) == -1) {
2484 *perr = G_STRANGE;
2485 free(phbuf);
2486 goto err;
2487 }
2488 break;
2489 default:
2490 dprintf("Pgrab_core: unknown phdr %d\n", phdr.p_type);
2491 break;
2492 }
2493
2494 php = (char *)php + core.e_hdr.e_phentsize;
2495 }
2496
2497 free(phbuf);
2498
2499 Psort_mappings(P);
2500
2501 /*
2502 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
2503 * was present, abort. The core file is either corrupt or too old.
2504 */
2505 if (notes == 0 || (notes == 1 && core_info->core_osabi ==
2506 ELFOSABI_SOLARIS)) {
2507 *perr = G_NOTE;
2508 goto err;
2509 }
2510
2511 /*
2512 * Advance the seek pointer to the start of the PT_NOTE data
2513 */
2514 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2515 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2516 *perr = G_STRANGE;
2517 goto err;
2518 }
2519
2520 /*
2521 * Now process the PT_NOTE structures. Each one is preceded by
2522 * an Elf{32/64}_Nhdr structure describing its type and size.
2523 *
2524 * +--------+
2525 * | header |
2526 * +--------+
2527 * | name |
2528 * | ... |
2529 * +--------+
2530 * | desc |
2531 * | ... |
2532 * +--------+
2533 */
2534 for (nleft = note_phdr.p_filesz; nleft > 0; ) {
2535 Elf64_Nhdr nhdr;
2536 off64_t off, namesz, descsz;
2537
2538 /*
2539 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2540 * as different types, they are both of the same content and
2541 * size, so we don't need to worry about 32/64 conversion here.
2542 */
2543 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2544 dprintf("Pgrab_core: failed to read ELF note header\n");
2545 *perr = G_NOTE;
2546 goto err;
2547 }
2548
2549 /*
2550 * According to the System V ABI, the amount of padding
2551 * following the name field should align the description
2552 * field on a 4 byte boundary for 32-bit binaries or on an 8
2553 * byte boundary for 64-bit binaries. However, this change
2554 * was not made correctly during the 64-bit port so all
2555 * descriptions can assume only 4-byte alignment. We ignore
2556 * the name field and the padding to 4-byte alignment.
2557 */
2558 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2559
2560 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2561 dprintf("failed to seek past name and padding\n");
2562 *perr = G_STRANGE;
2563 goto err;
2564 }
2565
2566 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2567 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2568
2569 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2570
2571 /*
2572 * Invoke the note handler function from our table
2573 */
2574 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
2575 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2576 dprintf("handler for type %d returned < 0",
2577 nhdr.n_type);
2578 *perr = G_NOTE;
2579 goto err;
2580 }
2581 /*
2582 * The presence of either of these notes indicates that
2583 * the dump was generated on Linux.
2584 */
2585 #ifdef __x86
2586 if (nhdr.n_type == NT_PRSTATUS ||
2587 nhdr.n_type == NT_PRPSINFO)
2588 from_linux = B_TRUE;
2589 #endif
2590 } else {
2591 (void) note_notsup(P, nhdr.n_descsz);
2592 }
2593
2594 /*
2595 * Seek past the current note data to the next Elf_Nhdr
2596 */
2597 descsz = P2ROUNDUP((off64_t)nhdr.n_descsz, (off64_t)4);
2598 if (lseek64(P->asfd, off + descsz, SEEK_SET) == (off64_t)-1) {
2599 dprintf("Pgrab_core: failed to seek to next nhdr\n");
2600 *perr = G_STRANGE;
2601 goto err;
2602 }
2603
2604 /*
2605 * Subtract the size of the header and its data from what
2606 * we have left to process.
2607 */
2608 nleft -= sizeof (nhdr) + namesz + descsz;
2609 }
2610
2611 #ifdef __x86
2612 if (from_linux) {
2613 size_t pid;
2614 lwp_info_t *lwp;
2615
2616 P->status.pr_dmodel = core_info->core_dmodel;
2617
2618 pid = P->status.pr_pid;
2619
2620 for (lwp = list_head(&core_info->core_lwp_head); lwp != NULL;
2621 lwp = list_next(&core_info->core_lwp_head, lwp)) {
2622 dprintf("Linux thread with id %d\n", lwp->lwp_id);
2623
2624 /*
2625 * In the case we don't have a valid psinfo (i.e. pid is
2626 * 0, probably because of gdb creating the core) assume
2627 * lowest pid count is the first thread (what if the
2628 * next thread wraps the pid around?)
2629 */
2630 if (P->status.pr_pid == 0 &&
2631 ((pid == 0 && lwp->lwp_id > 0) ||
2632 (lwp->lwp_id < pid))) {
2633 pid = lwp->lwp_id;
2634 }
2635 }
2636
2637 if (P->status.pr_pid != pid) {
2638 dprintf("No valid pid, setting to %ld\n", (ulong_t)pid);
2639 P->status.pr_pid = pid;
2640 P->psinfo.pr_pid = pid;
2641 }
2642
2643 /*
2644 * Consumers like mdb expect the first thread to actually have
2645 * an id of 1, on linux that is actually the pid. Find the the
2646 * thread with our process id, and set the id to 1
2647 */
2648 if ((lwp = lwpid2info(P, pid)) == NULL) {
2649 dprintf("Couldn't find first thread\n");
2650 *perr = G_STRANGE;
2651 goto err;
2652 }
2653
2654 dprintf("setting representative thread: %d\n", lwp->lwp_id);
2655
2656 lwp->lwp_id = 1;
2657 lwp->lwp_status.pr_lwpid = 1;
2658
2659 /* set representative thread */
2660 (void) memcpy(&P->status.pr_lwp, &lwp->lwp_status,
2661 sizeof (P->status.pr_lwp));
2662 }
2663 #endif /* __x86 */
2664
2665 if (nleft != 0) {
2666 dprintf("Pgrab_core: note section malformed\n");
2667 *perr = G_STRANGE;
2668 goto err;
2669 }
2670
2671 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2672 pagesize = getpagesize();
2673 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2674 }
2675
2676 /*
2677 * Locate and label the mappings corresponding to the end of the
2678 * heap (MA_BREAK) and the base of the stack (MA_STACK).
2679 */
2680 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2681 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2682 P->status.pr_brksize - 1)) != NULL)
2683 brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2684 else
2685 brk_mp = NULL;
2686
2687 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2688 stk_mp->map_pmap.pr_mflags |= MA_STACK;
2689
2690 /*
2691 * At this point, we have enough information to look for the
2692 * executable and open it: we have access to the auxv, a psinfo_t,
2693 * and the ability to read from mappings provided by the core file.
2694 */
2695 (void) Pfindexec(P, aout_path, core_exec_open, &aout);
2696 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2697 execname = P->execname ? P->execname : "a.out";
2698
2699 /*
2700 * Iterate through the sections, looking for the .dynamic and .interp
2701 * sections. If we encounter them, remember their section pointers.
2702 */
2703 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2704 char *sname;
2705
2706 if ((gelf_getshdr(scn, &shdr) == NULL) ||
2707 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2708 (size_t)shdr.sh_name)) == NULL)
2709 continue;
2710
2711 if (strcmp(sname, ".interp") == 0)
2712 intp_scn = scn;
2713 }
2714
2715 /*
2716 * Get the AT_BASE auxv element. If this is missing (-1), then
2717 * we assume this is a statically-linked executable.
2718 */
2719 base_addr = Pgetauxval(P, AT_BASE);
2720
2721 /*
2722 * In order to get librtld_db initialized, we'll need to identify
2723 * and name the mapping corresponding to the run-time linker. The
2724 * AT_BASE auxv element tells us the address where it was mapped,
2725 * and the .interp section of the executable tells us its path.
2726 * If for some reason that doesn't pan out, just use ld.so.1.
2727 */
2728 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2729 dp->d_size != 0) {
2730 dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2731 interp = dp->d_buf;
2732
2733 } else if (base_addr != (uintptr_t)-1L) {
2734 if (core_info->core_dmodel == PR_MODEL_LP64)
2735 interp = "/usr/lib/64/ld.so.1";
2736 else
2737 interp = "/usr/lib/ld.so.1";
2738
2739 dprintf(".interp section is missing or could not be read; "
2740 "defaulting to %s\n", interp);
2741 } else
2742 dprintf("detected statically linked executable\n");
2743
2744 /*
2745 * If we have an AT_BASE element, name the mapping at that address
2746 * using the interpreter pathname. Name the corresponding data
2747 * mapping after the interpreter as well.
2748 */
2749 if (base_addr != (uintptr_t)-1L) {
2750 elf_file_t intf;
2751
2752 P->map_ldso = core_name_mapping(P, base_addr, interp);
2753
2754 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2755 rd_loadobj_t rl;
2756 map_info_t *dmp;
2757
2758 rl.rl_base = base_addr;
2759 dmp = core_find_data(P, intf.e_elf, &rl);
2760
2761 if (dmp != NULL) {
2762 dprintf("renamed data at %p to %s\n",
2763 (void *)rl.rl_data_base, interp);
2764 (void) strncpy(dmp->map_pmap.pr_mapname,
2765 interp, PRMAPSZ);
2766 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2767 }
2768 }
2769
2770 core_elf_close(&intf);
2771 }
2772
2773 /*
2774 * If we have an AT_ENTRY element, name the mapping at that address
2775 * using the special name "a.out" just like /proc does.
2776 */
2777 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2778 P->map_exec = core_name_mapping(P, addr, "a.out");
2779
2780 /*
2781 * If we're a statically linked executable (or we're on x86 and looking
2782 * at a Linux core dump), then just locate the executable's text and
2783 * data and name them after the executable.
2784 */
2785 #ifndef __x86
2786 if (base_addr == (uintptr_t)-1L) {
2787 #else
2788 if (base_addr == (uintptr_t)-1L || from_linux) {
2789 #endif
2790 dprintf("looking for text and data: %s\n", execname);
2791 map_info_t *tmp, *dmp;
2792 file_info_t *fp;
2793 rd_loadobj_t rl;
2794
2795 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2796 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2797 (void) strncpy(tmp->map_pmap.pr_mapname,
2798 execname, PRMAPSZ);
2799 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2800 (void) strncpy(dmp->map_pmap.pr_mapname,
2801 execname, PRMAPSZ);
2802 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2803 }
2804
2805 if ((P->map_exec = tmp) != NULL &&
2806 (fp = malloc(sizeof (file_info_t))) != NULL) {
2807
2808 (void) memset(fp, 0, sizeof (file_info_t));
2809
2810 list_insert_head(&P->file_head, fp);
2811 tmp->map_file = fp;
2812 P->num_files++;
2813
2814 fp->file_ref = 1;
2815 fp->file_fd = -1;
2816 fp->file_dbgfile = -1;
2817
2818 fp->file_lo = malloc(sizeof (rd_loadobj_t));
2819 fp->file_lname = strdup(execname);
2820
2821 if (fp->file_lo)
2822 *fp->file_lo = rl;
2823 if (fp->file_lname)
2824 fp->file_lbase = basename(fp->file_lname);
2825 if (fp->file_rname)
2826 fp->file_rbase = basename(fp->file_rname);
2827
2828 (void) strcpy(fp->file_pname,
2829 P->mappings[0].map_pmap.pr_mapname);
2830 fp->file_map = tmp;
2831
2832 Pbuild_file_symtab(P, fp);
2833
2834 if (dmp != NULL) {
2835 dmp->map_file = fp;
2836 fp->file_ref++;
2837 }
2838 }
2839 }
2840
2841 core_elf_close(&aout);
2842
2843 /*
2844 * We now have enough information to initialize librtld_db.
2845 * After it warms up, we can iterate through the load object chain
2846 * in the core, which will allow us to construct the file info
2847 * we need to provide symbol information for the other shared
2848 * libraries, and also to fill in the missing mapping names.
2849 */
2850 rd_log(_libproc_debug);
2851
2852 if ((P->rap = rd_new(P)) != NULL) {
2853 (void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2854 core_iter_mapping, P);
2855
2856 if (core_info->core_errno != 0) {
2857 errno = core_info->core_errno;
2858 *perr = G_STRANGE;
2859 goto err;
2860 }
2861 } else
2862 dprintf("failed to initialize rtld_db agent\n");
2863
2864 /*
2865 * If there are sections, load them and process the data from any
2866 * sections that we can use to annotate the file_info_t's.
2867 */
2868 core_load_shdrs(P, &core);
2869
2870 /*
2871 * If we previously located a stack or break mapping, and they are
2872 * still anonymous, we now assume that they were MAP_ANON mappings.
2873 * If brk_mp turns out to now have a name, then the heap is still
2874 * sitting at the end of the executable's data+bss mapping: remove
2875 * the previous MA_BREAK setting to be consistent with /proc.
2876 */
2877 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2878 stk_mp->map_pmap.pr_mflags |= MA_ANON;
2879 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2880 brk_mp->map_pmap.pr_mflags |= MA_ANON;
2881 else if (brk_mp != NULL)
2882 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2883
2884 *perr = 0;
2885 return (P);
2886
2887 err:
2888 Pfree(P);
2889 core_elf_close(&aout);
2890 return (NULL);
2891 }
2892
2893 /*
2894 * Grab a core file using a pathname. We just open it and call Pfgrab_core().
2895 */
2896 struct ps_prochandle *
2897 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2898 {
2899 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2900
2901 if ((fd = open64(core, oflag)) >= 0)
2902 return (Pfgrab_core(fd, aout, perr));
2903
2904 if (errno != ENOENT)
2905 *perr = G_STRANGE;
2906 else
2907 *perr = G_NOCORE;
2908
2909 return (NULL);
2910 }
2911
2912 int
2913 Pupanic(struct ps_prochandle *P, prupanic_t **pru)
2914 {
2915 core_info_t *core;
2916
2917 if (P->state != PS_DEAD) {
2918 errno = ENODATA;
2919 return (-1);
2920 }
2921
2922 core = P->data;
2923 if (core->core_upanic == NULL) {
2924 errno = ENOENT;
2925 return (-1);
2926 }
2927
2928 if (core->core_upanic->pru_version != PRUPANIC_VERSION_1) {
2929 errno = EINVAL;
2930 return (-1);
2931 }
2932
2933 if ((*pru = calloc(1, sizeof (prupanic_t))) == NULL)
2934 return (-1);
2935 (void) memcpy(*pru, core->core_upanic, sizeof (prupanic_t));
2936
2937 return (0);
2938 }
2939
2940 void
2941 Pupanic_free(prupanic_t *pru)
2942 {
2943 free(pru);
2944 }
2945