1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright 2014 Toomas Soome <tsoome@me.com>
26  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
27  * Copyright 2019 Joyent, Inc.
28  */
29 
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <errno.h>
33 #include <strings.h>
34 #include <unistd.h>
35 #include <smbios.h>
36 #include <uuid/uuid.h>
37 #include <libintl.h>
38 #include <sys/types.h>
39 #include <sys/dkio.h>
40 #include <sys/vtoc.h>
41 #include <sys/mhd.h>
42 #include <sys/param.h>
43 #include <sys/dktp/fdisk.h>
44 #include <sys/efi_partition.h>
45 #include <sys/byteorder.h>
46 #include <sys/ddi.h>
47 
48 /*
49  * The original conversion array used simple array index, but since
50  * we do need to take account of VTOC tag numbers from other systems,
51  * we need to provide tag values too, or the array will grow too large.
52  *
53  * Still we will fabricate the missing p_tag values.
54  */
55 static struct uuid_to_ptag {
56 	struct uuid	uuid;
57 	ushort_t	p_tag;
58 } conversion_array[] = {
59 	{ EFI_UNUSED, V_UNASSIGNED },
60 	{ EFI_BOOT, V_BOOT },
61 	{ EFI_ROOT, V_ROOT },
62 	{ EFI_SWAP, V_SWAP },
63 	{ EFI_USR, V_USR },
64 	{ EFI_BACKUP, V_BACKUP },
65 	{ EFI_VAR, V_VAR },
66 	{ EFI_HOME, V_HOME },
67 	{ EFI_ALTSCTR, V_ALTSCTR },
68 	{ EFI_RESERVED, V_RESERVED },
69 	{ EFI_SYSTEM, V_SYSTEM },		/* V_SYSTEM is 0xc */
70 	{ EFI_LEGACY_MBR, 0x10 },
71 	{ EFI_SYMC_PUB, 0x11 },
72 	{ EFI_SYMC_CDS, 0x12 },
73 	{ EFI_MSFT_RESV, 0x13 },
74 	{ EFI_DELL_BASIC, 0x14 },
75 	{ EFI_DELL_RAID, 0x15 },
76 	{ EFI_DELL_SWAP, 0x16 },
77 	{ EFI_DELL_LVM, 0x17 },
78 	{ EFI_DELL_RESV, 0x19 },
79 	{ EFI_AAPL_HFS, 0x1a },
80 	{ EFI_AAPL_UFS, 0x1b },
81 	{ EFI_AAPL_ZFS, 0x1c },
82 	{ EFI_AAPL_APFS, 0x1d },
83 	{ EFI_BIOS_BOOT, V_BIOS_BOOT },		/* V_BIOS_BOOT is 0x18 */
84 	{ EFI_FREEBSD_BOOT,  V_FREEBSD_BOOT },
85 	{ EFI_FREEBSD_SWAP, V_FREEBSD_SWAP },
86 	{ EFI_FREEBSD_UFS, V_FREEBSD_UFS },
87 	{ EFI_FREEBSD_VINUM, V_FREEBSD_VINUM },
88 	{ EFI_FREEBSD_ZFS, V_FREEBSD_ZFS },
89 	{ EFI_FREEBSD_NANDFS, V_FREEBSD_NANDFS }
90 };
91 
92 /*
93  * Default vtoc information for non-SVr4 partitions
94  */
95 struct dk_map2  default_vtoc_map[NDKMAP] = {
96 	{	V_ROOT,		0	},		/* a - 0 */
97 	{	V_SWAP,		V_UNMNT	},		/* b - 1 */
98 	{	V_BACKUP,	V_UNMNT	},		/* c - 2 */
99 	{	V_UNASSIGNED,	0	},		/* d - 3 */
100 	{	V_UNASSIGNED,	0	},		/* e - 4 */
101 	{	V_UNASSIGNED,	0	},		/* f - 5 */
102 	{	V_USR,		0	},		/* g - 6 */
103 	{	V_UNASSIGNED,	0	},		/* h - 7 */
104 
105 #if defined(_SUNOS_VTOC_16)
106 
107 #if defined(i386) || defined(__amd64)
108 	{	V_BOOT,		V_UNMNT	},		/* i - 8 */
109 	{	V_ALTSCTR,	0	},		/* j - 9 */
110 
111 #else
112 #error No VTOC format defined.
113 #endif			/* defined(i386) */
114 
115 	{	V_UNASSIGNED,	0	},		/* k - 10 */
116 	{	V_UNASSIGNED,	0	},		/* l - 11 */
117 	{	V_UNASSIGNED,	0	},		/* m - 12 */
118 	{	V_UNASSIGNED,	0	},		/* n - 13 */
119 	{	V_UNASSIGNED,	0	},		/* o - 14 */
120 	{	V_UNASSIGNED,	0	},		/* p - 15 */
121 #endif			/* defined(_SUNOS_VTOC_16) */
122 };
123 
124 #ifdef DEBUG
125 int efi_debug = 1;
126 #else
127 int efi_debug = 0;
128 #endif
129 
130 #define	EFI_FIXES_DB "/usr/share/hwdata/efi.fixes"
131 
132 extern unsigned int	efi_crc32(const unsigned char *, unsigned int);
133 static int		efi_read(int, struct dk_gpt *);
134 
135 static int
read_disk_info(int fd,diskaddr_t * capacity,uint_t * lbsize)136 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
137 {
138 	struct dk_minfo		disk_info;
139 
140 	if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1)
141 		return (errno);
142 	*capacity = disk_info.dki_capacity;
143 	*lbsize = disk_info.dki_lbsize;
144 	return (0);
145 }
146 
147 /*
148  * the number of blocks the EFI label takes up (round up to nearest
149  * block)
150  */
151 #define	NBLOCKS(p, l)	(1 + ((((p) * (int)sizeof (efi_gpe_t))  + \
152 				((l) - 1)) / (l)))
153 /* number of partitions -- limited by what we can malloc */
154 #define	MAX_PARTS	((4294967295UL - sizeof (struct dk_gpt)) / \
155 			    sizeof (struct dk_part))
156 
157 /*
158  * The EFI reserved partition size is 8 MiB. This calculates the number of
159  * sectors required to store 8 MiB, taking into account the device's sector
160  * size.
161  */
162 uint_t
efi_reserved_sectors(dk_gpt_t * efi)163 efi_reserved_sectors(dk_gpt_t *efi)
164 {
165 	/* roundup to sector size */
166 	return ((EFI_MIN_RESV_SIZE * DEV_BSIZE + efi->efi_lbasize - 1) /
167 	    efi->efi_lbasize);
168 }
169 
170 int
efi_alloc_and_init(int fd,uint32_t nparts,struct dk_gpt ** vtoc)171 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
172 {
173 	diskaddr_t	capacity;
174 	uint_t		lbsize;
175 	uint_t		nblocks;
176 	size_t		length;
177 	struct dk_gpt	*vptr;
178 	struct uuid	uuid;
179 
180 	if (read_disk_info(fd, &capacity, &lbsize) != 0) {
181 		if (efi_debug)
182 			(void) fprintf(stderr,
183 			    "couldn't read disk information\n");
184 		return (-1);
185 	}
186 
187 	nblocks = NBLOCKS(nparts, lbsize);
188 	if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
189 		/* 16K plus one block for the GPT */
190 		nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
191 	}
192 
193 	if (nparts > MAX_PARTS) {
194 		if (efi_debug) {
195 			(void) fprintf(stderr,
196 			"the maximum number of partitions supported is %lu\n",
197 			    MAX_PARTS);
198 		}
199 		return (-1);
200 	}
201 
202 	length = sizeof (struct dk_gpt) +
203 	    sizeof (struct dk_part) * (nparts - 1);
204 
205 	if ((*vtoc = calloc(1, length)) == NULL)
206 		return (-1);
207 
208 	vptr = *vtoc;
209 
210 	vptr->efi_version = EFI_VERSION_CURRENT;
211 	vptr->efi_lbasize = lbsize;
212 	vptr->efi_nparts = nparts;
213 	/*
214 	 * add one block here for the PMBR; on disks with a 512 byte
215 	 * block size and 128 or fewer partitions, efi_first_u_lba
216 	 * should work out to "34"
217 	 */
218 	vptr->efi_first_u_lba = nblocks + 1;
219 	vptr->efi_last_lba = capacity - 1;
220 	vptr->efi_altern_lba = capacity -1;
221 	vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
222 
223 	(void) uuid_generate((uchar_t *)&uuid);
224 	UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
225 	return (0);
226 }
227 
228 /*
229  * Read EFI - return partition number upon success.
230  */
231 int
efi_alloc_and_read(int fd,struct dk_gpt ** vtoc)232 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
233 {
234 	int			rval;
235 	uint32_t		nparts;
236 	int			length;
237 	struct mboot		*mbr;
238 	struct ipart		*ipart;
239 	diskaddr_t		capacity;
240 	uint_t			lbsize;
241 	int			i;
242 
243 	if (read_disk_info(fd, &capacity, &lbsize) != 0)
244 		return (VT_ERROR);
245 
246 	if ((mbr = calloc(1, lbsize)) == NULL)
247 		return (VT_ERROR);
248 
249 	if ((ioctl(fd, DKIOCGMBOOT, (caddr_t)mbr)) == -1) {
250 		free(mbr);
251 		return (VT_ERROR);
252 	}
253 
254 	if (mbr->signature != MBB_MAGIC) {
255 		free(mbr);
256 		return (VT_EINVAL);
257 	}
258 	ipart = (struct ipart *)(uintptr_t)mbr->parts;
259 
260 	/* Check if we have partition with ID EFI_PMBR */
261 	for (i = 0; i < FD_NUMPART; i++) {
262 		if (ipart[i].systid == EFI_PMBR)
263 			break;
264 	}
265 	free(mbr);
266 	if (i == FD_NUMPART)
267 		return (VT_EINVAL);
268 
269 	/* figure out the number of entries that would fit into 16K */
270 	nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
271 	length = (int) sizeof (struct dk_gpt) +
272 	    (int) sizeof (struct dk_part) * (nparts - 1);
273 	if ((*vtoc = calloc(1, length)) == NULL)
274 		return (VT_ERROR);
275 
276 	(*vtoc)->efi_nparts = nparts;
277 	rval = efi_read(fd, *vtoc);
278 
279 	if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
280 		void *tmp;
281 		length = (int) sizeof (struct dk_gpt) +
282 		    (int) sizeof (struct dk_part) *
283 		    ((*vtoc)->efi_nparts - 1);
284 		nparts = (*vtoc)->efi_nparts;
285 		if ((tmp = realloc(*vtoc, length)) == NULL) {
286 			free (*vtoc);
287 			*vtoc = NULL;
288 			return (VT_ERROR);
289 		} else {
290 			*vtoc = tmp;
291 			rval = efi_read(fd, *vtoc);
292 		}
293 	}
294 
295 	if (rval < 0) {
296 		if (efi_debug) {
297 			(void) fprintf(stderr,
298 			    "read of EFI table failed, rval=%d\n", rval);
299 		}
300 		free (*vtoc);
301 		*vtoc = NULL;
302 	}
303 
304 	return (rval);
305 }
306 
307 static int
efi_ioctl(int fd,int cmd,dk_efi_t * dk_ioc)308 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
309 {
310 	void *data = dk_ioc->dki_data;
311 	int error;
312 
313 	dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
314 	error = ioctl(fd, cmd, (void *)dk_ioc);
315 	dk_ioc->dki_data = data;
316 
317 	return (error);
318 }
319 
320 static int
check_label(int fd,dk_efi_t * dk_ioc)321 check_label(int fd, dk_efi_t *dk_ioc)
322 {
323 	efi_gpt_t		*efi;
324 	uint_t			crc;
325 
326 	if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
327 		switch (errno) {
328 		case EIO:
329 			return (VT_EIO);
330 		default:
331 			return (VT_ERROR);
332 		}
333 	}
334 	efi = dk_ioc->dki_data;
335 	if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
336 		if (efi_debug)
337 			(void) fprintf(stderr,
338 			    "Bad EFI signature: 0x%llx != 0x%llx\n",
339 			    (long long)efi->efi_gpt_Signature,
340 			    (long long)LE_64(EFI_SIGNATURE));
341 		return (VT_EINVAL);
342 	}
343 
344 	/*
345 	 * check CRC of the header; the size of the header should
346 	 * never be larger than one block
347 	 */
348 	crc = efi->efi_gpt_HeaderCRC32;
349 	efi->efi_gpt_HeaderCRC32 = 0;
350 
351 	if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
352 	    crc != LE_32(efi_crc32((unsigned char *)efi,
353 	    LE_32(efi->efi_gpt_HeaderSize)))) {
354 		if (efi_debug)
355 			(void) fprintf(stderr,
356 			    "Bad EFI CRC: 0x%x != 0x%x\n",
357 			    crc, LE_32(efi_crc32((unsigned char *)efi,
358 			    LE_32(efi->efi_gpt_HeaderSize))));
359 		return (VT_EINVAL);
360 	}
361 
362 	return (0);
363 }
364 
365 static int
efi_read(int fd,struct dk_gpt * vtoc)366 efi_read(int fd, struct dk_gpt *vtoc)
367 {
368 	int			i, j;
369 	int			label_len;
370 	int			rval = 0;
371 	int			vdc_flag = 0;
372 	struct dk_minfo		disk_info;
373 	dk_efi_t		dk_ioc;
374 	efi_gpt_t		*efi;
375 	efi_gpe_t		*efi_parts;
376 	struct dk_cinfo		dki_info;
377 	uint32_t		user_length;
378 	boolean_t		legacy_label = B_FALSE;
379 
380 	/*
381 	 * get the partition number for this file descriptor.
382 	 */
383 	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
384 		if (efi_debug) {
385 			(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
386 		}
387 		switch (errno) {
388 		case EIO:
389 			return (VT_EIO);
390 		case EINVAL:
391 			return (VT_EINVAL);
392 		default:
393 			return (VT_ERROR);
394 		}
395 	}
396 
397 	if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
398 	    (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
399 		/*
400 		 * The controller and drive name "vdc" (virtual disk client)
401 		 * indicates a LDoms virtual disk.
402 		 */
403 		vdc_flag++;
404 	}
405 
406 	/* get the LBA size */
407 	if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
408 		if (efi_debug) {
409 			(void) fprintf(stderr,
410 			    "assuming LBA 512 bytes %d\n",
411 			    errno);
412 		}
413 		disk_info.dki_lbsize = DEV_BSIZE;
414 	}
415 	if (disk_info.dki_lbsize == 0) {
416 		if (efi_debug) {
417 			(void) fprintf(stderr,
418 			    "efi_read: assuming LBA 512 bytes\n");
419 		}
420 		disk_info.dki_lbsize = DEV_BSIZE;
421 	}
422 	/*
423 	 * Read the EFI GPT to figure out how many partitions we need
424 	 * to deal with.
425 	 */
426 	dk_ioc.dki_lba = 1;
427 	if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
428 		label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
429 	} else {
430 		label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
431 		    disk_info.dki_lbsize;
432 		if (label_len % disk_info.dki_lbsize) {
433 			/* pad to physical sector size */
434 			label_len += disk_info.dki_lbsize;
435 			label_len &= ~(disk_info.dki_lbsize - 1);
436 		}
437 	}
438 
439 	if ((dk_ioc.dki_data = calloc(1, label_len)) == NULL)
440 		return (VT_ERROR);
441 
442 	dk_ioc.dki_length = disk_info.dki_lbsize;
443 	user_length = vtoc->efi_nparts;
444 	efi = dk_ioc.dki_data;
445 	if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
446 		/*
447 		 * No valid label here; try the alternate. Note that here
448 		 * we just read GPT header and save it into dk_ioc.data,
449 		 * Later, we will read GUID partition entry array if we
450 		 * can get valid GPT header.
451 		 */
452 
453 		/*
454 		 * This is a workaround for legacy systems. In the past, the
455 		 * last sector of SCSI disk was invisible on x86 platform. At
456 		 * that time, backup label was saved on the next to the last
457 		 * sector. It is possible for users to move a disk from previous
458 		 * solaris system to present system. Here, we attempt to search
459 		 * legacy backup EFI label first.
460 		 */
461 		dk_ioc.dki_lba = disk_info.dki_capacity - 2;
462 		dk_ioc.dki_length = disk_info.dki_lbsize;
463 		rval = check_label(fd, &dk_ioc);
464 		if (rval == VT_EINVAL) {
465 			/*
466 			 * we didn't find legacy backup EFI label, try to
467 			 * search backup EFI label in the last block.
468 			 */
469 			dk_ioc.dki_lba = disk_info.dki_capacity - 1;
470 			dk_ioc.dki_length = disk_info.dki_lbsize;
471 			rval = check_label(fd, &dk_ioc);
472 			if (rval == 0) {
473 				legacy_label = B_TRUE;
474 				if (efi_debug)
475 					(void) fprintf(stderr,
476 					    "efi_read: primary label corrupt; "
477 					    "using EFI backup label located on"
478 					    " the last block\n");
479 			}
480 		} else {
481 			if ((efi_debug) && (rval == 0))
482 				(void) fprintf(stderr, "efi_read: primary label"
483 				    " corrupt; using legacy EFI backup label "
484 				    " located on the next to last block\n");
485 		}
486 
487 		if (rval == 0) {
488 			dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
489 			vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
490 			vtoc->efi_nparts =
491 			    LE_32(efi->efi_gpt_NumberOfPartitionEntries);
492 			/*
493 			 * Partition tables are between backup GPT header
494 			 * table and ParitionEntryLBA (the starting LBA of
495 			 * the GUID partition entries array). Now that we
496 			 * already got valid GPT header and saved it in
497 			 * dk_ioc.dki_data, we try to get GUID partition
498 			 * entry array here.
499 			 */
500 			/* LINTED */
501 			dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
502 			    + disk_info.dki_lbsize);
503 			if (legacy_label)
504 				dk_ioc.dki_length = disk_info.dki_capacity - 1 -
505 				    dk_ioc.dki_lba;
506 			else
507 				dk_ioc.dki_length = disk_info.dki_capacity - 2 -
508 				    dk_ioc.dki_lba;
509 			dk_ioc.dki_length *= disk_info.dki_lbsize;
510 			if (dk_ioc.dki_length >
511 			    ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
512 				rval = VT_EINVAL;
513 			} else {
514 				/*
515 				 * read GUID partition entry array
516 				 */
517 				rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
518 			}
519 		}
520 
521 	} else if (rval == 0) {
522 
523 		dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
524 		/* LINTED */
525 		dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
526 		    + disk_info.dki_lbsize);
527 		dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
528 		rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
529 
530 	} else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
531 		/*
532 		 * When the device is a LDoms virtual disk, the DKIOCGETEFI
533 		 * ioctl can fail with EINVAL if the virtual disk backend
534 		 * is a ZFS volume serviced by a domain running an old version
535 		 * of Solaris. This is because the DKIOCGETEFI ioctl was
536 		 * initially incorrectly implemented for a ZFS volume and it
537 		 * expected the GPT and GPE to be retrieved with a single ioctl.
538 		 * So we try to read the GPT and the GPE using that old style
539 		 * ioctl.
540 		 */
541 		dk_ioc.dki_lba = 1;
542 		dk_ioc.dki_length = label_len;
543 		rval = check_label(fd, &dk_ioc);
544 	}
545 
546 	if (rval < 0) {
547 		free(efi);
548 		return (rval);
549 	}
550 
551 	/* LINTED -- always longlong aligned */
552 	efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
553 
554 	/*
555 	 * Assemble this into a "dk_gpt" struct for easier
556 	 * digestibility by applications.
557 	 */
558 	vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
559 	vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
560 	vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
561 	vtoc->efi_lbasize = disk_info.dki_lbsize;
562 	vtoc->efi_last_lba = disk_info.dki_capacity - 1;
563 	vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
564 	vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
565 	vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
566 	UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
567 
568 	/*
569 	 * If the array the user passed in is too small, set the length
570 	 * to what it needs to be and return
571 	 */
572 	if (user_length < vtoc->efi_nparts) {
573 		return (VT_EINVAL);
574 	}
575 
576 	for (i = 0; i < vtoc->efi_nparts; i++) {
577 
578 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
579 		    efi_parts[i].efi_gpe_PartitionTypeGUID);
580 
581 		for (j = 0;
582 		    j < sizeof (conversion_array)
583 		    / sizeof (struct uuid_to_ptag); j++) {
584 
585 			if (bcmp(&vtoc->efi_parts[i].p_guid,
586 			    &conversion_array[j].uuid,
587 			    sizeof (struct uuid)) == 0) {
588 				vtoc->efi_parts[i].p_tag =
589 				    conversion_array[j].p_tag;
590 				break;
591 			}
592 		}
593 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
594 			continue;
595 		vtoc->efi_parts[i].p_flag =
596 		    LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
597 		vtoc->efi_parts[i].p_start =
598 		    LE_64(efi_parts[i].efi_gpe_StartingLBA);
599 		vtoc->efi_parts[i].p_size =
600 		    LE_64(efi_parts[i].efi_gpe_EndingLBA) -
601 		    vtoc->efi_parts[i].p_start + 1;
602 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
603 			vtoc->efi_parts[i].p_name[j] =
604 			    (uchar_t)LE_16(
605 			    efi_parts[i].efi_gpe_PartitionName[j]);
606 		}
607 
608 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
609 		    efi_parts[i].efi_gpe_UniquePartitionGUID);
610 	}
611 	free(efi);
612 
613 	return (dki_info.dki_partition);
614 }
615 
616 static void
hardware_workarounds(int * slot,int * active)617 hardware_workarounds(int *slot, int *active)
618 {
619 	smbios_struct_t s_sys, s_mb;
620 	smbios_info_t sys, mb;
621 	smbios_hdl_t *shp;
622 	char buf[0x400];
623 	FILE *fp;
624 	int err;
625 
626 	if ((fp = fopen(EFI_FIXES_DB, "rF")) == NULL)
627 		return;
628 
629 	if ((shp = smbios_open(NULL, SMB_VERSION, 0, &err)) == NULL) {
630 		if (efi_debug)
631 			(void) fprintf(stderr,
632 			    "libefi failed to load SMBIOS: %s\n",
633 			    smbios_errmsg(err));
634 		(void) fclose(fp);
635 		return;
636 	}
637 
638 	if (smbios_lookup_type(shp, SMB_TYPE_SYSTEM, &s_sys) == SMB_ERR ||
639 	    smbios_info_common(shp, s_sys.smbstr_id, &sys) == SMB_ERR)
640 		(void) memset(&sys, '\0', sizeof (sys));
641 	if (smbios_lookup_type(shp, SMB_TYPE_BASEBOARD, &s_mb) == SMB_ERR ||
642 	    smbios_info_common(shp, s_mb.smbstr_id, &mb) == SMB_ERR)
643 		(void) memset(&mb, '\0', sizeof (mb));
644 
645 	while (fgets(buf, sizeof (buf), fp) != NULL) {
646 		char *tok, *val, *end;
647 
648 		tok = buf + strspn(buf, " \t");
649 		if (*tok == '#')
650 			continue;
651 		while (*tok != '\0') {
652 			tok += strspn(tok, " \t");
653 			if ((val = strchr(tok, '=')) == NULL)
654 				break;
655 			*val++ = '\0';
656 			if (*val == '"')
657 				end = strchr(++val, '"');
658 			else
659 				end = strpbrk(val, " \t\n");
660 			if (end == NULL)
661 				break;
662 			*end++ = '\0';
663 
664 			if (strcmp(tok, "sys.manufacturer") == 0 &&
665 			    (sys.smbi_manufacturer == NULL ||
666 			    strcasecmp(val, sys.smbi_manufacturer)))
667 				break;
668 			if (strcmp(tok, "sys.product") == 0 &&
669 			    (sys.smbi_product == NULL ||
670 			    strcasecmp(val, sys.smbi_product)))
671 				break;
672 			if (strcmp(tok, "sys.version") == 0 &&
673 			    (sys.smbi_version == NULL ||
674 			    strcasecmp(val, sys.smbi_version)))
675 				break;
676 			if (strcmp(tok, "mb.manufacturer") == 0 &&
677 			    (mb.smbi_manufacturer == NULL ||
678 			    strcasecmp(val, mb.smbi_manufacturer)))
679 				break;
680 			if (strcmp(tok, "mb.product") == 0 &&
681 			    (mb.smbi_product == NULL ||
682 			    strcasecmp(val, mb.smbi_product)))
683 				break;
684 			if (strcmp(tok, "mb.version") == 0 &&
685 			    (mb.smbi_version == NULL ||
686 			    strcasecmp(val, mb.smbi_version)))
687 				break;
688 
689 			if (strcmp(tok, "pmbr_slot") == 0) {
690 				*slot = atoi(val);
691 				if (*slot < 0 || *slot > 3)
692 					*slot = 0;
693 				if (efi_debug)
694 					(void) fprintf(stderr,
695 					    "Using slot %d\n", *slot);
696 			}
697 
698 			if (strcmp(tok, "pmbr_active") == 0) {
699 				*active = atoi(val);
700 				if (*active < 0 || *active > 1)
701 					*active = 0;
702 				if (efi_debug)
703 					(void) fprintf(stderr,
704 					    "Using active %d\n", *active);
705 			}
706 
707 			tok = end;
708 		}
709 	}
710 	(void) fclose(fp);
711 	smbios_close(shp);
712 }
713 
714 /* writes a "protective" MBR */
715 static int
write_pmbr(int fd,struct dk_gpt * vtoc)716 write_pmbr(int fd, struct dk_gpt *vtoc)
717 {
718 	dk_efi_t	dk_ioc;
719 	struct mboot	mb;
720 	uchar_t		*cp;
721 	diskaddr_t	size_in_lba;
722 	uchar_t		*buf;
723 	int		len, slot, active;
724 
725 	slot = active = 0;
726 
727 	hardware_workarounds(&slot, &active);
728 
729 	len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
730 	buf = calloc(1, len);
731 
732 	/*
733 	 * Preserve any boot code and disk signature if the first block is
734 	 * already an MBR.
735 	 */
736 	dk_ioc.dki_lba = 0;
737 	dk_ioc.dki_length = len;
738 	/* LINTED -- always longlong aligned */
739 	dk_ioc.dki_data = (efi_gpt_t *)buf;
740 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
741 		(void) memcpy(&mb, buf, sizeof (mb));
742 		bzero(&mb, sizeof (mb));
743 		mb.signature = LE_16(MBB_MAGIC);
744 	} else {
745 		(void) memcpy(&mb, buf, sizeof (mb));
746 		if (mb.signature != LE_16(MBB_MAGIC)) {
747 			bzero(&mb, sizeof (mb));
748 			mb.signature = LE_16(MBB_MAGIC);
749 		}
750 	}
751 
752 	bzero(&mb.parts, sizeof (mb.parts));
753 	cp = (uchar_t *)&mb.parts[slot * sizeof (struct ipart)];
754 	/* bootable or not */
755 	*cp++ = active ? ACTIVE : NOTACTIVE;
756 	/* beginning CHS; same as starting LBA (but one-based) */
757 	*cp++ = 0x0;
758 	*cp++ = 0x2;
759 	*cp++ = 0x0;
760 	/* OS type */
761 	*cp++ = EFI_PMBR;
762 	/* ending CHS; 0xffffff if not representable */
763 	*cp++ = 0xff;
764 	*cp++ = 0xff;
765 	*cp++ = 0xff;
766 	/* starting LBA: 1 (little endian format) by EFI definition */
767 	*cp++ = 0x01;
768 	*cp++ = 0x00;
769 	*cp++ = 0x00;
770 	*cp++ = 0x00;
771 	/* ending LBA: last block on the disk (little endian format) */
772 	size_in_lba = vtoc->efi_last_lba;
773 	if (size_in_lba < 0xffffffff) {
774 		*cp++ = (size_in_lba & 0x000000ff);
775 		*cp++ = (size_in_lba & 0x0000ff00) >> 8;
776 		*cp++ = (size_in_lba & 0x00ff0000) >> 16;
777 		*cp++ = (size_in_lba & 0xff000000) >> 24;
778 	} else {
779 		*cp++ = 0xff;
780 		*cp++ = 0xff;
781 		*cp++ = 0xff;
782 		*cp++ = 0xff;
783 	}
784 
785 	(void) memcpy(buf, &mb, sizeof (mb));
786 	/* LINTED -- always longlong aligned */
787 	dk_ioc.dki_data = (efi_gpt_t *)buf;
788 	dk_ioc.dki_lba = 0;
789 	dk_ioc.dki_length = len;
790 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
791 		free(buf);
792 		switch (errno) {
793 		case EIO:
794 			return (VT_EIO);
795 		case EINVAL:
796 			return (VT_EINVAL);
797 		default:
798 			return (VT_ERROR);
799 		}
800 	}
801 	free(buf);
802 	return (0);
803 }
804 
805 /* make sure the user specified something reasonable */
806 static int
check_input(struct dk_gpt * vtoc)807 check_input(struct dk_gpt *vtoc)
808 {
809 	int			resv_part = -1;
810 	int			i, j;
811 	diskaddr_t		istart, jstart, isize, jsize, endsect;
812 
813 	/*
814 	 * Sanity-check the input (make sure no partitions overlap)
815 	 */
816 	for (i = 0; i < vtoc->efi_nparts; i++) {
817 		/* It can't be unassigned and have an actual size */
818 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
819 		    (vtoc->efi_parts[i].p_size != 0)) {
820 			if (efi_debug) {
821 				(void) fprintf(stderr,
822 "partition %d is \"unassigned\" but has a size of %llu",
823 				    i,
824 				    vtoc->efi_parts[i].p_size);
825 			}
826 			return (VT_EINVAL);
827 		}
828 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
829 			if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
830 				continue;
831 			/* we have encountered an unknown uuid */
832 			vtoc->efi_parts[i].p_tag = 0xff;
833 		}
834 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
835 			if (resv_part != -1) {
836 				if (efi_debug) {
837 					(void) fprintf(stderr,
838 "found duplicate reserved partition at %d\n",
839 					    i);
840 				}
841 				return (VT_EINVAL);
842 			}
843 			resv_part = i;
844 		}
845 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
846 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
847 			if (efi_debug) {
848 				(void) fprintf(stderr,
849 				    "Partition %d starts at %llu.  ",
850 				    i,
851 				    vtoc->efi_parts[i].p_start);
852 				(void) fprintf(stderr,
853 				    "It must be between %llu and %llu.\n",
854 				    vtoc->efi_first_u_lba,
855 				    vtoc->efi_last_u_lba);
856 			}
857 			return (VT_EINVAL);
858 		}
859 		if ((vtoc->efi_parts[i].p_start +
860 		    vtoc->efi_parts[i].p_size <
861 		    vtoc->efi_first_u_lba) ||
862 		    (vtoc->efi_parts[i].p_start +
863 		    vtoc->efi_parts[i].p_size >
864 		    vtoc->efi_last_u_lba + 1)) {
865 			if (efi_debug) {
866 				(void) fprintf(stderr,
867 				    "Partition %d ends at %llu.  ",
868 				    i,
869 				    vtoc->efi_parts[i].p_start +
870 				    vtoc->efi_parts[i].p_size);
871 				(void) fprintf(stderr,
872 				    "It must be between %llu and %llu.\n",
873 				    vtoc->efi_first_u_lba,
874 				    vtoc->efi_last_u_lba);
875 			}
876 			return (VT_EINVAL);
877 		}
878 
879 		for (j = 0; j < vtoc->efi_nparts; j++) {
880 			isize = vtoc->efi_parts[i].p_size;
881 			jsize = vtoc->efi_parts[j].p_size;
882 			istart = vtoc->efi_parts[i].p_start;
883 			jstart = vtoc->efi_parts[j].p_start;
884 			if ((i != j) && (isize != 0) && (jsize != 0)) {
885 				endsect = jstart + jsize -1;
886 				if ((jstart <= istart) &&
887 				    (istart <= endsect)) {
888 					if (efi_debug) {
889 						(void) fprintf(stderr,
890 "Partition %d overlaps partition %d.",
891 						    i, j);
892 					}
893 					return (VT_EINVAL);
894 				}
895 			}
896 		}
897 	}
898 	/* just a warning for now */
899 	if ((resv_part == -1) && efi_debug) {
900 		(void) fprintf(stderr,
901 		    "no reserved partition found\n");
902 	}
903 	return (0);
904 }
905 
906 /*
907  * add all the unallocated space to the current label
908  */
909 int
efi_use_whole_disk(int fd)910 efi_use_whole_disk(int fd)
911 {
912 	struct dk_gpt		*efi_label;
913 	int			rval;
914 	int			i;
915 	uint_t			phy_last_slice = 0;
916 	diskaddr_t		pl_start = 0;
917 	diskaddr_t		pl_size;
918 
919 	rval = efi_alloc_and_read(fd, &efi_label);
920 	if (rval < 0) {
921 		return (rval);
922 	}
923 
924 	/* find the last physically non-zero partition */
925 	for (i = 0; i < efi_label->efi_nparts - 2; i ++) {
926 		if (pl_start < efi_label->efi_parts[i].p_start) {
927 			pl_start = efi_label->efi_parts[i].p_start;
928 			phy_last_slice = i;
929 		}
930 	}
931 	pl_size = efi_label->efi_parts[phy_last_slice].p_size;
932 
933 	/*
934 	 * If alter_lba is 1, we are using the backup label.
935 	 * Since we can locate the backup label by disk capacity,
936 	 * there must be no unallocated space.
937 	 */
938 	if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
939 	    >= efi_label->efi_last_lba)) {
940 		if (efi_debug) {
941 			(void) fprintf(stderr,
942 			    "efi_use_whole_disk: requested space not found\n");
943 		}
944 		efi_free(efi_label);
945 		return (VT_ENOSPC);
946 	}
947 
948 	/*
949 	 * If there is space between the last physically non-zero partition
950 	 * and the reserved partition, just add the unallocated space to this
951 	 * area. Otherwise, the unallocated space is added to the last
952 	 * physically non-zero partition.
953 	 */
954 	if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba -
955 	    efi_reserved_sectors(efi_label)) {
956 		efi_label->efi_parts[phy_last_slice].p_size +=
957 		    efi_label->efi_last_lba - efi_label->efi_altern_lba;
958 	}
959 
960 	/*
961 	 * Move the reserved partition. There is currently no data in
962 	 * here except fabricated devids (which get generated via
963 	 * efi_write()). So there is no need to copy data.
964 	 */
965 	efi_label->efi_parts[efi_label->efi_nparts - 1].p_start +=
966 	    efi_label->efi_last_lba - efi_label->efi_altern_lba;
967 	efi_label->efi_last_u_lba += efi_label->efi_last_lba
968 	    - efi_label->efi_altern_lba;
969 
970 	rval = efi_write(fd, efi_label);
971 	if (rval < 0) {
972 		if (efi_debug) {
973 			(void) fprintf(stderr,
974 			    "efi_use_whole_disk:fail to write label, rval=%d\n",
975 			    rval);
976 		}
977 		efi_free(efi_label);
978 		return (rval);
979 	}
980 
981 	efi_free(efi_label);
982 	return (0);
983 }
984 
985 
986 /*
987  * write EFI label and backup label
988  */
989 int
efi_write(int fd,struct dk_gpt * vtoc)990 efi_write(int fd, struct dk_gpt *vtoc)
991 {
992 	dk_efi_t		dk_ioc;
993 	efi_gpt_t		*efi;
994 	efi_gpe_t		*efi_parts;
995 	int			i, j;
996 	struct dk_cinfo		dki_info;
997 	int			nblocks;
998 	diskaddr_t		lba_backup_gpt_hdr;
999 
1000 	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
1001 		if (efi_debug)
1002 			(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
1003 		switch (errno) {
1004 		case EIO:
1005 			return (VT_EIO);
1006 		case EINVAL:
1007 			return (VT_EINVAL);
1008 		default:
1009 			return (VT_ERROR);
1010 		}
1011 	}
1012 
1013 	if (check_input(vtoc))
1014 		return (VT_EINVAL);
1015 
1016 	dk_ioc.dki_lba = 1;
1017 	if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1018 		dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1019 	} else {
1020 		dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
1021 		    vtoc->efi_lbasize) *
1022 		    vtoc->efi_lbasize;
1023 	}
1024 
1025 	/*
1026 	 * the number of blocks occupied by GUID partition entry array
1027 	 */
1028 	nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1029 
1030 	/*
1031 	 * Backup GPT header is located on the block after GUID
1032 	 * partition entry array. Here, we calculate the address
1033 	 * for backup GPT header.
1034 	 */
1035 	lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
1036 	if ((dk_ioc.dki_data = calloc(1, dk_ioc.dki_length)) == NULL)
1037 		return (VT_ERROR);
1038 
1039 	efi = dk_ioc.dki_data;
1040 
1041 	/* stuff user's input into EFI struct */
1042 	efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1043 	efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
1044 	efi->efi_gpt_HeaderSize = LE_32(EFI_HEADER_SIZE);
1045 	efi->efi_gpt_Reserved1 = 0;
1046 	efi->efi_gpt_MyLBA = LE_64(1ULL);
1047 	efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1048 	efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1049 	efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1050 	efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1051 	efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1052 	efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1053 	UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1054 
1055 	/* LINTED -- always longlong aligned */
1056 	efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1057 
1058 	for (i = 0; i < vtoc->efi_nparts; i++) {
1059 		for (j = 0;
1060 		    j < sizeof (conversion_array) /
1061 		    sizeof (struct uuid_to_ptag); j++) {
1062 
1063 			if (vtoc->efi_parts[i].p_tag ==
1064 			    conversion_array[j].p_tag) {
1065 				UUID_LE_CONVERT(
1066 				    efi_parts[i].efi_gpe_PartitionTypeGUID,
1067 				    conversion_array[j].uuid);
1068 				break;
1069 			}
1070 		}
1071 
1072 		if (j == sizeof (conversion_array) /
1073 		    sizeof (struct uuid_to_ptag)) {
1074 			/*
1075 			 * If we didn't have a matching uuid match, bail here.
1076 			 * Don't write a label with unknown uuid.
1077 			 */
1078 			if (efi_debug) {
1079 				(void) fprintf(stderr,
1080 				    "Unknown uuid for p_tag %d\n",
1081 				    vtoc->efi_parts[i].p_tag);
1082 			}
1083 			return (VT_EINVAL);
1084 		}
1085 
1086 		efi_parts[i].efi_gpe_StartingLBA =
1087 		    LE_64(vtoc->efi_parts[i].p_start);
1088 		efi_parts[i].efi_gpe_EndingLBA =
1089 		    LE_64(vtoc->efi_parts[i].p_start +
1090 		    vtoc->efi_parts[i].p_size - 1);
1091 		efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1092 		    LE_16(vtoc->efi_parts[i].p_flag);
1093 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1094 			efi_parts[i].efi_gpe_PartitionName[j] =
1095 			    LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1096 		}
1097 		if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1098 		    uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1099 			(void) uuid_generate((uchar_t *)
1100 			    &vtoc->efi_parts[i].p_uguid);
1101 		}
1102 		bcopy(&vtoc->efi_parts[i].p_uguid,
1103 		    &efi_parts[i].efi_gpe_UniquePartitionGUID,
1104 		    sizeof (uuid_t));
1105 	}
1106 	efi->efi_gpt_PartitionEntryArrayCRC32 =
1107 	    LE_32(efi_crc32((unsigned char *)efi_parts,
1108 	    vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1109 	efi->efi_gpt_HeaderCRC32 = LE_32(efi_crc32((unsigned char *)efi,
1110 	    EFI_HEADER_SIZE));
1111 
1112 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1113 		free(dk_ioc.dki_data);
1114 		switch (errno) {
1115 		case EIO:
1116 			return (VT_EIO);
1117 		case EINVAL:
1118 			return (VT_EINVAL);
1119 		default:
1120 			return (VT_ERROR);
1121 		}
1122 	}
1123 
1124 	/* write backup partition array */
1125 	dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1126 	dk_ioc.dki_length -= vtoc->efi_lbasize;
1127 	/* LINTED */
1128 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1129 	    vtoc->efi_lbasize);
1130 
1131 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1132 		/*
1133 		 * we wrote the primary label okay, so don't fail
1134 		 */
1135 		if (efi_debug) {
1136 			(void) fprintf(stderr,
1137 			    "write of backup partitions to block %llu "
1138 			    "failed, errno %d\n",
1139 			    vtoc->efi_last_u_lba + 1,
1140 			    errno);
1141 		}
1142 	}
1143 	/*
1144 	 * now swap MyLBA and AlternateLBA fields and write backup
1145 	 * partition table header
1146 	 */
1147 	dk_ioc.dki_lba = lba_backup_gpt_hdr;
1148 	dk_ioc.dki_length = vtoc->efi_lbasize;
1149 	/* LINTED */
1150 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1151 	    vtoc->efi_lbasize);
1152 	efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1153 	efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1154 	efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1155 	efi->efi_gpt_HeaderCRC32 = 0;
1156 	efi->efi_gpt_HeaderCRC32 =
1157 	    LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, EFI_HEADER_SIZE));
1158 
1159 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1160 		if (efi_debug) {
1161 			(void) fprintf(stderr,
1162 			    "write of backup header to block %llu failed, "
1163 			    "errno %d\n",
1164 			    lba_backup_gpt_hdr,
1165 			    errno);
1166 		}
1167 	}
1168 	/* write the PMBR */
1169 	(void) write_pmbr(fd, vtoc);
1170 	free(dk_ioc.dki_data);
1171 	return (0);
1172 }
1173 
1174 void
efi_free(struct dk_gpt * ptr)1175 efi_free(struct dk_gpt *ptr)
1176 {
1177 	free(ptr);
1178 }
1179 
1180 /*
1181  * Input: File descriptor
1182  * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1183  * Otherwise 0.
1184  */
1185 int
efi_type(int fd)1186 efi_type(int fd)
1187 {
1188 	struct vtoc vtoc;
1189 	struct extvtoc extvtoc;
1190 
1191 	if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1192 		if (errno == ENOTSUP)
1193 			return (1);
1194 		else if (errno == ENOTTY) {
1195 			if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1196 				if (errno == ENOTSUP)
1197 					return (1);
1198 		}
1199 	}
1200 	return (0);
1201 }
1202 
1203 void
efi_err_check(struct dk_gpt * vtoc)1204 efi_err_check(struct dk_gpt *vtoc)
1205 {
1206 	int			resv_part = -1;
1207 	int			i, j;
1208 	diskaddr_t		istart, jstart, isize, jsize, endsect;
1209 	int			overlap = 0;
1210 	uint_t			reserved;
1211 
1212 	/*
1213 	 * make sure no partitions overlap
1214 	 */
1215 	reserved = efi_reserved_sectors(vtoc);
1216 	for (i = 0; i < vtoc->efi_nparts; i++) {
1217 		/* It can't be unassigned and have an actual size */
1218 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1219 		    (vtoc->efi_parts[i].p_size != 0)) {
1220 			(void) fprintf(stderr,
1221 			    "partition %d is \"unassigned\" but has a size "
1222 			    "of %llu\n", i, vtoc->efi_parts[i].p_size);
1223 		}
1224 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1225 			continue;
1226 		}
1227 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1228 			if (resv_part != -1) {
1229 				(void) fprintf(stderr,
1230 				    "found duplicate reserved partition at "
1231 				    "%d\n", i);
1232 			}
1233 			resv_part = i;
1234 			if (vtoc->efi_parts[i].p_size != reserved)
1235 				(void) fprintf(stderr,
1236 				    "Warning: reserved partition size must "
1237 				    "be %u sectors\n", reserved);
1238 		}
1239 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1240 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1241 			(void) fprintf(stderr,
1242 			    "Partition %d starts at %llu\n",
1243 			    i,
1244 			    vtoc->efi_parts[i].p_start);
1245 			(void) fprintf(stderr,
1246 			    "It must be between %llu and %llu.\n",
1247 			    vtoc->efi_first_u_lba,
1248 			    vtoc->efi_last_u_lba);
1249 		}
1250 		if ((vtoc->efi_parts[i].p_start +
1251 		    vtoc->efi_parts[i].p_size <
1252 		    vtoc->efi_first_u_lba) ||
1253 		    (vtoc->efi_parts[i].p_start +
1254 		    vtoc->efi_parts[i].p_size >
1255 		    vtoc->efi_last_u_lba + 1)) {
1256 			(void) fprintf(stderr,
1257 			    "Partition %d ends at %llu\n",
1258 			    i,
1259 			    vtoc->efi_parts[i].p_start +
1260 			    vtoc->efi_parts[i].p_size);
1261 			(void) fprintf(stderr,
1262 			    "It must be between %llu and %llu.\n",
1263 			    vtoc->efi_first_u_lba,
1264 			    vtoc->efi_last_u_lba);
1265 		}
1266 
1267 		for (j = 0; j < vtoc->efi_nparts; j++) {
1268 			isize = vtoc->efi_parts[i].p_size;
1269 			jsize = vtoc->efi_parts[j].p_size;
1270 			istart = vtoc->efi_parts[i].p_start;
1271 			jstart = vtoc->efi_parts[j].p_start;
1272 			if ((i != j) && (isize != 0) && (jsize != 0)) {
1273 				endsect = jstart + jsize -1;
1274 				if ((jstart <= istart) &&
1275 				    (istart <= endsect)) {
1276 					if (!overlap) {
1277 					(void) fprintf(stderr,
1278 					    "label error: EFI Labels do not "
1279 					    "support overlapping partitions\n");
1280 					}
1281 					(void) fprintf(stderr,
1282 					    "Partition %d overlaps partition "
1283 					    "%d.\n", i, j);
1284 					overlap = 1;
1285 				}
1286 			}
1287 		}
1288 	}
1289 	/* make sure there is a reserved partition */
1290 	if (resv_part == -1) {
1291 		(void) fprintf(stderr,
1292 		    "no reserved partition found\n");
1293 	}
1294 }
1295 
1296 /*
1297  * We need to get information necessary to construct a *new* efi
1298  * label type
1299  */
1300 int
efi_auto_sense(int fd,struct dk_gpt ** vtoc)1301 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1302 {
1303 
1304 	int	i;
1305 
1306 	/*
1307 	 * Now build the default partition table
1308 	 */
1309 	if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1310 		if (efi_debug) {
1311 			(void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1312 		}
1313 		return (-1);
1314 	}
1315 
1316 	for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1317 		(*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1318 		(*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1319 		(*vtoc)->efi_parts[i].p_start = 0;
1320 		(*vtoc)->efi_parts[i].p_size = 0;
1321 	}
1322 	/*
1323 	 * Make constants first
1324 	 * and variable partitions later
1325 	 */
1326 
1327 	/* root partition - s0 128 MB */
1328 	(*vtoc)->efi_parts[0].p_start = 34;
1329 	(*vtoc)->efi_parts[0].p_size = 262144;
1330 
1331 	/* partition - s1  128 MB */
1332 	(*vtoc)->efi_parts[1].p_start = 262178;
1333 	(*vtoc)->efi_parts[1].p_size = 262144;
1334 
1335 	/* partition -s2 is NOT the Backup disk */
1336 	(*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1337 
1338 	/* partition -s6 /usr partition - HOG */
1339 	(*vtoc)->efi_parts[6].p_start = 524322;
1340 	(*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
1341 	    - (1024 * 16);
1342 
1343 	/* efi reserved partition - s9 16K */
1344 	(*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1345 	(*vtoc)->efi_parts[8].p_size = (1024 * 16);
1346 	(*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1347 	return (0);
1348 }
1349