1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2014 Toomas Soome <tsoome@me.com>
26 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
27 * Copyright 2019 Joyent, Inc.
28 */
29
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <errno.h>
33 #include <strings.h>
34 #include <unistd.h>
35 #include <smbios.h>
36 #include <uuid/uuid.h>
37 #include <libintl.h>
38 #include <sys/types.h>
39 #include <sys/dkio.h>
40 #include <sys/vtoc.h>
41 #include <sys/mhd.h>
42 #include <sys/param.h>
43 #include <sys/dktp/fdisk.h>
44 #include <sys/efi_partition.h>
45 #include <sys/byteorder.h>
46 #include <sys/ddi.h>
47
48 /*
49 * The original conversion array used simple array index, but since
50 * we do need to take account of VTOC tag numbers from other systems,
51 * we need to provide tag values too, or the array will grow too large.
52 *
53 * Still we will fabricate the missing p_tag values.
54 */
55 static struct uuid_to_ptag {
56 struct uuid uuid;
57 ushort_t p_tag;
58 } conversion_array[] = {
59 { EFI_UNUSED, V_UNASSIGNED },
60 { EFI_BOOT, V_BOOT },
61 { EFI_ROOT, V_ROOT },
62 { EFI_SWAP, V_SWAP },
63 { EFI_USR, V_USR },
64 { EFI_BACKUP, V_BACKUP },
65 { EFI_VAR, V_VAR },
66 { EFI_HOME, V_HOME },
67 { EFI_ALTSCTR, V_ALTSCTR },
68 { EFI_RESERVED, V_RESERVED },
69 { EFI_SYSTEM, V_SYSTEM }, /* V_SYSTEM is 0xc */
70 { EFI_LEGACY_MBR, 0x10 },
71 { EFI_SYMC_PUB, 0x11 },
72 { EFI_SYMC_CDS, 0x12 },
73 { EFI_MSFT_RESV, 0x13 },
74 { EFI_DELL_BASIC, 0x14 },
75 { EFI_DELL_RAID, 0x15 },
76 { EFI_DELL_SWAP, 0x16 },
77 { EFI_DELL_LVM, 0x17 },
78 { EFI_DELL_RESV, 0x19 },
79 { EFI_AAPL_HFS, 0x1a },
80 { EFI_AAPL_UFS, 0x1b },
81 { EFI_AAPL_ZFS, 0x1c },
82 { EFI_AAPL_APFS, 0x1d },
83 { EFI_BIOS_BOOT, V_BIOS_BOOT }, /* V_BIOS_BOOT is 0x18 */
84 { EFI_FREEBSD_BOOT, V_FREEBSD_BOOT },
85 { EFI_FREEBSD_SWAP, V_FREEBSD_SWAP },
86 { EFI_FREEBSD_UFS, V_FREEBSD_UFS },
87 { EFI_FREEBSD_VINUM, V_FREEBSD_VINUM },
88 { EFI_FREEBSD_ZFS, V_FREEBSD_ZFS },
89 { EFI_FREEBSD_NANDFS, V_FREEBSD_NANDFS }
90 };
91
92 /*
93 * Default vtoc information for non-SVr4 partitions
94 */
95 struct dk_map2 default_vtoc_map[NDKMAP] = {
96 { V_ROOT, 0 }, /* a - 0 */
97 { V_SWAP, V_UNMNT }, /* b - 1 */
98 { V_BACKUP, V_UNMNT }, /* c - 2 */
99 { V_UNASSIGNED, 0 }, /* d - 3 */
100 { V_UNASSIGNED, 0 }, /* e - 4 */
101 { V_UNASSIGNED, 0 }, /* f - 5 */
102 { V_USR, 0 }, /* g - 6 */
103 { V_UNASSIGNED, 0 }, /* h - 7 */
104
105 #if defined(_SUNOS_VTOC_16)
106
107 #if defined(i386) || defined(__amd64)
108 { V_BOOT, V_UNMNT }, /* i - 8 */
109 { V_ALTSCTR, 0 }, /* j - 9 */
110
111 #else
112 #error No VTOC format defined.
113 #endif /* defined(i386) */
114
115 { V_UNASSIGNED, 0 }, /* k - 10 */
116 { V_UNASSIGNED, 0 }, /* l - 11 */
117 { V_UNASSIGNED, 0 }, /* m - 12 */
118 { V_UNASSIGNED, 0 }, /* n - 13 */
119 { V_UNASSIGNED, 0 }, /* o - 14 */
120 { V_UNASSIGNED, 0 }, /* p - 15 */
121 #endif /* defined(_SUNOS_VTOC_16) */
122 };
123
124 #ifdef DEBUG
125 int efi_debug = 1;
126 #else
127 int efi_debug = 0;
128 #endif
129
130 #define EFI_FIXES_DB "/usr/share/hwdata/efi.fixes"
131
132 extern unsigned int efi_crc32(const unsigned char *, unsigned int);
133 static int efi_read(int, struct dk_gpt *);
134
135 static int
read_disk_info(int fd,diskaddr_t * capacity,uint_t * lbsize)136 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
137 {
138 struct dk_minfo disk_info;
139
140 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1)
141 return (errno);
142 *capacity = disk_info.dki_capacity;
143 *lbsize = disk_info.dki_lbsize;
144 return (0);
145 }
146
147 /*
148 * the number of blocks the EFI label takes up (round up to nearest
149 * block)
150 */
151 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
152 ((l) - 1)) / (l)))
153 /* number of partitions -- limited by what we can malloc */
154 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
155 sizeof (struct dk_part))
156
157 /*
158 * The EFI reserved partition size is 8 MiB. This calculates the number of
159 * sectors required to store 8 MiB, taking into account the device's sector
160 * size.
161 */
162 uint_t
efi_reserved_sectors(dk_gpt_t * efi)163 efi_reserved_sectors(dk_gpt_t *efi)
164 {
165 /* roundup to sector size */
166 return ((EFI_MIN_RESV_SIZE * DEV_BSIZE + efi->efi_lbasize - 1) /
167 efi->efi_lbasize);
168 }
169
170 int
efi_alloc_and_init(int fd,uint32_t nparts,struct dk_gpt ** vtoc)171 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
172 {
173 diskaddr_t capacity;
174 uint_t lbsize;
175 uint_t nblocks;
176 size_t length;
177 struct dk_gpt *vptr;
178 struct uuid uuid;
179
180 if (read_disk_info(fd, &capacity, &lbsize) != 0) {
181 if (efi_debug)
182 (void) fprintf(stderr,
183 "couldn't read disk information\n");
184 return (-1);
185 }
186
187 nblocks = NBLOCKS(nparts, lbsize);
188 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
189 /* 16K plus one block for the GPT */
190 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
191 }
192
193 if (nparts > MAX_PARTS) {
194 if (efi_debug) {
195 (void) fprintf(stderr,
196 "the maximum number of partitions supported is %lu\n",
197 MAX_PARTS);
198 }
199 return (-1);
200 }
201
202 length = sizeof (struct dk_gpt) +
203 sizeof (struct dk_part) * (nparts - 1);
204
205 if ((*vtoc = calloc(1, length)) == NULL)
206 return (-1);
207
208 vptr = *vtoc;
209
210 vptr->efi_version = EFI_VERSION_CURRENT;
211 vptr->efi_lbasize = lbsize;
212 vptr->efi_nparts = nparts;
213 /*
214 * add one block here for the PMBR; on disks with a 512 byte
215 * block size and 128 or fewer partitions, efi_first_u_lba
216 * should work out to "34"
217 */
218 vptr->efi_first_u_lba = nblocks + 1;
219 vptr->efi_last_lba = capacity - 1;
220 vptr->efi_altern_lba = capacity -1;
221 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
222
223 (void) uuid_generate((uchar_t *)&uuid);
224 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
225 return (0);
226 }
227
228 /*
229 * Read EFI - return partition number upon success.
230 */
231 int
efi_alloc_and_read(int fd,struct dk_gpt ** vtoc)232 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
233 {
234 int rval;
235 uint32_t nparts;
236 int length;
237 struct mboot *mbr;
238 struct ipart *ipart;
239 diskaddr_t capacity;
240 uint_t lbsize;
241 int i;
242
243 if (read_disk_info(fd, &capacity, &lbsize) != 0)
244 return (VT_ERROR);
245
246 if ((mbr = calloc(1, lbsize)) == NULL)
247 return (VT_ERROR);
248
249 if ((ioctl(fd, DKIOCGMBOOT, (caddr_t)mbr)) == -1) {
250 free(mbr);
251 return (VT_ERROR);
252 }
253
254 if (mbr->signature != MBB_MAGIC) {
255 free(mbr);
256 return (VT_EINVAL);
257 }
258 ipart = (struct ipart *)(uintptr_t)mbr->parts;
259
260 /* Check if we have partition with ID EFI_PMBR */
261 for (i = 0; i < FD_NUMPART; i++) {
262 if (ipart[i].systid == EFI_PMBR)
263 break;
264 }
265 free(mbr);
266 if (i == FD_NUMPART)
267 return (VT_EINVAL);
268
269 /* figure out the number of entries that would fit into 16K */
270 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
271 length = (int) sizeof (struct dk_gpt) +
272 (int) sizeof (struct dk_part) * (nparts - 1);
273 if ((*vtoc = calloc(1, length)) == NULL)
274 return (VT_ERROR);
275
276 (*vtoc)->efi_nparts = nparts;
277 rval = efi_read(fd, *vtoc);
278
279 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
280 void *tmp;
281 length = (int) sizeof (struct dk_gpt) +
282 (int) sizeof (struct dk_part) *
283 ((*vtoc)->efi_nparts - 1);
284 nparts = (*vtoc)->efi_nparts;
285 if ((tmp = realloc(*vtoc, length)) == NULL) {
286 free (*vtoc);
287 *vtoc = NULL;
288 return (VT_ERROR);
289 } else {
290 *vtoc = tmp;
291 rval = efi_read(fd, *vtoc);
292 }
293 }
294
295 if (rval < 0) {
296 if (efi_debug) {
297 (void) fprintf(stderr,
298 "read of EFI table failed, rval=%d\n", rval);
299 }
300 free (*vtoc);
301 *vtoc = NULL;
302 }
303
304 return (rval);
305 }
306
307 static int
efi_ioctl(int fd,int cmd,dk_efi_t * dk_ioc)308 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
309 {
310 void *data = dk_ioc->dki_data;
311 int error;
312
313 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
314 error = ioctl(fd, cmd, (void *)dk_ioc);
315 dk_ioc->dki_data = data;
316
317 return (error);
318 }
319
320 static int
check_label(int fd,dk_efi_t * dk_ioc)321 check_label(int fd, dk_efi_t *dk_ioc)
322 {
323 efi_gpt_t *efi;
324 uint_t crc;
325
326 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
327 switch (errno) {
328 case EIO:
329 return (VT_EIO);
330 default:
331 return (VT_ERROR);
332 }
333 }
334 efi = dk_ioc->dki_data;
335 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
336 if (efi_debug)
337 (void) fprintf(stderr,
338 "Bad EFI signature: 0x%llx != 0x%llx\n",
339 (long long)efi->efi_gpt_Signature,
340 (long long)LE_64(EFI_SIGNATURE));
341 return (VT_EINVAL);
342 }
343
344 /*
345 * check CRC of the header; the size of the header should
346 * never be larger than one block
347 */
348 crc = efi->efi_gpt_HeaderCRC32;
349 efi->efi_gpt_HeaderCRC32 = 0;
350
351 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
352 crc != LE_32(efi_crc32((unsigned char *)efi,
353 LE_32(efi->efi_gpt_HeaderSize)))) {
354 if (efi_debug)
355 (void) fprintf(stderr,
356 "Bad EFI CRC: 0x%x != 0x%x\n",
357 crc, LE_32(efi_crc32((unsigned char *)efi,
358 LE_32(efi->efi_gpt_HeaderSize))));
359 return (VT_EINVAL);
360 }
361
362 return (0);
363 }
364
365 static int
efi_read(int fd,struct dk_gpt * vtoc)366 efi_read(int fd, struct dk_gpt *vtoc)
367 {
368 int i, j;
369 int label_len;
370 int rval = 0;
371 int vdc_flag = 0;
372 struct dk_minfo disk_info;
373 dk_efi_t dk_ioc;
374 efi_gpt_t *efi;
375 efi_gpe_t *efi_parts;
376 struct dk_cinfo dki_info;
377 uint32_t user_length;
378 boolean_t legacy_label = B_FALSE;
379
380 /*
381 * get the partition number for this file descriptor.
382 */
383 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
384 if (efi_debug) {
385 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
386 }
387 switch (errno) {
388 case EIO:
389 return (VT_EIO);
390 case EINVAL:
391 return (VT_EINVAL);
392 default:
393 return (VT_ERROR);
394 }
395 }
396
397 if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
398 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
399 /*
400 * The controller and drive name "vdc" (virtual disk client)
401 * indicates a LDoms virtual disk.
402 */
403 vdc_flag++;
404 }
405
406 /* get the LBA size */
407 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
408 if (efi_debug) {
409 (void) fprintf(stderr,
410 "assuming LBA 512 bytes %d\n",
411 errno);
412 }
413 disk_info.dki_lbsize = DEV_BSIZE;
414 }
415 if (disk_info.dki_lbsize == 0) {
416 if (efi_debug) {
417 (void) fprintf(stderr,
418 "efi_read: assuming LBA 512 bytes\n");
419 }
420 disk_info.dki_lbsize = DEV_BSIZE;
421 }
422 /*
423 * Read the EFI GPT to figure out how many partitions we need
424 * to deal with.
425 */
426 dk_ioc.dki_lba = 1;
427 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
428 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
429 } else {
430 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
431 disk_info.dki_lbsize;
432 if (label_len % disk_info.dki_lbsize) {
433 /* pad to physical sector size */
434 label_len += disk_info.dki_lbsize;
435 label_len &= ~(disk_info.dki_lbsize - 1);
436 }
437 }
438
439 if ((dk_ioc.dki_data = calloc(1, label_len)) == NULL)
440 return (VT_ERROR);
441
442 dk_ioc.dki_length = disk_info.dki_lbsize;
443 user_length = vtoc->efi_nparts;
444 efi = dk_ioc.dki_data;
445 if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
446 /*
447 * No valid label here; try the alternate. Note that here
448 * we just read GPT header and save it into dk_ioc.data,
449 * Later, we will read GUID partition entry array if we
450 * can get valid GPT header.
451 */
452
453 /*
454 * This is a workaround for legacy systems. In the past, the
455 * last sector of SCSI disk was invisible on x86 platform. At
456 * that time, backup label was saved on the next to the last
457 * sector. It is possible for users to move a disk from previous
458 * solaris system to present system. Here, we attempt to search
459 * legacy backup EFI label first.
460 */
461 dk_ioc.dki_lba = disk_info.dki_capacity - 2;
462 dk_ioc.dki_length = disk_info.dki_lbsize;
463 rval = check_label(fd, &dk_ioc);
464 if (rval == VT_EINVAL) {
465 /*
466 * we didn't find legacy backup EFI label, try to
467 * search backup EFI label in the last block.
468 */
469 dk_ioc.dki_lba = disk_info.dki_capacity - 1;
470 dk_ioc.dki_length = disk_info.dki_lbsize;
471 rval = check_label(fd, &dk_ioc);
472 if (rval == 0) {
473 legacy_label = B_TRUE;
474 if (efi_debug)
475 (void) fprintf(stderr,
476 "efi_read: primary label corrupt; "
477 "using EFI backup label located on"
478 " the last block\n");
479 }
480 } else {
481 if ((efi_debug) && (rval == 0))
482 (void) fprintf(stderr, "efi_read: primary label"
483 " corrupt; using legacy EFI backup label "
484 " located on the next to last block\n");
485 }
486
487 if (rval == 0) {
488 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
489 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
490 vtoc->efi_nparts =
491 LE_32(efi->efi_gpt_NumberOfPartitionEntries);
492 /*
493 * Partition tables are between backup GPT header
494 * table and ParitionEntryLBA (the starting LBA of
495 * the GUID partition entries array). Now that we
496 * already got valid GPT header and saved it in
497 * dk_ioc.dki_data, we try to get GUID partition
498 * entry array here.
499 */
500 /* LINTED */
501 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
502 + disk_info.dki_lbsize);
503 if (legacy_label)
504 dk_ioc.dki_length = disk_info.dki_capacity - 1 -
505 dk_ioc.dki_lba;
506 else
507 dk_ioc.dki_length = disk_info.dki_capacity - 2 -
508 dk_ioc.dki_lba;
509 dk_ioc.dki_length *= disk_info.dki_lbsize;
510 if (dk_ioc.dki_length >
511 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
512 rval = VT_EINVAL;
513 } else {
514 /*
515 * read GUID partition entry array
516 */
517 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
518 }
519 }
520
521 } else if (rval == 0) {
522
523 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
524 /* LINTED */
525 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
526 + disk_info.dki_lbsize);
527 dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
528 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
529
530 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
531 /*
532 * When the device is a LDoms virtual disk, the DKIOCGETEFI
533 * ioctl can fail with EINVAL if the virtual disk backend
534 * is a ZFS volume serviced by a domain running an old version
535 * of Solaris. This is because the DKIOCGETEFI ioctl was
536 * initially incorrectly implemented for a ZFS volume and it
537 * expected the GPT and GPE to be retrieved with a single ioctl.
538 * So we try to read the GPT and the GPE using that old style
539 * ioctl.
540 */
541 dk_ioc.dki_lba = 1;
542 dk_ioc.dki_length = label_len;
543 rval = check_label(fd, &dk_ioc);
544 }
545
546 if (rval < 0) {
547 free(efi);
548 return (rval);
549 }
550
551 /* LINTED -- always longlong aligned */
552 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
553
554 /*
555 * Assemble this into a "dk_gpt" struct for easier
556 * digestibility by applications.
557 */
558 vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
559 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
560 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
561 vtoc->efi_lbasize = disk_info.dki_lbsize;
562 vtoc->efi_last_lba = disk_info.dki_capacity - 1;
563 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
564 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
565 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
566 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
567
568 /*
569 * If the array the user passed in is too small, set the length
570 * to what it needs to be and return
571 */
572 if (user_length < vtoc->efi_nparts) {
573 return (VT_EINVAL);
574 }
575
576 for (i = 0; i < vtoc->efi_nparts; i++) {
577
578 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
579 efi_parts[i].efi_gpe_PartitionTypeGUID);
580
581 for (j = 0;
582 j < sizeof (conversion_array)
583 / sizeof (struct uuid_to_ptag); j++) {
584
585 if (bcmp(&vtoc->efi_parts[i].p_guid,
586 &conversion_array[j].uuid,
587 sizeof (struct uuid)) == 0) {
588 vtoc->efi_parts[i].p_tag =
589 conversion_array[j].p_tag;
590 break;
591 }
592 }
593 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
594 continue;
595 vtoc->efi_parts[i].p_flag =
596 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
597 vtoc->efi_parts[i].p_start =
598 LE_64(efi_parts[i].efi_gpe_StartingLBA);
599 vtoc->efi_parts[i].p_size =
600 LE_64(efi_parts[i].efi_gpe_EndingLBA) -
601 vtoc->efi_parts[i].p_start + 1;
602 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
603 vtoc->efi_parts[i].p_name[j] =
604 (uchar_t)LE_16(
605 efi_parts[i].efi_gpe_PartitionName[j]);
606 }
607
608 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
609 efi_parts[i].efi_gpe_UniquePartitionGUID);
610 }
611 free(efi);
612
613 return (dki_info.dki_partition);
614 }
615
616 static void
hardware_workarounds(int * slot,int * active)617 hardware_workarounds(int *slot, int *active)
618 {
619 smbios_struct_t s_sys, s_mb;
620 smbios_info_t sys, mb;
621 smbios_hdl_t *shp;
622 char buf[0x400];
623 FILE *fp;
624 int err;
625
626 if ((fp = fopen(EFI_FIXES_DB, "rF")) == NULL)
627 return;
628
629 if ((shp = smbios_open(NULL, SMB_VERSION, 0, &err)) == NULL) {
630 if (efi_debug)
631 (void) fprintf(stderr,
632 "libefi failed to load SMBIOS: %s\n",
633 smbios_errmsg(err));
634 (void) fclose(fp);
635 return;
636 }
637
638 if (smbios_lookup_type(shp, SMB_TYPE_SYSTEM, &s_sys) == SMB_ERR ||
639 smbios_info_common(shp, s_sys.smbstr_id, &sys) == SMB_ERR)
640 (void) memset(&sys, '\0', sizeof (sys));
641 if (smbios_lookup_type(shp, SMB_TYPE_BASEBOARD, &s_mb) == SMB_ERR ||
642 smbios_info_common(shp, s_mb.smbstr_id, &mb) == SMB_ERR)
643 (void) memset(&mb, '\0', sizeof (mb));
644
645 while (fgets(buf, sizeof (buf), fp) != NULL) {
646 char *tok, *val, *end;
647
648 tok = buf + strspn(buf, " \t");
649 if (*tok == '#')
650 continue;
651 while (*tok != '\0') {
652 tok += strspn(tok, " \t");
653 if ((val = strchr(tok, '=')) == NULL)
654 break;
655 *val++ = '\0';
656 if (*val == '"')
657 end = strchr(++val, '"');
658 else
659 end = strpbrk(val, " \t\n");
660 if (end == NULL)
661 break;
662 *end++ = '\0';
663
664 if (strcmp(tok, "sys.manufacturer") == 0 &&
665 (sys.smbi_manufacturer == NULL ||
666 strcasecmp(val, sys.smbi_manufacturer)))
667 break;
668 if (strcmp(tok, "sys.product") == 0 &&
669 (sys.smbi_product == NULL ||
670 strcasecmp(val, sys.smbi_product)))
671 break;
672 if (strcmp(tok, "sys.version") == 0 &&
673 (sys.smbi_version == NULL ||
674 strcasecmp(val, sys.smbi_version)))
675 break;
676 if (strcmp(tok, "mb.manufacturer") == 0 &&
677 (mb.smbi_manufacturer == NULL ||
678 strcasecmp(val, mb.smbi_manufacturer)))
679 break;
680 if (strcmp(tok, "mb.product") == 0 &&
681 (mb.smbi_product == NULL ||
682 strcasecmp(val, mb.smbi_product)))
683 break;
684 if (strcmp(tok, "mb.version") == 0 &&
685 (mb.smbi_version == NULL ||
686 strcasecmp(val, mb.smbi_version)))
687 break;
688
689 if (strcmp(tok, "pmbr_slot") == 0) {
690 *slot = atoi(val);
691 if (*slot < 0 || *slot > 3)
692 *slot = 0;
693 if (efi_debug)
694 (void) fprintf(stderr,
695 "Using slot %d\n", *slot);
696 }
697
698 if (strcmp(tok, "pmbr_active") == 0) {
699 *active = atoi(val);
700 if (*active < 0 || *active > 1)
701 *active = 0;
702 if (efi_debug)
703 (void) fprintf(stderr,
704 "Using active %d\n", *active);
705 }
706
707 tok = end;
708 }
709 }
710 (void) fclose(fp);
711 smbios_close(shp);
712 }
713
714 /* writes a "protective" MBR */
715 static int
write_pmbr(int fd,struct dk_gpt * vtoc)716 write_pmbr(int fd, struct dk_gpt *vtoc)
717 {
718 dk_efi_t dk_ioc;
719 struct mboot mb;
720 uchar_t *cp;
721 diskaddr_t size_in_lba;
722 uchar_t *buf;
723 int len, slot, active;
724
725 slot = active = 0;
726
727 hardware_workarounds(&slot, &active);
728
729 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
730 buf = calloc(1, len);
731
732 /*
733 * Preserve any boot code and disk signature if the first block is
734 * already an MBR.
735 */
736 dk_ioc.dki_lba = 0;
737 dk_ioc.dki_length = len;
738 /* LINTED -- always longlong aligned */
739 dk_ioc.dki_data = (efi_gpt_t *)buf;
740 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
741 (void) memcpy(&mb, buf, sizeof (mb));
742 bzero(&mb, sizeof (mb));
743 mb.signature = LE_16(MBB_MAGIC);
744 } else {
745 (void) memcpy(&mb, buf, sizeof (mb));
746 if (mb.signature != LE_16(MBB_MAGIC)) {
747 bzero(&mb, sizeof (mb));
748 mb.signature = LE_16(MBB_MAGIC);
749 }
750 }
751
752 bzero(&mb.parts, sizeof (mb.parts));
753 cp = (uchar_t *)&mb.parts[slot * sizeof (struct ipart)];
754 /* bootable or not */
755 *cp++ = active ? ACTIVE : NOTACTIVE;
756 /* beginning CHS; same as starting LBA (but one-based) */
757 *cp++ = 0x0;
758 *cp++ = 0x2;
759 *cp++ = 0x0;
760 /* OS type */
761 *cp++ = EFI_PMBR;
762 /* ending CHS; 0xffffff if not representable */
763 *cp++ = 0xff;
764 *cp++ = 0xff;
765 *cp++ = 0xff;
766 /* starting LBA: 1 (little endian format) by EFI definition */
767 *cp++ = 0x01;
768 *cp++ = 0x00;
769 *cp++ = 0x00;
770 *cp++ = 0x00;
771 /* ending LBA: last block on the disk (little endian format) */
772 size_in_lba = vtoc->efi_last_lba;
773 if (size_in_lba < 0xffffffff) {
774 *cp++ = (size_in_lba & 0x000000ff);
775 *cp++ = (size_in_lba & 0x0000ff00) >> 8;
776 *cp++ = (size_in_lba & 0x00ff0000) >> 16;
777 *cp++ = (size_in_lba & 0xff000000) >> 24;
778 } else {
779 *cp++ = 0xff;
780 *cp++ = 0xff;
781 *cp++ = 0xff;
782 *cp++ = 0xff;
783 }
784
785 (void) memcpy(buf, &mb, sizeof (mb));
786 /* LINTED -- always longlong aligned */
787 dk_ioc.dki_data = (efi_gpt_t *)buf;
788 dk_ioc.dki_lba = 0;
789 dk_ioc.dki_length = len;
790 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
791 free(buf);
792 switch (errno) {
793 case EIO:
794 return (VT_EIO);
795 case EINVAL:
796 return (VT_EINVAL);
797 default:
798 return (VT_ERROR);
799 }
800 }
801 free(buf);
802 return (0);
803 }
804
805 /* make sure the user specified something reasonable */
806 static int
check_input(struct dk_gpt * vtoc)807 check_input(struct dk_gpt *vtoc)
808 {
809 int resv_part = -1;
810 int i, j;
811 diskaddr_t istart, jstart, isize, jsize, endsect;
812
813 /*
814 * Sanity-check the input (make sure no partitions overlap)
815 */
816 for (i = 0; i < vtoc->efi_nparts; i++) {
817 /* It can't be unassigned and have an actual size */
818 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
819 (vtoc->efi_parts[i].p_size != 0)) {
820 if (efi_debug) {
821 (void) fprintf(stderr,
822 "partition %d is \"unassigned\" but has a size of %llu",
823 i,
824 vtoc->efi_parts[i].p_size);
825 }
826 return (VT_EINVAL);
827 }
828 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
829 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
830 continue;
831 /* we have encountered an unknown uuid */
832 vtoc->efi_parts[i].p_tag = 0xff;
833 }
834 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
835 if (resv_part != -1) {
836 if (efi_debug) {
837 (void) fprintf(stderr,
838 "found duplicate reserved partition at %d\n",
839 i);
840 }
841 return (VT_EINVAL);
842 }
843 resv_part = i;
844 }
845 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
846 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
847 if (efi_debug) {
848 (void) fprintf(stderr,
849 "Partition %d starts at %llu. ",
850 i,
851 vtoc->efi_parts[i].p_start);
852 (void) fprintf(stderr,
853 "It must be between %llu and %llu.\n",
854 vtoc->efi_first_u_lba,
855 vtoc->efi_last_u_lba);
856 }
857 return (VT_EINVAL);
858 }
859 if ((vtoc->efi_parts[i].p_start +
860 vtoc->efi_parts[i].p_size <
861 vtoc->efi_first_u_lba) ||
862 (vtoc->efi_parts[i].p_start +
863 vtoc->efi_parts[i].p_size >
864 vtoc->efi_last_u_lba + 1)) {
865 if (efi_debug) {
866 (void) fprintf(stderr,
867 "Partition %d ends at %llu. ",
868 i,
869 vtoc->efi_parts[i].p_start +
870 vtoc->efi_parts[i].p_size);
871 (void) fprintf(stderr,
872 "It must be between %llu and %llu.\n",
873 vtoc->efi_first_u_lba,
874 vtoc->efi_last_u_lba);
875 }
876 return (VT_EINVAL);
877 }
878
879 for (j = 0; j < vtoc->efi_nparts; j++) {
880 isize = vtoc->efi_parts[i].p_size;
881 jsize = vtoc->efi_parts[j].p_size;
882 istart = vtoc->efi_parts[i].p_start;
883 jstart = vtoc->efi_parts[j].p_start;
884 if ((i != j) && (isize != 0) && (jsize != 0)) {
885 endsect = jstart + jsize -1;
886 if ((jstart <= istart) &&
887 (istart <= endsect)) {
888 if (efi_debug) {
889 (void) fprintf(stderr,
890 "Partition %d overlaps partition %d.",
891 i, j);
892 }
893 return (VT_EINVAL);
894 }
895 }
896 }
897 }
898 /* just a warning for now */
899 if ((resv_part == -1) && efi_debug) {
900 (void) fprintf(stderr,
901 "no reserved partition found\n");
902 }
903 return (0);
904 }
905
906 /*
907 * add all the unallocated space to the current label
908 */
909 int
efi_use_whole_disk(int fd)910 efi_use_whole_disk(int fd)
911 {
912 struct dk_gpt *efi_label;
913 int rval;
914 int i;
915 uint_t phy_last_slice = 0;
916 diskaddr_t pl_start = 0;
917 diskaddr_t pl_size;
918
919 rval = efi_alloc_and_read(fd, &efi_label);
920 if (rval < 0) {
921 return (rval);
922 }
923
924 /* find the last physically non-zero partition */
925 for (i = 0; i < efi_label->efi_nparts - 2; i ++) {
926 if (pl_start < efi_label->efi_parts[i].p_start) {
927 pl_start = efi_label->efi_parts[i].p_start;
928 phy_last_slice = i;
929 }
930 }
931 pl_size = efi_label->efi_parts[phy_last_slice].p_size;
932
933 /*
934 * If alter_lba is 1, we are using the backup label.
935 * Since we can locate the backup label by disk capacity,
936 * there must be no unallocated space.
937 */
938 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
939 >= efi_label->efi_last_lba)) {
940 if (efi_debug) {
941 (void) fprintf(stderr,
942 "efi_use_whole_disk: requested space not found\n");
943 }
944 efi_free(efi_label);
945 return (VT_ENOSPC);
946 }
947
948 /*
949 * If there is space between the last physically non-zero partition
950 * and the reserved partition, just add the unallocated space to this
951 * area. Otherwise, the unallocated space is added to the last
952 * physically non-zero partition.
953 */
954 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba -
955 efi_reserved_sectors(efi_label)) {
956 efi_label->efi_parts[phy_last_slice].p_size +=
957 efi_label->efi_last_lba - efi_label->efi_altern_lba;
958 }
959
960 /*
961 * Move the reserved partition. There is currently no data in
962 * here except fabricated devids (which get generated via
963 * efi_write()). So there is no need to copy data.
964 */
965 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start +=
966 efi_label->efi_last_lba - efi_label->efi_altern_lba;
967 efi_label->efi_last_u_lba += efi_label->efi_last_lba
968 - efi_label->efi_altern_lba;
969
970 rval = efi_write(fd, efi_label);
971 if (rval < 0) {
972 if (efi_debug) {
973 (void) fprintf(stderr,
974 "efi_use_whole_disk:fail to write label, rval=%d\n",
975 rval);
976 }
977 efi_free(efi_label);
978 return (rval);
979 }
980
981 efi_free(efi_label);
982 return (0);
983 }
984
985
986 /*
987 * write EFI label and backup label
988 */
989 int
efi_write(int fd,struct dk_gpt * vtoc)990 efi_write(int fd, struct dk_gpt *vtoc)
991 {
992 dk_efi_t dk_ioc;
993 efi_gpt_t *efi;
994 efi_gpe_t *efi_parts;
995 int i, j;
996 struct dk_cinfo dki_info;
997 int nblocks;
998 diskaddr_t lba_backup_gpt_hdr;
999
1000 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
1001 if (efi_debug)
1002 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
1003 switch (errno) {
1004 case EIO:
1005 return (VT_EIO);
1006 case EINVAL:
1007 return (VT_EINVAL);
1008 default:
1009 return (VT_ERROR);
1010 }
1011 }
1012
1013 if (check_input(vtoc))
1014 return (VT_EINVAL);
1015
1016 dk_ioc.dki_lba = 1;
1017 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1018 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1019 } else {
1020 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
1021 vtoc->efi_lbasize) *
1022 vtoc->efi_lbasize;
1023 }
1024
1025 /*
1026 * the number of blocks occupied by GUID partition entry array
1027 */
1028 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1029
1030 /*
1031 * Backup GPT header is located on the block after GUID
1032 * partition entry array. Here, we calculate the address
1033 * for backup GPT header.
1034 */
1035 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
1036 if ((dk_ioc.dki_data = calloc(1, dk_ioc.dki_length)) == NULL)
1037 return (VT_ERROR);
1038
1039 efi = dk_ioc.dki_data;
1040
1041 /* stuff user's input into EFI struct */
1042 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1043 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
1044 efi->efi_gpt_HeaderSize = LE_32(EFI_HEADER_SIZE);
1045 efi->efi_gpt_Reserved1 = 0;
1046 efi->efi_gpt_MyLBA = LE_64(1ULL);
1047 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1048 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1049 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1050 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1051 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1052 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1053 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1054
1055 /* LINTED -- always longlong aligned */
1056 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1057
1058 for (i = 0; i < vtoc->efi_nparts; i++) {
1059 for (j = 0;
1060 j < sizeof (conversion_array) /
1061 sizeof (struct uuid_to_ptag); j++) {
1062
1063 if (vtoc->efi_parts[i].p_tag ==
1064 conversion_array[j].p_tag) {
1065 UUID_LE_CONVERT(
1066 efi_parts[i].efi_gpe_PartitionTypeGUID,
1067 conversion_array[j].uuid);
1068 break;
1069 }
1070 }
1071
1072 if (j == sizeof (conversion_array) /
1073 sizeof (struct uuid_to_ptag)) {
1074 /*
1075 * If we didn't have a matching uuid match, bail here.
1076 * Don't write a label with unknown uuid.
1077 */
1078 if (efi_debug) {
1079 (void) fprintf(stderr,
1080 "Unknown uuid for p_tag %d\n",
1081 vtoc->efi_parts[i].p_tag);
1082 }
1083 return (VT_EINVAL);
1084 }
1085
1086 efi_parts[i].efi_gpe_StartingLBA =
1087 LE_64(vtoc->efi_parts[i].p_start);
1088 efi_parts[i].efi_gpe_EndingLBA =
1089 LE_64(vtoc->efi_parts[i].p_start +
1090 vtoc->efi_parts[i].p_size - 1);
1091 efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1092 LE_16(vtoc->efi_parts[i].p_flag);
1093 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1094 efi_parts[i].efi_gpe_PartitionName[j] =
1095 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1096 }
1097 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1098 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1099 (void) uuid_generate((uchar_t *)
1100 &vtoc->efi_parts[i].p_uguid);
1101 }
1102 bcopy(&vtoc->efi_parts[i].p_uguid,
1103 &efi_parts[i].efi_gpe_UniquePartitionGUID,
1104 sizeof (uuid_t));
1105 }
1106 efi->efi_gpt_PartitionEntryArrayCRC32 =
1107 LE_32(efi_crc32((unsigned char *)efi_parts,
1108 vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1109 efi->efi_gpt_HeaderCRC32 = LE_32(efi_crc32((unsigned char *)efi,
1110 EFI_HEADER_SIZE));
1111
1112 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1113 free(dk_ioc.dki_data);
1114 switch (errno) {
1115 case EIO:
1116 return (VT_EIO);
1117 case EINVAL:
1118 return (VT_EINVAL);
1119 default:
1120 return (VT_ERROR);
1121 }
1122 }
1123
1124 /* write backup partition array */
1125 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1126 dk_ioc.dki_length -= vtoc->efi_lbasize;
1127 /* LINTED */
1128 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1129 vtoc->efi_lbasize);
1130
1131 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1132 /*
1133 * we wrote the primary label okay, so don't fail
1134 */
1135 if (efi_debug) {
1136 (void) fprintf(stderr,
1137 "write of backup partitions to block %llu "
1138 "failed, errno %d\n",
1139 vtoc->efi_last_u_lba + 1,
1140 errno);
1141 }
1142 }
1143 /*
1144 * now swap MyLBA and AlternateLBA fields and write backup
1145 * partition table header
1146 */
1147 dk_ioc.dki_lba = lba_backup_gpt_hdr;
1148 dk_ioc.dki_length = vtoc->efi_lbasize;
1149 /* LINTED */
1150 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1151 vtoc->efi_lbasize);
1152 efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1153 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1154 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1155 efi->efi_gpt_HeaderCRC32 = 0;
1156 efi->efi_gpt_HeaderCRC32 =
1157 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, EFI_HEADER_SIZE));
1158
1159 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1160 if (efi_debug) {
1161 (void) fprintf(stderr,
1162 "write of backup header to block %llu failed, "
1163 "errno %d\n",
1164 lba_backup_gpt_hdr,
1165 errno);
1166 }
1167 }
1168 /* write the PMBR */
1169 (void) write_pmbr(fd, vtoc);
1170 free(dk_ioc.dki_data);
1171 return (0);
1172 }
1173
1174 void
efi_free(struct dk_gpt * ptr)1175 efi_free(struct dk_gpt *ptr)
1176 {
1177 free(ptr);
1178 }
1179
1180 /*
1181 * Input: File descriptor
1182 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1183 * Otherwise 0.
1184 */
1185 int
efi_type(int fd)1186 efi_type(int fd)
1187 {
1188 struct vtoc vtoc;
1189 struct extvtoc extvtoc;
1190
1191 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1192 if (errno == ENOTSUP)
1193 return (1);
1194 else if (errno == ENOTTY) {
1195 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1196 if (errno == ENOTSUP)
1197 return (1);
1198 }
1199 }
1200 return (0);
1201 }
1202
1203 void
efi_err_check(struct dk_gpt * vtoc)1204 efi_err_check(struct dk_gpt *vtoc)
1205 {
1206 int resv_part = -1;
1207 int i, j;
1208 diskaddr_t istart, jstart, isize, jsize, endsect;
1209 int overlap = 0;
1210 uint_t reserved;
1211
1212 /*
1213 * make sure no partitions overlap
1214 */
1215 reserved = efi_reserved_sectors(vtoc);
1216 for (i = 0; i < vtoc->efi_nparts; i++) {
1217 /* It can't be unassigned and have an actual size */
1218 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1219 (vtoc->efi_parts[i].p_size != 0)) {
1220 (void) fprintf(stderr,
1221 "partition %d is \"unassigned\" but has a size "
1222 "of %llu\n", i, vtoc->efi_parts[i].p_size);
1223 }
1224 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1225 continue;
1226 }
1227 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1228 if (resv_part != -1) {
1229 (void) fprintf(stderr,
1230 "found duplicate reserved partition at "
1231 "%d\n", i);
1232 }
1233 resv_part = i;
1234 if (vtoc->efi_parts[i].p_size != reserved)
1235 (void) fprintf(stderr,
1236 "Warning: reserved partition size must "
1237 "be %u sectors\n", reserved);
1238 }
1239 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1240 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1241 (void) fprintf(stderr,
1242 "Partition %d starts at %llu\n",
1243 i,
1244 vtoc->efi_parts[i].p_start);
1245 (void) fprintf(stderr,
1246 "It must be between %llu and %llu.\n",
1247 vtoc->efi_first_u_lba,
1248 vtoc->efi_last_u_lba);
1249 }
1250 if ((vtoc->efi_parts[i].p_start +
1251 vtoc->efi_parts[i].p_size <
1252 vtoc->efi_first_u_lba) ||
1253 (vtoc->efi_parts[i].p_start +
1254 vtoc->efi_parts[i].p_size >
1255 vtoc->efi_last_u_lba + 1)) {
1256 (void) fprintf(stderr,
1257 "Partition %d ends at %llu\n",
1258 i,
1259 vtoc->efi_parts[i].p_start +
1260 vtoc->efi_parts[i].p_size);
1261 (void) fprintf(stderr,
1262 "It must be between %llu and %llu.\n",
1263 vtoc->efi_first_u_lba,
1264 vtoc->efi_last_u_lba);
1265 }
1266
1267 for (j = 0; j < vtoc->efi_nparts; j++) {
1268 isize = vtoc->efi_parts[i].p_size;
1269 jsize = vtoc->efi_parts[j].p_size;
1270 istart = vtoc->efi_parts[i].p_start;
1271 jstart = vtoc->efi_parts[j].p_start;
1272 if ((i != j) && (isize != 0) && (jsize != 0)) {
1273 endsect = jstart + jsize -1;
1274 if ((jstart <= istart) &&
1275 (istart <= endsect)) {
1276 if (!overlap) {
1277 (void) fprintf(stderr,
1278 "label error: EFI Labels do not "
1279 "support overlapping partitions\n");
1280 }
1281 (void) fprintf(stderr,
1282 "Partition %d overlaps partition "
1283 "%d.\n", i, j);
1284 overlap = 1;
1285 }
1286 }
1287 }
1288 }
1289 /* make sure there is a reserved partition */
1290 if (resv_part == -1) {
1291 (void) fprintf(stderr,
1292 "no reserved partition found\n");
1293 }
1294 }
1295
1296 /*
1297 * We need to get information necessary to construct a *new* efi
1298 * label type
1299 */
1300 int
efi_auto_sense(int fd,struct dk_gpt ** vtoc)1301 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1302 {
1303
1304 int i;
1305
1306 /*
1307 * Now build the default partition table
1308 */
1309 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1310 if (efi_debug) {
1311 (void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1312 }
1313 return (-1);
1314 }
1315
1316 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1317 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1318 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1319 (*vtoc)->efi_parts[i].p_start = 0;
1320 (*vtoc)->efi_parts[i].p_size = 0;
1321 }
1322 /*
1323 * Make constants first
1324 * and variable partitions later
1325 */
1326
1327 /* root partition - s0 128 MB */
1328 (*vtoc)->efi_parts[0].p_start = 34;
1329 (*vtoc)->efi_parts[0].p_size = 262144;
1330
1331 /* partition - s1 128 MB */
1332 (*vtoc)->efi_parts[1].p_start = 262178;
1333 (*vtoc)->efi_parts[1].p_size = 262144;
1334
1335 /* partition -s2 is NOT the Backup disk */
1336 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1337
1338 /* partition -s6 /usr partition - HOG */
1339 (*vtoc)->efi_parts[6].p_start = 524322;
1340 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
1341 - (1024 * 16);
1342
1343 /* efi reserved partition - s9 16K */
1344 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1345 (*vtoc)->efi_parts[8].p_size = (1024 * 16);
1346 (*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1347 return (0);
1348 }
1349