xref: /illumos-gate/usr/src/lib/libctf/common/ctf_dwarf.c (revision 3eca610387779e26c8c63e26d2ba418b0cd1bf5a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2012 Jason King.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /*
31  * Copyright 2019 Joyent, Inc.
32  */
33 
34 /*
35  * CTF DWARF conversion theory.
36  *
37  * DWARF data contains a series of compilation units. Each compilation unit
38  * generally refers to an object file or what once was, in the case of linked
39  * binaries and shared objects. Each compilation unit has a series of what DWARF
40  * calls a DIE (Debugging Information Entry). The set of entries that we care
41  * about have type information stored in a series of attributes. Each DIE also
42  * has a tag that identifies the kind of attributes that it has.
43  *
44  * A given DIE may itself have children. For example, a DIE that represents a
45  * structure has children which represent members. Whenever we encounter a DIE
46  * that has children or other values or types associated with it, we recursively
47  * process those children first so that way we can then refer to the generated
48  * CTF type id while processing its parent. This reduces the amount of unknowns
49  * and fixups that we need. It also ensures that we don't accidentally add types
50  * that an overzealous compiler might add to the DWARF data but aren't used by
51  * anything in the system.
52  *
53  * Once we do a conversion, we store a mapping in an AVL tree that goes from the
54  * DWARF's die offset, which is relative to the given compilation unit, to a
55  * ctf_id_t.
56  *
57  * Unfortunately, some compilers actually will emit duplicate entries for a
58  * given type that look similar, but aren't quite. To that end, we go through
59  * and do a variant on a merge once we're done processing a single compilation
60  * unit which deduplicates all of the types that are in the unit.
61  *
62  * Finally, if we encounter an object that has multiple compilation units, then
63  * we'll convert all of the compilation units separately and then do a merge, so
64  * that way we can result in one single ctf_file_t that represents everything
65  * for the object.
66  *
67  * Conversion Steps
68  * ----------------
69  *
70  * Because a given object we've been given to convert may have multiple
71  * compilation units, we break the work into two halves. The first half
72  * processes each compilation unit (potentially in parallel) and then the second
73  * half optionally merges all of the dies in the first half. First, we'll cover
74  * what's involved in converting a single ctf_cu_t's dwarf to CTF. This covers
75  * the work done in ctf_dwarf_convert_one().
76  *
77  * An individual ctf_cu_t, which represents a compilation unit, is converted to
78  * CTF in a series of multiple passes.
79  *
80  * Pass 1: During the first pass we walk all of the top-level dies and if we
81  * find a function, variable, struct, union, enum or typedef, we recursively
82  * transform all of its types. We don't recurse or process everything, because
83  * we don't want to add some of the types that compilers may add which are
84  * effectively unused.
85  *
86  * During pass 1, if we encounter any structures or unions we mark them for
87  * fixing up later. This is necessary because we may not be able to determine
88  * the full size of a structure at the beginning of time. This will happen if
89  * the DWARF attribute DW_AT_byte_size is not present for a member. Because of
90  * this possibility we defer adding members to structures or even converting
91  * them during pass 1 and save that for pass 2. Adding all of the base
92  * structures without any of their members helps deal with any circular
93  * dependencies that we might encounter.
94  *
95  * Pass 2: This pass is used to do the first half of fixing up structures and
96  * unions. Rather than walk the entire type space again, we actually walk the
97  * list of structures and unions that we marked for later fixing up. Here, we
98  * iterate over every structure and add members to the underlying ctf_file_t,
99  * but not to the structs themselves. One might wonder why we don't, and the
100  * main reason is that libctf requires a ctf_update() be done before adding the
101  * members to structures or unions.
102  *
103  * Pass 3: This pass is used to do the second half of fixing up structures and
104  * unions. During this part we always go through and add members to structures
105  * and unions that we added to the container in the previous pass. In addition,
106  * we set the structure and union's actual size, which may have additional
107  * padding added by the compiler, it isn't simply the last offset. DWARF always
108  * guarantees an attribute exists for this. Importantly no ctf_id_t's change
109  * during pass 2.
110  *
111  * Pass 4: The next phase is to add CTF entries for all of the symbols and
112  * variables that are present in this die. During pass 1 we added entries to a
113  * map for each variable and function. During this pass, we iterate over the
114  * symbol table and when we encounter a symbol that we have in our lists of
115  * translated information which matches, we then add it to the ctf_file_t.
116  *
117  * Pass 5: Here we go and look for any weak symbols and functions and see if
118  * they match anything that we recognize. If so, then we add type information
119  * for them at this point based on the matching type.
120  *
121  * Pass 6: This pass is actually a variant on a merge. The traditional merge
122  * process expects there to be no duplicate types. As such, at the end of
123  * conversion, we do a dedup on all of the types in the system. The
124  * deduplication process is described in lib/libctf/common/ctf_merge.c.
125  *
126  * Once pass 6 is done, we've finished processing the individual compilation
127  * unit.
128  *
129  * The following steps reflect the general process of doing a conversion.
130  *
131  * 1) Walk the dwarf section and determine the number of compilation units
132  * 2) Create a ctf_cu_t for each compilation unit
133  * 3) Add all ctf_cu_t's to a workq
134  * 4) Have the workq process each die with ctf_dwarf_convert_one. This itself
135  *    is comprised of several steps, which were already enumerated.
136  * 5) If we have multiple cu's, we do a ctf merge of all the dies. The mechanics
137  *    of the merge are discussed in lib/libctf/common/ctf_merge.c.
138  * 6) Free everything up and return a ctf_file_t to the user. If we only had a
139  *    single compilation unit, then we give that to the user. Otherwise, we
140  *    return the merged ctf_file_t.
141  *
142  * Threading
143  * ---------
144  *
145  * The process has been designed to be amenable to threading. Each compilation
146  * unit has its own type stream, therefore the logical place to divide and
147  * conquer is at the compilation unit. Each ctf_cu_t has been built to be able
148  * to be processed independently of the others. It has its own libdwarf handle,
149  * as a given libdwarf handle may only be used by a single thread at a time.
150  * This allows the various ctf_cu_t's to be processed in parallel by different
151  * threads.
152  *
153  * All of the ctf_cu_t's are loaded into a workq which allows for a number of
154  * threads to be specified and used as a thread pool to process all of the
155  * queued work. We set the number of threads to use in the workq equal to the
156  * number of threads that the user has specified.
157  *
158  * After all of the compilation units have been drained, we use the same number
159  * of threads when performing a merge of multiple compilation units, if they
160  * exist.
161  *
162  * While all of these different parts do support and allow for multiple threads,
163  * it's important that when only a single thread is specified, that it be the
164  * calling thread. This allows the conversion routines to be used in a context
165  * that doesn't allow additional threads, such as rtld.
166  *
167  * Common DWARF Mechanics and Notes
168  * --------------------------------
169  *
170  * At this time, we really only support DWARFv2, though support for DWARFv4 is
171  * mostly there. There is no intent to support DWARFv3.
172  *
173  * Generally types for something are stored in the DW_AT_type attribute. For
174  * example, a function's return type will be stored in the local DW_AT_type
175  * attribute while the arguments will be in child DIEs. There are also various
176  * times when we don't have any DW_AT_type. In that case, the lack of a type
177  * implies, at least for C, that its C type is void. Because DWARF doesn't emit
178  * one, we have a synthetic void type that we create and manipulate instead and
179  * pass it off to consumers on an as-needed basis. If nothing has a void type,
180  * it will not be emitted.
181  *
182  * Architecture Specific Parts
183  * ---------------------------
184  *
185  * The CTF tooling encodes various information about the various architectures
186  * in the system. Importantly, the tool assumes that every architecture has a
187  * data model where long and pointer are the same size. This is currently the
188  * case, as the two data models illumos supports are ILP32 and LP64.
189  *
190  * In addition, we encode the mapping of various floating point sizes to various
191  * types for each architecture. If a new architecture is being added, it should
192  * be added to the list. The general design of the ctf conversion tools is to be
193  * architecture independent. eg. any of the tools here should be able to convert
194  * any architecture's DWARF into ctf; however, this has not been rigorously
195  * tested and more importantly, the ctf routines don't currently write out the
196  * data in an endian-aware form, they only use that of the currently running
197  * library.
198  */
199 
200 #include <libctf_impl.h>
201 #include <sys/avl.h>
202 #include <sys/debug.h>
203 #include <gelf.h>
204 #include <libdwarf.h>
205 #include <dwarf.h>
206 #include <libgen.h>
207 #include <workq.h>
208 #include <errno.h>
209 
210 #define	DWARF_VERSION_TWO	2
211 #define	DWARF_VARARGS_NAME	"..."
212 
213 /*
214  * Dwarf may refer recursively to other types that we've already processed. To
215  * see if we've already converted them, we look them up in an AVL tree that's
216  * sorted by the DWARF id.
217  */
218 typedef struct ctf_dwmap {
219 	avl_node_t	cdm_avl;
220 	Dwarf_Off	cdm_off;
221 	Dwarf_Die	cdm_die;
222 	ctf_id_t	cdm_id;
223 	boolean_t	cdm_fix;
224 } ctf_dwmap_t;
225 
226 typedef struct ctf_dwvar {
227 	ctf_list_t	cdv_list;
228 	char		*cdv_name;
229 	ctf_id_t	cdv_type;
230 	boolean_t	cdv_global;
231 } ctf_dwvar_t;
232 
233 typedef struct ctf_dwfunc {
234 	ctf_list_t	cdf_list;
235 	char		*cdf_name;
236 	ctf_funcinfo_t	cdf_fip;
237 	ctf_id_t	*cdf_argv;
238 	boolean_t	cdf_global;
239 } ctf_dwfunc_t;
240 
241 typedef struct ctf_dwbitf {
242 	ctf_list_t	cdb_list;
243 	ctf_id_t	cdb_base;
244 	uint_t		cdb_nbits;
245 	ctf_id_t	cdb_id;
246 } ctf_dwbitf_t;
247 
248 /*
249  * The ctf_cu_t represents a single top-level DWARF die unit. While generally,
250  * the typical object file has only a single die, if we're asked to convert
251  * something that's been linked from multiple sources, multiple dies will exist.
252  */
253 typedef struct ctf_die {
254 	Elf		*cu_elf;	/* shared libelf handle */
255 	char		*cu_name;	/* basename of the DIE */
256 	ctf_merge_t	*cu_cmh;	/* merge handle */
257 	ctf_list_t	cu_vars;	/* List of variables */
258 	ctf_list_t	cu_funcs;	/* List of functions */
259 	ctf_list_t	cu_bitfields;	/* Bit field members */
260 	Dwarf_Debug	cu_dwarf;	/* libdwarf handle */
261 	Dwarf_Die	cu_cu;		/* libdwarf compilation unit */
262 	Dwarf_Off	cu_cuoff;	/* cu's offset */
263 	Dwarf_Off	cu_maxoff;	/* maximum offset */
264 	ctf_file_t	*cu_ctfp;	/* output CTF file */
265 	avl_tree_t	cu_map;		/* map die offsets to CTF types */
266 	char		*cu_errbuf;	/* error message buffer */
267 	size_t		cu_errlen;	/* error message buffer length */
268 	size_t		cu_ptrsz;	/* object's pointer size */
269 	boolean_t	cu_bigend;	/* is it big endian */
270 	boolean_t	cu_doweaks;	/* should we convert weak symbols? */
271 	uint_t		cu_mach;	/* machine type */
272 	ctf_id_t	cu_voidtid;	/* void pointer */
273 	ctf_id_t	cu_longtid;	/* id for a 'long' */
274 } ctf_cu_t;
275 
276 static int ctf_dwarf_offset(ctf_cu_t *, Dwarf_Die, Dwarf_Off *);
277 static int ctf_dwarf_convert_die(ctf_cu_t *, Dwarf_Die);
278 static int ctf_dwarf_convert_type(ctf_cu_t *, Dwarf_Die, ctf_id_t *, int);
279 
280 static int ctf_dwarf_function_count(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
281     boolean_t);
282 static int ctf_dwarf_convert_fargs(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
283     ctf_id_t *);
284 
285 /*
286  * This is a generic way to set a CTF Conversion backend error depending on what
287  * we were doing. Unless it was one of a specific set of errors that don't
288  * indicate a programming / translation bug, eg. ENOMEM, then we transform it
289  * into a CTF backend error and fill in the error buffer.
290  */
291 static int
292 ctf_dwarf_error(ctf_cu_t *cup, ctf_file_t *cfp, int err, const char *fmt, ...)
293 {
294 	va_list ap;
295 	int ret;
296 	size_t off = 0;
297 	ssize_t rem = cup->cu_errlen;
298 	if (cfp != NULL)
299 		err = ctf_errno(cfp);
300 
301 	if (err == ENOMEM)
302 		return (err);
303 
304 	ret = snprintf(cup->cu_errbuf, rem, "die %s: ", cup->cu_name);
305 	if (ret < 0)
306 		goto err;
307 	off += ret;
308 	rem = MAX(rem - ret, 0);
309 
310 	va_start(ap, fmt);
311 	ret = vsnprintf(cup->cu_errbuf + off, rem, fmt, ap);
312 	va_end(ap);
313 	if (ret < 0)
314 		goto err;
315 
316 	off += ret;
317 	rem = MAX(rem - ret, 0);
318 	if (fmt[strlen(fmt) - 1] != '\n') {
319 		(void) snprintf(cup->cu_errbuf + off, rem,
320 		    ": %s\n", ctf_errmsg(err));
321 	}
322 	va_end(ap);
323 	return (ECTF_CONVBKERR);
324 
325 err:
326 	cup->cu_errbuf[0] = '\0';
327 	return (ECTF_CONVBKERR);
328 }
329 
330 /*
331  * DWARF often opts to put no explicit type to describe a void type. eg. if we
332  * have a reference type whose DW_AT_type member doesn't exist, then we should
333  * instead assume it points to void. Because this isn't represented, we
334  * instead cause it to come into existence.
335  */
336 static ctf_id_t
337 ctf_dwarf_void(ctf_cu_t *cup)
338 {
339 	if (cup->cu_voidtid == CTF_ERR) {
340 		ctf_encoding_t enc = { CTF_INT_SIGNED, 0, 0 };
341 		cup->cu_voidtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_ROOT,
342 		    "void", &enc);
343 		if (cup->cu_voidtid == CTF_ERR) {
344 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
345 			    "failed to create void type: %s\n",
346 			    ctf_errmsg(ctf_errno(cup->cu_ctfp)));
347 		}
348 	}
349 
350 	return (cup->cu_voidtid);
351 }
352 
353 /*
354  * There are many different forms that an array index may take. However, we just
355  * always force it to be of a type long no matter what. Therefore we use this to
356  * have a single instance of long across everything.
357  */
358 static ctf_id_t
359 ctf_dwarf_long(ctf_cu_t *cup)
360 {
361 	if (cup->cu_longtid == CTF_ERR) {
362 		ctf_encoding_t enc;
363 
364 		enc.cte_format = CTF_INT_SIGNED;
365 		enc.cte_offset = 0;
366 		/* All illumos systems are LP */
367 		enc.cte_bits = cup->cu_ptrsz * 8;
368 		cup->cu_longtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
369 		    "long", &enc);
370 		if (cup->cu_longtid == CTF_ERR) {
371 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
372 			    "failed to create long type: %s\n",
373 			    ctf_errmsg(ctf_errno(cup->cu_ctfp)));
374 		}
375 
376 	}
377 
378 	return (cup->cu_longtid);
379 }
380 
381 static int
382 ctf_dwmap_comp(const void *a, const void *b)
383 {
384 	const ctf_dwmap_t *ca = a;
385 	const ctf_dwmap_t *cb = b;
386 
387 	if (ca->cdm_off > cb->cdm_off)
388 		return (1);
389 	if (ca->cdm_off < cb->cdm_off)
390 		return (-1);
391 	return (0);
392 }
393 
394 static int
395 ctf_dwmap_add(ctf_cu_t *cup, ctf_id_t id, Dwarf_Die die, boolean_t fix)
396 {
397 	int ret;
398 	avl_index_t index;
399 	ctf_dwmap_t *dwmap;
400 	Dwarf_Off off;
401 
402 	VERIFY(id > 0 && id < CTF_MAX_TYPE);
403 
404 	if ((ret = ctf_dwarf_offset(cup, die, &off)) != 0)
405 		return (ret);
406 
407 	if ((dwmap = ctf_alloc(sizeof (ctf_dwmap_t))) == NULL)
408 		return (ENOMEM);
409 
410 	dwmap->cdm_die = die;
411 	dwmap->cdm_off = off;
412 	dwmap->cdm_id = id;
413 	dwmap->cdm_fix = fix;
414 
415 	ctf_dprintf("dwmap: %p %" DW_PR_DUx "->%d\n", dwmap, off, id);
416 	VERIFY(avl_find(&cup->cu_map, dwmap, &index) == NULL);
417 	avl_insert(&cup->cu_map, dwmap, index);
418 	return (0);
419 }
420 
421 static int
422 ctf_dwarf_attribute(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
423     Dwarf_Attribute *attrp)
424 {
425 	int ret;
426 	Dwarf_Error derr;
427 
428 	if ((ret = dwarf_attr(die, name, attrp, &derr)) == DW_DLV_OK)
429 		return (0);
430 	if (ret == DW_DLV_NO_ENTRY) {
431 		*attrp = NULL;
432 		return (ENOENT);
433 	}
434 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
435 	    "failed to get attribute for type: %s\n",
436 	    dwarf_errmsg(derr));
437 	return (ECTF_CONVBKERR);
438 }
439 
440 static int
441 ctf_dwarf_ref(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, Dwarf_Off *refp)
442 {
443 	int ret;
444 	Dwarf_Attribute attr;
445 	Dwarf_Error derr;
446 
447 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
448 		return (ret);
449 
450 	if (dwarf_formref(attr, refp, &derr) == DW_DLV_OK) {
451 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
452 		return (0);
453 	}
454 
455 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
456 	    "failed to get unsigned attribute for type: %s\n",
457 	    dwarf_errmsg(derr));
458 	return (ECTF_CONVBKERR);
459 }
460 
461 static int
462 ctf_dwarf_refdie(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
463     Dwarf_Die *diep)
464 {
465 	int ret;
466 	Dwarf_Off off;
467 	Dwarf_Error derr;
468 
469 	if ((ret = ctf_dwarf_ref(cup, die, name, &off)) != 0)
470 		return (ret);
471 
472 	off += cup->cu_cuoff;
473 	if ((ret = dwarf_offdie(cup->cu_dwarf, off, diep, &derr)) !=
474 	    DW_DLV_OK) {
475 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
476 		    "failed to get die from offset %" DW_PR_DUu ": %s\n",
477 		    off, dwarf_errmsg(derr));
478 		return (ECTF_CONVBKERR);
479 	}
480 
481 	return (0);
482 }
483 
484 static int
485 ctf_dwarf_signed(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
486     Dwarf_Signed *valp)
487 {
488 	int ret;
489 	Dwarf_Attribute attr;
490 	Dwarf_Error derr;
491 
492 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
493 		return (ret);
494 
495 	if (dwarf_formsdata(attr, valp, &derr) == DW_DLV_OK) {
496 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
497 		return (0);
498 	}
499 
500 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
501 	    "failed to get unsigned attribute for type: %s\n",
502 	    dwarf_errmsg(derr));
503 	return (ECTF_CONVBKERR);
504 }
505 
506 static int
507 ctf_dwarf_unsigned(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
508     Dwarf_Unsigned *valp)
509 {
510 	int ret;
511 	Dwarf_Attribute attr;
512 	Dwarf_Error derr;
513 
514 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
515 		return (ret);
516 
517 	if (dwarf_formudata(attr, valp, &derr) == DW_DLV_OK) {
518 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
519 		return (0);
520 	}
521 
522 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
523 	    "failed to get unsigned attribute for type: %s\n",
524 	    dwarf_errmsg(derr));
525 	return (ECTF_CONVBKERR);
526 }
527 
528 static int
529 ctf_dwarf_boolean(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
530     Dwarf_Bool *val)
531 {
532 	int ret;
533 	Dwarf_Attribute attr;
534 	Dwarf_Error derr;
535 
536 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
537 		return (ret);
538 
539 	if (dwarf_formflag(attr, val, &derr) == DW_DLV_OK) {
540 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
541 		return (0);
542 	}
543 
544 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
545 	    "failed to get boolean attribute for type: %s\n",
546 	    dwarf_errmsg(derr));
547 
548 	return (ECTF_CONVBKERR);
549 }
550 
551 static int
552 ctf_dwarf_string(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, char **strp)
553 {
554 	int ret;
555 	char *s;
556 	Dwarf_Attribute attr;
557 	Dwarf_Error derr;
558 
559 	*strp = NULL;
560 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
561 		return (ret);
562 
563 	if (dwarf_formstring(attr, &s, &derr) == DW_DLV_OK) {
564 		if ((*strp = ctf_strdup(s)) == NULL)
565 			ret = ENOMEM;
566 		else
567 			ret = 0;
568 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
569 		return (ret);
570 	}
571 
572 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
573 	    "failed to get string attribute for type: %s\n",
574 	    dwarf_errmsg(derr));
575 	return (ECTF_CONVBKERR);
576 }
577 
578 static int
579 ctf_dwarf_member_location(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Unsigned *valp)
580 {
581 	int ret;
582 	Dwarf_Error derr;
583 	Dwarf_Attribute attr;
584 	Dwarf_Locdesc *loc;
585 	Dwarf_Signed locnum;
586 
587 	if ((ret = ctf_dwarf_attribute(cup, die, DW_AT_data_member_location,
588 	    &attr)) != 0)
589 		return (ret);
590 
591 	if (dwarf_loclist(attr, &loc, &locnum, &derr) != DW_DLV_OK) {
592 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
593 		    "failed to obtain location list for member offset: %s",
594 		    dwarf_errmsg(derr));
595 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
596 		return (ECTF_CONVBKERR);
597 	}
598 	dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
599 
600 	if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
601 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
602 		    "failed to parse location structure for member");
603 		dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK);
604 		dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC);
605 		return (ECTF_CONVBKERR);
606 	}
607 
608 	*valp = loc->ld_s->lr_number;
609 
610 	dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK);
611 	dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC);
612 	return (0);
613 }
614 
615 
616 static int
617 ctf_dwarf_offset(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Off *offsetp)
618 {
619 	Dwarf_Error derr;
620 
621 	if (dwarf_dieoffset(die, offsetp, &derr) == DW_DLV_OK)
622 		return (0);
623 
624 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
625 	    "failed to get die offset: %s\n",
626 	    dwarf_errmsg(derr));
627 	return (ECTF_CONVBKERR);
628 }
629 
630 /* simpler variant for debugging output */
631 static Dwarf_Off
632 ctf_die_offset(Dwarf_Die die)
633 {
634 	Dwarf_Off off = -1;
635 	Dwarf_Error derr;
636 
637 	(void) dwarf_dieoffset(die, &off, &derr);
638 	return (off);
639 }
640 
641 static int
642 ctf_dwarf_tag(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half *tagp)
643 {
644 	Dwarf_Error derr;
645 
646 	if (dwarf_tag(die, tagp, &derr) == DW_DLV_OK)
647 		return (0);
648 
649 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
650 	    "failed to get tag type: %s\n",
651 	    dwarf_errmsg(derr));
652 	return (ECTF_CONVBKERR);
653 }
654 
655 static int
656 ctf_dwarf_sib(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *sibp)
657 {
658 	Dwarf_Error derr;
659 	int ret;
660 
661 	*sibp = NULL;
662 	ret = dwarf_siblingof(cup->cu_dwarf, base, sibp, &derr);
663 	if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
664 		return (0);
665 
666 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
667 	    "failed to sibling from die: %s\n",
668 	    dwarf_errmsg(derr));
669 	return (ECTF_CONVBKERR);
670 }
671 
672 static int
673 ctf_dwarf_child(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *childp)
674 {
675 	Dwarf_Error derr;
676 	int ret;
677 
678 	*childp = NULL;
679 	ret = dwarf_child(base, childp, &derr);
680 	if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
681 		return (0);
682 
683 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
684 	    "failed to child from die: %s\n",
685 	    dwarf_errmsg(derr));
686 	return (ECTF_CONVBKERR);
687 }
688 
689 /*
690  * Compilers disagree on what to do to determine if something has global
691  * visiblity. Traditionally gcc has used DW_AT_external to indicate this while
692  * Studio has used DW_AT_visibility. We check DW_AT_visibility first and then
693  * fall back to DW_AT_external. Lack of DW_AT_external implies that it is not.
694  */
695 static int
696 ctf_dwarf_isglobal(ctf_cu_t *cup, Dwarf_Die die, boolean_t *igp)
697 {
698 	int ret;
699 	Dwarf_Signed vis;
700 	Dwarf_Bool ext;
701 
702 	if ((ret = ctf_dwarf_signed(cup, die, DW_AT_visibility, &vis)) == 0) {
703 		*igp = vis == DW_VIS_exported;
704 		return (0);
705 	} else if (ret != ENOENT) {
706 		return (ret);
707 	}
708 
709 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_external, &ext)) != 0) {
710 		if (ret == ENOENT) {
711 			*igp = B_FALSE;
712 			return (0);
713 		}
714 		return (ret);
715 	}
716 	*igp = ext != 0 ? B_TRUE : B_FALSE;
717 	return (0);
718 }
719 
720 static int
721 ctf_dwarf_die_elfenc(Elf *elf, ctf_cu_t *cup, char *errbuf, size_t errlen)
722 {
723 	GElf_Ehdr ehdr;
724 
725 	if (gelf_getehdr(elf, &ehdr) == NULL) {
726 		(void) snprintf(errbuf, errlen,
727 		    "failed to get ELF header: %s\n",
728 		    elf_errmsg(elf_errno()));
729 		return (ECTF_CONVBKERR);
730 	}
731 
732 	cup->cu_mach = ehdr.e_machine;
733 
734 	if (ehdr.e_ident[EI_CLASS] == ELFCLASS32) {
735 		cup->cu_ptrsz = 4;
736 		VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_ILP32) == 0);
737 	} else if (ehdr.e_ident[EI_CLASS] == ELFCLASS64) {
738 		cup->cu_ptrsz = 8;
739 		VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_LP64) == 0);
740 	} else {
741 		(void) snprintf(errbuf, errlen,
742 		    "unknown ELF class %d", ehdr.e_ident[EI_CLASS]);
743 		return (ECTF_CONVBKERR);
744 	}
745 
746 	if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB) {
747 		cup->cu_bigend = B_FALSE;
748 	} else if (ehdr.e_ident[EI_DATA] == ELFDATA2MSB) {
749 		cup->cu_bigend = B_TRUE;
750 	} else {
751 		(void) snprintf(errbuf, errlen,
752 		    "unknown ELF data encoding: %hhu", ehdr.e_ident[EI_DATA]);
753 		return (ECTF_CONVBKERR);
754 	}
755 
756 	return (0);
757 }
758 
759 typedef struct ctf_dwarf_fpent {
760 	size_t	cdfe_size;
761 	uint_t	cdfe_enc[3];
762 } ctf_dwarf_fpent_t;
763 
764 typedef struct ctf_dwarf_fpmap {
765 	uint_t			cdf_mach;
766 	ctf_dwarf_fpent_t	cdf_ents[4];
767 } ctf_dwarf_fpmap_t;
768 
769 static const ctf_dwarf_fpmap_t ctf_dwarf_fpmaps[] = {
770 	{ EM_SPARC, {
771 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
772 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
773 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
774 		{ 0, { 0 } }
775 	} },
776 	{ EM_SPARC32PLUS, {
777 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
778 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
779 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
780 		{ 0, { 0 } }
781 	} },
782 	{ EM_SPARCV9, {
783 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
784 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
785 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
786 		{ 0, { 0 } }
787 	} },
788 	{ EM_386, {
789 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
790 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
791 		{ 12, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
792 		{ 0, { 0 } }
793 	} },
794 	{ EM_X86_64, {
795 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
796 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
797 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
798 		{ 0, { 0 } }
799 	} },
800 	{ EM_NONE }
801 };
802 
803 static int
804 ctf_dwarf_float_base(ctf_cu_t *cup, Dwarf_Signed type, ctf_encoding_t *enc)
805 {
806 	const ctf_dwarf_fpmap_t *map = &ctf_dwarf_fpmaps[0];
807 	const ctf_dwarf_fpent_t *ent;
808 	uint_t col = 0, mult = 1;
809 
810 	for (map = &ctf_dwarf_fpmaps[0]; map->cdf_mach != EM_NONE; map++) {
811 		if (map->cdf_mach == cup->cu_mach)
812 			break;
813 	}
814 
815 	if (map->cdf_mach == EM_NONE) {
816 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
817 		    "Unsupported machine type: %d\n", cup->cu_mach);
818 		return (ENOTSUP);
819 	}
820 
821 	if (type == DW_ATE_complex_float) {
822 		mult = 2;
823 		col = 1;
824 	} else if (type == DW_ATE_imaginary_float ||
825 	    type == DW_ATE_SUN_imaginary_float) {
826 		col = 2;
827 	}
828 
829 	ent = &map->cdf_ents[0];
830 	for (ent = &map->cdf_ents[0]; ent->cdfe_size != 0; ent++) {
831 		if (ent->cdfe_size * mult * 8 == enc->cte_bits) {
832 			enc->cte_format = ent->cdfe_enc[col];
833 			return (0);
834 		}
835 	}
836 
837 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
838 	    "failed to find valid fp mapping for encoding %d, size %d bits\n",
839 	    type, enc->cte_bits);
840 	return (EINVAL);
841 }
842 
843 static int
844 ctf_dwarf_dwarf_base(ctf_cu_t *cup, Dwarf_Die die, int *kindp,
845     ctf_encoding_t *enc)
846 {
847 	int ret;
848 	Dwarf_Signed type;
849 
850 	if ((ret = ctf_dwarf_signed(cup, die, DW_AT_encoding, &type)) != 0)
851 		return (ret);
852 
853 	switch (type) {
854 	case DW_ATE_unsigned:
855 	case DW_ATE_address:
856 		*kindp = CTF_K_INTEGER;
857 		enc->cte_format = 0;
858 		break;
859 	case DW_ATE_unsigned_char:
860 		*kindp = CTF_K_INTEGER;
861 		enc->cte_format = CTF_INT_CHAR;
862 		break;
863 	case DW_ATE_signed:
864 		*kindp = CTF_K_INTEGER;
865 		enc->cte_format = CTF_INT_SIGNED;
866 		break;
867 	case DW_ATE_signed_char:
868 		*kindp = CTF_K_INTEGER;
869 		enc->cte_format = CTF_INT_SIGNED | CTF_INT_CHAR;
870 		break;
871 	case DW_ATE_boolean:
872 		*kindp = CTF_K_INTEGER;
873 		enc->cte_format = CTF_INT_SIGNED | CTF_INT_BOOL;
874 		break;
875 	case DW_ATE_float:
876 	case DW_ATE_complex_float:
877 	case DW_ATE_imaginary_float:
878 	case DW_ATE_SUN_imaginary_float:
879 	case DW_ATE_SUN_interval_float:
880 		*kindp = CTF_K_FLOAT;
881 		if ((ret = ctf_dwarf_float_base(cup, type, enc)) != 0)
882 			return (ret);
883 		break;
884 	default:
885 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
886 		    "encountered unknown DWARF encoding: %d", type);
887 		return (ECTF_CONVBKERR);
888 	}
889 
890 	return (0);
891 }
892 
893 /*
894  * Different compilers (at least GCC and Studio) use different names for types.
895  * This parses the types and attempts to unify them. If this fails, we just fall
896  * back to using the DWARF itself.
897  */
898 static int
899 ctf_dwarf_parse_base(const char *name, int *kindp, ctf_encoding_t *enc,
900     char **newnamep)
901 {
902 	char buf[256];
903 	char *base, *c, *last;
904 	int nlong = 0, nshort = 0, nchar = 0, nint = 0;
905 	int sign = 1;
906 
907 	if (strlen(name) + 1 > sizeof (buf))
908 		return (EINVAL);
909 
910 	(void) strlcpy(buf, name, sizeof (buf));
911 	for (c = strtok_r(buf, " ", &last); c != NULL;
912 	    c = strtok_r(NULL, " ", &last)) {
913 		if (strcmp(c, "signed") == 0) {
914 			sign = 1;
915 		} else if (strcmp(c, "unsigned") == 0) {
916 			sign = 0;
917 		} else if (strcmp(c, "long") == 0) {
918 			nlong++;
919 		} else if (strcmp(c, "char") == 0) {
920 			nchar++;
921 		} else if (strcmp(c, "short") == 0) {
922 			nshort++;
923 		} else if (strcmp(c, "int") == 0) {
924 			nint++;
925 		} else {
926 			/*
927 			 * If we don't recognize any of the tokens, we'll tell
928 			 * the caller to fall back to the dwarf-provided
929 			 * encoding information.
930 			 */
931 			return (EINVAL);
932 		}
933 	}
934 
935 	if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
936 		return (EINVAL);
937 
938 	if (nchar > 0) {
939 		if (nlong > 0 || nshort > 0 || nint > 0)
940 			return (EINVAL);
941 		base = "char";
942 	} else if (nshort > 0) {
943 		if (nlong > 0)
944 			return (EINVAL);
945 		base = "short";
946 	} else if (nlong > 0) {
947 		base = "long";
948 	} else {
949 		base = "int";
950 	}
951 
952 	if (nchar > 0)
953 		enc->cte_format = CTF_INT_CHAR;
954 	else
955 		enc->cte_format = 0;
956 
957 	if (sign > 0)
958 		enc->cte_format |= CTF_INT_SIGNED;
959 
960 	(void) snprintf(buf, sizeof (buf), "%s%s%s",
961 	    (sign ? "" : "unsigned "),
962 	    (nlong > 1 ? "long " : ""),
963 	    base);
964 
965 	*newnamep = ctf_strdup(buf);
966 	if (*newnamep == NULL)
967 		return (ENOMEM);
968 	*kindp = CTF_K_INTEGER;
969 	return (0);
970 }
971 
972 static int
973 ctf_dwarf_create_base(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot,
974     Dwarf_Off off)
975 {
976 	int ret;
977 	char *name, *nname;
978 	Dwarf_Unsigned sz;
979 	int kind;
980 	ctf_encoding_t enc;
981 	ctf_id_t id;
982 
983 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0)
984 		return (ret);
985 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &sz)) != 0) {
986 		goto out;
987 	}
988 	ctf_dprintf("Creating base type %s from off %llu, size: %d\n", name,
989 	    off, sz);
990 
991 	bzero(&enc, sizeof (ctf_encoding_t));
992 	enc.cte_bits = sz * 8;
993 	if ((ret = ctf_dwarf_parse_base(name, &kind, &enc, &nname)) == 0) {
994 		ctf_free(name, strlen(name) + 1);
995 		name = nname;
996 	} else {
997 		if (ret != EINVAL)
998 			return (ret);
999 		ctf_dprintf("falling back to dwarf for base type %s\n", name);
1000 		if ((ret = ctf_dwarf_dwarf_base(cup, die, &kind, &enc)) != 0)
1001 			return (ret);
1002 	}
1003 
1004 	id = ctf_add_encoded(cup->cu_ctfp, isroot, name, &enc, kind);
1005 	if (id == CTF_ERR) {
1006 		ret = ctf_errno(cup->cu_ctfp);
1007 	} else {
1008 		*idp = id;
1009 		ret = ctf_dwmap_add(cup, id, die, B_FALSE);
1010 	}
1011 out:
1012 	ctf_free(name, strlen(name) + 1);
1013 	return (ret);
1014 }
1015 
1016 /*
1017  * Getting a member's offset is a surprisingly intricate dance. It works as
1018  * follows:
1019  *
1020  * 1) If we're in DWARFv4, then we either have a DW_AT_data_bit_offset or we
1021  * have a DW_AT_data_member_location. We won't have both. Thus we check first
1022  * for DW_AT_data_bit_offset, and if it exists, we're set.
1023  *
1024  * Next, if we have a bitfield and we don't have a DW_AT_data_bit_offset, then
1025  * we have to grab the data location and use the following dance:
1026  *
1027  * 2) Gather the set of DW_AT_byte_size, DW_AT_bit_offset, and DW_AT_bit_size.
1028  * Of course, the DW_AT_byte_size may be omitted, even though it isn't always.
1029  * When it's been omitted, we then have to say that the size is that of the
1030  * underlying type, which forces that to be after a ctf_update(). Here, we have
1031  * to do different things based on whether or not we're using big endian or
1032  * little endian to obtain the proper offset.
1033  */
1034 static int
1035 ctf_dwarf_member_offset(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t mid,
1036     ulong_t *offp)
1037 {
1038 	int ret;
1039 	Dwarf_Unsigned loc, bitsz, bytesz;
1040 	Dwarf_Signed bitoff;
1041 	size_t off;
1042 	ssize_t tsz;
1043 
1044 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_data_bit_offset,
1045 	    &loc)) == 0) {
1046 		*offp = loc;
1047 		return (0);
1048 	} else if (ret != ENOENT) {
1049 		return (ret);
1050 	}
1051 
1052 	if ((ret = ctf_dwarf_member_location(cup, die, &loc)) != 0)
1053 		return (ret);
1054 	off = loc * 8;
1055 
1056 	if ((ret = ctf_dwarf_signed(cup, die, DW_AT_bit_offset,
1057 	    &bitoff)) != 0) {
1058 		if (ret != ENOENT)
1059 			return (ret);
1060 		*offp = off;
1061 		return (0);
1062 	}
1063 
1064 	/* At this point we have to have DW_AT_bit_size */
1065 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0)
1066 		return (ret);
1067 
1068 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size,
1069 	    &bytesz)) != 0) {
1070 		if (ret != ENOENT)
1071 			return (ret);
1072 		if ((tsz = ctf_type_size(cup->cu_ctfp, mid)) == CTF_ERR) {
1073 			int e = ctf_errno(cup->cu_ctfp);
1074 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1075 			    "failed to get type size: %s", ctf_errmsg(e));
1076 			return (ECTF_CONVBKERR);
1077 		}
1078 	} else {
1079 		tsz = bytesz;
1080 	}
1081 	tsz *= 8;
1082 	if (cup->cu_bigend == B_TRUE) {
1083 		*offp = off + bitoff;
1084 	} else {
1085 		*offp = off + tsz - bitoff - bitsz;
1086 	}
1087 
1088 	return (0);
1089 }
1090 
1091 /*
1092  * We need to determine if the member in question is a bitfield. If it is, then
1093  * we need to go through and create a new type that's based on the actual base
1094  * type, but has a different size. We also rename the type as a result to help
1095  * deal with future collisions.
1096  *
1097  * Here we need to look and see if we have a DW_AT_bit_size value. If we have a
1098  * bit size member and it does not equal the byte size member, then we need to
1099  * create a bitfield type based on this.
1100  *
1101  * Note: When we support DWARFv4, there may be a chance that we need to also
1102  * search for the DW_AT_byte_size if we don't have a DW_AT_bit_size member.
1103  */
1104 static int
1105 ctf_dwarf_member_bitfield(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp)
1106 {
1107 	int ret;
1108 	Dwarf_Unsigned bitsz;
1109 	ctf_encoding_t e;
1110 	ctf_dwbitf_t *cdb;
1111 	ctf_dtdef_t *dtd;
1112 	ctf_id_t base = *idp;
1113 	int kind;
1114 
1115 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0) {
1116 		if (ret == ENOENT)
1117 			return (0);
1118 		return (ret);
1119 	}
1120 
1121 	ctf_dprintf("Trying to deal with bitfields on %d:%d\n", base, bitsz);
1122 	/*
1123 	 * Given that we now have a bitsize, time to go do something about it.
1124 	 * We're going to create a new type based on the current one, but first
1125 	 * we need to find the base type. This means we need to traverse any
1126 	 * typedef's, consts, and volatiles until we get to what should be
1127 	 * something of type integer or enumeration.
1128 	 */
1129 	VERIFY(bitsz < UINT32_MAX);
1130 	dtd = ctf_dtd_lookup(cup->cu_ctfp, base);
1131 	VERIFY(dtd != NULL);
1132 	kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1133 	while (kind == CTF_K_TYPEDEF || kind == CTF_K_CONST ||
1134 	    kind == CTF_K_VOLATILE) {
1135 		dtd = ctf_dtd_lookup(cup->cu_ctfp, dtd->dtd_data.ctt_type);
1136 		VERIFY(dtd != NULL);
1137 		kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1138 	}
1139 	ctf_dprintf("got kind %d\n", kind);
1140 	VERIFY(kind == CTF_K_INTEGER || kind == CTF_K_ENUM);
1141 
1142 	/*
1143 	 * As surprising as it may be, it is strictly possible to create a
1144 	 * bitfield that is based on an enum. Of course, the C standard leaves
1145 	 * enums sizing as an ABI concern more or less. To that effect, today on
1146 	 * all illumos platforms the size of an enum is generally that of an
1147 	 * int as our supported data models and ABIs all agree on that. So what
1148 	 * we'll do is fake up a CTF encoding here to use. In this case, we'll
1149 	 * treat it as an unsigned value of whatever size the underlying enum
1150 	 * currently has (which is in the ctt_size member of its dynamic type
1151 	 * data).
1152 	 */
1153 	if (kind == CTF_K_INTEGER) {
1154 		e = dtd->dtd_u.dtu_enc;
1155 	} else {
1156 		bzero(&e, sizeof (ctf_encoding_t));
1157 		e.cte_bits = dtd->dtd_data.ctt_size * NBBY;
1158 	}
1159 
1160 	for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL;
1161 	    cdb = ctf_list_next(cdb)) {
1162 		if (cdb->cdb_base == base && cdb->cdb_nbits == bitsz)
1163 			break;
1164 	}
1165 
1166 	/*
1167 	 * Create a new type if none exists. We name all types in a way that is
1168 	 * guaranteed not to conflict with the corresponding C type. We do this
1169 	 * by using the ':' operator.
1170 	 */
1171 	if (cdb == NULL) {
1172 		size_t namesz;
1173 		char *name;
1174 
1175 		e.cte_bits = bitsz;
1176 		namesz = snprintf(NULL, 0, "%s:%d", dtd->dtd_name,
1177 		    (uint32_t)bitsz);
1178 		name = ctf_alloc(namesz + 1);
1179 		if (name == NULL)
1180 			return (ENOMEM);
1181 		cdb = ctf_alloc(sizeof (ctf_dwbitf_t));
1182 		if (cdb == NULL) {
1183 			ctf_free(name, namesz + 1);
1184 			return (ENOMEM);
1185 		}
1186 		(void) snprintf(name, namesz + 1, "%s:%d", dtd->dtd_name,
1187 		    (uint32_t)bitsz);
1188 
1189 		cdb->cdb_base = base;
1190 		cdb->cdb_nbits = bitsz;
1191 		cdb->cdb_id = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
1192 		    name, &e);
1193 		if (cdb->cdb_id == CTF_ERR) {
1194 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1195 			    "failed to get add bitfield type %s: %s", name,
1196 			    ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1197 			ctf_free(name, namesz + 1);
1198 			ctf_free(cdb, sizeof (ctf_dwbitf_t));
1199 			return (ECTF_CONVBKERR);
1200 		}
1201 		ctf_free(name, namesz + 1);
1202 		ctf_list_append(&cup->cu_bitfields, cdb);
1203 	}
1204 
1205 	*idp = cdb->cdb_id;
1206 
1207 	return (0);
1208 }
1209 
1210 static int
1211 ctf_dwarf_fixup_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t base, boolean_t add)
1212 {
1213 	int ret, kind;
1214 	Dwarf_Die child, memb;
1215 	Dwarf_Unsigned size;
1216 	ulong_t nsz;
1217 
1218 	kind = ctf_type_kind(cup->cu_ctfp, base);
1219 	VERIFY(kind != CTF_ERR);
1220 	VERIFY(kind == CTF_K_STRUCT || kind == CTF_K_UNION);
1221 
1222 	/*
1223 	 * Members are in children. However, gcc also allows empty ones.
1224 	 */
1225 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1226 		return (ret);
1227 	if (child == NULL)
1228 		return (0);
1229 
1230 	memb = child;
1231 	while (memb != NULL) {
1232 		Dwarf_Die sib, tdie;
1233 		Dwarf_Half tag;
1234 		ctf_id_t mid;
1235 		char *mname;
1236 		ulong_t memboff = 0;
1237 
1238 		if ((ret = ctf_dwarf_tag(cup, memb, &tag)) != 0)
1239 			return (ret);
1240 
1241 		if (tag != DW_TAG_member)
1242 			continue;
1243 
1244 		if ((ret = ctf_dwarf_refdie(cup, memb, DW_AT_type, &tdie)) != 0)
1245 			return (ret);
1246 
1247 		if ((ret = ctf_dwarf_convert_type(cup, tdie, &mid,
1248 		    CTF_ADD_NONROOT)) != 0)
1249 			return (ret);
1250 		ctf_dprintf("Got back type id: %d\n", mid);
1251 
1252 		/*
1253 		 * If we're not adding a member, just go ahead and return.
1254 		 */
1255 		if (add == B_FALSE) {
1256 			if ((ret = ctf_dwarf_member_bitfield(cup, memb,
1257 			    &mid)) != 0)
1258 				return (ret);
1259 			goto next;
1260 		}
1261 
1262 		if ((ret = ctf_dwarf_string(cup, memb, DW_AT_name,
1263 		    &mname)) != 0 && ret != ENOENT)
1264 			return (ret);
1265 		if (ret == ENOENT)
1266 			mname = NULL;
1267 
1268 		if (kind == CTF_K_UNION) {
1269 			memboff = 0;
1270 		} else if ((ret = ctf_dwarf_member_offset(cup, memb, mid,
1271 		    &memboff)) != 0) {
1272 			if (mname != NULL)
1273 				ctf_free(mname, strlen(mname) + 1);
1274 			return (ret);
1275 		}
1276 
1277 		if ((ret = ctf_dwarf_member_bitfield(cup, memb, &mid)) != 0)
1278 			return (ret);
1279 
1280 		ret = ctf_add_member(cup->cu_ctfp, base, mname, mid, memboff);
1281 		if (ret == CTF_ERR) {
1282 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1283 			    "failed to add member %s: %s",
1284 			    mname, ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1285 			if (mname != NULL)
1286 				ctf_free(mname, strlen(mname) + 1);
1287 			return (ECTF_CONVBKERR);
1288 		}
1289 
1290 		if (mname != NULL)
1291 			ctf_free(mname, strlen(mname) + 1);
1292 
1293 next:
1294 		if ((ret = ctf_dwarf_sib(cup, memb, &sib)) != 0)
1295 			return (ret);
1296 		memb = sib;
1297 	}
1298 
1299 	/*
1300 	 * If we're not adding members, then we don't know the final size of the
1301 	 * structure, so end here.
1302 	 */
1303 	if (add == B_FALSE)
1304 		return (0);
1305 
1306 	/* Finally set the size of the structure to the actual byte size */
1307 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &size)) != 0)
1308 		return (ret);
1309 	nsz = size;
1310 	if ((ctf_set_size(cup->cu_ctfp, base, nsz)) == CTF_ERR) {
1311 		int e = ctf_errno(cup->cu_ctfp);
1312 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1313 		    "failed to set type size for %d to 0x%x: %s", base,
1314 		    (uint32_t)size, ctf_errmsg(e));
1315 		return (ECTF_CONVBKERR);
1316 	}
1317 
1318 	return (0);
1319 }
1320 
1321 static int
1322 ctf_dwarf_create_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1323     int kind, int isroot)
1324 {
1325 	int ret;
1326 	char *name;
1327 	ctf_id_t base;
1328 	Dwarf_Die child;
1329 	Dwarf_Bool decl;
1330 
1331 	/*
1332 	 * Deal with the terribly annoying case of anonymous structs and unions.
1333 	 * If they don't have a name, set the name to the empty string.
1334 	 */
1335 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1336 	    ret != ENOENT)
1337 		return (ret);
1338 	if (ret == ENOENT)
1339 		name = NULL;
1340 
1341 	/*
1342 	 * We need to check if we just have a declaration here. If we do, then
1343 	 * instead of creating an actual structure or union, we're just going to
1344 	 * go ahead and create a forward. During a dedup or merge, the forward
1345 	 * will be replaced with the real thing.
1346 	 */
1347 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration,
1348 	    &decl)) != 0) {
1349 		if (ret != ENOENT)
1350 			return (ret);
1351 		decl = 0;
1352 	}
1353 
1354 	if (decl != 0) {
1355 		base = ctf_add_forward(cup->cu_ctfp, isroot, name, kind);
1356 	} else if (kind == CTF_K_STRUCT) {
1357 		base = ctf_add_struct(cup->cu_ctfp, isroot, name);
1358 	} else {
1359 		base = ctf_add_union(cup->cu_ctfp, isroot, name);
1360 	}
1361 	ctf_dprintf("added sou %s (%d) (%d)\n", name, kind, base);
1362 	if (name != NULL)
1363 		ctf_free(name, strlen(name) + 1);
1364 	if (base == CTF_ERR)
1365 		return (ctf_errno(cup->cu_ctfp));
1366 	*idp = base;
1367 
1368 	/*
1369 	 * If it's just a declaration, we're not going to mark it for fix up or
1370 	 * do anything else.
1371 	 */
1372 	if (decl == B_TRUE)
1373 		return (ctf_dwmap_add(cup, base, die, B_FALSE));
1374 	if ((ret = ctf_dwmap_add(cup, base, die, B_TRUE)) != 0)
1375 		return (ret);
1376 
1377 	/*
1378 	 * Members are in children. However, gcc also allows empty ones.
1379 	 */
1380 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1381 		return (ret);
1382 	if (child == NULL)
1383 		return (0);
1384 
1385 	return (0);
1386 }
1387 
1388 static int
1389 ctf_dwarf_create_array_range(ctf_cu_t *cup, Dwarf_Die range, ctf_id_t *idp,
1390     ctf_id_t base, int isroot)
1391 {
1392 	int ret;
1393 	Dwarf_Die sib;
1394 	Dwarf_Unsigned val;
1395 	Dwarf_Signed sval;
1396 	ctf_arinfo_t ar;
1397 
1398 	ctf_dprintf("creating array range\n");
1399 
1400 	if ((ret = ctf_dwarf_sib(cup, range, &sib)) != 0)
1401 		return (ret);
1402 	if (sib != NULL) {
1403 		ctf_id_t id;
1404 		if ((ret = ctf_dwarf_create_array_range(cup, sib, &id,
1405 		    base, CTF_ADD_NONROOT)) != 0)
1406 			return (ret);
1407 		ar.ctr_contents = id;
1408 	} else {
1409 		ar.ctr_contents = base;
1410 	}
1411 
1412 	if ((ar.ctr_index = ctf_dwarf_long(cup)) == CTF_ERR)
1413 		return (ctf_errno(cup->cu_ctfp));
1414 
1415 	/*
1416 	 * Array bounds can be signed or unsigned, but there are several kinds
1417 	 * of signless forms (data1, data2, etc) that take their sign from the
1418 	 * routine that is trying to interpret them.  That is, data1 can be
1419 	 * either signed or unsigned, depending on whether you use the signed or
1420 	 * unsigned accessor function.  GCC will use the signless forms to store
1421 	 * unsigned values which have their high bit set, so we need to try to
1422 	 * read them first as unsigned to get positive values.  We could also
1423 	 * try signed first, falling back to unsigned if we got a negative
1424 	 * value.
1425 	 */
1426 	if ((ret = ctf_dwarf_unsigned(cup, range, DW_AT_upper_bound,
1427 	    &val)) == 0) {
1428 		ar.ctr_nelems = val + 1;
1429 	} else if (ret != ENOENT) {
1430 		return (ret);
1431 	} else if ((ret = ctf_dwarf_signed(cup, range, DW_AT_upper_bound,
1432 	    &sval)) == 0) {
1433 		ar.ctr_nelems = sval + 1;
1434 	} else if (ret != ENOENT) {
1435 		return (ret);
1436 	} else {
1437 		ar.ctr_nelems = 0;
1438 	}
1439 
1440 	if ((*idp = ctf_add_array(cup->cu_ctfp, isroot, &ar)) == CTF_ERR)
1441 		return (ctf_errno(cup->cu_ctfp));
1442 
1443 	return (0);
1444 }
1445 
1446 /*
1447  * Try and create an array type. First, the kind of the array is specified in
1448  * the DW_AT_type entry. Next, the number of entries is stored in a more
1449  * complicated form, we should have a child that has the DW_TAG_subrange type.
1450  */
1451 static int
1452 ctf_dwarf_create_array(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1453 {
1454 	int ret;
1455 	Dwarf_Die tdie, rdie;
1456 	ctf_id_t tid;
1457 	Dwarf_Half rtag;
1458 
1459 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0)
1460 		return (ret);
1461 	if ((ret = ctf_dwarf_convert_type(cup, tdie, &tid,
1462 	    CTF_ADD_NONROOT)) != 0)
1463 		return (ret);
1464 
1465 	if ((ret = ctf_dwarf_child(cup, die, &rdie)) != 0)
1466 		return (ret);
1467 	if ((ret = ctf_dwarf_tag(cup, rdie, &rtag)) != 0)
1468 		return (ret);
1469 	if (rtag != DW_TAG_subrange_type) {
1470 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1471 		    "encountered array without DW_TAG_subrange_type child\n");
1472 		return (ECTF_CONVBKERR);
1473 	}
1474 
1475 	/*
1476 	 * The compiler may opt to describe a multi-dimensional array as one
1477 	 * giant array or it may opt to instead encode it as a series of
1478 	 * subranges. If it's the latter, then for each subrange we introduce a
1479 	 * type. We can always use the base type.
1480 	 */
1481 	if ((ret = ctf_dwarf_create_array_range(cup, rdie, idp, tid,
1482 	    isroot)) != 0)
1483 		return (ret);
1484 	ctf_dprintf("Got back id %d\n", *idp);
1485 	return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1486 }
1487 
1488 static int
1489 ctf_dwarf_create_reference(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1490     int kind, int isroot)
1491 {
1492 	int ret;
1493 	ctf_id_t id;
1494 	Dwarf_Die tdie;
1495 	char *name;
1496 	size_t namelen;
1497 
1498 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1499 	    ret != ENOENT)
1500 		return (ret);
1501 	if (ret == ENOENT) {
1502 		name = NULL;
1503 		namelen = 0;
1504 	} else {
1505 		namelen = strlen(name);
1506 	}
1507 
1508 	ctf_dprintf("reference kind %d %s\n", kind, name != NULL ? name : "<>");
1509 
1510 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
1511 		if (ret != ENOENT) {
1512 			ctf_free(name, namelen);
1513 			return (ret);
1514 		}
1515 		if ((id = ctf_dwarf_void(cup)) == CTF_ERR) {
1516 			ctf_free(name, namelen);
1517 			return (ctf_errno(cup->cu_ctfp));
1518 		}
1519 	} else {
1520 		if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
1521 		    CTF_ADD_NONROOT)) != 0) {
1522 			ctf_free(name, namelen);
1523 			return (ret);
1524 		}
1525 	}
1526 
1527 	if ((*idp = ctf_add_reftype(cup->cu_ctfp, isroot, name, id, kind)) ==
1528 	    CTF_ERR) {
1529 		ctf_free(name, namelen);
1530 		return (ctf_errno(cup->cu_ctfp));
1531 	}
1532 
1533 	ctf_free(name, namelen);
1534 	return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1535 }
1536 
1537 static int
1538 ctf_dwarf_create_enum(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1539 {
1540 	int ret;
1541 	ctf_id_t id;
1542 	Dwarf_Die child;
1543 	char *name;
1544 
1545 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1546 	    ret != ENOENT)
1547 		return (ret);
1548 	if (ret == ENOENT)
1549 		name = NULL;
1550 	id = ctf_add_enum(cup->cu_ctfp, isroot, name);
1551 	ctf_dprintf("added enum %s (%d)\n", name, id);
1552 	if (name != NULL)
1553 		ctf_free(name, strlen(name) + 1);
1554 	if (id == CTF_ERR)
1555 		return (ctf_errno(cup->cu_ctfp));
1556 	*idp = id;
1557 	if ((ret = ctf_dwmap_add(cup, id, die, B_FALSE)) != 0)
1558 		return (ret);
1559 
1560 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) {
1561 		if (ret == ENOENT)
1562 			ret = 0;
1563 		return (ret);
1564 	}
1565 
1566 	while (child != NULL) {
1567 		Dwarf_Half tag;
1568 		Dwarf_Signed sval;
1569 		Dwarf_Unsigned uval;
1570 		Dwarf_Die arg = child;
1571 		int eval;
1572 
1573 		if ((ret = ctf_dwarf_sib(cup, arg, &child)) != 0)
1574 			return (ret);
1575 
1576 		if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1577 			return (ret);
1578 
1579 		if (tag != DW_TAG_enumerator) {
1580 			if ((ret = ctf_dwarf_convert_type(cup, arg, NULL,
1581 			    CTF_ADD_NONROOT)) != 0)
1582 				return (ret);
1583 			continue;
1584 		}
1585 
1586 		/*
1587 		 * DWARF v4 section 5.7 tells us we'll always have names.
1588 		 */
1589 		if ((ret = ctf_dwarf_string(cup, arg, DW_AT_name, &name)) != 0)
1590 			return (ret);
1591 
1592 		/*
1593 		 * We have to be careful here: newer GCCs generate DWARF where
1594 		 * an unsigned value will happily pass ctf_dwarf_signed().
1595 		 * Since negative values will fail ctf_dwarf_unsigned(), we try
1596 		 * that first to make sure we get the right value.
1597 		 */
1598 		if ((ret = ctf_dwarf_unsigned(cup, arg, DW_AT_const_value,
1599 		    &uval)) == 0) {
1600 			eval = (int)uval;
1601 		} else if ((ret = ctf_dwarf_signed(cup, arg, DW_AT_const_value,
1602 		    &sval)) == 0) {
1603 			eval = sval;
1604 		}
1605 
1606 		if (ret != 0) {
1607 			if (ret != ENOENT)
1608 				return (ret);
1609 
1610 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1611 			    "encountered enumeration without constant value\n");
1612 			return (ECTF_CONVBKERR);
1613 		}
1614 
1615 		ret = ctf_add_enumerator(cup->cu_ctfp, id, name, eval);
1616 		if (ret == CTF_ERR) {
1617 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1618 			    "failed to add enumarator %s (%d) to %d\n",
1619 			    name, eval, id);
1620 			ctf_free(name, strlen(name) + 1);
1621 			return (ctf_errno(cup->cu_ctfp));
1622 		}
1623 		ctf_free(name, strlen(name) + 1);
1624 	}
1625 
1626 	return (0);
1627 }
1628 
1629 /*
1630  * For a function pointer, walk over and process all of its children, unless we
1631  * encounter one that's just a declaration. In which case, we error on it.
1632  */
1633 static int
1634 ctf_dwarf_create_fptr(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1635 {
1636 	int ret;
1637 	Dwarf_Bool b;
1638 	ctf_funcinfo_t fi;
1639 	Dwarf_Die retdie;
1640 	ctf_id_t *argv = NULL;
1641 
1642 	bzero(&fi, sizeof (ctf_funcinfo_t));
1643 
1644 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) {
1645 		if (ret != ENOENT)
1646 			return (ret);
1647 	} else {
1648 		if (b != 0)
1649 			return (EPROTOTYPE);
1650 	}
1651 
1652 	/*
1653 	 * Return type is in DW_AT_type, if none, it returns void.
1654 	 */
1655 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &retdie)) != 0) {
1656 		if (ret != ENOENT)
1657 			return (ret);
1658 		if ((fi.ctc_return = ctf_dwarf_void(cup)) == CTF_ERR)
1659 			return (ctf_errno(cup->cu_ctfp));
1660 	} else {
1661 		if ((ret = ctf_dwarf_convert_type(cup, retdie, &fi.ctc_return,
1662 		    CTF_ADD_NONROOT)) != 0)
1663 			return (ret);
1664 	}
1665 
1666 	if ((ret = ctf_dwarf_function_count(cup, die, &fi, B_TRUE)) != 0) {
1667 		return (ret);
1668 	}
1669 
1670 	if (fi.ctc_argc != 0) {
1671 		argv = ctf_alloc(sizeof (ctf_id_t) * fi.ctc_argc);
1672 		if (argv == NULL)
1673 			return (ENOMEM);
1674 
1675 		if ((ret = ctf_dwarf_convert_fargs(cup, die, &fi, argv)) != 0) {
1676 			ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1677 			return (ret);
1678 		}
1679 	}
1680 
1681 	if ((*idp = ctf_add_funcptr(cup->cu_ctfp, isroot, &fi, argv)) ==
1682 	    CTF_ERR) {
1683 		ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1684 		return (ctf_errno(cup->cu_ctfp));
1685 	}
1686 
1687 	ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1688 	return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1689 }
1690 
1691 static int
1692 ctf_dwarf_convert_type(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1693     int isroot)
1694 {
1695 	int ret;
1696 	Dwarf_Off offset;
1697 	Dwarf_Half tag;
1698 	ctf_dwmap_t lookup, *map;
1699 	ctf_id_t id;
1700 
1701 	if (idp == NULL)
1702 		idp = &id;
1703 
1704 	if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
1705 		return (ret);
1706 
1707 	if (offset > cup->cu_maxoff) {
1708 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1709 		    "die offset %llu beyond maximum for header %llu\n",
1710 		    offset, cup->cu_maxoff);
1711 		return (ECTF_CONVBKERR);
1712 	}
1713 
1714 	/*
1715 	 * If we've already added an entry for this offset, then we're done.
1716 	 */
1717 	lookup.cdm_off = offset;
1718 	if ((map = avl_find(&cup->cu_map, &lookup, NULL)) != NULL) {
1719 		*idp = map->cdm_id;
1720 		return (0);
1721 	}
1722 
1723 	if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
1724 		return (ret);
1725 
1726 	ret = ENOTSUP;
1727 	switch (tag) {
1728 	case DW_TAG_base_type:
1729 		ctf_dprintf("base\n");
1730 		ret = ctf_dwarf_create_base(cup, die, idp, isroot, offset);
1731 		break;
1732 	case DW_TAG_array_type:
1733 		ctf_dprintf("array\n");
1734 		ret = ctf_dwarf_create_array(cup, die, idp, isroot);
1735 		break;
1736 	case DW_TAG_enumeration_type:
1737 		ctf_dprintf("enum\n");
1738 		ret = ctf_dwarf_create_enum(cup, die, idp, isroot);
1739 		break;
1740 	case DW_TAG_pointer_type:
1741 		ctf_dprintf("pointer\n");
1742 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_POINTER,
1743 		    isroot);
1744 		break;
1745 	case DW_TAG_structure_type:
1746 		ctf_dprintf("struct\n");
1747 		ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_STRUCT,
1748 		    isroot);
1749 		break;
1750 	case DW_TAG_subroutine_type:
1751 		ctf_dprintf("fptr\n");
1752 		ret = ctf_dwarf_create_fptr(cup, die, idp, isroot);
1753 		break;
1754 	case DW_TAG_typedef:
1755 		ctf_dprintf("typedef\n");
1756 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_TYPEDEF,
1757 		    isroot);
1758 		break;
1759 	case DW_TAG_union_type:
1760 		ctf_dprintf("union\n");
1761 		ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_UNION,
1762 		    isroot);
1763 		break;
1764 	case DW_TAG_const_type:
1765 		ctf_dprintf("const\n");
1766 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_CONST,
1767 		    isroot);
1768 		break;
1769 	case DW_TAG_volatile_type:
1770 		ctf_dprintf("volatile\n");
1771 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_VOLATILE,
1772 		    isroot);
1773 		break;
1774 	case DW_TAG_restrict_type:
1775 		ctf_dprintf("restrict\n");
1776 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_RESTRICT,
1777 		    isroot);
1778 		break;
1779 	default:
1780 		ctf_dprintf("ignoring tag type %x\n", tag);
1781 		*idp = CTF_ERR;
1782 		ret = 0;
1783 		break;
1784 	}
1785 	ctf_dprintf("ctf_dwarf_convert_type tag specific handler returned %d\n",
1786 	    ret);
1787 
1788 	return (ret);
1789 }
1790 
1791 static int
1792 ctf_dwarf_walk_lexical(ctf_cu_t *cup, Dwarf_Die die)
1793 {
1794 	int ret;
1795 	Dwarf_Die child;
1796 
1797 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1798 		return (ret);
1799 
1800 	if (child == NULL)
1801 		return (0);
1802 
1803 	return (ctf_dwarf_convert_die(cup, die));
1804 }
1805 
1806 static int
1807 ctf_dwarf_function_count(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
1808     boolean_t fptr)
1809 {
1810 	int ret;
1811 	Dwarf_Die child, sib, arg;
1812 
1813 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1814 		return (ret);
1815 
1816 	arg = child;
1817 	while (arg != NULL) {
1818 		Dwarf_Half tag;
1819 
1820 		if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1821 			return (ret);
1822 
1823 		/*
1824 		 * We have to check for a varargs type decleration. This will
1825 		 * happen in one of two ways. If we have a function pointer
1826 		 * type, then it'll be done with a tag of type
1827 		 * DW_TAG_unspecified_parameters. However, it only means we have
1828 		 * a variable number of arguments, if we have more than one
1829 		 * argument found so far. Otherwise, when we have a function
1830 		 * type, it instead uses a formal parameter whose name is '...'
1831 		 * to indicate a variable arguments member.
1832 		 *
1833 		 * Also, if we have a function pointer, then we have to expect
1834 		 * that we might not get a name at all.
1835 		 */
1836 		if (tag == DW_TAG_formal_parameter && fptr == B_FALSE) {
1837 			char *name;
1838 			if ((ret = ctf_dwarf_string(cup, die, DW_AT_name,
1839 			    &name)) != 0)
1840 				return (ret);
1841 			if (strcmp(name, DWARF_VARARGS_NAME) == 0)
1842 				fip->ctc_flags |= CTF_FUNC_VARARG;
1843 			else
1844 				fip->ctc_argc++;
1845 			ctf_free(name, strlen(name) + 1);
1846 		} else if (tag == DW_TAG_formal_parameter) {
1847 			fip->ctc_argc++;
1848 		} else if (tag == DW_TAG_unspecified_parameters &&
1849 		    fip->ctc_argc > 0) {
1850 			fip->ctc_flags |= CTF_FUNC_VARARG;
1851 		}
1852 		if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
1853 			return (ret);
1854 		arg = sib;
1855 	}
1856 
1857 	return (0);
1858 }
1859 
1860 static int
1861 ctf_dwarf_convert_fargs(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
1862     ctf_id_t *argv)
1863 {
1864 	int ret;
1865 	int i = 0;
1866 	Dwarf_Die child, sib, arg;
1867 
1868 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1869 		return (ret);
1870 
1871 	arg = child;
1872 	while (arg != NULL) {
1873 		Dwarf_Half tag;
1874 
1875 		if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1876 			return (ret);
1877 		if (tag == DW_TAG_formal_parameter) {
1878 			Dwarf_Die tdie;
1879 
1880 			if ((ret = ctf_dwarf_refdie(cup, arg, DW_AT_type,
1881 			    &tdie)) != 0)
1882 				return (ret);
1883 
1884 			if ((ret = ctf_dwarf_convert_type(cup, tdie, &argv[i],
1885 			    CTF_ADD_ROOT)) != 0)
1886 				return (ret);
1887 			i++;
1888 
1889 			/*
1890 			 * Once we hit argc entries, we're done. This ensures we
1891 			 * don't accidentally hit a varargs which should be the
1892 			 * last entry.
1893 			 */
1894 			if (i == fip->ctc_argc)
1895 				break;
1896 		}
1897 
1898 		if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
1899 			return (ret);
1900 		arg = sib;
1901 	}
1902 
1903 	return (0);
1904 }
1905 
1906 static int
1907 ctf_dwarf_convert_function(ctf_cu_t *cup, Dwarf_Die die)
1908 {
1909 	int ret;
1910 	char *name;
1911 	ctf_dwfunc_t *cdf;
1912 	Dwarf_Die tdie;
1913 
1914 	/*
1915 	 * Functions that don't have a name are generally functions that have
1916 	 * been inlined and thus most information about them has been lost. If
1917 	 * we can't get a name, then instead of returning ENOENT, we silently
1918 	 * swallow the error.
1919 	 */
1920 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0) {
1921 		if (ret == ENOENT)
1922 			return (0);
1923 		return (ret);
1924 	}
1925 
1926 	ctf_dprintf("beginning work on function %s\n", name);
1927 	if ((cdf = ctf_alloc(sizeof (ctf_dwfunc_t))) == NULL) {
1928 		ctf_free(name, strlen(name) + 1);
1929 		return (ENOMEM);
1930 	}
1931 	bzero(cdf, sizeof (ctf_dwfunc_t));
1932 	cdf->cdf_name = name;
1933 
1934 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) == 0) {
1935 		if ((ret = ctf_dwarf_convert_type(cup, tdie,
1936 		    &(cdf->cdf_fip.ctc_return), CTF_ADD_ROOT)) != 0) {
1937 			ctf_free(name, strlen(name) + 1);
1938 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
1939 			return (ret);
1940 		}
1941 	} else if (ret != ENOENT) {
1942 		ctf_free(name, strlen(name) + 1);
1943 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
1944 		return (ret);
1945 	} else {
1946 		if ((cdf->cdf_fip.ctc_return = ctf_dwarf_void(cup)) ==
1947 		    CTF_ERR) {
1948 			ctf_free(name, strlen(name) + 1);
1949 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
1950 			return (ctf_errno(cup->cu_ctfp));
1951 		}
1952 	}
1953 
1954 	/*
1955 	 * A function has a number of children, some of which may not be ones we
1956 	 * care about. Children that we care about have a type of
1957 	 * DW_TAG_formal_parameter. We're going to do two passes, the first to
1958 	 * count the arguments, the second to process them. Afterwards, we
1959 	 * should be good to go ahead and add this function.
1960 	 *
1961 	 * Note, we already got the return type by going in and grabbing it out
1962 	 * of the DW_AT_type.
1963 	 */
1964 	if ((ret = ctf_dwarf_function_count(cup, die, &cdf->cdf_fip,
1965 	    B_FALSE)) != 0) {
1966 		ctf_free(name, strlen(name) + 1);
1967 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
1968 		return (ret);
1969 	}
1970 
1971 	ctf_dprintf("beginning to convert function arguments %s\n", name);
1972 	if (cdf->cdf_fip.ctc_argc != 0) {
1973 		uint_t argc = cdf->cdf_fip.ctc_argc;
1974 		cdf->cdf_argv = ctf_alloc(sizeof (ctf_id_t) * argc);
1975 		if (cdf->cdf_argv == NULL) {
1976 			ctf_free(name, strlen(name) + 1);
1977 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
1978 			return (ENOMEM);
1979 		}
1980 		if ((ret = ctf_dwarf_convert_fargs(cup, die,
1981 		    &cdf->cdf_fip, cdf->cdf_argv)) != 0) {
1982 			ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) * argc);
1983 			ctf_free(name, strlen(name) + 1);
1984 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
1985 			return (ret);
1986 		}
1987 	} else {
1988 		cdf->cdf_argv = NULL;
1989 	}
1990 
1991 	if ((ret = ctf_dwarf_isglobal(cup, die, &cdf->cdf_global)) != 0) {
1992 		ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) *
1993 		    cdf->cdf_fip.ctc_argc);
1994 		ctf_free(name, strlen(name) + 1);
1995 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
1996 		return (ret);
1997 	}
1998 
1999 	ctf_list_append(&cup->cu_funcs, cdf);
2000 	return (ret);
2001 }
2002 
2003 /*
2004  * Convert variables, but only if they're not prototypes and have names.
2005  */
2006 static int
2007 ctf_dwarf_convert_variable(ctf_cu_t *cup, Dwarf_Die die)
2008 {
2009 	int ret;
2010 	char *name;
2011 	Dwarf_Bool b;
2012 	Dwarf_Die tdie;
2013 	ctf_id_t id;
2014 	ctf_dwvar_t *cdv;
2015 
2016 	/* Skip "Non-Defining Declarations" */
2017 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) == 0) {
2018 		if (b != 0)
2019 			return (0);
2020 	} else if (ret != ENOENT) {
2021 		return (ret);
2022 	}
2023 
2024 	/*
2025 	 * If we find a DIE of "Declarations Completing Non-Defining
2026 	 * Declarations", we will use the referenced type's DIE.  This isn't
2027 	 * quite correct, e.g. DW_AT_decl_line will be the forward declaration
2028 	 * not this site.  It's sufficient for what we need, however: in
2029 	 * particular, we should find DW_AT_external as needed there.
2030 	 */
2031 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_specification,
2032 	    &tdie)) == 0) {
2033 		Dwarf_Off offset;
2034 		if ((ret = ctf_dwarf_offset(cup, tdie, &offset)) != 0)
2035 			return (ret);
2036 		ctf_dprintf("die 0x%llx DW_AT_specification -> die 0x%llx\n",
2037 		    ctf_die_offset(die), ctf_die_offset(tdie));
2038 		die = tdie;
2039 	} else if (ret != ENOENT) {
2040 		return (ret);
2041 	}
2042 
2043 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
2044 	    ret != ENOENT)
2045 		return (ret);
2046 	if (ret == ENOENT)
2047 		return (0);
2048 
2049 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
2050 		ctf_free(name, strlen(name) + 1);
2051 		return (ret);
2052 	}
2053 
2054 	if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
2055 	    CTF_ADD_ROOT)) != 0)
2056 		return (ret);
2057 
2058 	if ((cdv = ctf_alloc(sizeof (ctf_dwvar_t))) == NULL) {
2059 		ctf_free(name, strlen(name) + 1);
2060 		return (ENOMEM);
2061 	}
2062 
2063 	cdv->cdv_name = name;
2064 	cdv->cdv_type = id;
2065 
2066 	if ((ret = ctf_dwarf_isglobal(cup, die, &cdv->cdv_global)) != 0) {
2067 		ctf_free(cdv, sizeof (ctf_dwvar_t));
2068 		ctf_free(name, strlen(name) + 1);
2069 		return (ret);
2070 	}
2071 
2072 	ctf_list_append(&cup->cu_vars, cdv);
2073 	return (0);
2074 }
2075 
2076 /*
2077  * Walk through our set of top-level types and process them.
2078  */
2079 static int
2080 ctf_dwarf_walk_toplevel(ctf_cu_t *cup, Dwarf_Die die)
2081 {
2082 	int ret;
2083 	Dwarf_Off offset;
2084 	Dwarf_Half tag;
2085 
2086 	if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
2087 		return (ret);
2088 
2089 	if (offset > cup->cu_maxoff) {
2090 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
2091 		    "die offset %llu beyond maximum for header %llu\n",
2092 		    offset, cup->cu_maxoff);
2093 		return (ECTF_CONVBKERR);
2094 	}
2095 
2096 	if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
2097 		return (ret);
2098 
2099 	ret = 0;
2100 	switch (tag) {
2101 	case DW_TAG_subprogram:
2102 		ctf_dprintf("top level func\n");
2103 		ret = ctf_dwarf_convert_function(cup, die);
2104 		break;
2105 	case DW_TAG_variable:
2106 		ctf_dprintf("top level var\n");
2107 		ret = ctf_dwarf_convert_variable(cup, die);
2108 		break;
2109 	case DW_TAG_lexical_block:
2110 		ctf_dprintf("top level block\n");
2111 		ret = ctf_dwarf_walk_lexical(cup, die);
2112 		break;
2113 	case DW_TAG_enumeration_type:
2114 	case DW_TAG_structure_type:
2115 	case DW_TAG_typedef:
2116 	case DW_TAG_union_type:
2117 		ctf_dprintf("top level type\n");
2118 		ret = ctf_dwarf_convert_type(cup, die, NULL, B_TRUE);
2119 		break;
2120 	default:
2121 		break;
2122 	}
2123 
2124 	return (ret);
2125 }
2126 
2127 
2128 /*
2129  * We're given a node. At this node we need to convert it and then proceed to
2130  * convert any siblings that are associaed with this die.
2131  */
2132 static int
2133 ctf_dwarf_convert_die(ctf_cu_t *cup, Dwarf_Die die)
2134 {
2135 	while (die != NULL) {
2136 		int ret;
2137 		Dwarf_Die sib;
2138 
2139 		if ((ret = ctf_dwarf_walk_toplevel(cup, die)) != 0)
2140 			return (ret);
2141 
2142 		if ((ret = ctf_dwarf_sib(cup, die, &sib)) != 0)
2143 			return (ret);
2144 		die = sib;
2145 	}
2146 	return (0);
2147 }
2148 
2149 static int
2150 ctf_dwarf_fixup_die(ctf_cu_t *cup, boolean_t addpass)
2151 {
2152 	ctf_dwmap_t *map;
2153 
2154 	for (map = avl_first(&cup->cu_map); map != NULL;
2155 	    map = AVL_NEXT(&cup->cu_map, map)) {
2156 		int ret;
2157 		if (map->cdm_fix == B_FALSE)
2158 			continue;
2159 		if ((ret = ctf_dwarf_fixup_sou(cup, map->cdm_die, map->cdm_id,
2160 		    addpass)) != 0)
2161 			return (ret);
2162 	}
2163 
2164 	return (0);
2165 }
2166 
2167 /*
2168  * The DWARF information about a symbol and the information in the symbol table
2169  * may not be the same due to symbol reduction that is performed by ld due to a
2170  * mapfile or other such directive. We process weak symbols at a later time.
2171  *
2172  * The following are the rules that we employ:
2173  *
2174  * 1. A DWARF function that is considered exported matches STB_GLOBAL entries
2175  * with the same name.
2176  *
2177  * 2. A DWARF function that is considered exported matches STB_LOCAL entries
2178  * with the same name and the same file. This case may happen due to mapfile
2179  * reduction.
2180  *
2181  * 3. A DWARF function that is not considered exported matches STB_LOCAL entries
2182  * with the same name and the same file.
2183  *
2184  * 4. A DWARF function that has the same name as the symbol table entry, but the
2185  * files do not match. This is considered a 'fuzzy' match. This may also happen
2186  * due to a mapfile reduction. Fuzzy matching is only used when we know that the
2187  * file in question refers to the primary object. This is because when a symbol
2188  * is reduced in a mapfile, it's always going to be tagged as a local value in
2189  * the generated output and it is considered as to belong to the primary file
2190  * which is the first STT_FILE symbol we see.
2191  */
2192 static boolean_t
2193 ctf_dwarf_symbol_match(const char *symtab_file, const char *symtab_name,
2194     uint_t symtab_bind, const char *dwarf_file, const char *dwarf_name,
2195     boolean_t dwarf_global, boolean_t *is_fuzzy)
2196 {
2197 	*is_fuzzy = B_FALSE;
2198 
2199 	if (symtab_bind != STB_LOCAL && symtab_bind != STB_GLOBAL) {
2200 		return (B_FALSE);
2201 	}
2202 
2203 	if (strcmp(symtab_name, dwarf_name) != 0) {
2204 		return (B_FALSE);
2205 	}
2206 
2207 	if (symtab_bind == STB_GLOBAL) {
2208 		return (dwarf_global);
2209 	}
2210 
2211 	if (strcmp(symtab_file, dwarf_file) == 0) {
2212 		return (B_TRUE);
2213 	}
2214 
2215 	if (dwarf_global) {
2216 		*is_fuzzy = B_TRUE;
2217 		return (B_TRUE);
2218 	}
2219 
2220 	return (B_FALSE);
2221 }
2222 
2223 static ctf_dwfunc_t *
2224 ctf_dwarf_match_func(ctf_cu_t *cup, const char *file, const char *name,
2225     uint_t bind, boolean_t primary)
2226 {
2227 	ctf_dwfunc_t *cdf, *fuzzy = NULL;
2228 
2229 	if (bind == STB_WEAK)
2230 		return (NULL);
2231 
2232 	if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2233 		return (NULL);
2234 
2235 	for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL;
2236 	    cdf = ctf_list_next(cdf)) {
2237 		boolean_t is_fuzzy = B_FALSE;
2238 
2239 		if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2240 		    cdf->cdf_name, cdf->cdf_global, &is_fuzzy)) {
2241 			if (is_fuzzy) {
2242 				if (primary) {
2243 					fuzzy = cdf;
2244 				}
2245 				continue;
2246 			} else {
2247 				return (cdf);
2248 			}
2249 		}
2250 	}
2251 
2252 	return (fuzzy);
2253 }
2254 
2255 static ctf_dwvar_t *
2256 ctf_dwarf_match_var(ctf_cu_t *cup, const char *file, const char *name,
2257     uint_t bind, boolean_t primary)
2258 {
2259 	ctf_dwvar_t *cdv, *fuzzy = NULL;
2260 
2261 	if (bind == STB_WEAK)
2262 		return (NULL);
2263 
2264 	if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2265 		return (NULL);
2266 
2267 	for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL;
2268 	    cdv = ctf_list_next(cdv)) {
2269 		boolean_t is_fuzzy = B_FALSE;
2270 
2271 		if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2272 		    cdv->cdv_name, cdv->cdv_global, &is_fuzzy)) {
2273 			if (is_fuzzy) {
2274 				if (primary) {
2275 					fuzzy = cdv;
2276 				}
2277 			} else {
2278 				return (cdv);
2279 			}
2280 		}
2281 	}
2282 
2283 	return (fuzzy);
2284 }
2285 
2286 static int
2287 ctf_dwarf_conv_funcvars_cb(const Elf64_Sym *symp, ulong_t idx,
2288     const char *file, const char *name, boolean_t primary, void *arg)
2289 {
2290 	int ret;
2291 	uint_t bind, type;
2292 	ctf_cu_t *cup = arg;
2293 
2294 	bind = GELF_ST_BIND(symp->st_info);
2295 	type = GELF_ST_TYPE(symp->st_info);
2296 
2297 	/*
2298 	 * Come back to weak symbols in another pass
2299 	 */
2300 	if (bind == STB_WEAK)
2301 		return (0);
2302 
2303 	if (type == STT_OBJECT) {
2304 		ctf_dwvar_t *cdv = ctf_dwarf_match_var(cup, file, name,
2305 		    bind, primary);
2306 		if (cdv == NULL)
2307 			return (0);
2308 		ret = ctf_add_object(cup->cu_ctfp, idx, cdv->cdv_type);
2309 		ctf_dprintf("added object %s->%ld\n", name, cdv->cdv_type);
2310 	} else {
2311 		ctf_dwfunc_t *cdf = ctf_dwarf_match_func(cup, file, name,
2312 		    bind, primary);
2313 		if (cdf == NULL)
2314 			return (0);
2315 		ret = ctf_add_function(cup->cu_ctfp, idx, &cdf->cdf_fip,
2316 		    cdf->cdf_argv);
2317 		ctf_dprintf("added function %s\n", name);
2318 	}
2319 
2320 	if (ret == CTF_ERR) {
2321 		return (ctf_errno(cup->cu_ctfp));
2322 	}
2323 
2324 	return (0);
2325 }
2326 
2327 static int
2328 ctf_dwarf_conv_funcvars(ctf_cu_t *cup)
2329 {
2330 	return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_funcvars_cb, cup));
2331 }
2332 
2333 /*
2334  * If we have a weak symbol, attempt to find the strong symbol it will resolve
2335  * to.  Note: the code where this actually happens is in sym_process() in
2336  * cmd/sgs/libld/common/syms.c
2337  *
2338  * Finding the matching symbol is unfortunately not trivial.  For a symbol to be
2339  * a candidate, it must:
2340  *
2341  * - have the same type (function, object)
2342  * - have the same value (address)
2343  * - have the same size
2344  * - not be another weak symbol
2345  * - belong to the same section (checked via section index)
2346  *
2347  * To perform this check, we first iterate over the symbol table. For each weak
2348  * symbol that we encounter, we then do a second walk over the symbol table,
2349  * calling ctf_dwarf_conv_check_weak(). If a symbol matches the above, then it's
2350  * either a local or global symbol. If we find a global symbol then we go with
2351  * it and stop searching for additional matches.
2352  *
2353  * If instead, we find a local symbol, things are more complicated. The first
2354  * thing we do is to try and see if we have file information about both symbols
2355  * (STT_FILE). If they both have file information and it matches, then we treat
2356  * that as a good match and stop searching for additional matches.
2357  *
2358  * Otherwise, this means we have a non-matching file and a local symbol. We
2359  * treat this as a candidate and if we find a better match (one of the two cases
2360  * above), use that instead. There are two different ways this can happen.
2361  * Either this is a completely different symbol, or it's a once-global symbol
2362  * that was scoped to local via a mapfile.  In the former case, curfile is
2363  * likely inaccurate since the linker does not preserve the needed curfile in
2364  * the order of the symbol table (see the comments about locally scoped symbols
2365  * in libld's update_osym()).  As we can't tell this case from the former one,
2366  * we use this symbol iff no other matching symbol is found.
2367  *
2368  * What we really need here is a SUNW section containing weak<->strong mappings
2369  * that we can consume.
2370  */
2371 typedef struct ctf_dwarf_weak_arg {
2372 	const Elf64_Sym *cweak_symp;
2373 	const char *cweak_file;
2374 	boolean_t cweak_candidate;
2375 	ulong_t cweak_idx;
2376 } ctf_dwarf_weak_arg_t;
2377 
2378 static int
2379 ctf_dwarf_conv_check_weak(const Elf64_Sym *symp, ulong_t idx, const char *file,
2380     const char *name, boolean_t primary, void *arg)
2381 {
2382 	ctf_dwarf_weak_arg_t *cweak = arg;
2383 
2384 	const Elf64_Sym *wsymp = cweak->cweak_symp;
2385 
2386 	ctf_dprintf("comparing weak to %s\n", name);
2387 
2388 	if (GELF_ST_BIND(symp->st_info) == STB_WEAK) {
2389 		return (0);
2390 	}
2391 
2392 	if (GELF_ST_TYPE(wsymp->st_info) != GELF_ST_TYPE(symp->st_info)) {
2393 		return (0);
2394 	}
2395 
2396 	if (wsymp->st_value != symp->st_value) {
2397 		return (0);
2398 	}
2399 
2400 	if (wsymp->st_size != symp->st_size) {
2401 		return (0);
2402 	}
2403 
2404 	if (wsymp->st_shndx != symp->st_shndx) {
2405 		return (0);
2406 	}
2407 
2408 	/*
2409 	 * Check if it's a weak candidate.
2410 	 */
2411 	if (GELF_ST_BIND(symp->st_info) == STB_LOCAL &&
2412 	    (file == NULL || cweak->cweak_file == NULL ||
2413 	    strcmp(file, cweak->cweak_file) != 0)) {
2414 		cweak->cweak_candidate = B_TRUE;
2415 		cweak->cweak_idx = idx;
2416 		return (0);
2417 	}
2418 
2419 	/*
2420 	 * Found a match, break.
2421 	 */
2422 	cweak->cweak_idx = idx;
2423 	return (1);
2424 }
2425 
2426 static int
2427 ctf_dwarf_duplicate_sym(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2428 {
2429 	ctf_id_t id = ctf_lookup_by_symbol(cup->cu_ctfp, matchidx);
2430 
2431 	/*
2432 	 * If we matched something that for some reason didn't have type data,
2433 	 * we don't consider that a fatal error and silently swallow it.
2434 	 */
2435 	if (id == CTF_ERR) {
2436 		if (ctf_errno(cup->cu_ctfp) == ECTF_NOTYPEDAT)
2437 			return (0);
2438 		else
2439 			return (ctf_errno(cup->cu_ctfp));
2440 	}
2441 
2442 	if (ctf_add_object(cup->cu_ctfp, idx, id) == CTF_ERR)
2443 		return (ctf_errno(cup->cu_ctfp));
2444 
2445 	return (0);
2446 }
2447 
2448 static int
2449 ctf_dwarf_duplicate_func(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2450 {
2451 	int ret;
2452 	ctf_funcinfo_t fip;
2453 	ctf_id_t *args = NULL;
2454 
2455 	if (ctf_func_info(cup->cu_ctfp, matchidx, &fip) == CTF_ERR) {
2456 		if (ctf_errno(cup->cu_ctfp) == ECTF_NOFUNCDAT)
2457 			return (0);
2458 		else
2459 			return (ctf_errno(cup->cu_ctfp));
2460 	}
2461 
2462 	if (fip.ctc_argc != 0) {
2463 		args = ctf_alloc(sizeof (ctf_id_t) * fip.ctc_argc);
2464 		if (args == NULL)
2465 			return (ENOMEM);
2466 
2467 		if (ctf_func_args(cup->cu_ctfp, matchidx, fip.ctc_argc, args) ==
2468 		    CTF_ERR) {
2469 			ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2470 			return (ctf_errno(cup->cu_ctfp));
2471 		}
2472 	}
2473 
2474 	ret = ctf_add_function(cup->cu_ctfp, idx, &fip, args);
2475 	if (args != NULL)
2476 		ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2477 	if (ret == CTF_ERR)
2478 		return (ctf_errno(cup->cu_ctfp));
2479 
2480 	return (0);
2481 }
2482 
2483 static int
2484 ctf_dwarf_conv_weaks_cb(const Elf64_Sym *symp, ulong_t idx, const char *file,
2485     const char *name, boolean_t primary, void *arg)
2486 {
2487 	int ret, type;
2488 	ctf_dwarf_weak_arg_t cweak;
2489 	ctf_cu_t *cup = arg;
2490 
2491 	/*
2492 	 * We only care about weak symbols.
2493 	 */
2494 	if (GELF_ST_BIND(symp->st_info) != STB_WEAK)
2495 		return (0);
2496 
2497 	type = GELF_ST_TYPE(symp->st_info);
2498 	ASSERT(type == STT_OBJECT || type == STT_FUNC);
2499 
2500 	/*
2501 	 * For each weak symbol we encounter, we need to do a second iteration
2502 	 * to try and find a match. We should probably think about other
2503 	 * techniques to try and save us time in the future.
2504 	 */
2505 	cweak.cweak_symp = symp;
2506 	cweak.cweak_file = file;
2507 	cweak.cweak_candidate = B_FALSE;
2508 	cweak.cweak_idx = 0;
2509 
2510 	ctf_dprintf("Trying to find weak equiv for %s\n", name);
2511 
2512 	ret = ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_check_weak, &cweak);
2513 	VERIFY(ret == 0 || ret == 1);
2514 
2515 	/*
2516 	 * Nothing was ever found, we're not going to add anything for this
2517 	 * entry.
2518 	 */
2519 	if (ret == 0 && cweak.cweak_candidate == B_FALSE) {
2520 		ctf_dprintf("found no weak match for %s\n", name);
2521 		return (0);
2522 	}
2523 
2524 	/*
2525 	 * Now, finally go and add the type based on the match.
2526 	 */
2527 	ctf_dprintf("matched weak symbol %lu to %lu\n", idx, cweak.cweak_idx);
2528 	if (type == STT_OBJECT) {
2529 		ret = ctf_dwarf_duplicate_sym(cup, idx, cweak.cweak_idx);
2530 	} else {
2531 		ret = ctf_dwarf_duplicate_func(cup, idx, cweak.cweak_idx);
2532 	}
2533 
2534 	return (ret);
2535 }
2536 
2537 static int
2538 ctf_dwarf_conv_weaks(ctf_cu_t *cup)
2539 {
2540 	return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_weaks_cb, cup));
2541 }
2542 
2543 /* ARGSUSED */
2544 static int
2545 ctf_dwarf_convert_one(void *arg, void *unused)
2546 {
2547 	int ret;
2548 	ctf_file_t *dedup;
2549 	ctf_cu_t *cup = arg;
2550 
2551 	ctf_dprintf("converting die: %s\n", cup->cu_name);
2552 	ctf_dprintf("max offset: %x\n", cup->cu_maxoff);
2553 	VERIFY(cup != NULL);
2554 
2555 	ret = ctf_dwarf_convert_die(cup, cup->cu_cu);
2556 	ctf_dprintf("ctf_dwarf_convert_die (%s) returned %d\n", cup->cu_name,
2557 	    ret);
2558 	if (ret != 0) {
2559 		return (ret);
2560 	}
2561 	if (ctf_update(cup->cu_ctfp) != 0) {
2562 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2563 		    "failed to update output ctf container"));
2564 	}
2565 
2566 	ret = ctf_dwarf_fixup_die(cup, B_FALSE);
2567 	ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name,
2568 	    ret);
2569 	if (ret != 0) {
2570 		return (ret);
2571 	}
2572 	if (ctf_update(cup->cu_ctfp) != 0) {
2573 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2574 		    "failed to update output ctf container"));
2575 	}
2576 
2577 	ret = ctf_dwarf_fixup_die(cup, B_TRUE);
2578 	ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name,
2579 	    ret);
2580 	if (ret != 0) {
2581 		return (ret);
2582 	}
2583 	if (ctf_update(cup->cu_ctfp) != 0) {
2584 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2585 		    "failed to update output ctf container"));
2586 	}
2587 
2588 
2589 	if ((ret = ctf_dwarf_conv_funcvars(cup)) != 0) {
2590 		return (ctf_dwarf_error(cup, NULL, ret,
2591 		    "failed to convert strong functions and variables"));
2592 	}
2593 
2594 	if (ctf_update(cup->cu_ctfp) != 0) {
2595 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2596 		    "failed to update output ctf container"));
2597 	}
2598 
2599 	if (cup->cu_doweaks == B_TRUE) {
2600 		if ((ret = ctf_dwarf_conv_weaks(cup)) != 0) {
2601 			return (ctf_dwarf_error(cup, NULL, ret,
2602 			    "failed to convert weak functions and variables"));
2603 		}
2604 
2605 		if (ctf_update(cup->cu_ctfp) != 0) {
2606 			return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2607 			    "failed to update output ctf container"));
2608 		}
2609 	}
2610 
2611 	ctf_phase_dump(cup->cu_ctfp, "pre-dwarf-dedup", cup->cu_name);
2612 	ctf_dprintf("adding inputs for dedup\n");
2613 	if ((ret = ctf_merge_add(cup->cu_cmh, cup->cu_ctfp)) != 0) {
2614 		return (ctf_dwarf_error(cup, NULL, ret,
2615 		    "failed to add inputs for merge"));
2616 	}
2617 
2618 	ctf_dprintf("starting dedup of %s\n", cup->cu_name);
2619 	if ((ret = ctf_merge_dedup(cup->cu_cmh, &dedup)) != 0) {
2620 		return (ctf_dwarf_error(cup, NULL, ret,
2621 		    "failed to deduplicate die"));
2622 	}
2623 	ctf_close(cup->cu_ctfp);
2624 	cup->cu_ctfp = dedup;
2625 	ctf_phase_dump(cup->cu_ctfp, "post-dwarf-dedup", cup->cu_name);
2626 
2627 	return (0);
2628 }
2629 
2630 /*
2631  * Note, we expect that if we're returning a ctf_file_t from one of the dies,
2632  * say in the single node case, it's been saved and the entry here has been set
2633  * to NULL, which ctf_close happily ignores.
2634  */
2635 static void
2636 ctf_dwarf_free_die(ctf_cu_t *cup)
2637 {
2638 	ctf_dwfunc_t *cdf, *ndf;
2639 	ctf_dwvar_t *cdv, *ndv;
2640 	ctf_dwbitf_t *cdb, *ndb;
2641 	ctf_dwmap_t *map;
2642 	void *cookie;
2643 	Dwarf_Error derr;
2644 
2645 	ctf_dprintf("Beginning to free die: %p\n", cup);
2646 	cup->cu_elf = NULL;
2647 	ctf_dprintf("Trying to free name: %p\n", cup->cu_name);
2648 	if (cup->cu_name != NULL)
2649 		ctf_free(cup->cu_name, strlen(cup->cu_name) + 1);
2650 	ctf_dprintf("Trying to free merge handle: %p\n", cup->cu_cmh);
2651 	if (cup->cu_cmh != NULL) {
2652 		ctf_merge_fini(cup->cu_cmh);
2653 		cup->cu_cmh = NULL;
2654 	}
2655 
2656 	ctf_dprintf("Trying to free functions\n");
2657 	for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL; cdf = ndf) {
2658 		ndf = ctf_list_next(cdf);
2659 		ctf_free(cdf->cdf_name, strlen(cdf->cdf_name) + 1);
2660 		if (cdf->cdf_fip.ctc_argc != 0) {
2661 			ctf_free(cdf->cdf_argv,
2662 			    sizeof (ctf_id_t) * cdf->cdf_fip.ctc_argc);
2663 		}
2664 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
2665 	}
2666 
2667 	ctf_dprintf("Trying to free variables\n");
2668 	for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL; cdv = ndv) {
2669 		ndv = ctf_list_next(cdv);
2670 		ctf_free(cdv->cdv_name, strlen(cdv->cdv_name) + 1);
2671 		ctf_free(cdv, sizeof (ctf_dwvar_t));
2672 	}
2673 
2674 	ctf_dprintf("Trying to free bitfields\n");
2675 	for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL; cdb = ndb) {
2676 		ndb = ctf_list_next(cdb);
2677 		ctf_free(cdb, sizeof (ctf_dwbitf_t));
2678 	}
2679 
2680 	ctf_dprintf("Trying to clean up dwarf_t: %p\n", cup->cu_dwarf);
2681 	if (cup->cu_dwarf != NULL)
2682 		(void) dwarf_finish(cup->cu_dwarf, &derr);
2683 	cup->cu_dwarf = NULL;
2684 	ctf_close(cup->cu_ctfp);
2685 
2686 	cookie = NULL;
2687 	while ((map = avl_destroy_nodes(&cup->cu_map, &cookie)) != NULL) {
2688 		ctf_free(map, sizeof (ctf_dwmap_t));
2689 	}
2690 	avl_destroy(&cup->cu_map);
2691 	cup->cu_errbuf = NULL;
2692 }
2693 
2694 static void
2695 ctf_dwarf_free_dies(ctf_cu_t *cdies, int ndies)
2696 {
2697 	int i;
2698 
2699 	ctf_dprintf("Beginning to free dies\n");
2700 	for (i = 0; i < ndies; i++) {
2701 		ctf_dwarf_free_die(&cdies[i]);
2702 	}
2703 
2704 	ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
2705 }
2706 
2707 static int
2708 ctf_dwarf_count_dies(Dwarf_Debug dw, Dwarf_Error *derr, int *ndies,
2709     char *errbuf, size_t errlen)
2710 {
2711 	int ret;
2712 	Dwarf_Half vers;
2713 	Dwarf_Unsigned nexthdr;
2714 
2715 	while ((ret = dwarf_next_cu_header(dw, NULL, &vers, NULL, NULL,
2716 	    &nexthdr, derr)) != DW_DLV_NO_ENTRY) {
2717 		if (ret != DW_DLV_OK) {
2718 			(void) snprintf(errbuf, errlen,
2719 			    "file does not contain valid DWARF data: %s\n",
2720 			    dwarf_errmsg(*derr));
2721 			return (ECTF_CONVBKERR);
2722 		}
2723 
2724 		if (vers != DWARF_VERSION_TWO) {
2725 			(void) snprintf(errbuf, errlen,
2726 			    "unsupported DWARF version: %d\n", vers);
2727 			return (ECTF_CONVBKERR);
2728 		}
2729 		*ndies = *ndies + 1;
2730 	}
2731 
2732 	return (0);
2733 }
2734 
2735 static int
2736 ctf_dwarf_init_die(int fd, Elf *elf, ctf_cu_t *cup, int ndie, char *errbuf,
2737     size_t errlen)
2738 {
2739 	int ret;
2740 	Dwarf_Unsigned hdrlen, abboff, nexthdr;
2741 	Dwarf_Half addrsz;
2742 	Dwarf_Unsigned offset = 0;
2743 	Dwarf_Error derr;
2744 
2745 	while ((ret = dwarf_next_cu_header(cup->cu_dwarf, &hdrlen, NULL,
2746 	    &abboff, &addrsz, &nexthdr, &derr)) != DW_DLV_NO_ENTRY) {
2747 		char *name;
2748 		Dwarf_Die cu, child;
2749 
2750 		/* Based on the counting above, we should be good to go */
2751 		VERIFY(ret == DW_DLV_OK);
2752 		if (ndie > 0) {
2753 			ndie--;
2754 			offset = nexthdr;
2755 			continue;
2756 		}
2757 
2758 		/*
2759 		 * Compilers are apparently inconsistent. Some emit no DWARF for
2760 		 * empty files and others emit empty compilation unit.
2761 		 */
2762 		cup->cu_voidtid = CTF_ERR;
2763 		cup->cu_longtid = CTF_ERR;
2764 		cup->cu_elf = elf;
2765 		cup->cu_maxoff = nexthdr - 1;
2766 		cup->cu_ctfp = ctf_fdcreate(fd, &ret);
2767 		if (cup->cu_ctfp == NULL)
2768 			return (ret);
2769 
2770 		avl_create(&cup->cu_map, ctf_dwmap_comp, sizeof (ctf_dwmap_t),
2771 		    offsetof(ctf_dwmap_t, cdm_avl));
2772 		cup->cu_errbuf = errbuf;
2773 		cup->cu_errlen = errlen;
2774 		bzero(&cup->cu_vars, sizeof (ctf_list_t));
2775 		bzero(&cup->cu_funcs, sizeof (ctf_list_t));
2776 		bzero(&cup->cu_bitfields, sizeof (ctf_list_t));
2777 
2778 		if ((ret = ctf_dwarf_die_elfenc(elf, cup, errbuf,
2779 		    errlen)) != 0)
2780 			return (ret);
2781 
2782 		if ((ret = ctf_dwarf_sib(cup, NULL, &cu)) != 0)
2783 			return (ret);
2784 
2785 		if (cu == NULL) {
2786 			(void) snprintf(errbuf, errlen,
2787 			    "file does not contain DWARF data");
2788 			return (ECTF_CONVNODEBUG);
2789 		}
2790 
2791 		if ((ret = ctf_dwarf_child(cup, cu, &child)) != 0)
2792 			return (ret);
2793 
2794 		if (child == NULL) {
2795 			(void) snprintf(errbuf, errlen,
2796 			    "file does not contain DWARF data");
2797 			return (ECTF_CONVNODEBUG);
2798 		}
2799 
2800 		cup->cu_cuoff = offset;
2801 		cup->cu_cu = child;
2802 
2803 		if ((cup->cu_cmh = ctf_merge_init(fd, &ret)) == NULL)
2804 			return (ret);
2805 
2806 		if (ctf_dwarf_string(cup, cu, DW_AT_name, &name) == 0) {
2807 			size_t len = strlen(name) + 1;
2808 			char *b = basename(name);
2809 			cup->cu_name = strdup(b);
2810 			ctf_free(name, len);
2811 		}
2812 		break;
2813 	}
2814 
2815 	return (0);
2816 }
2817 
2818 /*
2819  * This is our only recourse to identify a C source file that is missing debug
2820  * info: it will be mentioned as an STT_FILE, but not have a compile unit entry.
2821  * (A traditional ctfmerge works on individual files, so can identify missing
2822  * DWARF more directly, via ctf_has_c_source() on the .o file.)
2823  *
2824  * As we operate on basenames, this can of course miss some cases, but it's
2825  * better than not checking at all.
2826  *
2827  * We explicitly whitelist some CRT components.  Failing that, there's always
2828  * the -m option.
2829  */
2830 static boolean_t
2831 c_source_has_debug(const char *file, ctf_cu_t *cus, size_t nr_cus)
2832 {
2833 	const char *basename = strrchr(file, '/');
2834 
2835 	if (basename == NULL)
2836 		basename = file;
2837 	else
2838 		basename++;
2839 
2840 	if (strcmp(basename, "common-crt.c") == 0 ||
2841 	    strcmp(basename, "gmon.c") == 0 ||
2842 	    strcmp(basename, "dlink_init.c") == 0 ||
2843 	    strcmp(basename, "dlink_common.c") == 0 ||
2844 	    strncmp(basename, "crt", strlen("crt")) == 0 ||
2845 	    strncmp(basename, "values-", strlen("values-")) == 0)
2846 		return (B_TRUE);
2847 
2848 	for (size_t i = 0; i < nr_cus; i++) {
2849 		if (strcmp(basename, cus[i].cu_name) == 0)
2850 			return (B_TRUE);
2851 	}
2852 
2853 	return (B_FALSE);
2854 }
2855 
2856 static int
2857 ctf_dwarf_check_missing(ctf_cu_t *cus, size_t nr_cus, Elf *elf,
2858     char *errmsg, size_t errlen)
2859 {
2860 	Elf_Scn *scn, *strscn;
2861 	Elf_Data *data, *strdata;
2862 	GElf_Shdr shdr;
2863 	ulong_t i;
2864 
2865 	scn = NULL;
2866 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2867 		if (gelf_getshdr(scn, &shdr) == NULL) {
2868 			(void) snprintf(errmsg, errlen,
2869 			    "failed to get section header: %s\n",
2870 			    elf_errmsg(elf_errno()));
2871 			return (EINVAL);
2872 		}
2873 
2874 		if (shdr.sh_type == SHT_SYMTAB)
2875 			break;
2876 	}
2877 
2878 	if (scn == NULL)
2879 		return (0);
2880 
2881 	if ((strscn = elf_getscn(elf, shdr.sh_link)) == NULL) {
2882 		(void) snprintf(errmsg, errlen,
2883 		    "failed to get str section: %s\n",
2884 		    elf_errmsg(elf_errno()));
2885 		return (EINVAL);
2886 	}
2887 
2888 	if ((data = elf_getdata(scn, NULL)) == NULL) {
2889 		(void) snprintf(errmsg, errlen, "failed to read section: %s\n",
2890 		    elf_errmsg(elf_errno()));
2891 		return (EINVAL);
2892 	}
2893 
2894 	if ((strdata = elf_getdata(strscn, NULL)) == NULL) {
2895 		(void) snprintf(errmsg, errlen,
2896 		    "failed to read string table: %s\n",
2897 		    elf_errmsg(elf_errno()));
2898 		return (EINVAL);
2899 	}
2900 
2901 	for (i = 0; i < shdr.sh_size / shdr.sh_entsize; i++) {
2902 		GElf_Sym sym;
2903 		const char *file;
2904 		size_t len;
2905 
2906 		if (gelf_getsym(data, i, &sym) == NULL) {
2907 			(void) snprintf(errmsg, errlen,
2908 			    "failed to read sym %lu: %s\n",
2909 			    i, elf_errmsg(elf_errno()));
2910 			return (EINVAL);
2911 		}
2912 
2913 		if (GELF_ST_TYPE(sym.st_info) != STT_FILE)
2914 			continue;
2915 
2916 		file = (const char *)((uintptr_t)strdata->d_buf + sym.st_name);
2917 		len = strlen(file);
2918 		if (len < 2 || strncmp(".c", &file[len - 2], 2) != 0)
2919 			continue;
2920 
2921 		if (!c_source_has_debug(file, cus, nr_cus)) {
2922 			(void) snprintf(errmsg, errlen,
2923 			    "file %s is missing debug info\n", file);
2924 			return (ECTF_CONVNODEBUG);
2925 		}
2926 	}
2927 
2928 	return (0);
2929 }
2930 
2931 int
2932 ctf_dwarf_convert(int fd, Elf *elf, uint_t nthrs, uint_t flags,
2933     ctf_file_t **fpp, char *errbuf, size_t errlen)
2934 {
2935 	int err, ret, ndies, i;
2936 	Dwarf_Debug dw;
2937 	Dwarf_Error derr;
2938 	ctf_cu_t *cdies = NULL, *cup;
2939 	workq_t *wqp = NULL;
2940 
2941 	*fpp = NULL;
2942 
2943 	ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw, &derr);
2944 	if (ret != DW_DLV_OK) {
2945 		if (ret == DW_DLV_NO_ENTRY ||
2946 		    dwarf_errno(derr) == DW_DLE_DEBUG_INFO_NULL) {
2947 			(void) snprintf(errbuf, errlen,
2948 			    "file does not contain DWARF data\n");
2949 			return (ECTF_CONVNODEBUG);
2950 		}
2951 
2952 		(void) snprintf(errbuf, errlen,
2953 		    "dwarf_elf_init() failed: %s\n", dwarf_errmsg(derr));
2954 		return (ECTF_CONVBKERR);
2955 	}
2956 
2957 	/*
2958 	 * Iterate over all of the compilation units and create a ctf_cu_t for
2959 	 * each of them.  This is used to determine if we have zero, one, or
2960 	 * multiple dies to convert. If we have zero, that's an error. If
2961 	 * there's only one die, that's the simple case.  No merge needed and
2962 	 * only a single Dwarf_Debug as well.
2963 	 */
2964 	ndies = 0;
2965 	err = ctf_dwarf_count_dies(dw, &derr, &ndies, errbuf, errlen);
2966 
2967 	ctf_dprintf("found %d DWARF CUs\n", ndies);
2968 
2969 	if (ndies == 0) {
2970 		(void) snprintf(errbuf, errlen,
2971 		    "file does not contain DWARF data\n");
2972 		return (ECTF_CONVNODEBUG);
2973 	}
2974 
2975 	(void) dwarf_finish(dw, &derr);
2976 	cdies = ctf_alloc(sizeof (ctf_cu_t) * ndies);
2977 	if (cdies == NULL) {
2978 		return (ENOMEM);
2979 	}
2980 
2981 	bzero(cdies, sizeof (ctf_cu_t) * ndies);
2982 
2983 	for (i = 0; i < ndies; i++) {
2984 		cup = &cdies[i];
2985 		ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL,
2986 		    &cup->cu_dwarf, &derr);
2987 		if (ret != 0) {
2988 			ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
2989 			(void) snprintf(errbuf, errlen,
2990 			    "failed to initialize DWARF: %s\n",
2991 			    dwarf_errmsg(derr));
2992 			return (ECTF_CONVBKERR);
2993 		}
2994 
2995 		err = ctf_dwarf_init_die(fd, elf, cup, i, errbuf, errlen);
2996 		if (err != 0)
2997 			goto out;
2998 
2999 		cup->cu_doweaks = ndies > 1 ? B_FALSE : B_TRUE;
3000 	}
3001 
3002 	if (!(flags & CTF_ALLOW_MISSING_DEBUG) &&
3003 	    (err = ctf_dwarf_check_missing(cdies, ndies,
3004 	    elf, errbuf, errlen)) != 0)
3005 		goto out;
3006 
3007 	/*
3008 	 * If we only have one compilation unit, there's no reason to use
3009 	 * multiple threads, even if the user requested them. After all, they
3010 	 * just gave us an upper bound.
3011 	 */
3012 	if (ndies == 1)
3013 		nthrs = 1;
3014 
3015 	if (workq_init(&wqp, nthrs) == -1) {
3016 		err = errno;
3017 		goto out;
3018 	}
3019 
3020 	for (i = 0; i < ndies; i++) {
3021 		cup = &cdies[i];
3022 		ctf_dprintf("adding cu %s: %p, %x %x\n", cup->cu_name,
3023 		    cup->cu_cu, cup->cu_cuoff, cup->cu_maxoff);
3024 		if (workq_add(wqp, cup) == -1) {
3025 			err = errno;
3026 			goto out;
3027 		}
3028 	}
3029 
3030 	ret = workq_work(wqp, ctf_dwarf_convert_one, NULL, &err);
3031 	if (ret == WORKQ_ERROR) {
3032 		err = errno;
3033 		goto out;
3034 	} else if (ret == WORKQ_UERROR) {
3035 		ctf_dprintf("internal convert failed: %s\n",
3036 		    ctf_errmsg(err));
3037 		goto out;
3038 	}
3039 
3040 	ctf_dprintf("Determining next phase: have %d CUs\n", ndies);
3041 	if (ndies != 1) {
3042 		ctf_merge_t *cmp;
3043 
3044 		cmp = ctf_merge_init(fd, &err);
3045 		if (cmp == NULL)
3046 			goto out;
3047 
3048 		ctf_dprintf("setting threads\n");
3049 		if ((err = ctf_merge_set_nthreads(cmp, nthrs)) != 0) {
3050 			ctf_merge_fini(cmp);
3051 			goto out;
3052 		}
3053 
3054 		for (i = 0; i < ndies; i++) {
3055 			cup = &cdies[i];
3056 			if ((err = ctf_merge_add(cmp, cup->cu_ctfp)) != 0) {
3057 				ctf_merge_fini(cmp);
3058 				goto out;
3059 			}
3060 		}
3061 
3062 		ctf_dprintf("performing merge\n");
3063 		err = ctf_merge_merge(cmp, fpp);
3064 		if (err != 0) {
3065 			ctf_dprintf("failed merge!\n");
3066 			*fpp = NULL;
3067 			ctf_merge_fini(cmp);
3068 			goto out;
3069 		}
3070 		ctf_merge_fini(cmp);
3071 		err = 0;
3072 		ctf_dprintf("successfully converted!\n");
3073 	} else {
3074 		err = 0;
3075 		*fpp = cdies->cu_ctfp;
3076 		cdies->cu_ctfp = NULL;
3077 		ctf_dprintf("successfully converted!\n");
3078 	}
3079 
3080 out:
3081 	workq_fini(wqp);
3082 	ctf_dwarf_free_dies(cdies, ndies);
3083 	return (err);
3084 }
3085