1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2003 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * _F_cplx_div(z, w) returns z / w with infinities handled according
29  * to C99.
30  *
31  * If z and w are both finite and w is nonzero, _F_cplx_div(z, w)
32  * delivers the complex quotient q according to the usual formula:
33  * let a = Re(z), b = Im(z), c = Re(w), and d = Im(w); then q = x +
34  * I * y where x = (a * c + b * d) / r and y = (b * c - a * d) / r
35  * with r = c * c + d * d.  This implementation computes intermediate
36  * results in double precision to avoid premature underflow or over-
37  * flow.
38  *
39  * If z is neither NaN nor zero and w is zero, or if z is infinite
40  * and w is finite and nonzero, _F_cplx_div delivers an infinite
41  * result.  If z is finite and w is infinite, _F_cplx_div delivers
42  * a zero result.
43  *
44  * If z and w are both zero or both infinite, or if either z or w is
45  * a complex NaN, _F_cplx_div delivers NaN + I * NaN.  C99 doesn't
46  * specify these cases.
47  *
48  * This implementation can raise spurious invalid operation, inexact,
49  * and division-by-zero exceptions.  C99 allows this.
50  *
51  * Warning: Do not attempt to "optimize" this code by removing multi-
52  * plications by zero.
53  */
54 
55 #if !defined(sparc) && !defined(__sparc)
56 #error This code is for SPARC only
57 #endif
58 
59 static union {
60 	int	i[2];
61 	double	d;
62 } inf = {
63 	0x7ff00000, 0
64 };
65 
66 /*
67  * Return +1 if x is +Inf, -1 if x is -Inf, and 0 otherwise
68  */
69 static int
testinff(float x)70 testinff(float x)
71 {
72 	union {
73 		int	i;
74 		float	f;
75 	} xx;
76 
77 	xx.f = x;
78 	return ((((xx.i << 1) - 0xff000000) == 0)? (1 | (xx.i >> 31)) : 0);
79 }
80 
81 float _Complex
_F_cplx_div(float _Complex z,float _Complex w)82 _F_cplx_div(float _Complex z, float _Complex w)
83 {
84 	float _Complex	v;
85 	union {
86 		int	i;
87 		float	f;
88 	} cc, dd;
89 	float		a, b, c, d;
90 	double		r, x, y;
91 	int		i, j, recalc;
92 
93 	/*
94 	 * The following is equivalent to
95 	 *
96 	 *  a = crealf(z); b = cimagf(z);
97 	 *  c = crealf(w); d = cimagf(w);
98 	 */
99 	a = ((float *)&z)[0];
100 	b = ((float *)&z)[1];
101 	c = ((float *)&w)[0];
102 	d = ((float *)&w)[1];
103 
104 	r = (double)c * c + (double)d * d;
105 
106 	if (r == 0.0) {
107 		/* w is zero; multiply z by 1/Re(w) - I * Im(w) */
108 		c = 1.0f / c;
109 		i = testinff(a);
110 		j = testinff(b);
111 		if (i | j) { /* z is infinite */
112 			a = i;
113 			b = j;
114 		}
115 		((float *)&v)[0] = a * c + b * d;
116 		((float *)&v)[1] = b * c - a * d;
117 		return (v);
118 	}
119 
120 	r = 1.0 / r;
121 	x = ((double)a * c + (double)b * d) * r;
122 	y = ((double)b * c - (double)a * d) * r;
123 
124 	if (x != x && y != y) {
125 		/*
126 		 * Both x and y are NaN, so z and w can't both be finite
127 		 * and nonzero.  Since we handled the case w = 0 above,
128 		 * the only cases to check here are when one of z or w
129 		 * is infinite.
130 		 */
131 		r = 1.0;
132 		recalc = 0;
133 		i = testinff(a);
134 		j = testinff(b);
135 		if (i | j) { /* z is infinite */
136 			/* "factor out" infinity */
137 			a = i;
138 			b = j;
139 			r = inf.d;
140 			recalc = 1;
141 		}
142 		i = testinff(c);
143 		j = testinff(d);
144 		if (i | j) { /* w is infinite */
145 			/*
146 			 * "factor out" infinity, being careful to preserve
147 			 * signs of finite values
148 			 */
149 			cc.f = c;
150 			dd.f = d;
151 			c = i? i : ((cc.i < 0)? -0.0f : 0.0f);
152 			d = j? j : ((dd.i < 0)? -0.0f : 0.0f);
153 			r *= 0.0;
154 			recalc = 1;
155 		}
156 		if (recalc) {
157 			x = ((double)a * c + (double)b * d) * r;
158 			y = ((double)b * c - (double)a * d) * r;
159 		}
160 	}
161 
162 	/*
163 	 * The following is equivalent to
164 	 *
165 	 *  return x + I * y;
166 	 */
167 	((float *)&v)[0] = (float)x;
168 	((float *)&v)[1] = (float)y;
169 	return (v);
170 }
171