```/* <![CDATA[ */
function get_sym_list(){return [["Variable","xv",[["scl",66]]],["Function","xf",[["_D_cplx_div_rx",95],["testinf",82]]]];} /* ]]> */1/*
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License").  You may not use this file except in compliance
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
19 *
21 */
22/*
24 * Use is subject to license terms.
25 */
26
27#pragma ident	"%Z%%M%	%I%	%E% SMI"
28
29/*
30 * _D_cplx_div_rx(a, w) returns a / w with infinities handled according
31 * to C99.
32 *
33 * If a and w are both finite and w is nonzero, _D_cplx_div_rx(a, w)
34 * delivers the complex quotient q according to the usual formula:
35 * let c = Re(w), and d = Im(w); then q = x + I * y where x = (a * c)
36 * / r and y = (-a * d) / r with r = c * c + d * d.  This implementa-
37 * tion scales to avoid premature underflow or overflow.
38 *
39 * If a is neither NaN nor zero and w is zero, or if a is infinite
40 * and w is finite and nonzero, _D_cplx_div_rx delivers an infinite
41 * result.  If a is finite and w is infinite, _D_cplx_div_rx delivers
42 * a zero result.
43 *
44 * If a and w are both zero or both infinite, or if either a or w is
45 * NaN, _D_cplx_div_rx delivers NaN + I * NaN.  C99 doesn't specify
46 * these cases.
47 *
48 * This implementation can raise spurious underflow, overflow, in-
49 * valid operation, inexact, and division-by-zero exceptions.  C99
50 * allows this.
51 *
52 * Warning: Do not attempt to "optimize" this code by removing multi-
53 * plications by zero.
54 */
55
56#if !defined(sparc) && !defined(__sparc)
57#error This code is for SPARC only
58#endif
59
60/*
61 * scl[i].d = 2^(250*(4-i)) for i = 0, ..., 9
62 */
63static const union {
64	int	i;
65	double	d;
66} scl = {
67	{ 0x7e700000, 0 },
68	{ 0x6ed00000, 0 },
69	{ 0x5f300000, 0 },
70	{ 0x4f900000, 0 },
71	{ 0x3ff00000, 0 },
72	{ 0x30500000, 0 },
73	{ 0x20b00000, 0 },
74	{ 0x11100000, 0 },
75	{ 0x01700000, 0 }
76};
77
78/*
79 * Return +1 if x is +Inf, -1 if x is -Inf, and 0 otherwise
80 */
81static int
82testinf(double x)
83{
84	union {
85		int	i;
86		double	d;
87	} xx;
88
89	xx.d = x;
90	return (((((xx.i << 1) - 0xffe00000) | xx.i) == 0)?
91		(1 | (xx.i >> 31)) : 0);
92}
93
94double _Complex
95_D_cplx_div_rx(double a, double _Complex w)
96{
97	double _Complex	v;
98	union {
99		int	i;
100		double	d;
101	} aa, cc, dd;
102	double		c, d, sc, sd, r;
103	int		ha, hc, hd, hw, i, j;
104
105	/*
106	 * The following is equivalent to
107	 *
108	 *  c = creal(w); d = cimag(w);
109	 */
110	c = ((double *)&w);
111	d = ((double *)&w);
112
113	/* extract high-order words to estimate |a| and |w| */
114	aa.d = a;
115	ha = aa.i & ~0x80000000;
116
117	cc.d = c;
118	dd.d = d;
119	hc = cc.i & ~0x80000000;
120	hd = dd.i & ~0x80000000;
121	hw = (hc > hd)? hc : hd;
122
123	/* check for special cases */
124	if (hw >= 0x7ff00000) { /* w is inf or nan */
125		i = testinf(c);
126		j = testinf(d);
127		if (i | j) { /* w is infinite */
128			c = (cc.i < 0)? -0.0 : 0.0;
129			d = (dd.i < 0)? -0.0 : 0.0;
130		} else /* w is nan */
131			a *= c * d;
132		((double *)&v) = a * c;
133		((double *)&v) = -a * d;
134		return (v);
135	}
136
137	if (hw < 0x00100000) {
138		/*
139		 * This nonsense is needed to work around some SPARC
140		 * implementations of nonstandard mode; if both parts
141		 * of w are subnormal, multiply them by one to force
142		 * them to be flushed to zero when nonstandard mode
143		 * is enabled.  Sheesh.
144		 */
145		cc.d = c = c * 1.0;
146		dd.d = d = d * 1.0;
147		hc = cc.i & ~0x80000000;
148		hd = dd.i & ~0x80000000;
149		hw = (hc > hd)? hc : hd;
150	}
151
152	if (hw == 0 && (cc.i | dd.i) == 0) {
153		/* w is zero; multiply a by 1/Re(w) - I * Im(w) */
154		c = 1.0 / c;
155		i = testinf(a);
156		if (i) { /* a is infinite */
157			a = i;
158		}
159		((double *)&v) = a * c;
160		((double *)&v) = (a == 0.0)? a * c : -a * d;
161		return (v);
162	}
163
164	if (ha >= 0x7ff00000) { /* a is inf or nan */
165		((double *)&v) = a * c;
166		((double *)&v) = -a * d;
167		return (v);
168	}
169
170	/*
171	 * Compute the real and imaginary parts of the quotient,
172	 * scaling to avoid overflow or underflow.
173	 */
174	hw = (hw - 0x38000000) >> 28;
175	sc = c * scl[hw + 4].d;
176	sd = d * scl[hw + 4].d;
177	r = sc * sc + sd * sd;
178
179	ha = (ha - 0x38000000) >> 28;
180	a = (a * scl[ha + 4].d) / r;
181	ha -= (hw + hw);
182
183	hc = (hc - 0x38000000) >> 28;
184	c = (c * scl[hc + 4].d) * a;
185	hc += ha;
186
187	hd = (hd - 0x38000000) >> 28;
188	d = -(d * scl[hd + 4].d) * a;
189	hd += ha;
190
191	/* compensate for scaling */
192	sc = scl.d; /* 2^250 */
193	if (hc < 0) {
194		hc = -hc;
195		sc = scl.d; /* 2^-250 */
196	}
197	while (hc--)
198		c *= sc;
199
200	sd = scl.d;
201	if (hd < 0) {
202		hd = -hd;
203		sd = scl.d;
204	}
205	while (hd--)
206		d *= sd;
207
208	((double *)&v) = c;
209	((double *)&v) = d;
210	return (v);
211}
212```