xref: /illumos-gate/usr/src/lib/libc/port/threads/scalls.c (revision 3771f2981557027bfe6c76e0ea73ebc3a5913bf8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "lint.h"
28 #include "thr_uberdata.h"
29 #include <stdarg.h>
30 #include <poll.h>
31 #include <stropts.h>
32 #include <dlfcn.h>
33 #include <wait.h>
34 #include <sys/socket.h>
35 #include <sys/uio.h>
36 #include <sys/file.h>
37 #include <sys/door.h>
38 
39 /*
40  * These leading-underbar symbols exist because mistakes were made
41  * in the past that put them into non-SUNWprivate versions of
42  * the libc mapfiles.  They should be eliminated, but oh well...
43  */
44 #pragma weak _fork = fork
45 #pragma weak _read = read
46 #pragma weak _write = write
47 #pragma weak _getmsg = getmsg
48 #pragma weak _getpmsg = getpmsg
49 #pragma weak _putmsg = putmsg
50 #pragma weak _putpmsg = putpmsg
51 #pragma weak _sleep = sleep
52 #pragma weak _close = close
53 #pragma weak _creat = creat
54 #pragma weak _fcntl = fcntl
55 #pragma weak _fsync = fsync
56 #pragma weak _lockf = lockf
57 #pragma weak _msgrcv = msgrcv
58 #pragma weak _msgsnd = msgsnd
59 #pragma weak _msync = msync
60 #pragma weak _open = open
61 #pragma weak _openat = openat
62 #pragma weak _pause = pause
63 #pragma weak _readv = readv
64 #pragma weak _sigpause = sigpause
65 #pragma weak _sigsuspend = sigsuspend
66 #pragma weak _tcdrain = tcdrain
67 #pragma weak _waitid = waitid
68 #pragma weak _writev = writev
69 
70 #if !defined(_LP64)
71 #pragma weak _creat64 = creat64
72 #pragma weak _lockf64 = lockf64
73 #pragma weak _open64 = open64
74 #pragma weak _openat64 = openat64
75 #pragma weak _pread64 = pread64
76 #pragma weak _pwrite64 = pwrite64
77 #endif
78 
79 /*
80  * These are SUNWprivate, but they are being used by Sun Studio libcollector.
81  */
82 #pragma weak _fork1 = fork1
83 #pragma weak _forkall = forkall
84 
85 /*
86  * atfork_lock protects the pthread_atfork() data structures.
87  *
88  * fork_lock does double-duty.  Not only does it (and atfork_lock)
89  * serialize calls to fork() and forkall(), but it also serializes calls
90  * to thr_suspend() and thr_continue() (because fork() and forkall() also
91  * suspend and continue other threads and they want no competition).
92  *
93  * Functions called in dlopen()ed L10N objects can do anything, including
94  * call malloc() and free().  Such calls are not fork-safe when protected
95  * by an ordinary mutex that is acquired in libc's prefork processing
96  * because, with an interposed malloc library present, there would be a
97  * lock ordering violation due to the pthread_atfork() prefork function
98  * in the interposition library acquiring its malloc lock(s) before the
99  * ordinary mutex in libc being acquired by libc's prefork functions.
100  *
101  * Within libc, calls to malloc() and free() are fork-safe if the calls
102  * are made while holding no other libc locks.  This covers almost all
103  * of libc's malloc() and free() calls.  For those libc code paths, such
104  * as the above-mentioned L10N calls, that require serialization and that
105  * may call malloc() or free(), libc uses callout_lock_enter() to perform
106  * the serialization.  This works because callout_lock is not acquired as
107  * part of running the pthread_atfork() prefork handlers (to avoid the
108  * lock ordering violation described above).  Rather, it is simply
109  * reinitialized in postfork1_child() to cover the case that some
110  * now-defunct thread might have been suspended while holding it.
111  */
112 
113 void
114 fork_lock_enter(void)
115 {
116 	ASSERT(curthread->ul_critical == 0);
117 	(void) mutex_lock(&curthread->ul_uberdata->fork_lock);
118 }
119 
120 void
121 fork_lock_exit(void)
122 {
123 	ASSERT(curthread->ul_critical == 0);
124 	(void) mutex_unlock(&curthread->ul_uberdata->fork_lock);
125 }
126 
127 /*
128  * Use cancel_safe_mutex_lock() to protect against being cancelled while
129  * holding callout_lock and calling outside of libc (via L10N plugins).
130  * We will honor a pending cancellation request when callout_lock_exit()
131  * is called, by calling cancel_safe_mutex_unlock().
132  */
133 void
134 callout_lock_enter(void)
135 {
136 	ASSERT(curthread->ul_critical == 0);
137 	cancel_safe_mutex_lock(&curthread->ul_uberdata->callout_lock);
138 }
139 
140 void
141 callout_lock_exit(void)
142 {
143 	ASSERT(curthread->ul_critical == 0);
144 	cancel_safe_mutex_unlock(&curthread->ul_uberdata->callout_lock);
145 }
146 
147 pid_t
148 forkx(int flags)
149 {
150 	ulwp_t *self = curthread;
151 	uberdata_t *udp = self->ul_uberdata;
152 	pid_t pid;
153 
154 	if (self->ul_vfork) {
155 		/*
156 		 * We are a child of vfork(); omit all of the fork
157 		 * logic and go straight to the system call trap.
158 		 * A vfork() child of a multithreaded parent
159 		 * must never call fork().
160 		 */
161 		if (udp->uberflags.uf_mt) {
162 			errno = ENOTSUP;
163 			return (-1);
164 		}
165 		pid = __forkx(flags);
166 		if (pid == 0) {		/* child */
167 			udp->pid = getpid();
168 			self->ul_vfork = 0;
169 		}
170 		return (pid);
171 	}
172 
173 	sigoff(self);
174 	if (self->ul_fork) {
175 		/*
176 		 * Cannot call fork() from a fork handler.
177 		 */
178 		sigon(self);
179 		errno = EDEADLK;
180 		return (-1);
181 	}
182 	self->ul_fork = 1;
183 
184 	/*
185 	 * The functions registered by pthread_atfork() are defined by
186 	 * the application and its libraries and we must not hold any
187 	 * internal lmutex_lock()-acquired locks while invoking them.
188 	 * We hold only udp->atfork_lock to protect the atfork linkages.
189 	 * If one of these pthread_atfork() functions attempts to fork
190 	 * or to call pthread_atfork(), libc will detect the error and
191 	 * fail the call with EDEADLK.  Otherwise, the pthread_atfork()
192 	 * functions are free to do anything they please (except they
193 	 * will not receive any signals).
194 	 */
195 	(void) mutex_lock(&udp->atfork_lock);
196 
197 	/*
198 	 * Posix (SUSv3) requires fork() to be async-signal-safe.
199 	 * This cannot be made to happen with fork handlers in place
200 	 * (they grab locks).  To be in nominal compliance, don't run
201 	 * any fork handlers if we are called within a signal context.
202 	 * This leaves the child process in a questionable state with
203 	 * respect to its locks, but at least the parent process does
204 	 * not become deadlocked due to the calling thread attempting
205 	 * to acquire a lock that it already owns.
206 	 */
207 	if (self->ul_siglink == NULL)
208 		_prefork_handler();
209 
210 	/*
211 	 * Block every other thread attempting thr_suspend() or thr_continue().
212 	 */
213 	(void) mutex_lock(&udp->fork_lock);
214 
215 	/*
216 	 * Block all signals.
217 	 * Just deferring them via sigoff() is not enough.
218 	 * We have to avoid taking a deferred signal in the child
219 	 * that was actually sent to the parent before __forkx().
220 	 */
221 	block_all_signals(self);
222 
223 	/*
224 	 * This suspends all threads but this one, leaving them
225 	 * suspended outside of any critical regions in the library.
226 	 * Thus, we are assured that no lmutex_lock()-acquired library
227 	 * locks are held while we invoke fork() from the current thread.
228 	 */
229 	suspend_fork();
230 
231 	pid = __forkx(flags);
232 
233 	if (pid == 0) {		/* child */
234 		/*
235 		 * Clear our schedctl pointer.
236 		 * Discard any deferred signal that was sent to the parent.
237 		 * Because we blocked all signals before __forkx(), a
238 		 * deferred signal cannot have been taken by the child.
239 		 */
240 		self->ul_schedctl_called = NULL;
241 		self->ul_schedctl = NULL;
242 		self->ul_cursig = 0;
243 		self->ul_siginfo.si_signo = 0;
244 		udp->pid = getpid();
245 		/* reset the library's data structures to reflect one thread */
246 		unregister_locks();
247 		postfork1_child();
248 		restore_signals(self);
249 		(void) mutex_unlock(&udp->fork_lock);
250 		if (self->ul_siglink == NULL)
251 			_postfork_child_handler();
252 	} else {
253 		/* restart all threads that were suspended for fork() */
254 		continue_fork(0);
255 		restore_signals(self);
256 		(void) mutex_unlock(&udp->fork_lock);
257 		if (self->ul_siglink == NULL)
258 			_postfork_parent_handler();
259 	}
260 
261 	(void) mutex_unlock(&udp->atfork_lock);
262 	self->ul_fork = 0;
263 	sigon(self);
264 
265 	return (pid);
266 }
267 
268 /*
269  * fork() is fork1() for both Posix threads and Solaris threads.
270  * The forkall() interface exists for applications that require
271  * the semantics of replicating all threads.
272  */
273 #pragma weak fork1 = fork
274 pid_t
275 fork(void)
276 {
277 	return (forkx(0));
278 }
279 
280 /*
281  * Much of the logic here is the same as in forkx().
282  * See the comments in forkx(), above.
283  */
284 pid_t
285 forkallx(int flags)
286 {
287 	ulwp_t *self = curthread;
288 	uberdata_t *udp = self->ul_uberdata;
289 	pid_t pid;
290 
291 	if (self->ul_vfork) {
292 		if (udp->uberflags.uf_mt) {
293 			errno = ENOTSUP;
294 			return (-1);
295 		}
296 		pid = __forkallx(flags);
297 		if (pid == 0) {		/* child */
298 			udp->pid = getpid();
299 			self->ul_vfork = 0;
300 		}
301 		return (pid);
302 	}
303 
304 	sigoff(self);
305 	if (self->ul_fork) {
306 		sigon(self);
307 		errno = EDEADLK;
308 		return (-1);
309 	}
310 	self->ul_fork = 1;
311 	(void) mutex_lock(&udp->atfork_lock);
312 	(void) mutex_lock(&udp->fork_lock);
313 	block_all_signals(self);
314 	suspend_fork();
315 
316 	pid = __forkallx(flags);
317 
318 	if (pid == 0) {
319 		self->ul_schedctl_called = NULL;
320 		self->ul_schedctl = NULL;
321 		self->ul_cursig = 0;
322 		self->ul_siginfo.si_signo = 0;
323 		udp->pid = getpid();
324 		unregister_locks();
325 		continue_fork(1);
326 	} else {
327 		continue_fork(0);
328 	}
329 	restore_signals(self);
330 	(void) mutex_unlock(&udp->fork_lock);
331 	(void) mutex_unlock(&udp->atfork_lock);
332 	self->ul_fork = 0;
333 	sigon(self);
334 
335 	return (pid);
336 }
337 
338 pid_t
339 forkall(void)
340 {
341 	return (forkallx(0));
342 }
343 
344 /*
345  * For the implementation of cancellation at cancellation points.
346  */
347 #define	PROLOGUE							\
348 {									\
349 	ulwp_t *self = curthread;					\
350 	int nocancel =							\
351 	    (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks |	\
352 	    self->ul_critical | self->ul_sigdefer);			\
353 	int abort = 0;							\
354 	if (nocancel == 0) {						\
355 		self->ul_save_async = self->ul_cancel_async;		\
356 		if (!self->ul_cancel_disabled) {			\
357 			self->ul_cancel_async = 1;			\
358 			if (self->ul_cancel_pending)			\
359 				pthread_exit(PTHREAD_CANCELED);		\
360 		}							\
361 		self->ul_sp = stkptr();					\
362 	} else if (self->ul_cancel_pending &&				\
363 	    !self->ul_cancel_disabled) {				\
364 		set_cancel_eintr_flag(self);				\
365 		abort = 1;						\
366 	}
367 
368 #define	EPILOGUE							\
369 	if (nocancel == 0) {						\
370 		self->ul_sp = 0;					\
371 		self->ul_cancel_async = self->ul_save_async;		\
372 	}								\
373 }
374 
375 /*
376  * Perform the body of the action required by most of the cancelable
377  * function calls.  The return(function_call) part is to allow the
378  * compiler to make the call be executed with tail recursion, which
379  * saves a register window on sparc and slightly (not much) improves
380  * the code for x86/x64 compilations.
381  */
382 #define	PERFORM(function_call)						\
383 	PROLOGUE							\
384 	if (abort) {							\
385 		*self->ul_errnop = EINTR;				\
386 		return (-1);						\
387 	}								\
388 	if (nocancel)							\
389 		return (function_call);					\
390 	rv = function_call;						\
391 	EPILOGUE							\
392 	return (rv);
393 
394 /*
395  * Specialized prologue for sigsuspend() and pollsys().
396  * These system calls pass a signal mask to the kernel.
397  * The kernel replaces the thread's signal mask with the
398  * temporary mask before the thread goes to sleep.  If
399  * a signal is received, the signal handler will execute
400  * with the temporary mask, as modified by the sigaction
401  * for the particular signal.
402  *
403  * We block all signals until we reach the kernel with the
404  * temporary mask.  This eliminates race conditions with
405  * setting the signal mask while signals are being posted.
406  */
407 #define	PROLOGUE_MASK(sigmask)						\
408 {									\
409 	ulwp_t *self = curthread;					\
410 	int nocancel =							\
411 	    (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks |	\
412 	    self->ul_critical | self->ul_sigdefer);			\
413 	if (!self->ul_vfork) {						\
414 		if (sigmask) {						\
415 			block_all_signals(self);			\
416 			self->ul_tmpmask.__sigbits[0] = sigmask->__sigbits[0]; \
417 			self->ul_tmpmask.__sigbits[1] = sigmask->__sigbits[1]; \
418 			delete_reserved_signals(&self->ul_tmpmask);	\
419 			self->ul_sigsuspend = 1;			\
420 		}							\
421 		if (nocancel == 0) {					\
422 			self->ul_save_async = self->ul_cancel_async;	\
423 			if (!self->ul_cancel_disabled) {		\
424 				self->ul_cancel_async = 1;		\
425 				if (self->ul_cancel_pending) {		\
426 					if (self->ul_sigsuspend) {	\
427 						self->ul_sigsuspend = 0;\
428 						restore_signals(self);	\
429 					}				\
430 					pthread_exit(PTHREAD_CANCELED);	\
431 				}					\
432 			}						\
433 			self->ul_sp = stkptr();				\
434 		}							\
435 	}
436 
437 /*
438  * If a signal is taken, we return from the system call wrapper with
439  * our original signal mask restored (see code in call_user_handler()).
440  * If not (self->ul_sigsuspend is still non-zero), we must restore our
441  * original signal mask ourself.
442  */
443 #define	EPILOGUE_MASK							\
444 	if (nocancel == 0) {						\
445 		self->ul_sp = 0;					\
446 		self->ul_cancel_async = self->ul_save_async;		\
447 	}								\
448 	if (self->ul_sigsuspend) {					\
449 		self->ul_sigsuspend = 0;				\
450 		restore_signals(self);					\
451 	}								\
452 }
453 
454 /*
455  * Cancellation prologue and epilogue functions,
456  * for cancellation points too complex to include here.
457  */
458 void
459 _cancel_prologue(void)
460 {
461 	ulwp_t *self = curthread;
462 
463 	self->ul_cancel_prologue =
464 	    (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks |
465 	    self->ul_critical | self->ul_sigdefer) != 0;
466 	if (self->ul_cancel_prologue == 0) {
467 		self->ul_save_async = self->ul_cancel_async;
468 		if (!self->ul_cancel_disabled) {
469 			self->ul_cancel_async = 1;
470 			if (self->ul_cancel_pending)
471 				pthread_exit(PTHREAD_CANCELED);
472 		}
473 		self->ul_sp = stkptr();
474 	} else if (self->ul_cancel_pending &&
475 	    !self->ul_cancel_disabled) {
476 		set_cancel_eintr_flag(self);
477 	}
478 }
479 
480 void
481 _cancel_epilogue(void)
482 {
483 	ulwp_t *self = curthread;
484 
485 	if (self->ul_cancel_prologue == 0) {
486 		self->ul_sp = 0;
487 		self->ul_cancel_async = self->ul_save_async;
488 	}
489 }
490 
491 /*
492  * Called from _thrp_join() (thr_join() is a cancellation point)
493  */
494 int
495 lwp_wait(thread_t tid, thread_t *found)
496 {
497 	int error;
498 
499 	PROLOGUE
500 	if (abort)
501 		return (EINTR);
502 	while ((error = __lwp_wait(tid, found)) == EINTR && !cancel_active())
503 		continue;
504 	EPILOGUE
505 	return (error);
506 }
507 
508 ssize_t
509 read(int fd, void *buf, size_t size)
510 {
511 	extern ssize_t __read(int, void *, size_t);
512 	ssize_t rv;
513 
514 	PERFORM(__read(fd, buf, size))
515 }
516 
517 ssize_t
518 write(int fd, const void *buf, size_t size)
519 {
520 	extern ssize_t __write(int, const void *, size_t);
521 	ssize_t rv;
522 
523 	PERFORM(__write(fd, buf, size))
524 }
525 
526 int
527 getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
528 	int *flagsp)
529 {
530 	extern int __getmsg(int, struct strbuf *, struct strbuf *, int *);
531 	int rv;
532 
533 	PERFORM(__getmsg(fd, ctlptr, dataptr, flagsp))
534 }
535 
536 int
537 getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
538 	int *bandp, int *flagsp)
539 {
540 	extern int __getpmsg(int, struct strbuf *, struct strbuf *,
541 	    int *, int *);
542 	int rv;
543 
544 	PERFORM(__getpmsg(fd, ctlptr, dataptr, bandp, flagsp))
545 }
546 
547 int
548 putmsg(int fd, const struct strbuf *ctlptr,
549 	const struct strbuf *dataptr, int flags)
550 {
551 	extern int __putmsg(int, const struct strbuf *,
552 	    const struct strbuf *, int);
553 	int rv;
554 
555 	PERFORM(__putmsg(fd, ctlptr, dataptr, flags))
556 }
557 
558 int
559 __xpg4_putmsg(int fd, const struct strbuf *ctlptr,
560 	const struct strbuf *dataptr, int flags)
561 {
562 	extern int __putmsg(int, const struct strbuf *,
563 	    const struct strbuf *, int);
564 	int rv;
565 
566 	PERFORM(__putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4))
567 }
568 
569 int
570 putpmsg(int fd, const struct strbuf *ctlptr,
571 	const struct strbuf *dataptr, int band, int flags)
572 {
573 	extern int __putpmsg(int, const struct strbuf *,
574 	    const struct strbuf *, int, int);
575 	int rv;
576 
577 	PERFORM(__putpmsg(fd, ctlptr, dataptr, band, flags))
578 }
579 
580 int
581 __xpg4_putpmsg(int fd, const struct strbuf *ctlptr,
582 	const struct strbuf *dataptr, int band, int flags)
583 {
584 	extern int __putpmsg(int, const struct strbuf *,
585 	    const struct strbuf *, int, int);
586 	int rv;
587 
588 	PERFORM(__putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4))
589 }
590 
591 int
592 nanosleep(const timespec_t *rqtp, timespec_t *rmtp)
593 {
594 	int error;
595 
596 	PROLOGUE
597 	error = abort? EINTR : __nanosleep(rqtp, rmtp);
598 	EPILOGUE
599 	if (error) {
600 		errno = error;
601 		return (-1);
602 	}
603 	return (0);
604 }
605 
606 int
607 clock_nanosleep(clockid_t clock_id, int flags,
608 	const timespec_t *rqtp, timespec_t *rmtp)
609 {
610 	timespec_t reltime;
611 	hrtime_t start;
612 	hrtime_t rqlapse;
613 	hrtime_t lapse;
614 	int error;
615 
616 	switch (clock_id) {
617 	case CLOCK_VIRTUAL:
618 	case CLOCK_PROCESS_CPUTIME_ID:
619 	case CLOCK_THREAD_CPUTIME_ID:
620 		return (ENOTSUP);
621 	case CLOCK_REALTIME:
622 	case CLOCK_HIGHRES:
623 		break;
624 	default:
625 		return (EINVAL);
626 	}
627 	if (flags & TIMER_ABSTIME) {
628 		abstime_to_reltime(clock_id, rqtp, &reltime);
629 		rmtp = NULL;
630 	} else {
631 		reltime = *rqtp;
632 		if (clock_id == CLOCK_HIGHRES)
633 			start = gethrtime();
634 	}
635 restart:
636 	PROLOGUE
637 	error = abort? EINTR : __nanosleep(&reltime, rmtp);
638 	EPILOGUE
639 	if (error == 0 && clock_id == CLOCK_HIGHRES) {
640 		/*
641 		 * Don't return yet if we didn't really get a timeout.
642 		 * This can happen if we return because someone resets
643 		 * the system clock.
644 		 */
645 		if (flags & TIMER_ABSTIME) {
646 			if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
647 			    rqtp->tv_nsec > gethrtime()) {
648 				abstime_to_reltime(clock_id, rqtp, &reltime);
649 				goto restart;
650 			}
651 		} else {
652 			rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
653 			    rqtp->tv_nsec;
654 			lapse = gethrtime() - start;
655 			if (rqlapse > lapse) {
656 				hrt2ts(rqlapse - lapse, &reltime);
657 				goto restart;
658 			}
659 		}
660 	}
661 	if (error == 0 && clock_id == CLOCK_REALTIME &&
662 	    (flags & TIMER_ABSTIME)) {
663 		/*
664 		 * Don't return yet just because someone reset the
665 		 * system clock.  Recompute the new relative time
666 		 * and reissue the nanosleep() call if necessary.
667 		 *
668 		 * Resetting the system clock causes all sorts of
669 		 * problems and the SUSV3 standards body should
670 		 * have made the behavior of clock_nanosleep() be
671 		 * implementation-defined in such a case rather than
672 		 * being specific about honoring the new system time.
673 		 * Standards bodies are filled with fools and idiots.
674 		 */
675 		abstime_to_reltime(clock_id, rqtp, &reltime);
676 		if (reltime.tv_sec != 0 || reltime.tv_nsec != 0)
677 			goto restart;
678 	}
679 	return (error);
680 }
681 
682 unsigned int
683 sleep(unsigned int sec)
684 {
685 	unsigned int rem = 0;
686 	timespec_t ts;
687 	timespec_t tsr;
688 
689 	ts.tv_sec = (time_t)sec;
690 	ts.tv_nsec = 0;
691 	if (nanosleep(&ts, &tsr) == -1 && errno == EINTR) {
692 		rem = (unsigned int)tsr.tv_sec;
693 		if (tsr.tv_nsec >= NANOSEC / 2)
694 			rem++;
695 	}
696 	return (rem);
697 }
698 
699 int
700 usleep(useconds_t usec)
701 {
702 	timespec_t ts;
703 
704 	ts.tv_sec = usec / MICROSEC;
705 	ts.tv_nsec = (long)(usec % MICROSEC) * 1000;
706 	(void) nanosleep(&ts, NULL);
707 	return (0);
708 }
709 
710 int
711 close(int fildes)
712 {
713 	extern void _aio_close(int);
714 	extern int __close(int);
715 	int rv;
716 
717 	/*
718 	 * If we call _aio_close() while in a critical region,
719 	 * we will draw an ASSERT() failure, so don't do it.
720 	 * No calls to close() from within libc need _aio_close();
721 	 * only the application's calls to close() need this,
722 	 * and such calls are never from a libc critical region.
723 	 */
724 	if (curthread->ul_critical == 0)
725 		_aio_close(fildes);
726 	PERFORM(__close(fildes))
727 }
728 
729 int
730 creat(const char *path, mode_t mode)
731 {
732 	extern int __creat(const char *, mode_t);
733 	int rv;
734 
735 	PERFORM(__creat(path, mode))
736 }
737 
738 #if !defined(_LP64)
739 int
740 creat64(const char *path, mode_t mode)
741 {
742 	extern int __creat64(const char *, mode_t);
743 	int rv;
744 
745 	PERFORM(__creat64(path, mode))
746 }
747 #endif	/* !_LP64 */
748 
749 int
750 door_call(int d, door_arg_t *params)
751 {
752 	extern int __door_call(int, door_arg_t *);
753 	int rv;
754 
755 	PERFORM(__door_call(d, params))
756 }
757 
758 int
759 fcntl(int fildes, int cmd, ...)
760 {
761 	extern int __fcntl(int, int, ...);
762 	intptr_t arg;
763 	int rv;
764 	va_list ap;
765 
766 	va_start(ap, cmd);
767 	arg = va_arg(ap, intptr_t);
768 	va_end(ap);
769 	if (cmd != F_SETLKW)
770 		return (__fcntl(fildes, cmd, arg));
771 	PERFORM(__fcntl(fildes, cmd, arg))
772 }
773 
774 int
775 fdatasync(int fildes)
776 {
777 	extern int __fdsync(int, int);
778 	int rv;
779 
780 	PERFORM(__fdsync(fildes, FDSYNC))
781 }
782 
783 int
784 fsync(int fildes)
785 {
786 	extern int __fdsync(int, int);
787 	int rv;
788 
789 	PERFORM(__fdsync(fildes, FSYNC))
790 }
791 
792 int
793 lockf(int fildes, int function, off_t size)
794 {
795 	extern int __lockf(int, int, off_t);
796 	int rv;
797 
798 	PERFORM(__lockf(fildes, function, size))
799 }
800 
801 #if !defined(_LP64)
802 int
803 lockf64(int fildes, int function, off64_t size)
804 {
805 	extern int __lockf64(int, int, off64_t);
806 	int rv;
807 
808 	PERFORM(__lockf64(fildes, function, size))
809 }
810 #endif	/* !_LP64 */
811 
812 ssize_t
813 msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg)
814 {
815 	extern ssize_t __msgrcv(int, void *, size_t, long, int);
816 	ssize_t rv;
817 
818 	PERFORM(__msgrcv(msqid, msgp, msgsz, msgtyp, msgflg))
819 }
820 
821 int
822 msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg)
823 {
824 	extern int __msgsnd(int, const void *, size_t, int);
825 	int rv;
826 
827 	PERFORM(__msgsnd(msqid, msgp, msgsz, msgflg))
828 }
829 
830 int
831 msync(caddr_t addr, size_t len, int flags)
832 {
833 	extern int __msync(caddr_t, size_t, int);
834 	int rv;
835 
836 	PERFORM(__msync(addr, len, flags))
837 }
838 
839 int
840 open(const char *path, int oflag, ...)
841 {
842 	extern int __open(const char *, int, ...);
843 	mode_t mode;
844 	int rv;
845 	va_list ap;
846 
847 	va_start(ap, oflag);
848 	mode = va_arg(ap, mode_t);
849 	va_end(ap);
850 	PERFORM(__open(path, oflag, mode))
851 }
852 
853 int
854 openat(int fd, const char *path, int oflag, ...)
855 {
856 	extern int __openat(int, const char *, int, ...);
857 	mode_t mode;
858 	int rv;
859 	va_list ap;
860 
861 	va_start(ap, oflag);
862 	mode = va_arg(ap, mode_t);
863 	va_end(ap);
864 	PERFORM(__openat(fd, path, oflag, mode))
865 }
866 
867 #if !defined(_LP64)
868 int
869 open64(const char *path, int oflag, ...)
870 {
871 	extern int __open64(const char *, int, ...);
872 	mode_t mode;
873 	int rv;
874 	va_list ap;
875 
876 	va_start(ap, oflag);
877 	mode = va_arg(ap, mode_t);
878 	va_end(ap);
879 	PERFORM(__open64(path, oflag, mode))
880 }
881 
882 int
883 openat64(int fd, const char *path, int oflag, ...)
884 {
885 	extern int __openat64(int, const char *, int, ...);
886 	mode_t mode;
887 	int rv;
888 	va_list ap;
889 
890 	va_start(ap, oflag);
891 	mode = va_arg(ap, mode_t);
892 	va_end(ap);
893 	PERFORM(__openat64(fd, path, oflag, mode))
894 }
895 #endif	/* !_LP64 */
896 
897 int
898 pause(void)
899 {
900 	extern int __pause(void);
901 	int rv;
902 
903 	PERFORM(__pause())
904 }
905 
906 ssize_t
907 pread(int fildes, void *buf, size_t nbyte, off_t offset)
908 {
909 	extern ssize_t __pread(int, void *, size_t, off_t);
910 	ssize_t rv;
911 
912 	PERFORM(__pread(fildes, buf, nbyte, offset))
913 }
914 
915 #if !defined(_LP64)
916 ssize_t
917 pread64(int fildes, void *buf, size_t nbyte, off64_t offset)
918 {
919 	extern ssize_t __pread64(int, void *, size_t, off64_t);
920 	ssize_t rv;
921 
922 	PERFORM(__pread64(fildes, buf, nbyte, offset))
923 }
924 #endif	/* !_LP64 */
925 
926 ssize_t
927 pwrite(int fildes, const void *buf, size_t nbyte, off_t offset)
928 {
929 	extern ssize_t __pwrite(int, const void *, size_t, off_t);
930 	ssize_t rv;
931 
932 	PERFORM(__pwrite(fildes, buf, nbyte, offset))
933 }
934 
935 #if !defined(_LP64)
936 ssize_t
937 pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset)
938 {
939 	extern ssize_t __pwrite64(int, const void *, size_t, off64_t);
940 	ssize_t rv;
941 
942 	PERFORM(__pwrite64(fildes, buf, nbyte, offset))
943 }
944 #endif	/* !_LP64 */
945 
946 ssize_t
947 readv(int fildes, const struct iovec *iov, int iovcnt)
948 {
949 	extern ssize_t __readv(int, const struct iovec *, int);
950 	ssize_t rv;
951 
952 	PERFORM(__readv(fildes, iov, iovcnt))
953 }
954 
955 int
956 sigpause(int sig)
957 {
958 	extern int __sigpause(int);
959 	int rv;
960 
961 	PERFORM(__sigpause(sig))
962 }
963 
964 int
965 sigsuspend(const sigset_t *set)
966 {
967 	extern int __sigsuspend(const sigset_t *);
968 	int rv;
969 
970 	PROLOGUE_MASK(set)
971 	rv = __sigsuspend(set);
972 	EPILOGUE_MASK
973 	return (rv);
974 }
975 
976 int
977 _pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout,
978 	const sigset_t *sigmask)
979 {
980 	extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *,
981 	    const sigset_t *);
982 	int rv;
983 
984 	PROLOGUE_MASK(sigmask)
985 	rv = __pollsys(fds, nfd, timeout, sigmask);
986 	EPILOGUE_MASK
987 	return (rv);
988 }
989 
990 int
991 sigtimedwait(const sigset_t *set, siginfo_t *infop, const timespec_t *timeout)
992 {
993 	extern int __sigtimedwait(const sigset_t *, siginfo_t *,
994 	    const timespec_t *);
995 	siginfo_t info;
996 	int sig;
997 
998 	PROLOGUE
999 	if (abort) {
1000 		*self->ul_errnop = EINTR;
1001 		sig = -1;
1002 	} else {
1003 		sig = __sigtimedwait(set, &info, timeout);
1004 		if (sig == SIGCANCEL &&
1005 		    (SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) {
1006 			do_sigcancel();
1007 			*self->ul_errnop = EINTR;
1008 			sig = -1;
1009 		}
1010 	}
1011 	EPILOGUE
1012 	if (sig != -1 && infop)
1013 		(void) memcpy(infop, &info, sizeof (*infop));
1014 	return (sig);
1015 }
1016 
1017 int
1018 sigwait(sigset_t *set)
1019 {
1020 	return (sigtimedwait(set, NULL, NULL));
1021 }
1022 
1023 int
1024 sigwaitinfo(const sigset_t *set, siginfo_t *info)
1025 {
1026 	return (sigtimedwait(set, info, NULL));
1027 }
1028 
1029 int
1030 sigqueue(pid_t pid, int signo, const union sigval value)
1031 {
1032 	extern int __sigqueue(pid_t pid, int signo,
1033 	    /* const union sigval */ void *value, int si_code, int block);
1034 	return (__sigqueue(pid, signo, value.sival_ptr, SI_QUEUE, 0));
1035 }
1036 
1037 int
1038 _so_accept(int sock, struct sockaddr *addr, uint_t *addrlen, int version)
1039 {
1040 	extern int __so_accept(int, struct sockaddr *, uint_t *, int);
1041 	int rv;
1042 
1043 	PERFORM(__so_accept(sock, addr, addrlen, version))
1044 }
1045 
1046 int
1047 _so_connect(int sock, struct sockaddr *addr, uint_t addrlen, int version)
1048 {
1049 	extern int __so_connect(int, struct sockaddr *, uint_t, int);
1050 	int rv;
1051 
1052 	PERFORM(__so_connect(sock, addr, addrlen, version))
1053 }
1054 
1055 int
1056 _so_recv(int sock, void *buf, size_t len, int flags)
1057 {
1058 	extern int __so_recv(int, void *, size_t, int);
1059 	int rv;
1060 
1061 	PERFORM(__so_recv(sock, buf, len, flags))
1062 }
1063 
1064 int
1065 _so_recvfrom(int sock, void *buf, size_t len, int flags,
1066     struct sockaddr *addr, int *addrlen)
1067 {
1068 	extern int __so_recvfrom(int, void *, size_t, int,
1069 	    struct sockaddr *, int *);
1070 	int rv;
1071 
1072 	PERFORM(__so_recvfrom(sock, buf, len, flags, addr, addrlen))
1073 }
1074 
1075 int
1076 _so_recvmsg(int sock, struct msghdr *msg, int flags)
1077 {
1078 	extern int __so_recvmsg(int, struct msghdr *, int);
1079 	int rv;
1080 
1081 	PERFORM(__so_recvmsg(sock, msg, flags))
1082 }
1083 
1084 int
1085 _so_send(int sock, const void *buf, size_t len, int flags)
1086 {
1087 	extern int __so_send(int, const void *, size_t, int);
1088 	int rv;
1089 
1090 	PERFORM(__so_send(sock, buf, len, flags))
1091 }
1092 
1093 int
1094 _so_sendmsg(int sock, const struct msghdr *msg, int flags)
1095 {
1096 	extern int __so_sendmsg(int, const struct msghdr *, int);
1097 	int rv;
1098 
1099 	PERFORM(__so_sendmsg(sock, msg, flags))
1100 }
1101 
1102 int
1103 _so_sendto(int sock, const void *buf, size_t len, int flags,
1104     const struct sockaddr *addr, int *addrlen)
1105 {
1106 	extern int __so_sendto(int, const void *, size_t, int,
1107 	    const struct sockaddr *, int *);
1108 	int rv;
1109 
1110 	PERFORM(__so_sendto(sock, buf, len, flags, addr, addrlen))
1111 }
1112 
1113 int
1114 tcdrain(int fildes)
1115 {
1116 	extern int __tcdrain(int);
1117 	int rv;
1118 
1119 	PERFORM(__tcdrain(fildes))
1120 }
1121 
1122 int
1123 waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options)
1124 {
1125 	extern int __waitid(idtype_t, id_t, siginfo_t *, int);
1126 	int rv;
1127 
1128 	if (options & WNOHANG)
1129 		return (__waitid(idtype, id, infop, options));
1130 	PERFORM(__waitid(idtype, id, infop, options))
1131 }
1132 
1133 ssize_t
1134 writev(int fildes, const struct iovec *iov, int iovcnt)
1135 {
1136 	extern ssize_t __writev(int, const struct iovec *, int);
1137 	ssize_t rv;
1138 
1139 	PERFORM(__writev(fildes, iov, iovcnt))
1140 }
1141