```/* <![CDATA[ */
function get_sym_list(){return [["Variable","xv",[["scl",63]]],["Function","xf",[["_X_cplx_div_rx",93],["testinfl",79]]]];} /* ]]> */1/*
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License").  You may not use this file except in compliance
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
19 *
21 */
22/*
24 * Use is subject to license terms.
25 */
26
27#pragma ident	"%Z%%M%	%I%	%E% SMI"
28
29/*
30 * _X_cplx_div_rx(a, w) returns a / w with infinities handled
31 * according to C99.
32 *
33 * If a and w are both finite and w is nonzero, _X_cplx_div_rx de-
34 * livers the complex quotient q according to the usual formula: let
35 * c = Re(w), and d = Im(w); then q = x + I * y where x = (a * c) / r
36 * and y = (-a * d) / r with r = c * c + d * d.  This implementation
37 * scales to avoid premature underflow or overflow.
38 *
39 * If a is neither NaN nor zero and w is zero, or if a is infinite
40 * and w is finite and nonzero, _X_cplx_div_rx delivers an infinite
41 * result.  If a is finite and w is infinite, _X_cplx_div_rx delivers
42 * a zero result.
43 *
44 * If a and w are both zero or both infinite, or if either a or w is
45 * NaN, _X_cplx_div_rx delivers NaN + I * NaN.  C99 doesn't specify
46 * these cases.
47 *
48 * This implementation can raise spurious underflow, overflow, in-
49 * valid operation, inexact, and division-by-zero exceptions.  C99
50 * allows this.
51 */
52
53#if !defined(i386) && !defined(__i386) && !defined(__amd64)
54#error This code is for x86 only
55#endif
56
57/*
58 * scl[i].e = 2^(4080*(4-i)) for i = 0, ..., 9
59 */
60static const union {
61	unsigned int	i;
62	long double	e;
63} scl = {
64	{ 0, 0x80000000, 0x7fbf },
65	{ 0, 0x80000000, 0x6fcf },
66	{ 0, 0x80000000, 0x5fdf },
67	{ 0, 0x80000000, 0x4fef },
68	{ 0, 0x80000000, 0x3fff },
69	{ 0, 0x80000000, 0x300f },
70	{ 0, 0x80000000, 0x201f },
71	{ 0, 0x80000000, 0x102f },
72	{ 0, 0x80000000, 0x003f }
73};
74
75/*
76 * Return +1 if x is +Inf, -1 if x is -Inf, and 0 otherwise
77 */
78static int
79testinfl(long double x)
80{
81	union {
82		int		i;
83		long double	e;
84	} xx;
85
86	xx.e = x;
87	if ((xx.i & 0x7fff) != 0x7fff || ((xx.i << 1) | xx.i) != 0)
88		return (0);
89	return (1 | ((xx.i << 16) >> 31));
90}
91
92long double _Complex
93_X_cplx_div_rx(long double a, long double _Complex w)
94{
95	long double _Complex	v;
96	union {
97		int		i;
98		long double	e;
99	} aa, cc, dd;
100	long double	c, d, sc, sd, r;
101	int		ea, ec, ed, ew, i, j;
102
103	/*
104	 * The following is equivalent to
105	 *
106	 *  c = creall(*w); d = cimagl(*w);
107	 */
108	c = ((long double *)&w);
109	d = ((long double *)&w);
110
111	/* extract exponents to estimate |z| and |w| */
112	aa.e = a;
113	ea = aa.i & 0x7fff;
114
115	cc.e = c;
116	dd.e = d;
117	ec = cc.i & 0x7fff;
118	ed = dd.i & 0x7fff;
119	ew = (ec > ed)? ec : ed;
120
121	/* check for special cases */
122	if (ew >= 0x7fff) { /* w is inf or nan */
123		i = testinfl(c);
124		j = testinfl(d);
125		if (i | j) { /* w is infinite */
126			c = ((cc.i << 16) < 0)? -0.0f : 0.0f;
127			d = ((dd.i << 16) < 0)? -0.0f : 0.0f;
128		} else /* w is nan */
129			a += c + d;
130		((long double *)&v) = a * c;
131		((long double *)&v) = -a * d;
132		return (v);
133	}
134
135	if (ew == 0 && (cc.i | cc.i | dd.i | dd.i) == 0) {
136		/* w is zero; multiply a by 1/Re(w) - I * Im(w) */
137		c = 1.0f / c;
138		i = testinfl(a);
139		if (i) { /* a is infinite */
140			a = i;
141		}
142		((long double *)&v) = a * c;
143		((long double *)&v) = (a == 0.0f)? a * c : -a * d;
144		return (v);
145	}
146
147	if (ea >= 0x7fff) { /* a is inf or nan */
148		((long double *)&v) = a * c;
149		((long double *)&v) = -a * d;
150		return (v);
151	}
152
153	/*
154	 * Compute the real and imaginary parts of the quotient,
155	 * scaling to avoid overflow or underflow.
156	 */
157	ew = (ew - 0x3800) >> 12;
158	sc = c * scl[ew + 4].e;
159	sd = d * scl[ew + 4].e;
160	r = sc * sc + sd * sd;
161
162	ea = (ea - 0x3800) >> 12;
163	a = (a * scl[ea + 4].e) / r;
164	ea -= (ew + ew);
165
166	ec = (ec - 0x3800) >> 12;
167	c = (c * scl[ec + 4].e) * a;
168	ec += ea;
169
170	ed = (ed - 0x3800) >> 12;
171	d = -(d * scl[ed + 4].e) * a;
172	ed += ea;
173
174	/* compensate for scaling */
175	sc = scl.e; /* 2^4080 */
176	if (ec < 0) {
177		ec = -ec;
178		sc = scl.e; /* 2^-4080 */
179	}
180	while (ec--)
181		c *= sc;
182
183	sd = scl.e;
184	if (ed < 0) {
185		ed = -ed;
186		sd = scl.e;
187	}
188	while (ed--)
189		d *= sd;
190
191	((long double *)&v) = c;
192	((long double *)&v) = d;
193	return (v);
194}
195```