1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 1997 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
29 
30 /*
31  * Portions of this source code were derived from Berkeley 4.3 BSD
32  * under license from the Regents of the University of California.
33  */
34 
35 /*
36  *	generic_key.c
37  */
38 
39 #include <mp.h>
40 #include <time.h>
41 #include <rpc/rpc.h>
42 #include <stdlib.h>
43 
44 #define	BASEBITS		(8 * sizeof (char))
45 #define	BASE			(1 << BASEBITS)
46 
47 extern void des_setparity(char *);
48 extern void des_setparity_g(des_block *);
49 
50 /*
51  * seed the random generator. Here we use the time of day and a supplied
52  * password for generating the seed.
53  */
54 static void
setseed(unsigned char * pass)55 setseed(unsigned char *pass)
56 {
57 	int i;
58 	int rseed;
59 	struct timeval tv;
60 
61 	(void) gettimeofday(&tv, (struct timezone *)NULL);
62 	rseed = tv.tv_sec + tv.tv_usec;
63 
64 	for (i = 0; i < 8; i++) {
65 		rseed ^= (rseed << 8) | pass[i];
66 	}
67 	(void) srandom(rseed);
68 }
69 
70 /*
71  * Adjust the input key so that it is 0-filled on the left and store
72  * the results in key out.
73  */
74 static void
adjust(char * keyout,char * keyin,int keylen)75 adjust(char *keyout, char *keyin, int keylen)
76 {
77 	char *p;
78 	char *s;
79 	int hexkeybytes = (keylen+3)/4;
80 
81 	for (p = keyin; *p; p++);
82 	for (s = keyout + hexkeybytes; p >= keyin; p--, s--) {
83 		*s = *p;
84 	}
85 	while (s >= keyout) {
86 		*s-- = '0';
87 	}
88 }
89 
90 /*
91  * __generic_gen_dhkeys: Classic Diffie-Hellman key pair generation.
92  * Generate a Diffie-Hellman key pair of a given key length using
93  * the supplied modulus and root. To calculate the pair we generate
94  * a random key of the appropriate key length modulo the modulus.
95  * This random key is the private key of the key pair. We now compute
96  * the public key as PublicKey = root^PrivateKey % modulus. This routine
97  * make use of libmp to do the multiprecision interger arithmetic.
98  */
99 void
__generic_gen_dhkeys(int keylen,char * xmodulus,int proot,char * public,char * secret,char * pass)100 __generic_gen_dhkeys(int keylen, /* Size of keys in bits */
101 		    char *xmodulus, /* The modulus */
102 		    int proot, /* The prime root */
103 		    char *public, /* Public key */
104 		    char *secret, /* Private key */
105 		    char *pass    /* password to seed with for private key */)
106 {
107 	int i, len;
108 	MINT *pk = mp_itom(0);	/* Initial public key */
109 	MINT *sk = mp_itom(0);	/* Initial private key */
110 	MINT *tmp;
111 	MINT *base = mp_itom(BASE); 	/* We shift by BASEBITS */
112 	MINT *root = mp_itom(proot);    /* We get the root as a MINT */
113 	/* Convert the modulus from a hex string to a MINT */
114 	MINT *modulus = mp_xtom(xmodulus);
115 	unsigned char seed;
116 	char *xkey;
117 
118 	/* Seed the random generate */
119 	setseed((u_char *)pass);
120 
121 	/*
122 	 * We will break up the private key into  groups of BASEBITS where
123 	 * BASEBITS is equal to the number of bits in an integer type.
124 	 * Curently, basebits is 8 so the integral type is a character.
125 	 * We will calculate the number of BASEBITS units that we need so
126 	 * that we have at least keylen bits.
127 	 */
128 	len = ((keylen + BASEBITS - 1) / BASEBITS);
129 
130 	/*
131 	 * Now for each BASEBITS we calculate a new random number.
132 	 * Shift the private key by base bits and then add the
133 	 * generated random number.
134 	 */
135 	for (i = 0; i < len; i++) {
136 		/* get a random number */
137 		seed = random() ^ pass[i % 8];
138 		/* Convert it to a MINT */
139 		tmp = mp_itom(seed);
140 		/* Shift the private key */
141 		mp_mult(sk, base, sk);
142 		/* Add in the new low order bits */
143 		mp_madd(sk, tmp, sk);
144 		/* Free tmp */
145 		mp_mfree(tmp);
146 	}
147 
148 	/* Set timp to 0 */
149 	tmp = mp_itom(0);
150 	/* We get the private keys as private key modulo the modulus */
151 	mp_mdiv(sk, modulus, tmp, sk);
152 	/* Done with tmp */
153 	mp_mfree(tmp);
154 	/* The public key is root^sk % modulus */
155 	mp_pow(root, sk, modulus, pk);
156 	/* Convert the private key to a hex string */
157 	xkey = mp_mtox(sk);
158 	/* Set leading zeros if necessary and store in secret */
159 	(void) adjust(secret, xkey, keylen);
160 	/* Done with xkey */
161 	free(xkey);
162 	/* Now set xkey to the hex representation of the public key */
163 	xkey = mp_mtox(pk);
164 	/* Set leading zeros and store in public */
165 	(void) adjust(public, xkey, keylen);
166 
167 	/* Free storage */
168 	free(xkey);
169 
170 	mp_mfree(sk);
171 	mp_mfree(base);
172 	mp_mfree(pk);
173 	mp_mfree(root);
174 	mp_mfree(modulus);
175 }
176 
177 /*
178  * Given a key extract keynum des keys
179  */
180 static void
extractdeskeys(MINT * ck,int keylen,des_block keys[],int keynum)181 extractdeskeys(MINT *ck, int keylen, des_block keys[], int keynum)
182 {
183 	MINT *a;
184 	short r;
185 	int i;
186 	short base = (1 << 8);
187 	char *k;
188 	/* len is the total number of bits we need for keynum des keys */
189 	int len = 8 * sizeof (des_block) * keynum;
190 	extern void _mp_move(MINT *, MINT *);
191 
192 	/* Create a MINT a to hold the common key */
193 	a = mp_itom(0);
194 	_mp_move(ck, a);
195 
196 
197 	/*
198 	 * Calculate the middle byte in the key. We will simply extract
199 	 * the middle bits of the key for the bits in our DES keys.
200 	 */
201 	for (i = 0; i < ((keylen - len)/2)/8; i++)
202 		mp_sdiv(a, base, a, &r); /* Shift the key by one byte */
203 
204 	/*
205 	 * Now take our middle bits referenced by a and shove them
206 	 * into the array of DES keys.
207 	 */
208 	k = (char *)keys;
209 	for (i = 0; i < sizeof (des_block) * keynum; i++) {
210 		mp_sdiv(a, base, a, &r);
211 		*k++ = r;
212 	}
213 
214 	/* We're done with a */
215 	mp_mfree(a);
216 
217 	/* Set the DES parity for each key */
218 	for (i = 0; i < keynum; i++)
219 		if (keylen == 192) /* Old broken way for compatibility */
220 			des_setparity((char *)&keys[i]);
221 		else
222 			des_setparity_g(&keys[i]);
223 }
224 
225 
226 /*
227  * __generic_common_dhkeys: Generate a set of DES keys based on
228  * the Diffie-Hellman common key derived from the supplied key pair
229  * of the given key length using the passed in modulus. The common key
230  *  is calculated as:
231  *
232  *	ck = pk ^ sk % modulus
233  *
234  * We will use the above routine to extract a set of DES keys for the
235  * caller.
236  */
237 void
__generic_common_dhkeys(char * pkey,char * skey,int keylen,char * xmodulus,des_block keys[],int keynum)238 __generic_common_dhkeys(char *pkey, /* Public key of remote */
239 			char *skey, /* Our private key */
240 			int keylen, /* All the keys have this many bits */
241 			char *xmodulus, /* The modulus */
242 			des_block keys[], /* DES keys to fill */
243 			int keynum /* The number of DES keys to create */)
244 {
245 	/* Convert hex string representations to MINTS */
246 	MINT *pk = mp_xtom(pkey);
247 	MINT *sk = mp_xtom(skey);
248 	MINT *modulus = mp_xtom(xmodulus);
249 	/* Create a MINT for the common key */
250 	MINT *ck = mp_itom(0);
251 
252 	/* ck = pk ^ sk % modulus */
253 	mp_pow(pk, sk, modulus, ck);
254 
255 	/* Set the DES keys */
256 	extractdeskeys(ck, keylen, keys, keynum);
257 
258 	/* Clean up */
259 	mp_mfree(pk);
260 	mp_mfree(sk);
261 	mp_mfree(modulus);
262 	mp_mfree(ck);
263 }
264