xref: /illumos-gate/usr/src/common/nvpair/nvpair.c (revision 1af98250)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/stropts.h>
30 #include <sys/debug.h>
31 #include <sys/isa_defs.h>
32 #include <sys/int_limits.h>
33 #include <sys/nvpair.h>
34 #include <sys/nvpair_impl.h>
35 #include <rpc/types.h>
36 #include <rpc/xdr.h>
37 
38 #if defined(_KERNEL) && !defined(_BOOT)
39 #include <sys/varargs.h>
40 #else
41 #include <stdarg.h>
42 #include <strings.h>
43 #endif
44 
45 #ifndef	offsetof
46 #define	offsetof(s, m)	((size_t)(&(((s *)0)->m)))
47 #endif
48 
49 
50 /*
51  * nvpair.c - Provides kernel & userland interfaces for manipulating
52  *	name-value pairs.
53  *
54  * Overview Diagram
55  *
56  *  +--------------+
57  *  |  nvlist_t    |
58  *  |--------------|
59  *  | nvl_version  |
60  *  | nvl_nvflag   |
61  *  | nvl_priv    -+-+
62  *  | nvl_flag     | |
63  *  | nvl_pad      | |
64  *  +--------------+ |
65  *                   V
66  *      +--------------+      last i_nvp in list
67  *      | nvpriv_t     |  +--------------------->
68  *      |--------------|  |
69  *   +--+- nvp_list    |  |   +------------+
70  *   |  |  nvp_last   -+--+   + nv_alloc_t |
71  *   |  |  nvp_curr    |      |------------|
72  *   |  |  nvp_nva    -+----> | nva_ops    |
73  *   |  |  nvp_stat    |      | nva_arg    |
74  *   |  +--------------+      +------------+
75  *   |
76  *   +-------+
77  *           V
78  *   +---------------------+      +-------------------+
79  *   |  i_nvp_t            |  +-->|  i_nvp_t          |  +-->
80  *   |---------------------|  |   |-------------------|  |
81  *   | nvi_next           -+--+   | nvi_next         -+--+
82  *   | nvi_prev (NULL)     | <----+ nvi_prev          |
83  *   | . . . . . . . . . . |      | . . . . . . . . . |
84  *   | nvp (nvpair_t)      |      | nvp (nvpair_t)    |
85  *   |  - nvp_size         |      |  - nvp_size       |
86  *   |  - nvp_name_sz      |      |  - nvp_name_sz    |
87  *   |  - nvp_value_elem   |      |  - nvp_value_elem |
88  *   |  - nvp_type         |      |  - nvp_type       |
89  *   |  - data ...         |      |  - data ...       |
90  *   +---------------------+      +-------------------+
91  *
92  *
93  *
94  *   +---------------------+              +---------------------+
95  *   |  i_nvp_t            |  +-->    +-->|  i_nvp_t (last)     |
96  *   |---------------------|  |       |   |---------------------|
97  *   |  nvi_next          -+--+ ... --+   | nvi_next (NULL)     |
98  * <-+- nvi_prev           |<-- ...  <----+ nvi_prev            |
99  *   | . . . . . . . . .   |              | . . . . . . . . .   |
100  *   | nvp (nvpair_t)      |              | nvp (nvpair_t)      |
101  *   |  - nvp_size         |              |  - nvp_size         |
102  *   |  - nvp_name_sz      |              |  - nvp_name_sz      |
103  *   |  - nvp_value_elem   |              |  - nvp_value_elem   |
104  *   |  - DATA_TYPE_NVLIST |              |  - nvp_type         |
105  *   |  - data (embedded)  |              |  - data ...         |
106  *   |    nvlist name      |              +---------------------+
107  *   |  +--------------+   |
108  *   |  |  nvlist_t    |   |
109  *   |  |--------------|   |
110  *   |  | nvl_version  |   |
111  *   |  | nvl_nvflag   |   |
112  *   |  | nvl_priv   --+---+---->
113  *   |  | nvl_flag     |   |
114  *   |  | nvl_pad      |   |
115  *   |  +--------------+   |
116  *   +---------------------+
117  *
118  *
119  * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will
120  * allow value to be aligned on 8 byte boundary
121  *
122  * name_len is the length of the name string including the null terminator
123  * so it must be >= 1
124  */
125 #define	NVP_SIZE_CALC(name_len, data_len) \
126 	(NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len))
127 
128 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem);
129 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type,
130     uint_t nelem, const void *data);
131 
132 #define	NV_STAT_EMBEDDED	0x1
133 #define	EMBEDDED_NVL(nvp)	((nvlist_t *)(void *)NVP_VALUE(nvp))
134 #define	EMBEDDED_NVL_ARRAY(nvp)	((nvlist_t **)(void *)NVP_VALUE(nvp))
135 
136 #define	NVP_VALOFF(nvp)	(NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz))
137 #define	NVPAIR2I_NVP(nvp) \
138 	((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp)))
139 
140 
141 int
142 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...)
143 {
144 	va_list valist;
145 	int err = 0;
146 
147 	nva->nva_ops = nvo;
148 	nva->nva_arg = NULL;
149 
150 	va_start(valist, nvo);
151 	if (nva->nva_ops->nv_ao_init != NULL)
152 		err = nva->nva_ops->nv_ao_init(nva, valist);
153 	va_end(valist);
154 
155 	return (err);
156 }
157 
158 void
159 nv_alloc_reset(nv_alloc_t *nva)
160 {
161 	if (nva->nva_ops->nv_ao_reset != NULL)
162 		nva->nva_ops->nv_ao_reset(nva);
163 }
164 
165 void
166 nv_alloc_fini(nv_alloc_t *nva)
167 {
168 	if (nva->nva_ops->nv_ao_fini != NULL)
169 		nva->nva_ops->nv_ao_fini(nva);
170 }
171 
172 nv_alloc_t *
173 nvlist_lookup_nv_alloc(nvlist_t *nvl)
174 {
175 	nvpriv_t *priv;
176 
177 	if (nvl == NULL ||
178 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
179 		return (NULL);
180 
181 	return (priv->nvp_nva);
182 }
183 
184 static void *
185 nv_mem_zalloc(nvpriv_t *nvp, size_t size)
186 {
187 	nv_alloc_t *nva = nvp->nvp_nva;
188 	void *buf;
189 
190 	if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL)
191 		bzero(buf, size);
192 
193 	return (buf);
194 }
195 
196 static void
197 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size)
198 {
199 	nv_alloc_t *nva = nvp->nvp_nva;
200 
201 	nva->nva_ops->nv_ao_free(nva, buf, size);
202 }
203 
204 static void
205 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat)
206 {
207 	bzero(priv, sizeof (priv));
208 
209 	priv->nvp_nva = nva;
210 	priv->nvp_stat = stat;
211 }
212 
213 static nvpriv_t *
214 nv_priv_alloc(nv_alloc_t *nva)
215 {
216 	nvpriv_t *priv;
217 
218 	/*
219 	 * nv_mem_alloc() cannot called here because it needs the priv
220 	 * argument.
221 	 */
222 	if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL)
223 		return (NULL);
224 
225 	nv_priv_init(priv, nva, 0);
226 
227 	return (priv);
228 }
229 
230 /*
231  * Embedded lists need their own nvpriv_t's.  We create a new
232  * nvpriv_t using the parameters and allocator from the parent
233  * list's nvpriv_t.
234  */
235 static nvpriv_t *
236 nv_priv_alloc_embedded(nvpriv_t *priv)
237 {
238 	nvpriv_t *emb_priv;
239 
240 	if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL)
241 		return (NULL);
242 
243 	nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED);
244 
245 	return (emb_priv);
246 }
247 
248 static void
249 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv)
250 {
251 	nvl->nvl_version = NV_VERSION;
252 	nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE);
253 	nvl->nvl_priv = (uint64_t)(uintptr_t)priv;
254 	nvl->nvl_flag = 0;
255 	nvl->nvl_pad = 0;
256 }
257 
258 /*
259  * nvlist_alloc - Allocate nvlist.
260  */
261 /*ARGSUSED1*/
262 int
263 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
264 {
265 #if defined(_KERNEL) && !defined(_BOOT)
266 	return (nvlist_xalloc(nvlp, nvflag,
267 	    (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
268 #else
269 	return (nvlist_xalloc(nvlp, nvflag, nv_alloc_nosleep));
270 #endif
271 }
272 
273 int
274 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva)
275 {
276 	nvpriv_t *priv;
277 
278 	if (nvlp == NULL || nva == NULL)
279 		return (EINVAL);
280 
281 	if ((priv = nv_priv_alloc(nva)) == NULL)
282 		return (ENOMEM);
283 
284 	if ((*nvlp = nv_mem_zalloc(priv,
285 	    NV_ALIGN(sizeof (nvlist_t)))) == NULL) {
286 		nv_mem_free(priv, priv, sizeof (nvpriv_t));
287 		return (ENOMEM);
288 	}
289 
290 	nvlist_init(*nvlp, nvflag, priv);
291 
292 	return (0);
293 }
294 
295 /*
296  * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair.
297  */
298 static nvpair_t *
299 nvp_buf_alloc(nvlist_t *nvl, size_t len)
300 {
301 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
302 	i_nvp_t *buf;
303 	nvpair_t *nvp;
304 	size_t nvsize;
305 
306 	/*
307 	 * Allocate the buffer
308 	 */
309 	nvsize = len + offsetof(i_nvp_t, nvi_nvp);
310 
311 	if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL)
312 		return (NULL);
313 
314 	nvp = &buf->nvi_nvp;
315 	nvp->nvp_size = len;
316 
317 	return (nvp);
318 }
319 
320 /*
321  * nvp_buf_free - de-Allocate an i_nvp_t.
322  */
323 static void
324 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp)
325 {
326 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
327 	size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp);
328 
329 	nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize);
330 }
331 
332 /*
333  * nvp_buf_link - link a new nv pair into the nvlist.
334  */
335 static void
336 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp)
337 {
338 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
339 	i_nvp_t *curr = NVPAIR2I_NVP(nvp);
340 
341 	/* Put element at end of nvlist */
342 	if (priv->nvp_list == NULL) {
343 		priv->nvp_list = priv->nvp_last = curr;
344 	} else {
345 		curr->nvi_prev = priv->nvp_last;
346 		priv->nvp_last->nvi_next = curr;
347 		priv->nvp_last = curr;
348 	}
349 }
350 
351 /*
352  * nvp_buf_unlink - unlink an removed nvpair out of the nvlist.
353  */
354 static void
355 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp)
356 {
357 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
358 	i_nvp_t *curr = NVPAIR2I_NVP(nvp);
359 
360 	/*
361 	 * protect nvlist_next_nvpair() against walking on freed memory.
362 	 */
363 	if (priv->nvp_curr == curr)
364 		priv->nvp_curr = curr->nvi_next;
365 
366 	if (curr == priv->nvp_list)
367 		priv->nvp_list = curr->nvi_next;
368 	else
369 		curr->nvi_prev->nvi_next = curr->nvi_next;
370 
371 	if (curr == priv->nvp_last)
372 		priv->nvp_last = curr->nvi_prev;
373 	else
374 		curr->nvi_next->nvi_prev = curr->nvi_prev;
375 }
376 
377 /*
378  * take a nvpair type and number of elements and make sure the are valid
379  */
380 static int
381 i_validate_type_nelem(data_type_t type, uint_t nelem)
382 {
383 	switch (type) {
384 	case DATA_TYPE_BOOLEAN:
385 		if (nelem != 0)
386 			return (EINVAL);
387 		break;
388 	case DATA_TYPE_BOOLEAN_VALUE:
389 	case DATA_TYPE_BYTE:
390 	case DATA_TYPE_INT8:
391 	case DATA_TYPE_UINT8:
392 	case DATA_TYPE_INT16:
393 	case DATA_TYPE_UINT16:
394 	case DATA_TYPE_INT32:
395 	case DATA_TYPE_UINT32:
396 	case DATA_TYPE_INT64:
397 	case DATA_TYPE_UINT64:
398 	case DATA_TYPE_STRING:
399 	case DATA_TYPE_HRTIME:
400 	case DATA_TYPE_NVLIST:
401 		if (nelem != 1)
402 			return (EINVAL);
403 		break;
404 	case DATA_TYPE_BOOLEAN_ARRAY:
405 	case DATA_TYPE_BYTE_ARRAY:
406 	case DATA_TYPE_INT8_ARRAY:
407 	case DATA_TYPE_UINT8_ARRAY:
408 	case DATA_TYPE_INT16_ARRAY:
409 	case DATA_TYPE_UINT16_ARRAY:
410 	case DATA_TYPE_INT32_ARRAY:
411 	case DATA_TYPE_UINT32_ARRAY:
412 	case DATA_TYPE_INT64_ARRAY:
413 	case DATA_TYPE_UINT64_ARRAY:
414 	case DATA_TYPE_STRING_ARRAY:
415 	case DATA_TYPE_NVLIST_ARRAY:
416 		/* we allow arrays with 0 elements */
417 		break;
418 	default:
419 		return (EINVAL);
420 	}
421 	return (0);
422 }
423 
424 /*
425  * Verify nvp_name_sz and check the name string length.
426  */
427 static int
428 i_validate_nvpair_name(nvpair_t *nvp)
429 {
430 	if ((nvp->nvp_name_sz <= 0) ||
431 	    (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0)))
432 		return (EFAULT);
433 
434 	/* verify the name string, make sure its terminated */
435 	if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0')
436 		return (EFAULT);
437 
438 	return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT);
439 }
440 
441 static int
442 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data)
443 {
444 	switch (type) {
445 	case DATA_TYPE_BOOLEAN_VALUE:
446 		if (*(boolean_t *)data != B_TRUE &&
447 		    *(boolean_t *)data != B_FALSE)
448 			return (EINVAL);
449 		break;
450 	case DATA_TYPE_BOOLEAN_ARRAY: {
451 		int i;
452 
453 		for (i = 0; i < nelem; i++)
454 			if (((boolean_t *)data)[i] != B_TRUE &&
455 			    ((boolean_t *)data)[i] != B_FALSE)
456 				return (EINVAL);
457 		break;
458 	}
459 	default:
460 		break;
461 	}
462 
463 	return (0);
464 }
465 
466 /*
467  * This function takes a pointer to what should be a nvpair and it's size
468  * and then verifies that all the nvpair fields make sense and can be
469  * trusted.  This function is used when decoding packed nvpairs.
470  */
471 static int
472 i_validate_nvpair(nvpair_t *nvp)
473 {
474 	data_type_t type = NVP_TYPE(nvp);
475 	int size1, size2;
476 
477 	/* verify nvp_name_sz, check the name string length */
478 	if (i_validate_nvpair_name(nvp) != 0)
479 		return (EFAULT);
480 
481 	if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0)
482 		return (EFAULT);
483 
484 	/*
485 	 * verify nvp_type, nvp_value_elem, and also possibly
486 	 * verify string values and get the value size.
487 	 */
488 	size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp));
489 	size1 = nvp->nvp_size - NVP_VALOFF(nvp);
490 	if (size2 < 0 || size1 != NV_ALIGN(size2))
491 		return (EFAULT);
492 
493 	return (0);
494 }
495 
496 static int
497 nvlist_copy_pairs(nvlist_t *snvl, nvlist_t *dnvl)
498 {
499 	nvpriv_t *priv;
500 	i_nvp_t *curr;
501 
502 	if ((priv = (nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL)
503 		return (EINVAL);
504 
505 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
506 		nvpair_t *nvp = &curr->nvi_nvp;
507 		int err;
508 
509 		if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp),
510 		    NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0)
511 			return (err);
512 	}
513 
514 	return (0);
515 }
516 
517 /*
518  * Frees all memory allocated for an nvpair (like embedded lists) with
519  * the exception of the nvpair buffer itself.
520  */
521 static void
522 nvpair_free(nvpair_t *nvp)
523 {
524 	switch (NVP_TYPE(nvp)) {
525 	case DATA_TYPE_NVLIST:
526 		nvlist_free(EMBEDDED_NVL(nvp));
527 		break;
528 	case DATA_TYPE_NVLIST_ARRAY: {
529 		nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
530 		int i;
531 
532 		for (i = 0; i < NVP_NELEM(nvp); i++)
533 			if (nvlp[i] != NULL)
534 				nvlist_free(nvlp[i]);
535 		break;
536 	}
537 	default:
538 		break;
539 	}
540 }
541 
542 /*
543  * nvlist_free - free an unpacked nvlist
544  */
545 void
546 nvlist_free(nvlist_t *nvl)
547 {
548 	nvpriv_t *priv;
549 	i_nvp_t *curr;
550 
551 	if (nvl == NULL ||
552 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
553 		return;
554 
555 	/*
556 	 * Unpacked nvlist are linked through i_nvp_t
557 	 */
558 	curr = priv->nvp_list;
559 	while (curr != NULL) {
560 		nvpair_t *nvp = &curr->nvi_nvp;
561 		curr = curr->nvi_next;
562 
563 		nvpair_free(nvp);
564 		nvp_buf_free(nvl, nvp);
565 	}
566 
567 	if (!(priv->nvp_stat & NV_STAT_EMBEDDED))
568 		nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t)));
569 	else
570 		nvl->nvl_priv = 0;
571 
572 	nv_mem_free(priv, priv, sizeof (nvpriv_t));
573 }
574 
575 static int
576 nvlist_contains_nvp(nvlist_t *nvl, nvpair_t *nvp)
577 {
578 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
579 	i_nvp_t *curr;
580 
581 	if (nvp == NULL)
582 		return (0);
583 
584 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
585 		if (&curr->nvi_nvp == nvp)
586 			return (1);
587 
588 	return (0);
589 }
590 
591 /*
592  * Make a copy of nvlist
593  */
594 /*ARGSUSED1*/
595 int
596 nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag)
597 {
598 #if defined(_KERNEL) && !defined(_BOOT)
599 	return (nvlist_xdup(nvl, nvlp,
600 	    (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
601 #else
602 	return (nvlist_xdup(nvl, nvlp, nv_alloc_nosleep));
603 #endif
604 }
605 
606 int
607 nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva)
608 {
609 	int err;
610 	nvlist_t *ret;
611 
612 	if (nvl == NULL || nvlp == NULL)
613 		return (EINVAL);
614 
615 	if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0)
616 		return (err);
617 
618 	if ((err = nvlist_copy_pairs(nvl, ret)) != 0)
619 		nvlist_free(ret);
620 	else
621 		*nvlp = ret;
622 
623 	return (err);
624 }
625 
626 /*
627  * Remove all with matching name
628  */
629 int
630 nvlist_remove_all(nvlist_t *nvl, const char *name)
631 {
632 	nvpriv_t *priv;
633 	i_nvp_t *curr;
634 	int error = ENOENT;
635 
636 	if (nvl == NULL || name == NULL ||
637 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
638 		return (EINVAL);
639 
640 	curr = priv->nvp_list;
641 	while (curr != NULL) {
642 		nvpair_t *nvp = &curr->nvi_nvp;
643 
644 		curr = curr->nvi_next;
645 		if (strcmp(name, NVP_NAME(nvp)) != 0)
646 			continue;
647 
648 		nvp_buf_unlink(nvl, nvp);
649 		nvpair_free(nvp);
650 		nvp_buf_free(nvl, nvp);
651 
652 		error = 0;
653 	}
654 
655 	return (error);
656 }
657 
658 /*
659  * Remove first one with matching name and type
660  */
661 int
662 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type)
663 {
664 	nvpriv_t *priv;
665 	i_nvp_t *curr;
666 
667 	if (nvl == NULL || name == NULL ||
668 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
669 		return (EINVAL);
670 
671 	curr = priv->nvp_list;
672 	while (curr != NULL) {
673 		nvpair_t *nvp = &curr->nvi_nvp;
674 
675 		if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) {
676 			nvp_buf_unlink(nvl, nvp);
677 			nvpair_free(nvp);
678 			nvp_buf_free(nvl, nvp);
679 
680 			return (0);
681 		}
682 		curr = curr->nvi_next;
683 	}
684 
685 	return (ENOENT);
686 }
687 
688 /*
689  * This function calculates the size of an nvpair value.
690  *
691  * The data argument controls the behavior in case of the data types
692  * 	DATA_TYPE_STRING    	and
693  *	DATA_TYPE_STRING_ARRAY
694  * Is data == NULL then the size of the string(s) is excluded.
695  */
696 static int
697 i_get_value_size(data_type_t type, const void *data, uint_t nelem)
698 {
699 	uint64_t value_sz;
700 
701 	if (i_validate_type_nelem(type, nelem) != 0)
702 		return (-1);
703 
704 	/* Calculate required size for holding value */
705 	switch (type) {
706 	case DATA_TYPE_BOOLEAN:
707 		value_sz = 0;
708 		break;
709 	case DATA_TYPE_BOOLEAN_VALUE:
710 		value_sz = sizeof (boolean_t);
711 		break;
712 	case DATA_TYPE_BYTE:
713 		value_sz = sizeof (uchar_t);
714 		break;
715 	case DATA_TYPE_INT8:
716 		value_sz = sizeof (int8_t);
717 		break;
718 	case DATA_TYPE_UINT8:
719 		value_sz = sizeof (uint8_t);
720 		break;
721 	case DATA_TYPE_INT16:
722 		value_sz = sizeof (int16_t);
723 		break;
724 	case DATA_TYPE_UINT16:
725 		value_sz = sizeof (uint16_t);
726 		break;
727 	case DATA_TYPE_INT32:
728 		value_sz = sizeof (int32_t);
729 		break;
730 	case DATA_TYPE_UINT32:
731 		value_sz = sizeof (uint32_t);
732 		break;
733 	case DATA_TYPE_INT64:
734 		value_sz = sizeof (int64_t);
735 		break;
736 	case DATA_TYPE_UINT64:
737 		value_sz = sizeof (uint64_t);
738 		break;
739 	case DATA_TYPE_STRING:
740 		if (data == NULL)
741 			value_sz = 0;
742 		else
743 			value_sz = strlen(data) + 1;
744 		break;
745 	case DATA_TYPE_BOOLEAN_ARRAY:
746 		value_sz = (uint64_t)nelem * sizeof (boolean_t);
747 		break;
748 	case DATA_TYPE_BYTE_ARRAY:
749 		value_sz = (uint64_t)nelem * sizeof (uchar_t);
750 		break;
751 	case DATA_TYPE_INT8_ARRAY:
752 		value_sz = (uint64_t)nelem * sizeof (int8_t);
753 		break;
754 	case DATA_TYPE_UINT8_ARRAY:
755 		value_sz = (uint64_t)nelem * sizeof (uint8_t);
756 		break;
757 	case DATA_TYPE_INT16_ARRAY:
758 		value_sz = (uint64_t)nelem * sizeof (int16_t);
759 		break;
760 	case DATA_TYPE_UINT16_ARRAY:
761 		value_sz = (uint64_t)nelem * sizeof (uint16_t);
762 		break;
763 	case DATA_TYPE_INT32_ARRAY:
764 		value_sz = (uint64_t)nelem * sizeof (int32_t);
765 		break;
766 	case DATA_TYPE_UINT32_ARRAY:
767 		value_sz = (uint64_t)nelem * sizeof (uint32_t);
768 		break;
769 	case DATA_TYPE_INT64_ARRAY:
770 		value_sz = (uint64_t)nelem * sizeof (int64_t);
771 		break;
772 	case DATA_TYPE_UINT64_ARRAY:
773 		value_sz = (uint64_t)nelem * sizeof (uint64_t);
774 		break;
775 	case DATA_TYPE_STRING_ARRAY:
776 		value_sz = (uint64_t)nelem * sizeof (uint64_t);
777 
778 		if (data != NULL) {
779 			char *const *strs = data;
780 			uint_t i;
781 
782 			/* no alignment requirement for strings */
783 			for (i = 0; i < nelem; i++) {
784 				if (strs[i] == NULL)
785 					return (-1);
786 				value_sz += strlen(strs[i]) + 1;
787 			}
788 		}
789 		break;
790 	case DATA_TYPE_HRTIME:
791 		value_sz = sizeof (hrtime_t);
792 		break;
793 	case DATA_TYPE_NVLIST:
794 		value_sz = NV_ALIGN(sizeof (nvlist_t));
795 		break;
796 	case DATA_TYPE_NVLIST_ARRAY:
797 		value_sz = (uint64_t)nelem * sizeof (uint64_t) +
798 		    (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t));
799 		break;
800 	default:
801 		return (-1);
802 	}
803 
804 	return (value_sz > INT32_MAX ? -1 : (int)value_sz);
805 }
806 
807 static int
808 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl)
809 {
810 	nvpriv_t *priv;
811 	int err;
812 
813 	if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t)
814 	    nvl->nvl_priv)) == NULL)
815 		return (ENOMEM);
816 
817 	nvlist_init(emb_nvl, onvl->nvl_nvflag, priv);
818 
819 	if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) {
820 		nvlist_free(emb_nvl);
821 		emb_nvl->nvl_priv = 0;
822 	}
823 
824 	return (err);
825 }
826 
827 /*
828  * nvlist_add_common - Add new <name,value> pair to nvlist
829  */
830 static int
831 nvlist_add_common(nvlist_t *nvl, const char *name,
832     data_type_t type, uint_t nelem, const void *data)
833 {
834 	nvpair_t *nvp;
835 	uint_t i;
836 
837 	int nvp_sz, name_sz, value_sz;
838 	int err = 0;
839 
840 	if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
841 		return (EINVAL);
842 
843 	if (nelem != 0 && data == NULL)
844 		return (EINVAL);
845 
846 	/*
847 	 * Verify type and nelem and get the value size.
848 	 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
849 	 * is the size of the string(s) included.
850 	 */
851 	if ((value_sz = i_get_value_size(type, data, nelem)) < 0)
852 		return (EINVAL);
853 
854 	if (i_validate_nvpair_value(type, nelem, data) != 0)
855 		return (EINVAL);
856 
857 	/*
858 	 * If we're adding an nvlist or nvlist array, ensure that we are not
859 	 * adding the input nvlist to itself, which would cause recursion,
860 	 * and ensure that no NULL nvlist pointers are present.
861 	 */
862 	switch (type) {
863 	case DATA_TYPE_NVLIST:
864 		if (data == nvl || data == NULL)
865 			return (EINVAL);
866 		break;
867 	case DATA_TYPE_NVLIST_ARRAY: {
868 		nvlist_t **onvlp = (nvlist_t **)data;
869 		for (i = 0; i < nelem; i++) {
870 			if (onvlp[i] == nvl || onvlp[i] == NULL)
871 				return (EINVAL);
872 		}
873 		break;
874 	}
875 	default:
876 		break;
877 	}
878 
879 	/* calculate sizes of the nvpair elements and the nvpair itself */
880 	name_sz = strlen(name) + 1;
881 
882 	nvp_sz = NVP_SIZE_CALC(name_sz, value_sz);
883 
884 	if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL)
885 		return (ENOMEM);
886 
887 	ASSERT(nvp->nvp_size == nvp_sz);
888 	nvp->nvp_name_sz = name_sz;
889 	nvp->nvp_value_elem = nelem;
890 	nvp->nvp_type = type;
891 	bcopy(name, NVP_NAME(nvp), name_sz);
892 
893 	switch (type) {
894 	case DATA_TYPE_BOOLEAN:
895 		break;
896 	case DATA_TYPE_STRING_ARRAY: {
897 		char *const *strs = data;
898 		char *buf = NVP_VALUE(nvp);
899 		char **cstrs = (void *)buf;
900 
901 		/* skip pre-allocated space for pointer array */
902 		buf += nelem * sizeof (uint64_t);
903 		for (i = 0; i < nelem; i++) {
904 			int slen = strlen(strs[i]) + 1;
905 			bcopy(strs[i], buf, slen);
906 			cstrs[i] = buf;
907 			buf += slen;
908 		}
909 		break;
910 	}
911 	case DATA_TYPE_NVLIST: {
912 		nvlist_t *nnvl = EMBEDDED_NVL(nvp);
913 		nvlist_t *onvl = (nvlist_t *)data;
914 
915 		if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) {
916 			nvp_buf_free(nvl, nvp);
917 			return (err);
918 		}
919 		break;
920 	}
921 	case DATA_TYPE_NVLIST_ARRAY: {
922 		nvlist_t **onvlp = (nvlist_t **)data;
923 		nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
924 		nvlist_t *embedded = (nvlist_t *)
925 		    ((uintptr_t)nvlp + nelem * sizeof (uint64_t));
926 
927 		for (i = 0; i < nelem; i++) {
928 			if ((err = nvlist_copy_embedded(nvl,
929 			    onvlp[i], embedded)) != 0) {
930 				/*
931 				 * Free any successfully created lists
932 				 */
933 				nvpair_free(nvp);
934 				nvp_buf_free(nvl, nvp);
935 				return (err);
936 			}
937 
938 			nvlp[i] = embedded++;
939 		}
940 		break;
941 	}
942 	default:
943 		bcopy(data, NVP_VALUE(nvp), value_sz);
944 	}
945 
946 	/* if unique name, remove before add */
947 	if (nvl->nvl_nvflag & NV_UNIQUE_NAME)
948 		(void) nvlist_remove_all(nvl, name);
949 	else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE)
950 		(void) nvlist_remove(nvl, name, type);
951 
952 	nvp_buf_link(nvl, nvp);
953 
954 	return (0);
955 }
956 
957 int
958 nvlist_add_boolean(nvlist_t *nvl, const char *name)
959 {
960 	return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL));
961 }
962 
963 int
964 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val)
965 {
966 	return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val));
967 }
968 
969 int
970 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val)
971 {
972 	return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val));
973 }
974 
975 int
976 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val)
977 {
978 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val));
979 }
980 
981 int
982 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val)
983 {
984 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val));
985 }
986 
987 int
988 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val)
989 {
990 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val));
991 }
992 
993 int
994 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val)
995 {
996 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val));
997 }
998 
999 int
1000 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val)
1001 {
1002 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val));
1003 }
1004 
1005 int
1006 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val)
1007 {
1008 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val));
1009 }
1010 
1011 int
1012 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val)
1013 {
1014 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val));
1015 }
1016 
1017 int
1018 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val)
1019 {
1020 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val));
1021 }
1022 
1023 int
1024 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val)
1025 {
1026 	return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val));
1027 }
1028 
1029 int
1030 nvlist_add_boolean_array(nvlist_t *nvl, const char *name,
1031     boolean_t *a, uint_t n)
1032 {
1033 	return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a));
1034 }
1035 
1036 int
1037 nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *a, uint_t n)
1038 {
1039 	return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1040 }
1041 
1042 int
1043 nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *a, uint_t n)
1044 {
1045 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1046 }
1047 
1048 int
1049 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *a, uint_t n)
1050 {
1051 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1052 }
1053 
1054 int
1055 nvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *a, uint_t n)
1056 {
1057 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1058 }
1059 
1060 int
1061 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, uint16_t *a, uint_t n)
1062 {
1063 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1064 }
1065 
1066 int
1067 nvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *a, uint_t n)
1068 {
1069 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1070 }
1071 
1072 int
1073 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, uint32_t *a, uint_t n)
1074 {
1075 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1076 }
1077 
1078 int
1079 nvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *a, uint_t n)
1080 {
1081 	return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1082 }
1083 
1084 int
1085 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, uint64_t *a, uint_t n)
1086 {
1087 	return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1088 }
1089 
1090 int
1091 nvlist_add_string_array(nvlist_t *nvl, const char *name,
1092     char *const *a, uint_t n)
1093 {
1094 	return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1095 }
1096 
1097 int
1098 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val)
1099 {
1100 	return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val));
1101 }
1102 
1103 int
1104 nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val)
1105 {
1106 	return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val));
1107 }
1108 
1109 int
1110 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name, nvlist_t **a, uint_t n)
1111 {
1112 	return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1113 }
1114 
1115 /* reading name-value pairs */
1116 nvpair_t *
1117 nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1118 {
1119 	nvpriv_t *priv;
1120 	i_nvp_t *curr;
1121 
1122 	if (nvl == NULL ||
1123 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1124 		return (NULL);
1125 
1126 	curr = NVPAIR2I_NVP(nvp);
1127 
1128 	/*
1129 	 * Ensure that nvp is an valid pointer.
1130 	 */
1131 	if (nvp == NULL)
1132 		curr = priv->nvp_list;
1133 	else if (priv->nvp_curr == curr)
1134 		curr = curr->nvi_next;
1135 	else if (nvlist_contains_nvp(nvl, nvp) == 0)
1136 		curr = NULL;
1137 
1138 	priv->nvp_curr = curr;
1139 
1140 	return (curr != NULL ? &curr->nvi_nvp : NULL);
1141 }
1142 
1143 char *
1144 nvpair_name(nvpair_t *nvp)
1145 {
1146 	return (NVP_NAME(nvp));
1147 }
1148 
1149 data_type_t
1150 nvpair_type(nvpair_t *nvp)
1151 {
1152 	return (NVP_TYPE(nvp));
1153 }
1154 
1155 static int
1156 nvpair_value_common(nvpair_t *nvp, data_type_t type, uint_t *nelem, void *data)
1157 {
1158 	if (nvp == NULL || nvpair_type(nvp) != type)
1159 		return (EINVAL);
1160 
1161 	/*
1162 	 * For non-array types, we copy the data.
1163 	 * For array types (including string), we set a pointer.
1164 	 */
1165 	switch (type) {
1166 	case DATA_TYPE_BOOLEAN:
1167 		if (nelem != NULL)
1168 			*nelem = 0;
1169 		break;
1170 
1171 	case DATA_TYPE_BOOLEAN_VALUE:
1172 	case DATA_TYPE_BYTE:
1173 	case DATA_TYPE_INT8:
1174 	case DATA_TYPE_UINT8:
1175 	case DATA_TYPE_INT16:
1176 	case DATA_TYPE_UINT16:
1177 	case DATA_TYPE_INT32:
1178 	case DATA_TYPE_UINT32:
1179 	case DATA_TYPE_INT64:
1180 	case DATA_TYPE_UINT64:
1181 	case DATA_TYPE_HRTIME:
1182 		if (data == NULL)
1183 			return (EINVAL);
1184 		bcopy(NVP_VALUE(nvp), data,
1185 		    (size_t)i_get_value_size(type, NULL, 1));
1186 		if (nelem != NULL)
1187 			*nelem = 1;
1188 		break;
1189 
1190 	case DATA_TYPE_NVLIST:
1191 	case DATA_TYPE_STRING:
1192 		if (data == NULL)
1193 			return (EINVAL);
1194 		*(void **)data = (void *)NVP_VALUE(nvp);
1195 		if (nelem != NULL)
1196 			*nelem = 1;
1197 		break;
1198 
1199 	case DATA_TYPE_BOOLEAN_ARRAY:
1200 	case DATA_TYPE_BYTE_ARRAY:
1201 	case DATA_TYPE_INT8_ARRAY:
1202 	case DATA_TYPE_UINT8_ARRAY:
1203 	case DATA_TYPE_INT16_ARRAY:
1204 	case DATA_TYPE_UINT16_ARRAY:
1205 	case DATA_TYPE_INT32_ARRAY:
1206 	case DATA_TYPE_UINT32_ARRAY:
1207 	case DATA_TYPE_INT64_ARRAY:
1208 	case DATA_TYPE_UINT64_ARRAY:
1209 	case DATA_TYPE_STRING_ARRAY:
1210 	case DATA_TYPE_NVLIST_ARRAY:
1211 		if (nelem == NULL || data == NULL)
1212 			return (EINVAL);
1213 		if ((*nelem = NVP_NELEM(nvp)) != 0)
1214 			*(void **)data = (void *)NVP_VALUE(nvp);
1215 		else
1216 			*(void **)data = NULL;
1217 		break;
1218 
1219 	default:
1220 		return (ENOTSUP);
1221 	}
1222 
1223 	return (0);
1224 }
1225 
1226 static int
1227 nvlist_lookup_common(nvlist_t *nvl, const char *name, data_type_t type,
1228     uint_t *nelem, void *data)
1229 {
1230 	nvpriv_t *priv;
1231 	nvpair_t *nvp;
1232 	i_nvp_t *curr;
1233 
1234 	if (name == NULL || nvl == NULL ||
1235 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1236 		return (EINVAL);
1237 
1238 	if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE)))
1239 		return (ENOTSUP);
1240 
1241 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1242 		nvp = &curr->nvi_nvp;
1243 
1244 		if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type)
1245 			return (nvpair_value_common(nvp, type, nelem, data));
1246 	}
1247 
1248 	return (ENOENT);
1249 }
1250 
1251 int
1252 nvlist_lookup_boolean(nvlist_t *nvl, const char *name)
1253 {
1254 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL));
1255 }
1256 
1257 int
1258 nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name, boolean_t *val)
1259 {
1260 	return (nvlist_lookup_common(nvl, name,
1261 	    DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1262 }
1263 
1264 int
1265 nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t *val)
1266 {
1267 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val));
1268 }
1269 
1270 int
1271 nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t *val)
1272 {
1273 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val));
1274 }
1275 
1276 int
1277 nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t *val)
1278 {
1279 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val));
1280 }
1281 
1282 int
1283 nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t *val)
1284 {
1285 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val));
1286 }
1287 
1288 int
1289 nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t *val)
1290 {
1291 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val));
1292 }
1293 
1294 int
1295 nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t *val)
1296 {
1297 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val));
1298 }
1299 
1300 int
1301 nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t *val)
1302 {
1303 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val));
1304 }
1305 
1306 int
1307 nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t *val)
1308 {
1309 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val));
1310 }
1311 
1312 int
1313 nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t *val)
1314 {
1315 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val));
1316 }
1317 
1318 int
1319 nvlist_lookup_string(nvlist_t *nvl, const char *name, char **val)
1320 {
1321 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val));
1322 }
1323 
1324 int
1325 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val)
1326 {
1327 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val));
1328 }
1329 
1330 int
1331 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name,
1332     boolean_t **a, uint_t *n)
1333 {
1334 	return (nvlist_lookup_common(nvl, name,
1335 	    DATA_TYPE_BOOLEAN_ARRAY, n, a));
1336 }
1337 
1338 int
1339 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name,
1340     uchar_t **a, uint_t *n)
1341 {
1342 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1343 }
1344 
1345 int
1346 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n)
1347 {
1348 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1349 }
1350 
1351 int
1352 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name,
1353     uint8_t **a, uint_t *n)
1354 {
1355 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1356 }
1357 
1358 int
1359 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name,
1360     int16_t **a, uint_t *n)
1361 {
1362 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1363 }
1364 
1365 int
1366 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name,
1367     uint16_t **a, uint_t *n)
1368 {
1369 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1370 }
1371 
1372 int
1373 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name,
1374     int32_t **a, uint_t *n)
1375 {
1376 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1377 }
1378 
1379 int
1380 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name,
1381     uint32_t **a, uint_t *n)
1382 {
1383 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1384 }
1385 
1386 int
1387 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name,
1388     int64_t **a, uint_t *n)
1389 {
1390 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1391 }
1392 
1393 int
1394 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name,
1395     uint64_t **a, uint_t *n)
1396 {
1397 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1398 }
1399 
1400 int
1401 nvlist_lookup_string_array(nvlist_t *nvl, const char *name,
1402     char ***a, uint_t *n)
1403 {
1404 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1405 }
1406 
1407 int
1408 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name,
1409     nvlist_t ***a, uint_t *n)
1410 {
1411 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1412 }
1413 
1414 int
1415 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val)
1416 {
1417 	return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val));
1418 }
1419 
1420 int
1421 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...)
1422 {
1423 	va_list ap;
1424 	char *name;
1425 	int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0);
1426 	int ret = 0;
1427 
1428 	va_start(ap, flag);
1429 	while (ret == 0 && (name = va_arg(ap, char *)) != NULL) {
1430 		data_type_t type;
1431 		void *val;
1432 		uint_t *nelem;
1433 
1434 		switch (type = va_arg(ap, data_type_t)) {
1435 		case DATA_TYPE_BOOLEAN:
1436 			ret = nvlist_lookup_common(nvl, name, type, NULL, NULL);
1437 			break;
1438 
1439 		case DATA_TYPE_BOOLEAN_VALUE:
1440 		case DATA_TYPE_BYTE:
1441 		case DATA_TYPE_INT8:
1442 		case DATA_TYPE_UINT8:
1443 		case DATA_TYPE_INT16:
1444 		case DATA_TYPE_UINT16:
1445 		case DATA_TYPE_INT32:
1446 		case DATA_TYPE_UINT32:
1447 		case DATA_TYPE_INT64:
1448 		case DATA_TYPE_UINT64:
1449 		case DATA_TYPE_HRTIME:
1450 		case DATA_TYPE_STRING:
1451 		case DATA_TYPE_NVLIST:
1452 			val = va_arg(ap, void *);
1453 			ret = nvlist_lookup_common(nvl, name, type, NULL, val);
1454 			break;
1455 
1456 		case DATA_TYPE_BYTE_ARRAY:
1457 		case DATA_TYPE_BOOLEAN_ARRAY:
1458 		case DATA_TYPE_INT8_ARRAY:
1459 		case DATA_TYPE_UINT8_ARRAY:
1460 		case DATA_TYPE_INT16_ARRAY:
1461 		case DATA_TYPE_UINT16_ARRAY:
1462 		case DATA_TYPE_INT32_ARRAY:
1463 		case DATA_TYPE_UINT32_ARRAY:
1464 		case DATA_TYPE_INT64_ARRAY:
1465 		case DATA_TYPE_UINT64_ARRAY:
1466 		case DATA_TYPE_STRING_ARRAY:
1467 		case DATA_TYPE_NVLIST_ARRAY:
1468 			val = va_arg(ap, void *);
1469 			nelem = va_arg(ap, uint_t *);
1470 			ret = nvlist_lookup_common(nvl, name, type, nelem, val);
1471 			break;
1472 
1473 		default:
1474 			ret = EINVAL;
1475 		}
1476 
1477 		if (ret == ENOENT && noentok)
1478 			ret = 0;
1479 	}
1480 	va_end(ap);
1481 
1482 	return (ret);
1483 }
1484 
1485 int
1486 nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret)
1487 {
1488 	nvpriv_t *priv;
1489 	nvpair_t *nvp;
1490 	i_nvp_t *curr;
1491 
1492 	if (name == NULL || nvl == NULL ||
1493 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1494 		return (EINVAL);
1495 
1496 	if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME))
1497 		return (ENOTSUP);
1498 
1499 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1500 		nvp = &curr->nvi_nvp;
1501 
1502 		if (strcmp(name, NVP_NAME(nvp)) == 0) {
1503 			*ret = nvp;
1504 			return (0);
1505 		}
1506 	}
1507 
1508 	return (ENOENT);
1509 }
1510 
1511 boolean_t
1512 nvlist_exists(nvlist_t *nvl, const char *name)
1513 {
1514 	nvpriv_t *priv;
1515 	nvpair_t *nvp;
1516 	i_nvp_t *curr;
1517 
1518 	if (name == NULL || nvl == NULL ||
1519 	    (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1520 		return (B_FALSE);
1521 
1522 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1523 		nvp = &curr->nvi_nvp;
1524 
1525 		if (strcmp(name, NVP_NAME(nvp)) == 0)
1526 			return (B_TRUE);
1527 	}
1528 
1529 	return (B_FALSE);
1530 }
1531 
1532 int
1533 nvpair_value_boolean_value(nvpair_t *nvp, boolean_t *val)
1534 {
1535 	return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1536 }
1537 
1538 int
1539 nvpair_value_byte(nvpair_t *nvp, uchar_t *val)
1540 {
1541 	return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val));
1542 }
1543 
1544 int
1545 nvpair_value_int8(nvpair_t *nvp, int8_t *val)
1546 {
1547 	return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val));
1548 }
1549 
1550 int
1551 nvpair_value_uint8(nvpair_t *nvp, uint8_t *val)
1552 {
1553 	return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val));
1554 }
1555 
1556 int
1557 nvpair_value_int16(nvpair_t *nvp, int16_t *val)
1558 {
1559 	return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val));
1560 }
1561 
1562 int
1563 nvpair_value_uint16(nvpair_t *nvp, uint16_t *val)
1564 {
1565 	return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val));
1566 }
1567 
1568 int
1569 nvpair_value_int32(nvpair_t *nvp, int32_t *val)
1570 {
1571 	return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val));
1572 }
1573 
1574 int
1575 nvpair_value_uint32(nvpair_t *nvp, uint32_t *val)
1576 {
1577 	return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val));
1578 }
1579 
1580 int
1581 nvpair_value_int64(nvpair_t *nvp, int64_t *val)
1582 {
1583 	return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val));
1584 }
1585 
1586 int
1587 nvpair_value_uint64(nvpair_t *nvp, uint64_t *val)
1588 {
1589 	return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val));
1590 }
1591 
1592 int
1593 nvpair_value_string(nvpair_t *nvp, char **val)
1594 {
1595 	return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val));
1596 }
1597 
1598 int
1599 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val)
1600 {
1601 	return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val));
1602 }
1603 
1604 int
1605 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem)
1606 {
1607 	return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val));
1608 }
1609 
1610 int
1611 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem)
1612 {
1613 	return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val));
1614 }
1615 
1616 int
1617 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem)
1618 {
1619 	return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val));
1620 }
1621 
1622 int
1623 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem)
1624 {
1625 	return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val));
1626 }
1627 
1628 int
1629 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem)
1630 {
1631 	return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val));
1632 }
1633 
1634 int
1635 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem)
1636 {
1637 	return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val));
1638 }
1639 
1640 int
1641 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem)
1642 {
1643 	return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val));
1644 }
1645 
1646 int
1647 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem)
1648 {
1649 	return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val));
1650 }
1651 
1652 int
1653 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem)
1654 {
1655 	return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val));
1656 }
1657 
1658 int
1659 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem)
1660 {
1661 	return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val));
1662 }
1663 
1664 int
1665 nvpair_value_string_array(nvpair_t *nvp, char ***val, uint_t *nelem)
1666 {
1667 	return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val));
1668 }
1669 
1670 int
1671 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem)
1672 {
1673 	return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val));
1674 }
1675 
1676 int
1677 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val)
1678 {
1679 	return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val));
1680 }
1681 
1682 /*
1683  * Add specified pair to the list.
1684  */
1685 int
1686 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1687 {
1688 	if (nvl == NULL || nvp == NULL)
1689 		return (EINVAL);
1690 
1691 	return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp),
1692 	    NVP_NELEM(nvp), NVP_VALUE(nvp)));
1693 }
1694 
1695 /*
1696  * Merge the supplied nvlists and put the result in dst.
1697  * The merged list will contain all names specified in both lists,
1698  * the values are taken from nvl in the case of duplicates.
1699  * Return 0 on success.
1700  */
1701 /*ARGSUSED*/
1702 int
1703 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag)
1704 {
1705 	if (nvl == NULL || dst == NULL)
1706 		return (EINVAL);
1707 
1708 	if (dst != nvl)
1709 		return (nvlist_copy_pairs(nvl, dst));
1710 
1711 	return (0);
1712 }
1713 
1714 /*
1715  * Encoding related routines
1716  */
1717 #define	NVS_OP_ENCODE	0
1718 #define	NVS_OP_DECODE	1
1719 #define	NVS_OP_GETSIZE	2
1720 
1721 typedef struct nvs_ops nvs_ops_t;
1722 
1723 typedef struct {
1724 	int		nvs_op;
1725 	const nvs_ops_t	*nvs_ops;
1726 	void		*nvs_private;
1727 	nvpriv_t	*nvs_priv;
1728 } nvstream_t;
1729 
1730 /*
1731  * nvs operations are:
1732  *   - nvs_nvlist
1733  *     encoding / decoding of a nvlist header (nvlist_t)
1734  *     calculates the size used for header and end detection
1735  *
1736  *   - nvs_nvpair
1737  *     responsible for the first part of encoding / decoding of an nvpair
1738  *     calculates the decoded size of an nvpair
1739  *
1740  *   - nvs_nvp_op
1741  *     second part of encoding / decoding of an nvpair
1742  *
1743  *   - nvs_nvp_size
1744  *     calculates the encoding size of an nvpair
1745  *
1746  *   - nvs_nvl_fini
1747  *     encodes the end detection mark (zeros).
1748  */
1749 struct nvs_ops {
1750 	int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *);
1751 	int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *);
1752 	int (*nvs_nvp_op)(nvstream_t *, nvpair_t *);
1753 	int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *);
1754 	int (*nvs_nvl_fini)(nvstream_t *);
1755 };
1756 
1757 typedef struct {
1758 	char	nvh_encoding;	/* nvs encoding method */
1759 	char	nvh_endian;	/* nvs endian */
1760 	char	nvh_reserved1;	/* reserved for future use */
1761 	char	nvh_reserved2;	/* reserved for future use */
1762 } nvs_header_t;
1763 
1764 static int
1765 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl)
1766 {
1767 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
1768 	i_nvp_t *curr;
1769 
1770 	/*
1771 	 * Walk nvpair in list and encode each nvpair
1772 	 */
1773 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
1774 		if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0)
1775 			return (EFAULT);
1776 
1777 	return (nvs->nvs_ops->nvs_nvl_fini(nvs));
1778 }
1779 
1780 static int
1781 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl)
1782 {
1783 	nvpair_t *nvp;
1784 	size_t nvsize;
1785 	int err;
1786 
1787 	/*
1788 	 * Get decoded size of next pair in stream, alloc
1789 	 * memory for nvpair_t, then decode the nvpair
1790 	 */
1791 	while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) {
1792 		if (nvsize == 0) /* end of list */
1793 			break;
1794 
1795 		/* make sure len makes sense */
1796 		if (nvsize < NVP_SIZE_CALC(1, 0))
1797 			return (EFAULT);
1798 
1799 		if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL)
1800 			return (ENOMEM);
1801 
1802 		if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) {
1803 			nvp_buf_free(nvl, nvp);
1804 			return (err);
1805 		}
1806 
1807 		if (i_validate_nvpair(nvp) != 0) {
1808 			nvpair_free(nvp);
1809 			nvp_buf_free(nvl, nvp);
1810 			return (EFAULT);
1811 		}
1812 
1813 		nvp_buf_link(nvl, nvp);
1814 	}
1815 	return (err);
1816 }
1817 
1818 static int
1819 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
1820 {
1821 	nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
1822 	i_nvp_t *curr;
1823 	uint64_t nvsize = *buflen;
1824 	size_t size;
1825 
1826 	/*
1827 	 * Get encoded size of nvpairs in nvlist
1828 	 */
1829 	for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1830 		if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0)
1831 			return (EINVAL);
1832 
1833 		if ((nvsize += size) > INT32_MAX)
1834 			return (EINVAL);
1835 	}
1836 
1837 	*buflen = nvsize;
1838 	return (0);
1839 }
1840 
1841 static int
1842 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
1843 {
1844 	int err;
1845 
1846 	if (nvl->nvl_priv == 0)
1847 		return (EFAULT);
1848 
1849 	/*
1850 	 * Perform the operation, starting with header, then each nvpair
1851 	 */
1852 	if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0)
1853 		return (err);
1854 
1855 	switch (nvs->nvs_op) {
1856 	case NVS_OP_ENCODE:
1857 		err = nvs_encode_pairs(nvs, nvl);
1858 		break;
1859 
1860 	case NVS_OP_DECODE:
1861 		err = nvs_decode_pairs(nvs, nvl);
1862 		break;
1863 
1864 	case NVS_OP_GETSIZE:
1865 		err = nvs_getsize_pairs(nvs, nvl, buflen);
1866 		break;
1867 
1868 	default:
1869 		err = EINVAL;
1870 	}
1871 
1872 	return (err);
1873 }
1874 
1875 static int
1876 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded)
1877 {
1878 	switch (nvs->nvs_op) {
1879 	case NVS_OP_ENCODE:
1880 		return (nvs_operation(nvs, embedded, NULL));
1881 
1882 	case NVS_OP_DECODE: {
1883 		nvpriv_t *priv;
1884 		int err;
1885 
1886 		if (embedded->nvl_version != NV_VERSION)
1887 			return (ENOTSUP);
1888 
1889 		if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL)
1890 			return (ENOMEM);
1891 
1892 		nvlist_init(embedded, embedded->nvl_nvflag, priv);
1893 
1894 		if ((err = nvs_operation(nvs, embedded, NULL)) != 0)
1895 			nvlist_free(embedded);
1896 		return (err);
1897 	}
1898 	default:
1899 		break;
1900 	}
1901 
1902 	return (EINVAL);
1903 }
1904 
1905 static int
1906 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
1907 {
1908 	size_t nelem = NVP_NELEM(nvp);
1909 	nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
1910 	int i;
1911 
1912 	switch (nvs->nvs_op) {
1913 	case NVS_OP_ENCODE:
1914 		for (i = 0; i < nelem; i++)
1915 			if (nvs_embedded(nvs, nvlp[i]) != 0)
1916 				return (EFAULT);
1917 		break;
1918 
1919 	case NVS_OP_DECODE: {
1920 		size_t len = nelem * sizeof (uint64_t);
1921 		nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len);
1922 
1923 		bzero(nvlp, len);	/* don't trust packed data */
1924 		for (i = 0; i < nelem; i++) {
1925 			if (nvs_embedded(nvs, embedded) != 0) {
1926 				nvpair_free(nvp);
1927 				return (EFAULT);
1928 			}
1929 
1930 			nvlp[i] = embedded++;
1931 		}
1932 		break;
1933 	}
1934 	case NVS_OP_GETSIZE: {
1935 		uint64_t nvsize = 0;
1936 
1937 		for (i = 0; i < nelem; i++) {
1938 			size_t nvp_sz = 0;
1939 
1940 			if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0)
1941 				return (EINVAL);
1942 
1943 			if ((nvsize += nvp_sz) > INT32_MAX)
1944 				return (EINVAL);
1945 		}
1946 
1947 		*size = nvsize;
1948 		break;
1949 	}
1950 	default:
1951 		return (EINVAL);
1952 	}
1953 
1954 	return (0);
1955 }
1956 
1957 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *);
1958 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *);
1959 
1960 /*
1961  * Common routine for nvlist operations:
1962  * encode, decode, getsize (encoded size).
1963  */
1964 static int
1965 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding,
1966     int nvs_op)
1967 {
1968 	int err = 0;
1969 	nvstream_t nvs;
1970 	int nvl_endian;
1971 #ifdef	_LITTLE_ENDIAN
1972 	int host_endian = 1;
1973 #else
1974 	int host_endian = 0;
1975 #endif	/* _LITTLE_ENDIAN */
1976 	nvs_header_t *nvh = (void *)buf;
1977 
1978 	if (buflen == NULL || nvl == NULL ||
1979 	    (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1980 		return (EINVAL);
1981 
1982 	nvs.nvs_op = nvs_op;
1983 
1984 	/*
1985 	 * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and
1986 	 * a buffer is allocated.  The first 4 bytes in the buffer are
1987 	 * used for encoding method and host endian.
1988 	 */
1989 	switch (nvs_op) {
1990 	case NVS_OP_ENCODE:
1991 		if (buf == NULL || *buflen < sizeof (nvs_header_t))
1992 			return (EINVAL);
1993 
1994 		nvh->nvh_encoding = encoding;
1995 		nvh->nvh_endian = nvl_endian = host_endian;
1996 		nvh->nvh_reserved1 = 0;
1997 		nvh->nvh_reserved2 = 0;
1998 		break;
1999 
2000 	case NVS_OP_DECODE:
2001 		if (buf == NULL || *buflen < sizeof (nvs_header_t))
2002 			return (EINVAL);
2003 
2004 		/* get method of encoding from first byte */
2005 		encoding = nvh->nvh_encoding;
2006 		nvl_endian = nvh->nvh_endian;
2007 		break;
2008 
2009 	case NVS_OP_GETSIZE:
2010 		nvl_endian = host_endian;
2011 
2012 		/*
2013 		 * add the size for encoding
2014 		 */
2015 		*buflen = sizeof (nvs_header_t);
2016 		break;
2017 
2018 	default:
2019 		return (ENOTSUP);
2020 	}
2021 
2022 	/*
2023 	 * Create an nvstream with proper encoding method
2024 	 */
2025 	switch (encoding) {
2026 	case NV_ENCODE_NATIVE:
2027 		/*
2028 		 * check endianness, in case we are unpacking
2029 		 * from a file
2030 		 */
2031 		if (nvl_endian != host_endian)
2032 			return (ENOTSUP);
2033 		err = nvs_native(&nvs, nvl, buf, buflen);
2034 		break;
2035 	case NV_ENCODE_XDR:
2036 		err = nvs_xdr(&nvs, nvl, buf, buflen);
2037 		break;
2038 	default:
2039 		err = ENOTSUP;
2040 		break;
2041 	}
2042 
2043 	return (err);
2044 }
2045 
2046 int
2047 nvlist_size(nvlist_t *nvl, size_t *size, int encoding)
2048 {
2049 	return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE));
2050 }
2051 
2052 /*
2053  * Pack nvlist into contiguous memory
2054  */
2055 /*ARGSUSED1*/
2056 int
2057 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2058     int kmflag)
2059 {
2060 #if defined(_KERNEL) && !defined(_BOOT)
2061 	return (nvlist_xpack(nvl, bufp, buflen, encoding,
2062 	    (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
2063 #else
2064 	return (nvlist_xpack(nvl, bufp, buflen, encoding, nv_alloc_nosleep));
2065 #endif
2066 }
2067 
2068 int
2069 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2070     nv_alloc_t *nva)
2071 {
2072 	nvpriv_t nvpriv;
2073 	size_t alloc_size;
2074 	char *buf;
2075 	int err;
2076 
2077 	if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL)
2078 		return (EINVAL);
2079 
2080 	if (*bufp != NULL)
2081 		return (nvlist_common(nvl, *bufp, buflen, encoding,
2082 		    NVS_OP_ENCODE));
2083 
2084 	/*
2085 	 * Here is a difficult situation:
2086 	 * 1. The nvlist has fixed allocator properties.
2087 	 *    All other nvlist routines (like nvlist_add_*, ...) use
2088 	 *    these properties.
2089 	 * 2. When using nvlist_pack() the user can specify his own
2090 	 *    allocator properties (e.g. by using KM_NOSLEEP).
2091 	 *
2092 	 * We use the user specified properties (2). A clearer solution
2093 	 * will be to remove the kmflag from nvlist_pack(), but we will
2094 	 * not change the interface.
2095 	 */
2096 	nv_priv_init(&nvpriv, nva, 0);
2097 
2098 	if (err = nvlist_size(nvl, &alloc_size, encoding))
2099 		return (err);
2100 
2101 	if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL)
2102 		return (ENOMEM);
2103 
2104 	if ((err = nvlist_common(nvl, buf, &alloc_size, encoding,
2105 	    NVS_OP_ENCODE)) != 0) {
2106 		nv_mem_free(&nvpriv, buf, alloc_size);
2107 	} else {
2108 		*buflen = alloc_size;
2109 		*bufp = buf;
2110 	}
2111 
2112 	return (err);
2113 }
2114 
2115 /*
2116  * Unpack buf into an nvlist_t
2117  */
2118 /*ARGSUSED1*/
2119 int
2120 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
2121 {
2122 #if defined(_KERNEL) && !defined(_BOOT)
2123 	return (nvlist_xunpack(buf, buflen, nvlp,
2124 	    (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
2125 #else
2126 	return (nvlist_xunpack(buf, buflen, nvlp, nv_alloc_nosleep));
2127 #endif
2128 }
2129 
2130 int
2131 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva)
2132 {
2133 	nvlist_t *nvl;
2134 	int err;
2135 
2136 	if (nvlp == NULL)
2137 		return (EINVAL);
2138 
2139 	if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0)
2140 		return (err);
2141 
2142 	if ((err = nvlist_common(nvl, buf, &buflen, 0, NVS_OP_DECODE)) != 0)
2143 		nvlist_free(nvl);
2144 	else
2145 		*nvlp = nvl;
2146 
2147 	return (err);
2148 }
2149 
2150 /*
2151  * Native encoding functions
2152  */
2153 typedef struct {
2154 	/*
2155 	 * This structure is used when decoding a packed nvpair in
2156 	 * the native format.  n_base points to a buffer containing the
2157 	 * packed nvpair.  n_end is a pointer to the end of the buffer.
2158 	 * (n_end actually points to the first byte past the end of the
2159 	 * buffer.)  n_curr is a pointer that lies between n_base and n_end.
2160 	 * It points to the current data that we are decoding.
2161 	 * The amount of data left in the buffer is equal to n_end - n_curr.
2162 	 * n_flag is used to recognize a packed embedded list.
2163 	 */
2164 	caddr_t n_base;
2165 	caddr_t n_end;
2166 	caddr_t n_curr;
2167 	uint_t  n_flag;
2168 } nvs_native_t;
2169 
2170 static int
2171 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf,
2172     size_t buflen)
2173 {
2174 	switch (nvs->nvs_op) {
2175 	case NVS_OP_ENCODE:
2176 	case NVS_OP_DECODE:
2177 		nvs->nvs_private = native;
2178 		native->n_curr = native->n_base = buf;
2179 		native->n_end = buf + buflen;
2180 		native->n_flag = 0;
2181 		return (0);
2182 
2183 	case NVS_OP_GETSIZE:
2184 		nvs->nvs_private = native;
2185 		native->n_curr = native->n_base = native->n_end = NULL;
2186 		native->n_flag = 0;
2187 		return (0);
2188 	default:
2189 		return (EINVAL);
2190 	}
2191 }
2192 
2193 /*ARGSUSED*/
2194 static void
2195 nvs_native_destroy(nvstream_t *nvs)
2196 {
2197 }
2198 
2199 static int
2200 native_cp(nvstream_t *nvs, void *buf, size_t size)
2201 {
2202 	nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2203 
2204 	if (native->n_curr + size > native->n_end)
2205 		return (EFAULT);
2206 
2207 	/*
2208 	 * The bcopy() below eliminates alignment requirement
2209 	 * on the buffer (stream) and is preferred over direct access.
2210 	 */
2211 	switch (nvs->nvs_op) {
2212 	case NVS_OP_ENCODE:
2213 		bcopy(buf, native->n_curr, size);
2214 		break;
2215 	case NVS_OP_DECODE:
2216 		bcopy(native->n_curr, buf, size);
2217 		break;
2218 	default:
2219 		return (EINVAL);
2220 	}
2221 
2222 	native->n_curr += size;
2223 	return (0);
2224 }
2225 
2226 /*
2227  * operate on nvlist_t header
2228  */
2229 static int
2230 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2231 {
2232 	nvs_native_t *native = nvs->nvs_private;
2233 
2234 	switch (nvs->nvs_op) {
2235 	case NVS_OP_ENCODE:
2236 	case NVS_OP_DECODE:
2237 		if (native->n_flag)
2238 			return (0);	/* packed embedded list */
2239 
2240 		native->n_flag = 1;
2241 
2242 		/* copy version and nvflag of the nvlist_t */
2243 		if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 ||
2244 		    native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0)
2245 			return (EFAULT);
2246 
2247 		return (0);
2248 
2249 	case NVS_OP_GETSIZE:
2250 		/*
2251 		 * if calculate for packed embedded list
2252 		 * 	4 for end of the embedded list
2253 		 * else
2254 		 * 	2 * sizeof (int32_t) for nvl_version and nvl_nvflag
2255 		 * 	and 4 for end of the entire list
2256 		 */
2257 		if (native->n_flag) {
2258 			*size += 4;
2259 		} else {
2260 			native->n_flag = 1;
2261 			*size += 2 * sizeof (int32_t) + 4;
2262 		}
2263 
2264 		return (0);
2265 
2266 	default:
2267 		return (EINVAL);
2268 	}
2269 }
2270 
2271 static int
2272 nvs_native_nvl_fini(nvstream_t *nvs)
2273 {
2274 	if (nvs->nvs_op == NVS_OP_ENCODE) {
2275 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2276 		/*
2277 		 * Add 4 zero bytes at end of nvlist. They are used
2278 		 * for end detection by the decode routine.
2279 		 */
2280 		if (native->n_curr + sizeof (int) > native->n_end)
2281 			return (EFAULT);
2282 
2283 		bzero(native->n_curr, sizeof (int));
2284 		native->n_curr += sizeof (int);
2285 	}
2286 
2287 	return (0);
2288 }
2289 
2290 static int
2291 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp)
2292 {
2293 	if (nvs->nvs_op == NVS_OP_ENCODE) {
2294 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2295 		nvlist_t *packed = (void *)
2296 		    (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2297 		/*
2298 		 * Null out the pointer that is meaningless in the packed
2299 		 * structure. The address may not be aligned, so we have
2300 		 * to use bzero.
2301 		 */
2302 		bzero(&packed->nvl_priv, sizeof (packed->nvl_priv));
2303 	}
2304 
2305 	return (nvs_embedded(nvs, EMBEDDED_NVL(nvp)));
2306 }
2307 
2308 static int
2309 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp)
2310 {
2311 	if (nvs->nvs_op == NVS_OP_ENCODE) {
2312 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2313 		char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp);
2314 		size_t len = NVP_NELEM(nvp) * sizeof (uint64_t);
2315 		nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len);
2316 		int i;
2317 		/*
2318 		 * Null out pointers that are meaningless in the packed
2319 		 * structure. The addresses may not be aligned, so we have
2320 		 * to use bzero.
2321 		 */
2322 		bzero(value, len);
2323 
2324 		for (i = 0; i < NVP_NELEM(nvp); i++, packed++)
2325 			/*
2326 			 * Null out the pointer that is meaningless in the
2327 			 * packed structure. The address may not be aligned,
2328 			 * so we have to use bzero.
2329 			 */
2330 			bzero(&packed->nvl_priv, sizeof (packed->nvl_priv));
2331 	}
2332 
2333 	return (nvs_embedded_nvl_array(nvs, nvp, NULL));
2334 }
2335 
2336 static void
2337 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp)
2338 {
2339 	switch (nvs->nvs_op) {
2340 	case NVS_OP_ENCODE: {
2341 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2342 		uint64_t *strp = (void *)
2343 		    (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2344 		/*
2345 		 * Null out pointers that are meaningless in the packed
2346 		 * structure. The addresses may not be aligned, so we have
2347 		 * to use bzero.
2348 		 */
2349 		bzero(strp, NVP_NELEM(nvp) * sizeof (uint64_t));
2350 		break;
2351 	}
2352 	case NVS_OP_DECODE: {
2353 		char **strp = (void *)NVP_VALUE(nvp);
2354 		char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t));
2355 		int i;
2356 
2357 		for (i = 0; i < NVP_NELEM(nvp); i++) {
2358 			strp[i] = buf;
2359 			buf += strlen(buf) + 1;
2360 		}
2361 		break;
2362 	}
2363 	}
2364 }
2365 
2366 static int
2367 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2368 {
2369 	data_type_t type;
2370 	int value_sz;
2371 	int ret = 0;
2372 
2373 	/*
2374 	 * We do the initial bcopy of the data before we look at
2375 	 * the nvpair type, because when we're decoding, we won't
2376 	 * have the correct values for the pair until we do the bcopy.
2377 	 */
2378 	switch (nvs->nvs_op) {
2379 	case NVS_OP_ENCODE:
2380 	case NVS_OP_DECODE:
2381 		if (native_cp(nvs, nvp, nvp->nvp_size) != 0)
2382 			return (EFAULT);
2383 		break;
2384 	default:
2385 		return (EINVAL);
2386 	}
2387 
2388 	/* verify nvp_name_sz, check the name string length */
2389 	if (i_validate_nvpair_name(nvp) != 0)
2390 		return (EFAULT);
2391 
2392 	type = NVP_TYPE(nvp);
2393 
2394 	/*
2395 	 * Verify type and nelem and get the value size.
2396 	 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2397 	 * is the size of the string(s) excluded.
2398 	 */
2399 	if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0)
2400 		return (EFAULT);
2401 
2402 	if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size)
2403 		return (EFAULT);
2404 
2405 	switch (type) {
2406 	case DATA_TYPE_NVLIST:
2407 		ret = nvpair_native_embedded(nvs, nvp);
2408 		break;
2409 	case DATA_TYPE_NVLIST_ARRAY:
2410 		ret = nvpair_native_embedded_array(nvs, nvp);
2411 		break;
2412 	case DATA_TYPE_STRING_ARRAY:
2413 		nvpair_native_string_array(nvs, nvp);
2414 		break;
2415 	default:
2416 		break;
2417 	}
2418 
2419 	return (ret);
2420 }
2421 
2422 static int
2423 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2424 {
2425 	uint64_t nvp_sz = nvp->nvp_size;
2426 
2427 	switch (NVP_TYPE(nvp)) {
2428 	case DATA_TYPE_NVLIST: {
2429 		size_t nvsize = 0;
2430 
2431 		if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0)
2432 			return (EINVAL);
2433 
2434 		nvp_sz += nvsize;
2435 		break;
2436 	}
2437 	case DATA_TYPE_NVLIST_ARRAY: {
2438 		size_t nvsize;
2439 
2440 		if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0)
2441 			return (EINVAL);
2442 
2443 		nvp_sz += nvsize;
2444 		break;
2445 	}
2446 	default:
2447 		break;
2448 	}
2449 
2450 	if (nvp_sz > INT32_MAX)
2451 		return (EINVAL);
2452 
2453 	*size = nvp_sz;
2454 
2455 	return (0);
2456 }
2457 
2458 static int
2459 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2460 {
2461 	switch (nvs->nvs_op) {
2462 	case NVS_OP_ENCODE:
2463 		return (nvs_native_nvp_op(nvs, nvp));
2464 
2465 	case NVS_OP_DECODE: {
2466 		nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2467 		int32_t decode_len;
2468 
2469 		/* try to read the size value from the stream */
2470 		if (native->n_curr + sizeof (int32_t) > native->n_end)
2471 			return (EFAULT);
2472 		bcopy(native->n_curr, &decode_len, sizeof (int32_t));
2473 
2474 		/* sanity check the size value */
2475 		if (decode_len < 0 ||
2476 		    decode_len > native->n_end - native->n_curr)
2477 			return (EFAULT);
2478 
2479 		*size = decode_len;
2480 
2481 		/*
2482 		 * If at the end of the stream then move the cursor
2483 		 * forward, otherwise nvpair_native_op() will read
2484 		 * the entire nvpair at the same cursor position.
2485 		 */
2486 		if (*size == 0)
2487 			native->n_curr += sizeof (int32_t);
2488 		break;
2489 	}
2490 
2491 	default:
2492 		return (EINVAL);
2493 	}
2494 
2495 	return (0);
2496 }
2497 
2498 static const nvs_ops_t nvs_native_ops = {
2499 	nvs_native_nvlist,
2500 	nvs_native_nvpair,
2501 	nvs_native_nvp_op,
2502 	nvs_native_nvp_size,
2503 	nvs_native_nvl_fini
2504 };
2505 
2506 static int
2507 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
2508 {
2509 	nvs_native_t native;
2510 	int err;
2511 
2512 	nvs->nvs_ops = &nvs_native_ops;
2513 
2514 	if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t),
2515 	    *buflen - sizeof (nvs_header_t))) != 0)
2516 		return (err);
2517 
2518 	err = nvs_operation(nvs, nvl, buflen);
2519 
2520 	nvs_native_destroy(nvs);
2521 
2522 	return (err);
2523 }
2524 
2525 /*
2526  * XDR encoding functions
2527  *
2528  * An xdr packed nvlist is encoded as:
2529  *
2530  *  - encoding methode and host endian (4 bytes)
2531  *  - nvl_version (4 bytes)
2532  *  - nvl_nvflag (4 bytes)
2533  *
2534  *  - encoded nvpairs, the format of one xdr encoded nvpair is:
2535  *	- encoded size of the nvpair (4 bytes)
2536  *	- decoded size of the nvpair (4 bytes)
2537  *	- name string, (4 + sizeof(NV_ALIGN4(string))
2538  *	  a string is coded as size (4 bytes) and data
2539  *	- data type (4 bytes)
2540  *	- number of elements in the nvpair (4 bytes)
2541  *	- data
2542  *
2543  *  - 2 zero's for end of the entire list (8 bytes)
2544  */
2545 static int
2546 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen)
2547 {
2548 	/* xdr data must be 4 byte aligned */
2549 	if ((ulong_t)buf % 4 != 0)
2550 		return (EFAULT);
2551 
2552 	switch (nvs->nvs_op) {
2553 	case NVS_OP_ENCODE:
2554 		xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE);
2555 		nvs->nvs_private = xdr;
2556 		return (0);
2557 	case NVS_OP_DECODE:
2558 		xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE);
2559 		nvs->nvs_private = xdr;
2560 		return (0);
2561 	case NVS_OP_GETSIZE:
2562 		nvs->nvs_private = NULL;
2563 		return (0);
2564 	default:
2565 		return (EINVAL);
2566 	}
2567 }
2568 
2569 static void
2570 nvs_xdr_destroy(nvstream_t *nvs)
2571 {
2572 	switch (nvs->nvs_op) {
2573 	case NVS_OP_ENCODE:
2574 	case NVS_OP_DECODE:
2575 		xdr_destroy((XDR *)nvs->nvs_private);
2576 		break;
2577 	default:
2578 		break;
2579 	}
2580 }
2581 
2582 static int
2583 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2584 {
2585 	switch (nvs->nvs_op) {
2586 	case NVS_OP_ENCODE:
2587 	case NVS_OP_DECODE: {
2588 		XDR 	*xdr = nvs->nvs_private;
2589 
2590 		if (!xdr_int(xdr, &nvl->nvl_version) ||
2591 		    !xdr_u_int(xdr, &nvl->nvl_nvflag))
2592 			return (EFAULT);
2593 		break;
2594 	}
2595 	case NVS_OP_GETSIZE: {
2596 		/*
2597 		 * 2 * 4 for nvl_version + nvl_nvflag
2598 		 * and 8 for end of the entire list
2599 		 */
2600 		*size += 2 * 4 + 8;
2601 		break;
2602 	}
2603 	default:
2604 		return (EINVAL);
2605 	}
2606 	return (0);
2607 }
2608 
2609 static int
2610 nvs_xdr_nvl_fini(nvstream_t *nvs)
2611 {
2612 	if (nvs->nvs_op == NVS_OP_ENCODE) {
2613 		XDR *xdr = nvs->nvs_private;
2614 		int zero = 0;
2615 
2616 		if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero))
2617 			return (EFAULT);
2618 	}
2619 
2620 	return (0);
2621 }
2622 
2623 /*
2624  * The format of xdr encoded nvpair is:
2625  * encode_size, decode_size, name string, data type, nelem, data
2626  */
2627 static int
2628 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2629 {
2630 	data_type_t type;
2631 	char	*buf;
2632 	char	*buf_end = (char *)nvp + nvp->nvp_size;
2633 	int	value_sz;
2634 	uint_t	nelem, buflen;
2635 	bool_t	ret = FALSE;
2636 	XDR	*xdr = nvs->nvs_private;
2637 
2638 	ASSERT(xdr != NULL && nvp != NULL);
2639 
2640 	/* name string */
2641 	if ((buf = NVP_NAME(nvp)) >= buf_end)
2642 		return (EFAULT);
2643 	buflen = buf_end - buf;
2644 
2645 	if (!xdr_string(xdr, &buf, buflen - 1))
2646 		return (EFAULT);
2647 	nvp->nvp_name_sz = strlen(buf) + 1;
2648 
2649 	/* type and nelem */
2650 	if (!xdr_int(xdr, (int *)&nvp->nvp_type) ||
2651 	    !xdr_int(xdr, &nvp->nvp_value_elem))
2652 		return (EFAULT);
2653 
2654 	type = NVP_TYPE(nvp);
2655 	nelem = nvp->nvp_value_elem;
2656 
2657 	/*
2658 	 * Verify type and nelem and get the value size.
2659 	 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2660 	 * is the size of the string(s) excluded.
2661 	 */
2662 	if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0)
2663 		return (EFAULT);
2664 
2665 	/* if there is no data to extract then return */
2666 	if (nelem == 0)
2667 		return (0);
2668 
2669 	/* value */
2670 	if ((buf = NVP_VALUE(nvp)) >= buf_end)
2671 		return (EFAULT);
2672 	buflen = buf_end - buf;
2673 
2674 	if (buflen < value_sz)
2675 		return (EFAULT);
2676 
2677 	switch (type) {
2678 	case DATA_TYPE_NVLIST:
2679 		if (nvs_embedded(nvs, (void *)buf) == 0)
2680 			return (0);
2681 		break;
2682 
2683 	case DATA_TYPE_NVLIST_ARRAY:
2684 		if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0)
2685 			return (0);
2686 		break;
2687 
2688 	case DATA_TYPE_BOOLEAN:
2689 		ret = TRUE;
2690 		break;
2691 
2692 	case DATA_TYPE_BYTE:
2693 	case DATA_TYPE_INT8:
2694 	case DATA_TYPE_UINT8:
2695 		ret = xdr_char(xdr, buf);
2696 		break;
2697 
2698 	case DATA_TYPE_INT16:
2699 		ret = xdr_short(xdr, (void *)buf);
2700 		break;
2701 
2702 	case DATA_TYPE_UINT16:
2703 		ret = xdr_u_short(xdr, (void *)buf);
2704 		break;
2705 
2706 	case DATA_TYPE_BOOLEAN_VALUE:
2707 	case DATA_TYPE_INT32:
2708 		ret = xdr_int(xdr, (void *)buf);
2709 		break;
2710 
2711 	case DATA_TYPE_UINT32:
2712 		ret = xdr_u_int(xdr, (void *)buf);
2713 		break;
2714 
2715 	case DATA_TYPE_INT64:
2716 		ret = xdr_longlong_t(xdr, (void *)buf);
2717 		break;
2718 
2719 	case DATA_TYPE_UINT64:
2720 		ret = xdr_u_longlong_t(xdr, (void *)buf);
2721 		break;
2722 
2723 	case DATA_TYPE_HRTIME:
2724 		/*
2725 		 * NOTE: must expose the definition of hrtime_t here
2726 		 */
2727 		ret = xdr_longlong_t(xdr, (void *)buf);
2728 		break;
2729 
2730 	case DATA_TYPE_STRING:
2731 		ret = xdr_string(xdr, &buf, buflen - 1);
2732 		break;
2733 
2734 	case DATA_TYPE_BYTE_ARRAY:
2735 		ret = xdr_opaque(xdr, buf, nelem);
2736 		break;
2737 
2738 	case DATA_TYPE_INT8_ARRAY:
2739 	case DATA_TYPE_UINT8_ARRAY:
2740 		ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t),
2741 		    (xdrproc_t)xdr_char);
2742 		break;
2743 
2744 	case DATA_TYPE_INT16_ARRAY:
2745 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t),
2746 		    sizeof (int16_t), (xdrproc_t)xdr_short);
2747 		break;
2748 
2749 	case DATA_TYPE_UINT16_ARRAY:
2750 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t),
2751 		    sizeof (uint16_t), (xdrproc_t)xdr_u_short);
2752 		break;
2753 
2754 	case DATA_TYPE_BOOLEAN_ARRAY:
2755 	case DATA_TYPE_INT32_ARRAY:
2756 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t),
2757 		    sizeof (int32_t), (xdrproc_t)xdr_int);
2758 		break;
2759 
2760 	case DATA_TYPE_UINT32_ARRAY:
2761 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t),
2762 		    sizeof (uint32_t), (xdrproc_t)xdr_u_int);
2763 		break;
2764 
2765 	case DATA_TYPE_INT64_ARRAY:
2766 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t),
2767 		    sizeof (int64_t), (xdrproc_t)xdr_longlong_t);
2768 		break;
2769 
2770 	case DATA_TYPE_UINT64_ARRAY:
2771 		ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t),
2772 		    sizeof (uint64_t), (xdrproc_t)xdr_u_longlong_t);
2773 		break;
2774 
2775 	case DATA_TYPE_STRING_ARRAY: {
2776 		size_t len = nelem * sizeof (uint64_t);
2777 		char **strp = (void *)buf;
2778 		int i;
2779 
2780 		if (nvs->nvs_op == NVS_OP_DECODE)
2781 			bzero(buf, len);	/* don't trust packed data */
2782 
2783 		for (i = 0; i < nelem; i++) {
2784 			if (buflen <= len)
2785 				return (EFAULT);
2786 
2787 			buf += len;
2788 			buflen -= len;
2789 
2790 			if (xdr_string(xdr, &buf, buflen - 1) != TRUE)
2791 				return (EFAULT);
2792 
2793 			if (nvs->nvs_op == NVS_OP_DECODE)
2794 				strp[i] = buf;
2795 			len = strlen(buf) + 1;
2796 		}
2797 		ret = TRUE;
2798 		break;
2799 	}
2800 	default:
2801 		break;
2802 	}
2803 
2804 	return (ret == TRUE ? 0 : EFAULT);
2805 }
2806 
2807 static int
2808 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2809 {
2810 	data_type_t type = NVP_TYPE(nvp);
2811 	/*
2812 	 * encode_size + decode_size + name string size + data type + nelem
2813 	 * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp)))
2814 	 */
2815 	uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4;
2816 
2817 	switch (type) {
2818 	case DATA_TYPE_BOOLEAN:
2819 		break;
2820 
2821 	case DATA_TYPE_BOOLEAN_VALUE:
2822 	case DATA_TYPE_BYTE:
2823 	case DATA_TYPE_INT8:
2824 	case DATA_TYPE_UINT8:
2825 	case DATA_TYPE_INT16:
2826 	case DATA_TYPE_UINT16:
2827 	case DATA_TYPE_INT32:
2828 	case DATA_TYPE_UINT32:
2829 		nvp_sz += 4;	/* 4 is the minimum xdr unit */
2830 		break;
2831 
2832 	case DATA_TYPE_INT64:
2833 	case DATA_TYPE_UINT64:
2834 	case DATA_TYPE_HRTIME:
2835 		nvp_sz += 8;
2836 		break;
2837 
2838 	case DATA_TYPE_STRING:
2839 		nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp)));
2840 		break;
2841 
2842 	case DATA_TYPE_BYTE_ARRAY:
2843 		nvp_sz += NV_ALIGN4(NVP_NELEM(nvp));
2844 		break;
2845 
2846 	case DATA_TYPE_BOOLEAN_ARRAY:
2847 	case DATA_TYPE_INT8_ARRAY:
2848 	case DATA_TYPE_UINT8_ARRAY:
2849 	case DATA_TYPE_INT16_ARRAY:
2850 	case DATA_TYPE_UINT16_ARRAY:
2851 	case DATA_TYPE_INT32_ARRAY:
2852 	case DATA_TYPE_UINT32_ARRAY:
2853 		nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp);
2854 		break;
2855 
2856 	case DATA_TYPE_INT64_ARRAY:
2857 	case DATA_TYPE_UINT64_ARRAY:
2858 		nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp);
2859 		break;
2860 
2861 	case DATA_TYPE_STRING_ARRAY: {
2862 		int i;
2863 		char **strs = (void *)NVP_VALUE(nvp);
2864 
2865 		for (i = 0; i < NVP_NELEM(nvp); i++)
2866 			nvp_sz += 4 + NV_ALIGN4(strlen(strs[i]));
2867 
2868 		break;
2869 	}
2870 
2871 	case DATA_TYPE_NVLIST:
2872 	case DATA_TYPE_NVLIST_ARRAY: {
2873 		size_t nvsize = 0;
2874 		int old_nvs_op = nvs->nvs_op;
2875 		int err;
2876 
2877 		nvs->nvs_op = NVS_OP_GETSIZE;
2878 		if (type == DATA_TYPE_NVLIST)
2879 			err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize);
2880 		else
2881 			err = nvs_embedded_nvl_array(nvs, nvp, &nvsize);
2882 		nvs->nvs_op = old_nvs_op;
2883 
2884 		if (err != 0)
2885 			return (EINVAL);
2886 
2887 		nvp_sz += nvsize;
2888 		break;
2889 	}
2890 
2891 	default:
2892 		return (EINVAL);
2893 	}
2894 
2895 	if (nvp_sz > INT32_MAX)
2896 		return (EINVAL);
2897 
2898 	*size = nvp_sz;
2899 
2900 	return (0);
2901 }
2902 
2903 
2904 /*
2905  * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates
2906  * the largest nvpair that could be encoded in the buffer.
2907  *
2908  * See comments above nvpair_xdr_op() for the format of xdr encoding.
2909  * The size of a xdr packed nvpair without any data is 5 words.
2910  *
2911  * Using the size of the data directly as an estimate would be ok
2912  * in all cases except one.  If the data type is of DATA_TYPE_STRING_ARRAY
2913  * then the actual nvpair has space for an array of pointers to index
2914  * the strings.  These pointers are not encoded into the packed xdr buffer.
2915  *
2916  * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are
2917  * of length 0, then each string is endcoded in xdr format as a single word.
2918  * Therefore when expanded to an nvpair there will be 2.25 word used for
2919  * each string.  (a int64_t allocated for pointer usage, and a single char
2920  * for the null termination.)
2921  *
2922  * This is the calculation performed by the NVS_XDR_MAX_LEN macro.
2923  */
2924 #define	NVS_XDR_HDR_LEN		((size_t)(5 * 4))
2925 #define	NVS_XDR_DATA_LEN(y)	(((size_t)(y) <= NVS_XDR_HDR_LEN) ? \
2926 					0 : ((size_t)(y) - NVS_XDR_HDR_LEN))
2927 #define	NVS_XDR_MAX_LEN(x)	(NVP_SIZE_CALC(1, 0) + \
2928 					(NVS_XDR_DATA_LEN(x) * 2) + \
2929 					NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4)))
2930 
2931 static int
2932 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2933 {
2934 	XDR 	*xdr = nvs->nvs_private;
2935 	int32_t	encode_len, decode_len;
2936 
2937 	switch (nvs->nvs_op) {
2938 	case NVS_OP_ENCODE: {
2939 		size_t nvsize;
2940 
2941 		if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0)
2942 			return (EFAULT);
2943 
2944 		decode_len = nvp->nvp_size;
2945 		encode_len = nvsize;
2946 		if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
2947 			return (EFAULT);
2948 
2949 		return (nvs_xdr_nvp_op(nvs, nvp));
2950 	}
2951 	case NVS_OP_DECODE: {
2952 		struct xdr_bytesrec bytesrec;
2953 
2954 		/* get the encode and decode size */
2955 		if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
2956 			return (EFAULT);
2957 		*size = decode_len;
2958 
2959 		/* are we at the end of the stream? */
2960 		if (*size == 0)
2961 			return (0);
2962 
2963 		/* sanity check the size parameter */
2964 		if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec))
2965 			return (EFAULT);
2966 
2967 		if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail))
2968 			return (EFAULT);
2969 		break;
2970 	}
2971 
2972 	default:
2973 		return (EINVAL);
2974 	}
2975 	return (0);
2976 }
2977 
2978 static const struct nvs_ops nvs_xdr_ops = {
2979 	nvs_xdr_nvlist,
2980 	nvs_xdr_nvpair,
2981 	nvs_xdr_nvp_op,
2982 	nvs_xdr_nvp_size,
2983 	nvs_xdr_nvl_fini
2984 };
2985 
2986 static int
2987 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
2988 {
2989 	XDR xdr;
2990 	int err;
2991 
2992 	nvs->nvs_ops = &nvs_xdr_ops;
2993 
2994 	if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t),
2995 	    *buflen - sizeof (nvs_header_t))) != 0)
2996 		return (err);
2997 
2998 	err = nvs_operation(nvs, nvl, buflen);
2999 
3000 	nvs_xdr_destroy(nvs);
3001 
3002 	return (err);
3003 }
3004