xref: /illumos-gate/usr/src/cmd/ztest/ztest.c (revision 9fa718d2f477620f14e3f2948dd03e3470add804)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 /*
28  * The objective of this program is to provide a DMU/ZAP/SPA stress test
29  * that runs entirely in userland, is easy to use, and easy to extend.
30  *
31  * The overall design of the ztest program is as follows:
32  *
33  * (1) For each major functional area (e.g. adding vdevs to a pool,
34  *     creating and destroying datasets, reading and writing objects, etc)
35  *     we have a simple routine to test that functionality.  These
36  *     individual routines do not have to do anything "stressful".
37  *
38  * (2) We turn these simple functionality tests into a stress test by
39  *     running them all in parallel, with as many threads as desired,
40  *     and spread across as many datasets, objects, and vdevs as desired.
41  *
42  * (3) While all this is happening, we inject faults into the pool to
43  *     verify that self-healing data really works.
44  *
45  * (4) Every time we open a dataset, we change its checksum and compression
46  *     functions.  Thus even individual objects vary from block to block
47  *     in which checksum they use and whether they're compressed.
48  *
49  * (5) To verify that we never lose on-disk consistency after a crash,
50  *     we run the entire test in a child of the main process.
51  *     At random times, the child self-immolates with a SIGKILL.
52  *     This is the software equivalent of pulling the power cord.
53  *     The parent then runs the test again, using the existing
54  *     storage pool, as many times as desired. If backwards compatability
55  *     testing is enabled ztest will sometimes run the "older" version
56  *     of ztest after a SIGKILL.
57  *
58  * (6) To verify that we don't have future leaks or temporal incursions,
59  *     many of the functional tests record the transaction group number
60  *     as part of their data.  When reading old data, they verify that
61  *     the transaction group number is less than the current, open txg.
62  *     If you add a new test, please do this if applicable.
63  *
64  * When run with no arguments, ztest runs for about five minutes and
65  * produces no output if successful.  To get a little bit of information,
66  * specify -V.  To get more information, specify -VV, and so on.
67  *
68  * To turn this into an overnight stress test, use -T to specify run time.
69  *
70  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
71  * to increase the pool capacity, fanout, and overall stress level.
72  *
73  * Use the -k option to set the desired frequency of kills.
74  *
75  * When ztest invokes itself it passes all relevant information through a
76  * temporary file which is mmap-ed in the child process. This allows shared
77  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
78  * stored at offset 0 of this file and contains information on the size and
79  * number of shared structures in the file. The information stored in this file
80  * must remain backwards compatible with older versions of ztest so that
81  * ztest can invoke them during backwards compatibility testing (-B).
82  */
83 
84 #include <sys/zfs_context.h>
85 #include <sys/spa.h>
86 #include <sys/dmu.h>
87 #include <sys/txg.h>
88 #include <sys/dbuf.h>
89 #include <sys/zap.h>
90 #include <sys/dmu_objset.h>
91 #include <sys/poll.h>
92 #include <sys/stat.h>
93 #include <sys/time.h>
94 #include <sys/wait.h>
95 #include <sys/mman.h>
96 #include <sys/resource.h>
97 #include <sys/zio.h>
98 #include <sys/zil.h>
99 #include <sys/zil_impl.h>
100 #include <sys/vdev_impl.h>
101 #include <sys/vdev_file.h>
102 #include <sys/spa_impl.h>
103 #include <sys/metaslab_impl.h>
104 #include <sys/dsl_prop.h>
105 #include <sys/dsl_dataset.h>
106 #include <sys/dsl_scan.h>
107 #include <sys/zio_checksum.h>
108 #include <sys/refcount.h>
109 #include <sys/zfeature.h>
110 #include <stdio.h>
111 #include <stdio_ext.h>
112 #include <stdlib.h>
113 #include <unistd.h>
114 #include <signal.h>
115 #include <umem.h>
116 #include <dlfcn.h>
117 #include <ctype.h>
118 #include <math.h>
119 #include <sys/fs/zfs.h>
120 #include <libnvpair.h>
121 
122 #define	ZTEST_FD_DATA 3
123 #define	ZTEST_FD_RAND 4
124 
125 typedef struct ztest_shared_hdr {
126 	uint64_t	zh_hdr_size;
127 	uint64_t	zh_opts_size;
128 	uint64_t	zh_size;
129 	uint64_t	zh_stats_size;
130 	uint64_t	zh_stats_count;
131 	uint64_t	zh_ds_size;
132 	uint64_t	zh_ds_count;
133 } ztest_shared_hdr_t;
134 
135 static ztest_shared_hdr_t *ztest_shared_hdr;
136 
137 typedef struct ztest_shared_opts {
138 	char zo_pool[MAXNAMELEN];
139 	char zo_dir[MAXNAMELEN];
140 	char zo_alt_ztest[MAXNAMELEN];
141 	char zo_alt_libpath[MAXNAMELEN];
142 	uint64_t zo_vdevs;
143 	uint64_t zo_vdevtime;
144 	size_t zo_vdev_size;
145 	int zo_ashift;
146 	int zo_mirrors;
147 	int zo_raidz;
148 	int zo_raidz_parity;
149 	int zo_datasets;
150 	int zo_threads;
151 	uint64_t zo_passtime;
152 	uint64_t zo_killrate;
153 	int zo_verbose;
154 	int zo_init;
155 	uint64_t zo_time;
156 	uint64_t zo_maxloops;
157 	uint64_t zo_metaslab_gang_bang;
158 } ztest_shared_opts_t;
159 
160 static const ztest_shared_opts_t ztest_opts_defaults = {
161 	.zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
162 	.zo_dir = { '/', 't', 'm', 'p', '\0' },
163 	.zo_alt_ztest = { '\0' },
164 	.zo_alt_libpath = { '\0' },
165 	.zo_vdevs = 5,
166 	.zo_ashift = SPA_MINBLOCKSHIFT,
167 	.zo_mirrors = 2,
168 	.zo_raidz = 4,
169 	.zo_raidz_parity = 1,
170 	.zo_vdev_size = SPA_MINDEVSIZE,
171 	.zo_datasets = 7,
172 	.zo_threads = 23,
173 	.zo_passtime = 60,		/* 60 seconds */
174 	.zo_killrate = 70,		/* 70% kill rate */
175 	.zo_verbose = 0,
176 	.zo_init = 1,
177 	.zo_time = 300,			/* 5 minutes */
178 	.zo_maxloops = 50,		/* max loops during spa_freeze() */
179 	.zo_metaslab_gang_bang = 32 << 10
180 };
181 
182 extern uint64_t metaslab_gang_bang;
183 extern uint64_t metaslab_df_alloc_threshold;
184 
185 static ztest_shared_opts_t *ztest_shared_opts;
186 static ztest_shared_opts_t ztest_opts;
187 
188 typedef struct ztest_shared_ds {
189 	uint64_t	zd_seq;
190 } ztest_shared_ds_t;
191 
192 static ztest_shared_ds_t *ztest_shared_ds;
193 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
194 
195 #define	BT_MAGIC	0x123456789abcdefULL
196 #define	MAXFAULTS() \
197 	(MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
198 
199 enum ztest_io_type {
200 	ZTEST_IO_WRITE_TAG,
201 	ZTEST_IO_WRITE_PATTERN,
202 	ZTEST_IO_WRITE_ZEROES,
203 	ZTEST_IO_TRUNCATE,
204 	ZTEST_IO_SETATTR,
205 	ZTEST_IO_TYPES
206 };
207 
208 typedef struct ztest_block_tag {
209 	uint64_t	bt_magic;
210 	uint64_t	bt_objset;
211 	uint64_t	bt_object;
212 	uint64_t	bt_offset;
213 	uint64_t	bt_gen;
214 	uint64_t	bt_txg;
215 	uint64_t	bt_crtxg;
216 } ztest_block_tag_t;
217 
218 typedef struct bufwad {
219 	uint64_t	bw_index;
220 	uint64_t	bw_txg;
221 	uint64_t	bw_data;
222 } bufwad_t;
223 
224 /*
225  * XXX -- fix zfs range locks to be generic so we can use them here.
226  */
227 typedef enum {
228 	RL_READER,
229 	RL_WRITER,
230 	RL_APPEND
231 } rl_type_t;
232 
233 typedef struct rll {
234 	void		*rll_writer;
235 	int		rll_readers;
236 	mutex_t		rll_lock;
237 	cond_t		rll_cv;
238 } rll_t;
239 
240 typedef struct rl {
241 	uint64_t	rl_object;
242 	uint64_t	rl_offset;
243 	uint64_t	rl_size;
244 	rll_t		*rl_lock;
245 } rl_t;
246 
247 #define	ZTEST_RANGE_LOCKS	64
248 #define	ZTEST_OBJECT_LOCKS	64
249 
250 /*
251  * Object descriptor.  Used as a template for object lookup/create/remove.
252  */
253 typedef struct ztest_od {
254 	uint64_t	od_dir;
255 	uint64_t	od_object;
256 	dmu_object_type_t od_type;
257 	dmu_object_type_t od_crtype;
258 	uint64_t	od_blocksize;
259 	uint64_t	od_crblocksize;
260 	uint64_t	od_gen;
261 	uint64_t	od_crgen;
262 	char		od_name[MAXNAMELEN];
263 } ztest_od_t;
264 
265 /*
266  * Per-dataset state.
267  */
268 typedef struct ztest_ds {
269 	ztest_shared_ds_t *zd_shared;
270 	objset_t	*zd_os;
271 	rwlock_t	zd_zilog_lock;
272 	zilog_t		*zd_zilog;
273 	ztest_od_t	*zd_od;		/* debugging aid */
274 	char		zd_name[MAXNAMELEN];
275 	mutex_t		zd_dirobj_lock;
276 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
277 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
278 } ztest_ds_t;
279 
280 /*
281  * Per-iteration state.
282  */
283 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
284 
285 typedef struct ztest_info {
286 	ztest_func_t	*zi_func;	/* test function */
287 	uint64_t	zi_iters;	/* iterations per execution */
288 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
289 } ztest_info_t;
290 
291 typedef struct ztest_shared_callstate {
292 	uint64_t	zc_count;	/* per-pass count */
293 	uint64_t	zc_time;	/* per-pass time */
294 	uint64_t	zc_next;	/* next time to call this function */
295 } ztest_shared_callstate_t;
296 
297 static ztest_shared_callstate_t *ztest_shared_callstate;
298 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
299 
300 /*
301  * Note: these aren't static because we want dladdr() to work.
302  */
303 ztest_func_t ztest_dmu_read_write;
304 ztest_func_t ztest_dmu_write_parallel;
305 ztest_func_t ztest_dmu_object_alloc_free;
306 ztest_func_t ztest_dmu_commit_callbacks;
307 ztest_func_t ztest_zap;
308 ztest_func_t ztest_zap_parallel;
309 ztest_func_t ztest_zil_commit;
310 ztest_func_t ztest_zil_remount;
311 ztest_func_t ztest_dmu_read_write_zcopy;
312 ztest_func_t ztest_dmu_objset_create_destroy;
313 ztest_func_t ztest_dmu_prealloc;
314 ztest_func_t ztest_fzap;
315 ztest_func_t ztest_dmu_snapshot_create_destroy;
316 ztest_func_t ztest_dsl_prop_get_set;
317 ztest_func_t ztest_spa_prop_get_set;
318 ztest_func_t ztest_spa_create_destroy;
319 ztest_func_t ztest_fault_inject;
320 ztest_func_t ztest_ddt_repair;
321 ztest_func_t ztest_dmu_snapshot_hold;
322 ztest_func_t ztest_spa_rename;
323 ztest_func_t ztest_scrub;
324 ztest_func_t ztest_dsl_dataset_promote_busy;
325 ztest_func_t ztest_vdev_attach_detach;
326 ztest_func_t ztest_vdev_LUN_growth;
327 ztest_func_t ztest_vdev_add_remove;
328 ztest_func_t ztest_vdev_aux_add_remove;
329 ztest_func_t ztest_split_pool;
330 ztest_func_t ztest_reguid;
331 
332 uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
333 uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
334 uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
335 uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
336 uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
337 
338 ztest_info_t ztest_info[] = {
339 	{ ztest_dmu_read_write,			1,	&zopt_always	},
340 	{ ztest_dmu_write_parallel,		10,	&zopt_always	},
341 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
342 	{ ztest_dmu_commit_callbacks,		1,	&zopt_always	},
343 	{ ztest_zap,				30,	&zopt_always	},
344 	{ ztest_zap_parallel,			100,	&zopt_always	},
345 	{ ztest_split_pool,			1,	&zopt_always	},
346 	{ ztest_zil_commit,			1,	&zopt_incessant	},
347 	{ ztest_zil_remount,			1,	&zopt_sometimes	},
348 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_often	},
349 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_often	},
350 	{ ztest_dsl_prop_get_set,		1,	&zopt_often	},
351 	{ ztest_spa_prop_get_set,		1,	&zopt_sometimes	},
352 #if 0
353 	{ ztest_dmu_prealloc,			1,	&zopt_sometimes	},
354 #endif
355 	{ ztest_fzap,				1,	&zopt_sometimes	},
356 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes	},
357 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes	},
358 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
359 	{ ztest_ddt_repair,			1,	&zopt_sometimes	},
360 	{ ztest_dmu_snapshot_hold,		1,	&zopt_sometimes	},
361 	{ ztest_reguid,				1,	&zopt_sometimes },
362 	{ ztest_spa_rename,			1,	&zopt_rarely	},
363 	{ ztest_scrub,				1,	&zopt_rarely	},
364 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
365 	{ ztest_vdev_attach_detach,		1,	&zopt_rarely },
366 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
367 	{ ztest_vdev_add_remove,		1,
368 	    &ztest_opts.zo_vdevtime				},
369 	{ ztest_vdev_aux_add_remove,		1,
370 	    &ztest_opts.zo_vdevtime				},
371 };
372 
373 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
374 
375 /*
376  * The following struct is used to hold a list of uncalled commit callbacks.
377  * The callbacks are ordered by txg number.
378  */
379 typedef struct ztest_cb_list {
380 	mutex_t	zcl_callbacks_lock;
381 	list_t	zcl_callbacks;
382 } ztest_cb_list_t;
383 
384 /*
385  * Stuff we need to share writably between parent and child.
386  */
387 typedef struct ztest_shared {
388 	boolean_t	zs_do_init;
389 	hrtime_t	zs_proc_start;
390 	hrtime_t	zs_proc_stop;
391 	hrtime_t	zs_thread_start;
392 	hrtime_t	zs_thread_stop;
393 	hrtime_t	zs_thread_kill;
394 	uint64_t	zs_enospc_count;
395 	uint64_t	zs_vdev_next_leaf;
396 	uint64_t	zs_vdev_aux;
397 	uint64_t	zs_alloc;
398 	uint64_t	zs_space;
399 	uint64_t	zs_splits;
400 	uint64_t	zs_mirrors;
401 	uint64_t	zs_metaslab_sz;
402 	uint64_t	zs_metaslab_df_alloc_threshold;
403 	uint64_t	zs_guid;
404 } ztest_shared_t;
405 
406 #define	ID_PARALLEL	-1ULL
407 
408 static char ztest_dev_template[] = "%s/%s.%llua";
409 static char ztest_aux_template[] = "%s/%s.%s.%llu";
410 ztest_shared_t *ztest_shared;
411 
412 static spa_t *ztest_spa = NULL;
413 static ztest_ds_t *ztest_ds;
414 
415 static mutex_t ztest_vdev_lock;
416 static rwlock_t ztest_name_lock;
417 
418 static boolean_t ztest_dump_core = B_TRUE;
419 static boolean_t ztest_exiting;
420 
421 /* Global commit callback list */
422 static ztest_cb_list_t zcl;
423 
424 enum ztest_object {
425 	ZTEST_META_DNODE = 0,
426 	ZTEST_DIROBJ,
427 	ZTEST_OBJECTS
428 };
429 
430 static void usage(boolean_t) __NORETURN;
431 
432 /*
433  * These libumem hooks provide a reasonable set of defaults for the allocator's
434  * debugging facilities.
435  */
436 const char *
437 _umem_debug_init()
438 {
439 	return ("default,verbose"); /* $UMEM_DEBUG setting */
440 }
441 
442 const char *
443 _umem_logging_init(void)
444 {
445 	return ("fail,contents"); /* $UMEM_LOGGING setting */
446 }
447 
448 #define	FATAL_MSG_SZ	1024
449 
450 char *fatal_msg;
451 
452 static void
453 fatal(int do_perror, char *message, ...)
454 {
455 	va_list args;
456 	int save_errno = errno;
457 	char buf[FATAL_MSG_SZ];
458 
459 	(void) fflush(stdout);
460 
461 	va_start(args, message);
462 	(void) sprintf(buf, "ztest: ");
463 	/* LINTED */
464 	(void) vsprintf(buf + strlen(buf), message, args);
465 	va_end(args);
466 	if (do_perror) {
467 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
468 		    ": %s", strerror(save_errno));
469 	}
470 	(void) fprintf(stderr, "%s\n", buf);
471 	fatal_msg = buf;			/* to ease debugging */
472 	if (ztest_dump_core)
473 		abort();
474 	exit(3);
475 }
476 
477 static int
478 str2shift(const char *buf)
479 {
480 	const char *ends = "BKMGTPEZ";
481 	int i;
482 
483 	if (buf[0] == '\0')
484 		return (0);
485 	for (i = 0; i < strlen(ends); i++) {
486 		if (toupper(buf[0]) == ends[i])
487 			break;
488 	}
489 	if (i == strlen(ends)) {
490 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
491 		    buf);
492 		usage(B_FALSE);
493 	}
494 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
495 		return (10*i);
496 	}
497 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
498 	usage(B_FALSE);
499 	/* NOTREACHED */
500 }
501 
502 static uint64_t
503 nicenumtoull(const char *buf)
504 {
505 	char *end;
506 	uint64_t val;
507 
508 	val = strtoull(buf, &end, 0);
509 	if (end == buf) {
510 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
511 		usage(B_FALSE);
512 	} else if (end[0] == '.') {
513 		double fval = strtod(buf, &end);
514 		fval *= pow(2, str2shift(end));
515 		if (fval > UINT64_MAX) {
516 			(void) fprintf(stderr, "ztest: value too large: %s\n",
517 			    buf);
518 			usage(B_FALSE);
519 		}
520 		val = (uint64_t)fval;
521 	} else {
522 		int shift = str2shift(end);
523 		if (shift >= 64 || (val << shift) >> shift != val) {
524 			(void) fprintf(stderr, "ztest: value too large: %s\n",
525 			    buf);
526 			usage(B_FALSE);
527 		}
528 		val <<= shift;
529 	}
530 	return (val);
531 }
532 
533 static void
534 usage(boolean_t requested)
535 {
536 	const ztest_shared_opts_t *zo = &ztest_opts_defaults;
537 
538 	char nice_vdev_size[10];
539 	char nice_gang_bang[10];
540 	FILE *fp = requested ? stdout : stderr;
541 
542 	nicenum(zo->zo_vdev_size, nice_vdev_size);
543 	nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang);
544 
545 	(void) fprintf(fp, "Usage: %s\n"
546 	    "\t[-v vdevs (default: %llu)]\n"
547 	    "\t[-s size_of_each_vdev (default: %s)]\n"
548 	    "\t[-a alignment_shift (default: %d)] use 0 for random\n"
549 	    "\t[-m mirror_copies (default: %d)]\n"
550 	    "\t[-r raidz_disks (default: %d)]\n"
551 	    "\t[-R raidz_parity (default: %d)]\n"
552 	    "\t[-d datasets (default: %d)]\n"
553 	    "\t[-t threads (default: %d)]\n"
554 	    "\t[-g gang_block_threshold (default: %s)]\n"
555 	    "\t[-i init_count (default: %d)] initialize pool i times\n"
556 	    "\t[-k kill_percentage (default: %llu%%)]\n"
557 	    "\t[-p pool_name (default: %s)]\n"
558 	    "\t[-f dir (default: %s)] file directory for vdev files\n"
559 	    "\t[-V] verbose (use multiple times for ever more blather)\n"
560 	    "\t[-E] use existing pool instead of creating new one\n"
561 	    "\t[-T time (default: %llu sec)] total run time\n"
562 	    "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
563 	    "\t[-P passtime (default: %llu sec)] time per pass\n"
564 	    "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
565 	    "\t[-h] (print help)\n"
566 	    "",
567 	    zo->zo_pool,
568 	    (u_longlong_t)zo->zo_vdevs,			/* -v */
569 	    nice_vdev_size,				/* -s */
570 	    zo->zo_ashift,				/* -a */
571 	    zo->zo_mirrors,				/* -m */
572 	    zo->zo_raidz,				/* -r */
573 	    zo->zo_raidz_parity,			/* -R */
574 	    zo->zo_datasets,				/* -d */
575 	    zo->zo_threads,				/* -t */
576 	    nice_gang_bang,				/* -g */
577 	    zo->zo_init,				/* -i */
578 	    (u_longlong_t)zo->zo_killrate,		/* -k */
579 	    zo->zo_pool,				/* -p */
580 	    zo->zo_dir,					/* -f */
581 	    (u_longlong_t)zo->zo_time,			/* -T */
582 	    (u_longlong_t)zo->zo_maxloops,		/* -F */
583 	    (u_longlong_t)zo->zo_passtime);
584 	exit(requested ? 0 : 1);
585 }
586 
587 static void
588 process_options(int argc, char **argv)
589 {
590 	char *path;
591 	ztest_shared_opts_t *zo = &ztest_opts;
592 
593 	int opt;
594 	uint64_t value;
595 	char altdir[MAXNAMELEN] = { 0 };
596 
597 	bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
598 
599 	while ((opt = getopt(argc, argv,
600 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) {
601 		value = 0;
602 		switch (opt) {
603 		case 'v':
604 		case 's':
605 		case 'a':
606 		case 'm':
607 		case 'r':
608 		case 'R':
609 		case 'd':
610 		case 't':
611 		case 'g':
612 		case 'i':
613 		case 'k':
614 		case 'T':
615 		case 'P':
616 		case 'F':
617 			value = nicenumtoull(optarg);
618 		}
619 		switch (opt) {
620 		case 'v':
621 			zo->zo_vdevs = value;
622 			break;
623 		case 's':
624 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
625 			break;
626 		case 'a':
627 			zo->zo_ashift = value;
628 			break;
629 		case 'm':
630 			zo->zo_mirrors = value;
631 			break;
632 		case 'r':
633 			zo->zo_raidz = MAX(1, value);
634 			break;
635 		case 'R':
636 			zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
637 			break;
638 		case 'd':
639 			zo->zo_datasets = MAX(1, value);
640 			break;
641 		case 't':
642 			zo->zo_threads = MAX(1, value);
643 			break;
644 		case 'g':
645 			zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
646 			    value);
647 			break;
648 		case 'i':
649 			zo->zo_init = value;
650 			break;
651 		case 'k':
652 			zo->zo_killrate = value;
653 			break;
654 		case 'p':
655 			(void) strlcpy(zo->zo_pool, optarg,
656 			    sizeof (zo->zo_pool));
657 			break;
658 		case 'f':
659 			path = realpath(optarg, NULL);
660 			if (path == NULL) {
661 				(void) fprintf(stderr, "error: %s: %s\n",
662 				    optarg, strerror(errno));
663 				usage(B_FALSE);
664 			} else {
665 				(void) strlcpy(zo->zo_dir, path,
666 				    sizeof (zo->zo_dir));
667 			}
668 			break;
669 		case 'V':
670 			zo->zo_verbose++;
671 			break;
672 		case 'E':
673 			zo->zo_init = 0;
674 			break;
675 		case 'T':
676 			zo->zo_time = value;
677 			break;
678 		case 'P':
679 			zo->zo_passtime = MAX(1, value);
680 			break;
681 		case 'F':
682 			zo->zo_maxloops = MAX(1, value);
683 			break;
684 		case 'B':
685 			(void) strlcpy(altdir, optarg, sizeof (altdir));
686 			break;
687 		case 'h':
688 			usage(B_TRUE);
689 			break;
690 		case '?':
691 		default:
692 			usage(B_FALSE);
693 			break;
694 		}
695 	}
696 
697 	zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
698 
699 	zo->zo_vdevtime =
700 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
701 	    UINT64_MAX >> 2);
702 
703 	if (strlen(altdir) > 0) {
704 		char cmd[MAXNAMELEN];
705 		char realaltdir[MAXNAMELEN];
706 		char *bin;
707 		char *ztest;
708 		char *isa;
709 		int isalen;
710 
711 		(void) realpath(getexecname(), cmd);
712 		if (0 != access(altdir, F_OK)) {
713 			ztest_dump_core = B_FALSE;
714 			fatal(B_TRUE, "invalid alternate ztest path: %s",
715 			    altdir);
716 		}
717 		VERIFY(NULL != realpath(altdir, realaltdir));
718 
719 		/*
720 		 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
721 		 * We want to extract <isa> to determine if we should use
722 		 * 32 or 64 bit binaries.
723 		 */
724 		bin = strstr(cmd, "/usr/bin/");
725 		ztest = strstr(bin, "/ztest");
726 		isa = bin + 9;
727 		isalen = ztest - isa;
728 		(void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
729 		    "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
730 		(void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
731 		    "%s/usr/lib/%.*s", realaltdir, isalen, isa);
732 
733 		if (0 != access(zo->zo_alt_ztest, X_OK)) {
734 			ztest_dump_core = B_FALSE;
735 			fatal(B_TRUE, "invalid alternate ztest: %s",
736 			    zo->zo_alt_ztest);
737 		} else if (0 != access(zo->zo_alt_libpath, X_OK)) {
738 			ztest_dump_core = B_FALSE;
739 			fatal(B_TRUE, "invalid alternate lib directory %s",
740 			    zo->zo_alt_libpath);
741 		}
742 	}
743 }
744 
745 static void
746 ztest_kill(ztest_shared_t *zs)
747 {
748 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
749 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
750 	(void) kill(getpid(), SIGKILL);
751 }
752 
753 static uint64_t
754 ztest_random(uint64_t range)
755 {
756 	uint64_t r;
757 
758 	if (range == 0)
759 		return (0);
760 
761 	if (read(ZTEST_FD_RAND, &r, sizeof (r)) != sizeof (r))
762 		fatal(1, "short read from /dev/urandom");
763 
764 	return (r % range);
765 }
766 
767 /* ARGSUSED */
768 static void
769 ztest_record_enospc(const char *s)
770 {
771 	ztest_shared->zs_enospc_count++;
772 }
773 
774 static uint64_t
775 ztest_get_ashift(void)
776 {
777 	if (ztest_opts.zo_ashift == 0)
778 		return (SPA_MINBLOCKSHIFT + ztest_random(3));
779 	return (ztest_opts.zo_ashift);
780 }
781 
782 static nvlist_t *
783 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift)
784 {
785 	char pathbuf[MAXPATHLEN];
786 	uint64_t vdev;
787 	nvlist_t *file;
788 
789 	if (ashift == 0)
790 		ashift = ztest_get_ashift();
791 
792 	if (path == NULL) {
793 		path = pathbuf;
794 
795 		if (aux != NULL) {
796 			vdev = ztest_shared->zs_vdev_aux;
797 			(void) snprintf(path, sizeof (pathbuf),
798 			    ztest_aux_template, ztest_opts.zo_dir,
799 			    ztest_opts.zo_pool, aux, vdev);
800 		} else {
801 			vdev = ztest_shared->zs_vdev_next_leaf++;
802 			(void) snprintf(path, sizeof (pathbuf),
803 			    ztest_dev_template, ztest_opts.zo_dir,
804 			    ztest_opts.zo_pool, vdev);
805 		}
806 	}
807 
808 	if (size != 0) {
809 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
810 		if (fd == -1)
811 			fatal(1, "can't open %s", path);
812 		if (ftruncate(fd, size) != 0)
813 			fatal(1, "can't ftruncate %s", path);
814 		(void) close(fd);
815 	}
816 
817 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
818 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
819 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
820 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
821 
822 	return (file);
823 }
824 
825 static nvlist_t *
826 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r)
827 {
828 	nvlist_t *raidz, **child;
829 	int c;
830 
831 	if (r < 2)
832 		return (make_vdev_file(path, aux, size, ashift));
833 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
834 
835 	for (c = 0; c < r; c++)
836 		child[c] = make_vdev_file(path, aux, size, ashift);
837 
838 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
839 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
840 	    VDEV_TYPE_RAIDZ) == 0);
841 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
842 	    ztest_opts.zo_raidz_parity) == 0);
843 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
844 	    child, r) == 0);
845 
846 	for (c = 0; c < r; c++)
847 		nvlist_free(child[c]);
848 
849 	umem_free(child, r * sizeof (nvlist_t *));
850 
851 	return (raidz);
852 }
853 
854 static nvlist_t *
855 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift,
856 	int r, int m)
857 {
858 	nvlist_t *mirror, **child;
859 	int c;
860 
861 	if (m < 1)
862 		return (make_vdev_raidz(path, aux, size, ashift, r));
863 
864 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
865 
866 	for (c = 0; c < m; c++)
867 		child[c] = make_vdev_raidz(path, aux, size, ashift, r);
868 
869 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
870 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
871 	    VDEV_TYPE_MIRROR) == 0);
872 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
873 	    child, m) == 0);
874 
875 	for (c = 0; c < m; c++)
876 		nvlist_free(child[c]);
877 
878 	umem_free(child, m * sizeof (nvlist_t *));
879 
880 	return (mirror);
881 }
882 
883 static nvlist_t *
884 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift,
885 	int log, int r, int m, int t)
886 {
887 	nvlist_t *root, **child;
888 	int c;
889 
890 	ASSERT(t > 0);
891 
892 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
893 
894 	for (c = 0; c < t; c++) {
895 		child[c] = make_vdev_mirror(path, aux, size, ashift, r, m);
896 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
897 		    log) == 0);
898 	}
899 
900 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
901 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
902 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
903 	    child, t) == 0);
904 
905 	for (c = 0; c < t; c++)
906 		nvlist_free(child[c]);
907 
908 	umem_free(child, t * sizeof (nvlist_t *));
909 
910 	return (root);
911 }
912 
913 static int
914 ztest_random_blocksize(void)
915 {
916 	return (1 << (SPA_MINBLOCKSHIFT +
917 	    ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)));
918 }
919 
920 static int
921 ztest_random_ibshift(void)
922 {
923 	return (DN_MIN_INDBLKSHIFT +
924 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
925 }
926 
927 static uint64_t
928 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
929 {
930 	uint64_t top;
931 	vdev_t *rvd = spa->spa_root_vdev;
932 	vdev_t *tvd;
933 
934 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
935 
936 	do {
937 		top = ztest_random(rvd->vdev_children);
938 		tvd = rvd->vdev_child[top];
939 	} while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
940 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
941 
942 	return (top);
943 }
944 
945 static uint64_t
946 ztest_random_dsl_prop(zfs_prop_t prop)
947 {
948 	uint64_t value;
949 
950 	do {
951 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
952 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
953 
954 	return (value);
955 }
956 
957 static int
958 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
959     boolean_t inherit)
960 {
961 	const char *propname = zfs_prop_to_name(prop);
962 	const char *valname;
963 	char setpoint[MAXPATHLEN];
964 	uint64_t curval;
965 	int error;
966 
967 	error = dsl_prop_set(osname, propname,
968 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL),
969 	    sizeof (value), 1, &value);
970 
971 	if (error == ENOSPC) {
972 		ztest_record_enospc(FTAG);
973 		return (error);
974 	}
975 	ASSERT0(error);
976 
977 	VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval),
978 	    1, &curval, setpoint), ==, 0);
979 
980 	if (ztest_opts.zo_verbose >= 6) {
981 		VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
982 		(void) printf("%s %s = %s at '%s'\n",
983 		    osname, propname, valname, setpoint);
984 	}
985 
986 	return (error);
987 }
988 
989 static int
990 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
991 {
992 	spa_t *spa = ztest_spa;
993 	nvlist_t *props = NULL;
994 	int error;
995 
996 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
997 	VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
998 
999 	error = spa_prop_set(spa, props);
1000 
1001 	nvlist_free(props);
1002 
1003 	if (error == ENOSPC) {
1004 		ztest_record_enospc(FTAG);
1005 		return (error);
1006 	}
1007 	ASSERT0(error);
1008 
1009 	return (error);
1010 }
1011 
1012 static void
1013 ztest_rll_init(rll_t *rll)
1014 {
1015 	rll->rll_writer = NULL;
1016 	rll->rll_readers = 0;
1017 	VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0);
1018 	VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0);
1019 }
1020 
1021 static void
1022 ztest_rll_destroy(rll_t *rll)
1023 {
1024 	ASSERT(rll->rll_writer == NULL);
1025 	ASSERT(rll->rll_readers == 0);
1026 	VERIFY(_mutex_destroy(&rll->rll_lock) == 0);
1027 	VERIFY(cond_destroy(&rll->rll_cv) == 0);
1028 }
1029 
1030 static void
1031 ztest_rll_lock(rll_t *rll, rl_type_t type)
1032 {
1033 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
1034 
1035 	if (type == RL_READER) {
1036 		while (rll->rll_writer != NULL)
1037 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1038 		rll->rll_readers++;
1039 	} else {
1040 		while (rll->rll_writer != NULL || rll->rll_readers)
1041 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1042 		rll->rll_writer = curthread;
1043 	}
1044 
1045 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1046 }
1047 
1048 static void
1049 ztest_rll_unlock(rll_t *rll)
1050 {
1051 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
1052 
1053 	if (rll->rll_writer) {
1054 		ASSERT(rll->rll_readers == 0);
1055 		rll->rll_writer = NULL;
1056 	} else {
1057 		ASSERT(rll->rll_readers != 0);
1058 		ASSERT(rll->rll_writer == NULL);
1059 		rll->rll_readers--;
1060 	}
1061 
1062 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1063 		VERIFY(cond_broadcast(&rll->rll_cv) == 0);
1064 
1065 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1066 }
1067 
1068 static void
1069 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1070 {
1071 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1072 
1073 	ztest_rll_lock(rll, type);
1074 }
1075 
1076 static void
1077 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1078 {
1079 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1080 
1081 	ztest_rll_unlock(rll);
1082 }
1083 
1084 static rl_t *
1085 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1086     uint64_t size, rl_type_t type)
1087 {
1088 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1089 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1090 	rl_t *rl;
1091 
1092 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1093 	rl->rl_object = object;
1094 	rl->rl_offset = offset;
1095 	rl->rl_size = size;
1096 	rl->rl_lock = rll;
1097 
1098 	ztest_rll_lock(rll, type);
1099 
1100 	return (rl);
1101 }
1102 
1103 static void
1104 ztest_range_unlock(rl_t *rl)
1105 {
1106 	rll_t *rll = rl->rl_lock;
1107 
1108 	ztest_rll_unlock(rll);
1109 
1110 	umem_free(rl, sizeof (*rl));
1111 }
1112 
1113 static void
1114 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1115 {
1116 	zd->zd_os = os;
1117 	zd->zd_zilog = dmu_objset_zil(os);
1118 	zd->zd_shared = szd;
1119 	dmu_objset_name(os, zd->zd_name);
1120 
1121 	if (zd->zd_shared != NULL)
1122 		zd->zd_shared->zd_seq = 0;
1123 
1124 	VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1125 	VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0);
1126 
1127 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1128 		ztest_rll_init(&zd->zd_object_lock[l]);
1129 
1130 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1131 		ztest_rll_init(&zd->zd_range_lock[l]);
1132 }
1133 
1134 static void
1135 ztest_zd_fini(ztest_ds_t *zd)
1136 {
1137 	VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0);
1138 
1139 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1140 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1141 
1142 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1143 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1144 }
1145 
1146 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1147 
1148 static uint64_t
1149 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1150 {
1151 	uint64_t txg;
1152 	int error;
1153 
1154 	/*
1155 	 * Attempt to assign tx to some transaction group.
1156 	 */
1157 	error = dmu_tx_assign(tx, txg_how);
1158 	if (error) {
1159 		if (error == ERESTART) {
1160 			ASSERT(txg_how == TXG_NOWAIT);
1161 			dmu_tx_wait(tx);
1162 		} else {
1163 			ASSERT3U(error, ==, ENOSPC);
1164 			ztest_record_enospc(tag);
1165 		}
1166 		dmu_tx_abort(tx);
1167 		return (0);
1168 	}
1169 	txg = dmu_tx_get_txg(tx);
1170 	ASSERT(txg != 0);
1171 	return (txg);
1172 }
1173 
1174 static void
1175 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1176 {
1177 	uint64_t *ip = buf;
1178 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1179 
1180 	while (ip < ip_end)
1181 		*ip++ = value;
1182 }
1183 
1184 static boolean_t
1185 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1186 {
1187 	uint64_t *ip = buf;
1188 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1189 	uint64_t diff = 0;
1190 
1191 	while (ip < ip_end)
1192 		diff |= (value - *ip++);
1193 
1194 	return (diff == 0);
1195 }
1196 
1197 static void
1198 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1199     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1200 {
1201 	bt->bt_magic = BT_MAGIC;
1202 	bt->bt_objset = dmu_objset_id(os);
1203 	bt->bt_object = object;
1204 	bt->bt_offset = offset;
1205 	bt->bt_gen = gen;
1206 	bt->bt_txg = txg;
1207 	bt->bt_crtxg = crtxg;
1208 }
1209 
1210 static void
1211 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1212     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1213 {
1214 	ASSERT(bt->bt_magic == BT_MAGIC);
1215 	ASSERT(bt->bt_objset == dmu_objset_id(os));
1216 	ASSERT(bt->bt_object == object);
1217 	ASSERT(bt->bt_offset == offset);
1218 	ASSERT(bt->bt_gen <= gen);
1219 	ASSERT(bt->bt_txg <= txg);
1220 	ASSERT(bt->bt_crtxg == crtxg);
1221 }
1222 
1223 static ztest_block_tag_t *
1224 ztest_bt_bonus(dmu_buf_t *db)
1225 {
1226 	dmu_object_info_t doi;
1227 	ztest_block_tag_t *bt;
1228 
1229 	dmu_object_info_from_db(db, &doi);
1230 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1231 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1232 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1233 
1234 	return (bt);
1235 }
1236 
1237 /*
1238  * ZIL logging ops
1239  */
1240 
1241 #define	lrz_type	lr_mode
1242 #define	lrz_blocksize	lr_uid
1243 #define	lrz_ibshift	lr_gid
1244 #define	lrz_bonustype	lr_rdev
1245 #define	lrz_bonuslen	lr_crtime[1]
1246 
1247 static void
1248 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1249 {
1250 	char *name = (void *)(lr + 1);		/* name follows lr */
1251 	size_t namesize = strlen(name) + 1;
1252 	itx_t *itx;
1253 
1254 	if (zil_replaying(zd->zd_zilog, tx))
1255 		return;
1256 
1257 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1258 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1259 	    sizeof (*lr) + namesize - sizeof (lr_t));
1260 
1261 	zil_itx_assign(zd->zd_zilog, itx, tx);
1262 }
1263 
1264 static void
1265 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1266 {
1267 	char *name = (void *)(lr + 1);		/* name follows lr */
1268 	size_t namesize = strlen(name) + 1;
1269 	itx_t *itx;
1270 
1271 	if (zil_replaying(zd->zd_zilog, tx))
1272 		return;
1273 
1274 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1275 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1276 	    sizeof (*lr) + namesize - sizeof (lr_t));
1277 
1278 	itx->itx_oid = object;
1279 	zil_itx_assign(zd->zd_zilog, itx, tx);
1280 }
1281 
1282 static void
1283 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1284 {
1285 	itx_t *itx;
1286 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1287 
1288 	if (zil_replaying(zd->zd_zilog, tx))
1289 		return;
1290 
1291 	if (lr->lr_length > ZIL_MAX_LOG_DATA)
1292 		write_state = WR_INDIRECT;
1293 
1294 	itx = zil_itx_create(TX_WRITE,
1295 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1296 
1297 	if (write_state == WR_COPIED &&
1298 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1299 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1300 		zil_itx_destroy(itx);
1301 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1302 		write_state = WR_NEED_COPY;
1303 	}
1304 	itx->itx_private = zd;
1305 	itx->itx_wr_state = write_state;
1306 	itx->itx_sync = (ztest_random(8) == 0);
1307 	itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1308 
1309 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1310 	    sizeof (*lr) - sizeof (lr_t));
1311 
1312 	zil_itx_assign(zd->zd_zilog, itx, tx);
1313 }
1314 
1315 static void
1316 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1317 {
1318 	itx_t *itx;
1319 
1320 	if (zil_replaying(zd->zd_zilog, tx))
1321 		return;
1322 
1323 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1324 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1325 	    sizeof (*lr) - sizeof (lr_t));
1326 
1327 	itx->itx_sync = B_FALSE;
1328 	zil_itx_assign(zd->zd_zilog, itx, tx);
1329 }
1330 
1331 static void
1332 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1333 {
1334 	itx_t *itx;
1335 
1336 	if (zil_replaying(zd->zd_zilog, tx))
1337 		return;
1338 
1339 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1340 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1341 	    sizeof (*lr) - sizeof (lr_t));
1342 
1343 	itx->itx_sync = B_FALSE;
1344 	zil_itx_assign(zd->zd_zilog, itx, tx);
1345 }
1346 
1347 /*
1348  * ZIL replay ops
1349  */
1350 static int
1351 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1352 {
1353 	char *name = (void *)(lr + 1);		/* name follows lr */
1354 	objset_t *os = zd->zd_os;
1355 	ztest_block_tag_t *bbt;
1356 	dmu_buf_t *db;
1357 	dmu_tx_t *tx;
1358 	uint64_t txg;
1359 	int error = 0;
1360 
1361 	if (byteswap)
1362 		byteswap_uint64_array(lr, sizeof (*lr));
1363 
1364 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1365 	ASSERT(name[0] != '\0');
1366 
1367 	tx = dmu_tx_create(os);
1368 
1369 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1370 
1371 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1372 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1373 	} else {
1374 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1375 	}
1376 
1377 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1378 	if (txg == 0)
1379 		return (ENOSPC);
1380 
1381 	ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1382 
1383 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1384 		if (lr->lr_foid == 0) {
1385 			lr->lr_foid = zap_create(os,
1386 			    lr->lrz_type, lr->lrz_bonustype,
1387 			    lr->lrz_bonuslen, tx);
1388 		} else {
1389 			error = zap_create_claim(os, lr->lr_foid,
1390 			    lr->lrz_type, lr->lrz_bonustype,
1391 			    lr->lrz_bonuslen, tx);
1392 		}
1393 	} else {
1394 		if (lr->lr_foid == 0) {
1395 			lr->lr_foid = dmu_object_alloc(os,
1396 			    lr->lrz_type, 0, lr->lrz_bonustype,
1397 			    lr->lrz_bonuslen, tx);
1398 		} else {
1399 			error = dmu_object_claim(os, lr->lr_foid,
1400 			    lr->lrz_type, 0, lr->lrz_bonustype,
1401 			    lr->lrz_bonuslen, tx);
1402 		}
1403 	}
1404 
1405 	if (error) {
1406 		ASSERT3U(error, ==, EEXIST);
1407 		ASSERT(zd->zd_zilog->zl_replay);
1408 		dmu_tx_commit(tx);
1409 		return (error);
1410 	}
1411 
1412 	ASSERT(lr->lr_foid != 0);
1413 
1414 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1415 		VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
1416 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
1417 
1418 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1419 	bbt = ztest_bt_bonus(db);
1420 	dmu_buf_will_dirty(db, tx);
1421 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1422 	dmu_buf_rele(db, FTAG);
1423 
1424 	VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1425 	    &lr->lr_foid, tx));
1426 
1427 	(void) ztest_log_create(zd, tx, lr);
1428 
1429 	dmu_tx_commit(tx);
1430 
1431 	return (0);
1432 }
1433 
1434 static int
1435 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1436 {
1437 	char *name = (void *)(lr + 1);		/* name follows lr */
1438 	objset_t *os = zd->zd_os;
1439 	dmu_object_info_t doi;
1440 	dmu_tx_t *tx;
1441 	uint64_t object, txg;
1442 
1443 	if (byteswap)
1444 		byteswap_uint64_array(lr, sizeof (*lr));
1445 
1446 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1447 	ASSERT(name[0] != '\0');
1448 
1449 	VERIFY0(
1450 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1451 	ASSERT(object != 0);
1452 
1453 	ztest_object_lock(zd, object, RL_WRITER);
1454 
1455 	VERIFY0(dmu_object_info(os, object, &doi));
1456 
1457 	tx = dmu_tx_create(os);
1458 
1459 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1460 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1461 
1462 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1463 	if (txg == 0) {
1464 		ztest_object_unlock(zd, object);
1465 		return (ENOSPC);
1466 	}
1467 
1468 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1469 		VERIFY0(zap_destroy(os, object, tx));
1470 	} else {
1471 		VERIFY0(dmu_object_free(os, object, tx));
1472 	}
1473 
1474 	VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
1475 
1476 	(void) ztest_log_remove(zd, tx, lr, object);
1477 
1478 	dmu_tx_commit(tx);
1479 
1480 	ztest_object_unlock(zd, object);
1481 
1482 	return (0);
1483 }
1484 
1485 static int
1486 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1487 {
1488 	objset_t *os = zd->zd_os;
1489 	void *data = lr + 1;			/* data follows lr */
1490 	uint64_t offset, length;
1491 	ztest_block_tag_t *bt = data;
1492 	ztest_block_tag_t *bbt;
1493 	uint64_t gen, txg, lrtxg, crtxg;
1494 	dmu_object_info_t doi;
1495 	dmu_tx_t *tx;
1496 	dmu_buf_t *db;
1497 	arc_buf_t *abuf = NULL;
1498 	rl_t *rl;
1499 
1500 	if (byteswap)
1501 		byteswap_uint64_array(lr, sizeof (*lr));
1502 
1503 	offset = lr->lr_offset;
1504 	length = lr->lr_length;
1505 
1506 	/* If it's a dmu_sync() block, write the whole block */
1507 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1508 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1509 		if (length < blocksize) {
1510 			offset -= offset % blocksize;
1511 			length = blocksize;
1512 		}
1513 	}
1514 
1515 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1516 		byteswap_uint64_array(bt, sizeof (*bt));
1517 
1518 	if (bt->bt_magic != BT_MAGIC)
1519 		bt = NULL;
1520 
1521 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1522 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1523 
1524 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1525 
1526 	dmu_object_info_from_db(db, &doi);
1527 
1528 	bbt = ztest_bt_bonus(db);
1529 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1530 	gen = bbt->bt_gen;
1531 	crtxg = bbt->bt_crtxg;
1532 	lrtxg = lr->lr_common.lrc_txg;
1533 
1534 	tx = dmu_tx_create(os);
1535 
1536 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1537 
1538 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1539 	    P2PHASE(offset, length) == 0)
1540 		abuf = dmu_request_arcbuf(db, length);
1541 
1542 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1543 	if (txg == 0) {
1544 		if (abuf != NULL)
1545 			dmu_return_arcbuf(abuf);
1546 		dmu_buf_rele(db, FTAG);
1547 		ztest_range_unlock(rl);
1548 		ztest_object_unlock(zd, lr->lr_foid);
1549 		return (ENOSPC);
1550 	}
1551 
1552 	if (bt != NULL) {
1553 		/*
1554 		 * Usually, verify the old data before writing new data --
1555 		 * but not always, because we also want to verify correct
1556 		 * behavior when the data was not recently read into cache.
1557 		 */
1558 		ASSERT(offset % doi.doi_data_block_size == 0);
1559 		if (ztest_random(4) != 0) {
1560 			int prefetch = ztest_random(2) ?
1561 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1562 			ztest_block_tag_t rbt;
1563 
1564 			VERIFY(dmu_read(os, lr->lr_foid, offset,
1565 			    sizeof (rbt), &rbt, prefetch) == 0);
1566 			if (rbt.bt_magic == BT_MAGIC) {
1567 				ztest_bt_verify(&rbt, os, lr->lr_foid,
1568 				    offset, gen, txg, crtxg);
1569 			}
1570 		}
1571 
1572 		/*
1573 		 * Writes can appear to be newer than the bonus buffer because
1574 		 * the ztest_get_data() callback does a dmu_read() of the
1575 		 * open-context data, which may be different than the data
1576 		 * as it was when the write was generated.
1577 		 */
1578 		if (zd->zd_zilog->zl_replay) {
1579 			ztest_bt_verify(bt, os, lr->lr_foid, offset,
1580 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1581 			    bt->bt_crtxg);
1582 		}
1583 
1584 		/*
1585 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
1586 		 * so that all of the usual ASSERTs will work.
1587 		 */
1588 		ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1589 	}
1590 
1591 	if (abuf == NULL) {
1592 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
1593 	} else {
1594 		bcopy(data, abuf->b_data, length);
1595 		dmu_assign_arcbuf(db, offset, abuf, tx);
1596 	}
1597 
1598 	(void) ztest_log_write(zd, tx, lr);
1599 
1600 	dmu_buf_rele(db, FTAG);
1601 
1602 	dmu_tx_commit(tx);
1603 
1604 	ztest_range_unlock(rl);
1605 	ztest_object_unlock(zd, lr->lr_foid);
1606 
1607 	return (0);
1608 }
1609 
1610 static int
1611 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1612 {
1613 	objset_t *os = zd->zd_os;
1614 	dmu_tx_t *tx;
1615 	uint64_t txg;
1616 	rl_t *rl;
1617 
1618 	if (byteswap)
1619 		byteswap_uint64_array(lr, sizeof (*lr));
1620 
1621 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1622 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1623 	    RL_WRITER);
1624 
1625 	tx = dmu_tx_create(os);
1626 
1627 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1628 
1629 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1630 	if (txg == 0) {
1631 		ztest_range_unlock(rl);
1632 		ztest_object_unlock(zd, lr->lr_foid);
1633 		return (ENOSPC);
1634 	}
1635 
1636 	VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1637 	    lr->lr_length, tx) == 0);
1638 
1639 	(void) ztest_log_truncate(zd, tx, lr);
1640 
1641 	dmu_tx_commit(tx);
1642 
1643 	ztest_range_unlock(rl);
1644 	ztest_object_unlock(zd, lr->lr_foid);
1645 
1646 	return (0);
1647 }
1648 
1649 static int
1650 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1651 {
1652 	objset_t *os = zd->zd_os;
1653 	dmu_tx_t *tx;
1654 	dmu_buf_t *db;
1655 	ztest_block_tag_t *bbt;
1656 	uint64_t txg, lrtxg, crtxg;
1657 
1658 	if (byteswap)
1659 		byteswap_uint64_array(lr, sizeof (*lr));
1660 
1661 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1662 
1663 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1664 
1665 	tx = dmu_tx_create(os);
1666 	dmu_tx_hold_bonus(tx, lr->lr_foid);
1667 
1668 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1669 	if (txg == 0) {
1670 		dmu_buf_rele(db, FTAG);
1671 		ztest_object_unlock(zd, lr->lr_foid);
1672 		return (ENOSPC);
1673 	}
1674 
1675 	bbt = ztest_bt_bonus(db);
1676 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1677 	crtxg = bbt->bt_crtxg;
1678 	lrtxg = lr->lr_common.lrc_txg;
1679 
1680 	if (zd->zd_zilog->zl_replay) {
1681 		ASSERT(lr->lr_size != 0);
1682 		ASSERT(lr->lr_mode != 0);
1683 		ASSERT(lrtxg != 0);
1684 	} else {
1685 		/*
1686 		 * Randomly change the size and increment the generation.
1687 		 */
1688 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1689 		    sizeof (*bbt);
1690 		lr->lr_mode = bbt->bt_gen + 1;
1691 		ASSERT(lrtxg == 0);
1692 	}
1693 
1694 	/*
1695 	 * Verify that the current bonus buffer is not newer than our txg.
1696 	 */
1697 	ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1698 	    MAX(txg, lrtxg), crtxg);
1699 
1700 	dmu_buf_will_dirty(db, tx);
1701 
1702 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1703 	ASSERT3U(lr->lr_size, <=, db->db_size);
1704 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1705 	bbt = ztest_bt_bonus(db);
1706 
1707 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1708 
1709 	dmu_buf_rele(db, FTAG);
1710 
1711 	(void) ztest_log_setattr(zd, tx, lr);
1712 
1713 	dmu_tx_commit(tx);
1714 
1715 	ztest_object_unlock(zd, lr->lr_foid);
1716 
1717 	return (0);
1718 }
1719 
1720 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1721 	NULL,			/* 0 no such transaction type */
1722 	ztest_replay_create,	/* TX_CREATE */
1723 	NULL,			/* TX_MKDIR */
1724 	NULL,			/* TX_MKXATTR */
1725 	NULL,			/* TX_SYMLINK */
1726 	ztest_replay_remove,	/* TX_REMOVE */
1727 	NULL,			/* TX_RMDIR */
1728 	NULL,			/* TX_LINK */
1729 	NULL,			/* TX_RENAME */
1730 	ztest_replay_write,	/* TX_WRITE */
1731 	ztest_replay_truncate,	/* TX_TRUNCATE */
1732 	ztest_replay_setattr,	/* TX_SETATTR */
1733 	NULL,			/* TX_ACL */
1734 	NULL,			/* TX_CREATE_ACL */
1735 	NULL,			/* TX_CREATE_ATTR */
1736 	NULL,			/* TX_CREATE_ACL_ATTR */
1737 	NULL,			/* TX_MKDIR_ACL */
1738 	NULL,			/* TX_MKDIR_ATTR */
1739 	NULL,			/* TX_MKDIR_ACL_ATTR */
1740 	NULL,			/* TX_WRITE2 */
1741 };
1742 
1743 /*
1744  * ZIL get_data callbacks
1745  */
1746 
1747 static void
1748 ztest_get_done(zgd_t *zgd, int error)
1749 {
1750 	ztest_ds_t *zd = zgd->zgd_private;
1751 	uint64_t object = zgd->zgd_rl->rl_object;
1752 
1753 	if (zgd->zgd_db)
1754 		dmu_buf_rele(zgd->zgd_db, zgd);
1755 
1756 	ztest_range_unlock(zgd->zgd_rl);
1757 	ztest_object_unlock(zd, object);
1758 
1759 	if (error == 0 && zgd->zgd_bp)
1760 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1761 
1762 	umem_free(zgd, sizeof (*zgd));
1763 }
1764 
1765 static int
1766 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1767 {
1768 	ztest_ds_t *zd = arg;
1769 	objset_t *os = zd->zd_os;
1770 	uint64_t object = lr->lr_foid;
1771 	uint64_t offset = lr->lr_offset;
1772 	uint64_t size = lr->lr_length;
1773 	blkptr_t *bp = &lr->lr_blkptr;
1774 	uint64_t txg = lr->lr_common.lrc_txg;
1775 	uint64_t crtxg;
1776 	dmu_object_info_t doi;
1777 	dmu_buf_t *db;
1778 	zgd_t *zgd;
1779 	int error;
1780 
1781 	ztest_object_lock(zd, object, RL_READER);
1782 	error = dmu_bonus_hold(os, object, FTAG, &db);
1783 	if (error) {
1784 		ztest_object_unlock(zd, object);
1785 		return (error);
1786 	}
1787 
1788 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
1789 
1790 	if (crtxg == 0 || crtxg > txg) {
1791 		dmu_buf_rele(db, FTAG);
1792 		ztest_object_unlock(zd, object);
1793 		return (ENOENT);
1794 	}
1795 
1796 	dmu_object_info_from_db(db, &doi);
1797 	dmu_buf_rele(db, FTAG);
1798 	db = NULL;
1799 
1800 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1801 	zgd->zgd_zilog = zd->zd_zilog;
1802 	zgd->zgd_private = zd;
1803 
1804 	if (buf != NULL) {	/* immediate write */
1805 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1806 		    RL_READER);
1807 
1808 		error = dmu_read(os, object, offset, size, buf,
1809 		    DMU_READ_NO_PREFETCH);
1810 		ASSERT(error == 0);
1811 	} else {
1812 		size = doi.doi_data_block_size;
1813 		if (ISP2(size)) {
1814 			offset = P2ALIGN(offset, size);
1815 		} else {
1816 			ASSERT(offset < size);
1817 			offset = 0;
1818 		}
1819 
1820 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1821 		    RL_READER);
1822 
1823 		error = dmu_buf_hold(os, object, offset, zgd, &db,
1824 		    DMU_READ_NO_PREFETCH);
1825 
1826 		if (error == 0) {
1827 			zgd->zgd_db = db;
1828 			zgd->zgd_bp = bp;
1829 
1830 			ASSERT(db->db_offset == offset);
1831 			ASSERT(db->db_size == size);
1832 
1833 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1834 			    ztest_get_done, zgd);
1835 
1836 			if (error == 0)
1837 				return (0);
1838 		}
1839 	}
1840 
1841 	ztest_get_done(zgd, error);
1842 
1843 	return (error);
1844 }
1845 
1846 static void *
1847 ztest_lr_alloc(size_t lrsize, char *name)
1848 {
1849 	char *lr;
1850 	size_t namesize = name ? strlen(name) + 1 : 0;
1851 
1852 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1853 
1854 	if (name)
1855 		bcopy(name, lr + lrsize, namesize);
1856 
1857 	return (lr);
1858 }
1859 
1860 void
1861 ztest_lr_free(void *lr, size_t lrsize, char *name)
1862 {
1863 	size_t namesize = name ? strlen(name) + 1 : 0;
1864 
1865 	umem_free(lr, lrsize + namesize);
1866 }
1867 
1868 /*
1869  * Lookup a bunch of objects.  Returns the number of objects not found.
1870  */
1871 static int
1872 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1873 {
1874 	int missing = 0;
1875 	int error;
1876 
1877 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1878 
1879 	for (int i = 0; i < count; i++, od++) {
1880 		od->od_object = 0;
1881 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1882 		    sizeof (uint64_t), 1, &od->od_object);
1883 		if (error) {
1884 			ASSERT(error == ENOENT);
1885 			ASSERT(od->od_object == 0);
1886 			missing++;
1887 		} else {
1888 			dmu_buf_t *db;
1889 			ztest_block_tag_t *bbt;
1890 			dmu_object_info_t doi;
1891 
1892 			ASSERT(od->od_object != 0);
1893 			ASSERT(missing == 0);	/* there should be no gaps */
1894 
1895 			ztest_object_lock(zd, od->od_object, RL_READER);
1896 			VERIFY0(dmu_bonus_hold(zd->zd_os,
1897 			    od->od_object, FTAG, &db));
1898 			dmu_object_info_from_db(db, &doi);
1899 			bbt = ztest_bt_bonus(db);
1900 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1901 			od->od_type = doi.doi_type;
1902 			od->od_blocksize = doi.doi_data_block_size;
1903 			od->od_gen = bbt->bt_gen;
1904 			dmu_buf_rele(db, FTAG);
1905 			ztest_object_unlock(zd, od->od_object);
1906 		}
1907 	}
1908 
1909 	return (missing);
1910 }
1911 
1912 static int
1913 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
1914 {
1915 	int missing = 0;
1916 
1917 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1918 
1919 	for (int i = 0; i < count; i++, od++) {
1920 		if (missing) {
1921 			od->od_object = 0;
1922 			missing++;
1923 			continue;
1924 		}
1925 
1926 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
1927 
1928 		lr->lr_doid = od->od_dir;
1929 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
1930 		lr->lrz_type = od->od_crtype;
1931 		lr->lrz_blocksize = od->od_crblocksize;
1932 		lr->lrz_ibshift = ztest_random_ibshift();
1933 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
1934 		lr->lrz_bonuslen = dmu_bonus_max();
1935 		lr->lr_gen = od->od_crgen;
1936 		lr->lr_crtime[0] = time(NULL);
1937 
1938 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
1939 			ASSERT(missing == 0);
1940 			od->od_object = 0;
1941 			missing++;
1942 		} else {
1943 			od->od_object = lr->lr_foid;
1944 			od->od_type = od->od_crtype;
1945 			od->od_blocksize = od->od_crblocksize;
1946 			od->od_gen = od->od_crgen;
1947 			ASSERT(od->od_object != 0);
1948 		}
1949 
1950 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
1951 	}
1952 
1953 	return (missing);
1954 }
1955 
1956 static int
1957 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
1958 {
1959 	int missing = 0;
1960 	int error;
1961 
1962 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1963 
1964 	od += count - 1;
1965 
1966 	for (int i = count - 1; i >= 0; i--, od--) {
1967 		if (missing) {
1968 			missing++;
1969 			continue;
1970 		}
1971 
1972 		if (od->od_object == 0)
1973 			continue;
1974 
1975 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
1976 
1977 		lr->lr_doid = od->od_dir;
1978 
1979 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
1980 			ASSERT3U(error, ==, ENOSPC);
1981 			missing++;
1982 		} else {
1983 			od->od_object = 0;
1984 		}
1985 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
1986 	}
1987 
1988 	return (missing);
1989 }
1990 
1991 static int
1992 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
1993     void *data)
1994 {
1995 	lr_write_t *lr;
1996 	int error;
1997 
1998 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
1999 
2000 	lr->lr_foid = object;
2001 	lr->lr_offset = offset;
2002 	lr->lr_length = size;
2003 	lr->lr_blkoff = 0;
2004 	BP_ZERO(&lr->lr_blkptr);
2005 
2006 	bcopy(data, lr + 1, size);
2007 
2008 	error = ztest_replay_write(zd, lr, B_FALSE);
2009 
2010 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2011 
2012 	return (error);
2013 }
2014 
2015 static int
2016 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2017 {
2018 	lr_truncate_t *lr;
2019 	int error;
2020 
2021 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2022 
2023 	lr->lr_foid = object;
2024 	lr->lr_offset = offset;
2025 	lr->lr_length = size;
2026 
2027 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2028 
2029 	ztest_lr_free(lr, sizeof (*lr), NULL);
2030 
2031 	return (error);
2032 }
2033 
2034 static int
2035 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2036 {
2037 	lr_setattr_t *lr;
2038 	int error;
2039 
2040 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2041 
2042 	lr->lr_foid = object;
2043 	lr->lr_size = 0;
2044 	lr->lr_mode = 0;
2045 
2046 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2047 
2048 	ztest_lr_free(lr, sizeof (*lr), NULL);
2049 
2050 	return (error);
2051 }
2052 
2053 static void
2054 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2055 {
2056 	objset_t *os = zd->zd_os;
2057 	dmu_tx_t *tx;
2058 	uint64_t txg;
2059 	rl_t *rl;
2060 
2061 	txg_wait_synced(dmu_objset_pool(os), 0);
2062 
2063 	ztest_object_lock(zd, object, RL_READER);
2064 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2065 
2066 	tx = dmu_tx_create(os);
2067 
2068 	dmu_tx_hold_write(tx, object, offset, size);
2069 
2070 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2071 
2072 	if (txg != 0) {
2073 		dmu_prealloc(os, object, offset, size, tx);
2074 		dmu_tx_commit(tx);
2075 		txg_wait_synced(dmu_objset_pool(os), txg);
2076 	} else {
2077 		(void) dmu_free_long_range(os, object, offset, size);
2078 	}
2079 
2080 	ztest_range_unlock(rl);
2081 	ztest_object_unlock(zd, object);
2082 }
2083 
2084 static void
2085 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2086 {
2087 	ztest_block_tag_t wbt;
2088 	dmu_object_info_t doi;
2089 	enum ztest_io_type io_type;
2090 	uint64_t blocksize;
2091 	void *data;
2092 
2093 	VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2094 	blocksize = doi.doi_data_block_size;
2095 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2096 
2097 	/*
2098 	 * Pick an i/o type at random, biased toward writing block tags.
2099 	 */
2100 	io_type = ztest_random(ZTEST_IO_TYPES);
2101 	if (ztest_random(2) == 0)
2102 		io_type = ZTEST_IO_WRITE_TAG;
2103 
2104 	(void) rw_rdlock(&zd->zd_zilog_lock);
2105 
2106 	switch (io_type) {
2107 
2108 	case ZTEST_IO_WRITE_TAG:
2109 		ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2110 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2111 		break;
2112 
2113 	case ZTEST_IO_WRITE_PATTERN:
2114 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2115 		if (ztest_random(2) == 0) {
2116 			/*
2117 			 * Induce fletcher2 collisions to ensure that
2118 			 * zio_ddt_collision() detects and resolves them
2119 			 * when using fletcher2-verify for deduplication.
2120 			 */
2121 			((uint64_t *)data)[0] ^= 1ULL << 63;
2122 			((uint64_t *)data)[4] ^= 1ULL << 63;
2123 		}
2124 		(void) ztest_write(zd, object, offset, blocksize, data);
2125 		break;
2126 
2127 	case ZTEST_IO_WRITE_ZEROES:
2128 		bzero(data, blocksize);
2129 		(void) ztest_write(zd, object, offset, blocksize, data);
2130 		break;
2131 
2132 	case ZTEST_IO_TRUNCATE:
2133 		(void) ztest_truncate(zd, object, offset, blocksize);
2134 		break;
2135 
2136 	case ZTEST_IO_SETATTR:
2137 		(void) ztest_setattr(zd, object);
2138 		break;
2139 	}
2140 
2141 	(void) rw_unlock(&zd->zd_zilog_lock);
2142 
2143 	umem_free(data, blocksize);
2144 }
2145 
2146 /*
2147  * Initialize an object description template.
2148  */
2149 static void
2150 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2151     dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2152 {
2153 	od->od_dir = ZTEST_DIROBJ;
2154 	od->od_object = 0;
2155 
2156 	od->od_crtype = type;
2157 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2158 	od->od_crgen = gen;
2159 
2160 	od->od_type = DMU_OT_NONE;
2161 	od->od_blocksize = 0;
2162 	od->od_gen = 0;
2163 
2164 	(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2165 	    tag, (int64_t)id, index);
2166 }
2167 
2168 /*
2169  * Lookup or create the objects for a test using the od template.
2170  * If the objects do not all exist, or if 'remove' is specified,
2171  * remove any existing objects and create new ones.  Otherwise,
2172  * use the existing objects.
2173  */
2174 static int
2175 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2176 {
2177 	int count = size / sizeof (*od);
2178 	int rv = 0;
2179 
2180 	VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0);
2181 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2182 	    (ztest_remove(zd, od, count) != 0 ||
2183 	    ztest_create(zd, od, count) != 0))
2184 		rv = -1;
2185 	zd->zd_od = od;
2186 	VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2187 
2188 	return (rv);
2189 }
2190 
2191 /* ARGSUSED */
2192 void
2193 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2194 {
2195 	zilog_t *zilog = zd->zd_zilog;
2196 
2197 	(void) rw_rdlock(&zd->zd_zilog_lock);
2198 
2199 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2200 
2201 	/*
2202 	 * Remember the committed values in zd, which is in parent/child
2203 	 * shared memory.  If we die, the next iteration of ztest_run()
2204 	 * will verify that the log really does contain this record.
2205 	 */
2206 	mutex_enter(&zilog->zl_lock);
2207 	ASSERT(zd->zd_shared != NULL);
2208 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2209 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2210 	mutex_exit(&zilog->zl_lock);
2211 
2212 	(void) rw_unlock(&zd->zd_zilog_lock);
2213 }
2214 
2215 /*
2216  * This function is designed to simulate the operations that occur during a
2217  * mount/unmount operation.  We hold the dataset across these operations in an
2218  * attempt to expose any implicit assumptions about ZIL management.
2219  */
2220 /* ARGSUSED */
2221 void
2222 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2223 {
2224 	objset_t *os = zd->zd_os;
2225 
2226 	(void) rw_wrlock(&zd->zd_zilog_lock);
2227 
2228 	/* zfsvfs_teardown() */
2229 	zil_close(zd->zd_zilog);
2230 
2231 	/* zfsvfs_setup() */
2232 	VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2233 	zil_replay(os, zd, ztest_replay_vector);
2234 
2235 	(void) rw_unlock(&zd->zd_zilog_lock);
2236 }
2237 
2238 /*
2239  * Verify that we can't destroy an active pool, create an existing pool,
2240  * or create a pool with a bad vdev spec.
2241  */
2242 /* ARGSUSED */
2243 void
2244 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2245 {
2246 	ztest_shared_opts_t *zo = &ztest_opts;
2247 	spa_t *spa;
2248 	nvlist_t *nvroot;
2249 
2250 	/*
2251 	 * Attempt to create using a bad file.
2252 	 */
2253 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
2254 	VERIFY3U(ENOENT, ==,
2255 	    spa_create("ztest_bad_file", nvroot, NULL, NULL));
2256 	nvlist_free(nvroot);
2257 
2258 	/*
2259 	 * Attempt to create using a bad mirror.
2260 	 */
2261 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
2262 	VERIFY3U(ENOENT, ==,
2263 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2264 	nvlist_free(nvroot);
2265 
2266 	/*
2267 	 * Attempt to create an existing pool.  It shouldn't matter
2268 	 * what's in the nvroot; we should fail with EEXIST.
2269 	 */
2270 	(void) rw_rdlock(&ztest_name_lock);
2271 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
2272 	VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2273 	nvlist_free(nvroot);
2274 	VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
2275 	VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2276 	spa_close(spa, FTAG);
2277 
2278 	(void) rw_unlock(&ztest_name_lock);
2279 }
2280 
2281 static vdev_t *
2282 vdev_lookup_by_path(vdev_t *vd, const char *path)
2283 {
2284 	vdev_t *mvd;
2285 
2286 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2287 		return (vd);
2288 
2289 	for (int c = 0; c < vd->vdev_children; c++)
2290 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2291 		    NULL)
2292 			return (mvd);
2293 
2294 	return (NULL);
2295 }
2296 
2297 /*
2298  * Find the first available hole which can be used as a top-level.
2299  */
2300 int
2301 find_vdev_hole(spa_t *spa)
2302 {
2303 	vdev_t *rvd = spa->spa_root_vdev;
2304 	int c;
2305 
2306 	ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2307 
2308 	for (c = 0; c < rvd->vdev_children; c++) {
2309 		vdev_t *cvd = rvd->vdev_child[c];
2310 
2311 		if (cvd->vdev_ishole)
2312 			break;
2313 	}
2314 	return (c);
2315 }
2316 
2317 /*
2318  * Verify that vdev_add() works as expected.
2319  */
2320 /* ARGSUSED */
2321 void
2322 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2323 {
2324 	ztest_shared_t *zs = ztest_shared;
2325 	spa_t *spa = ztest_spa;
2326 	uint64_t leaves;
2327 	uint64_t guid;
2328 	nvlist_t *nvroot;
2329 	int error;
2330 
2331 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2332 	leaves =
2333 	    MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2334 
2335 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2336 
2337 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2338 
2339 	/*
2340 	 * If we have slogs then remove them 1/4 of the time.
2341 	 */
2342 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2343 		/*
2344 		 * Grab the guid from the head of the log class rotor.
2345 		 */
2346 		guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2347 
2348 		spa_config_exit(spa, SCL_VDEV, FTAG);
2349 
2350 		/*
2351 		 * We have to grab the zs_name_lock as writer to
2352 		 * prevent a race between removing a slog (dmu_objset_find)
2353 		 * and destroying a dataset. Removing the slog will
2354 		 * grab a reference on the dataset which may cause
2355 		 * dmu_objset_destroy() to fail with EBUSY thus
2356 		 * leaving the dataset in an inconsistent state.
2357 		 */
2358 		VERIFY(rw_wrlock(&ztest_name_lock) == 0);
2359 		error = spa_vdev_remove(spa, guid, B_FALSE);
2360 		VERIFY(rw_unlock(&ztest_name_lock) == 0);
2361 
2362 		if (error && error != EEXIST)
2363 			fatal(0, "spa_vdev_remove() = %d", error);
2364 	} else {
2365 		spa_config_exit(spa, SCL_VDEV, FTAG);
2366 
2367 		/*
2368 		 * Make 1/4 of the devices be log devices.
2369 		 */
2370 		nvroot = make_vdev_root(NULL, NULL,
2371 		    ztest_opts.zo_vdev_size, 0,
2372 		    ztest_random(4) == 0, ztest_opts.zo_raidz,
2373 		    zs->zs_mirrors, 1);
2374 
2375 		error = spa_vdev_add(spa, nvroot);
2376 		nvlist_free(nvroot);
2377 
2378 		if (error == ENOSPC)
2379 			ztest_record_enospc("spa_vdev_add");
2380 		else if (error != 0)
2381 			fatal(0, "spa_vdev_add() = %d", error);
2382 	}
2383 
2384 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2385 }
2386 
2387 /*
2388  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2389  */
2390 /* ARGSUSED */
2391 void
2392 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2393 {
2394 	ztest_shared_t *zs = ztest_shared;
2395 	spa_t *spa = ztest_spa;
2396 	vdev_t *rvd = spa->spa_root_vdev;
2397 	spa_aux_vdev_t *sav;
2398 	char *aux;
2399 	uint64_t guid = 0;
2400 	int error;
2401 
2402 	if (ztest_random(2) == 0) {
2403 		sav = &spa->spa_spares;
2404 		aux = ZPOOL_CONFIG_SPARES;
2405 	} else {
2406 		sav = &spa->spa_l2cache;
2407 		aux = ZPOOL_CONFIG_L2CACHE;
2408 	}
2409 
2410 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2411 
2412 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2413 
2414 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
2415 		/*
2416 		 * Pick a random device to remove.
2417 		 */
2418 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2419 	} else {
2420 		/*
2421 		 * Find an unused device we can add.
2422 		 */
2423 		zs->zs_vdev_aux = 0;
2424 		for (;;) {
2425 			char path[MAXPATHLEN];
2426 			int c;
2427 			(void) snprintf(path, sizeof (path), ztest_aux_template,
2428 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2429 			    zs->zs_vdev_aux);
2430 			for (c = 0; c < sav->sav_count; c++)
2431 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
2432 				    path) == 0)
2433 					break;
2434 			if (c == sav->sav_count &&
2435 			    vdev_lookup_by_path(rvd, path) == NULL)
2436 				break;
2437 			zs->zs_vdev_aux++;
2438 		}
2439 	}
2440 
2441 	spa_config_exit(spa, SCL_VDEV, FTAG);
2442 
2443 	if (guid == 0) {
2444 		/*
2445 		 * Add a new device.
2446 		 */
2447 		nvlist_t *nvroot = make_vdev_root(NULL, aux,
2448 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2449 		error = spa_vdev_add(spa, nvroot);
2450 		if (error != 0)
2451 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2452 		nvlist_free(nvroot);
2453 	} else {
2454 		/*
2455 		 * Remove an existing device.  Sometimes, dirty its
2456 		 * vdev state first to make sure we handle removal
2457 		 * of devices that have pending state changes.
2458 		 */
2459 		if (ztest_random(2) == 0)
2460 			(void) vdev_online(spa, guid, 0, NULL);
2461 
2462 		error = spa_vdev_remove(spa, guid, B_FALSE);
2463 		if (error != 0 && error != EBUSY)
2464 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2465 	}
2466 
2467 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2468 }
2469 
2470 /*
2471  * split a pool if it has mirror tlvdevs
2472  */
2473 /* ARGSUSED */
2474 void
2475 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2476 {
2477 	ztest_shared_t *zs = ztest_shared;
2478 	spa_t *spa = ztest_spa;
2479 	vdev_t *rvd = spa->spa_root_vdev;
2480 	nvlist_t *tree, **child, *config, *split, **schild;
2481 	uint_t c, children, schildren = 0, lastlogid = 0;
2482 	int error = 0;
2483 
2484 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2485 
2486 	/* ensure we have a useable config; mirrors of raidz aren't supported */
2487 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2488 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2489 		return;
2490 	}
2491 
2492 	/* clean up the old pool, if any */
2493 	(void) spa_destroy("splitp");
2494 
2495 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2496 
2497 	/* generate a config from the existing config */
2498 	mutex_enter(&spa->spa_props_lock);
2499 	VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2500 	    &tree) == 0);
2501 	mutex_exit(&spa->spa_props_lock);
2502 
2503 	VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2504 	    &children) == 0);
2505 
2506 	schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2507 	for (c = 0; c < children; c++) {
2508 		vdev_t *tvd = rvd->vdev_child[c];
2509 		nvlist_t **mchild;
2510 		uint_t mchildren;
2511 
2512 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2513 			VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2514 			    0) == 0);
2515 			VERIFY(nvlist_add_string(schild[schildren],
2516 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2517 			VERIFY(nvlist_add_uint64(schild[schildren],
2518 			    ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2519 			if (lastlogid == 0)
2520 				lastlogid = schildren;
2521 			++schildren;
2522 			continue;
2523 		}
2524 		lastlogid = 0;
2525 		VERIFY(nvlist_lookup_nvlist_array(child[c],
2526 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2527 		VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2528 	}
2529 
2530 	/* OK, create a config that can be used to split */
2531 	VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2532 	VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2533 	    VDEV_TYPE_ROOT) == 0);
2534 	VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2535 	    lastlogid != 0 ? lastlogid : schildren) == 0);
2536 
2537 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2538 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2539 
2540 	for (c = 0; c < schildren; c++)
2541 		nvlist_free(schild[c]);
2542 	free(schild);
2543 	nvlist_free(split);
2544 
2545 	spa_config_exit(spa, SCL_VDEV, FTAG);
2546 
2547 	(void) rw_wrlock(&ztest_name_lock);
2548 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2549 	(void) rw_unlock(&ztest_name_lock);
2550 
2551 	nvlist_free(config);
2552 
2553 	if (error == 0) {
2554 		(void) printf("successful split - results:\n");
2555 		mutex_enter(&spa_namespace_lock);
2556 		show_pool_stats(spa);
2557 		show_pool_stats(spa_lookup("splitp"));
2558 		mutex_exit(&spa_namespace_lock);
2559 		++zs->zs_splits;
2560 		--zs->zs_mirrors;
2561 	}
2562 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2563 
2564 }
2565 
2566 /*
2567  * Verify that we can attach and detach devices.
2568  */
2569 /* ARGSUSED */
2570 void
2571 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2572 {
2573 	ztest_shared_t *zs = ztest_shared;
2574 	spa_t *spa = ztest_spa;
2575 	spa_aux_vdev_t *sav = &spa->spa_spares;
2576 	vdev_t *rvd = spa->spa_root_vdev;
2577 	vdev_t *oldvd, *newvd, *pvd;
2578 	nvlist_t *root;
2579 	uint64_t leaves;
2580 	uint64_t leaf, top;
2581 	uint64_t ashift = ztest_get_ashift();
2582 	uint64_t oldguid, pguid;
2583 	size_t oldsize, newsize;
2584 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2585 	int replacing;
2586 	int oldvd_has_siblings = B_FALSE;
2587 	int newvd_is_spare = B_FALSE;
2588 	int oldvd_is_log;
2589 	int error, expected_error;
2590 
2591 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2592 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2593 
2594 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2595 
2596 	/*
2597 	 * Decide whether to do an attach or a replace.
2598 	 */
2599 	replacing = ztest_random(2);
2600 
2601 	/*
2602 	 * Pick a random top-level vdev.
2603 	 */
2604 	top = ztest_random_vdev_top(spa, B_TRUE);
2605 
2606 	/*
2607 	 * Pick a random leaf within it.
2608 	 */
2609 	leaf = ztest_random(leaves);
2610 
2611 	/*
2612 	 * Locate this vdev.
2613 	 */
2614 	oldvd = rvd->vdev_child[top];
2615 	if (zs->zs_mirrors >= 1) {
2616 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2617 		ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2618 		oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2619 	}
2620 	if (ztest_opts.zo_raidz > 1) {
2621 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2622 		ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2623 		oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2624 	}
2625 
2626 	/*
2627 	 * If we're already doing an attach or replace, oldvd may be a
2628 	 * mirror vdev -- in which case, pick a random child.
2629 	 */
2630 	while (oldvd->vdev_children != 0) {
2631 		oldvd_has_siblings = B_TRUE;
2632 		ASSERT(oldvd->vdev_children >= 2);
2633 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2634 	}
2635 
2636 	oldguid = oldvd->vdev_guid;
2637 	oldsize = vdev_get_min_asize(oldvd);
2638 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
2639 	(void) strcpy(oldpath, oldvd->vdev_path);
2640 	pvd = oldvd->vdev_parent;
2641 	pguid = pvd->vdev_guid;
2642 
2643 	/*
2644 	 * If oldvd has siblings, then half of the time, detach it.
2645 	 */
2646 	if (oldvd_has_siblings && ztest_random(2) == 0) {
2647 		spa_config_exit(spa, SCL_VDEV, FTAG);
2648 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2649 		if (error != 0 && error != ENODEV && error != EBUSY &&
2650 		    error != ENOTSUP)
2651 			fatal(0, "detach (%s) returned %d", oldpath, error);
2652 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2653 		return;
2654 	}
2655 
2656 	/*
2657 	 * For the new vdev, choose with equal probability between the two
2658 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2659 	 */
2660 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
2661 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2662 		newvd_is_spare = B_TRUE;
2663 		(void) strcpy(newpath, newvd->vdev_path);
2664 	} else {
2665 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
2666 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
2667 		    top * leaves + leaf);
2668 		if (ztest_random(2) == 0)
2669 			newpath[strlen(newpath) - 1] = 'b';
2670 		newvd = vdev_lookup_by_path(rvd, newpath);
2671 	}
2672 
2673 	if (newvd) {
2674 		newsize = vdev_get_min_asize(newvd);
2675 	} else {
2676 		/*
2677 		 * Make newsize a little bigger or smaller than oldsize.
2678 		 * If it's smaller, the attach should fail.
2679 		 * If it's larger, and we're doing a replace,
2680 		 * we should get dynamic LUN growth when we're done.
2681 		 */
2682 		newsize = 10 * oldsize / (9 + ztest_random(3));
2683 	}
2684 
2685 	/*
2686 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2687 	 * unless it's a replace; in that case any non-replacing parent is OK.
2688 	 *
2689 	 * If newvd is already part of the pool, it should fail with EBUSY.
2690 	 *
2691 	 * If newvd is too small, it should fail with EOVERFLOW.
2692 	 */
2693 	if (pvd->vdev_ops != &vdev_mirror_ops &&
2694 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2695 	    pvd->vdev_ops == &vdev_replacing_ops ||
2696 	    pvd->vdev_ops == &vdev_spare_ops))
2697 		expected_error = ENOTSUP;
2698 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
2699 		expected_error = ENOTSUP;
2700 	else if (newvd == oldvd)
2701 		expected_error = replacing ? 0 : EBUSY;
2702 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2703 		expected_error = EBUSY;
2704 	else if (newsize < oldsize)
2705 		expected_error = EOVERFLOW;
2706 	else if (ashift > oldvd->vdev_top->vdev_ashift)
2707 		expected_error = EDOM;
2708 	else
2709 		expected_error = 0;
2710 
2711 	spa_config_exit(spa, SCL_VDEV, FTAG);
2712 
2713 	/*
2714 	 * Build the nvlist describing newpath.
2715 	 */
2716 	root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0,
2717 	    ashift, 0, 0, 0, 1);
2718 
2719 	error = spa_vdev_attach(spa, oldguid, root, replacing);
2720 
2721 	nvlist_free(root);
2722 
2723 	/*
2724 	 * If our parent was the replacing vdev, but the replace completed,
2725 	 * then instead of failing with ENOTSUP we may either succeed,
2726 	 * fail with ENODEV, or fail with EOVERFLOW.
2727 	 */
2728 	if (expected_error == ENOTSUP &&
2729 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
2730 		expected_error = error;
2731 
2732 	/*
2733 	 * If someone grew the LUN, the replacement may be too small.
2734 	 */
2735 	if (error == EOVERFLOW || error == EBUSY)
2736 		expected_error = error;
2737 
2738 	/* XXX workaround 6690467 */
2739 	if (error != expected_error && expected_error != EBUSY) {
2740 		fatal(0, "attach (%s %llu, %s %llu, %d) "
2741 		    "returned %d, expected %d",
2742 		    oldpath, (longlong_t)oldsize, newpath,
2743 		    (longlong_t)newsize, replacing, error, expected_error);
2744 	}
2745 
2746 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2747 }
2748 
2749 /*
2750  * Callback function which expands the physical size of the vdev.
2751  */
2752 vdev_t *
2753 grow_vdev(vdev_t *vd, void *arg)
2754 {
2755 	spa_t *spa = vd->vdev_spa;
2756 	size_t *newsize = arg;
2757 	size_t fsize;
2758 	int fd;
2759 
2760 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2761 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2762 
2763 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2764 		return (vd);
2765 
2766 	fsize = lseek(fd, 0, SEEK_END);
2767 	(void) ftruncate(fd, *newsize);
2768 
2769 	if (ztest_opts.zo_verbose >= 6) {
2770 		(void) printf("%s grew from %lu to %lu bytes\n",
2771 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2772 	}
2773 	(void) close(fd);
2774 	return (NULL);
2775 }
2776 
2777 /*
2778  * Callback function which expands a given vdev by calling vdev_online().
2779  */
2780 /* ARGSUSED */
2781 vdev_t *
2782 online_vdev(vdev_t *vd, void *arg)
2783 {
2784 	spa_t *spa = vd->vdev_spa;
2785 	vdev_t *tvd = vd->vdev_top;
2786 	uint64_t guid = vd->vdev_guid;
2787 	uint64_t generation = spa->spa_config_generation + 1;
2788 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
2789 	int error;
2790 
2791 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2792 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2793 
2794 	/* Calling vdev_online will initialize the new metaslabs */
2795 	spa_config_exit(spa, SCL_STATE, spa);
2796 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
2797 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2798 
2799 	/*
2800 	 * If vdev_online returned an error or the underlying vdev_open
2801 	 * failed then we abort the expand. The only way to know that
2802 	 * vdev_open fails is by checking the returned newstate.
2803 	 */
2804 	if (error || newstate != VDEV_STATE_HEALTHY) {
2805 		if (ztest_opts.zo_verbose >= 5) {
2806 			(void) printf("Unable to expand vdev, state %llu, "
2807 			    "error %d\n", (u_longlong_t)newstate, error);
2808 		}
2809 		return (vd);
2810 	}
2811 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
2812 
2813 	/*
2814 	 * Since we dropped the lock we need to ensure that we're
2815 	 * still talking to the original vdev. It's possible this
2816 	 * vdev may have been detached/replaced while we were
2817 	 * trying to online it.
2818 	 */
2819 	if (generation != spa->spa_config_generation) {
2820 		if (ztest_opts.zo_verbose >= 5) {
2821 			(void) printf("vdev configuration has changed, "
2822 			    "guid %llu, state %llu, expected gen %llu, "
2823 			    "got gen %llu\n",
2824 			    (u_longlong_t)guid,
2825 			    (u_longlong_t)tvd->vdev_state,
2826 			    (u_longlong_t)generation,
2827 			    (u_longlong_t)spa->spa_config_generation);
2828 		}
2829 		return (vd);
2830 	}
2831 	return (NULL);
2832 }
2833 
2834 /*
2835  * Traverse the vdev tree calling the supplied function.
2836  * We continue to walk the tree until we either have walked all
2837  * children or we receive a non-NULL return from the callback.
2838  * If a NULL callback is passed, then we just return back the first
2839  * leaf vdev we encounter.
2840  */
2841 vdev_t *
2842 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
2843 {
2844 	if (vd->vdev_ops->vdev_op_leaf) {
2845 		if (func == NULL)
2846 			return (vd);
2847 		else
2848 			return (func(vd, arg));
2849 	}
2850 
2851 	for (uint_t c = 0; c < vd->vdev_children; c++) {
2852 		vdev_t *cvd = vd->vdev_child[c];
2853 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
2854 			return (cvd);
2855 	}
2856 	return (NULL);
2857 }
2858 
2859 /*
2860  * Verify that dynamic LUN growth works as expected.
2861  */
2862 /* ARGSUSED */
2863 void
2864 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
2865 {
2866 	spa_t *spa = ztest_spa;
2867 	vdev_t *vd, *tvd;
2868 	metaslab_class_t *mc;
2869 	metaslab_group_t *mg;
2870 	size_t psize, newsize;
2871 	uint64_t top;
2872 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
2873 
2874 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2875 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2876 
2877 	top = ztest_random_vdev_top(spa, B_TRUE);
2878 
2879 	tvd = spa->spa_root_vdev->vdev_child[top];
2880 	mg = tvd->vdev_mg;
2881 	mc = mg->mg_class;
2882 	old_ms_count = tvd->vdev_ms_count;
2883 	old_class_space = metaslab_class_get_space(mc);
2884 
2885 	/*
2886 	 * Determine the size of the first leaf vdev associated with
2887 	 * our top-level device.
2888 	 */
2889 	vd = vdev_walk_tree(tvd, NULL, NULL);
2890 	ASSERT3P(vd, !=, NULL);
2891 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2892 
2893 	psize = vd->vdev_psize;
2894 
2895 	/*
2896 	 * We only try to expand the vdev if it's healthy, less than 4x its
2897 	 * original size, and it has a valid psize.
2898 	 */
2899 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
2900 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
2901 		spa_config_exit(spa, SCL_STATE, spa);
2902 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2903 		return;
2904 	}
2905 	ASSERT(psize > 0);
2906 	newsize = psize + psize / 8;
2907 	ASSERT3U(newsize, >, psize);
2908 
2909 	if (ztest_opts.zo_verbose >= 6) {
2910 		(void) printf("Expanding LUN %s from %lu to %lu\n",
2911 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
2912 	}
2913 
2914 	/*
2915 	 * Growing the vdev is a two step process:
2916 	 *	1). expand the physical size (i.e. relabel)
2917 	 *	2). online the vdev to create the new metaslabs
2918 	 */
2919 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
2920 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
2921 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
2922 		if (ztest_opts.zo_verbose >= 5) {
2923 			(void) printf("Could not expand LUN because "
2924 			    "the vdev configuration changed.\n");
2925 		}
2926 		spa_config_exit(spa, SCL_STATE, spa);
2927 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2928 		return;
2929 	}
2930 
2931 	spa_config_exit(spa, SCL_STATE, spa);
2932 
2933 	/*
2934 	 * Expanding the LUN will update the config asynchronously,
2935 	 * thus we must wait for the async thread to complete any
2936 	 * pending tasks before proceeding.
2937 	 */
2938 	for (;;) {
2939 		boolean_t done;
2940 		mutex_enter(&spa->spa_async_lock);
2941 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
2942 		mutex_exit(&spa->spa_async_lock);
2943 		if (done)
2944 			break;
2945 		txg_wait_synced(spa_get_dsl(spa), 0);
2946 		(void) poll(NULL, 0, 100);
2947 	}
2948 
2949 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2950 
2951 	tvd = spa->spa_root_vdev->vdev_child[top];
2952 	new_ms_count = tvd->vdev_ms_count;
2953 	new_class_space = metaslab_class_get_space(mc);
2954 
2955 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
2956 		if (ztest_opts.zo_verbose >= 5) {
2957 			(void) printf("Could not verify LUN expansion due to "
2958 			    "intervening vdev offline or remove.\n");
2959 		}
2960 		spa_config_exit(spa, SCL_STATE, spa);
2961 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2962 		return;
2963 	}
2964 
2965 	/*
2966 	 * Make sure we were able to grow the vdev.
2967 	 */
2968 	if (new_ms_count <= old_ms_count)
2969 		fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
2970 		    old_ms_count, new_ms_count);
2971 
2972 	/*
2973 	 * Make sure we were able to grow the pool.
2974 	 */
2975 	if (new_class_space <= old_class_space)
2976 		fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
2977 		    old_class_space, new_class_space);
2978 
2979 	if (ztest_opts.zo_verbose >= 5) {
2980 		char oldnumbuf[6], newnumbuf[6];
2981 
2982 		nicenum(old_class_space, oldnumbuf);
2983 		nicenum(new_class_space, newnumbuf);
2984 		(void) printf("%s grew from %s to %s\n",
2985 		    spa->spa_name, oldnumbuf, newnumbuf);
2986 	}
2987 
2988 	spa_config_exit(spa, SCL_STATE, spa);
2989 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2990 }
2991 
2992 /*
2993  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
2994  */
2995 /* ARGSUSED */
2996 static void
2997 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
2998 {
2999 	/*
3000 	 * Create the objects common to all ztest datasets.
3001 	 */
3002 	VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3003 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3004 }
3005 
3006 static int
3007 ztest_dataset_create(char *dsname)
3008 {
3009 	uint64_t zilset = ztest_random(100);
3010 	int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3011 	    ztest_objset_create_cb, NULL);
3012 
3013 	if (err || zilset < 80)
3014 		return (err);
3015 
3016 	if (ztest_opts.zo_verbose >= 6)
3017 		(void) printf("Setting dataset %s to sync always\n", dsname);
3018 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3019 	    ZFS_SYNC_ALWAYS, B_FALSE));
3020 }
3021 
3022 /* ARGSUSED */
3023 static int
3024 ztest_objset_destroy_cb(const char *name, void *arg)
3025 {
3026 	objset_t *os;
3027 	dmu_object_info_t doi;
3028 	int error;
3029 
3030 	/*
3031 	 * Verify that the dataset contains a directory object.
3032 	 */
3033 	VERIFY0(dmu_objset_hold(name, FTAG, &os));
3034 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3035 	if (error != ENOENT) {
3036 		/* We could have crashed in the middle of destroying it */
3037 		ASSERT0(error);
3038 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3039 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3040 	}
3041 	dmu_objset_rele(os, FTAG);
3042 
3043 	/*
3044 	 * Destroy the dataset.
3045 	 */
3046 	VERIFY0(dmu_objset_destroy(name, B_FALSE));
3047 	return (0);
3048 }
3049 
3050 static boolean_t
3051 ztest_snapshot_create(char *osname, uint64_t id)
3052 {
3053 	char snapname[MAXNAMELEN];
3054 	int error;
3055 
3056 	(void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
3057 	    (u_longlong_t)id);
3058 
3059 	error = dmu_objset_snapshot_one(osname, strchr(snapname, '@') + 1);
3060 	if (error == ENOSPC) {
3061 		ztest_record_enospc(FTAG);
3062 		return (B_FALSE);
3063 	}
3064 	if (error != 0 && error != EEXIST)
3065 		fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error);
3066 	return (B_TRUE);
3067 }
3068 
3069 static boolean_t
3070 ztest_snapshot_destroy(char *osname, uint64_t id)
3071 {
3072 	char snapname[MAXNAMELEN];
3073 	int error;
3074 
3075 	(void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
3076 	    (u_longlong_t)id);
3077 
3078 	error = dmu_objset_destroy(snapname, B_FALSE);
3079 	if (error != 0 && error != ENOENT)
3080 		fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3081 	return (B_TRUE);
3082 }
3083 
3084 /* ARGSUSED */
3085 void
3086 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3087 {
3088 	ztest_ds_t zdtmp;
3089 	int iters;
3090 	int error;
3091 	objset_t *os, *os2;
3092 	char name[MAXNAMELEN];
3093 	zilog_t *zilog;
3094 
3095 	(void) rw_rdlock(&ztest_name_lock);
3096 
3097 	(void) snprintf(name, MAXNAMELEN, "%s/temp_%llu",
3098 	    ztest_opts.zo_pool, (u_longlong_t)id);
3099 
3100 	/*
3101 	 * If this dataset exists from a previous run, process its replay log
3102 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
3103 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3104 	 */
3105 	if (ztest_random(2) == 0 &&
3106 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3107 		ztest_zd_init(&zdtmp, NULL, os);
3108 		zil_replay(os, &zdtmp, ztest_replay_vector);
3109 		ztest_zd_fini(&zdtmp);
3110 		dmu_objset_disown(os, FTAG);
3111 	}
3112 
3113 	/*
3114 	 * There may be an old instance of the dataset we're about to
3115 	 * create lying around from a previous run.  If so, destroy it
3116 	 * and all of its snapshots.
3117 	 */
3118 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3119 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3120 
3121 	/*
3122 	 * Verify that the destroyed dataset is no longer in the namespace.
3123 	 */
3124 	VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os));
3125 
3126 	/*
3127 	 * Verify that we can create a new dataset.
3128 	 */
3129 	error = ztest_dataset_create(name);
3130 	if (error) {
3131 		if (error == ENOSPC) {
3132 			ztest_record_enospc(FTAG);
3133 			(void) rw_unlock(&ztest_name_lock);
3134 			return;
3135 		}
3136 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
3137 	}
3138 
3139 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3140 
3141 	ztest_zd_init(&zdtmp, NULL, os);
3142 
3143 	/*
3144 	 * Open the intent log for it.
3145 	 */
3146 	zilog = zil_open(os, ztest_get_data);
3147 
3148 	/*
3149 	 * Put some objects in there, do a little I/O to them,
3150 	 * and randomly take a couple of snapshots along the way.
3151 	 */
3152 	iters = ztest_random(5);
3153 	for (int i = 0; i < iters; i++) {
3154 		ztest_dmu_object_alloc_free(&zdtmp, id);
3155 		if (ztest_random(iters) == 0)
3156 			(void) ztest_snapshot_create(name, i);
3157 	}
3158 
3159 	/*
3160 	 * Verify that we cannot create an existing dataset.
3161 	 */
3162 	VERIFY3U(EEXIST, ==,
3163 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3164 
3165 	/*
3166 	 * Verify that we can hold an objset that is also owned.
3167 	 */
3168 	VERIFY0(dmu_objset_hold(name, FTAG, &os2));
3169 	dmu_objset_rele(os2, FTAG);
3170 
3171 	/*
3172 	 * Verify that we cannot own an objset that is already owned.
3173 	 */
3174 	VERIFY3U(EBUSY, ==,
3175 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3176 
3177 	zil_close(zilog);
3178 	dmu_objset_disown(os, FTAG);
3179 	ztest_zd_fini(&zdtmp);
3180 
3181 	(void) rw_unlock(&ztest_name_lock);
3182 }
3183 
3184 /*
3185  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3186  */
3187 void
3188 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3189 {
3190 	(void) rw_rdlock(&ztest_name_lock);
3191 	(void) ztest_snapshot_destroy(zd->zd_name, id);
3192 	(void) ztest_snapshot_create(zd->zd_name, id);
3193 	(void) rw_unlock(&ztest_name_lock);
3194 }
3195 
3196 /*
3197  * Cleanup non-standard snapshots and clones.
3198  */
3199 void
3200 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3201 {
3202 	char snap1name[MAXNAMELEN];
3203 	char clone1name[MAXNAMELEN];
3204 	char snap2name[MAXNAMELEN];
3205 	char clone2name[MAXNAMELEN];
3206 	char snap3name[MAXNAMELEN];
3207 	int error;
3208 
3209 	(void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id);
3210 	(void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id);
3211 	(void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id);
3212 	(void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id);
3213 	(void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id);
3214 
3215 	error = dmu_objset_destroy(clone2name, B_FALSE);
3216 	if (error && error != ENOENT)
3217 		fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error);
3218 	error = dmu_objset_destroy(snap3name, B_FALSE);
3219 	if (error && error != ENOENT)
3220 		fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error);
3221 	error = dmu_objset_destroy(snap2name, B_FALSE);
3222 	if (error && error != ENOENT)
3223 		fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error);
3224 	error = dmu_objset_destroy(clone1name, B_FALSE);
3225 	if (error && error != ENOENT)
3226 		fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error);
3227 	error = dmu_objset_destroy(snap1name, B_FALSE);
3228 	if (error && error != ENOENT)
3229 		fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error);
3230 }
3231 
3232 /*
3233  * Verify dsl_dataset_promote handles EBUSY
3234  */
3235 void
3236 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3237 {
3238 	objset_t *clone;
3239 	dsl_dataset_t *ds;
3240 	char snap1name[MAXNAMELEN];
3241 	char clone1name[MAXNAMELEN];
3242 	char snap2name[MAXNAMELEN];
3243 	char clone2name[MAXNAMELEN];
3244 	char snap3name[MAXNAMELEN];
3245 	char *osname = zd->zd_name;
3246 	int error;
3247 
3248 	(void) rw_rdlock(&ztest_name_lock);
3249 
3250 	ztest_dsl_dataset_cleanup(osname, id);
3251 
3252 	(void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id);
3253 	(void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id);
3254 	(void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id);
3255 	(void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id);
3256 	(void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id);
3257 
3258 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3259 	if (error && error != EEXIST) {
3260 		if (error == ENOSPC) {
3261 			ztest_record_enospc(FTAG);
3262 			goto out;
3263 		}
3264 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3265 	}
3266 
3267 	error = dmu_objset_hold(snap1name, FTAG, &clone);
3268 	if (error)
3269 		fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error);
3270 
3271 	error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0);
3272 	dmu_objset_rele(clone, FTAG);
3273 	if (error) {
3274 		if (error == ENOSPC) {
3275 			ztest_record_enospc(FTAG);
3276 			goto out;
3277 		}
3278 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3279 	}
3280 
3281 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3282 	if (error && error != EEXIST) {
3283 		if (error == ENOSPC) {
3284 			ztest_record_enospc(FTAG);
3285 			goto out;
3286 		}
3287 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3288 	}
3289 
3290 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3291 	if (error && error != EEXIST) {
3292 		if (error == ENOSPC) {
3293 			ztest_record_enospc(FTAG);
3294 			goto out;
3295 		}
3296 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3297 	}
3298 
3299 	error = dmu_objset_hold(snap3name, FTAG, &clone);
3300 	if (error)
3301 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3302 
3303 	error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0);
3304 	dmu_objset_rele(clone, FTAG);
3305 	if (error) {
3306 		if (error == ENOSPC) {
3307 			ztest_record_enospc(FTAG);
3308 			goto out;
3309 		}
3310 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3311 	}
3312 
3313 	error = dsl_dataset_own(snap2name, B_FALSE, FTAG, &ds);
3314 	if (error)
3315 		fatal(0, "dsl_dataset_own(%s) = %d", snap2name, error);
3316 	error = dsl_dataset_promote(clone2name, NULL);
3317 	if (error != EBUSY)
3318 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3319 		    error);
3320 	dsl_dataset_disown(ds, FTAG);
3321 
3322 out:
3323 	ztest_dsl_dataset_cleanup(osname, id);
3324 
3325 	(void) rw_unlock(&ztest_name_lock);
3326 }
3327 
3328 /*
3329  * Verify that dmu_object_{alloc,free} work as expected.
3330  */
3331 void
3332 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3333 {
3334 	ztest_od_t od[4];
3335 	int batchsize = sizeof (od) / sizeof (od[0]);
3336 
3337 	for (int b = 0; b < batchsize; b++)
3338 		ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3339 
3340 	/*
3341 	 * Destroy the previous batch of objects, create a new batch,
3342 	 * and do some I/O on the new objects.
3343 	 */
3344 	if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3345 		return;
3346 
3347 	while (ztest_random(4 * batchsize) != 0)
3348 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
3349 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3350 }
3351 
3352 /*
3353  * Verify that dmu_{read,write} work as expected.
3354  */
3355 void
3356 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3357 {
3358 	objset_t *os = zd->zd_os;
3359 	ztest_od_t od[2];
3360 	dmu_tx_t *tx;
3361 	int i, freeit, error;
3362 	uint64_t n, s, txg;
3363 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3364 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3365 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3366 	uint64_t regions = 997;
3367 	uint64_t stride = 123456789ULL;
3368 	uint64_t width = 40;
3369 	int free_percent = 5;
3370 
3371 	/*
3372 	 * This test uses two objects, packobj and bigobj, that are always
3373 	 * updated together (i.e. in the same tx) so that their contents are
3374 	 * in sync and can be compared.  Their contents relate to each other
3375 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3376 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3377 	 * for any index n, there are three bufwads that should be identical:
3378 	 *
3379 	 *	packobj, at offset n * sizeof (bufwad_t)
3380 	 *	bigobj, at the head of the nth chunk
3381 	 *	bigobj, at the tail of the nth chunk
3382 	 *
3383 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
3384 	 * and it doesn't have any relation to the object blocksize.
3385 	 * The only requirement is that it can hold at least two bufwads.
3386 	 *
3387 	 * Normally, we write the bufwad to each of these locations.
3388 	 * However, free_percent of the time we instead write zeroes to
3389 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
3390 	 * bigobj to packobj, we can verify that the DMU is correctly
3391 	 * tracking which parts of an object are allocated and free,
3392 	 * and that the contents of the allocated blocks are correct.
3393 	 */
3394 
3395 	/*
3396 	 * Read the directory info.  If it's the first time, set things up.
3397 	 */
3398 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3399 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3400 
3401 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3402 		return;
3403 
3404 	bigobj = od[0].od_object;
3405 	packobj = od[1].od_object;
3406 	chunksize = od[0].od_gen;
3407 	ASSERT(chunksize == od[1].od_gen);
3408 
3409 	/*
3410 	 * Prefetch a random chunk of the big object.
3411 	 * Our aim here is to get some async reads in flight
3412 	 * for blocks that we may free below; the DMU should
3413 	 * handle this race correctly.
3414 	 */
3415 	n = ztest_random(regions) * stride + ztest_random(width);
3416 	s = 1 + ztest_random(2 * width - 1);
3417 	dmu_prefetch(os, bigobj, n * chunksize, s * chunksize);
3418 
3419 	/*
3420 	 * Pick a random index and compute the offsets into packobj and bigobj.
3421 	 */
3422 	n = ztest_random(regions) * stride + ztest_random(width);
3423 	s = 1 + ztest_random(width - 1);
3424 
3425 	packoff = n * sizeof (bufwad_t);
3426 	packsize = s * sizeof (bufwad_t);
3427 
3428 	bigoff = n * chunksize;
3429 	bigsize = s * chunksize;
3430 
3431 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3432 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3433 
3434 	/*
3435 	 * free_percent of the time, free a range of bigobj rather than
3436 	 * overwriting it.
3437 	 */
3438 	freeit = (ztest_random(100) < free_percent);
3439 
3440 	/*
3441 	 * Read the current contents of our objects.
3442 	 */
3443 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
3444 	    DMU_READ_PREFETCH);
3445 	ASSERT0(error);
3446 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3447 	    DMU_READ_PREFETCH);
3448 	ASSERT0(error);
3449 
3450 	/*
3451 	 * Get a tx for the mods to both packobj and bigobj.
3452 	 */
3453 	tx = dmu_tx_create(os);
3454 
3455 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
3456 
3457 	if (freeit)
3458 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3459 	else
3460 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3461 
3462 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3463 	if (txg == 0) {
3464 		umem_free(packbuf, packsize);
3465 		umem_free(bigbuf, bigsize);
3466 		return;
3467 	}
3468 
3469 	dmu_object_set_checksum(os, bigobj,
3470 	    (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx);
3471 
3472 	dmu_object_set_compress(os, bigobj,
3473 	    (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx);
3474 
3475 	/*
3476 	 * For each index from n to n + s, verify that the existing bufwad
3477 	 * in packobj matches the bufwads at the head and tail of the
3478 	 * corresponding chunk in bigobj.  Then update all three bufwads
3479 	 * with the new values we want to write out.
3480 	 */
3481 	for (i = 0; i < s; i++) {
3482 		/* LINTED */
3483 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3484 		/* LINTED */
3485 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3486 		/* LINTED */
3487 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3488 
3489 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3490 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3491 
3492 		if (pack->bw_txg > txg)
3493 			fatal(0, "future leak: got %llx, open txg is %llx",
3494 			    pack->bw_txg, txg);
3495 
3496 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3497 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3498 			    pack->bw_index, n, i);
3499 
3500 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3501 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3502 
3503 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3504 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3505 
3506 		if (freeit) {
3507 			bzero(pack, sizeof (bufwad_t));
3508 		} else {
3509 			pack->bw_index = n + i;
3510 			pack->bw_txg = txg;
3511 			pack->bw_data = 1 + ztest_random(-2ULL);
3512 		}
3513 		*bigH = *pack;
3514 		*bigT = *pack;
3515 	}
3516 
3517 	/*
3518 	 * We've verified all the old bufwads, and made new ones.
3519 	 * Now write them out.
3520 	 */
3521 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3522 
3523 	if (freeit) {
3524 		if (ztest_opts.zo_verbose >= 7) {
3525 			(void) printf("freeing offset %llx size %llx"
3526 			    " txg %llx\n",
3527 			    (u_longlong_t)bigoff,
3528 			    (u_longlong_t)bigsize,
3529 			    (u_longlong_t)txg);
3530 		}
3531 		VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3532 	} else {
3533 		if (ztest_opts.zo_verbose >= 7) {
3534 			(void) printf("writing offset %llx size %llx"
3535 			    " txg %llx\n",
3536 			    (u_longlong_t)bigoff,
3537 			    (u_longlong_t)bigsize,
3538 			    (u_longlong_t)txg);
3539 		}
3540 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3541 	}
3542 
3543 	dmu_tx_commit(tx);
3544 
3545 	/*
3546 	 * Sanity check the stuff we just wrote.
3547 	 */
3548 	{
3549 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3550 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3551 
3552 		VERIFY(0 == dmu_read(os, packobj, packoff,
3553 		    packsize, packcheck, DMU_READ_PREFETCH));
3554 		VERIFY(0 == dmu_read(os, bigobj, bigoff,
3555 		    bigsize, bigcheck, DMU_READ_PREFETCH));
3556 
3557 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3558 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3559 
3560 		umem_free(packcheck, packsize);
3561 		umem_free(bigcheck, bigsize);
3562 	}
3563 
3564 	umem_free(packbuf, packsize);
3565 	umem_free(bigbuf, bigsize);
3566 }
3567 
3568 void
3569 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3570     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3571 {
3572 	uint64_t i;
3573 	bufwad_t *pack;
3574 	bufwad_t *bigH;
3575 	bufwad_t *bigT;
3576 
3577 	/*
3578 	 * For each index from n to n + s, verify that the existing bufwad
3579 	 * in packobj matches the bufwads at the head and tail of the
3580 	 * corresponding chunk in bigobj.  Then update all three bufwads
3581 	 * with the new values we want to write out.
3582 	 */
3583 	for (i = 0; i < s; i++) {
3584 		/* LINTED */
3585 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3586 		/* LINTED */
3587 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3588 		/* LINTED */
3589 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3590 
3591 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3592 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3593 
3594 		if (pack->bw_txg > txg)
3595 			fatal(0, "future leak: got %llx, open txg is %llx",
3596 			    pack->bw_txg, txg);
3597 
3598 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3599 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3600 			    pack->bw_index, n, i);
3601 
3602 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3603 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3604 
3605 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3606 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3607 
3608 		pack->bw_index = n + i;
3609 		pack->bw_txg = txg;
3610 		pack->bw_data = 1 + ztest_random(-2ULL);
3611 
3612 		*bigH = *pack;
3613 		*bigT = *pack;
3614 	}
3615 }
3616 
3617 void
3618 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3619 {
3620 	objset_t *os = zd->zd_os;
3621 	ztest_od_t od[2];
3622 	dmu_tx_t *tx;
3623 	uint64_t i;
3624 	int error;
3625 	uint64_t n, s, txg;
3626 	bufwad_t *packbuf, *bigbuf;
3627 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3628 	uint64_t blocksize = ztest_random_blocksize();
3629 	uint64_t chunksize = blocksize;
3630 	uint64_t regions = 997;
3631 	uint64_t stride = 123456789ULL;
3632 	uint64_t width = 9;
3633 	dmu_buf_t *bonus_db;
3634 	arc_buf_t **bigbuf_arcbufs;
3635 	dmu_object_info_t doi;
3636 
3637 	/*
3638 	 * This test uses two objects, packobj and bigobj, that are always
3639 	 * updated together (i.e. in the same tx) so that their contents are
3640 	 * in sync and can be compared.  Their contents relate to each other
3641 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3642 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3643 	 * for any index n, there are three bufwads that should be identical:
3644 	 *
3645 	 *	packobj, at offset n * sizeof (bufwad_t)
3646 	 *	bigobj, at the head of the nth chunk
3647 	 *	bigobj, at the tail of the nth chunk
3648 	 *
3649 	 * The chunk size is set equal to bigobj block size so that
3650 	 * dmu_assign_arcbuf() can be tested for object updates.
3651 	 */
3652 
3653 	/*
3654 	 * Read the directory info.  If it's the first time, set things up.
3655 	 */
3656 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3657 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3658 
3659 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3660 		return;
3661 
3662 	bigobj = od[0].od_object;
3663 	packobj = od[1].od_object;
3664 	blocksize = od[0].od_blocksize;
3665 	chunksize = blocksize;
3666 	ASSERT(chunksize == od[1].od_gen);
3667 
3668 	VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3669 	VERIFY(ISP2(doi.doi_data_block_size));
3670 	VERIFY(chunksize == doi.doi_data_block_size);
3671 	VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3672 
3673 	/*
3674 	 * Pick a random index and compute the offsets into packobj and bigobj.
3675 	 */
3676 	n = ztest_random(regions) * stride + ztest_random(width);
3677 	s = 1 + ztest_random(width - 1);
3678 
3679 	packoff = n * sizeof (bufwad_t);
3680 	packsize = s * sizeof (bufwad_t);
3681 
3682 	bigoff = n * chunksize;
3683 	bigsize = s * chunksize;
3684 
3685 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3686 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3687 
3688 	VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3689 
3690 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3691 
3692 	/*
3693 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3694 	 * Iteration 1 test zcopy to already referenced dbufs.
3695 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3696 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3697 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
3698 	 * Iteration 5 test zcopy when it can't be done.
3699 	 * Iteration 6 one more zcopy write.
3700 	 */
3701 	for (i = 0; i < 7; i++) {
3702 		uint64_t j;
3703 		uint64_t off;
3704 
3705 		/*
3706 		 * In iteration 5 (i == 5) use arcbufs
3707 		 * that don't match bigobj blksz to test
3708 		 * dmu_assign_arcbuf() when it can't directly
3709 		 * assign an arcbuf to a dbuf.
3710 		 */
3711 		for (j = 0; j < s; j++) {
3712 			if (i != 5) {
3713 				bigbuf_arcbufs[j] =
3714 				    dmu_request_arcbuf(bonus_db, chunksize);
3715 			} else {
3716 				bigbuf_arcbufs[2 * j] =
3717 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3718 				bigbuf_arcbufs[2 * j + 1] =
3719 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3720 			}
3721 		}
3722 
3723 		/*
3724 		 * Get a tx for the mods to both packobj and bigobj.
3725 		 */
3726 		tx = dmu_tx_create(os);
3727 
3728 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
3729 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3730 
3731 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3732 		if (txg == 0) {
3733 			umem_free(packbuf, packsize);
3734 			umem_free(bigbuf, bigsize);
3735 			for (j = 0; j < s; j++) {
3736 				if (i != 5) {
3737 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
3738 				} else {
3739 					dmu_return_arcbuf(
3740 					    bigbuf_arcbufs[2 * j]);
3741 					dmu_return_arcbuf(
3742 					    bigbuf_arcbufs[2 * j + 1]);
3743 				}
3744 			}
3745 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3746 			dmu_buf_rele(bonus_db, FTAG);
3747 			return;
3748 		}
3749 
3750 		/*
3751 		 * 50% of the time don't read objects in the 1st iteration to
3752 		 * test dmu_assign_arcbuf() for the case when there're no
3753 		 * existing dbufs for the specified offsets.
3754 		 */
3755 		if (i != 0 || ztest_random(2) != 0) {
3756 			error = dmu_read(os, packobj, packoff,
3757 			    packsize, packbuf, DMU_READ_PREFETCH);
3758 			ASSERT0(error);
3759 			error = dmu_read(os, bigobj, bigoff, bigsize,
3760 			    bigbuf, DMU_READ_PREFETCH);
3761 			ASSERT0(error);
3762 		}
3763 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
3764 		    n, chunksize, txg);
3765 
3766 		/*
3767 		 * We've verified all the old bufwads, and made new ones.
3768 		 * Now write them out.
3769 		 */
3770 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3771 		if (ztest_opts.zo_verbose >= 7) {
3772 			(void) printf("writing offset %llx size %llx"
3773 			    " txg %llx\n",
3774 			    (u_longlong_t)bigoff,
3775 			    (u_longlong_t)bigsize,
3776 			    (u_longlong_t)txg);
3777 		}
3778 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
3779 			dmu_buf_t *dbt;
3780 			if (i != 5) {
3781 				bcopy((caddr_t)bigbuf + (off - bigoff),
3782 				    bigbuf_arcbufs[j]->b_data, chunksize);
3783 			} else {
3784 				bcopy((caddr_t)bigbuf + (off - bigoff),
3785 				    bigbuf_arcbufs[2 * j]->b_data,
3786 				    chunksize / 2);
3787 				bcopy((caddr_t)bigbuf + (off - bigoff) +
3788 				    chunksize / 2,
3789 				    bigbuf_arcbufs[2 * j + 1]->b_data,
3790 				    chunksize / 2);
3791 			}
3792 
3793 			if (i == 1) {
3794 				VERIFY(dmu_buf_hold(os, bigobj, off,
3795 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
3796 			}
3797 			if (i != 5) {
3798 				dmu_assign_arcbuf(bonus_db, off,
3799 				    bigbuf_arcbufs[j], tx);
3800 			} else {
3801 				dmu_assign_arcbuf(bonus_db, off,
3802 				    bigbuf_arcbufs[2 * j], tx);
3803 				dmu_assign_arcbuf(bonus_db,
3804 				    off + chunksize / 2,
3805 				    bigbuf_arcbufs[2 * j + 1], tx);
3806 			}
3807 			if (i == 1) {
3808 				dmu_buf_rele(dbt, FTAG);
3809 			}
3810 		}
3811 		dmu_tx_commit(tx);
3812 
3813 		/*
3814 		 * Sanity check the stuff we just wrote.
3815 		 */
3816 		{
3817 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3818 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3819 
3820 			VERIFY(0 == dmu_read(os, packobj, packoff,
3821 			    packsize, packcheck, DMU_READ_PREFETCH));
3822 			VERIFY(0 == dmu_read(os, bigobj, bigoff,
3823 			    bigsize, bigcheck, DMU_READ_PREFETCH));
3824 
3825 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3826 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3827 
3828 			umem_free(packcheck, packsize);
3829 			umem_free(bigcheck, bigsize);
3830 		}
3831 		if (i == 2) {
3832 			txg_wait_open(dmu_objset_pool(os), 0);
3833 		} else if (i == 3) {
3834 			txg_wait_synced(dmu_objset_pool(os), 0);
3835 		}
3836 	}
3837 
3838 	dmu_buf_rele(bonus_db, FTAG);
3839 	umem_free(packbuf, packsize);
3840 	umem_free(bigbuf, bigsize);
3841 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3842 }
3843 
3844 /* ARGSUSED */
3845 void
3846 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
3847 {
3848 	ztest_od_t od[1];
3849 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
3850 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3851 
3852 	/*
3853 	 * Have multiple threads write to large offsets in an object
3854 	 * to verify that parallel writes to an object -- even to the
3855 	 * same blocks within the object -- doesn't cause any trouble.
3856 	 */
3857 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
3858 
3859 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3860 		return;
3861 
3862 	while (ztest_random(10) != 0)
3863 		ztest_io(zd, od[0].od_object, offset);
3864 }
3865 
3866 void
3867 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
3868 {
3869 	ztest_od_t od[1];
3870 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
3871 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3872 	uint64_t count = ztest_random(20) + 1;
3873 	uint64_t blocksize = ztest_random_blocksize();
3874 	void *data;
3875 
3876 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3877 
3878 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
3879 		return;
3880 
3881 	if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
3882 		return;
3883 
3884 	ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
3885 
3886 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
3887 
3888 	while (ztest_random(count) != 0) {
3889 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
3890 		if (ztest_write(zd, od[0].od_object, randoff, blocksize,
3891 		    data) != 0)
3892 			break;
3893 		while (ztest_random(4) != 0)
3894 			ztest_io(zd, od[0].od_object, randoff);
3895 	}
3896 
3897 	umem_free(data, blocksize);
3898 }
3899 
3900 /*
3901  * Verify that zap_{create,destroy,add,remove,update} work as expected.
3902  */
3903 #define	ZTEST_ZAP_MIN_INTS	1
3904 #define	ZTEST_ZAP_MAX_INTS	4
3905 #define	ZTEST_ZAP_MAX_PROPS	1000
3906 
3907 void
3908 ztest_zap(ztest_ds_t *zd, uint64_t id)
3909 {
3910 	objset_t *os = zd->zd_os;
3911 	ztest_od_t od[1];
3912 	uint64_t object;
3913 	uint64_t txg, last_txg;
3914 	uint64_t value[ZTEST_ZAP_MAX_INTS];
3915 	uint64_t zl_ints, zl_intsize, prop;
3916 	int i, ints;
3917 	dmu_tx_t *tx;
3918 	char propname[100], txgname[100];
3919 	int error;
3920 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
3921 
3922 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
3923 
3924 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
3925 		return;
3926 
3927 	object = od[0].od_object;
3928 
3929 	/*
3930 	 * Generate a known hash collision, and verify that
3931 	 * we can lookup and remove both entries.
3932 	 */
3933 	tx = dmu_tx_create(os);
3934 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
3935 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3936 	if (txg == 0)
3937 		return;
3938 	for (i = 0; i < 2; i++) {
3939 		value[i] = i;
3940 		VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
3941 		    1, &value[i], tx));
3942 	}
3943 	for (i = 0; i < 2; i++) {
3944 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
3945 		    sizeof (uint64_t), 1, &value[i], tx));
3946 		VERIFY0(zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
3947 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
3948 		ASSERT3U(zl_ints, ==, 1);
3949 	}
3950 	for (i = 0; i < 2; i++) {
3951 		VERIFY0(zap_remove(os, object, hc[i], tx));
3952 	}
3953 	dmu_tx_commit(tx);
3954 
3955 	/*
3956 	 * Generate a buch of random entries.
3957 	 */
3958 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
3959 
3960 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
3961 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
3962 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
3963 	bzero(value, sizeof (value));
3964 	last_txg = 0;
3965 
3966 	/*
3967 	 * If these zap entries already exist, validate their contents.
3968 	 */
3969 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
3970 	if (error == 0) {
3971 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
3972 		ASSERT3U(zl_ints, ==, 1);
3973 
3974 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
3975 		    zl_ints, &last_txg) == 0);
3976 
3977 		VERIFY(zap_length(os, object, propname, &zl_intsize,
3978 		    &zl_ints) == 0);
3979 
3980 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
3981 		ASSERT3U(zl_ints, ==, ints);
3982 
3983 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
3984 		    zl_ints, value) == 0);
3985 
3986 		for (i = 0; i < ints; i++) {
3987 			ASSERT3U(value[i], ==, last_txg + object + i);
3988 		}
3989 	} else {
3990 		ASSERT3U(error, ==, ENOENT);
3991 	}
3992 
3993 	/*
3994 	 * Atomically update two entries in our zap object.
3995 	 * The first is named txg_%llu, and contains the txg
3996 	 * in which the property was last updated.  The second
3997 	 * is named prop_%llu, and the nth element of its value
3998 	 * should be txg + object + n.
3999 	 */
4000 	tx = dmu_tx_create(os);
4001 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4002 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4003 	if (txg == 0)
4004 		return;
4005 
4006 	if (last_txg > txg)
4007 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4008 
4009 	for (i = 0; i < ints; i++)
4010 		value[i] = txg + object + i;
4011 
4012 	VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
4013 	    1, &txg, tx));
4014 	VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
4015 	    ints, value, tx));
4016 
4017 	dmu_tx_commit(tx);
4018 
4019 	/*
4020 	 * Remove a random pair of entries.
4021 	 */
4022 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4023 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4024 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4025 
4026 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4027 
4028 	if (error == ENOENT)
4029 		return;
4030 
4031 	ASSERT0(error);
4032 
4033 	tx = dmu_tx_create(os);
4034 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4035 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4036 	if (txg == 0)
4037 		return;
4038 	VERIFY0(zap_remove(os, object, txgname, tx));
4039 	VERIFY0(zap_remove(os, object, propname, tx));
4040 	dmu_tx_commit(tx);
4041 }
4042 
4043 /*
4044  * Testcase to test the upgrading of a microzap to fatzap.
4045  */
4046 void
4047 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4048 {
4049 	objset_t *os = zd->zd_os;
4050 	ztest_od_t od[1];
4051 	uint64_t object, txg;
4052 
4053 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4054 
4055 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4056 		return;
4057 
4058 	object = od[0].od_object;
4059 
4060 	/*
4061 	 * Add entries to this ZAP and make sure it spills over
4062 	 * and gets upgraded to a fatzap. Also, since we are adding
4063 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
4064 	 */
4065 	for (int i = 0; i < 2050; i++) {
4066 		char name[MAXNAMELEN];
4067 		uint64_t value = i;
4068 		dmu_tx_t *tx;
4069 		int error;
4070 
4071 		(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4072 		    id, value);
4073 
4074 		tx = dmu_tx_create(os);
4075 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
4076 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4077 		if (txg == 0)
4078 			return;
4079 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
4080 		    &value, tx);
4081 		ASSERT(error == 0 || error == EEXIST);
4082 		dmu_tx_commit(tx);
4083 	}
4084 }
4085 
4086 /* ARGSUSED */
4087 void
4088 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4089 {
4090 	objset_t *os = zd->zd_os;
4091 	ztest_od_t od[1];
4092 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4093 	dmu_tx_t *tx;
4094 	int i, namelen, error;
4095 	int micro = ztest_random(2);
4096 	char name[20], string_value[20];
4097 	void *data;
4098 
4099 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4100 
4101 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4102 		return;
4103 
4104 	object = od[0].od_object;
4105 
4106 	/*
4107 	 * Generate a random name of the form 'xxx.....' where each
4108 	 * x is a random printable character and the dots are dots.
4109 	 * There are 94 such characters, and the name length goes from
4110 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4111 	 */
4112 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4113 
4114 	for (i = 0; i < 3; i++)
4115 		name[i] = '!' + ztest_random('~' - '!' + 1);
4116 	for (; i < namelen - 1; i++)
4117 		name[i] = '.';
4118 	name[i] = '\0';
4119 
4120 	if ((namelen & 1) || micro) {
4121 		wsize = sizeof (txg);
4122 		wc = 1;
4123 		data = &txg;
4124 	} else {
4125 		wsize = 1;
4126 		wc = namelen;
4127 		data = string_value;
4128 	}
4129 
4130 	count = -1ULL;
4131 	VERIFY(zap_count(os, object, &count) == 0);
4132 	ASSERT(count != -1ULL);
4133 
4134 	/*
4135 	 * Select an operation: length, lookup, add, update, remove.
4136 	 */
4137 	i = ztest_random(5);
4138 
4139 	if (i >= 2) {
4140 		tx = dmu_tx_create(os);
4141 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4142 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4143 		if (txg == 0)
4144 			return;
4145 		bcopy(name, string_value, namelen);
4146 	} else {
4147 		tx = NULL;
4148 		txg = 0;
4149 		bzero(string_value, namelen);
4150 	}
4151 
4152 	switch (i) {
4153 
4154 	case 0:
4155 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4156 		if (error == 0) {
4157 			ASSERT3U(wsize, ==, zl_wsize);
4158 			ASSERT3U(wc, ==, zl_wc);
4159 		} else {
4160 			ASSERT3U(error, ==, ENOENT);
4161 		}
4162 		break;
4163 
4164 	case 1:
4165 		error = zap_lookup(os, object, name, wsize, wc, data);
4166 		if (error == 0) {
4167 			if (data == string_value &&
4168 			    bcmp(name, data, namelen) != 0)
4169 				fatal(0, "name '%s' != val '%s' len %d",
4170 				    name, data, namelen);
4171 		} else {
4172 			ASSERT3U(error, ==, ENOENT);
4173 		}
4174 		break;
4175 
4176 	case 2:
4177 		error = zap_add(os, object, name, wsize, wc, data, tx);
4178 		ASSERT(error == 0 || error == EEXIST);
4179 		break;
4180 
4181 	case 3:
4182 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4183 		break;
4184 
4185 	case 4:
4186 		error = zap_remove(os, object, name, tx);
4187 		ASSERT(error == 0 || error == ENOENT);
4188 		break;
4189 	}
4190 
4191 	if (tx != NULL)
4192 		dmu_tx_commit(tx);
4193 }
4194 
4195 /*
4196  * Commit callback data.
4197  */
4198 typedef struct ztest_cb_data {
4199 	list_node_t		zcd_node;
4200 	uint64_t		zcd_txg;
4201 	int			zcd_expected_err;
4202 	boolean_t		zcd_added;
4203 	boolean_t		zcd_called;
4204 	spa_t			*zcd_spa;
4205 } ztest_cb_data_t;
4206 
4207 /* This is the actual commit callback function */
4208 static void
4209 ztest_commit_callback(void *arg, int error)
4210 {
4211 	ztest_cb_data_t *data = arg;
4212 	uint64_t synced_txg;
4213 
4214 	VERIFY(data != NULL);
4215 	VERIFY3S(data->zcd_expected_err, ==, error);
4216 	VERIFY(!data->zcd_called);
4217 
4218 	synced_txg = spa_last_synced_txg(data->zcd_spa);
4219 	if (data->zcd_txg > synced_txg)
4220 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4221 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4222 		    synced_txg);
4223 
4224 	data->zcd_called = B_TRUE;
4225 
4226 	if (error == ECANCELED) {
4227 		ASSERT0(data->zcd_txg);
4228 		ASSERT(!data->zcd_added);
4229 
4230 		/*
4231 		 * The private callback data should be destroyed here, but
4232 		 * since we are going to check the zcd_called field after
4233 		 * dmu_tx_abort(), we will destroy it there.
4234 		 */
4235 		return;
4236 	}
4237 
4238 	/* Was this callback added to the global callback list? */
4239 	if (!data->zcd_added)
4240 		goto out;
4241 
4242 	ASSERT3U(data->zcd_txg, !=, 0);
4243 
4244 	/* Remove our callback from the list */
4245 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4246 	list_remove(&zcl.zcl_callbacks, data);
4247 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4248 
4249 out:
4250 	umem_free(data, sizeof (ztest_cb_data_t));
4251 }
4252 
4253 /* Allocate and initialize callback data structure */
4254 static ztest_cb_data_t *
4255 ztest_create_cb_data(objset_t *os, uint64_t txg)
4256 {
4257 	ztest_cb_data_t *cb_data;
4258 
4259 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4260 
4261 	cb_data->zcd_txg = txg;
4262 	cb_data->zcd_spa = dmu_objset_spa(os);
4263 
4264 	return (cb_data);
4265 }
4266 
4267 /*
4268  * If a number of txgs equal to this threshold have been created after a commit
4269  * callback has been registered but not called, then we assume there is an
4270  * implementation bug.
4271  */
4272 #define	ZTEST_COMMIT_CALLBACK_THRESH	(TXG_CONCURRENT_STATES + 2)
4273 
4274 /*
4275  * Commit callback test.
4276  */
4277 void
4278 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4279 {
4280 	objset_t *os = zd->zd_os;
4281 	ztest_od_t od[1];
4282 	dmu_tx_t *tx;
4283 	ztest_cb_data_t *cb_data[3], *tmp_cb;
4284 	uint64_t old_txg, txg;
4285 	int i, error;
4286 
4287 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4288 
4289 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4290 		return;
4291 
4292 	tx = dmu_tx_create(os);
4293 
4294 	cb_data[0] = ztest_create_cb_data(os, 0);
4295 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4296 
4297 	dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4298 
4299 	/* Every once in a while, abort the transaction on purpose */
4300 	if (ztest_random(100) == 0)
4301 		error = -1;
4302 
4303 	if (!error)
4304 		error = dmu_tx_assign(tx, TXG_NOWAIT);
4305 
4306 	txg = error ? 0 : dmu_tx_get_txg(tx);
4307 
4308 	cb_data[0]->zcd_txg = txg;
4309 	cb_data[1] = ztest_create_cb_data(os, txg);
4310 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4311 
4312 	if (error) {
4313 		/*
4314 		 * It's not a strict requirement to call the registered
4315 		 * callbacks from inside dmu_tx_abort(), but that's what
4316 		 * it's supposed to happen in the current implementation
4317 		 * so we will check for that.
4318 		 */
4319 		for (i = 0; i < 2; i++) {
4320 			cb_data[i]->zcd_expected_err = ECANCELED;
4321 			VERIFY(!cb_data[i]->zcd_called);
4322 		}
4323 
4324 		dmu_tx_abort(tx);
4325 
4326 		for (i = 0; i < 2; i++) {
4327 			VERIFY(cb_data[i]->zcd_called);
4328 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4329 		}
4330 
4331 		return;
4332 	}
4333 
4334 	cb_data[2] = ztest_create_cb_data(os, txg);
4335 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4336 
4337 	/*
4338 	 * Read existing data to make sure there isn't a future leak.
4339 	 */
4340 	VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4341 	    &old_txg, DMU_READ_PREFETCH));
4342 
4343 	if (old_txg > txg)
4344 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4345 		    old_txg, txg);
4346 
4347 	dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4348 
4349 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4350 
4351 	/*
4352 	 * Since commit callbacks don't have any ordering requirement and since
4353 	 * it is theoretically possible for a commit callback to be called
4354 	 * after an arbitrary amount of time has elapsed since its txg has been
4355 	 * synced, it is difficult to reliably determine whether a commit
4356 	 * callback hasn't been called due to high load or due to a flawed
4357 	 * implementation.
4358 	 *
4359 	 * In practice, we will assume that if after a certain number of txgs a
4360 	 * commit callback hasn't been called, then most likely there's an
4361 	 * implementation bug..
4362 	 */
4363 	tmp_cb = list_head(&zcl.zcl_callbacks);
4364 	if (tmp_cb != NULL &&
4365 	    tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) {
4366 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4367 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4368 	}
4369 
4370 	/*
4371 	 * Let's find the place to insert our callbacks.
4372 	 *
4373 	 * Even though the list is ordered by txg, it is possible for the
4374 	 * insertion point to not be the end because our txg may already be
4375 	 * quiescing at this point and other callbacks in the open txg
4376 	 * (from other objsets) may have sneaked in.
4377 	 */
4378 	tmp_cb = list_tail(&zcl.zcl_callbacks);
4379 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4380 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4381 
4382 	/* Add the 3 callbacks to the list */
4383 	for (i = 0; i < 3; i++) {
4384 		if (tmp_cb == NULL)
4385 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4386 		else
4387 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4388 			    cb_data[i]);
4389 
4390 		cb_data[i]->zcd_added = B_TRUE;
4391 		VERIFY(!cb_data[i]->zcd_called);
4392 
4393 		tmp_cb = cb_data[i];
4394 	}
4395 
4396 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4397 
4398 	dmu_tx_commit(tx);
4399 }
4400 
4401 /* ARGSUSED */
4402 void
4403 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4404 {
4405 	zfs_prop_t proplist[] = {
4406 		ZFS_PROP_CHECKSUM,
4407 		ZFS_PROP_COMPRESSION,
4408 		ZFS_PROP_COPIES,
4409 		ZFS_PROP_DEDUP
4410 	};
4411 
4412 	(void) rw_rdlock(&ztest_name_lock);
4413 
4414 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4415 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4416 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4417 
4418 	(void) rw_unlock(&ztest_name_lock);
4419 }
4420 
4421 /* ARGSUSED */
4422 void
4423 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4424 {
4425 	nvlist_t *props = NULL;
4426 
4427 	(void) rw_rdlock(&ztest_name_lock);
4428 
4429 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4430 	    ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4431 
4432 	VERIFY0(spa_prop_get(ztest_spa, &props));
4433 
4434 	if (ztest_opts.zo_verbose >= 6)
4435 		dump_nvlist(props, 4);
4436 
4437 	nvlist_free(props);
4438 
4439 	(void) rw_unlock(&ztest_name_lock);
4440 }
4441 
4442 /*
4443  * Test snapshot hold/release and deferred destroy.
4444  */
4445 void
4446 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4447 {
4448 	int error;
4449 	objset_t *os = zd->zd_os;
4450 	objset_t *origin;
4451 	char snapname[100];
4452 	char fullname[100];
4453 	char clonename[100];
4454 	char tag[100];
4455 	char osname[MAXNAMELEN];
4456 
4457 	(void) rw_rdlock(&ztest_name_lock);
4458 
4459 	dmu_objset_name(os, osname);
4460 
4461 	(void) snprintf(snapname, 100, "sh1_%llu", id);
4462 	(void) snprintf(fullname, 100, "%s@%s", osname, snapname);
4463 	(void) snprintf(clonename, 100, "%s/ch1_%llu", osname, id);
4464 	(void) snprintf(tag, 100, "%tag_%llu", id);
4465 
4466 	/*
4467 	 * Clean up from any previous run.
4468 	 */
4469 	(void) dmu_objset_destroy(clonename, B_FALSE);
4470 	(void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE);
4471 	(void) dmu_objset_destroy(fullname, B_FALSE);
4472 
4473 	/*
4474 	 * Create snapshot, clone it, mark snap for deferred destroy,
4475 	 * destroy clone, verify snap was also destroyed.
4476 	 */
4477 	error = dmu_objset_snapshot_one(osname, snapname);
4478 	if (error) {
4479 		if (error == ENOSPC) {
4480 			ztest_record_enospc("dmu_objset_snapshot");
4481 			goto out;
4482 		}
4483 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4484 	}
4485 
4486 	error = dmu_objset_hold(fullname, FTAG, &origin);
4487 	if (error)
4488 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4489 
4490 	error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0);
4491 	dmu_objset_rele(origin, FTAG);
4492 	if (error) {
4493 		if (error == ENOSPC) {
4494 			ztest_record_enospc("dmu_objset_clone");
4495 			goto out;
4496 		}
4497 		fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4498 	}
4499 
4500 	error = dmu_objset_destroy(fullname, B_TRUE);
4501 	if (error) {
4502 		fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d",
4503 		    fullname, error);
4504 	}
4505 
4506 	error = dmu_objset_destroy(clonename, B_FALSE);
4507 	if (error)
4508 		fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error);
4509 
4510 	error = dmu_objset_hold(fullname, FTAG, &origin);
4511 	if (error != ENOENT)
4512 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4513 
4514 	/*
4515 	 * Create snapshot, add temporary hold, verify that we can't
4516 	 * destroy a held snapshot, mark for deferred destroy,
4517 	 * release hold, verify snapshot was destroyed.
4518 	 */
4519 	error = dmu_objset_snapshot_one(osname, snapname);
4520 	if (error) {
4521 		if (error == ENOSPC) {
4522 			ztest_record_enospc("dmu_objset_snapshot");
4523 			goto out;
4524 		}
4525 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4526 	}
4527 
4528 	error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE,
4529 	    B_TRUE, -1);
4530 	if (error)
4531 		fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag);
4532 
4533 	error = dmu_objset_destroy(fullname, B_FALSE);
4534 	if (error != EBUSY) {
4535 		fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d",
4536 		    fullname, error);
4537 	}
4538 
4539 	error = dmu_objset_destroy(fullname, B_TRUE);
4540 	if (error) {
4541 		fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d",
4542 		    fullname, error);
4543 	}
4544 
4545 	error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE);
4546 	if (error)
4547 		fatal(0, "dsl_dataset_user_release(%s)", fullname, tag);
4548 
4549 	VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT);
4550 
4551 out:
4552 	(void) rw_unlock(&ztest_name_lock);
4553 }
4554 
4555 /*
4556  * Inject random faults into the on-disk data.
4557  */
4558 /* ARGSUSED */
4559 void
4560 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4561 {
4562 	ztest_shared_t *zs = ztest_shared;
4563 	spa_t *spa = ztest_spa;
4564 	int fd;
4565 	uint64_t offset;
4566 	uint64_t leaves;
4567 	uint64_t bad = 0x1990c0ffeedecade;
4568 	uint64_t top, leaf;
4569 	char path0[MAXPATHLEN];
4570 	char pathrand[MAXPATHLEN];
4571 	size_t fsize;
4572 	int bshift = SPA_MAXBLOCKSHIFT + 2;	/* don't scrog all labels */
4573 	int iters = 1000;
4574 	int maxfaults;
4575 	int mirror_save;
4576 	vdev_t *vd0 = NULL;
4577 	uint64_t guid0 = 0;
4578 	boolean_t islog = B_FALSE;
4579 
4580 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4581 	maxfaults = MAXFAULTS();
4582 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4583 	mirror_save = zs->zs_mirrors;
4584 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4585 
4586 	ASSERT(leaves >= 1);
4587 
4588 	/*
4589 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4590 	 */
4591 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4592 
4593 	if (ztest_random(2) == 0) {
4594 		/*
4595 		 * Inject errors on a normal data device or slog device.
4596 		 */
4597 		top = ztest_random_vdev_top(spa, B_TRUE);
4598 		leaf = ztest_random(leaves) + zs->zs_splits;
4599 
4600 		/*
4601 		 * Generate paths to the first leaf in this top-level vdev,
4602 		 * and to the random leaf we selected.  We'll induce transient
4603 		 * write failures and random online/offline activity on leaf 0,
4604 		 * and we'll write random garbage to the randomly chosen leaf.
4605 		 */
4606 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
4607 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
4608 		    top * leaves + zs->zs_splits);
4609 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
4610 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
4611 		    top * leaves + leaf);
4612 
4613 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4614 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4615 			islog = B_TRUE;
4616 
4617 		if (vd0 != NULL && maxfaults != 1) {
4618 			/*
4619 			 * Make vd0 explicitly claim to be unreadable,
4620 			 * or unwriteable, or reach behind its back
4621 			 * and close the underlying fd.  We can do this if
4622 			 * maxfaults == 0 because we'll fail and reexecute,
4623 			 * and we can do it if maxfaults >= 2 because we'll
4624 			 * have enough redundancy.  If maxfaults == 1, the
4625 			 * combination of this with injection of random data
4626 			 * corruption below exceeds the pool's fault tolerance.
4627 			 */
4628 			vdev_file_t *vf = vd0->vdev_tsd;
4629 
4630 			if (vf != NULL && ztest_random(3) == 0) {
4631 				(void) close(vf->vf_vnode->v_fd);
4632 				vf->vf_vnode->v_fd = -1;
4633 			} else if (ztest_random(2) == 0) {
4634 				vd0->vdev_cant_read = B_TRUE;
4635 			} else {
4636 				vd0->vdev_cant_write = B_TRUE;
4637 			}
4638 			guid0 = vd0->vdev_guid;
4639 		}
4640 	} else {
4641 		/*
4642 		 * Inject errors on an l2cache device.
4643 		 */
4644 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
4645 
4646 		if (sav->sav_count == 0) {
4647 			spa_config_exit(spa, SCL_STATE, FTAG);
4648 			return;
4649 		}
4650 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4651 		guid0 = vd0->vdev_guid;
4652 		(void) strcpy(path0, vd0->vdev_path);
4653 		(void) strcpy(pathrand, vd0->vdev_path);
4654 
4655 		leaf = 0;
4656 		leaves = 1;
4657 		maxfaults = INT_MAX;	/* no limit on cache devices */
4658 	}
4659 
4660 	spa_config_exit(spa, SCL_STATE, FTAG);
4661 
4662 	/*
4663 	 * If we can tolerate two or more faults, or we're dealing
4664 	 * with a slog, randomly online/offline vd0.
4665 	 */
4666 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
4667 		if (ztest_random(10) < 6) {
4668 			int flags = (ztest_random(2) == 0 ?
4669 			    ZFS_OFFLINE_TEMPORARY : 0);
4670 
4671 			/*
4672 			 * We have to grab the zs_name_lock as writer to
4673 			 * prevent a race between offlining a slog and
4674 			 * destroying a dataset. Offlining the slog will
4675 			 * grab a reference on the dataset which may cause
4676 			 * dmu_objset_destroy() to fail with EBUSY thus
4677 			 * leaving the dataset in an inconsistent state.
4678 			 */
4679 			if (islog)
4680 				(void) rw_wrlock(&ztest_name_lock);
4681 
4682 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
4683 
4684 			if (islog)
4685 				(void) rw_unlock(&ztest_name_lock);
4686 		} else {
4687 			(void) vdev_online(spa, guid0, 0, NULL);
4688 		}
4689 	}
4690 
4691 	if (maxfaults == 0)
4692 		return;
4693 
4694 	/*
4695 	 * We have at least single-fault tolerance, so inject data corruption.
4696 	 */
4697 	fd = open(pathrand, O_RDWR);
4698 
4699 	if (fd == -1)	/* we hit a gap in the device namespace */
4700 		return;
4701 
4702 	fsize = lseek(fd, 0, SEEK_END);
4703 
4704 	while (--iters != 0) {
4705 		offset = ztest_random(fsize / (leaves << bshift)) *
4706 		    (leaves << bshift) + (leaf << bshift) +
4707 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
4708 
4709 		if (offset >= fsize)
4710 			continue;
4711 
4712 		VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4713 		if (mirror_save != zs->zs_mirrors) {
4714 			VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4715 			(void) close(fd);
4716 			return;
4717 		}
4718 
4719 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
4720 			fatal(1, "can't inject bad word at 0x%llx in %s",
4721 			    offset, pathrand);
4722 
4723 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4724 
4725 		if (ztest_opts.zo_verbose >= 7)
4726 			(void) printf("injected bad word into %s,"
4727 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
4728 	}
4729 
4730 	(void) close(fd);
4731 }
4732 
4733 /*
4734  * Verify that DDT repair works as expected.
4735  */
4736 void
4737 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
4738 {
4739 	ztest_shared_t *zs = ztest_shared;
4740 	spa_t *spa = ztest_spa;
4741 	objset_t *os = zd->zd_os;
4742 	ztest_od_t od[1];
4743 	uint64_t object, blocksize, txg, pattern, psize;
4744 	enum zio_checksum checksum = spa_dedup_checksum(spa);
4745 	dmu_buf_t *db;
4746 	dmu_tx_t *tx;
4747 	void *buf;
4748 	blkptr_t blk;
4749 	int copies = 2 * ZIO_DEDUPDITTO_MIN;
4750 
4751 	blocksize = ztest_random_blocksize();
4752 	blocksize = MIN(blocksize, 2048);	/* because we write so many */
4753 
4754 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4755 
4756 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4757 		return;
4758 
4759 	/*
4760 	 * Take the name lock as writer to prevent anyone else from changing
4761 	 * the pool and dataset properies we need to maintain during this test.
4762 	 */
4763 	(void) rw_wrlock(&ztest_name_lock);
4764 
4765 	if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
4766 	    B_FALSE) != 0 ||
4767 	    ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
4768 	    B_FALSE) != 0) {
4769 		(void) rw_unlock(&ztest_name_lock);
4770 		return;
4771 	}
4772 
4773 	object = od[0].od_object;
4774 	blocksize = od[0].od_blocksize;
4775 	pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os);
4776 
4777 	ASSERT(object != 0);
4778 
4779 	tx = dmu_tx_create(os);
4780 	dmu_tx_hold_write(tx, object, 0, copies * blocksize);
4781 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
4782 	if (txg == 0) {
4783 		(void) rw_unlock(&ztest_name_lock);
4784 		return;
4785 	}
4786 
4787 	/*
4788 	 * Write all the copies of our block.
4789 	 */
4790 	for (int i = 0; i < copies; i++) {
4791 		uint64_t offset = i * blocksize;
4792 		VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db,
4793 		    DMU_READ_NO_PREFETCH) == 0);
4794 		ASSERT(db->db_offset == offset);
4795 		ASSERT(db->db_size == blocksize);
4796 		ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
4797 		    ztest_pattern_match(db->db_data, db->db_size, 0ULL));
4798 		dmu_buf_will_fill(db, tx);
4799 		ztest_pattern_set(db->db_data, db->db_size, pattern);
4800 		dmu_buf_rele(db, FTAG);
4801 	}
4802 
4803 	dmu_tx_commit(tx);
4804 	txg_wait_synced(spa_get_dsl(spa), txg);
4805 
4806 	/*
4807 	 * Find out what block we got.
4808 	 */
4809 	VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db,
4810 	    DMU_READ_NO_PREFETCH) == 0);
4811 	blk = *((dmu_buf_impl_t *)db)->db_blkptr;
4812 	dmu_buf_rele(db, FTAG);
4813 
4814 	/*
4815 	 * Damage the block.  Dedup-ditto will save us when we read it later.
4816 	 */
4817 	psize = BP_GET_PSIZE(&blk);
4818 	buf = zio_buf_alloc(psize);
4819 	ztest_pattern_set(buf, psize, ~pattern);
4820 
4821 	(void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
4822 	    buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
4823 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
4824 
4825 	zio_buf_free(buf, psize);
4826 
4827 	(void) rw_unlock(&ztest_name_lock);
4828 }
4829 
4830 /*
4831  * Scrub the pool.
4832  */
4833 /* ARGSUSED */
4834 void
4835 ztest_scrub(ztest_ds_t *zd, uint64_t id)
4836 {
4837 	spa_t *spa = ztest_spa;
4838 
4839 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
4840 	(void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
4841 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
4842 }
4843 
4844 /*
4845  * Change the guid for the pool.
4846  */
4847 /* ARGSUSED */
4848 void
4849 ztest_reguid(ztest_ds_t *zd, uint64_t id)
4850 {
4851 	spa_t *spa = ztest_spa;
4852 	uint64_t orig, load;
4853 
4854 	orig = spa_guid(spa);
4855 	load = spa_load_guid(spa);
4856 	if (spa_change_guid(spa) != 0)
4857 		return;
4858 
4859 	if (ztest_opts.zo_verbose >= 3) {
4860 		(void) printf("Changed guid old %llu -> %llu\n",
4861 		    (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
4862 	}
4863 
4864 	VERIFY3U(orig, !=, spa_guid(spa));
4865 	VERIFY3U(load, ==, spa_load_guid(spa));
4866 }
4867 
4868 /*
4869  * Rename the pool to a different name and then rename it back.
4870  */
4871 /* ARGSUSED */
4872 void
4873 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
4874 {
4875 	char *oldname, *newname;
4876 	spa_t *spa;
4877 
4878 	(void) rw_wrlock(&ztest_name_lock);
4879 
4880 	oldname = ztest_opts.zo_pool;
4881 	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
4882 	(void) strcpy(newname, oldname);
4883 	(void) strcat(newname, "_tmp");
4884 
4885 	/*
4886 	 * Do the rename
4887 	 */
4888 	VERIFY0(spa_rename(oldname, newname));
4889 
4890 	/*
4891 	 * Try to open it under the old name, which shouldn't exist
4892 	 */
4893 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
4894 
4895 	/*
4896 	 * Open it under the new name and make sure it's still the same spa_t.
4897 	 */
4898 	VERIFY0(spa_open(newname, &spa, FTAG));
4899 
4900 	ASSERT(spa == ztest_spa);
4901 	spa_close(spa, FTAG);
4902 
4903 	/*
4904 	 * Rename it back to the original
4905 	 */
4906 	VERIFY0(spa_rename(newname, oldname));
4907 
4908 	/*
4909 	 * Make sure it can still be opened
4910 	 */
4911 	VERIFY0(spa_open(oldname, &spa, FTAG));
4912 
4913 	ASSERT(spa == ztest_spa);
4914 	spa_close(spa, FTAG);
4915 
4916 	umem_free(newname, strlen(newname) + 1);
4917 
4918 	(void) rw_unlock(&ztest_name_lock);
4919 }
4920 
4921 /*
4922  * Verify pool integrity by running zdb.
4923  */
4924 static void
4925 ztest_run_zdb(char *pool)
4926 {
4927 	int status;
4928 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
4929 	char zbuf[1024];
4930 	char *bin;
4931 	char *ztest;
4932 	char *isa;
4933 	int isalen;
4934 	FILE *fp;
4935 
4936 	(void) realpath(getexecname(), zdb);
4937 
4938 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
4939 	bin = strstr(zdb, "/usr/bin/");
4940 	ztest = strstr(bin, "/ztest");
4941 	isa = bin + 8;
4942 	isalen = ztest - isa;
4943 	isa = strdup(isa);
4944 	/* LINTED */
4945 	(void) sprintf(bin,
4946 	    "/usr/sbin%.*s/zdb -bcc%s%s -U %s %s",
4947 	    isalen,
4948 	    isa,
4949 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
4950 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
4951 	    spa_config_path,
4952 	    pool);
4953 	free(isa);
4954 
4955 	if (ztest_opts.zo_verbose >= 5)
4956 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
4957 
4958 	fp = popen(zdb, "r");
4959 
4960 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
4961 		if (ztest_opts.zo_verbose >= 3)
4962 			(void) printf("%s", zbuf);
4963 
4964 	status = pclose(fp);
4965 
4966 	if (status == 0)
4967 		return;
4968 
4969 	ztest_dump_core = 0;
4970 	if (WIFEXITED(status))
4971 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
4972 	else
4973 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
4974 }
4975 
4976 static void
4977 ztest_walk_pool_directory(char *header)
4978 {
4979 	spa_t *spa = NULL;
4980 
4981 	if (ztest_opts.zo_verbose >= 6)
4982 		(void) printf("%s\n", header);
4983 
4984 	mutex_enter(&spa_namespace_lock);
4985 	while ((spa = spa_next(spa)) != NULL)
4986 		if (ztest_opts.zo_verbose >= 6)
4987 			(void) printf("\t%s\n", spa_name(spa));
4988 	mutex_exit(&spa_namespace_lock);
4989 }
4990 
4991 static void
4992 ztest_spa_import_export(char *oldname, char *newname)
4993 {
4994 	nvlist_t *config, *newconfig;
4995 	uint64_t pool_guid;
4996 	spa_t *spa;
4997 
4998 	if (ztest_opts.zo_verbose >= 4) {
4999 		(void) printf("import/export: old = %s, new = %s\n",
5000 		    oldname, newname);
5001 	}
5002 
5003 	/*
5004 	 * Clean up from previous runs.
5005 	 */
5006 	(void) spa_destroy(newname);
5007 
5008 	/*
5009 	 * Get the pool's configuration and guid.
5010 	 */
5011 	VERIFY0(spa_open(oldname, &spa, FTAG));
5012 
5013 	/*
5014 	 * Kick off a scrub to tickle scrub/export races.
5015 	 */
5016 	if (ztest_random(2) == 0)
5017 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
5018 
5019 	pool_guid = spa_guid(spa);
5020 	spa_close(spa, FTAG);
5021 
5022 	ztest_walk_pool_directory("pools before export");
5023 
5024 	/*
5025 	 * Export it.
5026 	 */
5027 	VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
5028 
5029 	ztest_walk_pool_directory("pools after export");
5030 
5031 	/*
5032 	 * Try to import it.
5033 	 */
5034 	newconfig = spa_tryimport(config);
5035 	ASSERT(newconfig != NULL);
5036 	nvlist_free(newconfig);
5037 
5038 	/*
5039 	 * Import it under the new name.
5040 	 */
5041 	VERIFY0(spa_import(newname, config, NULL, 0));
5042 
5043 	ztest_walk_pool_directory("pools after import");
5044 
5045 	/*
5046 	 * Try to import it again -- should fail with EEXIST.
5047 	 */
5048 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5049 
5050 	/*
5051 	 * Try to import it under a different name -- should fail with EEXIST.
5052 	 */
5053 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5054 
5055 	/*
5056 	 * Verify that the pool is no longer visible under the old name.
5057 	 */
5058 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5059 
5060 	/*
5061 	 * Verify that we can open and close the pool using the new name.
5062 	 */
5063 	VERIFY0(spa_open(newname, &spa, FTAG));
5064 	ASSERT(pool_guid == spa_guid(spa));
5065 	spa_close(spa, FTAG);
5066 
5067 	nvlist_free(config);
5068 }
5069 
5070 static void
5071 ztest_resume(spa_t *spa)
5072 {
5073 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5074 		(void) printf("resuming from suspended state\n");
5075 	spa_vdev_state_enter(spa, SCL_NONE);
5076 	vdev_clear(spa, NULL);
5077 	(void) spa_vdev_state_exit(spa, NULL, 0);
5078 	(void) zio_resume(spa);
5079 }
5080 
5081 static void *
5082 ztest_resume_thread(void *arg)
5083 {
5084 	spa_t *spa = arg;
5085 
5086 	while (!ztest_exiting) {
5087 		if (spa_suspended(spa))
5088 			ztest_resume(spa);
5089 		(void) poll(NULL, 0, 100);
5090 	}
5091 	return (NULL);
5092 }
5093 
5094 static void *
5095 ztest_deadman_thread(void *arg)
5096 {
5097 	ztest_shared_t *zs = arg;
5098 	int grace = 300;
5099 	hrtime_t delta;
5100 
5101 	delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace;
5102 
5103 	(void) poll(NULL, 0, (int)(1000 * delta));
5104 
5105 	fatal(0, "failed to complete within %d seconds of deadline", grace);
5106 
5107 	return (NULL);
5108 }
5109 
5110 static void
5111 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5112 {
5113 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5114 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5115 	hrtime_t functime = gethrtime();
5116 
5117 	for (int i = 0; i < zi->zi_iters; i++)
5118 		zi->zi_func(zd, id);
5119 
5120 	functime = gethrtime() - functime;
5121 
5122 	atomic_add_64(&zc->zc_count, 1);
5123 	atomic_add_64(&zc->zc_time, functime);
5124 
5125 	if (ztest_opts.zo_verbose >= 4) {
5126 		Dl_info dli;
5127 		(void) dladdr((void *)zi->zi_func, &dli);
5128 		(void) printf("%6.2f sec in %s\n",
5129 		    (double)functime / NANOSEC, dli.dli_sname);
5130 	}
5131 }
5132 
5133 static void *
5134 ztest_thread(void *arg)
5135 {
5136 	int rand;
5137 	uint64_t id = (uintptr_t)arg;
5138 	ztest_shared_t *zs = ztest_shared;
5139 	uint64_t call_next;
5140 	hrtime_t now;
5141 	ztest_info_t *zi;
5142 	ztest_shared_callstate_t *zc;
5143 
5144 	while ((now = gethrtime()) < zs->zs_thread_stop) {
5145 		/*
5146 		 * See if it's time to force a crash.
5147 		 */
5148 		if (now > zs->zs_thread_kill)
5149 			ztest_kill(zs);
5150 
5151 		/*
5152 		 * If we're getting ENOSPC with some regularity, stop.
5153 		 */
5154 		if (zs->zs_enospc_count > 10)
5155 			break;
5156 
5157 		/*
5158 		 * Pick a random function to execute.
5159 		 */
5160 		rand = ztest_random(ZTEST_FUNCS);
5161 		zi = &ztest_info[rand];
5162 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5163 		call_next = zc->zc_next;
5164 
5165 		if (now >= call_next &&
5166 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
5167 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5168 			ztest_execute(rand, zi, id);
5169 		}
5170 	}
5171 
5172 	return (NULL);
5173 }
5174 
5175 static void
5176 ztest_dataset_name(char *dsname, char *pool, int d)
5177 {
5178 	(void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d);
5179 }
5180 
5181 static void
5182 ztest_dataset_destroy(int d)
5183 {
5184 	char name[MAXNAMELEN];
5185 
5186 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5187 
5188 	if (ztest_opts.zo_verbose >= 3)
5189 		(void) printf("Destroying %s to free up space\n", name);
5190 
5191 	/*
5192 	 * Cleanup any non-standard clones and snapshots.  In general,
5193 	 * ztest thread t operates on dataset (t % zopt_datasets),
5194 	 * so there may be more than one thing to clean up.
5195 	 */
5196 	for (int t = d; t < ztest_opts.zo_threads;
5197 	    t += ztest_opts.zo_datasets) {
5198 		ztest_dsl_dataset_cleanup(name, t);
5199 	}
5200 
5201 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5202 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5203 }
5204 
5205 static void
5206 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5207 {
5208 	uint64_t usedobjs, dirobjs, scratch;
5209 
5210 	/*
5211 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
5212 	 * Therefore, the number of objects in use should equal the
5213 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5214 	 * If not, we have an object leak.
5215 	 *
5216 	 * Note that we can only check this in ztest_dataset_open(),
5217 	 * when the open-context and syncing-context values agree.
5218 	 * That's because zap_count() returns the open-context value,
5219 	 * while dmu_objset_space() returns the rootbp fill count.
5220 	 */
5221 	VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5222 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5223 	ASSERT3U(dirobjs + 1, ==, usedobjs);
5224 }
5225 
5226 static int
5227 ztest_dataset_open(int d)
5228 {
5229 	ztest_ds_t *zd = &ztest_ds[d];
5230 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5231 	objset_t *os;
5232 	zilog_t *zilog;
5233 	char name[MAXNAMELEN];
5234 	int error;
5235 
5236 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5237 
5238 	(void) rw_rdlock(&ztest_name_lock);
5239 
5240 	error = ztest_dataset_create(name);
5241 	if (error == ENOSPC) {
5242 		(void) rw_unlock(&ztest_name_lock);
5243 		ztest_record_enospc(FTAG);
5244 		return (error);
5245 	}
5246 	ASSERT(error == 0 || error == EEXIST);
5247 
5248 	VERIFY0(dmu_objset_hold(name, zd, &os));
5249 	(void) rw_unlock(&ztest_name_lock);
5250 
5251 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5252 
5253 	zilog = zd->zd_zilog;
5254 
5255 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5256 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
5257 		fatal(0, "missing log records: claimed %llu < committed %llu",
5258 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
5259 
5260 	ztest_dataset_dirobj_verify(zd);
5261 
5262 	zil_replay(os, zd, ztest_replay_vector);
5263 
5264 	ztest_dataset_dirobj_verify(zd);
5265 
5266 	if (ztest_opts.zo_verbose >= 6)
5267 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5268 		    zd->zd_name,
5269 		    (u_longlong_t)zilog->zl_parse_blk_count,
5270 		    (u_longlong_t)zilog->zl_parse_lr_count,
5271 		    (u_longlong_t)zilog->zl_replaying_seq);
5272 
5273 	zilog = zil_open(os, ztest_get_data);
5274 
5275 	if (zilog->zl_replaying_seq != 0 &&
5276 	    zilog->zl_replaying_seq < committed_seq)
5277 		fatal(0, "missing log records: replayed %llu < committed %llu",
5278 		    zilog->zl_replaying_seq, committed_seq);
5279 
5280 	return (0);
5281 }
5282 
5283 static void
5284 ztest_dataset_close(int d)
5285 {
5286 	ztest_ds_t *zd = &ztest_ds[d];
5287 
5288 	zil_close(zd->zd_zilog);
5289 	dmu_objset_rele(zd->zd_os, zd);
5290 
5291 	ztest_zd_fini(zd);
5292 }
5293 
5294 /*
5295  * Kick off threads to run tests on all datasets in parallel.
5296  */
5297 static void
5298 ztest_run(ztest_shared_t *zs)
5299 {
5300 	thread_t *tid;
5301 	spa_t *spa;
5302 	objset_t *os;
5303 	thread_t resume_tid;
5304 	int error;
5305 
5306 	ztest_exiting = B_FALSE;
5307 
5308 	/*
5309 	 * Initialize parent/child shared state.
5310 	 */
5311 	VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5312 	VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5313 
5314 	zs->zs_thread_start = gethrtime();
5315 	zs->zs_thread_stop =
5316 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5317 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5318 	zs->zs_thread_kill = zs->zs_thread_stop;
5319 	if (ztest_random(100) < ztest_opts.zo_killrate) {
5320 		zs->zs_thread_kill -=
5321 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
5322 	}
5323 
5324 	(void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL);
5325 
5326 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5327 	    offsetof(ztest_cb_data_t, zcd_node));
5328 
5329 	/*
5330 	 * Open our pool.
5331 	 */
5332 	kernel_init(FREAD | FWRITE);
5333 	VERIFY(spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0);
5334 	spa->spa_debug = B_TRUE;
5335 	ztest_spa = spa;
5336 
5337 	VERIFY0(dmu_objset_hold(ztest_opts.zo_pool, FTAG, &os));
5338 	zs->zs_guid = dmu_objset_fsid_guid(os);
5339 	dmu_objset_rele(os, FTAG);
5340 
5341 	spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5342 
5343 	/*
5344 	 * We don't expect the pool to suspend unless maxfaults == 0,
5345 	 * in which case ztest_fault_inject() temporarily takes away
5346 	 * the only valid replica.
5347 	 */
5348 	if (MAXFAULTS() == 0)
5349 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5350 	else
5351 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5352 
5353 	/*
5354 	 * Create a thread to periodically resume suspended I/O.
5355 	 */
5356 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5357 	    &resume_tid) == 0);
5358 
5359 	/*
5360 	 * Create a deadman thread to abort() if we hang.
5361 	 */
5362 	VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5363 	    NULL) == 0);
5364 
5365 	/*
5366 	 * Verify that we can safely inquire about about any object,
5367 	 * whether it's allocated or not.  To make it interesting,
5368 	 * we probe a 5-wide window around each power of two.
5369 	 * This hits all edge cases, including zero and the max.
5370 	 */
5371 	for (int t = 0; t < 64; t++) {
5372 		for (int d = -5; d <= 5; d++) {
5373 			error = dmu_object_info(spa->spa_meta_objset,
5374 			    (1ULL << t) + d, NULL);
5375 			ASSERT(error == 0 || error == ENOENT ||
5376 			    error == EINVAL);
5377 		}
5378 	}
5379 
5380 	/*
5381 	 * If we got any ENOSPC errors on the previous run, destroy something.
5382 	 */
5383 	if (zs->zs_enospc_count != 0) {
5384 		int d = ztest_random(ztest_opts.zo_datasets);
5385 		ztest_dataset_destroy(d);
5386 	}
5387 	zs->zs_enospc_count = 0;
5388 
5389 	tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
5390 	    UMEM_NOFAIL);
5391 
5392 	if (ztest_opts.zo_verbose >= 4)
5393 		(void) printf("starting main threads...\n");
5394 
5395 	/*
5396 	 * Kick off all the tests that run in parallel.
5397 	 */
5398 	for (int t = 0; t < ztest_opts.zo_threads; t++) {
5399 		if (t < ztest_opts.zo_datasets &&
5400 		    ztest_dataset_open(t) != 0)
5401 			return;
5402 		VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
5403 		    THR_BOUND, &tid[t]) == 0);
5404 	}
5405 
5406 	/*
5407 	 * Wait for all of the tests to complete.  We go in reverse order
5408 	 * so we don't close datasets while threads are still using them.
5409 	 */
5410 	for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5411 		VERIFY(thr_join(tid[t], NULL, NULL) == 0);
5412 		if (t < ztest_opts.zo_datasets)
5413 			ztest_dataset_close(t);
5414 	}
5415 
5416 	txg_wait_synced(spa_get_dsl(spa), 0);
5417 
5418 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5419 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5420 
5421 	umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
5422 
5423 	/* Kill the resume thread */
5424 	ztest_exiting = B_TRUE;
5425 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
5426 	ztest_resume(spa);
5427 
5428 	/*
5429 	 * Right before closing the pool, kick off a bunch of async I/O;
5430 	 * spa_close() should wait for it to complete.
5431 	 */
5432 	for (uint64_t object = 1; object < 50; object++)
5433 		dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20);
5434 
5435 	spa_close(spa, FTAG);
5436 
5437 	/*
5438 	 * Verify that we can loop over all pools.
5439 	 */
5440 	mutex_enter(&spa_namespace_lock);
5441 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5442 		if (ztest_opts.zo_verbose > 3)
5443 			(void) printf("spa_next: found %s\n", spa_name(spa));
5444 	mutex_exit(&spa_namespace_lock);
5445 
5446 	/*
5447 	 * Verify that we can export the pool and reimport it under a
5448 	 * different name.
5449 	 */
5450 	if (ztest_random(2) == 0) {
5451 		char name[MAXNAMELEN];
5452 		(void) snprintf(name, MAXNAMELEN, "%s_import",
5453 		    ztest_opts.zo_pool);
5454 		ztest_spa_import_export(ztest_opts.zo_pool, name);
5455 		ztest_spa_import_export(name, ztest_opts.zo_pool);
5456 	}
5457 
5458 	kernel_fini();
5459 
5460 	list_destroy(&zcl.zcl_callbacks);
5461 
5462 	(void) _mutex_destroy(&zcl.zcl_callbacks_lock);
5463 
5464 	(void) rwlock_destroy(&ztest_name_lock);
5465 	(void) _mutex_destroy(&ztest_vdev_lock);
5466 }
5467 
5468 static void
5469 ztest_freeze(void)
5470 {
5471 	ztest_ds_t *zd = &ztest_ds[0];
5472 	spa_t *spa;
5473 	int numloops = 0;
5474 
5475 	if (ztest_opts.zo_verbose >= 3)
5476 		(void) printf("testing spa_freeze()...\n");
5477 
5478 	kernel_init(FREAD | FWRITE);
5479 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5480 	VERIFY0(ztest_dataset_open(0));
5481 
5482 	/*
5483 	 * Force the first log block to be transactionally allocated.
5484 	 * We have to do this before we freeze the pool -- otherwise
5485 	 * the log chain won't be anchored.
5486 	 */
5487 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5488 		ztest_dmu_object_alloc_free(zd, 0);
5489 		zil_commit(zd->zd_zilog, 0);
5490 	}
5491 
5492 	txg_wait_synced(spa_get_dsl(spa), 0);
5493 
5494 	/*
5495 	 * Freeze the pool.  This stops spa_sync() from doing anything,
5496 	 * so that the only way to record changes from now on is the ZIL.
5497 	 */
5498 	spa_freeze(spa);
5499 
5500 	/*
5501 	 * Run tests that generate log records but don't alter the pool config
5502 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5503 	 * We do a txg_wait_synced() after each iteration to force the txg
5504 	 * to increase well beyond the last synced value in the uberblock.
5505 	 * The ZIL should be OK with that.
5506 	 */
5507 	while (ztest_random(10) != 0 &&
5508 	    numloops++ < ztest_opts.zo_maxloops) {
5509 		ztest_dmu_write_parallel(zd, 0);
5510 		ztest_dmu_object_alloc_free(zd, 0);
5511 		txg_wait_synced(spa_get_dsl(spa), 0);
5512 	}
5513 
5514 	/*
5515 	 * Commit all of the changes we just generated.
5516 	 */
5517 	zil_commit(zd->zd_zilog, 0);
5518 	txg_wait_synced(spa_get_dsl(spa), 0);
5519 
5520 	/*
5521 	 * Close our dataset and close the pool.
5522 	 */
5523 	ztest_dataset_close(0);
5524 	spa_close(spa, FTAG);
5525 	kernel_fini();
5526 
5527 	/*
5528 	 * Open and close the pool and dataset to induce log replay.
5529 	 */
5530 	kernel_init(FREAD | FWRITE);
5531 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5532 	VERIFY0(ztest_dataset_open(0));
5533 	ztest_dataset_close(0);
5534 	spa_close(spa, FTAG);
5535 	kernel_fini();
5536 }
5537 
5538 void
5539 print_time(hrtime_t t, char *timebuf)
5540 {
5541 	hrtime_t s = t / NANOSEC;
5542 	hrtime_t m = s / 60;
5543 	hrtime_t h = m / 60;
5544 	hrtime_t d = h / 24;
5545 
5546 	s -= m * 60;
5547 	m -= h * 60;
5548 	h -= d * 24;
5549 
5550 	timebuf[0] = '\0';
5551 
5552 	if (d)
5553 		(void) sprintf(timebuf,
5554 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
5555 	else if (h)
5556 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
5557 	else if (m)
5558 		(void) sprintf(timebuf, "%llum%02llus", m, s);
5559 	else
5560 		(void) sprintf(timebuf, "%llus", s);
5561 }
5562 
5563 static nvlist_t *
5564 make_random_props()
5565 {
5566 	nvlist_t *props;
5567 
5568 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
5569 	if (ztest_random(2) == 0)
5570 		return (props);
5571 	VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
5572 
5573 	return (props);
5574 }
5575 
5576 /*
5577  * Create a storage pool with the given name and initial vdev size.
5578  * Then test spa_freeze() functionality.
5579  */
5580 static void
5581 ztest_init(ztest_shared_t *zs)
5582 {
5583 	spa_t *spa;
5584 	nvlist_t *nvroot, *props;
5585 
5586 	VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5587 	VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5588 
5589 	kernel_init(FREAD | FWRITE);
5590 
5591 	/*
5592 	 * Create the storage pool.
5593 	 */
5594 	(void) spa_destroy(ztest_opts.zo_pool);
5595 	ztest_shared->zs_vdev_next_leaf = 0;
5596 	zs->zs_splits = 0;
5597 	zs->zs_mirrors = ztest_opts.zo_mirrors;
5598 	nvroot = make_vdev_root(NULL, NULL, ztest_opts.zo_vdev_size, 0,
5599 	    0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
5600 	props = make_random_props();
5601 	for (int i = 0; i < SPA_FEATURES; i++) {
5602 		char buf[1024];
5603 		(void) snprintf(buf, sizeof (buf), "feature@%s",
5604 		    spa_feature_table[i].fi_uname);
5605 		VERIFY0(nvlist_add_uint64(props, buf, 0));
5606 	}
5607 	VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
5608 	nvlist_free(nvroot);
5609 
5610 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5611 	zs->zs_metaslab_sz =
5612 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
5613 
5614 	spa_close(spa, FTAG);
5615 
5616 	kernel_fini();
5617 
5618 	ztest_run_zdb(ztest_opts.zo_pool);
5619 
5620 	ztest_freeze();
5621 
5622 	ztest_run_zdb(ztest_opts.zo_pool);
5623 
5624 	(void) rwlock_destroy(&ztest_name_lock);
5625 	(void) _mutex_destroy(&ztest_vdev_lock);
5626 }
5627 
5628 static void
5629 setup_fds(void)
5630 {
5631 	int fd;
5632 
5633 	char *tmp = tempnam(NULL, NULL);
5634 	fd = open(tmp, O_RDWR | O_CREAT, 0700);
5635 	ASSERT3U(fd, ==, ZTEST_FD_DATA);
5636 	(void) unlink(tmp);
5637 	free(tmp);
5638 
5639 	fd = open("/dev/urandom", O_RDONLY);
5640 	ASSERT3U(fd, ==, ZTEST_FD_RAND);
5641 }
5642 
5643 static int
5644 shared_data_size(ztest_shared_hdr_t *hdr)
5645 {
5646 	int size;
5647 
5648 	size = hdr->zh_hdr_size;
5649 	size += hdr->zh_opts_size;
5650 	size += hdr->zh_size;
5651 	size += hdr->zh_stats_size * hdr->zh_stats_count;
5652 	size += hdr->zh_ds_size * hdr->zh_ds_count;
5653 
5654 	return (size);
5655 }
5656 
5657 static void
5658 setup_hdr(void)
5659 {
5660 	int size;
5661 	ztest_shared_hdr_t *hdr;
5662 
5663 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
5664 	    PROT_READ | PROT_WRITE, MAP_SHARED, ZTEST_FD_DATA, 0);
5665 	ASSERT(hdr != MAP_FAILED);
5666 
5667 	VERIFY0(ftruncate(ZTEST_FD_DATA, sizeof (ztest_shared_hdr_t)));
5668 
5669 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
5670 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
5671 	hdr->zh_size = sizeof (ztest_shared_t);
5672 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
5673 	hdr->zh_stats_count = ZTEST_FUNCS;
5674 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
5675 	hdr->zh_ds_count = ztest_opts.zo_datasets;
5676 
5677 	size = shared_data_size(hdr);
5678 	VERIFY0(ftruncate(ZTEST_FD_DATA, size));
5679 
5680 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
5681 }
5682 
5683 static void
5684 setup_data(void)
5685 {
5686 	int size, offset;
5687 	ztest_shared_hdr_t *hdr;
5688 	uint8_t *buf;
5689 
5690 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
5691 	    PROT_READ, MAP_SHARED, ZTEST_FD_DATA, 0);
5692 	ASSERT(hdr != MAP_FAILED);
5693 
5694 	size = shared_data_size(hdr);
5695 
5696 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
5697 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
5698 	    PROT_READ | PROT_WRITE, MAP_SHARED, ZTEST_FD_DATA, 0);
5699 	ASSERT(hdr != MAP_FAILED);
5700 	buf = (uint8_t *)hdr;
5701 
5702 	offset = hdr->zh_hdr_size;
5703 	ztest_shared_opts = (void *)&buf[offset];
5704 	offset += hdr->zh_opts_size;
5705 	ztest_shared = (void *)&buf[offset];
5706 	offset += hdr->zh_size;
5707 	ztest_shared_callstate = (void *)&buf[offset];
5708 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
5709 	ztest_shared_ds = (void *)&buf[offset];
5710 }
5711 
5712 static boolean_t
5713 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
5714 {
5715 	pid_t pid;
5716 	int status;
5717 	char cmdbuf[MAXPATHLEN];
5718 
5719 	pid = fork();
5720 
5721 	if (cmd == NULL) {
5722 		(void) strlcpy(cmdbuf, getexecname(), sizeof (cmdbuf));
5723 		cmd = cmdbuf;
5724 	}
5725 
5726 	if (pid == -1)
5727 		fatal(1, "fork failed");
5728 
5729 	if (pid == 0) {	/* child */
5730 		char *emptyargv[2] = { cmd, NULL };
5731 
5732 		struct rlimit rl = { 1024, 1024 };
5733 		(void) setrlimit(RLIMIT_NOFILE, &rl);
5734 		(void) enable_extended_FILE_stdio(-1, -1);
5735 		if (libpath != NULL)
5736 			VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
5737 		(void) execv(cmd, emptyargv);
5738 		ztest_dump_core = B_FALSE;
5739 		fatal(B_TRUE, "exec failed: %s", cmd);
5740 	}
5741 
5742 	while (waitpid(pid, &status, 0) != pid)
5743 		continue;
5744 	if (statusp != NULL)
5745 		*statusp = status;
5746 
5747 	if (WIFEXITED(status)) {
5748 		if (WEXITSTATUS(status) != 0) {
5749 			(void) fprintf(stderr, "child exited with code %d\n",
5750 			    WEXITSTATUS(status));
5751 			exit(2);
5752 		}
5753 		return (B_FALSE);
5754 	} else if (WIFSIGNALED(status)) {
5755 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
5756 			(void) fprintf(stderr, "child died with signal %d\n",
5757 			    WTERMSIG(status));
5758 			exit(3);
5759 		}
5760 		return (B_TRUE);
5761 	} else {
5762 		(void) fprintf(stderr, "something strange happened to child\n");
5763 		exit(4);
5764 		/* NOTREACHED */
5765 	}
5766 }
5767 
5768 static void
5769 ztest_run_init(void)
5770 {
5771 	ztest_shared_t *zs = ztest_shared;
5772 
5773 	ASSERT(ztest_opts.zo_init != 0);
5774 
5775 	/*
5776 	 * Blow away any existing copy of zpool.cache
5777 	 */
5778 	(void) remove(spa_config_path);
5779 
5780 	/*
5781 	 * Create and initialize our storage pool.
5782 	 */
5783 	for (int i = 1; i <= ztest_opts.zo_init; i++) {
5784 		bzero(zs, sizeof (ztest_shared_t));
5785 		if (ztest_opts.zo_verbose >= 3 &&
5786 		    ztest_opts.zo_init != 1) {
5787 			(void) printf("ztest_init(), pass %d\n", i);
5788 		}
5789 		ztest_init(zs);
5790 	}
5791 }
5792 
5793 int
5794 main(int argc, char **argv)
5795 {
5796 	int kills = 0;
5797 	int iters = 0;
5798 	int older = 0;
5799 	int newer = 0;
5800 	ztest_shared_t *zs;
5801 	ztest_info_t *zi;
5802 	ztest_shared_callstate_t *zc;
5803 	char timebuf[100];
5804 	char numbuf[6];
5805 	spa_t *spa;
5806 	char cmd[MAXNAMELEN];
5807 	boolean_t hasalt;
5808 
5809 	boolean_t ischild = (0 == lseek(ZTEST_FD_DATA, 0, SEEK_CUR));
5810 	ASSERT(ischild || errno == EBADF);
5811 
5812 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
5813 
5814 	if (!ischild) {
5815 		process_options(argc, argv);
5816 
5817 		setup_fds();
5818 		setup_hdr();
5819 		setup_data();
5820 		bcopy(&ztest_opts, ztest_shared_opts,
5821 		    sizeof (*ztest_shared_opts));
5822 	} else {
5823 		setup_data();
5824 		bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
5825 	}
5826 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
5827 
5828 	/* Override location of zpool.cache */
5829 	(void) asprintf((char **)&spa_config_path, "%s/zpool.cache",
5830 	    ztest_opts.zo_dir);
5831 
5832 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
5833 	    UMEM_NOFAIL);
5834 	zs = ztest_shared;
5835 
5836 	if (ischild) {
5837 		metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
5838 		metaslab_df_alloc_threshold =
5839 		    zs->zs_metaslab_df_alloc_threshold;
5840 
5841 		if (zs->zs_do_init)
5842 			ztest_run_init();
5843 		else
5844 			ztest_run(zs);
5845 		exit(0);
5846 	}
5847 
5848 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
5849 
5850 	if (ztest_opts.zo_verbose >= 1) {
5851 		(void) printf("%llu vdevs, %d datasets, %d threads,"
5852 		    " %llu seconds...\n",
5853 		    (u_longlong_t)ztest_opts.zo_vdevs,
5854 		    ztest_opts.zo_datasets,
5855 		    ztest_opts.zo_threads,
5856 		    (u_longlong_t)ztest_opts.zo_time);
5857 	}
5858 
5859 	(void) strlcpy(cmd, getexecname(), sizeof (cmd));
5860 
5861 	zs->zs_do_init = B_TRUE;
5862 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
5863 		if (ztest_opts.zo_verbose >= 1) {
5864 			(void) printf("Executing older ztest for "
5865 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
5866 		}
5867 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
5868 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
5869 	} else {
5870 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
5871 	}
5872 	zs->zs_do_init = B_FALSE;
5873 
5874 	zs->zs_proc_start = gethrtime();
5875 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
5876 
5877 	for (int f = 0; f < ZTEST_FUNCS; f++) {
5878 		zi = &ztest_info[f];
5879 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
5880 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
5881 			zc->zc_next = UINT64_MAX;
5882 		else
5883 			zc->zc_next = zs->zs_proc_start +
5884 			    ztest_random(2 * zi->zi_interval[0] + 1);
5885 	}
5886 
5887 	/*
5888 	 * Run the tests in a loop.  These tests include fault injection
5889 	 * to verify that self-healing data works, and forced crashes
5890 	 * to verify that we never lose on-disk consistency.
5891 	 */
5892 	while (gethrtime() < zs->zs_proc_stop) {
5893 		int status;
5894 		boolean_t killed;
5895 
5896 		/*
5897 		 * Initialize the workload counters for each function.
5898 		 */
5899 		for (int f = 0; f < ZTEST_FUNCS; f++) {
5900 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
5901 			zc->zc_count = 0;
5902 			zc->zc_time = 0;
5903 		}
5904 
5905 		/* Set the allocation switch size */
5906 		zs->zs_metaslab_df_alloc_threshold =
5907 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
5908 
5909 		if (!hasalt || ztest_random(2) == 0) {
5910 			if (hasalt && ztest_opts.zo_verbose >= 1) {
5911 				(void) printf("Executing newer ztest: %s\n",
5912 				    cmd);
5913 			}
5914 			newer++;
5915 			killed = exec_child(cmd, NULL, B_TRUE, &status);
5916 		} else {
5917 			if (hasalt && ztest_opts.zo_verbose >= 1) {
5918 				(void) printf("Executing older ztest: %s\n",
5919 				    ztest_opts.zo_alt_ztest);
5920 			}
5921 			older++;
5922 			killed = exec_child(ztest_opts.zo_alt_ztest,
5923 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
5924 		}
5925 
5926 		if (killed)
5927 			kills++;
5928 		iters++;
5929 
5930 		if (ztest_opts.zo_verbose >= 1) {
5931 			hrtime_t now = gethrtime();
5932 
5933 			now = MIN(now, zs->zs_proc_stop);
5934 			print_time(zs->zs_proc_stop - now, timebuf);
5935 			nicenum(zs->zs_space, numbuf);
5936 
5937 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
5938 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
5939 			    iters,
5940 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
5941 			    (u_longlong_t)zs->zs_enospc_count,
5942 			    100.0 * zs->zs_alloc / zs->zs_space,
5943 			    numbuf,
5944 			    100.0 * (now - zs->zs_proc_start) /
5945 			    (ztest_opts.zo_time * NANOSEC), timebuf);
5946 		}
5947 
5948 		if (ztest_opts.zo_verbose >= 2) {
5949 			(void) printf("\nWorkload summary:\n\n");
5950 			(void) printf("%7s %9s   %s\n",
5951 			    "Calls", "Time", "Function");
5952 			(void) printf("%7s %9s   %s\n",
5953 			    "-----", "----", "--------");
5954 			for (int f = 0; f < ZTEST_FUNCS; f++) {
5955 				Dl_info dli;
5956 
5957 				zi = &ztest_info[f];
5958 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
5959 				print_time(zc->zc_time, timebuf);
5960 				(void) dladdr((void *)zi->zi_func, &dli);
5961 				(void) printf("%7llu %9s   %s\n",
5962 				    (u_longlong_t)zc->zc_count, timebuf,
5963 				    dli.dli_sname);
5964 			}
5965 			(void) printf("\n");
5966 		}
5967 
5968 		/*
5969 		 * It's possible that we killed a child during a rename test,
5970 		 * in which case we'll have a 'ztest_tmp' pool lying around
5971 		 * instead of 'ztest'.  Do a blind rename in case this happened.
5972 		 */
5973 		kernel_init(FREAD);
5974 		if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
5975 			spa_close(spa, FTAG);
5976 		} else {
5977 			char tmpname[MAXNAMELEN];
5978 			kernel_fini();
5979 			kernel_init(FREAD | FWRITE);
5980 			(void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
5981 			    ztest_opts.zo_pool);
5982 			(void) spa_rename(tmpname, ztest_opts.zo_pool);
5983 		}
5984 		kernel_fini();
5985 
5986 		ztest_run_zdb(ztest_opts.zo_pool);
5987 	}
5988 
5989 	if (ztest_opts.zo_verbose >= 1) {
5990 		if (hasalt) {
5991 			(void) printf("%d runs of older ztest: %s\n", older,
5992 			    ztest_opts.zo_alt_ztest);
5993 			(void) printf("%d runs of newer ztest: %s\n", newer,
5994 			    cmd);
5995 		}
5996 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
5997 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
5998 	}
5999 
6000 	return (0);
6001 }
6002