xref: /illumos-gate/usr/src/cmd/ztest/ztest.c (revision 8f18d1fadf6a0c20fac9ff7259a5368faa3c3bfb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * The objective of this program is to provide a DMU/ZAP/SPA stress test
28  * that runs entirely in userland, is easy to use, and easy to extend.
29  *
30  * The overall design of the ztest program is as follows:
31  *
32  * (1) For each major functional area (e.g. adding vdevs to a pool,
33  *     creating and destroying datasets, reading and writing objects, etc)
34  *     we have a simple routine to test that functionality.  These
35  *     individual routines do not have to do anything "stressful".
36  *
37  * (2) We turn these simple functionality tests into a stress test by
38  *     running them all in parallel, with as many threads as desired,
39  *     and spread across as many datasets, objects, and vdevs as desired.
40  *
41  * (3) While all this is happening, we inject faults into the pool to
42  *     verify that self-healing data really works.
43  *
44  * (4) Every time we open a dataset, we change its checksum and compression
45  *     functions.  Thus even individual objects vary from block to block
46  *     in which checksum they use and whether they're compressed.
47  *
48  * (5) To verify that we never lose on-disk consistency after a crash,
49  *     we run the entire test in a child of the main process.
50  *     At random times, the child self-immolates with a SIGKILL.
51  *     This is the software equivalent of pulling the power cord.
52  *     The parent then runs the test again, using the existing
53  *     storage pool, as many times as desired.
54  *
55  * (6) To verify that we don't have future leaks or temporal incursions,
56  *     many of the functional tests record the transaction group number
57  *     as part of their data.  When reading old data, they verify that
58  *     the transaction group number is less than the current, open txg.
59  *     If you add a new test, please do this if applicable.
60  *
61  * When run with no arguments, ztest runs for about five minutes and
62  * produces no output if successful.  To get a little bit of information,
63  * specify -V.  To get more information, specify -VV, and so on.
64  *
65  * To turn this into an overnight stress test, use -T to specify run time.
66  *
67  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
68  * to increase the pool capacity, fanout, and overall stress level.
69  *
70  * The -N(okill) option will suppress kills, so each child runs to completion.
71  * This can be useful when you're trying to distinguish temporal incursions
72  * from plain old race conditions.
73  */
74 
75 #include <sys/zfs_context.h>
76 #include <sys/spa.h>
77 #include <sys/dmu.h>
78 #include <sys/txg.h>
79 #include <sys/dbuf.h>
80 #include <sys/zap.h>
81 #include <sys/dmu_objset.h>
82 #include <sys/poll.h>
83 #include <sys/stat.h>
84 #include <sys/time.h>
85 #include <sys/wait.h>
86 #include <sys/mman.h>
87 #include <sys/resource.h>
88 #include <sys/zio.h>
89 #include <sys/zio_checksum.h>
90 #include <sys/zio_compress.h>
91 #include <sys/zil.h>
92 #include <sys/vdev_impl.h>
93 #include <sys/vdev_file.h>
94 #include <sys/spa_impl.h>
95 #include <sys/metaslab_impl.h>
96 #include <sys/dsl_prop.h>
97 #include <sys/dsl_dataset.h>
98 #include <sys/refcount.h>
99 #include <stdio.h>
100 #include <stdio_ext.h>
101 #include <stdlib.h>
102 #include <unistd.h>
103 #include <signal.h>
104 #include <umem.h>
105 #include <dlfcn.h>
106 #include <ctype.h>
107 #include <math.h>
108 #include <sys/fs/zfs.h>
109 
110 static char cmdname[] = "ztest";
111 static char *zopt_pool = cmdname;
112 
113 static uint64_t zopt_vdevs = 5;
114 static uint64_t zopt_vdevtime;
115 static int zopt_ashift = SPA_MINBLOCKSHIFT;
116 static int zopt_mirrors = 2;
117 static int zopt_raidz = 4;
118 static int zopt_raidz_parity = 1;
119 static size_t zopt_vdev_size = SPA_MINDEVSIZE;
120 static int zopt_datasets = 7;
121 static int zopt_threads = 23;
122 static uint64_t zopt_passtime = 60;	/* 60 seconds */
123 static uint64_t zopt_killrate = 70;	/* 70% kill rate */
124 static int zopt_verbose = 0;
125 static int zopt_init = 1;
126 static char *zopt_dir = "/tmp";
127 static uint64_t zopt_time = 300;	/* 5 minutes */
128 static int zopt_maxfaults;
129 
130 typedef struct ztest_block_tag {
131 	uint64_t	bt_objset;
132 	uint64_t	bt_object;
133 	uint64_t	bt_offset;
134 	uint64_t	bt_txg;
135 	uint64_t	bt_thread;
136 	uint64_t	bt_seq;
137 } ztest_block_tag_t;
138 
139 typedef struct ztest_args {
140 	char		za_pool[MAXNAMELEN];
141 	spa_t		*za_spa;
142 	objset_t	*za_os;
143 	zilog_t		*za_zilog;
144 	thread_t	za_thread;
145 	uint64_t	za_instance;
146 	uint64_t	za_random;
147 	uint64_t	za_diroff;
148 	uint64_t	za_diroff_shared;
149 	uint64_t	za_zil_seq;
150 	hrtime_t	za_start;
151 	hrtime_t	za_stop;
152 	hrtime_t	za_kill;
153 	/*
154 	 * Thread-local variables can go here to aid debugging.
155 	 */
156 	ztest_block_tag_t za_rbt;
157 	ztest_block_tag_t za_wbt;
158 	dmu_object_info_t za_doi;
159 	dmu_buf_t	*za_dbuf;
160 } ztest_args_t;
161 
162 typedef void ztest_func_t(ztest_args_t *);
163 
164 /*
165  * Note: these aren't static because we want dladdr() to work.
166  */
167 ztest_func_t ztest_dmu_read_write;
168 ztest_func_t ztest_dmu_read_write_zcopy;
169 ztest_func_t ztest_dmu_write_parallel;
170 ztest_func_t ztest_dmu_object_alloc_free;
171 ztest_func_t ztest_dmu_commit_callbacks;
172 ztest_func_t ztest_zap;
173 ztest_func_t ztest_fzap;
174 ztest_func_t ztest_zap_parallel;
175 ztest_func_t ztest_traverse;
176 ztest_func_t ztest_dsl_prop_get_set;
177 ztest_func_t ztest_dmu_objset_create_destroy;
178 ztest_func_t ztest_dmu_snapshot_create_destroy;
179 ztest_func_t ztest_dsl_dataset_promote_busy;
180 ztest_func_t ztest_spa_create_destroy;
181 ztest_func_t ztest_fault_inject;
182 ztest_func_t ztest_spa_rename;
183 ztest_func_t ztest_vdev_attach_detach;
184 ztest_func_t ztest_vdev_LUN_growth;
185 ztest_func_t ztest_vdev_add_remove;
186 ztest_func_t ztest_vdev_aux_add_remove;
187 ztest_func_t ztest_scrub;
188 
189 typedef struct ztest_info {
190 	ztest_func_t	*zi_func;	/* test function */
191 	uint64_t	zi_iters;	/* iterations per execution */
192 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
193 	uint64_t	zi_calls;	/* per-pass count */
194 	uint64_t	zi_call_time;	/* per-pass time */
195 	uint64_t	zi_call_total;	/* cumulative total */
196 	uint64_t	zi_call_target;	/* target cumulative total */
197 } ztest_info_t;
198 
199 uint64_t zopt_always = 0;		/* all the time */
200 uint64_t zopt_often = 1;		/* every second */
201 uint64_t zopt_sometimes = 10;		/* every 10 seconds */
202 uint64_t zopt_rarely = 60;		/* every 60 seconds */
203 
204 ztest_info_t ztest_info[] = {
205 	{ ztest_dmu_read_write,			1,	&zopt_always	},
206 	{ ztest_dmu_write_parallel,		30,	&zopt_always	},
207 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
208 	{ ztest_dmu_commit_callbacks,		10,	&zopt_always	},
209 	{ ztest_zap,				30,	&zopt_always	},
210 	{ ztest_fzap,				30,	&zopt_always	},
211 	{ ztest_zap_parallel,			100,	&zopt_always	},
212 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_sometimes	},
213 	{ ztest_dsl_prop_get_set,		1,	&zopt_sometimes	},
214 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_sometimes },
215 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes },
216 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes },
217 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
218 	{ ztest_spa_rename,			1,	&zopt_rarely	},
219 	{ ztest_vdev_attach_detach,		1,	&zopt_rarely	},
220 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
221 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
222 	{ ztest_vdev_add_remove,		1,	&zopt_vdevtime	},
223 	{ ztest_vdev_aux_add_remove,		1,	&zopt_vdevtime	},
224 	{ ztest_scrub,				1,	&zopt_vdevtime	},
225 };
226 
227 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
228 
229 #define	ZTEST_SYNC_LOCKS	16
230 
231 /*
232  * The following struct is used to hold a list of uncalled commit callbacks.
233  *
234  * The callbacks are ordered by txg number.
235  */
236 typedef struct ztest_cb_list {
237 	mutex_t	zcl_callbacks_lock;
238 	list_t	zcl_callbacks;
239 } ztest_cb_list_t;
240 
241 /*
242  * Stuff we need to share writably between parent and child.
243  */
244 typedef struct ztest_shared {
245 	mutex_t		zs_vdev_lock;
246 	rwlock_t	zs_name_lock;
247 	uint64_t	zs_vdev_next_leaf;
248 	uint64_t	zs_vdev_aux;
249 	uint64_t	zs_enospc_count;
250 	hrtime_t	zs_start_time;
251 	hrtime_t	zs_stop_time;
252 	uint64_t	zs_alloc;
253 	uint64_t	zs_space;
254 	ztest_info_t	zs_info[ZTEST_FUNCS];
255 	mutex_t		zs_sync_lock[ZTEST_SYNC_LOCKS];
256 	uint64_t	zs_seq[ZTEST_SYNC_LOCKS];
257 } ztest_shared_t;
258 
259 static char ztest_dev_template[] = "%s/%s.%llua";
260 static char ztest_aux_template[] = "%s/%s.%s.%llu";
261 static ztest_shared_t *ztest_shared;
262 
263 static int ztest_random_fd;
264 static int ztest_dump_core = 1;
265 
266 static uint64_t metaslab_sz;
267 static boolean_t ztest_exiting;
268 
269 /* Global commit callback list */
270 static ztest_cb_list_t zcl;
271 
272 extern uint64_t metaslab_gang_bang;
273 extern uint64_t metaslab_df_alloc_threshold;
274 
275 #define	ZTEST_DIROBJ		1
276 #define	ZTEST_MICROZAP_OBJ	2
277 #define	ZTEST_FATZAP_OBJ	3
278 
279 #define	ZTEST_DIROBJ_BLOCKSIZE	(1 << 10)
280 #define	ZTEST_DIRSIZE		256
281 
282 static void usage(boolean_t) __NORETURN;
283 
284 /*
285  * These libumem hooks provide a reasonable set of defaults for the allocator's
286  * debugging facilities.
287  */
288 const char *
289 _umem_debug_init()
290 {
291 	return ("default,verbose"); /* $UMEM_DEBUG setting */
292 }
293 
294 const char *
295 _umem_logging_init(void)
296 {
297 	return ("fail,contents"); /* $UMEM_LOGGING setting */
298 }
299 
300 #define	FATAL_MSG_SZ	1024
301 
302 char *fatal_msg;
303 
304 static void
305 fatal(int do_perror, char *message, ...)
306 {
307 	va_list args;
308 	int save_errno = errno;
309 	char buf[FATAL_MSG_SZ];
310 
311 	(void) fflush(stdout);
312 
313 	va_start(args, message);
314 	(void) sprintf(buf, "ztest: ");
315 	/* LINTED */
316 	(void) vsprintf(buf + strlen(buf), message, args);
317 	va_end(args);
318 	if (do_perror) {
319 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
320 		    ": %s", strerror(save_errno));
321 	}
322 	(void) fprintf(stderr, "%s\n", buf);
323 	fatal_msg = buf;			/* to ease debugging */
324 	if (ztest_dump_core)
325 		abort();
326 	exit(3);
327 }
328 
329 static int
330 str2shift(const char *buf)
331 {
332 	const char *ends = "BKMGTPEZ";
333 	int i;
334 
335 	if (buf[0] == '\0')
336 		return (0);
337 	for (i = 0; i < strlen(ends); i++) {
338 		if (toupper(buf[0]) == ends[i])
339 			break;
340 	}
341 	if (i == strlen(ends)) {
342 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
343 		    buf);
344 		usage(B_FALSE);
345 	}
346 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
347 		return (10*i);
348 	}
349 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
350 	usage(B_FALSE);
351 	/* NOTREACHED */
352 }
353 
354 static uint64_t
355 nicenumtoull(const char *buf)
356 {
357 	char *end;
358 	uint64_t val;
359 
360 	val = strtoull(buf, &end, 0);
361 	if (end == buf) {
362 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
363 		usage(B_FALSE);
364 	} else if (end[0] == '.') {
365 		double fval = strtod(buf, &end);
366 		fval *= pow(2, str2shift(end));
367 		if (fval > UINT64_MAX) {
368 			(void) fprintf(stderr, "ztest: value too large: %s\n",
369 			    buf);
370 			usage(B_FALSE);
371 		}
372 		val = (uint64_t)fval;
373 	} else {
374 		int shift = str2shift(end);
375 		if (shift >= 64 || (val << shift) >> shift != val) {
376 			(void) fprintf(stderr, "ztest: value too large: %s\n",
377 			    buf);
378 			usage(B_FALSE);
379 		}
380 		val <<= shift;
381 	}
382 	return (val);
383 }
384 
385 static void
386 usage(boolean_t requested)
387 {
388 	char nice_vdev_size[10];
389 	char nice_gang_bang[10];
390 	FILE *fp = requested ? stdout : stderr;
391 
392 	nicenum(zopt_vdev_size, nice_vdev_size);
393 	nicenum(metaslab_gang_bang, nice_gang_bang);
394 
395 	(void) fprintf(fp, "Usage: %s\n"
396 	    "\t[-v vdevs (default: %llu)]\n"
397 	    "\t[-s size_of_each_vdev (default: %s)]\n"
398 	    "\t[-a alignment_shift (default: %d) (use 0 for random)]\n"
399 	    "\t[-m mirror_copies (default: %d)]\n"
400 	    "\t[-r raidz_disks (default: %d)]\n"
401 	    "\t[-R raidz_parity (default: %d)]\n"
402 	    "\t[-d datasets (default: %d)]\n"
403 	    "\t[-t threads (default: %d)]\n"
404 	    "\t[-g gang_block_threshold (default: %s)]\n"
405 	    "\t[-i initialize pool i times (default: %d)]\n"
406 	    "\t[-k kill percentage (default: %llu%%)]\n"
407 	    "\t[-p pool_name (default: %s)]\n"
408 	    "\t[-f file directory for vdev files (default: %s)]\n"
409 	    "\t[-V(erbose)] (use multiple times for ever more blather)\n"
410 	    "\t[-E(xisting)] (use existing pool instead of creating new one)\n"
411 	    "\t[-T time] total run time (default: %llu sec)\n"
412 	    "\t[-P passtime] time per pass (default: %llu sec)\n"
413 	    "\t[-h] (print help)\n"
414 	    "",
415 	    cmdname,
416 	    (u_longlong_t)zopt_vdevs,			/* -v */
417 	    nice_vdev_size,				/* -s */
418 	    zopt_ashift,				/* -a */
419 	    zopt_mirrors,				/* -m */
420 	    zopt_raidz,					/* -r */
421 	    zopt_raidz_parity,				/* -R */
422 	    zopt_datasets,				/* -d */
423 	    zopt_threads,				/* -t */
424 	    nice_gang_bang,				/* -g */
425 	    zopt_init,					/* -i */
426 	    (u_longlong_t)zopt_killrate,		/* -k */
427 	    zopt_pool,					/* -p */
428 	    zopt_dir,					/* -f */
429 	    (u_longlong_t)zopt_time,			/* -T */
430 	    (u_longlong_t)zopt_passtime);		/* -P */
431 	exit(requested ? 0 : 1);
432 }
433 
434 static uint64_t
435 ztest_random(uint64_t range)
436 {
437 	uint64_t r;
438 
439 	if (range == 0)
440 		return (0);
441 
442 	if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r))
443 		fatal(1, "short read from /dev/urandom");
444 
445 	return (r % range);
446 }
447 
448 /* ARGSUSED */
449 static void
450 ztest_record_enospc(char *s)
451 {
452 	ztest_shared->zs_enospc_count++;
453 }
454 
455 static void
456 process_options(int argc, char **argv)
457 {
458 	int opt;
459 	uint64_t value;
460 
461 	/* By default, test gang blocks for blocks 32K and greater */
462 	metaslab_gang_bang = 32 << 10;
463 
464 	while ((opt = getopt(argc, argv,
465 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) {
466 		value = 0;
467 		switch (opt) {
468 		case 'v':
469 		case 's':
470 		case 'a':
471 		case 'm':
472 		case 'r':
473 		case 'R':
474 		case 'd':
475 		case 't':
476 		case 'g':
477 		case 'i':
478 		case 'k':
479 		case 'T':
480 		case 'P':
481 			value = nicenumtoull(optarg);
482 		}
483 		switch (opt) {
484 		case 'v':
485 			zopt_vdevs = value;
486 			break;
487 		case 's':
488 			zopt_vdev_size = MAX(SPA_MINDEVSIZE, value);
489 			break;
490 		case 'a':
491 			zopt_ashift = value;
492 			break;
493 		case 'm':
494 			zopt_mirrors = value;
495 			break;
496 		case 'r':
497 			zopt_raidz = MAX(1, value);
498 			break;
499 		case 'R':
500 			zopt_raidz_parity = MIN(MAX(value, 1), 3);
501 			break;
502 		case 'd':
503 			zopt_datasets = MAX(1, value);
504 			break;
505 		case 't':
506 			zopt_threads = MAX(1, value);
507 			break;
508 		case 'g':
509 			metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value);
510 			break;
511 		case 'i':
512 			zopt_init = value;
513 			break;
514 		case 'k':
515 			zopt_killrate = value;
516 			break;
517 		case 'p':
518 			zopt_pool = strdup(optarg);
519 			break;
520 		case 'f':
521 			zopt_dir = strdup(optarg);
522 			break;
523 		case 'V':
524 			zopt_verbose++;
525 			break;
526 		case 'E':
527 			zopt_init = 0;
528 			break;
529 		case 'T':
530 			zopt_time = value;
531 			break;
532 		case 'P':
533 			zopt_passtime = MAX(1, value);
534 			break;
535 		case 'h':
536 			usage(B_TRUE);
537 			break;
538 		case '?':
539 		default:
540 			usage(B_FALSE);
541 			break;
542 		}
543 	}
544 
545 	zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1);
546 
547 	zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX);
548 	zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1;
549 }
550 
551 static uint64_t
552 ztest_get_ashift(void)
553 {
554 	if (zopt_ashift == 0)
555 		return (SPA_MINBLOCKSHIFT + ztest_random(3));
556 	return (zopt_ashift);
557 }
558 
559 static nvlist_t *
560 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift)
561 {
562 	char pathbuf[MAXPATHLEN];
563 	uint64_t vdev;
564 	nvlist_t *file;
565 
566 	if (ashift == 0)
567 		ashift = ztest_get_ashift();
568 
569 	if (path == NULL) {
570 		path = pathbuf;
571 
572 		if (aux != NULL) {
573 			vdev = ztest_shared->zs_vdev_aux;
574 			(void) sprintf(path, ztest_aux_template,
575 			    zopt_dir, zopt_pool, aux, vdev);
576 		} else {
577 			vdev = ztest_shared->zs_vdev_next_leaf++;
578 			(void) sprintf(path, ztest_dev_template,
579 			    zopt_dir, zopt_pool, vdev);
580 		}
581 	}
582 
583 	if (size != 0) {
584 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
585 		if (fd == -1)
586 			fatal(1, "can't open %s", path);
587 		if (ftruncate(fd, size) != 0)
588 			fatal(1, "can't ftruncate %s", path);
589 		(void) close(fd);
590 	}
591 
592 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
593 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
594 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
595 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
596 
597 	return (file);
598 }
599 
600 static nvlist_t *
601 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r)
602 {
603 	nvlist_t *raidz, **child;
604 	int c;
605 
606 	if (r < 2)
607 		return (make_vdev_file(path, aux, size, ashift));
608 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
609 
610 	for (c = 0; c < r; c++)
611 		child[c] = make_vdev_file(path, aux, size, ashift);
612 
613 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
614 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
615 	    VDEV_TYPE_RAIDZ) == 0);
616 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
617 	    zopt_raidz_parity) == 0);
618 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
619 	    child, r) == 0);
620 
621 	for (c = 0; c < r; c++)
622 		nvlist_free(child[c]);
623 
624 	umem_free(child, r * sizeof (nvlist_t *));
625 
626 	return (raidz);
627 }
628 
629 static nvlist_t *
630 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift,
631 	int r, int m)
632 {
633 	nvlist_t *mirror, **child;
634 	int c;
635 
636 	if (m < 1)
637 		return (make_vdev_raidz(path, aux, size, ashift, r));
638 
639 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
640 
641 	for (c = 0; c < m; c++)
642 		child[c] = make_vdev_raidz(path, aux, size, ashift, r);
643 
644 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
645 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
646 	    VDEV_TYPE_MIRROR) == 0);
647 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
648 	    child, m) == 0);
649 
650 	for (c = 0; c < m; c++)
651 		nvlist_free(child[c]);
652 
653 	umem_free(child, m * sizeof (nvlist_t *));
654 
655 	return (mirror);
656 }
657 
658 static nvlist_t *
659 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift,
660 	int log, int r, int m, int t)
661 {
662 	nvlist_t *root, **child;
663 	int c;
664 
665 	ASSERT(t > 0);
666 
667 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
668 
669 	for (c = 0; c < t; c++) {
670 		child[c] = make_vdev_mirror(path, aux, size, ashift, r, m);
671 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
672 		    log) == 0);
673 	}
674 
675 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
676 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
677 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
678 	    child, t) == 0);
679 
680 	for (c = 0; c < t; c++)
681 		nvlist_free(child[c]);
682 
683 	umem_free(child, t * sizeof (nvlist_t *));
684 
685 	return (root);
686 }
687 
688 static void
689 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx)
690 {
691 	int bs = SPA_MINBLOCKSHIFT +
692 	    ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1);
693 	int ibs = DN_MIN_INDBLKSHIFT +
694 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1);
695 	int error;
696 
697 	error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx);
698 	if (error) {
699 		char osname[300];
700 		dmu_objset_name(os, osname);
701 		fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d",
702 		    osname, object, 1 << bs, ibs, error);
703 	}
704 }
705 
706 static uint8_t
707 ztest_random_checksum(void)
708 {
709 	uint8_t checksum;
710 
711 	do {
712 		checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS);
713 	} while (zio_checksum_table[checksum].ci_zbt);
714 
715 	if (checksum == ZIO_CHECKSUM_OFF)
716 		checksum = ZIO_CHECKSUM_ON;
717 
718 	return (checksum);
719 }
720 
721 static uint8_t
722 ztest_random_compress(void)
723 {
724 	return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS));
725 }
726 
727 static int
728 ztest_replay_create(objset_t *os, lr_create_t *lr, boolean_t byteswap)
729 {
730 	dmu_tx_t *tx;
731 	int error;
732 
733 	if (byteswap)
734 		byteswap_uint64_array(lr, sizeof (*lr));
735 
736 	tx = dmu_tx_create(os);
737 	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
738 	error = dmu_tx_assign(tx, TXG_WAIT);
739 	if (error) {
740 		dmu_tx_abort(tx);
741 		return (error);
742 	}
743 
744 	error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0,
745 	    DMU_OT_NONE, 0, tx);
746 	ASSERT3U(error, ==, 0);
747 	dmu_tx_commit(tx);
748 
749 	if (zopt_verbose >= 5) {
750 		char osname[MAXNAMELEN];
751 		dmu_objset_name(os, osname);
752 		(void) printf("replay create of %s object %llu"
753 		    " in txg %llu = %d\n",
754 		    osname, (u_longlong_t)lr->lr_doid,
755 		    (u_longlong_t)dmu_tx_get_txg(tx), error);
756 	}
757 
758 	return (error);
759 }
760 
761 static int
762 ztest_replay_remove(objset_t *os, lr_remove_t *lr, boolean_t byteswap)
763 {
764 	dmu_tx_t *tx;
765 	int error;
766 
767 	if (byteswap)
768 		byteswap_uint64_array(lr, sizeof (*lr));
769 
770 	tx = dmu_tx_create(os);
771 	dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END);
772 	error = dmu_tx_assign(tx, TXG_WAIT);
773 	if (error) {
774 		dmu_tx_abort(tx);
775 		return (error);
776 	}
777 
778 	error = dmu_object_free(os, lr->lr_doid, tx);
779 	dmu_tx_commit(tx);
780 
781 	return (error);
782 }
783 
784 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
785 	NULL,			/* 0 no such transaction type */
786 	ztest_replay_create,	/* TX_CREATE */
787 	NULL,			/* TX_MKDIR */
788 	NULL,			/* TX_MKXATTR */
789 	NULL,			/* TX_SYMLINK */
790 	ztest_replay_remove,	/* TX_REMOVE */
791 	NULL,			/* TX_RMDIR */
792 	NULL,			/* TX_LINK */
793 	NULL,			/* TX_RENAME */
794 	NULL,			/* TX_WRITE */
795 	NULL,			/* TX_TRUNCATE */
796 	NULL,			/* TX_SETATTR */
797 	NULL,			/* TX_ACL */
798 };
799 
800 /*
801  * Verify that we can't destroy an active pool, create an existing pool,
802  * or create a pool with a bad vdev spec.
803  */
804 void
805 ztest_spa_create_destroy(ztest_args_t *za)
806 {
807 	int error;
808 	spa_t *spa;
809 	nvlist_t *nvroot;
810 
811 	/*
812 	 * Attempt to create using a bad file.
813 	 */
814 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
815 	error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL);
816 	nvlist_free(nvroot);
817 	if (error != ENOENT)
818 		fatal(0, "spa_create(bad_file) = %d", error);
819 
820 	/*
821 	 * Attempt to create using a bad mirror.
822 	 */
823 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
824 	error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL);
825 	nvlist_free(nvroot);
826 	if (error != ENOENT)
827 		fatal(0, "spa_create(bad_mirror) = %d", error);
828 
829 	/*
830 	 * Attempt to create an existing pool.  It shouldn't matter
831 	 * what's in the nvroot; we should fail with EEXIST.
832 	 */
833 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
834 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
835 	error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL);
836 	nvlist_free(nvroot);
837 	if (error != EEXIST)
838 		fatal(0, "spa_create(whatever) = %d", error);
839 
840 	error = spa_open(za->za_pool, &spa, FTAG);
841 	if (error)
842 		fatal(0, "spa_open() = %d", error);
843 
844 	error = spa_destroy(za->za_pool);
845 	if (error != EBUSY)
846 		fatal(0, "spa_destroy() = %d", error);
847 
848 	spa_close(spa, FTAG);
849 	(void) rw_unlock(&ztest_shared->zs_name_lock);
850 }
851 
852 static vdev_t *
853 vdev_lookup_by_path(vdev_t *vd, const char *path)
854 {
855 	vdev_t *mvd;
856 
857 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
858 		return (vd);
859 
860 	for (int c = 0; c < vd->vdev_children; c++)
861 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
862 		    NULL)
863 			return (mvd);
864 
865 	return (NULL);
866 }
867 
868 /*
869  * Find the first available hole which can be used as a top-level.
870  */
871 int
872 find_vdev_hole(spa_t *spa)
873 {
874 	vdev_t *rvd = spa->spa_root_vdev;
875 	int c;
876 
877 	ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
878 
879 	for (c = 0; c < rvd->vdev_children; c++) {
880 		vdev_t *cvd = rvd->vdev_child[c];
881 
882 		if (cvd->vdev_ishole)
883 			break;
884 	}
885 	return (c);
886 }
887 
888 /*
889  * Verify that vdev_add() works as expected.
890  */
891 void
892 ztest_vdev_add_remove(ztest_args_t *za)
893 {
894 	spa_t *spa = za->za_spa;
895 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
896 	uint64_t guid;
897 	nvlist_t *nvroot;
898 	int error;
899 
900 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
901 
902 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
903 
904 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
905 
906 	/*
907 	 * If we have slogs then remove them 1/4 of the time.
908 	 */
909 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
910 		/*
911 		 * Grab the guid from the head of the log class rotor.
912 		 */
913 		guid = spa->spa_log_class->mc_rotor->mg_vd->vdev_guid;
914 
915 		spa_config_exit(spa, SCL_VDEV, FTAG);
916 
917 		/*
918 		 * We have to grab the zs_name_lock as writer to
919 		 * prevent a race between removing a slog (dmu_objset_find)
920 		 * and destroying a dataset. Removing the slog will
921 		 * grab a reference on the dataset which may cause
922 		 * dmu_objset_destroy() to fail with EBUSY thus
923 		 * leaving the dataset in an inconsistent state.
924 		 */
925 		(void) rw_wrlock(&ztest_shared->zs_name_lock);
926 		error = spa_vdev_remove(spa, guid, B_FALSE);
927 		(void) rw_unlock(&ztest_shared->zs_name_lock);
928 
929 		if (error && error != EEXIST)
930 			fatal(0, "spa_vdev_remove() = %d", error);
931 	} else {
932 		spa_config_exit(spa, SCL_VDEV, FTAG);
933 
934 		/*
935 		 * Make 1/4 of the devices be log devices.
936 		 */
937 		nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
938 		    ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1);
939 
940 		error = spa_vdev_add(spa, nvroot);
941 		nvlist_free(nvroot);
942 
943 		if (error == ENOSPC)
944 			ztest_record_enospc("spa_vdev_add");
945 		else if (error != 0)
946 			fatal(0, "spa_vdev_add() = %d", error);
947 	}
948 
949 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
950 }
951 
952 /*
953  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
954  */
955 void
956 ztest_vdev_aux_add_remove(ztest_args_t *za)
957 {
958 	spa_t *spa = za->za_spa;
959 	vdev_t *rvd = spa->spa_root_vdev;
960 	spa_aux_vdev_t *sav;
961 	char *aux;
962 	uint64_t guid = 0;
963 	int error;
964 
965 	if (ztest_random(2) == 0) {
966 		sav = &spa->spa_spares;
967 		aux = ZPOOL_CONFIG_SPARES;
968 	} else {
969 		sav = &spa->spa_l2cache;
970 		aux = ZPOOL_CONFIG_L2CACHE;
971 	}
972 
973 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
974 
975 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
976 
977 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
978 		/*
979 		 * Pick a random device to remove.
980 		 */
981 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
982 	} else {
983 		/*
984 		 * Find an unused device we can add.
985 		 */
986 		ztest_shared->zs_vdev_aux = 0;
987 		for (;;) {
988 			char path[MAXPATHLEN];
989 			int c;
990 			(void) sprintf(path, ztest_aux_template, zopt_dir,
991 			    zopt_pool, aux, ztest_shared->zs_vdev_aux);
992 			for (c = 0; c < sav->sav_count; c++)
993 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
994 				    path) == 0)
995 					break;
996 			if (c == sav->sav_count &&
997 			    vdev_lookup_by_path(rvd, path) == NULL)
998 				break;
999 			ztest_shared->zs_vdev_aux++;
1000 		}
1001 	}
1002 
1003 	spa_config_exit(spa, SCL_VDEV, FTAG);
1004 
1005 	if (guid == 0) {
1006 		/*
1007 		 * Add a new device.
1008 		 */
1009 		nvlist_t *nvroot = make_vdev_root(NULL, aux,
1010 		    (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
1011 		error = spa_vdev_add(spa, nvroot);
1012 		if (error != 0)
1013 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
1014 		nvlist_free(nvroot);
1015 	} else {
1016 		/*
1017 		 * Remove an existing device.  Sometimes, dirty its
1018 		 * vdev state first to make sure we handle removal
1019 		 * of devices that have pending state changes.
1020 		 */
1021 		if (ztest_random(2) == 0)
1022 			(void) vdev_online(spa, guid, 0, NULL);
1023 
1024 		error = spa_vdev_remove(spa, guid, B_FALSE);
1025 		if (error != 0 && error != EBUSY)
1026 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
1027 	}
1028 
1029 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1030 }
1031 
1032 /*
1033  * Verify that we can attach and detach devices.
1034  */
1035 void
1036 ztest_vdev_attach_detach(ztest_args_t *za)
1037 {
1038 	spa_t *spa = za->za_spa;
1039 	spa_aux_vdev_t *sav = &spa->spa_spares;
1040 	vdev_t *rvd = spa->spa_root_vdev;
1041 	vdev_t *oldvd, *newvd, *pvd;
1042 	nvlist_t *root;
1043 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
1044 	uint64_t leaf, top;
1045 	uint64_t ashift = ztest_get_ashift();
1046 	uint64_t oldguid, pguid;
1047 	size_t oldsize, newsize;
1048 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
1049 	int replacing;
1050 	int oldvd_has_siblings = B_FALSE;
1051 	int newvd_is_spare = B_FALSE;
1052 	int oldvd_is_log;
1053 	int error, expected_error;
1054 
1055 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
1056 
1057 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1058 
1059 	/*
1060 	 * Decide whether to do an attach or a replace.
1061 	 */
1062 	replacing = ztest_random(2);
1063 
1064 	/*
1065 	 * Pick a random top-level vdev.
1066 	 */
1067 	top = ztest_random(rvd->vdev_children);
1068 
1069 	/*
1070 	 * Pick a random leaf within it.
1071 	 */
1072 	leaf = ztest_random(leaves);
1073 
1074 	/*
1075 	 * Locate this vdev.
1076 	 */
1077 	oldvd = rvd->vdev_child[top];
1078 	if (zopt_mirrors >= 1) {
1079 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
1080 		ASSERT(oldvd->vdev_children >= zopt_mirrors);
1081 		oldvd = oldvd->vdev_child[leaf / zopt_raidz];
1082 	}
1083 	if (zopt_raidz > 1) {
1084 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
1085 		ASSERT(oldvd->vdev_children == zopt_raidz);
1086 		oldvd = oldvd->vdev_child[leaf % zopt_raidz];
1087 	}
1088 
1089 	/*
1090 	 * If we're already doing an attach or replace, oldvd may be a
1091 	 * mirror vdev -- in which case, pick a random child.
1092 	 */
1093 	while (oldvd->vdev_children != 0) {
1094 		oldvd_has_siblings = B_TRUE;
1095 		ASSERT(oldvd->vdev_children >= 2);
1096 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
1097 	}
1098 
1099 	oldguid = oldvd->vdev_guid;
1100 	oldsize = vdev_get_min_asize(oldvd);
1101 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
1102 	(void) strcpy(oldpath, oldvd->vdev_path);
1103 	pvd = oldvd->vdev_parent;
1104 	pguid = pvd->vdev_guid;
1105 
1106 	/*
1107 	 * If oldvd has siblings, then half of the time, detach it.
1108 	 */
1109 	if (oldvd_has_siblings && ztest_random(2) == 0) {
1110 		spa_config_exit(spa, SCL_VDEV, FTAG);
1111 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
1112 		if (error != 0 && error != ENODEV && error != EBUSY &&
1113 		    error != ENOTSUP)
1114 			fatal(0, "detach (%s) returned %d", oldpath, error);
1115 		(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1116 		return;
1117 	}
1118 
1119 	/*
1120 	 * For the new vdev, choose with equal probability between the two
1121 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
1122 	 */
1123 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
1124 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
1125 		newvd_is_spare = B_TRUE;
1126 		(void) strcpy(newpath, newvd->vdev_path);
1127 	} else {
1128 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
1129 		    zopt_dir, zopt_pool, top * leaves + leaf);
1130 		if (ztest_random(2) == 0)
1131 			newpath[strlen(newpath) - 1] = 'b';
1132 		newvd = vdev_lookup_by_path(rvd, newpath);
1133 	}
1134 
1135 	if (newvd) {
1136 		newsize = vdev_get_min_asize(newvd);
1137 	} else {
1138 		/*
1139 		 * Make newsize a little bigger or smaller than oldsize.
1140 		 * If it's smaller, the attach should fail.
1141 		 * If it's larger, and we're doing a replace,
1142 		 * we should get dynamic LUN growth when we're done.
1143 		 */
1144 		newsize = 10 * oldsize / (9 + ztest_random(3));
1145 	}
1146 
1147 	/*
1148 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
1149 	 * unless it's a replace; in that case any non-replacing parent is OK.
1150 	 *
1151 	 * If newvd is already part of the pool, it should fail with EBUSY.
1152 	 *
1153 	 * If newvd is too small, it should fail with EOVERFLOW.
1154 	 */
1155 	if (pvd->vdev_ops != &vdev_mirror_ops &&
1156 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
1157 	    pvd->vdev_ops == &vdev_replacing_ops ||
1158 	    pvd->vdev_ops == &vdev_spare_ops))
1159 		expected_error = ENOTSUP;
1160 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
1161 		expected_error = ENOTSUP;
1162 	else if (newvd == oldvd)
1163 		expected_error = replacing ? 0 : EBUSY;
1164 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
1165 		expected_error = EBUSY;
1166 	else if (newsize < oldsize)
1167 		expected_error = EOVERFLOW;
1168 	else if (ashift > oldvd->vdev_top->vdev_ashift)
1169 		expected_error = EDOM;
1170 	else
1171 		expected_error = 0;
1172 
1173 	spa_config_exit(spa, SCL_VDEV, FTAG);
1174 
1175 	/*
1176 	 * Build the nvlist describing newpath.
1177 	 */
1178 	root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0,
1179 	    ashift, 0, 0, 0, 1);
1180 
1181 	error = spa_vdev_attach(spa, oldguid, root, replacing);
1182 
1183 	nvlist_free(root);
1184 
1185 	/*
1186 	 * If our parent was the replacing vdev, but the replace completed,
1187 	 * then instead of failing with ENOTSUP we may either succeed,
1188 	 * fail with ENODEV, or fail with EOVERFLOW.
1189 	 */
1190 	if (expected_error == ENOTSUP &&
1191 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
1192 		expected_error = error;
1193 
1194 	/*
1195 	 * If someone grew the LUN, the replacement may be too small.
1196 	 */
1197 	if (error == EOVERFLOW || error == EBUSY)
1198 		expected_error = error;
1199 
1200 	/* XXX workaround 6690467 */
1201 	if (error != expected_error && expected_error != EBUSY) {
1202 		fatal(0, "attach (%s %llu, %s %llu, %d) "
1203 		    "returned %d, expected %d",
1204 		    oldpath, (longlong_t)oldsize, newpath,
1205 		    (longlong_t)newsize, replacing, error, expected_error);
1206 	}
1207 
1208 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1209 }
1210 
1211 /*
1212  * Callback function which expands the physical size of the vdev.
1213  */
1214 vdev_t *
1215 grow_vdev(vdev_t *vd, void *arg)
1216 {
1217 	spa_t *spa = vd->vdev_spa;
1218 	size_t *newsize = arg;
1219 	size_t fsize;
1220 	int fd;
1221 
1222 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
1223 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1224 
1225 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
1226 		return (vd);
1227 
1228 	fsize = lseek(fd, 0, SEEK_END);
1229 	(void) ftruncate(fd, *newsize);
1230 
1231 	if (zopt_verbose >= 6) {
1232 		(void) printf("%s grew from %lu to %lu bytes\n",
1233 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
1234 	}
1235 	(void) close(fd);
1236 	return (NULL);
1237 }
1238 
1239 /*
1240  * Callback function which expands a given vdev by calling vdev_online().
1241  */
1242 /* ARGSUSED */
1243 vdev_t *
1244 online_vdev(vdev_t *vd, void *arg)
1245 {
1246 	spa_t *spa = vd->vdev_spa;
1247 	vdev_t *tvd = vd->vdev_top;
1248 	uint64_t guid = vd->vdev_guid;
1249 	uint64_t generation = spa->spa_config_generation + 1;
1250 
1251 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
1252 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1253 
1254 	/* Calling vdev_online will initialize the new metaslabs */
1255 	spa_config_exit(spa, SCL_STATE, spa);
1256 	(void) vdev_online(spa, guid, ZFS_ONLINE_EXPAND, NULL);
1257 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1258 
1259 	/*
1260 	 * Since we dropped the lock we need to ensure that we're
1261 	 * still talking to the original vdev. It's possible this
1262 	 * vdev may have been detached/replaced while we were
1263 	 * trying to online it.
1264 	 */
1265 	if (generation != spa->spa_config_generation) {
1266 		if (zopt_verbose >= 5) {
1267 			(void) printf("vdev configuration has changed, "
1268 			    "guid %llu, state %llu, expected gen %llu, "
1269 			    "got gen %llu\n", (u_longlong_t)guid,
1270 			    (u_longlong_t)tvd->vdev_state,
1271 			    (u_longlong_t)generation,
1272 			    (u_longlong_t)spa->spa_config_generation);
1273 		}
1274 		return (vd);
1275 	}
1276 	return (NULL);
1277 }
1278 
1279 /*
1280  * Traverse the vdev tree calling the supplied function.
1281  * We continue to walk the tree until we either have walked all
1282  * children or we receive a non-NULL return from the callback.
1283  * If a NULL callback is passed, then we just return back the first
1284  * leaf vdev we encounter.
1285  */
1286 vdev_t *
1287 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
1288 {
1289 	if (vd->vdev_ops->vdev_op_leaf) {
1290 		if (func == NULL)
1291 			return (vd);
1292 		else
1293 			return (func(vd, arg));
1294 	}
1295 
1296 	for (uint_t c = 0; c < vd->vdev_children; c++) {
1297 		vdev_t *cvd = vd->vdev_child[c];
1298 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
1299 			return (cvd);
1300 	}
1301 	return (NULL);
1302 }
1303 
1304 /*
1305  * Verify that dynamic LUN growth works as expected.
1306  */
1307 void
1308 ztest_vdev_LUN_growth(ztest_args_t *za)
1309 {
1310 	spa_t *spa = za->za_spa;
1311 	vdev_t *vd, *tvd = NULL;
1312 	size_t psize, newsize;
1313 	uint64_t spa_newsize, spa_cursize, ms_count;
1314 
1315 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
1316 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1317 
1318 	while (tvd == NULL || tvd->vdev_islog) {
1319 		uint64_t vdev;
1320 
1321 		vdev = ztest_random(spa->spa_root_vdev->vdev_children);
1322 		tvd = spa->spa_root_vdev->vdev_child[vdev];
1323 	}
1324 
1325 	/*
1326 	 * Determine the size of the first leaf vdev associated with
1327 	 * our top-level device.
1328 	 */
1329 	vd = vdev_walk_tree(tvd, NULL, NULL);
1330 	ASSERT3P(vd, !=, NULL);
1331 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1332 
1333 	psize = vd->vdev_psize;
1334 
1335 	/*
1336 	 * We only try to expand the vdev if it's healthy, less than 4x its
1337 	 * original size, and it has a valid psize.
1338 	 */
1339 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
1340 	    psize == 0 || psize >= 4 * zopt_vdev_size) {
1341 		spa_config_exit(spa, SCL_STATE, spa);
1342 		(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1343 		return;
1344 	}
1345 	ASSERT(psize > 0);
1346 	newsize = psize + psize / 8;
1347 	ASSERT3U(newsize, >, psize);
1348 
1349 	if (zopt_verbose >= 6) {
1350 		(void) printf("Expanding vdev %s from %lu to %lu\n",
1351 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
1352 	}
1353 
1354 	spa_cursize = spa_get_space(spa);
1355 	ms_count = tvd->vdev_ms_count;
1356 
1357 	/*
1358 	 * Growing the vdev is a two step process:
1359 	 *	1). expand the physical size (i.e. relabel)
1360 	 *	2). online the vdev to create the new metaslabs
1361 	 */
1362 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
1363 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
1364 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
1365 		if (zopt_verbose >= 5) {
1366 			(void) printf("Could not expand LUN because "
1367 			    "the vdev configuration changed.\n");
1368 		}
1369 		(void) spa_config_exit(spa, SCL_STATE, spa);
1370 		(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1371 		return;
1372 	}
1373 
1374 	(void) spa_config_exit(spa, SCL_STATE, spa);
1375 
1376 	/*
1377 	 * Expanding the LUN will update the config asynchronously,
1378 	 * thus we must wait for the async thread to complete any
1379 	 * pending tasks before proceeding.
1380 	 */
1381 	mutex_enter(&spa->spa_async_lock);
1382 	while (spa->spa_async_thread != NULL || spa->spa_async_tasks)
1383 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
1384 	mutex_exit(&spa->spa_async_lock);
1385 
1386 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1387 	spa_newsize = spa_get_space(spa);
1388 
1389 	/*
1390 	 * Make sure we were able to grow the pool.
1391 	 */
1392 	if (ms_count >= tvd->vdev_ms_count ||
1393 	    spa_cursize >= spa_newsize) {
1394 		(void) printf("Top-level vdev metaslab count: "
1395 		    "before %llu, after %llu\n",
1396 		    (u_longlong_t)ms_count,
1397 		    (u_longlong_t)tvd->vdev_ms_count);
1398 		fatal(0, "LUN expansion failed: before %llu, "
1399 		    "after %llu\n", spa_cursize, spa_newsize);
1400 	} else if (zopt_verbose >= 5) {
1401 		char oldnumbuf[6], newnumbuf[6];
1402 
1403 		nicenum(spa_cursize, oldnumbuf);
1404 		nicenum(spa_newsize, newnumbuf);
1405 		(void) printf("%s grew from %s to %s\n",
1406 		    spa->spa_name, oldnumbuf, newnumbuf);
1407 	}
1408 	spa_config_exit(spa, SCL_STATE, spa);
1409 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1410 }
1411 
1412 /* ARGSUSED */
1413 static void
1414 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
1415 {
1416 	/*
1417 	 * Create the directory object.
1418 	 */
1419 	VERIFY(dmu_object_claim(os, ZTEST_DIROBJ,
1420 	    DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE,
1421 	    DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0);
1422 
1423 	VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ,
1424 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1425 
1426 	VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ,
1427 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1428 }
1429 
1430 static int
1431 ztest_destroy_cb(char *name, void *arg)
1432 {
1433 	ztest_args_t *za = arg;
1434 	objset_t *os;
1435 	dmu_object_info_t *doi = &za->za_doi;
1436 	int error;
1437 
1438 	/*
1439 	 * Verify that the dataset contains a directory object.
1440 	 */
1441 	error = dmu_objset_hold(name, FTAG, &os);
1442 	ASSERT3U(error, ==, 0);
1443 	error = dmu_object_info(os, ZTEST_DIROBJ, doi);
1444 	if (error != ENOENT) {
1445 		/* We could have crashed in the middle of destroying it */
1446 		ASSERT3U(error, ==, 0);
1447 		ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER);
1448 		ASSERT3S(doi->doi_physical_blks, >=, 0);
1449 	}
1450 	dmu_objset_rele(os, FTAG);
1451 
1452 	/*
1453 	 * Destroy the dataset.
1454 	 */
1455 	error = dmu_objset_destroy(name, B_FALSE);
1456 	if (error) {
1457 		(void) dmu_objset_hold(name, FTAG, &os);
1458 		fatal(0, "dmu_objset_destroy(os=%p) = %d\n", os, error);
1459 	}
1460 	return (0);
1461 }
1462 
1463 /*
1464  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
1465  */
1466 static uint64_t
1467 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode)
1468 {
1469 	itx_t *itx;
1470 	lr_create_t *lr;
1471 	size_t namesize;
1472 	char name[24];
1473 
1474 	(void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object);
1475 	namesize = strlen(name) + 1;
1476 
1477 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize +
1478 	    ztest_random(ZIL_MAX_BLKSZ));
1479 	lr = (lr_create_t *)&itx->itx_lr;
1480 	bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr));
1481 	lr->lr_doid = object;
1482 	lr->lr_foid = 0;
1483 	lr->lr_mode = mode;
1484 	lr->lr_uid = 0;
1485 	lr->lr_gid = 0;
1486 	lr->lr_gen = dmu_tx_get_txg(tx);
1487 	lr->lr_crtime[0] = time(NULL);
1488 	lr->lr_crtime[1] = 0;
1489 	lr->lr_rdev = 0;
1490 	bcopy(name, (char *)(lr + 1), namesize);
1491 
1492 	return (zil_itx_assign(zilog, itx, tx));
1493 }
1494 
1495 void
1496 ztest_dmu_objset_create_destroy(ztest_args_t *za)
1497 {
1498 	int error;
1499 	objset_t *os, *os2;
1500 	char name[100];
1501 	zilog_t *zilog;
1502 	uint64_t seq;
1503 	uint64_t objects;
1504 
1505 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1506 	(void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool,
1507 	    (u_longlong_t)za->za_instance);
1508 
1509 	/*
1510 	 * If this dataset exists from a previous run, process its replay log
1511 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
1512 	 * (invoked from ztest_destroy_cb() below) should just throw it away.
1513 	 */
1514 	if (ztest_random(2) == 0 &&
1515 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
1516 		zil_replay(os, os, ztest_replay_vector);
1517 		dmu_objset_disown(os, FTAG);
1518 	}
1519 
1520 	/*
1521 	 * There may be an old instance of the dataset we're about to
1522 	 * create lying around from a previous run.  If so, destroy it
1523 	 * and all of its snapshots.
1524 	 */
1525 	(void) dmu_objset_find(name, ztest_destroy_cb, za,
1526 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1527 
1528 	/*
1529 	 * Verify that the destroyed dataset is no longer in the namespace.
1530 	 */
1531 	error = dmu_objset_hold(name, FTAG, &os);
1532 	if (error != ENOENT)
1533 		fatal(1, "dmu_objset_open(%s) found destroyed dataset %p",
1534 		    name, os);
1535 
1536 	/*
1537 	 * Verify that we can create a new dataset.
1538 	 */
1539 	error = dmu_objset_create(name, DMU_OST_OTHER, 0,
1540 	    ztest_create_cb, NULL);
1541 	if (error) {
1542 		if (error == ENOSPC) {
1543 			ztest_record_enospc("dmu_objset_create");
1544 			(void) rw_unlock(&ztest_shared->zs_name_lock);
1545 			return;
1546 		}
1547 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
1548 	}
1549 
1550 	error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os);
1551 	if (error) {
1552 		fatal(0, "dmu_objset_open(%s) = %d", name, error);
1553 	}
1554 
1555 	/*
1556 	 * Open the intent log for it.
1557 	 */
1558 	zilog = zil_open(os, NULL);
1559 
1560 	/*
1561 	 * Put a random number of objects in there.
1562 	 */
1563 	objects = ztest_random(20);
1564 	seq = 0;
1565 	while (objects-- != 0) {
1566 		uint64_t object;
1567 		dmu_tx_t *tx = dmu_tx_create(os);
1568 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name));
1569 		error = dmu_tx_assign(tx, TXG_WAIT);
1570 		if (error) {
1571 			dmu_tx_abort(tx);
1572 		} else {
1573 			object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1574 			    DMU_OT_NONE, 0, tx);
1575 			ztest_set_random_blocksize(os, object, tx);
1576 			seq = ztest_log_create(zilog, tx, object,
1577 			    DMU_OT_UINT64_OTHER);
1578 			dmu_write(os, object, 0, sizeof (name), name, tx);
1579 			dmu_tx_commit(tx);
1580 		}
1581 		if (ztest_random(5) == 0) {
1582 			zil_commit(zilog, seq, object);
1583 		}
1584 		if (ztest_random(100) == 0) {
1585 			error = zil_suspend(zilog);
1586 			if (error == 0) {
1587 				zil_resume(zilog);
1588 			}
1589 		}
1590 	}
1591 
1592 	/*
1593 	 * Verify that we cannot create an existing dataset.
1594 	 */
1595 	error = dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL);
1596 	if (error != EEXIST)
1597 		fatal(0, "created existing dataset, error = %d", error);
1598 
1599 	/*
1600 	 * Verify that we can hold an objset that is also owned.
1601 	 */
1602 	error = dmu_objset_hold(name, FTAG, &os2);
1603 	if (error)
1604 		fatal(0, "dmu_objset_open('%s') = %d", name, error);
1605 	dmu_objset_rele(os2, FTAG);
1606 
1607 	/*
1608 	 * Verify that we can not own an objset that is already owned.
1609 	 */
1610 	error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2);
1611 	if (error != EBUSY)
1612 		fatal(0, "dmu_objset_open('%s') = %d, expected EBUSY",
1613 		    name, error);
1614 
1615 	zil_close(zilog);
1616 	dmu_objset_disown(os, FTAG);
1617 
1618 	error = dmu_objset_destroy(name, B_FALSE);
1619 	if (error)
1620 		fatal(0, "dmu_objset_destroy(%s) = %d", name, error);
1621 
1622 	(void) rw_unlock(&ztest_shared->zs_name_lock);
1623 }
1624 
1625 /*
1626  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
1627  */
1628 void
1629 ztest_dmu_snapshot_create_destroy(ztest_args_t *za)
1630 {
1631 	int error;
1632 	objset_t *os = za->za_os;
1633 	char snapname[100];
1634 	char osname[MAXNAMELEN];
1635 
1636 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1637 	dmu_objset_name(os, osname);
1638 	(void) snprintf(snapname, 100, "%s@%llu", osname,
1639 	    (u_longlong_t)za->za_instance);
1640 
1641 	error = dmu_objset_destroy(snapname, B_FALSE);
1642 	if (error != 0 && error != ENOENT)
1643 		fatal(0, "dmu_objset_destroy() = %d", error);
1644 	error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1,
1645 	    NULL, FALSE);
1646 	if (error == ENOSPC)
1647 		ztest_record_enospc("dmu_take_snapshot");
1648 	else if (error != 0 && error != EEXIST)
1649 		fatal(0, "dmu_take_snapshot() = %d", error);
1650 	(void) rw_unlock(&ztest_shared->zs_name_lock);
1651 }
1652 
1653 /*
1654  * Cleanup non-standard snapshots and clones.
1655  */
1656 void
1657 ztest_dsl_dataset_cleanup(char *osname, uint64_t curval)
1658 {
1659 	char snap1name[100];
1660 	char clone1name[100];
1661 	char snap2name[100];
1662 	char clone2name[100];
1663 	char snap3name[100];
1664 	int error;
1665 
1666 	(void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval);
1667 	(void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval);
1668 	(void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval);
1669 	(void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval);
1670 	(void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval);
1671 
1672 	error = dmu_objset_destroy(clone2name, B_FALSE);
1673 	if (error && error != ENOENT)
1674 		fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error);
1675 	error = dmu_objset_destroy(snap3name, B_FALSE);
1676 	if (error && error != ENOENT)
1677 		fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error);
1678 	error = dmu_objset_destroy(snap2name, B_FALSE);
1679 	if (error && error != ENOENT)
1680 		fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error);
1681 	error = dmu_objset_destroy(clone1name, B_FALSE);
1682 	if (error && error != ENOENT)
1683 		fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error);
1684 	error = dmu_objset_destroy(snap1name, B_FALSE);
1685 	if (error && error != ENOENT)
1686 		fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error);
1687 }
1688 
1689 /*
1690  * Verify dsl_dataset_promote handles EBUSY
1691  */
1692 void
1693 ztest_dsl_dataset_promote_busy(ztest_args_t *za)
1694 {
1695 	int error;
1696 	objset_t *os = za->za_os;
1697 	objset_t *clone;
1698 	dsl_dataset_t *ds;
1699 	char snap1name[100];
1700 	char clone1name[100];
1701 	char snap2name[100];
1702 	char clone2name[100];
1703 	char snap3name[100];
1704 	char osname[MAXNAMELEN];
1705 	uint64_t curval = za->za_instance;
1706 
1707 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1708 
1709 	dmu_objset_name(os, osname);
1710 	ztest_dsl_dataset_cleanup(osname, curval);
1711 
1712 	(void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval);
1713 	(void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval);
1714 	(void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval);
1715 	(void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval);
1716 	(void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval);
1717 
1718 	error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1,
1719 	    NULL, FALSE);
1720 	if (error && error != EEXIST) {
1721 		if (error == ENOSPC) {
1722 			ztest_record_enospc("dmu_take_snapshot");
1723 			goto out;
1724 		}
1725 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
1726 	}
1727 
1728 	error = dmu_objset_hold(snap1name, FTAG, &clone);
1729 	if (error)
1730 		fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error);
1731 
1732 	error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0);
1733 	dmu_objset_rele(clone, FTAG);
1734 	if (error) {
1735 		if (error == ENOSPC) {
1736 			ztest_record_enospc("dmu_objset_create");
1737 			goto out;
1738 		}
1739 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
1740 	}
1741 
1742 	error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1,
1743 	    NULL, FALSE);
1744 	if (error && error != EEXIST) {
1745 		if (error == ENOSPC) {
1746 			ztest_record_enospc("dmu_take_snapshot");
1747 			goto out;
1748 		}
1749 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
1750 	}
1751 
1752 	error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1,
1753 	    NULL, FALSE);
1754 	if (error && error != EEXIST) {
1755 		if (error == ENOSPC) {
1756 			ztest_record_enospc("dmu_take_snapshot");
1757 			goto out;
1758 		}
1759 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
1760 	}
1761 
1762 	error = dmu_objset_hold(snap3name, FTAG, &clone);
1763 	if (error)
1764 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
1765 
1766 	error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0);
1767 	dmu_objset_rele(clone, FTAG);
1768 	if (error) {
1769 		if (error == ENOSPC) {
1770 			ztest_record_enospc("dmu_objset_create");
1771 			goto out;
1772 		}
1773 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
1774 	}
1775 
1776 	error = dsl_dataset_own(snap1name, B_FALSE, FTAG, &ds);
1777 	if (error)
1778 		fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error);
1779 	error = dsl_dataset_promote(clone2name, NULL);
1780 	if (error != EBUSY)
1781 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
1782 		    error);
1783 	dsl_dataset_disown(ds, FTAG);
1784 
1785 out:
1786 	ztest_dsl_dataset_cleanup(osname, curval);
1787 
1788 	(void) rw_unlock(&ztest_shared->zs_name_lock);
1789 }
1790 
1791 /*
1792  * Verify that dmu_object_{alloc,free} work as expected.
1793  */
1794 void
1795 ztest_dmu_object_alloc_free(ztest_args_t *za)
1796 {
1797 	objset_t *os = za->za_os;
1798 	dmu_buf_t *db;
1799 	dmu_tx_t *tx;
1800 	uint64_t batchobj, object, batchsize, endoff, temp;
1801 	int b, c, error, bonuslen;
1802 	dmu_object_info_t *doi = &za->za_doi;
1803 	char osname[MAXNAMELEN];
1804 
1805 	dmu_objset_name(os, osname);
1806 
1807 	endoff = -8ULL;
1808 	batchsize = 2;
1809 
1810 	/*
1811 	 * Create a batch object if necessary, and record it in the directory.
1812 	 */
1813 	VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
1814 	    sizeof (uint64_t), &batchobj, DMU_READ_PREFETCH));
1815 	if (batchobj == 0) {
1816 		tx = dmu_tx_create(os);
1817 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
1818 		    sizeof (uint64_t));
1819 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1820 		error = dmu_tx_assign(tx, TXG_WAIT);
1821 		if (error) {
1822 			ztest_record_enospc("create a batch object");
1823 			dmu_tx_abort(tx);
1824 			return;
1825 		}
1826 		batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1827 		    DMU_OT_NONE, 0, tx);
1828 		ztest_set_random_blocksize(os, batchobj, tx);
1829 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
1830 		    sizeof (uint64_t), &batchobj, tx);
1831 		dmu_tx_commit(tx);
1832 	}
1833 
1834 	/*
1835 	 * Destroy the previous batch of objects.
1836 	 */
1837 	for (b = 0; b < batchsize; b++) {
1838 		VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t),
1839 		    sizeof (uint64_t), &object, DMU_READ_PREFETCH));
1840 		if (object == 0)
1841 			continue;
1842 		/*
1843 		 * Read and validate contents.
1844 		 * We expect the nth byte of the bonus buffer to be n.
1845 		 */
1846 		VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db));
1847 		za->za_dbuf = db;
1848 
1849 		dmu_object_info_from_db(db, doi);
1850 		ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER);
1851 		ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER);
1852 		ASSERT3S(doi->doi_physical_blks, >=, 0);
1853 
1854 		bonuslen = doi->doi_bonus_size;
1855 
1856 		for (c = 0; c < bonuslen; c++) {
1857 			if (((uint8_t *)db->db_data)[c] !=
1858 			    (uint8_t)(c + bonuslen)) {
1859 				fatal(0,
1860 				    "bad bonus: %s, obj %llu, off %d: %u != %u",
1861 				    osname, object, c,
1862 				    ((uint8_t *)db->db_data)[c],
1863 				    (uint8_t)(c + bonuslen));
1864 			}
1865 		}
1866 
1867 		dmu_buf_rele(db, FTAG);
1868 		za->za_dbuf = NULL;
1869 
1870 		/*
1871 		 * We expect the word at endoff to be our object number.
1872 		 */
1873 		VERIFY(0 == dmu_read(os, object, endoff,
1874 		    sizeof (uint64_t), &temp, DMU_READ_PREFETCH));
1875 
1876 		if (temp != object) {
1877 			fatal(0, "bad data in %s, got %llu, expected %llu",
1878 			    osname, temp, object);
1879 		}
1880 
1881 		/*
1882 		 * Destroy old object and clear batch entry.
1883 		 */
1884 		tx = dmu_tx_create(os);
1885 		dmu_tx_hold_write(tx, batchobj,
1886 		    b * sizeof (uint64_t), sizeof (uint64_t));
1887 		dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1888 		error = dmu_tx_assign(tx, TXG_WAIT);
1889 		if (error) {
1890 			ztest_record_enospc("free object");
1891 			dmu_tx_abort(tx);
1892 			return;
1893 		}
1894 		error = dmu_object_free(os, object, tx);
1895 		if (error) {
1896 			fatal(0, "dmu_object_free('%s', %llu) = %d",
1897 			    osname, object, error);
1898 		}
1899 		object = 0;
1900 
1901 		dmu_object_set_checksum(os, batchobj,
1902 		    ztest_random_checksum(), tx);
1903 		dmu_object_set_compress(os, batchobj,
1904 		    ztest_random_compress(), tx);
1905 
1906 		dmu_write(os, batchobj, b * sizeof (uint64_t),
1907 		    sizeof (uint64_t), &object, tx);
1908 
1909 		dmu_tx_commit(tx);
1910 	}
1911 
1912 	/*
1913 	 * Before creating the new batch of objects, generate a bunch of churn.
1914 	 */
1915 	for (b = ztest_random(100); b > 0; b--) {
1916 		tx = dmu_tx_create(os);
1917 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1918 		error = dmu_tx_assign(tx, TXG_WAIT);
1919 		if (error) {
1920 			ztest_record_enospc("churn objects");
1921 			dmu_tx_abort(tx);
1922 			return;
1923 		}
1924 		object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1925 		    DMU_OT_NONE, 0, tx);
1926 		ztest_set_random_blocksize(os, object, tx);
1927 		error = dmu_object_free(os, object, tx);
1928 		if (error) {
1929 			fatal(0, "dmu_object_free('%s', %llu) = %d",
1930 			    osname, object, error);
1931 		}
1932 		dmu_tx_commit(tx);
1933 	}
1934 
1935 	/*
1936 	 * Create a new batch of objects with randomly chosen
1937 	 * blocksizes and record them in the batch directory.
1938 	 */
1939 	for (b = 0; b < batchsize; b++) {
1940 		uint32_t va_blksize;
1941 		u_longlong_t va_nblocks;
1942 
1943 		tx = dmu_tx_create(os);
1944 		dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t),
1945 		    sizeof (uint64_t));
1946 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1947 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff,
1948 		    sizeof (uint64_t));
1949 		error = dmu_tx_assign(tx, TXG_WAIT);
1950 		if (error) {
1951 			ztest_record_enospc("create batchobj");
1952 			dmu_tx_abort(tx);
1953 			return;
1954 		}
1955 		bonuslen = (int)ztest_random(dmu_bonus_max()) + 1;
1956 
1957 		object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1958 		    DMU_OT_PLAIN_OTHER, bonuslen, tx);
1959 
1960 		ztest_set_random_blocksize(os, object, tx);
1961 
1962 		dmu_object_set_checksum(os, object,
1963 		    ztest_random_checksum(), tx);
1964 		dmu_object_set_compress(os, object,
1965 		    ztest_random_compress(), tx);
1966 
1967 		dmu_write(os, batchobj, b * sizeof (uint64_t),
1968 		    sizeof (uint64_t), &object, tx);
1969 
1970 		/*
1971 		 * Write to both the bonus buffer and the regular data.
1972 		 */
1973 		VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0);
1974 		za->za_dbuf = db;
1975 		ASSERT3U(bonuslen, <=, db->db_size);
1976 
1977 		dmu_object_size_from_db(db, &va_blksize, &va_nblocks);
1978 		ASSERT3S(va_nblocks, >=, 0);
1979 
1980 		dmu_buf_will_dirty(db, tx);
1981 
1982 		/*
1983 		 * See comments above regarding the contents of
1984 		 * the bonus buffer and the word at endoff.
1985 		 */
1986 		for (c = 0; c < bonuslen; c++)
1987 			((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen);
1988 
1989 		dmu_buf_rele(db, FTAG);
1990 		za->za_dbuf = NULL;
1991 
1992 		/*
1993 		 * Write to a large offset to increase indirection.
1994 		 */
1995 		dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx);
1996 
1997 		dmu_tx_commit(tx);
1998 	}
1999 }
2000 
2001 /*
2002  * Verify that dmu_{read,write} work as expected.
2003  */
2004 typedef struct bufwad {
2005 	uint64_t	bw_index;
2006 	uint64_t	bw_txg;
2007 	uint64_t	bw_data;
2008 } bufwad_t;
2009 
2010 typedef struct dmu_read_write_dir {
2011 	uint64_t	dd_packobj;
2012 	uint64_t	dd_bigobj;
2013 	uint64_t	dd_chunk;
2014 } dmu_read_write_dir_t;
2015 
2016 void
2017 ztest_dmu_read_write(ztest_args_t *za)
2018 {
2019 	objset_t *os = za->za_os;
2020 	dmu_read_write_dir_t dd;
2021 	dmu_tx_t *tx;
2022 	int i, freeit, error;
2023 	uint64_t n, s, txg;
2024 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
2025 	uint64_t packoff, packsize, bigoff, bigsize;
2026 	uint64_t regions = 997;
2027 	uint64_t stride = 123456789ULL;
2028 	uint64_t width = 40;
2029 	int free_percent = 5;
2030 
2031 	/*
2032 	 * This test uses two objects, packobj and bigobj, that are always
2033 	 * updated together (i.e. in the same tx) so that their contents are
2034 	 * in sync and can be compared.  Their contents relate to each other
2035 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
2036 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
2037 	 * for any index n, there are three bufwads that should be identical:
2038 	 *
2039 	 *	packobj, at offset n * sizeof (bufwad_t)
2040 	 *	bigobj, at the head of the nth chunk
2041 	 *	bigobj, at the tail of the nth chunk
2042 	 *
2043 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
2044 	 * and it doesn't have any relation to the object blocksize.
2045 	 * The only requirement is that it can hold at least two bufwads.
2046 	 *
2047 	 * Normally, we write the bufwad to each of these locations.
2048 	 * However, free_percent of the time we instead write zeroes to
2049 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
2050 	 * bigobj to packobj, we can verify that the DMU is correctly
2051 	 * tracking which parts of an object are allocated and free,
2052 	 * and that the contents of the allocated blocks are correct.
2053 	 */
2054 
2055 	/*
2056 	 * Read the directory info.  If it's the first time, set things up.
2057 	 */
2058 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
2059 	    sizeof (dd), &dd, DMU_READ_PREFETCH));
2060 	if (dd.dd_chunk == 0) {
2061 		ASSERT(dd.dd_packobj == 0);
2062 		ASSERT(dd.dd_bigobj == 0);
2063 		tx = dmu_tx_create(os);
2064 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd));
2065 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2066 		error = dmu_tx_assign(tx, TXG_WAIT);
2067 		if (error) {
2068 			ztest_record_enospc("create r/w directory");
2069 			dmu_tx_abort(tx);
2070 			return;
2071 		}
2072 
2073 		dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
2074 		    DMU_OT_NONE, 0, tx);
2075 		dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
2076 		    DMU_OT_NONE, 0, tx);
2077 		dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t);
2078 
2079 		ztest_set_random_blocksize(os, dd.dd_packobj, tx);
2080 		ztest_set_random_blocksize(os, dd.dd_bigobj, tx);
2081 
2082 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd,
2083 		    tx);
2084 		dmu_tx_commit(tx);
2085 	}
2086 
2087 	/*
2088 	 * Prefetch a random chunk of the big object.
2089 	 * Our aim here is to get some async reads in flight
2090 	 * for blocks that we may free below; the DMU should
2091 	 * handle this race correctly.
2092 	 */
2093 	n = ztest_random(regions) * stride + ztest_random(width);
2094 	s = 1 + ztest_random(2 * width - 1);
2095 	dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk);
2096 
2097 	/*
2098 	 * Pick a random index and compute the offsets into packobj and bigobj.
2099 	 */
2100 	n = ztest_random(regions) * stride + ztest_random(width);
2101 	s = 1 + ztest_random(width - 1);
2102 
2103 	packoff = n * sizeof (bufwad_t);
2104 	packsize = s * sizeof (bufwad_t);
2105 
2106 	bigoff = n * dd.dd_chunk;
2107 	bigsize = s * dd.dd_chunk;
2108 
2109 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
2110 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
2111 
2112 	/*
2113 	 * free_percent of the time, free a range of bigobj rather than
2114 	 * overwriting it.
2115 	 */
2116 	freeit = (ztest_random(100) < free_percent);
2117 
2118 	/*
2119 	 * Read the current contents of our objects.
2120 	 */
2121 	error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf,
2122 	    DMU_READ_PREFETCH);
2123 	ASSERT3U(error, ==, 0);
2124 	error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf,
2125 	    DMU_READ_PREFETCH);
2126 	ASSERT3U(error, ==, 0);
2127 
2128 	/*
2129 	 * Get a tx for the mods to both packobj and bigobj.
2130 	 */
2131 	tx = dmu_tx_create(os);
2132 
2133 	dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize);
2134 
2135 	if (freeit)
2136 		dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize);
2137 	else
2138 		dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize);
2139 
2140 	error = dmu_tx_assign(tx, TXG_WAIT);
2141 
2142 	if (error) {
2143 		ztest_record_enospc("dmu r/w range");
2144 		dmu_tx_abort(tx);
2145 		umem_free(packbuf, packsize);
2146 		umem_free(bigbuf, bigsize);
2147 		return;
2148 	}
2149 
2150 	txg = dmu_tx_get_txg(tx);
2151 
2152 	/*
2153 	 * For each index from n to n + s, verify that the existing bufwad
2154 	 * in packobj matches the bufwads at the head and tail of the
2155 	 * corresponding chunk in bigobj.  Then update all three bufwads
2156 	 * with the new values we want to write out.
2157 	 */
2158 	for (i = 0; i < s; i++) {
2159 		/* LINTED */
2160 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
2161 		/* LINTED */
2162 		bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk);
2163 		/* LINTED */
2164 		bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1;
2165 
2166 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
2167 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
2168 
2169 		if (pack->bw_txg > txg)
2170 			fatal(0, "future leak: got %llx, open txg is %llx",
2171 			    pack->bw_txg, txg);
2172 
2173 		if (pack->bw_data != 0 && pack->bw_index != n + i)
2174 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
2175 			    pack->bw_index, n, i);
2176 
2177 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
2178 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
2179 
2180 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
2181 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
2182 
2183 		if (freeit) {
2184 			bzero(pack, sizeof (bufwad_t));
2185 		} else {
2186 			pack->bw_index = n + i;
2187 			pack->bw_txg = txg;
2188 			pack->bw_data = 1 + ztest_random(-2ULL);
2189 		}
2190 		*bigH = *pack;
2191 		*bigT = *pack;
2192 	}
2193 
2194 	/*
2195 	 * We've verified all the old bufwads, and made new ones.
2196 	 * Now write them out.
2197 	 */
2198 	dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx);
2199 
2200 	if (freeit) {
2201 		if (zopt_verbose >= 6) {
2202 			(void) printf("freeing offset %llx size %llx"
2203 			    " txg %llx\n",
2204 			    (u_longlong_t)bigoff,
2205 			    (u_longlong_t)bigsize,
2206 			    (u_longlong_t)txg);
2207 		}
2208 		VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff,
2209 		    bigsize, tx));
2210 	} else {
2211 		if (zopt_verbose >= 6) {
2212 			(void) printf("writing offset %llx size %llx"
2213 			    " txg %llx\n",
2214 			    (u_longlong_t)bigoff,
2215 			    (u_longlong_t)bigsize,
2216 			    (u_longlong_t)txg);
2217 		}
2218 		dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx);
2219 	}
2220 
2221 	dmu_tx_commit(tx);
2222 
2223 	/*
2224 	 * Sanity check the stuff we just wrote.
2225 	 */
2226 	{
2227 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
2228 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
2229 
2230 		VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff,
2231 		    packsize, packcheck, DMU_READ_PREFETCH));
2232 		VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff,
2233 		    bigsize, bigcheck, DMU_READ_PREFETCH));
2234 
2235 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
2236 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
2237 
2238 		umem_free(packcheck, packsize);
2239 		umem_free(bigcheck, bigsize);
2240 	}
2241 
2242 	umem_free(packbuf, packsize);
2243 	umem_free(bigbuf, bigsize);
2244 }
2245 
2246 void
2247 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
2248     uint64_t bigsize, uint64_t n, dmu_read_write_dir_t dd, uint64_t txg)
2249 {
2250 	uint64_t i;
2251 	bufwad_t *pack;
2252 	bufwad_t *bigH;
2253 	bufwad_t *bigT;
2254 
2255 	/*
2256 	 * For each index from n to n + s, verify that the existing bufwad
2257 	 * in packobj matches the bufwads at the head and tail of the
2258 	 * corresponding chunk in bigobj.  Then update all three bufwads
2259 	 * with the new values we want to write out.
2260 	 */
2261 	for (i = 0; i < s; i++) {
2262 		/* LINTED */
2263 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
2264 		/* LINTED */
2265 		bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk);
2266 		/* LINTED */
2267 		bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1;
2268 
2269 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
2270 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
2271 
2272 		if (pack->bw_txg > txg)
2273 			fatal(0, "future leak: got %llx, open txg is %llx",
2274 			    pack->bw_txg, txg);
2275 
2276 		if (pack->bw_data != 0 && pack->bw_index != n + i)
2277 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
2278 			    pack->bw_index, n, i);
2279 
2280 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
2281 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
2282 
2283 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
2284 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
2285 
2286 		pack->bw_index = n + i;
2287 		pack->bw_txg = txg;
2288 		pack->bw_data = 1 + ztest_random(-2ULL);
2289 
2290 		*bigH = *pack;
2291 		*bigT = *pack;
2292 	}
2293 }
2294 
2295 void
2296 ztest_dmu_read_write_zcopy(ztest_args_t *za)
2297 {
2298 	objset_t *os = za->za_os;
2299 	dmu_read_write_dir_t dd;
2300 	dmu_tx_t *tx;
2301 	uint64_t i;
2302 	int error;
2303 	uint64_t n, s, txg;
2304 	bufwad_t *packbuf, *bigbuf;
2305 	uint64_t packoff, packsize, bigoff, bigsize;
2306 	uint64_t regions = 997;
2307 	uint64_t stride = 123456789ULL;
2308 	uint64_t width = 9;
2309 	dmu_buf_t *bonus_db;
2310 	arc_buf_t **bigbuf_arcbufs;
2311 	dmu_object_info_t *doi = &za->za_doi;
2312 
2313 	/*
2314 	 * This test uses two objects, packobj and bigobj, that are always
2315 	 * updated together (i.e. in the same tx) so that their contents are
2316 	 * in sync and can be compared.  Their contents relate to each other
2317 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
2318 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
2319 	 * for any index n, there are three bufwads that should be identical:
2320 	 *
2321 	 *	packobj, at offset n * sizeof (bufwad_t)
2322 	 *	bigobj, at the head of the nth chunk
2323 	 *	bigobj, at the tail of the nth chunk
2324 	 *
2325 	 * The chunk size is set equal to bigobj block size so that
2326 	 * dmu_assign_arcbuf() can be tested for object updates.
2327 	 */
2328 
2329 	/*
2330 	 * Read the directory info.  If it's the first time, set things up.
2331 	 */
2332 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
2333 	    sizeof (dd), &dd, DMU_READ_PREFETCH));
2334 	if (dd.dd_chunk == 0) {
2335 		ASSERT(dd.dd_packobj == 0);
2336 		ASSERT(dd.dd_bigobj == 0);
2337 		tx = dmu_tx_create(os);
2338 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd));
2339 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2340 		error = dmu_tx_assign(tx, TXG_WAIT);
2341 		if (error) {
2342 			ztest_record_enospc("create r/w directory");
2343 			dmu_tx_abort(tx);
2344 			return;
2345 		}
2346 
2347 		dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
2348 		    DMU_OT_NONE, 0, tx);
2349 		dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
2350 		    DMU_OT_NONE, 0, tx);
2351 		ztest_set_random_blocksize(os, dd.dd_packobj, tx);
2352 		ztest_set_random_blocksize(os, dd.dd_bigobj, tx);
2353 
2354 		VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0);
2355 		ASSERT(doi->doi_data_block_size >= 2 * sizeof (bufwad_t));
2356 		ASSERT(ISP2(doi->doi_data_block_size));
2357 		dd.dd_chunk = doi->doi_data_block_size;
2358 
2359 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd,
2360 		    tx);
2361 		dmu_tx_commit(tx);
2362 	} else {
2363 		VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0);
2364 		VERIFY(ISP2(doi->doi_data_block_size));
2365 		VERIFY(dd.dd_chunk == doi->doi_data_block_size);
2366 		VERIFY(dd.dd_chunk >= 2 * sizeof (bufwad_t));
2367 	}
2368 
2369 	/*
2370 	 * Pick a random index and compute the offsets into packobj and bigobj.
2371 	 */
2372 	n = ztest_random(regions) * stride + ztest_random(width);
2373 	s = 1 + ztest_random(width - 1);
2374 
2375 	packoff = n * sizeof (bufwad_t);
2376 	packsize = s * sizeof (bufwad_t);
2377 
2378 	bigoff = n * dd.dd_chunk;
2379 	bigsize = s * dd.dd_chunk;
2380 
2381 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
2382 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
2383 
2384 	VERIFY(dmu_bonus_hold(os, dd.dd_bigobj, FTAG, &bonus_db) == 0);
2385 
2386 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
2387 
2388 	/*
2389 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
2390 	 * Iteration 1 test zcopy to already referenced dbufs.
2391 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
2392 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
2393 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
2394 	 * Iteration 5 test zcopy when it can't be done.
2395 	 * Iteration 6 one more zcopy write.
2396 	 */
2397 	for (i = 0; i < 7; i++) {
2398 		uint64_t j;
2399 		uint64_t off;
2400 
2401 		/*
2402 		 * In iteration 5 (i == 5) use arcbufs
2403 		 * that don't match bigobj blksz to test
2404 		 * dmu_assign_arcbuf() when it can't directly
2405 		 * assign an arcbuf to a dbuf.
2406 		 */
2407 		for (j = 0; j < s; j++) {
2408 			if (i != 5) {
2409 				bigbuf_arcbufs[j] =
2410 				    dmu_request_arcbuf(bonus_db,
2411 				    dd.dd_chunk);
2412 			} else {
2413 				bigbuf_arcbufs[2 * j] =
2414 				    dmu_request_arcbuf(bonus_db,
2415 				    dd.dd_chunk / 2);
2416 				bigbuf_arcbufs[2 * j + 1] =
2417 				    dmu_request_arcbuf(bonus_db,
2418 				    dd.dd_chunk / 2);
2419 			}
2420 		}
2421 
2422 		/*
2423 		 * Get a tx for the mods to both packobj and bigobj.
2424 		 */
2425 		tx = dmu_tx_create(os);
2426 
2427 		dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize);
2428 		dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize);
2429 
2430 		if (ztest_random(100) == 0) {
2431 			error = -1;
2432 		} else {
2433 			error = dmu_tx_assign(tx, TXG_WAIT);
2434 		}
2435 
2436 		if (error) {
2437 			if (error != -1) {
2438 				ztest_record_enospc("dmu r/w range");
2439 			}
2440 			dmu_tx_abort(tx);
2441 			umem_free(packbuf, packsize);
2442 			umem_free(bigbuf, bigsize);
2443 			for (j = 0; j < s; j++) {
2444 				if (i != 5) {
2445 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
2446 				} else {
2447 					dmu_return_arcbuf(
2448 					    bigbuf_arcbufs[2 * j]);
2449 					dmu_return_arcbuf(
2450 					    bigbuf_arcbufs[2 * j + 1]);
2451 				}
2452 			}
2453 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
2454 			dmu_buf_rele(bonus_db, FTAG);
2455 			return;
2456 		}
2457 
2458 		txg = dmu_tx_get_txg(tx);
2459 
2460 		/*
2461 		 * 50% of the time don't read objects in the 1st iteration to
2462 		 * test dmu_assign_arcbuf() for the case when there're no
2463 		 * existing dbufs for the specified offsets.
2464 		 */
2465 		if (i != 0 || ztest_random(2) != 0) {
2466 			error = dmu_read(os, dd.dd_packobj, packoff,
2467 			    packsize, packbuf, DMU_READ_PREFETCH);
2468 			ASSERT3U(error, ==, 0);
2469 			error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize,
2470 			    bigbuf, DMU_READ_PREFETCH);
2471 			ASSERT3U(error, ==, 0);
2472 		}
2473 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
2474 		    n, dd, txg);
2475 
2476 		/*
2477 		 * We've verified all the old bufwads, and made new ones.
2478 		 * Now write them out.
2479 		 */
2480 		dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx);
2481 		if (zopt_verbose >= 6) {
2482 			(void) printf("writing offset %llx size %llx"
2483 			    " txg %llx\n",
2484 			    (u_longlong_t)bigoff,
2485 			    (u_longlong_t)bigsize,
2486 			    (u_longlong_t)txg);
2487 		}
2488 		for (off = bigoff, j = 0; j < s; j++, off += dd.dd_chunk) {
2489 			dmu_buf_t *dbt;
2490 			if (i != 5) {
2491 				bcopy((caddr_t)bigbuf + (off - bigoff),
2492 				    bigbuf_arcbufs[j]->b_data, dd.dd_chunk);
2493 			} else {
2494 				bcopy((caddr_t)bigbuf + (off - bigoff),
2495 				    bigbuf_arcbufs[2 * j]->b_data,
2496 				    dd.dd_chunk / 2);
2497 				bcopy((caddr_t)bigbuf + (off - bigoff) +
2498 				    dd.dd_chunk / 2,
2499 				    bigbuf_arcbufs[2 * j + 1]->b_data,
2500 				    dd.dd_chunk / 2);
2501 			}
2502 
2503 			if (i == 1) {
2504 				VERIFY(dmu_buf_hold(os, dd.dd_bigobj, off,
2505 				    FTAG, &dbt) == 0);
2506 			}
2507 			if (i != 5) {
2508 				dmu_assign_arcbuf(bonus_db, off,
2509 				    bigbuf_arcbufs[j], tx);
2510 			} else {
2511 				dmu_assign_arcbuf(bonus_db, off,
2512 				    bigbuf_arcbufs[2 * j], tx);
2513 				dmu_assign_arcbuf(bonus_db,
2514 				    off + dd.dd_chunk / 2,
2515 				    bigbuf_arcbufs[2 * j + 1], tx);
2516 			}
2517 			if (i == 1) {
2518 				dmu_buf_rele(dbt, FTAG);
2519 			}
2520 		}
2521 		dmu_tx_commit(tx);
2522 
2523 		/*
2524 		 * Sanity check the stuff we just wrote.
2525 		 */
2526 		{
2527 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
2528 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
2529 
2530 			VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff,
2531 			    packsize, packcheck, DMU_READ_PREFETCH));
2532 			VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff,
2533 			    bigsize, bigcheck, DMU_READ_PREFETCH));
2534 
2535 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
2536 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
2537 
2538 			umem_free(packcheck, packsize);
2539 			umem_free(bigcheck, bigsize);
2540 		}
2541 		if (i == 2) {
2542 			txg_wait_open(dmu_objset_pool(os), 0);
2543 		} else if (i == 3) {
2544 			txg_wait_synced(dmu_objset_pool(os), 0);
2545 		}
2546 	}
2547 
2548 	dmu_buf_rele(bonus_db, FTAG);
2549 	umem_free(packbuf, packsize);
2550 	umem_free(bigbuf, bigsize);
2551 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
2552 }
2553 
2554 void
2555 ztest_dmu_check_future_leak(ztest_args_t *za)
2556 {
2557 	objset_t *os = za->za_os;
2558 	dmu_buf_t *db;
2559 	ztest_block_tag_t *bt;
2560 	dmu_object_info_t *doi = &za->za_doi;
2561 
2562 	/*
2563 	 * Make sure that, if there is a write record in the bonus buffer
2564 	 * of the ZTEST_DIROBJ, that the txg for this record is <= the
2565 	 * last synced txg of the pool.
2566 	 */
2567 	VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
2568 	za->za_dbuf = db;
2569 	VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0);
2570 	ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt));
2571 	ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
2572 	ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0);
2573 	bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt));
2574 	if (bt->bt_objset != 0) {
2575 		ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
2576 		ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ);
2577 		ASSERT3U(bt->bt_offset, ==, -1ULL);
2578 		ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa));
2579 	}
2580 	dmu_buf_rele(db, FTAG);
2581 	za->za_dbuf = NULL;
2582 }
2583 
2584 void
2585 ztest_dmu_write_parallel(ztest_args_t *za)
2586 {
2587 	objset_t *os = za->za_os;
2588 	ztest_block_tag_t *rbt = &za->za_rbt;
2589 	ztest_block_tag_t *wbt = &za->za_wbt;
2590 	const size_t btsize = sizeof (ztest_block_tag_t);
2591 	dmu_buf_t *db;
2592 	int b, error;
2593 	int bs = ZTEST_DIROBJ_BLOCKSIZE;
2594 	int do_free = 0;
2595 	uint64_t off, txg, txg_how;
2596 	mutex_t *lp;
2597 	char osname[MAXNAMELEN];
2598 	char iobuf[SPA_MAXBLOCKSIZE];
2599 	blkptr_t blk = { 0 };
2600 	uint64_t blkoff;
2601 	zbookmark_t zb;
2602 	dmu_tx_t *tx = dmu_tx_create(os);
2603 	dmu_buf_t *bonus_db;
2604 	arc_buf_t *abuf = NULL;
2605 
2606 	dmu_objset_name(os, osname);
2607 
2608 	/*
2609 	 * Have multiple threads write to large offsets in ZTEST_DIROBJ
2610 	 * to verify that having multiple threads writing to the same object
2611 	 * in parallel doesn't cause any trouble.
2612 	 */
2613 	if (ztest_random(4) == 0) {
2614 		/*
2615 		 * Do the bonus buffer instead of a regular block.
2616 		 * We need a lock to serialize resize vs. others,
2617 		 * so we hash on the objset ID.
2618 		 */
2619 		b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS;
2620 		off = -1ULL;
2621 		dmu_tx_hold_bonus(tx, ZTEST_DIROBJ);
2622 	} else {
2623 		b = ztest_random(ZTEST_SYNC_LOCKS);
2624 		off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT);
2625 		if (ztest_random(4) == 0) {
2626 			do_free = 1;
2627 			dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs);
2628 		} else {
2629 			dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs);
2630 		}
2631 	}
2632 
2633 	if (off != -1ULL && P2PHASE(off, bs) == 0 && !do_free &&
2634 	    ztest_random(8) == 0) {
2635 		VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &bonus_db) == 0);
2636 		abuf = dmu_request_arcbuf(bonus_db, bs);
2637 	}
2638 
2639 	txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT;
2640 	error = dmu_tx_assign(tx, txg_how);
2641 	if (error) {
2642 		if (error == ERESTART) {
2643 			ASSERT(txg_how == TXG_NOWAIT);
2644 			dmu_tx_wait(tx);
2645 		} else {
2646 			ztest_record_enospc("dmu write parallel");
2647 		}
2648 		dmu_tx_abort(tx);
2649 		if (abuf != NULL) {
2650 			dmu_return_arcbuf(abuf);
2651 			dmu_buf_rele(bonus_db, FTAG);
2652 		}
2653 		return;
2654 	}
2655 	txg = dmu_tx_get_txg(tx);
2656 
2657 	lp = &ztest_shared->zs_sync_lock[b];
2658 	(void) mutex_lock(lp);
2659 
2660 	wbt->bt_objset = dmu_objset_id(os);
2661 	wbt->bt_object = ZTEST_DIROBJ;
2662 	wbt->bt_offset = off;
2663 	wbt->bt_txg = txg;
2664 	wbt->bt_thread = za->za_instance;
2665 	wbt->bt_seq = ztest_shared->zs_seq[b]++;	/* protected by lp */
2666 
2667 	/*
2668 	 * Occasionally, write an all-zero block to test the behavior
2669 	 * of blocks that compress into holes.
2670 	 */
2671 	if (off != -1ULL && ztest_random(8) == 0)
2672 		bzero(wbt, btsize);
2673 
2674 	if (off == -1ULL) {
2675 		dmu_object_info_t *doi = &za->za_doi;
2676 		char *dboff;
2677 
2678 		VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
2679 		za->za_dbuf = db;
2680 		dmu_object_info_from_db(db, doi);
2681 		ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
2682 		ASSERT3U(doi->doi_bonus_size, >=, btsize);
2683 		ASSERT3U(doi->doi_bonus_size % btsize, ==, 0);
2684 		dboff = (char *)db->db_data + doi->doi_bonus_size - btsize;
2685 		bcopy(dboff, rbt, btsize);
2686 		if (rbt->bt_objset != 0) {
2687 			ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2688 			ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2689 			ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2690 			ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg);
2691 		}
2692 		if (ztest_random(10) == 0) {
2693 			int newsize = (ztest_random(db->db_size /
2694 			    btsize) + 1) * btsize;
2695 
2696 			ASSERT3U(newsize, >=, btsize);
2697 			ASSERT3U(newsize, <=, db->db_size);
2698 			VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0);
2699 			dboff = (char *)db->db_data + newsize - btsize;
2700 		}
2701 		dmu_buf_will_dirty(db, tx);
2702 		bcopy(wbt, dboff, btsize);
2703 		dmu_buf_rele(db, FTAG);
2704 		za->za_dbuf = NULL;
2705 	} else if (do_free) {
2706 		VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0);
2707 	} else if (abuf == NULL) {
2708 		dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx);
2709 	} else {
2710 		bcopy(wbt, abuf->b_data, btsize);
2711 		dmu_assign_arcbuf(bonus_db, off, abuf, tx);
2712 		dmu_buf_rele(bonus_db, FTAG);
2713 	}
2714 
2715 	(void) mutex_unlock(lp);
2716 
2717 	if (ztest_random(1000) == 0)
2718 		(void) poll(NULL, 0, 1); /* open dn_notxholds window */
2719 
2720 	dmu_tx_commit(tx);
2721 
2722 	if (ztest_random(10000) == 0)
2723 		txg_wait_synced(dmu_objset_pool(os), txg);
2724 
2725 	if (off == -1ULL || do_free)
2726 		return;
2727 
2728 	if (ztest_random(2) != 0)
2729 		return;
2730 
2731 	/*
2732 	 * dmu_sync() the block we just wrote.
2733 	 */
2734 	(void) mutex_lock(lp);
2735 
2736 	blkoff = P2ALIGN_TYPED(off, bs, uint64_t);
2737 	error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db);
2738 	za->za_dbuf = db;
2739 	if (error) {
2740 		(void) mutex_unlock(lp);
2741 		return;
2742 	}
2743 	blkoff = off - blkoff;
2744 	error = dmu_sync(NULL, db, &blk, txg, NULL, NULL);
2745 	dmu_buf_rele(db, FTAG);
2746 	za->za_dbuf = NULL;
2747 
2748 	if (error) {
2749 		(void) mutex_unlock(lp);
2750 		return;
2751 	}
2752 
2753 	if (blk.blk_birth == 0)	{	/* concurrent free */
2754 		(void) mutex_unlock(lp);
2755 		return;
2756 	}
2757 
2758 	txg_suspend(dmu_objset_pool(os));
2759 
2760 	(void) mutex_unlock(lp);
2761 
2762 	ASSERT(blk.blk_fill == 1);
2763 	ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER);
2764 	ASSERT3U(BP_GET_LEVEL(&blk), ==, 0);
2765 	ASSERT3U(BP_GET_LSIZE(&blk), ==, bs);
2766 
2767 	/*
2768 	 * Read the block that dmu_sync() returned to make sure its contents
2769 	 * match what we wrote.  We do this while still txg_suspend()ed
2770 	 * to ensure that the block can't be reused before we read it.
2771 	 */
2772 	zb.zb_objset = dmu_objset_id(os);
2773 	zb.zb_object = ZTEST_DIROBJ;
2774 	zb.zb_level = 0;
2775 	zb.zb_blkid = off / bs;
2776 	error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs,
2777 	    NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb));
2778 	ASSERT3U(error, ==, 0);
2779 
2780 	txg_resume(dmu_objset_pool(os));
2781 
2782 	bcopy(&iobuf[blkoff], rbt, btsize);
2783 
2784 	if (rbt->bt_objset == 0)		/* concurrent free */
2785 		return;
2786 
2787 	if (wbt->bt_objset == 0)		/* all-zero overwrite */
2788 		return;
2789 
2790 	ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2791 	ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2792 	ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2793 
2794 	/*
2795 	 * The semantic of dmu_sync() is that we always push the most recent
2796 	 * version of the data, so in the face of concurrent updates we may
2797 	 * see a newer version of the block.  That's OK.
2798 	 */
2799 	ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg);
2800 	if (rbt->bt_thread == wbt->bt_thread)
2801 		ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq);
2802 	else
2803 		ASSERT3U(rbt->bt_seq, >, wbt->bt_seq);
2804 }
2805 
2806 /*
2807  * Verify that zap_{create,destroy,add,remove,update} work as expected.
2808  */
2809 #define	ZTEST_ZAP_MIN_INTS	1
2810 #define	ZTEST_ZAP_MAX_INTS	4
2811 #define	ZTEST_ZAP_MAX_PROPS	1000
2812 
2813 void
2814 ztest_zap(ztest_args_t *za)
2815 {
2816 	objset_t *os = za->za_os;
2817 	uint64_t object;
2818 	uint64_t txg, last_txg;
2819 	uint64_t value[ZTEST_ZAP_MAX_INTS];
2820 	uint64_t zl_ints, zl_intsize, prop;
2821 	int i, ints;
2822 	dmu_tx_t *tx;
2823 	char propname[100], txgname[100];
2824 	int error;
2825 	char osname[MAXNAMELEN];
2826 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
2827 
2828 	dmu_objset_name(os, osname);
2829 
2830 	/*
2831 	 * Create a new object if necessary, and record it in the directory.
2832 	 */
2833 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
2834 	    sizeof (uint64_t), &object, DMU_READ_PREFETCH));
2835 
2836 	if (object == 0) {
2837 		tx = dmu_tx_create(os);
2838 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
2839 		    sizeof (uint64_t));
2840 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL);
2841 		error = dmu_tx_assign(tx, TXG_WAIT);
2842 		if (error) {
2843 			ztest_record_enospc("create zap test obj");
2844 			dmu_tx_abort(tx);
2845 			return;
2846 		}
2847 		object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx);
2848 		if (error) {
2849 			fatal(0, "zap_create('%s', %llu) = %d",
2850 			    osname, object, error);
2851 		}
2852 		ASSERT(object != 0);
2853 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
2854 		    sizeof (uint64_t), &object, tx);
2855 		/*
2856 		 * Generate a known hash collision, and verify that
2857 		 * we can lookup and remove both entries.
2858 		 */
2859 		for (i = 0; i < 2; i++) {
2860 			value[i] = i;
2861 			error = zap_add(os, object, hc[i], sizeof (uint64_t),
2862 			    1, &value[i], tx);
2863 			ASSERT3U(error, ==, 0);
2864 		}
2865 		for (i = 0; i < 2; i++) {
2866 			error = zap_add(os, object, hc[i], sizeof (uint64_t),
2867 			    1, &value[i], tx);
2868 			ASSERT3U(error, ==, EEXIST);
2869 			error = zap_length(os, object, hc[i],
2870 			    &zl_intsize, &zl_ints);
2871 			ASSERT3U(error, ==, 0);
2872 			ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2873 			ASSERT3U(zl_ints, ==, 1);
2874 		}
2875 		for (i = 0; i < 2; i++) {
2876 			error = zap_remove(os, object, hc[i], tx);
2877 			ASSERT3U(error, ==, 0);
2878 		}
2879 
2880 		dmu_tx_commit(tx);
2881 	}
2882 
2883 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
2884 
2885 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2886 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2887 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2888 	bzero(value, sizeof (value));
2889 	last_txg = 0;
2890 
2891 	/*
2892 	 * If these zap entries already exist, validate their contents.
2893 	 */
2894 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2895 	if (error == 0) {
2896 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2897 		ASSERT3U(zl_ints, ==, 1);
2898 
2899 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
2900 		    zl_ints, &last_txg) == 0);
2901 
2902 		VERIFY(zap_length(os, object, propname, &zl_intsize,
2903 		    &zl_ints) == 0);
2904 
2905 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2906 		ASSERT3U(zl_ints, ==, ints);
2907 
2908 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
2909 		    zl_ints, value) == 0);
2910 
2911 		for (i = 0; i < ints; i++) {
2912 			ASSERT3U(value[i], ==, last_txg + object + i);
2913 		}
2914 	} else {
2915 		ASSERT3U(error, ==, ENOENT);
2916 	}
2917 
2918 	/*
2919 	 * Atomically update two entries in our zap object.
2920 	 * The first is named txg_%llu, and contains the txg
2921 	 * in which the property was last updated.  The second
2922 	 * is named prop_%llu, and the nth element of its value
2923 	 * should be txg + object + n.
2924 	 */
2925 	tx = dmu_tx_create(os);
2926 	dmu_tx_hold_zap(tx, object, TRUE, NULL);
2927 	error = dmu_tx_assign(tx, TXG_WAIT);
2928 	if (error) {
2929 		ztest_record_enospc("create zap entry");
2930 		dmu_tx_abort(tx);
2931 		return;
2932 	}
2933 	txg = dmu_tx_get_txg(tx);
2934 
2935 	if (last_txg > txg)
2936 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
2937 
2938 	for (i = 0; i < ints; i++)
2939 		value[i] = txg + object + i;
2940 
2941 	error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx);
2942 	if (error)
2943 		fatal(0, "zap_update('%s', %llu, '%s') = %d",
2944 		    osname, object, txgname, error);
2945 
2946 	error = zap_update(os, object, propname, sizeof (uint64_t),
2947 	    ints, value, tx);
2948 	if (error)
2949 		fatal(0, "zap_update('%s', %llu, '%s') = %d",
2950 		    osname, object, propname, error);
2951 
2952 	dmu_tx_commit(tx);
2953 
2954 	/*
2955 	 * Remove a random pair of entries.
2956 	 */
2957 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2958 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2959 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2960 
2961 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2962 
2963 	if (error == ENOENT)
2964 		return;
2965 
2966 	ASSERT3U(error, ==, 0);
2967 
2968 	tx = dmu_tx_create(os);
2969 	dmu_tx_hold_zap(tx, object, TRUE, NULL);
2970 	error = dmu_tx_assign(tx, TXG_WAIT);
2971 	if (error) {
2972 		ztest_record_enospc("remove zap entry");
2973 		dmu_tx_abort(tx);
2974 		return;
2975 	}
2976 	error = zap_remove(os, object, txgname, tx);
2977 	if (error)
2978 		fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2979 		    osname, object, txgname, error);
2980 
2981 	error = zap_remove(os, object, propname, tx);
2982 	if (error)
2983 		fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2984 		    osname, object, propname, error);
2985 
2986 	dmu_tx_commit(tx);
2987 
2988 	/*
2989 	 * Once in a while, destroy the object.
2990 	 */
2991 	if (ztest_random(1000) != 0)
2992 		return;
2993 
2994 	tx = dmu_tx_create(os);
2995 	dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t));
2996 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2997 	error = dmu_tx_assign(tx, TXG_WAIT);
2998 	if (error) {
2999 		ztest_record_enospc("destroy zap object");
3000 		dmu_tx_abort(tx);
3001 		return;
3002 	}
3003 	error = zap_destroy(os, object, tx);
3004 	if (error)
3005 		fatal(0, "zap_destroy('%s', %llu) = %d",
3006 		    osname, object, error);
3007 	object = 0;
3008 	dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t),
3009 	    &object, tx);
3010 	dmu_tx_commit(tx);
3011 }
3012 
3013 /*
3014  * Testcase to test the upgrading of a microzap to fatzap.
3015  */
3016 void
3017 ztest_fzap(ztest_args_t *za)
3018 {
3019 	objset_t *os = za->za_os;
3020 	uint64_t object;
3021 	uint64_t value;
3022 	dmu_tx_t *tx;
3023 	int i, error;
3024 	char osname[MAXNAMELEN];
3025 	char *name = "aaa";
3026 	char entname[MAXNAMELEN];
3027 
3028 	dmu_objset_name(os, osname);
3029 
3030 	/*
3031 	 * Create a new object if necessary, and record it in the directory.
3032 	 */
3033 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
3034 	    sizeof (uint64_t), &object, DMU_READ_PREFETCH));
3035 
3036 	if (object == 0) {
3037 		tx = dmu_tx_create(os);
3038 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
3039 		    sizeof (uint64_t));
3040 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL);
3041 		error = dmu_tx_assign(tx, TXG_WAIT);
3042 		if (error) {
3043 			ztest_record_enospc("create zap test obj");
3044 			dmu_tx_abort(tx);
3045 			return;
3046 		}
3047 		object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx);
3048 		if (error) {
3049 			fatal(0, "zap_create('%s', %llu) = %d",
3050 			    osname, object, error);
3051 		}
3052 		ASSERT(object != 0);
3053 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
3054 		    sizeof (uint64_t), &object, tx);
3055 		dmu_tx_commit(tx);
3056 	}
3057 
3058 	/*
3059 	 * Add entries to this ZAP amd make sure it spills over
3060 	 * and gets upgraded to a fatzap. Also, since we are adding
3061 	 * 2050 entries we should see ptrtbl growth and leaf-block
3062 	 * split.
3063 	 */
3064 	for (i = 0; i < 2050; i++) {
3065 		(void) snprintf(entname, sizeof (entname), "%s-%d", name, i);
3066 		value = i;
3067 
3068 		tx = dmu_tx_create(os);
3069 		dmu_tx_hold_zap(tx, object, TRUE, entname);
3070 		error = dmu_tx_assign(tx, TXG_WAIT);
3071 
3072 		if (error) {
3073 			ztest_record_enospc("create zap entry");
3074 			dmu_tx_abort(tx);
3075 			return;
3076 		}
3077 		error = zap_add(os, object, entname, sizeof (uint64_t),
3078 		    1, &value, tx);
3079 
3080 		ASSERT(error == 0 || error == EEXIST);
3081 		dmu_tx_commit(tx);
3082 	}
3083 
3084 	/*
3085 	 * Once in a while, destroy the object.
3086 	 */
3087 	if (ztest_random(1000) != 0)
3088 		return;
3089 
3090 	tx = dmu_tx_create(os);
3091 	dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t));
3092 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
3093 	error = dmu_tx_assign(tx, TXG_WAIT);
3094 	if (error) {
3095 		ztest_record_enospc("destroy zap object");
3096 		dmu_tx_abort(tx);
3097 		return;
3098 	}
3099 	error = zap_destroy(os, object, tx);
3100 	if (error)
3101 		fatal(0, "zap_destroy('%s', %llu) = %d",
3102 		    osname, object, error);
3103 	object = 0;
3104 	dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t),
3105 	    &object, tx);
3106 	dmu_tx_commit(tx);
3107 }
3108 
3109 void
3110 ztest_zap_parallel(ztest_args_t *za)
3111 {
3112 	objset_t *os = za->za_os;
3113 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
3114 	dmu_tx_t *tx;
3115 	int i, namelen, error;
3116 	char name[20], string_value[20];
3117 	void *data;
3118 
3119 	/*
3120 	 * Generate a random name of the form 'xxx.....' where each
3121 	 * x is a random printable character and the dots are dots.
3122 	 * There are 94 such characters, and the name length goes from
3123 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
3124 	 */
3125 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
3126 
3127 	for (i = 0; i < 3; i++)
3128 		name[i] = '!' + ztest_random('~' - '!' + 1);
3129 	for (; i < namelen - 1; i++)
3130 		name[i] = '.';
3131 	name[i] = '\0';
3132 
3133 	if (ztest_random(2) == 0)
3134 		object = ZTEST_MICROZAP_OBJ;
3135 	else
3136 		object = ZTEST_FATZAP_OBJ;
3137 
3138 	if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) {
3139 		wsize = sizeof (txg);
3140 		wc = 1;
3141 		data = &txg;
3142 	} else {
3143 		wsize = 1;
3144 		wc = namelen;
3145 		data = string_value;
3146 	}
3147 
3148 	count = -1ULL;
3149 	VERIFY(zap_count(os, object, &count) == 0);
3150 	ASSERT(count != -1ULL);
3151 
3152 	/*
3153 	 * Select an operation: length, lookup, add, update, remove.
3154 	 */
3155 	i = ztest_random(5);
3156 
3157 	if (i >= 2) {
3158 		tx = dmu_tx_create(os);
3159 		dmu_tx_hold_zap(tx, object, TRUE, NULL);
3160 		error = dmu_tx_assign(tx, TXG_WAIT);
3161 		if (error) {
3162 			ztest_record_enospc("zap parallel");
3163 			dmu_tx_abort(tx);
3164 			return;
3165 		}
3166 		txg = dmu_tx_get_txg(tx);
3167 		bcopy(name, string_value, namelen);
3168 	} else {
3169 		tx = NULL;
3170 		txg = 0;
3171 		bzero(string_value, namelen);
3172 	}
3173 
3174 	switch (i) {
3175 
3176 	case 0:
3177 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
3178 		if (error == 0) {
3179 			ASSERT3U(wsize, ==, zl_wsize);
3180 			ASSERT3U(wc, ==, zl_wc);
3181 		} else {
3182 			ASSERT3U(error, ==, ENOENT);
3183 		}
3184 		break;
3185 
3186 	case 1:
3187 		error = zap_lookup(os, object, name, wsize, wc, data);
3188 		if (error == 0) {
3189 			if (data == string_value &&
3190 			    bcmp(name, data, namelen) != 0)
3191 				fatal(0, "name '%s' != val '%s' len %d",
3192 				    name, data, namelen);
3193 		} else {
3194 			ASSERT3U(error, ==, ENOENT);
3195 		}
3196 		break;
3197 
3198 	case 2:
3199 		error = zap_add(os, object, name, wsize, wc, data, tx);
3200 		ASSERT(error == 0 || error == EEXIST);
3201 		break;
3202 
3203 	case 3:
3204 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
3205 		break;
3206 
3207 	case 4:
3208 		error = zap_remove(os, object, name, tx);
3209 		ASSERT(error == 0 || error == ENOENT);
3210 		break;
3211 	}
3212 
3213 	if (tx != NULL)
3214 		dmu_tx_commit(tx);
3215 }
3216 
3217 /*
3218  * Commit callback data.
3219  */
3220 typedef struct ztest_cb_data {
3221 	list_node_t		zcd_node;
3222 	uint64_t		zcd_txg;
3223 	int			zcd_expected_err;
3224 	boolean_t		zcd_added;
3225 	boolean_t		zcd_called;
3226 	spa_t			*zcd_spa;
3227 } ztest_cb_data_t;
3228 
3229 /* This is the actual commit callback function */
3230 static void
3231 ztest_commit_callback(void *arg, int error)
3232 {
3233 	ztest_cb_data_t *data = arg;
3234 	uint64_t synced_txg;
3235 
3236 	VERIFY(data != NULL);
3237 	VERIFY3S(data->zcd_expected_err, ==, error);
3238 	VERIFY(!data->zcd_called);
3239 
3240 	synced_txg = spa_last_synced_txg(data->zcd_spa);
3241 	if (data->zcd_txg > synced_txg)
3242 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
3243 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
3244 		    synced_txg);
3245 
3246 	data->zcd_called = B_TRUE;
3247 
3248 	if (error == ECANCELED) {
3249 		ASSERT3U(data->zcd_txg, ==, 0);
3250 		ASSERT(!data->zcd_added);
3251 
3252 		/*
3253 		 * The private callback data should be destroyed here, but
3254 		 * since we are going to check the zcd_called field after
3255 		 * dmu_tx_abort(), we will destroy it there.
3256 		 */
3257 		return;
3258 	}
3259 
3260 	/* Was this callback added to the global callback list? */
3261 	if (!data->zcd_added)
3262 		goto out;
3263 
3264 	ASSERT3U(data->zcd_txg, !=, 0);
3265 
3266 	/* Remove our callback from the list */
3267 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
3268 	list_remove(&zcl.zcl_callbacks, data);
3269 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
3270 
3271 out:
3272 	umem_free(data, sizeof (ztest_cb_data_t));
3273 }
3274 
3275 /* Allocate and initialize callback data structure */
3276 static ztest_cb_data_t *
3277 ztest_create_cb_data(objset_t *os, uint64_t txg)
3278 {
3279 	ztest_cb_data_t *cb_data;
3280 
3281 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
3282 
3283 	cb_data->zcd_txg = txg;
3284 	cb_data->zcd_spa = dmu_objset_spa(os);
3285 
3286 	return (cb_data);
3287 }
3288 
3289 /*
3290  * If a number of txgs equal to this threshold have been created after a commit
3291  * callback has been registered but not called, then we assume there is an
3292  * implementation bug.
3293  */
3294 #define	ZTEST_COMMIT_CALLBACK_THRESH	(TXG_CONCURRENT_STATES + 2)
3295 
3296 /*
3297  * Commit callback test.
3298  */
3299 void
3300 ztest_dmu_commit_callbacks(ztest_args_t *za)
3301 {
3302 	objset_t *os = za->za_os;
3303 	dmu_tx_t *tx;
3304 	ztest_cb_data_t *cb_data[3], *tmp_cb;
3305 	uint64_t old_txg, txg;
3306 	int i, error;
3307 
3308 	tx = dmu_tx_create(os);
3309 
3310 	cb_data[0] = ztest_create_cb_data(os, 0);
3311 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
3312 
3313 	dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t));
3314 
3315 	/* Every once in a while, abort the transaction on purpose */
3316 	if (ztest_random(100) == 0)
3317 		error = -1;
3318 
3319 	if (!error)
3320 		error = dmu_tx_assign(tx, TXG_NOWAIT);
3321 
3322 	txg = error ? 0 : dmu_tx_get_txg(tx);
3323 
3324 	cb_data[0]->zcd_txg = txg;
3325 	cb_data[1] = ztest_create_cb_data(os, txg);
3326 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
3327 
3328 	if (error) {
3329 		/*
3330 		 * It's not a strict requirement to call the registered
3331 		 * callbacks from inside dmu_tx_abort(), but that's what
3332 		 * it's supposed to happen in the current implementation
3333 		 * so we will check for that.
3334 		 */
3335 		for (i = 0; i < 2; i++) {
3336 			cb_data[i]->zcd_expected_err = ECANCELED;
3337 			VERIFY(!cb_data[i]->zcd_called);
3338 		}
3339 
3340 		dmu_tx_abort(tx);
3341 
3342 		for (i = 0; i < 2; i++) {
3343 			VERIFY(cb_data[i]->zcd_called);
3344 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
3345 		}
3346 
3347 		return;
3348 	}
3349 
3350 	cb_data[2] = ztest_create_cb_data(os, txg);
3351 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
3352 
3353 	/*
3354 	 * Read existing data to make sure there isn't a future leak.
3355 	 */
3356 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t),
3357 	    &old_txg, DMU_READ_PREFETCH));
3358 
3359 	if (old_txg > txg)
3360 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
3361 		    old_txg, txg);
3362 
3363 	dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &txg, tx);
3364 
3365 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
3366 
3367 	/*
3368 	 * Since commit callbacks don't have any ordering requirement and since
3369 	 * it is theoretically possible for a commit callback to be called
3370 	 * after an arbitrary amount of time has elapsed since its txg has been
3371 	 * synced, it is difficult to reliably determine whether a commit
3372 	 * callback hasn't been called due to high load or due to a flawed
3373 	 * implementation.
3374 	 *
3375 	 * In practice, we will assume that if after a certain number of txgs a
3376 	 * commit callback hasn't been called, then most likely there's an
3377 	 * implementation bug..
3378 	 */
3379 	tmp_cb = list_head(&zcl.zcl_callbacks);
3380 	if (tmp_cb != NULL &&
3381 	    tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) {
3382 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
3383 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
3384 	}
3385 
3386 	/*
3387 	 * Let's find the place to insert our callbacks.
3388 	 *
3389 	 * Even though the list is ordered by txg, it is possible for the
3390 	 * insertion point to not be the end because our txg may already be
3391 	 * quiescing at this point and other callbacks in the open txg
3392 	 * (from other objsets) may have sneaked in.
3393 	 */
3394 	tmp_cb = list_tail(&zcl.zcl_callbacks);
3395 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
3396 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
3397 
3398 	/* Add the 3 callbacks to the list */
3399 	for (i = 0; i < 3; i++) {
3400 		if (tmp_cb == NULL)
3401 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
3402 		else
3403 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
3404 			    cb_data[i]);
3405 
3406 		cb_data[i]->zcd_added = B_TRUE;
3407 		VERIFY(!cb_data[i]->zcd_called);
3408 
3409 		tmp_cb = cb_data[i];
3410 	}
3411 
3412 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
3413 
3414 	dmu_tx_commit(tx);
3415 }
3416 
3417 void
3418 ztest_dsl_prop_get_set(ztest_args_t *za)
3419 {
3420 	objset_t *os = za->za_os;
3421 	int i, inherit;
3422 	uint64_t value;
3423 	const char *prop, *valname;
3424 	char setpoint[MAXPATHLEN];
3425 	char osname[MAXNAMELEN];
3426 	int error;
3427 
3428 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
3429 
3430 	dmu_objset_name(os, osname);
3431 
3432 	for (i = 0; i < 2; i++) {
3433 		if (i == 0) {
3434 			prop = "checksum";
3435 			value = ztest_random_checksum();
3436 			inherit = (value == ZIO_CHECKSUM_INHERIT);
3437 		} else {
3438 			prop = "compression";
3439 			value = ztest_random_compress();
3440 			inherit = (value == ZIO_COMPRESS_INHERIT);
3441 		}
3442 
3443 		error = dsl_prop_set(osname, prop, sizeof (value),
3444 		    !inherit, &value);
3445 
3446 		if (error == ENOSPC) {
3447 			ztest_record_enospc("dsl_prop_set");
3448 			break;
3449 		}
3450 
3451 		ASSERT3U(error, ==, 0);
3452 
3453 		VERIFY3U(dsl_prop_get(osname, prop, sizeof (value),
3454 		    1, &value, setpoint), ==, 0);
3455 
3456 		if (i == 0)
3457 			valname = zio_checksum_table[value].ci_name;
3458 		else
3459 			valname = zio_compress_table[value].ci_name;
3460 
3461 		if (zopt_verbose >= 6) {
3462 			(void) printf("%s %s = %s for '%s'\n",
3463 			    osname, prop, valname, setpoint);
3464 		}
3465 	}
3466 
3467 	(void) rw_unlock(&ztest_shared->zs_name_lock);
3468 }
3469 
3470 /*
3471  * Inject random faults into the on-disk data.
3472  */
3473 void
3474 ztest_fault_inject(ztest_args_t *za)
3475 {
3476 	int fd;
3477 	uint64_t offset;
3478 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
3479 	uint64_t bad = 0x1990c0ffeedecade;
3480 	uint64_t top, leaf;
3481 	char path0[MAXPATHLEN];
3482 	char pathrand[MAXPATHLEN];
3483 	size_t fsize;
3484 	spa_t *spa = za->za_spa;
3485 	int bshift = SPA_MAXBLOCKSHIFT + 2;	/* don't scrog all labels */
3486 	int iters = 1000;
3487 	int maxfaults = zopt_maxfaults;
3488 	vdev_t *vd0 = NULL;
3489 	uint64_t guid0 = 0;
3490 	boolean_t islog = B_FALSE;
3491 
3492 	ASSERT(leaves >= 1);
3493 
3494 	/*
3495 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
3496 	 */
3497 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3498 
3499 	if (ztest_random(2) == 0) {
3500 		/*
3501 		 * Inject errors on a normal data device.
3502 		 */
3503 		top = ztest_random(spa->spa_root_vdev->vdev_children);
3504 		leaf = ztest_random(leaves);
3505 
3506 		/*
3507 		 * Generate paths to the first leaf in this top-level vdev,
3508 		 * and to the random leaf we selected.  We'll induce transient
3509 		 * write failures and random online/offline activity on leaf 0,
3510 		 * and we'll write random garbage to the randomly chosen leaf.
3511 		 */
3512 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
3513 		    zopt_dir, zopt_pool, top * leaves + 0);
3514 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
3515 		    zopt_dir, zopt_pool, top * leaves + leaf);
3516 
3517 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
3518 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
3519 			islog = B_TRUE;
3520 
3521 		if (vd0 != NULL && maxfaults != 1) {
3522 			/*
3523 			 * Make vd0 explicitly claim to be unreadable,
3524 			 * or unwriteable, or reach behind its back
3525 			 * and close the underlying fd.  We can do this if
3526 			 * maxfaults == 0 because we'll fail and reexecute,
3527 			 * and we can do it if maxfaults >= 2 because we'll
3528 			 * have enough redundancy.  If maxfaults == 1, the
3529 			 * combination of this with injection of random data
3530 			 * corruption below exceeds the pool's fault tolerance.
3531 			 */
3532 			vdev_file_t *vf = vd0->vdev_tsd;
3533 
3534 			if (vf != NULL && ztest_random(3) == 0) {
3535 				(void) close(vf->vf_vnode->v_fd);
3536 				vf->vf_vnode->v_fd = -1;
3537 			} else if (ztest_random(2) == 0) {
3538 				vd0->vdev_cant_read = B_TRUE;
3539 			} else {
3540 				vd0->vdev_cant_write = B_TRUE;
3541 			}
3542 			guid0 = vd0->vdev_guid;
3543 		}
3544 	} else {
3545 		/*
3546 		 * Inject errors on an l2cache device.
3547 		 */
3548 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
3549 
3550 		if (sav->sav_count == 0) {
3551 			spa_config_exit(spa, SCL_STATE, FTAG);
3552 			return;
3553 		}
3554 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
3555 		guid0 = vd0->vdev_guid;
3556 		(void) strcpy(path0, vd0->vdev_path);
3557 		(void) strcpy(pathrand, vd0->vdev_path);
3558 
3559 		leaf = 0;
3560 		leaves = 1;
3561 		maxfaults = INT_MAX;	/* no limit on cache devices */
3562 	}
3563 
3564 	spa_config_exit(spa, SCL_STATE, FTAG);
3565 
3566 	/*
3567 	 * If we can tolerate two or more faults, or we're dealing
3568 	 * with a slog, randomly online/offline vd0.
3569 	 */
3570 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
3571 		if (ztest_random(10) < 6) {
3572 			int flags = (ztest_random(2) == 0 ?
3573 			    ZFS_OFFLINE_TEMPORARY : 0);
3574 
3575 			/*
3576 			 * We have to grab the zs_name_lock as writer to
3577 			 * prevent a race between offlining a slog and
3578 			 * destroying a dataset. Offlining the slog will
3579 			 * grab a reference on the dataset which may cause
3580 			 * dmu_objset_destroy() to fail with EBUSY thus
3581 			 * leaving the dataset in an inconsistent state.
3582 			 */
3583 			if (islog)
3584 				(void) rw_wrlock(&ztest_shared->zs_name_lock);
3585 
3586 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
3587 
3588 			if (islog)
3589 				(void) rw_unlock(&ztest_shared->zs_name_lock);
3590 		} else {
3591 			(void) vdev_online(spa, guid0, 0, NULL);
3592 		}
3593 	}
3594 
3595 	if (maxfaults == 0)
3596 		return;
3597 
3598 	/*
3599 	 * We have at least single-fault tolerance, so inject data corruption.
3600 	 */
3601 	fd = open(pathrand, O_RDWR);
3602 
3603 	if (fd == -1)	/* we hit a gap in the device namespace */
3604 		return;
3605 
3606 	fsize = lseek(fd, 0, SEEK_END);
3607 
3608 	while (--iters != 0) {
3609 		offset = ztest_random(fsize / (leaves << bshift)) *
3610 		    (leaves << bshift) + (leaf << bshift) +
3611 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
3612 
3613 		if (offset >= fsize)
3614 			continue;
3615 
3616 		if (zopt_verbose >= 6)
3617 			(void) printf("injecting bad word into %s,"
3618 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
3619 
3620 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
3621 			fatal(1, "can't inject bad word at 0x%llx in %s",
3622 			    offset, pathrand);
3623 	}
3624 
3625 	(void) close(fd);
3626 }
3627 
3628 /*
3629  * Scrub the pool.
3630  */
3631 void
3632 ztest_scrub(ztest_args_t *za)
3633 {
3634 	spa_t *spa = za->za_spa;
3635 
3636 	(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
3637 	(void) poll(NULL, 0, 1000); /* wait a second, then force a restart */
3638 	(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
3639 }
3640 
3641 /*
3642  * Rename the pool to a different name and then rename it back.
3643  */
3644 void
3645 ztest_spa_rename(ztest_args_t *za)
3646 {
3647 	char *oldname, *newname;
3648 	int error;
3649 	spa_t *spa;
3650 
3651 	(void) rw_wrlock(&ztest_shared->zs_name_lock);
3652 
3653 	oldname = za->za_pool;
3654 	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
3655 	(void) strcpy(newname, oldname);
3656 	(void) strcat(newname, "_tmp");
3657 
3658 	/*
3659 	 * Do the rename
3660 	 */
3661 	error = spa_rename(oldname, newname);
3662 	if (error)
3663 		fatal(0, "spa_rename('%s', '%s') = %d", oldname,
3664 		    newname, error);
3665 
3666 	/*
3667 	 * Try to open it under the old name, which shouldn't exist
3668 	 */
3669 	error = spa_open(oldname, &spa, FTAG);
3670 	if (error != ENOENT)
3671 		fatal(0, "spa_open('%s') = %d", oldname, error);
3672 
3673 	/*
3674 	 * Open it under the new name and make sure it's still the same spa_t.
3675 	 */
3676 	error = spa_open(newname, &spa, FTAG);
3677 	if (error != 0)
3678 		fatal(0, "spa_open('%s') = %d", newname, error);
3679 
3680 	ASSERT(spa == za->za_spa);
3681 	spa_close(spa, FTAG);
3682 
3683 	/*
3684 	 * Rename it back to the original
3685 	 */
3686 	error = spa_rename(newname, oldname);
3687 	if (error)
3688 		fatal(0, "spa_rename('%s', '%s') = %d", newname,
3689 		    oldname, error);
3690 
3691 	/*
3692 	 * Make sure it can still be opened
3693 	 */
3694 	error = spa_open(oldname, &spa, FTAG);
3695 	if (error != 0)
3696 		fatal(0, "spa_open('%s') = %d", oldname, error);
3697 
3698 	ASSERT(spa == za->za_spa);
3699 	spa_close(spa, FTAG);
3700 
3701 	umem_free(newname, strlen(newname) + 1);
3702 
3703 	(void) rw_unlock(&ztest_shared->zs_name_lock);
3704 }
3705 
3706 
3707 /*
3708  * Completely obliterate one disk.
3709  */
3710 static void
3711 ztest_obliterate_one_disk(uint64_t vdev)
3712 {
3713 	int fd;
3714 	char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN];
3715 	size_t fsize;
3716 
3717 	if (zopt_maxfaults < 2)
3718 		return;
3719 
3720 	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
3721 	(void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name);
3722 
3723 	fd = open(dev_name, O_RDWR);
3724 
3725 	if (fd == -1)
3726 		fatal(1, "can't open %s", dev_name);
3727 
3728 	/*
3729 	 * Determine the size.
3730 	 */
3731 	fsize = lseek(fd, 0, SEEK_END);
3732 
3733 	(void) close(fd);
3734 
3735 	/*
3736 	 * Rename the old device to dev_name.old (useful for debugging).
3737 	 */
3738 	VERIFY(rename(dev_name, copy_name) == 0);
3739 
3740 	/*
3741 	 * Create a new one.
3742 	 */
3743 	VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0);
3744 	VERIFY(ftruncate(fd, fsize) == 0);
3745 	(void) close(fd);
3746 }
3747 
3748 static void
3749 ztest_replace_one_disk(spa_t *spa, uint64_t vdev)
3750 {
3751 	char dev_name[MAXPATHLEN];
3752 	nvlist_t *root;
3753 	int error;
3754 	uint64_t guid;
3755 	vdev_t *vd;
3756 
3757 	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
3758 
3759 	/*
3760 	 * Build the nvlist describing dev_name.
3761 	 */
3762 	root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1);
3763 
3764 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3765 	if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL)
3766 		guid = 0;
3767 	else
3768 		guid = vd->vdev_guid;
3769 	spa_config_exit(spa, SCL_VDEV, FTAG);
3770 	error = spa_vdev_attach(spa, guid, root, B_TRUE);
3771 	if (error != 0 &&
3772 	    error != EBUSY &&
3773 	    error != ENOTSUP &&
3774 	    error != ENODEV &&
3775 	    error != EDOM)
3776 		fatal(0, "spa_vdev_attach(in-place) = %d", error);
3777 
3778 	nvlist_free(root);
3779 }
3780 
3781 static void
3782 ztest_verify_blocks(char *pool)
3783 {
3784 	int status;
3785 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
3786 	char zbuf[1024];
3787 	char *bin;
3788 	char *ztest;
3789 	char *isa;
3790 	int isalen;
3791 	FILE *fp;
3792 
3793 	(void) realpath(getexecname(), zdb);
3794 
3795 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
3796 	bin = strstr(zdb, "/usr/bin/");
3797 	ztest = strstr(bin, "/ztest");
3798 	isa = bin + 8;
3799 	isalen = ztest - isa;
3800 	isa = strdup(isa);
3801 	/* LINTED */
3802 	(void) sprintf(bin,
3803 	    "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s",
3804 	    isalen,
3805 	    isa,
3806 	    zopt_verbose >= 3 ? "s" : "",
3807 	    zopt_verbose >= 4 ? "v" : "",
3808 	    pool);
3809 	free(isa);
3810 
3811 	if (zopt_verbose >= 5)
3812 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
3813 
3814 	fp = popen(zdb, "r");
3815 
3816 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
3817 		if (zopt_verbose >= 3)
3818 			(void) printf("%s", zbuf);
3819 
3820 	status = pclose(fp);
3821 
3822 	if (status == 0)
3823 		return;
3824 
3825 	ztest_dump_core = 0;
3826 	if (WIFEXITED(status))
3827 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
3828 	else
3829 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
3830 }
3831 
3832 static void
3833 ztest_walk_pool_directory(char *header)
3834 {
3835 	spa_t *spa = NULL;
3836 
3837 	if (zopt_verbose >= 6)
3838 		(void) printf("%s\n", header);
3839 
3840 	mutex_enter(&spa_namespace_lock);
3841 	while ((spa = spa_next(spa)) != NULL)
3842 		if (zopt_verbose >= 6)
3843 			(void) printf("\t%s\n", spa_name(spa));
3844 	mutex_exit(&spa_namespace_lock);
3845 }
3846 
3847 static void
3848 ztest_spa_import_export(char *oldname, char *newname)
3849 {
3850 	nvlist_t *config, *newconfig;
3851 	uint64_t pool_guid;
3852 	spa_t *spa;
3853 	int error;
3854 
3855 	if (zopt_verbose >= 4) {
3856 		(void) printf("import/export: old = %s, new = %s\n",
3857 		    oldname, newname);
3858 	}
3859 
3860 	/*
3861 	 * Clean up from previous runs.
3862 	 */
3863 	(void) spa_destroy(newname);
3864 
3865 	/*
3866 	 * Get the pool's configuration and guid.
3867 	 */
3868 	error = spa_open(oldname, &spa, FTAG);
3869 	if (error)
3870 		fatal(0, "spa_open('%s') = %d", oldname, error);
3871 
3872 	/*
3873 	 * Kick off a scrub to tickle scrub/export races.
3874 	 */
3875 	if (ztest_random(2) == 0)
3876 		(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
3877 
3878 	pool_guid = spa_guid(spa);
3879 	spa_close(spa, FTAG);
3880 
3881 	ztest_walk_pool_directory("pools before export");
3882 
3883 	/*
3884 	 * Export it.
3885 	 */
3886 	error = spa_export(oldname, &config, B_FALSE, B_FALSE);
3887 	if (error)
3888 		fatal(0, "spa_export('%s') = %d", oldname, error);
3889 
3890 	ztest_walk_pool_directory("pools after export");
3891 
3892 	/*
3893 	 * Try to import it.
3894 	 */
3895 	newconfig = spa_tryimport(config);
3896 	ASSERT(newconfig != NULL);
3897 	nvlist_free(newconfig);
3898 
3899 	/*
3900 	 * Import it under the new name.
3901 	 */
3902 	error = spa_import(newname, config, NULL);
3903 	if (error)
3904 		fatal(0, "spa_import('%s') = %d", newname, error);
3905 
3906 	ztest_walk_pool_directory("pools after import");
3907 
3908 	/*
3909 	 * Try to import it again -- should fail with EEXIST.
3910 	 */
3911 	error = spa_import(newname, config, NULL);
3912 	if (error != EEXIST)
3913 		fatal(0, "spa_import('%s') twice", newname);
3914 
3915 	/*
3916 	 * Try to import it under a different name -- should fail with EEXIST.
3917 	 */
3918 	error = spa_import(oldname, config, NULL);
3919 	if (error != EEXIST)
3920 		fatal(0, "spa_import('%s') under multiple names", newname);
3921 
3922 	/*
3923 	 * Verify that the pool is no longer visible under the old name.
3924 	 */
3925 	error = spa_open(oldname, &spa, FTAG);
3926 	if (error != ENOENT)
3927 		fatal(0, "spa_open('%s') = %d", newname, error);
3928 
3929 	/*
3930 	 * Verify that we can open and close the pool using the new name.
3931 	 */
3932 	error = spa_open(newname, &spa, FTAG);
3933 	if (error)
3934 		fatal(0, "spa_open('%s') = %d", newname, error);
3935 	ASSERT(pool_guid == spa_guid(spa));
3936 	spa_close(spa, FTAG);
3937 
3938 	nvlist_free(config);
3939 }
3940 
3941 static void
3942 ztest_resume(spa_t *spa)
3943 {
3944 	if (spa_suspended(spa)) {
3945 		spa_vdev_state_enter(spa, SCL_NONE);
3946 		vdev_clear(spa, NULL);
3947 		(void) spa_vdev_state_exit(spa, NULL, 0);
3948 		(void) zio_resume(spa);
3949 	}
3950 }
3951 
3952 static void *
3953 ztest_resume_thread(void *arg)
3954 {
3955 	spa_t *spa = arg;
3956 
3957 	while (!ztest_exiting) {
3958 		(void) poll(NULL, 0, 1000);
3959 		ztest_resume(spa);
3960 	}
3961 	return (NULL);
3962 }
3963 
3964 static void *
3965 ztest_thread(void *arg)
3966 {
3967 	ztest_args_t *za = arg;
3968 	ztest_shared_t *zs = ztest_shared;
3969 	hrtime_t now, functime;
3970 	ztest_info_t *zi;
3971 	int f, i;
3972 
3973 	while ((now = gethrtime()) < za->za_stop) {
3974 		/*
3975 		 * See if it's time to force a crash.
3976 		 */
3977 		if (now > za->za_kill) {
3978 			zs->zs_alloc = spa_get_alloc(za->za_spa);
3979 			zs->zs_space = spa_get_space(za->za_spa);
3980 			(void) kill(getpid(), SIGKILL);
3981 		}
3982 
3983 		/*
3984 		 * Pick a random function.
3985 		 */
3986 		f = ztest_random(ZTEST_FUNCS);
3987 		zi = &zs->zs_info[f];
3988 
3989 		/*
3990 		 * Decide whether to call it, based on the requested frequency.
3991 		 */
3992 		if (zi->zi_call_target == 0 ||
3993 		    (double)zi->zi_call_total / zi->zi_call_target >
3994 		    (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC))
3995 			continue;
3996 
3997 		atomic_add_64(&zi->zi_calls, 1);
3998 		atomic_add_64(&zi->zi_call_total, 1);
3999 
4000 		za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) *
4001 		    ZTEST_DIRSIZE;
4002 		za->za_diroff_shared = (1ULL << 63);
4003 
4004 		for (i = 0; i < zi->zi_iters; i++)
4005 			zi->zi_func(za);
4006 
4007 		functime = gethrtime() - now;
4008 
4009 		atomic_add_64(&zi->zi_call_time, functime);
4010 
4011 		if (zopt_verbose >= 4) {
4012 			Dl_info dli;
4013 			(void) dladdr((void *)zi->zi_func, &dli);
4014 			(void) printf("%6.2f sec in %s\n",
4015 			    (double)functime / NANOSEC, dli.dli_sname);
4016 		}
4017 
4018 		/*
4019 		 * If we're getting ENOSPC with some regularity, stop.
4020 		 */
4021 		if (zs->zs_enospc_count > 10)
4022 			break;
4023 	}
4024 
4025 	return (NULL);
4026 }
4027 
4028 /*
4029  * Kick off threads to run tests on all datasets in parallel.
4030  */
4031 static void
4032 ztest_run(char *pool)
4033 {
4034 	int t, d, error;
4035 	ztest_shared_t *zs = ztest_shared;
4036 	ztest_args_t *za;
4037 	spa_t *spa;
4038 	char name[100];
4039 	thread_t resume_tid;
4040 
4041 	ztest_exiting = B_FALSE;
4042 
4043 	(void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL);
4044 	(void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL);
4045 
4046 	(void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD,
4047 	    NULL);
4048 
4049 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
4050 	    offsetof(ztest_cb_data_t, zcd_node));
4051 
4052 	for (t = 0; t < ZTEST_SYNC_LOCKS; t++)
4053 		(void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL);
4054 
4055 	/*
4056 	 * Destroy one disk before we even start.
4057 	 * It's mirrored, so everything should work just fine.
4058 	 * This makes us exercise fault handling very early in spa_load().
4059 	 */
4060 	ztest_obliterate_one_disk(0);
4061 
4062 	/*
4063 	 * Verify that the sum of the sizes of all blocks in the pool
4064 	 * equals the SPA's allocated space total.
4065 	 */
4066 	ztest_verify_blocks(pool);
4067 
4068 	/*
4069 	 * Kick off a replacement of the disk we just obliterated.
4070 	 */
4071 	kernel_init(FREAD | FWRITE);
4072 	VERIFY(spa_open(pool, &spa, FTAG) == 0);
4073 	ztest_replace_one_disk(spa, 0);
4074 	if (zopt_verbose >= 5)
4075 		show_pool_stats(spa);
4076 	spa_close(spa, FTAG);
4077 	kernel_fini();
4078 
4079 	kernel_init(FREAD | FWRITE);
4080 
4081 	/*
4082 	 * Verify that we can export the pool and reimport it under a
4083 	 * different name.
4084 	 */
4085 	if (ztest_random(2) == 0) {
4086 		(void) snprintf(name, 100, "%s_import", pool);
4087 		ztest_spa_import_export(pool, name);
4088 		ztest_spa_import_export(name, pool);
4089 	}
4090 
4091 	/*
4092 	 * Verify that we can loop over all pools.
4093 	 */
4094 	mutex_enter(&spa_namespace_lock);
4095 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) {
4096 		if (zopt_verbose > 3) {
4097 			(void) printf("spa_next: found %s\n", spa_name(spa));
4098 		}
4099 	}
4100 	mutex_exit(&spa_namespace_lock);
4101 
4102 	/*
4103 	 * Open our pool.
4104 	 */
4105 	VERIFY(spa_open(pool, &spa, FTAG) == 0);
4106 
4107 	/*
4108 	 * We don't expect the pool to suspend unless maxfaults == 0,
4109 	 * in which case ztest_fault_inject() temporarily takes away
4110 	 * the only valid replica.
4111 	 */
4112 	if (zopt_maxfaults == 0)
4113 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
4114 	else
4115 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
4116 
4117 	/*
4118 	 * Create a thread to periodically resume suspended I/O.
4119 	 */
4120 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
4121 	    &resume_tid) == 0);
4122 
4123 	/*
4124 	 * Verify that we can safely inquire about about any object,
4125 	 * whether it's allocated or not.  To make it interesting,
4126 	 * we probe a 5-wide window around each power of two.
4127 	 * This hits all edge cases, including zero and the max.
4128 	 */
4129 	for (t = 0; t < 64; t++) {
4130 		for (d = -5; d <= 5; d++) {
4131 			error = dmu_object_info(spa->spa_meta_objset,
4132 			    (1ULL << t) + d, NULL);
4133 			ASSERT(error == 0 || error == ENOENT ||
4134 			    error == EINVAL);
4135 		}
4136 	}
4137 
4138 	/*
4139 	 * Now kick off all the tests that run in parallel.
4140 	 */
4141 	zs->zs_enospc_count = 0;
4142 
4143 	za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL);
4144 
4145 	if (zopt_verbose >= 4)
4146 		(void) printf("starting main threads...\n");
4147 
4148 	za[0].za_start = gethrtime();
4149 	za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC;
4150 	za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time);
4151 	za[0].za_kill = za[0].za_stop;
4152 	if (ztest_random(100) < zopt_killrate)
4153 		za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC);
4154 
4155 	for (t = 0; t < zopt_threads; t++) {
4156 		d = t % zopt_datasets;
4157 
4158 		(void) strcpy(za[t].za_pool, pool);
4159 		za[t].za_os = za[d].za_os;
4160 		za[t].za_spa = spa;
4161 		za[t].za_zilog = za[d].za_zilog;
4162 		za[t].za_instance = t;
4163 		za[t].za_random = ztest_random(-1ULL);
4164 		za[t].za_start = za[0].za_start;
4165 		za[t].za_stop = za[0].za_stop;
4166 		za[t].za_kill = za[0].za_kill;
4167 
4168 		if (t < zopt_datasets) {
4169 			int test_future = FALSE;
4170 			(void) rw_rdlock(&ztest_shared->zs_name_lock);
4171 			(void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
4172 			error = dmu_objset_create(name, DMU_OST_OTHER, 0,
4173 			    ztest_create_cb, NULL);
4174 			if (error == EEXIST) {
4175 				test_future = TRUE;
4176 			} else if (error == ENOSPC) {
4177 				zs->zs_enospc_count++;
4178 				(void) rw_unlock(&ztest_shared->zs_name_lock);
4179 				break;
4180 			} else if (error != 0) {
4181 				fatal(0, "dmu_objset_create(%s) = %d",
4182 				    name, error);
4183 			}
4184 			error = dmu_objset_hold(name, FTAG, &za[d].za_os);
4185 			if (error)
4186 				fatal(0, "dmu_objset_open('%s') = %d",
4187 				    name, error);
4188 			(void) rw_unlock(&ztest_shared->zs_name_lock);
4189 			if (test_future)
4190 				ztest_dmu_check_future_leak(&za[t]);
4191 			zil_replay(za[d].za_os, za[d].za_os,
4192 			    ztest_replay_vector);
4193 			za[d].za_zilog = zil_open(za[d].za_os, NULL);
4194 		}
4195 
4196 		VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND,
4197 		    &za[t].za_thread) == 0);
4198 	}
4199 
4200 	while (--t >= 0) {
4201 		VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0);
4202 		if (t < zopt_datasets) {
4203 			zil_close(za[t].za_zilog);
4204 			dmu_objset_rele(za[t].za_os, FTAG);
4205 		}
4206 	}
4207 
4208 	if (zopt_verbose >= 3)
4209 		show_pool_stats(spa);
4210 
4211 	txg_wait_synced(spa_get_dsl(spa), 0);
4212 
4213 	zs->zs_alloc = spa_get_alloc(spa);
4214 	zs->zs_space = spa_get_space(spa);
4215 
4216 	/*
4217 	 * If we had out-of-space errors, destroy a random objset.
4218 	 */
4219 	if (zs->zs_enospc_count != 0) {
4220 		(void) rw_rdlock(&ztest_shared->zs_name_lock);
4221 		d = (int)ztest_random(zopt_datasets);
4222 		(void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
4223 		if (zopt_verbose >= 3)
4224 			(void) printf("Destroying %s to free up space\n", name);
4225 
4226 		/* Cleanup any non-standard clones and snapshots */
4227 		ztest_dsl_dataset_cleanup(name, za[d].za_instance);
4228 
4229 		(void) dmu_objset_find(name, ztest_destroy_cb, &za[d],
4230 		    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
4231 		(void) rw_unlock(&ztest_shared->zs_name_lock);
4232 	}
4233 
4234 	txg_wait_synced(spa_get_dsl(spa), 0);
4235 
4236 	umem_free(za, zopt_threads * sizeof (ztest_args_t));
4237 
4238 	/* Kill the resume thread */
4239 	ztest_exiting = B_TRUE;
4240 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
4241 	ztest_resume(spa);
4242 
4243 	/*
4244 	 * Right before closing the pool, kick off a bunch of async I/O;
4245 	 * spa_close() should wait for it to complete.
4246 	 */
4247 	for (t = 1; t < 50; t++)
4248 		dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15);
4249 
4250 	spa_close(spa, FTAG);
4251 
4252 	kernel_fini();
4253 
4254 	list_destroy(&zcl.zcl_callbacks);
4255 
4256 	(void) _mutex_destroy(&zcl.zcl_callbacks_lock);
4257 
4258 	(void) rwlock_destroy(&zs->zs_name_lock);
4259 	(void) _mutex_destroy(&zs->zs_vdev_lock);
4260 }
4261 
4262 void
4263 print_time(hrtime_t t, char *timebuf)
4264 {
4265 	hrtime_t s = t / NANOSEC;
4266 	hrtime_t m = s / 60;
4267 	hrtime_t h = m / 60;
4268 	hrtime_t d = h / 24;
4269 
4270 	s -= m * 60;
4271 	m -= h * 60;
4272 	h -= d * 24;
4273 
4274 	timebuf[0] = '\0';
4275 
4276 	if (d)
4277 		(void) sprintf(timebuf,
4278 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
4279 	else if (h)
4280 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
4281 	else if (m)
4282 		(void) sprintf(timebuf, "%llum%02llus", m, s);
4283 	else
4284 		(void) sprintf(timebuf, "%llus", s);
4285 }
4286 
4287 /*
4288  * Create a storage pool with the given name and initial vdev size.
4289  * Then create the specified number of datasets in the pool.
4290  */
4291 static void
4292 ztest_init(char *pool)
4293 {
4294 	spa_t *spa;
4295 	int error;
4296 	nvlist_t *nvroot;
4297 
4298 	kernel_init(FREAD | FWRITE);
4299 
4300 	/*
4301 	 * Create the storage pool.
4302 	 */
4303 	(void) spa_destroy(pool);
4304 	ztest_shared->zs_vdev_next_leaf = 0;
4305 	nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
4306 	    0, zopt_raidz, zopt_mirrors, 1);
4307 	error = spa_create(pool, nvroot, NULL, NULL, NULL);
4308 	nvlist_free(nvroot);
4309 
4310 	if (error)
4311 		fatal(0, "spa_create() = %d", error);
4312 	error = spa_open(pool, &spa, FTAG);
4313 	if (error)
4314 		fatal(0, "spa_open() = %d", error);
4315 
4316 	metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
4317 
4318 	if (zopt_verbose >= 3)
4319 		show_pool_stats(spa);
4320 
4321 	spa_close(spa, FTAG);
4322 
4323 	kernel_fini();
4324 }
4325 
4326 int
4327 main(int argc, char **argv)
4328 {
4329 	int kills = 0;
4330 	int iters = 0;
4331 	int i, f;
4332 	ztest_shared_t *zs;
4333 	ztest_info_t *zi;
4334 	char timebuf[100];
4335 	char numbuf[6];
4336 
4337 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
4338 
4339 	/* Override location of zpool.cache */
4340 	spa_config_path = "/tmp/zpool.cache";
4341 
4342 	ztest_random_fd = open("/dev/urandom", O_RDONLY);
4343 
4344 	process_options(argc, argv);
4345 
4346 	/*
4347 	 * Blow away any existing copy of zpool.cache
4348 	 */
4349 	if (zopt_init != 0)
4350 		(void) remove("/tmp/zpool.cache");
4351 
4352 	zs = ztest_shared = (void *)mmap(0,
4353 	    P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()),
4354 	    PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
4355 
4356 	if (zopt_verbose >= 1) {
4357 		(void) printf("%llu vdevs, %d datasets, %d threads,"
4358 		    " %llu seconds...\n",
4359 		    (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads,
4360 		    (u_longlong_t)zopt_time);
4361 	}
4362 
4363 	/*
4364 	 * Create and initialize our storage pool.
4365 	 */
4366 	for (i = 1; i <= zopt_init; i++) {
4367 		bzero(zs, sizeof (ztest_shared_t));
4368 		if (zopt_verbose >= 3 && zopt_init != 1)
4369 			(void) printf("ztest_init(), pass %d\n", i);
4370 		ztest_init(zopt_pool);
4371 	}
4372 
4373 	/*
4374 	 * Initialize the call targets for each function.
4375 	 */
4376 	for (f = 0; f < ZTEST_FUNCS; f++) {
4377 		zi = &zs->zs_info[f];
4378 
4379 		*zi = ztest_info[f];
4380 
4381 		if (*zi->zi_interval == 0)
4382 			zi->zi_call_target = UINT64_MAX;
4383 		else
4384 			zi->zi_call_target = zopt_time / *zi->zi_interval;
4385 	}
4386 
4387 	zs->zs_start_time = gethrtime();
4388 	zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC;
4389 
4390 	/*
4391 	 * Run the tests in a loop.  These tests include fault injection
4392 	 * to verify that self-healing data works, and forced crashes
4393 	 * to verify that we never lose on-disk consistency.
4394 	 */
4395 	while (gethrtime() < zs->zs_stop_time) {
4396 		int status;
4397 		pid_t pid;
4398 		char *tmp;
4399 
4400 		/*
4401 		 * Initialize the workload counters for each function.
4402 		 */
4403 		for (f = 0; f < ZTEST_FUNCS; f++) {
4404 			zi = &zs->zs_info[f];
4405 			zi->zi_calls = 0;
4406 			zi->zi_call_time = 0;
4407 		}
4408 
4409 		/* Set the allocation switch size */
4410 		metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1;
4411 
4412 		pid = fork();
4413 
4414 		if (pid == -1)
4415 			fatal(1, "fork failed");
4416 
4417 		if (pid == 0) {	/* child */
4418 			struct rlimit rl = { 1024, 1024 };
4419 			(void) setrlimit(RLIMIT_NOFILE, &rl);
4420 			(void) enable_extended_FILE_stdio(-1, -1);
4421 			ztest_run(zopt_pool);
4422 			exit(0);
4423 		}
4424 
4425 		while (waitpid(pid, &status, 0) != pid)
4426 			continue;
4427 
4428 		if (WIFEXITED(status)) {
4429 			if (WEXITSTATUS(status) != 0) {
4430 				(void) fprintf(stderr,
4431 				    "child exited with code %d\n",
4432 				    WEXITSTATUS(status));
4433 				exit(2);
4434 			}
4435 		} else if (WIFSIGNALED(status)) {
4436 			if (WTERMSIG(status) != SIGKILL) {
4437 				(void) fprintf(stderr,
4438 				    "child died with signal %d\n",
4439 				    WTERMSIG(status));
4440 				exit(3);
4441 			}
4442 			kills++;
4443 		} else {
4444 			(void) fprintf(stderr, "something strange happened "
4445 			    "to child\n");
4446 			exit(4);
4447 		}
4448 
4449 		iters++;
4450 
4451 		if (zopt_verbose >= 1) {
4452 			hrtime_t now = gethrtime();
4453 
4454 			now = MIN(now, zs->zs_stop_time);
4455 			print_time(zs->zs_stop_time - now, timebuf);
4456 			nicenum(zs->zs_space, numbuf);
4457 
4458 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
4459 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
4460 			    iters,
4461 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
4462 			    (u_longlong_t)zs->zs_enospc_count,
4463 			    100.0 * zs->zs_alloc / zs->zs_space,
4464 			    numbuf,
4465 			    100.0 * (now - zs->zs_start_time) /
4466 			    (zopt_time * NANOSEC), timebuf);
4467 		}
4468 
4469 		if (zopt_verbose >= 2) {
4470 			(void) printf("\nWorkload summary:\n\n");
4471 			(void) printf("%7s %9s   %s\n",
4472 			    "Calls", "Time", "Function");
4473 			(void) printf("%7s %9s   %s\n",
4474 			    "-----", "----", "--------");
4475 			for (f = 0; f < ZTEST_FUNCS; f++) {
4476 				Dl_info dli;
4477 
4478 				zi = &zs->zs_info[f];
4479 				print_time(zi->zi_call_time, timebuf);
4480 				(void) dladdr((void *)zi->zi_func, &dli);
4481 				(void) printf("%7llu %9s   %s\n",
4482 				    (u_longlong_t)zi->zi_calls, timebuf,
4483 				    dli.dli_sname);
4484 			}
4485 			(void) printf("\n");
4486 		}
4487 
4488 		/*
4489 		 * It's possible that we killed a child during a rename test, in
4490 		 * which case we'll have a 'ztest_tmp' pool lying around instead
4491 		 * of 'ztest'.  Do a blind rename in case this happened.
4492 		 */
4493 		tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL);
4494 		(void) strcpy(tmp, zopt_pool);
4495 		(void) strcat(tmp, "_tmp");
4496 		kernel_init(FREAD | FWRITE);
4497 		(void) spa_rename(tmp, zopt_pool);
4498 		kernel_fini();
4499 		umem_free(tmp, strlen(tmp) + 1);
4500 	}
4501 
4502 	ztest_verify_blocks(zopt_pool);
4503 
4504 	if (zopt_verbose >= 1) {
4505 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
4506 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
4507 	}
4508 
4509 	return (0);
4510 }
4511