xref: /illumos-gate/usr/src/cmd/ztest/ztest.c (revision 5cabbc6b49070407fb9610cfe73d4c0e0dea3e77)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2017 Joyent, Inc.
28  */
29 
30 /*
31  * The objective of this program is to provide a DMU/ZAP/SPA stress test
32  * that runs entirely in userland, is easy to use, and easy to extend.
33  *
34  * The overall design of the ztest program is as follows:
35  *
36  * (1) For each major functional area (e.g. adding vdevs to a pool,
37  *     creating and destroying datasets, reading and writing objects, etc)
38  *     we have a simple routine to test that functionality.  These
39  *     individual routines do not have to do anything "stressful".
40  *
41  * (2) We turn these simple functionality tests into a stress test by
42  *     running them all in parallel, with as many threads as desired,
43  *     and spread across as many datasets, objects, and vdevs as desired.
44  *
45  * (3) While all this is happening, we inject faults into the pool to
46  *     verify that self-healing data really works.
47  *
48  * (4) Every time we open a dataset, we change its checksum and compression
49  *     functions.  Thus even individual objects vary from block to block
50  *     in which checksum they use and whether they're compressed.
51  *
52  * (5) To verify that we never lose on-disk consistency after a crash,
53  *     we run the entire test in a child of the main process.
54  *     At random times, the child self-immolates with a SIGKILL.
55  *     This is the software equivalent of pulling the power cord.
56  *     The parent then runs the test again, using the existing
57  *     storage pool, as many times as desired. If backwards compatibility
58  *     testing is enabled ztest will sometimes run the "older" version
59  *     of ztest after a SIGKILL.
60  *
61  * (6) To verify that we don't have future leaks or temporal incursions,
62  *     many of the functional tests record the transaction group number
63  *     as part of their data.  When reading old data, they verify that
64  *     the transaction group number is less than the current, open txg.
65  *     If you add a new test, please do this if applicable.
66  *
67  * When run with no arguments, ztest runs for about five minutes and
68  * produces no output if successful.  To get a little bit of information,
69  * specify -V.  To get more information, specify -VV, and so on.
70  *
71  * To turn this into an overnight stress test, use -T to specify run time.
72  *
73  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
74  * to increase the pool capacity, fanout, and overall stress level.
75  *
76  * Use the -k option to set the desired frequency of kills.
77  *
78  * When ztest invokes itself it passes all relevant information through a
79  * temporary file which is mmap-ed in the child process. This allows shared
80  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
81  * stored at offset 0 of this file and contains information on the size and
82  * number of shared structures in the file. The information stored in this file
83  * must remain backwards compatible with older versions of ztest so that
84  * ztest can invoke them during backwards compatibility testing (-B).
85  */
86 
87 #include <sys/zfs_context.h>
88 #include <sys/spa.h>
89 #include <sys/dmu.h>
90 #include <sys/txg.h>
91 #include <sys/dbuf.h>
92 #include <sys/zap.h>
93 #include <sys/dmu_objset.h>
94 #include <sys/poll.h>
95 #include <sys/stat.h>
96 #include <sys/time.h>
97 #include <sys/wait.h>
98 #include <sys/mman.h>
99 #include <sys/resource.h>
100 #include <sys/zio.h>
101 #include <sys/zil.h>
102 #include <sys/zil_impl.h>
103 #include <sys/vdev_impl.h>
104 #include <sys/vdev_file.h>
105 #include <sys/spa_impl.h>
106 #include <sys/metaslab_impl.h>
107 #include <sys/dsl_prop.h>
108 #include <sys/dsl_dataset.h>
109 #include <sys/dsl_destroy.h>
110 #include <sys/dsl_scan.h>
111 #include <sys/zio_checksum.h>
112 #include <sys/refcount.h>
113 #include <sys/zfeature.h>
114 #include <sys/dsl_userhold.h>
115 #include <sys/abd.h>
116 #include <stdio.h>
117 #include <stdio_ext.h>
118 #include <stdlib.h>
119 #include <unistd.h>
120 #include <signal.h>
121 #include <umem.h>
122 #include <dlfcn.h>
123 #include <ctype.h>
124 #include <math.h>
125 #include <sys/fs/zfs.h>
126 #include <libnvpair.h>
127 #include <libcmdutils.h>
128 
129 static int ztest_fd_data = -1;
130 static int ztest_fd_rand = -1;
131 
132 typedef struct ztest_shared_hdr {
133 	uint64_t	zh_hdr_size;
134 	uint64_t	zh_opts_size;
135 	uint64_t	zh_size;
136 	uint64_t	zh_stats_size;
137 	uint64_t	zh_stats_count;
138 	uint64_t	zh_ds_size;
139 	uint64_t	zh_ds_count;
140 } ztest_shared_hdr_t;
141 
142 static ztest_shared_hdr_t *ztest_shared_hdr;
143 
144 typedef struct ztest_shared_opts {
145 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
146 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
147 	char zo_alt_ztest[MAXNAMELEN];
148 	char zo_alt_libpath[MAXNAMELEN];
149 	uint64_t zo_vdevs;
150 	uint64_t zo_vdevtime;
151 	size_t zo_vdev_size;
152 	int zo_ashift;
153 	int zo_mirrors;
154 	int zo_raidz;
155 	int zo_raidz_parity;
156 	int zo_datasets;
157 	int zo_threads;
158 	uint64_t zo_passtime;
159 	uint64_t zo_killrate;
160 	int zo_verbose;
161 	int zo_init;
162 	uint64_t zo_time;
163 	uint64_t zo_maxloops;
164 	uint64_t zo_metaslab_gang_bang;
165 } ztest_shared_opts_t;
166 
167 static const ztest_shared_opts_t ztest_opts_defaults = {
168 	.zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
169 	.zo_dir = { '/', 't', 'm', 'p', '\0' },
170 	.zo_alt_ztest = { '\0' },
171 	.zo_alt_libpath = { '\0' },
172 	.zo_vdevs = 5,
173 	.zo_ashift = SPA_MINBLOCKSHIFT,
174 	.zo_mirrors = 2,
175 	.zo_raidz = 4,
176 	.zo_raidz_parity = 1,
177 	.zo_vdev_size = SPA_MINDEVSIZE * 4,	/* 256m default size */
178 	.zo_datasets = 7,
179 	.zo_threads = 23,
180 	.zo_passtime = 60,		/* 60 seconds */
181 	.zo_killrate = 70,		/* 70% kill rate */
182 	.zo_verbose = 0,
183 	.zo_init = 1,
184 	.zo_time = 300,			/* 5 minutes */
185 	.zo_maxloops = 50,		/* max loops during spa_freeze() */
186 	.zo_metaslab_gang_bang = 32 << 10
187 };
188 
189 extern uint64_t metaslab_gang_bang;
190 extern uint64_t metaslab_df_alloc_threshold;
191 extern uint64_t zfs_deadman_synctime_ms;
192 extern int metaslab_preload_limit;
193 extern boolean_t zfs_compressed_arc_enabled;
194 extern boolean_t zfs_abd_scatter_enabled;
195 
196 static ztest_shared_opts_t *ztest_shared_opts;
197 static ztest_shared_opts_t ztest_opts;
198 
199 typedef struct ztest_shared_ds {
200 	uint64_t	zd_seq;
201 } ztest_shared_ds_t;
202 
203 static ztest_shared_ds_t *ztest_shared_ds;
204 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
205 
206 #define	BT_MAGIC	0x123456789abcdefULL
207 #define	MAXFAULTS() \
208 	(MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
209 
210 enum ztest_io_type {
211 	ZTEST_IO_WRITE_TAG,
212 	ZTEST_IO_WRITE_PATTERN,
213 	ZTEST_IO_WRITE_ZEROES,
214 	ZTEST_IO_TRUNCATE,
215 	ZTEST_IO_SETATTR,
216 	ZTEST_IO_REWRITE,
217 	ZTEST_IO_TYPES
218 };
219 
220 typedef struct ztest_block_tag {
221 	uint64_t	bt_magic;
222 	uint64_t	bt_objset;
223 	uint64_t	bt_object;
224 	uint64_t	bt_offset;
225 	uint64_t	bt_gen;
226 	uint64_t	bt_txg;
227 	uint64_t	bt_crtxg;
228 } ztest_block_tag_t;
229 
230 typedef struct bufwad {
231 	uint64_t	bw_index;
232 	uint64_t	bw_txg;
233 	uint64_t	bw_data;
234 } bufwad_t;
235 
236 /*
237  * XXX -- fix zfs range locks to be generic so we can use them here.
238  */
239 typedef enum {
240 	RL_READER,
241 	RL_WRITER,
242 	RL_APPEND
243 } rl_type_t;
244 
245 typedef struct rll {
246 	void		*rll_writer;
247 	int		rll_readers;
248 	mutex_t		rll_lock;
249 	cond_t		rll_cv;
250 } rll_t;
251 
252 typedef struct rl {
253 	uint64_t	rl_object;
254 	uint64_t	rl_offset;
255 	uint64_t	rl_size;
256 	rll_t		*rl_lock;
257 } rl_t;
258 
259 #define	ZTEST_RANGE_LOCKS	64
260 #define	ZTEST_OBJECT_LOCKS	64
261 
262 /*
263  * Object descriptor.  Used as a template for object lookup/create/remove.
264  */
265 typedef struct ztest_od {
266 	uint64_t	od_dir;
267 	uint64_t	od_object;
268 	dmu_object_type_t od_type;
269 	dmu_object_type_t od_crtype;
270 	uint64_t	od_blocksize;
271 	uint64_t	od_crblocksize;
272 	uint64_t	od_gen;
273 	uint64_t	od_crgen;
274 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
275 } ztest_od_t;
276 
277 /*
278  * Per-dataset state.
279  */
280 typedef struct ztest_ds {
281 	ztest_shared_ds_t *zd_shared;
282 	objset_t	*zd_os;
283 	rwlock_t	zd_zilog_lock;
284 	zilog_t		*zd_zilog;
285 	ztest_od_t	*zd_od;		/* debugging aid */
286 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
287 	mutex_t		zd_dirobj_lock;
288 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
289 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
290 } ztest_ds_t;
291 
292 /*
293  * Per-iteration state.
294  */
295 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
296 
297 typedef struct ztest_info {
298 	ztest_func_t	*zi_func;	/* test function */
299 	uint64_t	zi_iters;	/* iterations per execution */
300 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
301 } ztest_info_t;
302 
303 typedef struct ztest_shared_callstate {
304 	uint64_t	zc_count;	/* per-pass count */
305 	uint64_t	zc_time;	/* per-pass time */
306 	uint64_t	zc_next;	/* next time to call this function */
307 } ztest_shared_callstate_t;
308 
309 static ztest_shared_callstate_t *ztest_shared_callstate;
310 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
311 
312 /*
313  * Note: these aren't static because we want dladdr() to work.
314  */
315 ztest_func_t ztest_dmu_read_write;
316 ztest_func_t ztest_dmu_write_parallel;
317 ztest_func_t ztest_dmu_object_alloc_free;
318 ztest_func_t ztest_dmu_commit_callbacks;
319 ztest_func_t ztest_zap;
320 ztest_func_t ztest_zap_parallel;
321 ztest_func_t ztest_zil_commit;
322 ztest_func_t ztest_zil_remount;
323 ztest_func_t ztest_dmu_read_write_zcopy;
324 ztest_func_t ztest_dmu_objset_create_destroy;
325 ztest_func_t ztest_dmu_prealloc;
326 ztest_func_t ztest_fzap;
327 ztest_func_t ztest_dmu_snapshot_create_destroy;
328 ztest_func_t ztest_dsl_prop_get_set;
329 ztest_func_t ztest_spa_prop_get_set;
330 ztest_func_t ztest_spa_create_destroy;
331 ztest_func_t ztest_fault_inject;
332 ztest_func_t ztest_ddt_repair;
333 ztest_func_t ztest_dmu_snapshot_hold;
334 ztest_func_t ztest_spa_rename;
335 ztest_func_t ztest_scrub;
336 ztest_func_t ztest_dsl_dataset_promote_busy;
337 ztest_func_t ztest_vdev_attach_detach;
338 ztest_func_t ztest_vdev_LUN_growth;
339 ztest_func_t ztest_vdev_add_remove;
340 ztest_func_t ztest_vdev_aux_add_remove;
341 ztest_func_t ztest_split_pool;
342 ztest_func_t ztest_reguid;
343 ztest_func_t ztest_spa_upgrade;
344 ztest_func_t ztest_device_removal;
345 ztest_func_t ztest_remap_blocks;
346 
347 uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
348 uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
349 uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
350 uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
351 uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
352 
353 ztest_info_t ztest_info[] = {
354 	{ ztest_dmu_read_write,			1,	&zopt_always	},
355 	{ ztest_dmu_write_parallel,		10,	&zopt_always	},
356 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
357 	{ ztest_dmu_commit_callbacks,		1,	&zopt_always	},
358 	{ ztest_zap,				30,	&zopt_always	},
359 	{ ztest_zap_parallel,			100,	&zopt_always	},
360 	{ ztest_split_pool,			1,	&zopt_always	},
361 	{ ztest_zil_commit,			1,	&zopt_incessant	},
362 	{ ztest_zil_remount,			1,	&zopt_sometimes	},
363 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_often	},
364 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_often	},
365 	{ ztest_dsl_prop_get_set,		1,	&zopt_often	},
366 	{ ztest_spa_prop_get_set,		1,	&zopt_sometimes	},
367 #if 0
368 	{ ztest_dmu_prealloc,			1,	&zopt_sometimes	},
369 #endif
370 	{ ztest_fzap,				1,	&zopt_sometimes	},
371 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes	},
372 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes	},
373 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
374 	{ ztest_ddt_repair,			1,	&zopt_sometimes	},
375 	{ ztest_dmu_snapshot_hold,		1,	&zopt_sometimes	},
376 	{ ztest_reguid,				1,	&zopt_rarely	},
377 	{ ztest_spa_rename,			1,	&zopt_rarely	},
378 	{ ztest_scrub,				1,	&zopt_rarely	},
379 	{ ztest_spa_upgrade,			1,	&zopt_rarely	},
380 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
381 	{ ztest_vdev_attach_detach,		1,	&zopt_sometimes	},
382 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
383 	{ ztest_vdev_add_remove,		1,
384 	    &ztest_opts.zo_vdevtime				},
385 	{ ztest_vdev_aux_add_remove,		1,
386 	    &ztest_opts.zo_vdevtime				},
387 	{ ztest_device_removal,			1,	&zopt_sometimes	},
388 	{ ztest_remap_blocks,			1,	&zopt_sometimes }
389 };
390 
391 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
392 
393 /*
394  * The following struct is used to hold a list of uncalled commit callbacks.
395  * The callbacks are ordered by txg number.
396  */
397 typedef struct ztest_cb_list {
398 	mutex_t	zcl_callbacks_lock;
399 	list_t	zcl_callbacks;
400 } ztest_cb_list_t;
401 
402 /*
403  * Stuff we need to share writably between parent and child.
404  */
405 typedef struct ztest_shared {
406 	boolean_t	zs_do_init;
407 	hrtime_t	zs_proc_start;
408 	hrtime_t	zs_proc_stop;
409 	hrtime_t	zs_thread_start;
410 	hrtime_t	zs_thread_stop;
411 	hrtime_t	zs_thread_kill;
412 	uint64_t	zs_enospc_count;
413 	uint64_t	zs_vdev_next_leaf;
414 	uint64_t	zs_vdev_aux;
415 	uint64_t	zs_alloc;
416 	uint64_t	zs_space;
417 	uint64_t	zs_splits;
418 	uint64_t	zs_mirrors;
419 	uint64_t	zs_metaslab_sz;
420 	uint64_t	zs_metaslab_df_alloc_threshold;
421 	uint64_t	zs_guid;
422 } ztest_shared_t;
423 
424 #define	ID_PARALLEL	-1ULL
425 
426 static char ztest_dev_template[] = "%s/%s.%llua";
427 static char ztest_aux_template[] = "%s/%s.%s.%llu";
428 ztest_shared_t *ztest_shared;
429 
430 static spa_t *ztest_spa = NULL;
431 static ztest_ds_t *ztest_ds;
432 
433 static mutex_t ztest_vdev_lock;
434 
435 /*
436  * The ztest_name_lock protects the pool and dataset namespace used by
437  * the individual tests. To modify the namespace, consumers must grab
438  * this lock as writer. Grabbing the lock as reader will ensure that the
439  * namespace does not change while the lock is held.
440  */
441 static rwlock_t ztest_name_lock;
442 
443 static boolean_t ztest_dump_core = B_TRUE;
444 static boolean_t ztest_exiting;
445 
446 /* Global commit callback list */
447 static ztest_cb_list_t zcl;
448 
449 enum ztest_object {
450 	ZTEST_META_DNODE = 0,
451 	ZTEST_DIROBJ,
452 	ZTEST_OBJECTS
453 };
454 
455 static void usage(boolean_t) __NORETURN;
456 
457 /*
458  * These libumem hooks provide a reasonable set of defaults for the allocator's
459  * debugging facilities.
460  */
461 const char *
462 _umem_debug_init()
463 {
464 	return ("default,verbose"); /* $UMEM_DEBUG setting */
465 }
466 
467 const char *
468 _umem_logging_init(void)
469 {
470 	return ("fail,contents"); /* $UMEM_LOGGING setting */
471 }
472 
473 #define	FATAL_MSG_SZ	1024
474 
475 char *fatal_msg;
476 
477 static void
478 fatal(int do_perror, char *message, ...)
479 {
480 	va_list args;
481 	int save_errno = errno;
482 	char buf[FATAL_MSG_SZ];
483 
484 	(void) fflush(stdout);
485 
486 	va_start(args, message);
487 	(void) sprintf(buf, "ztest: ");
488 	/* LINTED */
489 	(void) vsprintf(buf + strlen(buf), message, args);
490 	va_end(args);
491 	if (do_perror) {
492 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
493 		    ": %s", strerror(save_errno));
494 	}
495 	(void) fprintf(stderr, "%s\n", buf);
496 	fatal_msg = buf;			/* to ease debugging */
497 	if (ztest_dump_core)
498 		abort();
499 	exit(3);
500 }
501 
502 static int
503 str2shift(const char *buf)
504 {
505 	const char *ends = "BKMGTPEZ";
506 	int i;
507 
508 	if (buf[0] == '\0')
509 		return (0);
510 	for (i = 0; i < strlen(ends); i++) {
511 		if (toupper(buf[0]) == ends[i])
512 			break;
513 	}
514 	if (i == strlen(ends)) {
515 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
516 		    buf);
517 		usage(B_FALSE);
518 	}
519 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
520 		return (10*i);
521 	}
522 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
523 	usage(B_FALSE);
524 	/* NOTREACHED */
525 }
526 
527 static uint64_t
528 nicenumtoull(const char *buf)
529 {
530 	char *end;
531 	uint64_t val;
532 
533 	val = strtoull(buf, &end, 0);
534 	if (end == buf) {
535 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
536 		usage(B_FALSE);
537 	} else if (end[0] == '.') {
538 		double fval = strtod(buf, &end);
539 		fval *= pow(2, str2shift(end));
540 		if (fval > UINT64_MAX) {
541 			(void) fprintf(stderr, "ztest: value too large: %s\n",
542 			    buf);
543 			usage(B_FALSE);
544 		}
545 		val = (uint64_t)fval;
546 	} else {
547 		int shift = str2shift(end);
548 		if (shift >= 64 || (val << shift) >> shift != val) {
549 			(void) fprintf(stderr, "ztest: value too large: %s\n",
550 			    buf);
551 			usage(B_FALSE);
552 		}
553 		val <<= shift;
554 	}
555 	return (val);
556 }
557 
558 static void
559 usage(boolean_t requested)
560 {
561 	const ztest_shared_opts_t *zo = &ztest_opts_defaults;
562 
563 	char nice_vdev_size[NN_NUMBUF_SZ];
564 	char nice_gang_bang[NN_NUMBUF_SZ];
565 	FILE *fp = requested ? stdout : stderr;
566 
567 	nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size));
568 	nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang,
569 	    sizeof (nice_gang_bang));
570 
571 	(void) fprintf(fp, "Usage: %s\n"
572 	    "\t[-v vdevs (default: %llu)]\n"
573 	    "\t[-s size_of_each_vdev (default: %s)]\n"
574 	    "\t[-a alignment_shift (default: %d)] use 0 for random\n"
575 	    "\t[-m mirror_copies (default: %d)]\n"
576 	    "\t[-r raidz_disks (default: %d)]\n"
577 	    "\t[-R raidz_parity (default: %d)]\n"
578 	    "\t[-d datasets (default: %d)]\n"
579 	    "\t[-t threads (default: %d)]\n"
580 	    "\t[-g gang_block_threshold (default: %s)]\n"
581 	    "\t[-i init_count (default: %d)] initialize pool i times\n"
582 	    "\t[-k kill_percentage (default: %llu%%)]\n"
583 	    "\t[-p pool_name (default: %s)]\n"
584 	    "\t[-f dir (default: %s)] file directory for vdev files\n"
585 	    "\t[-V] verbose (use multiple times for ever more blather)\n"
586 	    "\t[-E] use existing pool instead of creating new one\n"
587 	    "\t[-T time (default: %llu sec)] total run time\n"
588 	    "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
589 	    "\t[-P passtime (default: %llu sec)] time per pass\n"
590 	    "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
591 	    "\t[-o variable=value] ... set global variable to an unsigned\n"
592 	    "\t    32-bit integer value\n"
593 	    "\t[-h] (print help)\n"
594 	    "",
595 	    zo->zo_pool,
596 	    (u_longlong_t)zo->zo_vdevs,			/* -v */
597 	    nice_vdev_size,				/* -s */
598 	    zo->zo_ashift,				/* -a */
599 	    zo->zo_mirrors,				/* -m */
600 	    zo->zo_raidz,				/* -r */
601 	    zo->zo_raidz_parity,			/* -R */
602 	    zo->zo_datasets,				/* -d */
603 	    zo->zo_threads,				/* -t */
604 	    nice_gang_bang,				/* -g */
605 	    zo->zo_init,				/* -i */
606 	    (u_longlong_t)zo->zo_killrate,		/* -k */
607 	    zo->zo_pool,				/* -p */
608 	    zo->zo_dir,					/* -f */
609 	    (u_longlong_t)zo->zo_time,			/* -T */
610 	    (u_longlong_t)zo->zo_maxloops,		/* -F */
611 	    (u_longlong_t)zo->zo_passtime);
612 	exit(requested ? 0 : 1);
613 }
614 
615 static void
616 process_options(int argc, char **argv)
617 {
618 	char *path;
619 	ztest_shared_opts_t *zo = &ztest_opts;
620 
621 	int opt;
622 	uint64_t value;
623 	char altdir[MAXNAMELEN] = { 0 };
624 
625 	bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
626 
627 	while ((opt = getopt(argc, argv,
628 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) {
629 		value = 0;
630 		switch (opt) {
631 		case 'v':
632 		case 's':
633 		case 'a':
634 		case 'm':
635 		case 'r':
636 		case 'R':
637 		case 'd':
638 		case 't':
639 		case 'g':
640 		case 'i':
641 		case 'k':
642 		case 'T':
643 		case 'P':
644 		case 'F':
645 			value = nicenumtoull(optarg);
646 		}
647 		switch (opt) {
648 		case 'v':
649 			zo->zo_vdevs = value;
650 			break;
651 		case 's':
652 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
653 			break;
654 		case 'a':
655 			zo->zo_ashift = value;
656 			break;
657 		case 'm':
658 			zo->zo_mirrors = value;
659 			break;
660 		case 'r':
661 			zo->zo_raidz = MAX(1, value);
662 			break;
663 		case 'R':
664 			zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
665 			break;
666 		case 'd':
667 			zo->zo_datasets = MAX(1, value);
668 			break;
669 		case 't':
670 			zo->zo_threads = MAX(1, value);
671 			break;
672 		case 'g':
673 			zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
674 			    value);
675 			break;
676 		case 'i':
677 			zo->zo_init = value;
678 			break;
679 		case 'k':
680 			zo->zo_killrate = value;
681 			break;
682 		case 'p':
683 			(void) strlcpy(zo->zo_pool, optarg,
684 			    sizeof (zo->zo_pool));
685 			break;
686 		case 'f':
687 			path = realpath(optarg, NULL);
688 			if (path == NULL) {
689 				(void) fprintf(stderr, "error: %s: %s\n",
690 				    optarg, strerror(errno));
691 				usage(B_FALSE);
692 			} else {
693 				(void) strlcpy(zo->zo_dir, path,
694 				    sizeof (zo->zo_dir));
695 			}
696 			break;
697 		case 'V':
698 			zo->zo_verbose++;
699 			break;
700 		case 'E':
701 			zo->zo_init = 0;
702 			break;
703 		case 'T':
704 			zo->zo_time = value;
705 			break;
706 		case 'P':
707 			zo->zo_passtime = MAX(1, value);
708 			break;
709 		case 'F':
710 			zo->zo_maxloops = MAX(1, value);
711 			break;
712 		case 'B':
713 			(void) strlcpy(altdir, optarg, sizeof (altdir));
714 			break;
715 		case 'o':
716 			if (set_global_var(optarg) != 0)
717 				usage(B_FALSE);
718 			break;
719 		case 'h':
720 			usage(B_TRUE);
721 			break;
722 		case '?':
723 		default:
724 			usage(B_FALSE);
725 			break;
726 		}
727 	}
728 
729 	zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
730 
731 	zo->zo_vdevtime =
732 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
733 	    UINT64_MAX >> 2);
734 
735 	if (strlen(altdir) > 0) {
736 		char *cmd;
737 		char *realaltdir;
738 		char *bin;
739 		char *ztest;
740 		char *isa;
741 		int isalen;
742 
743 		cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
744 		realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
745 
746 		VERIFY(NULL != realpath(getexecname(), cmd));
747 		if (0 != access(altdir, F_OK)) {
748 			ztest_dump_core = B_FALSE;
749 			fatal(B_TRUE, "invalid alternate ztest path: %s",
750 			    altdir);
751 		}
752 		VERIFY(NULL != realpath(altdir, realaltdir));
753 
754 		/*
755 		 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
756 		 * We want to extract <isa> to determine if we should use
757 		 * 32 or 64 bit binaries.
758 		 */
759 		bin = strstr(cmd, "/usr/bin/");
760 		ztest = strstr(bin, "/ztest");
761 		isa = bin + 9;
762 		isalen = ztest - isa;
763 		(void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
764 		    "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
765 		(void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
766 		    "%s/usr/lib/%.*s", realaltdir, isalen, isa);
767 
768 		if (0 != access(zo->zo_alt_ztest, X_OK)) {
769 			ztest_dump_core = B_FALSE;
770 			fatal(B_TRUE, "invalid alternate ztest: %s",
771 			    zo->zo_alt_ztest);
772 		} else if (0 != access(zo->zo_alt_libpath, X_OK)) {
773 			ztest_dump_core = B_FALSE;
774 			fatal(B_TRUE, "invalid alternate lib directory %s",
775 			    zo->zo_alt_libpath);
776 		}
777 
778 		umem_free(cmd, MAXPATHLEN);
779 		umem_free(realaltdir, MAXPATHLEN);
780 	}
781 }
782 
783 static void
784 ztest_kill(ztest_shared_t *zs)
785 {
786 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
787 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
788 
789 	/*
790 	 * Before we kill off ztest, make sure that the config is updated.
791 	 * See comment above spa_write_cachefile().
792 	 */
793 	mutex_enter(&spa_namespace_lock);
794 	spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
795 	mutex_exit(&spa_namespace_lock);
796 
797 	zfs_dbgmsg_print(FTAG);
798 	(void) kill(getpid(), SIGKILL);
799 }
800 
801 static uint64_t
802 ztest_random(uint64_t range)
803 {
804 	uint64_t r;
805 
806 	ASSERT3S(ztest_fd_rand, >=, 0);
807 
808 	if (range == 0)
809 		return (0);
810 
811 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
812 		fatal(1, "short read from /dev/urandom");
813 
814 	return (r % range);
815 }
816 
817 /* ARGSUSED */
818 static void
819 ztest_record_enospc(const char *s)
820 {
821 	ztest_shared->zs_enospc_count++;
822 }
823 
824 static uint64_t
825 ztest_get_ashift(void)
826 {
827 	if (ztest_opts.zo_ashift == 0)
828 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
829 	return (ztest_opts.zo_ashift);
830 }
831 
832 static nvlist_t *
833 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
834 {
835 	char pathbuf[MAXPATHLEN];
836 	uint64_t vdev;
837 	nvlist_t *file;
838 
839 	if (ashift == 0)
840 		ashift = ztest_get_ashift();
841 
842 	if (path == NULL) {
843 		path = pathbuf;
844 
845 		if (aux != NULL) {
846 			vdev = ztest_shared->zs_vdev_aux;
847 			(void) snprintf(path, sizeof (pathbuf),
848 			    ztest_aux_template, ztest_opts.zo_dir,
849 			    pool == NULL ? ztest_opts.zo_pool : pool,
850 			    aux, vdev);
851 		} else {
852 			vdev = ztest_shared->zs_vdev_next_leaf++;
853 			(void) snprintf(path, sizeof (pathbuf),
854 			    ztest_dev_template, ztest_opts.zo_dir,
855 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
856 		}
857 	}
858 
859 	if (size != 0) {
860 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
861 		if (fd == -1)
862 			fatal(1, "can't open %s", path);
863 		if (ftruncate(fd, size) != 0)
864 			fatal(1, "can't ftruncate %s", path);
865 		(void) close(fd);
866 	}
867 
868 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
869 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
870 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
871 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
872 
873 	return (file);
874 }
875 
876 static nvlist_t *
877 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
878     uint64_t ashift, int r)
879 {
880 	nvlist_t *raidz, **child;
881 	int c;
882 
883 	if (r < 2)
884 		return (make_vdev_file(path, aux, pool, size, ashift));
885 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
886 
887 	for (c = 0; c < r; c++)
888 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
889 
890 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
891 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
892 	    VDEV_TYPE_RAIDZ) == 0);
893 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
894 	    ztest_opts.zo_raidz_parity) == 0);
895 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
896 	    child, r) == 0);
897 
898 	for (c = 0; c < r; c++)
899 		nvlist_free(child[c]);
900 
901 	umem_free(child, r * sizeof (nvlist_t *));
902 
903 	return (raidz);
904 }
905 
906 static nvlist_t *
907 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
908     uint64_t ashift, int r, int m)
909 {
910 	nvlist_t *mirror, **child;
911 	int c;
912 
913 	if (m < 1)
914 		return (make_vdev_raidz(path, aux, pool, size, ashift, r));
915 
916 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
917 
918 	for (c = 0; c < m; c++)
919 		child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
920 
921 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
922 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
923 	    VDEV_TYPE_MIRROR) == 0);
924 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
925 	    child, m) == 0);
926 
927 	for (c = 0; c < m; c++)
928 		nvlist_free(child[c]);
929 
930 	umem_free(child, m * sizeof (nvlist_t *));
931 
932 	return (mirror);
933 }
934 
935 static nvlist_t *
936 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
937     int log, int r, int m, int t)
938 {
939 	nvlist_t *root, **child;
940 	int c;
941 
942 	ASSERT(t > 0);
943 
944 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
945 
946 	for (c = 0; c < t; c++) {
947 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
948 		    r, m);
949 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
950 		    log) == 0);
951 	}
952 
953 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
954 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
955 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
956 	    child, t) == 0);
957 
958 	for (c = 0; c < t; c++)
959 		nvlist_free(child[c]);
960 
961 	umem_free(child, t * sizeof (nvlist_t *));
962 
963 	return (root);
964 }
965 
966 /*
967  * Find a random spa version. Returns back a random spa version in the
968  * range [initial_version, SPA_VERSION_FEATURES].
969  */
970 static uint64_t
971 ztest_random_spa_version(uint64_t initial_version)
972 {
973 	uint64_t version = initial_version;
974 
975 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
976 		version = version +
977 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
978 	}
979 
980 	if (version > SPA_VERSION_BEFORE_FEATURES)
981 		version = SPA_VERSION_FEATURES;
982 
983 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
984 	return (version);
985 }
986 
987 static int
988 ztest_random_blocksize(void)
989 {
990 	uint64_t block_shift;
991 	/*
992 	 * Choose a block size >= the ashift.
993 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
994 	 */
995 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
996 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
997 		maxbs = 20;
998 	block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
999 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1000 }
1001 
1002 static int
1003 ztest_random_ibshift(void)
1004 {
1005 	return (DN_MIN_INDBLKSHIFT +
1006 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1007 }
1008 
1009 static uint64_t
1010 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1011 {
1012 	uint64_t top;
1013 	vdev_t *rvd = spa->spa_root_vdev;
1014 	vdev_t *tvd;
1015 
1016 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1017 
1018 	do {
1019 		top = ztest_random(rvd->vdev_children);
1020 		tvd = rvd->vdev_child[top];
1021 	} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1022 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1023 
1024 	return (top);
1025 }
1026 
1027 static uint64_t
1028 ztest_random_dsl_prop(zfs_prop_t prop)
1029 {
1030 	uint64_t value;
1031 
1032 	do {
1033 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1034 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1035 
1036 	return (value);
1037 }
1038 
1039 static int
1040 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1041     boolean_t inherit)
1042 {
1043 	const char *propname = zfs_prop_to_name(prop);
1044 	const char *valname;
1045 	char setpoint[MAXPATHLEN];
1046 	uint64_t curval;
1047 	int error;
1048 
1049 	error = dsl_prop_set_int(osname, propname,
1050 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1051 
1052 	if (error == ENOSPC) {
1053 		ztest_record_enospc(FTAG);
1054 		return (error);
1055 	}
1056 	ASSERT0(error);
1057 
1058 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1059 
1060 	if (ztest_opts.zo_verbose >= 6) {
1061 		VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1062 		(void) printf("%s %s = %s at '%s'\n",
1063 		    osname, propname, valname, setpoint);
1064 	}
1065 
1066 	return (error);
1067 }
1068 
1069 static int
1070 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1071 {
1072 	spa_t *spa = ztest_spa;
1073 	nvlist_t *props = NULL;
1074 	int error;
1075 
1076 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1077 	VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1078 
1079 	error = spa_prop_set(spa, props);
1080 
1081 	nvlist_free(props);
1082 
1083 	if (error == ENOSPC) {
1084 		ztest_record_enospc(FTAG);
1085 		return (error);
1086 	}
1087 	ASSERT0(error);
1088 
1089 	return (error);
1090 }
1091 
1092 static void
1093 ztest_rll_init(rll_t *rll)
1094 {
1095 	rll->rll_writer = NULL;
1096 	rll->rll_readers = 0;
1097 	VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0);
1098 	VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0);
1099 }
1100 
1101 static void
1102 ztest_rll_destroy(rll_t *rll)
1103 {
1104 	ASSERT(rll->rll_writer == NULL);
1105 	ASSERT(rll->rll_readers == 0);
1106 	VERIFY(_mutex_destroy(&rll->rll_lock) == 0);
1107 	VERIFY(cond_destroy(&rll->rll_cv) == 0);
1108 }
1109 
1110 static void
1111 ztest_rll_lock(rll_t *rll, rl_type_t type)
1112 {
1113 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
1114 
1115 	if (type == RL_READER) {
1116 		while (rll->rll_writer != NULL)
1117 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1118 		rll->rll_readers++;
1119 	} else {
1120 		while (rll->rll_writer != NULL || rll->rll_readers)
1121 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1122 		rll->rll_writer = curthread;
1123 	}
1124 
1125 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1126 }
1127 
1128 static void
1129 ztest_rll_unlock(rll_t *rll)
1130 {
1131 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
1132 
1133 	if (rll->rll_writer) {
1134 		ASSERT(rll->rll_readers == 0);
1135 		rll->rll_writer = NULL;
1136 	} else {
1137 		ASSERT(rll->rll_readers != 0);
1138 		ASSERT(rll->rll_writer == NULL);
1139 		rll->rll_readers--;
1140 	}
1141 
1142 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1143 		VERIFY(cond_broadcast(&rll->rll_cv) == 0);
1144 
1145 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1146 }
1147 
1148 static void
1149 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1150 {
1151 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1152 
1153 	ztest_rll_lock(rll, type);
1154 }
1155 
1156 static void
1157 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1158 {
1159 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1160 
1161 	ztest_rll_unlock(rll);
1162 }
1163 
1164 static rl_t *
1165 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1166     uint64_t size, rl_type_t type)
1167 {
1168 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1169 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1170 	rl_t *rl;
1171 
1172 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1173 	rl->rl_object = object;
1174 	rl->rl_offset = offset;
1175 	rl->rl_size = size;
1176 	rl->rl_lock = rll;
1177 
1178 	ztest_rll_lock(rll, type);
1179 
1180 	return (rl);
1181 }
1182 
1183 static void
1184 ztest_range_unlock(rl_t *rl)
1185 {
1186 	rll_t *rll = rl->rl_lock;
1187 
1188 	ztest_rll_unlock(rll);
1189 
1190 	umem_free(rl, sizeof (*rl));
1191 }
1192 
1193 static void
1194 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1195 {
1196 	zd->zd_os = os;
1197 	zd->zd_zilog = dmu_objset_zil(os);
1198 	zd->zd_shared = szd;
1199 	dmu_objset_name(os, zd->zd_name);
1200 
1201 	if (zd->zd_shared != NULL)
1202 		zd->zd_shared->zd_seq = 0;
1203 
1204 	VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1205 	VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0);
1206 
1207 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1208 		ztest_rll_init(&zd->zd_object_lock[l]);
1209 
1210 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1211 		ztest_rll_init(&zd->zd_range_lock[l]);
1212 }
1213 
1214 static void
1215 ztest_zd_fini(ztest_ds_t *zd)
1216 {
1217 	VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0);
1218 
1219 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1220 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1221 
1222 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1223 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1224 }
1225 
1226 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1227 
1228 static uint64_t
1229 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1230 {
1231 	uint64_t txg;
1232 	int error;
1233 
1234 	/*
1235 	 * Attempt to assign tx to some transaction group.
1236 	 */
1237 	error = dmu_tx_assign(tx, txg_how);
1238 	if (error) {
1239 		if (error == ERESTART) {
1240 			ASSERT(txg_how == TXG_NOWAIT);
1241 			dmu_tx_wait(tx);
1242 		} else {
1243 			ASSERT3U(error, ==, ENOSPC);
1244 			ztest_record_enospc(tag);
1245 		}
1246 		dmu_tx_abort(tx);
1247 		return (0);
1248 	}
1249 	txg = dmu_tx_get_txg(tx);
1250 	ASSERT(txg != 0);
1251 	return (txg);
1252 }
1253 
1254 static void
1255 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1256 {
1257 	uint64_t *ip = buf;
1258 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1259 
1260 	while (ip < ip_end)
1261 		*ip++ = value;
1262 }
1263 
1264 static boolean_t
1265 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1266 {
1267 	uint64_t *ip = buf;
1268 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1269 	uint64_t diff = 0;
1270 
1271 	while (ip < ip_end)
1272 		diff |= (value - *ip++);
1273 
1274 	return (diff == 0);
1275 }
1276 
1277 static void
1278 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1279     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1280 {
1281 	bt->bt_magic = BT_MAGIC;
1282 	bt->bt_objset = dmu_objset_id(os);
1283 	bt->bt_object = object;
1284 	bt->bt_offset = offset;
1285 	bt->bt_gen = gen;
1286 	bt->bt_txg = txg;
1287 	bt->bt_crtxg = crtxg;
1288 }
1289 
1290 static void
1291 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1292     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1293 {
1294 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1295 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1296 	ASSERT3U(bt->bt_object, ==, object);
1297 	ASSERT3U(bt->bt_offset, ==, offset);
1298 	ASSERT3U(bt->bt_gen, <=, gen);
1299 	ASSERT3U(bt->bt_txg, <=, txg);
1300 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1301 }
1302 
1303 static ztest_block_tag_t *
1304 ztest_bt_bonus(dmu_buf_t *db)
1305 {
1306 	dmu_object_info_t doi;
1307 	ztest_block_tag_t *bt;
1308 
1309 	dmu_object_info_from_db(db, &doi);
1310 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1311 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1312 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1313 
1314 	return (bt);
1315 }
1316 
1317 /*
1318  * ZIL logging ops
1319  */
1320 
1321 #define	lrz_type	lr_mode
1322 #define	lrz_blocksize	lr_uid
1323 #define	lrz_ibshift	lr_gid
1324 #define	lrz_bonustype	lr_rdev
1325 #define	lrz_bonuslen	lr_crtime[1]
1326 
1327 static void
1328 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1329 {
1330 	char *name = (void *)(lr + 1);		/* name follows lr */
1331 	size_t namesize = strlen(name) + 1;
1332 	itx_t *itx;
1333 
1334 	if (zil_replaying(zd->zd_zilog, tx))
1335 		return;
1336 
1337 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1338 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1339 	    sizeof (*lr) + namesize - sizeof (lr_t));
1340 
1341 	zil_itx_assign(zd->zd_zilog, itx, tx);
1342 }
1343 
1344 static void
1345 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1346 {
1347 	char *name = (void *)(lr + 1);		/* name follows lr */
1348 	size_t namesize = strlen(name) + 1;
1349 	itx_t *itx;
1350 
1351 	if (zil_replaying(zd->zd_zilog, tx))
1352 		return;
1353 
1354 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1355 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1356 	    sizeof (*lr) + namesize - sizeof (lr_t));
1357 
1358 	itx->itx_oid = object;
1359 	zil_itx_assign(zd->zd_zilog, itx, tx);
1360 }
1361 
1362 static void
1363 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1364 {
1365 	itx_t *itx;
1366 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1367 
1368 	if (zil_replaying(zd->zd_zilog, tx))
1369 		return;
1370 
1371 	if (lr->lr_length > ZIL_MAX_LOG_DATA)
1372 		write_state = WR_INDIRECT;
1373 
1374 	itx = zil_itx_create(TX_WRITE,
1375 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1376 
1377 	if (write_state == WR_COPIED &&
1378 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1379 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1380 		zil_itx_destroy(itx);
1381 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1382 		write_state = WR_NEED_COPY;
1383 	}
1384 	itx->itx_private = zd;
1385 	itx->itx_wr_state = write_state;
1386 	itx->itx_sync = (ztest_random(8) == 0);
1387 
1388 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1389 	    sizeof (*lr) - sizeof (lr_t));
1390 
1391 	zil_itx_assign(zd->zd_zilog, itx, tx);
1392 }
1393 
1394 static void
1395 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1396 {
1397 	itx_t *itx;
1398 
1399 	if (zil_replaying(zd->zd_zilog, tx))
1400 		return;
1401 
1402 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1403 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1404 	    sizeof (*lr) - sizeof (lr_t));
1405 
1406 	itx->itx_sync = B_FALSE;
1407 	zil_itx_assign(zd->zd_zilog, itx, tx);
1408 }
1409 
1410 static void
1411 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1412 {
1413 	itx_t *itx;
1414 
1415 	if (zil_replaying(zd->zd_zilog, tx))
1416 		return;
1417 
1418 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1419 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1420 	    sizeof (*lr) - sizeof (lr_t));
1421 
1422 	itx->itx_sync = B_FALSE;
1423 	zil_itx_assign(zd->zd_zilog, itx, tx);
1424 }
1425 
1426 /*
1427  * ZIL replay ops
1428  */
1429 static int
1430 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1431 {
1432 	ztest_ds_t *zd = arg1;
1433 	lr_create_t *lr = arg2;
1434 	char *name = (void *)(lr + 1);		/* name follows lr */
1435 	objset_t *os = zd->zd_os;
1436 	ztest_block_tag_t *bbt;
1437 	dmu_buf_t *db;
1438 	dmu_tx_t *tx;
1439 	uint64_t txg;
1440 	int error = 0;
1441 
1442 	if (byteswap)
1443 		byteswap_uint64_array(lr, sizeof (*lr));
1444 
1445 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1446 	ASSERT(name[0] != '\0');
1447 
1448 	tx = dmu_tx_create(os);
1449 
1450 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1451 
1452 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1453 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1454 	} else {
1455 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1456 	}
1457 
1458 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1459 	if (txg == 0)
1460 		return (ENOSPC);
1461 
1462 	ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1463 
1464 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1465 		if (lr->lr_foid == 0) {
1466 			lr->lr_foid = zap_create(os,
1467 			    lr->lrz_type, lr->lrz_bonustype,
1468 			    lr->lrz_bonuslen, tx);
1469 		} else {
1470 			error = zap_create_claim(os, lr->lr_foid,
1471 			    lr->lrz_type, lr->lrz_bonustype,
1472 			    lr->lrz_bonuslen, tx);
1473 		}
1474 	} else {
1475 		if (lr->lr_foid == 0) {
1476 			lr->lr_foid = dmu_object_alloc(os,
1477 			    lr->lrz_type, 0, lr->lrz_bonustype,
1478 			    lr->lrz_bonuslen, tx);
1479 		} else {
1480 			error = dmu_object_claim(os, lr->lr_foid,
1481 			    lr->lrz_type, 0, lr->lrz_bonustype,
1482 			    lr->lrz_bonuslen, tx);
1483 		}
1484 	}
1485 
1486 	if (error) {
1487 		ASSERT3U(error, ==, EEXIST);
1488 		ASSERT(zd->zd_zilog->zl_replay);
1489 		dmu_tx_commit(tx);
1490 		return (error);
1491 	}
1492 
1493 	ASSERT(lr->lr_foid != 0);
1494 
1495 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1496 		VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1497 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
1498 
1499 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1500 	bbt = ztest_bt_bonus(db);
1501 	dmu_buf_will_dirty(db, tx);
1502 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1503 	dmu_buf_rele(db, FTAG);
1504 
1505 	VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1506 	    &lr->lr_foid, tx));
1507 
1508 	(void) ztest_log_create(zd, tx, lr);
1509 
1510 	dmu_tx_commit(tx);
1511 
1512 	return (0);
1513 }
1514 
1515 static int
1516 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
1517 {
1518 	ztest_ds_t *zd = arg1;
1519 	lr_remove_t *lr = arg2;
1520 	char *name = (void *)(lr + 1);		/* name follows lr */
1521 	objset_t *os = zd->zd_os;
1522 	dmu_object_info_t doi;
1523 	dmu_tx_t *tx;
1524 	uint64_t object, txg;
1525 
1526 	if (byteswap)
1527 		byteswap_uint64_array(lr, sizeof (*lr));
1528 
1529 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1530 	ASSERT(name[0] != '\0');
1531 
1532 	VERIFY3U(0, ==,
1533 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1534 	ASSERT(object != 0);
1535 
1536 	ztest_object_lock(zd, object, RL_WRITER);
1537 
1538 	VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1539 
1540 	tx = dmu_tx_create(os);
1541 
1542 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1543 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1544 
1545 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1546 	if (txg == 0) {
1547 		ztest_object_unlock(zd, object);
1548 		return (ENOSPC);
1549 	}
1550 
1551 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1552 		VERIFY3U(0, ==, zap_destroy(os, object, tx));
1553 	} else {
1554 		VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1555 	}
1556 
1557 	VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1558 
1559 	(void) ztest_log_remove(zd, tx, lr, object);
1560 
1561 	dmu_tx_commit(tx);
1562 
1563 	ztest_object_unlock(zd, object);
1564 
1565 	return (0);
1566 }
1567 
1568 static int
1569 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
1570 {
1571 	ztest_ds_t *zd = arg1;
1572 	lr_write_t *lr = arg2;
1573 	objset_t *os = zd->zd_os;
1574 	void *data = lr + 1;			/* data follows lr */
1575 	uint64_t offset, length;
1576 	ztest_block_tag_t *bt = data;
1577 	ztest_block_tag_t *bbt;
1578 	uint64_t gen, txg, lrtxg, crtxg;
1579 	dmu_object_info_t doi;
1580 	dmu_tx_t *tx;
1581 	dmu_buf_t *db;
1582 	arc_buf_t *abuf = NULL;
1583 	rl_t *rl;
1584 
1585 	if (byteswap)
1586 		byteswap_uint64_array(lr, sizeof (*lr));
1587 
1588 	offset = lr->lr_offset;
1589 	length = lr->lr_length;
1590 
1591 	/* If it's a dmu_sync() block, write the whole block */
1592 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1593 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1594 		if (length < blocksize) {
1595 			offset -= offset % blocksize;
1596 			length = blocksize;
1597 		}
1598 	}
1599 
1600 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1601 		byteswap_uint64_array(bt, sizeof (*bt));
1602 
1603 	if (bt->bt_magic != BT_MAGIC)
1604 		bt = NULL;
1605 
1606 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1607 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1608 
1609 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1610 
1611 	dmu_object_info_from_db(db, &doi);
1612 
1613 	bbt = ztest_bt_bonus(db);
1614 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1615 	gen = bbt->bt_gen;
1616 	crtxg = bbt->bt_crtxg;
1617 	lrtxg = lr->lr_common.lrc_txg;
1618 
1619 	tx = dmu_tx_create(os);
1620 
1621 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1622 
1623 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1624 	    P2PHASE(offset, length) == 0)
1625 		abuf = dmu_request_arcbuf(db, length);
1626 
1627 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1628 	if (txg == 0) {
1629 		if (abuf != NULL)
1630 			dmu_return_arcbuf(abuf);
1631 		dmu_buf_rele(db, FTAG);
1632 		ztest_range_unlock(rl);
1633 		ztest_object_unlock(zd, lr->lr_foid);
1634 		return (ENOSPC);
1635 	}
1636 
1637 	if (bt != NULL) {
1638 		/*
1639 		 * Usually, verify the old data before writing new data --
1640 		 * but not always, because we also want to verify correct
1641 		 * behavior when the data was not recently read into cache.
1642 		 */
1643 		ASSERT(offset % doi.doi_data_block_size == 0);
1644 		if (ztest_random(4) != 0) {
1645 			int prefetch = ztest_random(2) ?
1646 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1647 			ztest_block_tag_t rbt;
1648 
1649 			VERIFY(dmu_read(os, lr->lr_foid, offset,
1650 			    sizeof (rbt), &rbt, prefetch) == 0);
1651 			if (rbt.bt_magic == BT_MAGIC) {
1652 				ztest_bt_verify(&rbt, os, lr->lr_foid,
1653 				    offset, gen, txg, crtxg);
1654 			}
1655 		}
1656 
1657 		/*
1658 		 * Writes can appear to be newer than the bonus buffer because
1659 		 * the ztest_get_data() callback does a dmu_read() of the
1660 		 * open-context data, which may be different than the data
1661 		 * as it was when the write was generated.
1662 		 */
1663 		if (zd->zd_zilog->zl_replay) {
1664 			ztest_bt_verify(bt, os, lr->lr_foid, offset,
1665 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1666 			    bt->bt_crtxg);
1667 		}
1668 
1669 		/*
1670 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
1671 		 * so that all of the usual ASSERTs will work.
1672 		 */
1673 		ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1674 	}
1675 
1676 	if (abuf == NULL) {
1677 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
1678 	} else {
1679 		bcopy(data, abuf->b_data, length);
1680 		dmu_assign_arcbuf(db, offset, abuf, tx);
1681 	}
1682 
1683 	(void) ztest_log_write(zd, tx, lr);
1684 
1685 	dmu_buf_rele(db, FTAG);
1686 
1687 	dmu_tx_commit(tx);
1688 
1689 	ztest_range_unlock(rl);
1690 	ztest_object_unlock(zd, lr->lr_foid);
1691 
1692 	return (0);
1693 }
1694 
1695 static int
1696 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
1697 {
1698 	ztest_ds_t *zd = arg1;
1699 	lr_truncate_t *lr = arg2;
1700 	objset_t *os = zd->zd_os;
1701 	dmu_tx_t *tx;
1702 	uint64_t txg;
1703 	rl_t *rl;
1704 
1705 	if (byteswap)
1706 		byteswap_uint64_array(lr, sizeof (*lr));
1707 
1708 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1709 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1710 	    RL_WRITER);
1711 
1712 	tx = dmu_tx_create(os);
1713 
1714 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1715 
1716 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1717 	if (txg == 0) {
1718 		ztest_range_unlock(rl);
1719 		ztest_object_unlock(zd, lr->lr_foid);
1720 		return (ENOSPC);
1721 	}
1722 
1723 	VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1724 	    lr->lr_length, tx) == 0);
1725 
1726 	(void) ztest_log_truncate(zd, tx, lr);
1727 
1728 	dmu_tx_commit(tx);
1729 
1730 	ztest_range_unlock(rl);
1731 	ztest_object_unlock(zd, lr->lr_foid);
1732 
1733 	return (0);
1734 }
1735 
1736 static int
1737 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
1738 {
1739 	ztest_ds_t *zd = arg1;
1740 	lr_setattr_t *lr = arg2;
1741 	objset_t *os = zd->zd_os;
1742 	dmu_tx_t *tx;
1743 	dmu_buf_t *db;
1744 	ztest_block_tag_t *bbt;
1745 	uint64_t txg, lrtxg, crtxg;
1746 
1747 	if (byteswap)
1748 		byteswap_uint64_array(lr, sizeof (*lr));
1749 
1750 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1751 
1752 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1753 
1754 	tx = dmu_tx_create(os);
1755 	dmu_tx_hold_bonus(tx, lr->lr_foid);
1756 
1757 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1758 	if (txg == 0) {
1759 		dmu_buf_rele(db, FTAG);
1760 		ztest_object_unlock(zd, lr->lr_foid);
1761 		return (ENOSPC);
1762 	}
1763 
1764 	bbt = ztest_bt_bonus(db);
1765 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1766 	crtxg = bbt->bt_crtxg;
1767 	lrtxg = lr->lr_common.lrc_txg;
1768 
1769 	if (zd->zd_zilog->zl_replay) {
1770 		ASSERT(lr->lr_size != 0);
1771 		ASSERT(lr->lr_mode != 0);
1772 		ASSERT(lrtxg != 0);
1773 	} else {
1774 		/*
1775 		 * Randomly change the size and increment the generation.
1776 		 */
1777 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1778 		    sizeof (*bbt);
1779 		lr->lr_mode = bbt->bt_gen + 1;
1780 		ASSERT(lrtxg == 0);
1781 	}
1782 
1783 	/*
1784 	 * Verify that the current bonus buffer is not newer than our txg.
1785 	 */
1786 	ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1787 	    MAX(txg, lrtxg), crtxg);
1788 
1789 	dmu_buf_will_dirty(db, tx);
1790 
1791 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1792 	ASSERT3U(lr->lr_size, <=, db->db_size);
1793 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1794 	bbt = ztest_bt_bonus(db);
1795 
1796 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1797 
1798 	dmu_buf_rele(db, FTAG);
1799 
1800 	(void) ztest_log_setattr(zd, tx, lr);
1801 
1802 	dmu_tx_commit(tx);
1803 
1804 	ztest_object_unlock(zd, lr->lr_foid);
1805 
1806 	return (0);
1807 }
1808 
1809 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1810 	NULL,			/* 0 no such transaction type */
1811 	ztest_replay_create,	/* TX_CREATE */
1812 	NULL,			/* TX_MKDIR */
1813 	NULL,			/* TX_MKXATTR */
1814 	NULL,			/* TX_SYMLINK */
1815 	ztest_replay_remove,	/* TX_REMOVE */
1816 	NULL,			/* TX_RMDIR */
1817 	NULL,			/* TX_LINK */
1818 	NULL,			/* TX_RENAME */
1819 	ztest_replay_write,	/* TX_WRITE */
1820 	ztest_replay_truncate,	/* TX_TRUNCATE */
1821 	ztest_replay_setattr,	/* TX_SETATTR */
1822 	NULL,			/* TX_ACL */
1823 	NULL,			/* TX_CREATE_ACL */
1824 	NULL,			/* TX_CREATE_ATTR */
1825 	NULL,			/* TX_CREATE_ACL_ATTR */
1826 	NULL,			/* TX_MKDIR_ACL */
1827 	NULL,			/* TX_MKDIR_ATTR */
1828 	NULL,			/* TX_MKDIR_ACL_ATTR */
1829 	NULL,			/* TX_WRITE2 */
1830 };
1831 
1832 /*
1833  * ZIL get_data callbacks
1834  */
1835 
1836 static void
1837 ztest_get_done(zgd_t *zgd, int error)
1838 {
1839 	ztest_ds_t *zd = zgd->zgd_private;
1840 	uint64_t object = zgd->zgd_rl->rl_object;
1841 
1842 	if (zgd->zgd_db)
1843 		dmu_buf_rele(zgd->zgd_db, zgd);
1844 
1845 	ztest_range_unlock(zgd->zgd_rl);
1846 	ztest_object_unlock(zd, object);
1847 
1848 	if (error == 0 && zgd->zgd_bp)
1849 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1850 
1851 	umem_free(zgd, sizeof (*zgd));
1852 }
1853 
1854 static int
1855 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb,
1856     zio_t *zio)
1857 {
1858 	ztest_ds_t *zd = arg;
1859 	objset_t *os = zd->zd_os;
1860 	uint64_t object = lr->lr_foid;
1861 	uint64_t offset = lr->lr_offset;
1862 	uint64_t size = lr->lr_length;
1863 	uint64_t txg = lr->lr_common.lrc_txg;
1864 	uint64_t crtxg;
1865 	dmu_object_info_t doi;
1866 	dmu_buf_t *db;
1867 	zgd_t *zgd;
1868 	int error;
1869 
1870 	ASSERT3P(lwb, !=, NULL);
1871 	ASSERT3P(zio, !=, NULL);
1872 	ASSERT3U(size, !=, 0);
1873 
1874 	ztest_object_lock(zd, object, RL_READER);
1875 	error = dmu_bonus_hold(os, object, FTAG, &db);
1876 	if (error) {
1877 		ztest_object_unlock(zd, object);
1878 		return (error);
1879 	}
1880 
1881 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
1882 
1883 	if (crtxg == 0 || crtxg > txg) {
1884 		dmu_buf_rele(db, FTAG);
1885 		ztest_object_unlock(zd, object);
1886 		return (ENOENT);
1887 	}
1888 
1889 	dmu_object_info_from_db(db, &doi);
1890 	dmu_buf_rele(db, FTAG);
1891 	db = NULL;
1892 
1893 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1894 	zgd->zgd_lwb = lwb;
1895 	zgd->zgd_private = zd;
1896 
1897 	if (buf != NULL) {	/* immediate write */
1898 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1899 		    RL_READER);
1900 
1901 		error = dmu_read(os, object, offset, size, buf,
1902 		    DMU_READ_NO_PREFETCH);
1903 		ASSERT(error == 0);
1904 	} else {
1905 		size = doi.doi_data_block_size;
1906 		if (ISP2(size)) {
1907 			offset = P2ALIGN(offset, size);
1908 		} else {
1909 			ASSERT(offset < size);
1910 			offset = 0;
1911 		}
1912 
1913 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1914 		    RL_READER);
1915 
1916 		error = dmu_buf_hold(os, object, offset, zgd, &db,
1917 		    DMU_READ_NO_PREFETCH);
1918 
1919 		if (error == 0) {
1920 			blkptr_t *bp = &lr->lr_blkptr;
1921 
1922 			zgd->zgd_db = db;
1923 			zgd->zgd_bp = bp;
1924 
1925 			ASSERT(db->db_offset == offset);
1926 			ASSERT(db->db_size == size);
1927 
1928 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1929 			    ztest_get_done, zgd);
1930 
1931 			if (error == 0)
1932 				return (0);
1933 		}
1934 	}
1935 
1936 	ztest_get_done(zgd, error);
1937 
1938 	return (error);
1939 }
1940 
1941 static void *
1942 ztest_lr_alloc(size_t lrsize, char *name)
1943 {
1944 	char *lr;
1945 	size_t namesize = name ? strlen(name) + 1 : 0;
1946 
1947 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1948 
1949 	if (name)
1950 		bcopy(name, lr + lrsize, namesize);
1951 
1952 	return (lr);
1953 }
1954 
1955 void
1956 ztest_lr_free(void *lr, size_t lrsize, char *name)
1957 {
1958 	size_t namesize = name ? strlen(name) + 1 : 0;
1959 
1960 	umem_free(lr, lrsize + namesize);
1961 }
1962 
1963 /*
1964  * Lookup a bunch of objects.  Returns the number of objects not found.
1965  */
1966 static int
1967 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1968 {
1969 	int missing = 0;
1970 	int error;
1971 
1972 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1973 
1974 	for (int i = 0; i < count; i++, od++) {
1975 		od->od_object = 0;
1976 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1977 		    sizeof (uint64_t), 1, &od->od_object);
1978 		if (error) {
1979 			ASSERT(error == ENOENT);
1980 			ASSERT(od->od_object == 0);
1981 			missing++;
1982 		} else {
1983 			dmu_buf_t *db;
1984 			ztest_block_tag_t *bbt;
1985 			dmu_object_info_t doi;
1986 
1987 			ASSERT(od->od_object != 0);
1988 			ASSERT(missing == 0);	/* there should be no gaps */
1989 
1990 			ztest_object_lock(zd, od->od_object, RL_READER);
1991 			VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1992 			    od->od_object, FTAG, &db));
1993 			dmu_object_info_from_db(db, &doi);
1994 			bbt = ztest_bt_bonus(db);
1995 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1996 			od->od_type = doi.doi_type;
1997 			od->od_blocksize = doi.doi_data_block_size;
1998 			od->od_gen = bbt->bt_gen;
1999 			dmu_buf_rele(db, FTAG);
2000 			ztest_object_unlock(zd, od->od_object);
2001 		}
2002 	}
2003 
2004 	return (missing);
2005 }
2006 
2007 static int
2008 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2009 {
2010 	int missing = 0;
2011 
2012 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
2013 
2014 	for (int i = 0; i < count; i++, od++) {
2015 		if (missing) {
2016 			od->od_object = 0;
2017 			missing++;
2018 			continue;
2019 		}
2020 
2021 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2022 
2023 		lr->lr_doid = od->od_dir;
2024 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2025 		lr->lrz_type = od->od_crtype;
2026 		lr->lrz_blocksize = od->od_crblocksize;
2027 		lr->lrz_ibshift = ztest_random_ibshift();
2028 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2029 		lr->lrz_bonuslen = dmu_bonus_max();
2030 		lr->lr_gen = od->od_crgen;
2031 		lr->lr_crtime[0] = time(NULL);
2032 
2033 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2034 			ASSERT(missing == 0);
2035 			od->od_object = 0;
2036 			missing++;
2037 		} else {
2038 			od->od_object = lr->lr_foid;
2039 			od->od_type = od->od_crtype;
2040 			od->od_blocksize = od->od_crblocksize;
2041 			od->od_gen = od->od_crgen;
2042 			ASSERT(od->od_object != 0);
2043 		}
2044 
2045 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2046 	}
2047 
2048 	return (missing);
2049 }
2050 
2051 static int
2052 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2053 {
2054 	int missing = 0;
2055 	int error;
2056 
2057 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
2058 
2059 	od += count - 1;
2060 
2061 	for (int i = count - 1; i >= 0; i--, od--) {
2062 		if (missing) {
2063 			missing++;
2064 			continue;
2065 		}
2066 
2067 		/*
2068 		 * No object was found.
2069 		 */
2070 		if (od->od_object == 0)
2071 			continue;
2072 
2073 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2074 
2075 		lr->lr_doid = od->od_dir;
2076 
2077 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2078 			ASSERT3U(error, ==, ENOSPC);
2079 			missing++;
2080 		} else {
2081 			od->od_object = 0;
2082 		}
2083 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2084 	}
2085 
2086 	return (missing);
2087 }
2088 
2089 static int
2090 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2091     void *data)
2092 {
2093 	lr_write_t *lr;
2094 	int error;
2095 
2096 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2097 
2098 	lr->lr_foid = object;
2099 	lr->lr_offset = offset;
2100 	lr->lr_length = size;
2101 	lr->lr_blkoff = 0;
2102 	BP_ZERO(&lr->lr_blkptr);
2103 
2104 	bcopy(data, lr + 1, size);
2105 
2106 	error = ztest_replay_write(zd, lr, B_FALSE);
2107 
2108 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2109 
2110 	return (error);
2111 }
2112 
2113 static int
2114 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2115 {
2116 	lr_truncate_t *lr;
2117 	int error;
2118 
2119 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2120 
2121 	lr->lr_foid = object;
2122 	lr->lr_offset = offset;
2123 	lr->lr_length = size;
2124 
2125 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2126 
2127 	ztest_lr_free(lr, sizeof (*lr), NULL);
2128 
2129 	return (error);
2130 }
2131 
2132 static int
2133 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2134 {
2135 	lr_setattr_t *lr;
2136 	int error;
2137 
2138 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2139 
2140 	lr->lr_foid = object;
2141 	lr->lr_size = 0;
2142 	lr->lr_mode = 0;
2143 
2144 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2145 
2146 	ztest_lr_free(lr, sizeof (*lr), NULL);
2147 
2148 	return (error);
2149 }
2150 
2151 static void
2152 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2153 {
2154 	objset_t *os = zd->zd_os;
2155 	dmu_tx_t *tx;
2156 	uint64_t txg;
2157 	rl_t *rl;
2158 
2159 	txg_wait_synced(dmu_objset_pool(os), 0);
2160 
2161 	ztest_object_lock(zd, object, RL_READER);
2162 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2163 
2164 	tx = dmu_tx_create(os);
2165 
2166 	dmu_tx_hold_write(tx, object, offset, size);
2167 
2168 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2169 
2170 	if (txg != 0) {
2171 		dmu_prealloc(os, object, offset, size, tx);
2172 		dmu_tx_commit(tx);
2173 		txg_wait_synced(dmu_objset_pool(os), txg);
2174 	} else {
2175 		(void) dmu_free_long_range(os, object, offset, size);
2176 	}
2177 
2178 	ztest_range_unlock(rl);
2179 	ztest_object_unlock(zd, object);
2180 }
2181 
2182 static void
2183 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2184 {
2185 	int err;
2186 	ztest_block_tag_t wbt;
2187 	dmu_object_info_t doi;
2188 	enum ztest_io_type io_type;
2189 	uint64_t blocksize;
2190 	void *data;
2191 
2192 	VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2193 	blocksize = doi.doi_data_block_size;
2194 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2195 
2196 	/*
2197 	 * Pick an i/o type at random, biased toward writing block tags.
2198 	 */
2199 	io_type = ztest_random(ZTEST_IO_TYPES);
2200 	if (ztest_random(2) == 0)
2201 		io_type = ZTEST_IO_WRITE_TAG;
2202 
2203 	(void) rw_rdlock(&zd->zd_zilog_lock);
2204 
2205 	switch (io_type) {
2206 
2207 	case ZTEST_IO_WRITE_TAG:
2208 		ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2209 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2210 		break;
2211 
2212 	case ZTEST_IO_WRITE_PATTERN:
2213 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2214 		if (ztest_random(2) == 0) {
2215 			/*
2216 			 * Induce fletcher2 collisions to ensure that
2217 			 * zio_ddt_collision() detects and resolves them
2218 			 * when using fletcher2-verify for deduplication.
2219 			 */
2220 			((uint64_t *)data)[0] ^= 1ULL << 63;
2221 			((uint64_t *)data)[4] ^= 1ULL << 63;
2222 		}
2223 		(void) ztest_write(zd, object, offset, blocksize, data);
2224 		break;
2225 
2226 	case ZTEST_IO_WRITE_ZEROES:
2227 		bzero(data, blocksize);
2228 		(void) ztest_write(zd, object, offset, blocksize, data);
2229 		break;
2230 
2231 	case ZTEST_IO_TRUNCATE:
2232 		(void) ztest_truncate(zd, object, offset, blocksize);
2233 		break;
2234 
2235 	case ZTEST_IO_SETATTR:
2236 		(void) ztest_setattr(zd, object);
2237 		break;
2238 
2239 	case ZTEST_IO_REWRITE:
2240 		(void) rw_rdlock(&ztest_name_lock);
2241 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2242 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2243 		    B_FALSE);
2244 		VERIFY(err == 0 || err == ENOSPC);
2245 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2246 		    ZFS_PROP_COMPRESSION,
2247 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2248 		    B_FALSE);
2249 		VERIFY(err == 0 || err == ENOSPC);
2250 		(void) rw_unlock(&ztest_name_lock);
2251 
2252 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2253 		    DMU_READ_NO_PREFETCH));
2254 
2255 		(void) ztest_write(zd, object, offset, blocksize, data);
2256 		break;
2257 	}
2258 
2259 	(void) rw_unlock(&zd->zd_zilog_lock);
2260 
2261 	umem_free(data, blocksize);
2262 }
2263 
2264 /*
2265  * Initialize an object description template.
2266  */
2267 static void
2268 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2269     dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2270 {
2271 	od->od_dir = ZTEST_DIROBJ;
2272 	od->od_object = 0;
2273 
2274 	od->od_crtype = type;
2275 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2276 	od->od_crgen = gen;
2277 
2278 	od->od_type = DMU_OT_NONE;
2279 	od->od_blocksize = 0;
2280 	od->od_gen = 0;
2281 
2282 	(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2283 	    tag, (int64_t)id, index);
2284 }
2285 
2286 /*
2287  * Lookup or create the objects for a test using the od template.
2288  * If the objects do not all exist, or if 'remove' is specified,
2289  * remove any existing objects and create new ones.  Otherwise,
2290  * use the existing objects.
2291  */
2292 static int
2293 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2294 {
2295 	int count = size / sizeof (*od);
2296 	int rv = 0;
2297 
2298 	VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0);
2299 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2300 	    (ztest_remove(zd, od, count) != 0 ||
2301 	    ztest_create(zd, od, count) != 0))
2302 		rv = -1;
2303 	zd->zd_od = od;
2304 	VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2305 
2306 	return (rv);
2307 }
2308 
2309 /* ARGSUSED */
2310 void
2311 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2312 {
2313 	zilog_t *zilog = zd->zd_zilog;
2314 
2315 	(void) rw_rdlock(&zd->zd_zilog_lock);
2316 
2317 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2318 
2319 	/*
2320 	 * Remember the committed values in zd, which is in parent/child
2321 	 * shared memory.  If we die, the next iteration of ztest_run()
2322 	 * will verify that the log really does contain this record.
2323 	 */
2324 	mutex_enter(&zilog->zl_lock);
2325 	ASSERT(zd->zd_shared != NULL);
2326 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2327 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2328 	mutex_exit(&zilog->zl_lock);
2329 
2330 	(void) rw_unlock(&zd->zd_zilog_lock);
2331 }
2332 
2333 /*
2334  * This function is designed to simulate the operations that occur during a
2335  * mount/unmount operation.  We hold the dataset across these operations in an
2336  * attempt to expose any implicit assumptions about ZIL management.
2337  */
2338 /* ARGSUSED */
2339 void
2340 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2341 {
2342 	objset_t *os = zd->zd_os;
2343 
2344 	/*
2345 	 * We grab the zd_dirobj_lock to ensure that no other thread is
2346 	 * updating the zil (i.e. adding in-memory log records) and the
2347 	 * zd_zilog_lock to block any I/O.
2348 	 */
2349 	VERIFY0(mutex_lock(&zd->zd_dirobj_lock));
2350 	(void) rw_wrlock(&zd->zd_zilog_lock);
2351 
2352 	/* zfsvfs_teardown() */
2353 	zil_close(zd->zd_zilog);
2354 
2355 	/* zfsvfs_setup() */
2356 	VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2357 	zil_replay(os, zd, ztest_replay_vector);
2358 
2359 	(void) rw_unlock(&zd->zd_zilog_lock);
2360 	VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2361 }
2362 
2363 /*
2364  * Verify that we can't destroy an active pool, create an existing pool,
2365  * or create a pool with a bad vdev spec.
2366  */
2367 /* ARGSUSED */
2368 void
2369 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2370 {
2371 	ztest_shared_opts_t *zo = &ztest_opts;
2372 	spa_t *spa;
2373 	nvlist_t *nvroot;
2374 
2375 	/*
2376 	 * Attempt to create using a bad file.
2377 	 */
2378 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2379 	VERIFY3U(ENOENT, ==,
2380 	    spa_create("ztest_bad_file", nvroot, NULL, NULL));
2381 	nvlist_free(nvroot);
2382 
2383 	/*
2384 	 * Attempt to create using a bad mirror.
2385 	 */
2386 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2387 	VERIFY3U(ENOENT, ==,
2388 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2389 	nvlist_free(nvroot);
2390 
2391 	/*
2392 	 * Attempt to create an existing pool.  It shouldn't matter
2393 	 * what's in the nvroot; we should fail with EEXIST.
2394 	 */
2395 	(void) rw_rdlock(&ztest_name_lock);
2396 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2397 	VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2398 	nvlist_free(nvroot);
2399 	VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2400 	VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2401 	spa_close(spa, FTAG);
2402 
2403 	(void) rw_unlock(&ztest_name_lock);
2404 }
2405 
2406 /* ARGSUSED */
2407 void
2408 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2409 {
2410 	spa_t *spa;
2411 	uint64_t initial_version = SPA_VERSION_INITIAL;
2412 	uint64_t version, newversion;
2413 	nvlist_t *nvroot, *props;
2414 	char *name;
2415 
2416 	VERIFY0(mutex_lock(&ztest_vdev_lock));
2417 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2418 
2419 	/*
2420 	 * Clean up from previous runs.
2421 	 */
2422 	(void) spa_destroy(name);
2423 
2424 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2425 	    0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2426 
2427 	/*
2428 	 * If we're configuring a RAIDZ device then make sure that the
2429 	 * the initial version is capable of supporting that feature.
2430 	 */
2431 	switch (ztest_opts.zo_raidz_parity) {
2432 	case 0:
2433 	case 1:
2434 		initial_version = SPA_VERSION_INITIAL;
2435 		break;
2436 	case 2:
2437 		initial_version = SPA_VERSION_RAIDZ2;
2438 		break;
2439 	case 3:
2440 		initial_version = SPA_VERSION_RAIDZ3;
2441 		break;
2442 	}
2443 
2444 	/*
2445 	 * Create a pool with a spa version that can be upgraded. Pick
2446 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2447 	 */
2448 	do {
2449 		version = ztest_random_spa_version(initial_version);
2450 	} while (version > SPA_VERSION_BEFORE_FEATURES);
2451 
2452 	props = fnvlist_alloc();
2453 	fnvlist_add_uint64(props,
2454 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2455 	VERIFY0(spa_create(name, nvroot, props, NULL));
2456 	fnvlist_free(nvroot);
2457 	fnvlist_free(props);
2458 
2459 	VERIFY0(spa_open(name, &spa, FTAG));
2460 	VERIFY3U(spa_version(spa), ==, version);
2461 	newversion = ztest_random_spa_version(version + 1);
2462 
2463 	if (ztest_opts.zo_verbose >= 4) {
2464 		(void) printf("upgrading spa version from %llu to %llu\n",
2465 		    (u_longlong_t)version, (u_longlong_t)newversion);
2466 	}
2467 
2468 	spa_upgrade(spa, newversion);
2469 	VERIFY3U(spa_version(spa), >, version);
2470 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2471 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2472 	spa_close(spa, FTAG);
2473 
2474 	strfree(name);
2475 	VERIFY0(mutex_unlock(&ztest_vdev_lock));
2476 }
2477 
2478 static vdev_t *
2479 vdev_lookup_by_path(vdev_t *vd, const char *path)
2480 {
2481 	vdev_t *mvd;
2482 
2483 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2484 		return (vd);
2485 
2486 	for (int c = 0; c < vd->vdev_children; c++)
2487 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2488 		    NULL)
2489 			return (mvd);
2490 
2491 	return (NULL);
2492 }
2493 
2494 /*
2495  * Find the first available hole which can be used as a top-level.
2496  */
2497 int
2498 find_vdev_hole(spa_t *spa)
2499 {
2500 	vdev_t *rvd = spa->spa_root_vdev;
2501 	int c;
2502 
2503 	ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2504 
2505 	for (c = 0; c < rvd->vdev_children; c++) {
2506 		vdev_t *cvd = rvd->vdev_child[c];
2507 
2508 		if (cvd->vdev_ishole)
2509 			break;
2510 	}
2511 	return (c);
2512 }
2513 
2514 /*
2515  * Verify that vdev_add() works as expected.
2516  */
2517 /* ARGSUSED */
2518 void
2519 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2520 {
2521 	ztest_shared_t *zs = ztest_shared;
2522 	spa_t *spa = ztest_spa;
2523 	uint64_t leaves;
2524 	uint64_t guid;
2525 	nvlist_t *nvroot;
2526 	int error;
2527 
2528 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2529 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2530 
2531 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2532 
2533 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2534 
2535 	/*
2536 	 * If we have slogs then remove them 1/4 of the time.
2537 	 */
2538 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2539 		/*
2540 		 * Grab the guid from the head of the log class rotor.
2541 		 */
2542 		guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2543 
2544 		spa_config_exit(spa, SCL_VDEV, FTAG);
2545 
2546 		/*
2547 		 * We have to grab the zs_name_lock as writer to
2548 		 * prevent a race between removing a slog (dmu_objset_find)
2549 		 * and destroying a dataset. Removing the slog will
2550 		 * grab a reference on the dataset which may cause
2551 		 * dmu_objset_destroy() to fail with EBUSY thus
2552 		 * leaving the dataset in an inconsistent state.
2553 		 */
2554 		VERIFY(rw_wrlock(&ztest_name_lock) == 0);
2555 		error = spa_vdev_remove(spa, guid, B_FALSE);
2556 		VERIFY(rw_unlock(&ztest_name_lock) == 0);
2557 
2558 		if (error && error != EEXIST)
2559 			fatal(0, "spa_vdev_remove() = %d", error);
2560 	} else {
2561 		spa_config_exit(spa, SCL_VDEV, FTAG);
2562 
2563 		/*
2564 		 * Make 1/4 of the devices be log devices.
2565 		 */
2566 		nvroot = make_vdev_root(NULL, NULL, NULL,
2567 		    ztest_opts.zo_vdev_size, 0,
2568 		    ztest_random(4) == 0, ztest_opts.zo_raidz,
2569 		    zs->zs_mirrors, 1);
2570 
2571 		error = spa_vdev_add(spa, nvroot);
2572 		nvlist_free(nvroot);
2573 
2574 		if (error == ENOSPC)
2575 			ztest_record_enospc("spa_vdev_add");
2576 		else if (error != 0)
2577 			fatal(0, "spa_vdev_add() = %d", error);
2578 	}
2579 
2580 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2581 }
2582 
2583 /*
2584  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2585  */
2586 /* ARGSUSED */
2587 void
2588 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2589 {
2590 	ztest_shared_t *zs = ztest_shared;
2591 	spa_t *spa = ztest_spa;
2592 	vdev_t *rvd = spa->spa_root_vdev;
2593 	spa_aux_vdev_t *sav;
2594 	char *aux;
2595 	uint64_t guid = 0;
2596 	int error;
2597 
2598 	if (ztest_random(2) == 0) {
2599 		sav = &spa->spa_spares;
2600 		aux = ZPOOL_CONFIG_SPARES;
2601 	} else {
2602 		sav = &spa->spa_l2cache;
2603 		aux = ZPOOL_CONFIG_L2CACHE;
2604 	}
2605 
2606 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2607 
2608 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2609 
2610 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
2611 		/*
2612 		 * Pick a random device to remove.
2613 		 */
2614 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2615 	} else {
2616 		/*
2617 		 * Find an unused device we can add.
2618 		 */
2619 		zs->zs_vdev_aux = 0;
2620 		for (;;) {
2621 			char path[MAXPATHLEN];
2622 			int c;
2623 			(void) snprintf(path, sizeof (path), ztest_aux_template,
2624 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2625 			    zs->zs_vdev_aux);
2626 			for (c = 0; c < sav->sav_count; c++)
2627 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
2628 				    path) == 0)
2629 					break;
2630 			if (c == sav->sav_count &&
2631 			    vdev_lookup_by_path(rvd, path) == NULL)
2632 				break;
2633 			zs->zs_vdev_aux++;
2634 		}
2635 	}
2636 
2637 	spa_config_exit(spa, SCL_VDEV, FTAG);
2638 
2639 	if (guid == 0) {
2640 		/*
2641 		 * Add a new device.
2642 		 */
2643 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2644 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2645 		error = spa_vdev_add(spa, nvroot);
2646 		if (error != 0)
2647 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2648 		nvlist_free(nvroot);
2649 	} else {
2650 		/*
2651 		 * Remove an existing device.  Sometimes, dirty its
2652 		 * vdev state first to make sure we handle removal
2653 		 * of devices that have pending state changes.
2654 		 */
2655 		if (ztest_random(2) == 0)
2656 			(void) vdev_online(spa, guid, 0, NULL);
2657 
2658 		error = spa_vdev_remove(spa, guid, B_FALSE);
2659 		if (error != 0 && error != EBUSY)
2660 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2661 	}
2662 
2663 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2664 }
2665 
2666 /*
2667  * split a pool if it has mirror tlvdevs
2668  */
2669 /* ARGSUSED */
2670 void
2671 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2672 {
2673 	ztest_shared_t *zs = ztest_shared;
2674 	spa_t *spa = ztest_spa;
2675 	vdev_t *rvd = spa->spa_root_vdev;
2676 	nvlist_t *tree, **child, *config, *split, **schild;
2677 	uint_t c, children, schildren = 0, lastlogid = 0;
2678 	int error = 0;
2679 
2680 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2681 
2682 	/* ensure we have a useable config; mirrors of raidz aren't supported */
2683 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2684 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2685 		return;
2686 	}
2687 
2688 	/* clean up the old pool, if any */
2689 	(void) spa_destroy("splitp");
2690 
2691 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2692 
2693 	/* generate a config from the existing config */
2694 	mutex_enter(&spa->spa_props_lock);
2695 	VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2696 	    &tree) == 0);
2697 	mutex_exit(&spa->spa_props_lock);
2698 
2699 	VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2700 	    &children) == 0);
2701 
2702 	schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2703 	for (c = 0; c < children; c++) {
2704 		vdev_t *tvd = rvd->vdev_child[c];
2705 		nvlist_t **mchild;
2706 		uint_t mchildren;
2707 
2708 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2709 			VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2710 			    0) == 0);
2711 			VERIFY(nvlist_add_string(schild[schildren],
2712 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2713 			VERIFY(nvlist_add_uint64(schild[schildren],
2714 			    ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2715 			if (lastlogid == 0)
2716 				lastlogid = schildren;
2717 			++schildren;
2718 			continue;
2719 		}
2720 		lastlogid = 0;
2721 		VERIFY(nvlist_lookup_nvlist_array(child[c],
2722 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2723 		VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2724 	}
2725 
2726 	/* OK, create a config that can be used to split */
2727 	VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2728 	VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2729 	    VDEV_TYPE_ROOT) == 0);
2730 	VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2731 	    lastlogid != 0 ? lastlogid : schildren) == 0);
2732 
2733 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2734 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2735 
2736 	for (c = 0; c < schildren; c++)
2737 		nvlist_free(schild[c]);
2738 	free(schild);
2739 	nvlist_free(split);
2740 
2741 	spa_config_exit(spa, SCL_VDEV, FTAG);
2742 
2743 	(void) rw_wrlock(&ztest_name_lock);
2744 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2745 	(void) rw_unlock(&ztest_name_lock);
2746 
2747 	nvlist_free(config);
2748 
2749 	if (error == 0) {
2750 		(void) printf("successful split - results:\n");
2751 		mutex_enter(&spa_namespace_lock);
2752 		show_pool_stats(spa);
2753 		show_pool_stats(spa_lookup("splitp"));
2754 		mutex_exit(&spa_namespace_lock);
2755 		++zs->zs_splits;
2756 		--zs->zs_mirrors;
2757 	}
2758 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2759 
2760 }
2761 
2762 /*
2763  * Verify that we can attach and detach devices.
2764  */
2765 /* ARGSUSED */
2766 void
2767 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2768 {
2769 	ztest_shared_t *zs = ztest_shared;
2770 	spa_t *spa = ztest_spa;
2771 	spa_aux_vdev_t *sav = &spa->spa_spares;
2772 	vdev_t *rvd = spa->spa_root_vdev;
2773 	vdev_t *oldvd, *newvd, *pvd;
2774 	nvlist_t *root;
2775 	uint64_t leaves;
2776 	uint64_t leaf, top;
2777 	uint64_t ashift = ztest_get_ashift();
2778 	uint64_t oldguid, pguid;
2779 	uint64_t oldsize, newsize;
2780 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2781 	int replacing;
2782 	int oldvd_has_siblings = B_FALSE;
2783 	int newvd_is_spare = B_FALSE;
2784 	int oldvd_is_log;
2785 	int error, expected_error;
2786 
2787 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2788 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2789 
2790 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2791 
2792 	/*
2793 	 * If a vdev is in the process of being removed, its removal may
2794 	 * finish while we are in progress, leading to an unexpected error
2795 	 * value.  Don't bother trying to attach while we are in the middle
2796 	 * of removal.
2797 	 */
2798 	if (spa->spa_vdev_removal != NULL) {
2799 		spa_config_exit(spa, SCL_ALL, FTAG);
2800 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2801 		return;
2802 	}
2803 
2804 	/*
2805 	 * Decide whether to do an attach or a replace.
2806 	 */
2807 	replacing = ztest_random(2);
2808 
2809 	/*
2810 	 * Pick a random top-level vdev.
2811 	 */
2812 	top = ztest_random_vdev_top(spa, B_TRUE);
2813 
2814 	/*
2815 	 * Pick a random leaf within it.
2816 	 */
2817 	leaf = ztest_random(leaves);
2818 
2819 	/*
2820 	 * Locate this vdev.
2821 	 */
2822 	oldvd = rvd->vdev_child[top];
2823 	if (zs->zs_mirrors >= 1) {
2824 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2825 		ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2826 		oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2827 	}
2828 	if (ztest_opts.zo_raidz > 1) {
2829 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2830 		ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2831 		oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2832 	}
2833 
2834 	/*
2835 	 * If we're already doing an attach or replace, oldvd may be a
2836 	 * mirror vdev -- in which case, pick a random child.
2837 	 */
2838 	while (oldvd->vdev_children != 0) {
2839 		oldvd_has_siblings = B_TRUE;
2840 		ASSERT(oldvd->vdev_children >= 2);
2841 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2842 	}
2843 
2844 	oldguid = oldvd->vdev_guid;
2845 	oldsize = vdev_get_min_asize(oldvd);
2846 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
2847 	(void) strcpy(oldpath, oldvd->vdev_path);
2848 	pvd = oldvd->vdev_parent;
2849 	pguid = pvd->vdev_guid;
2850 
2851 	/*
2852 	 * If oldvd has siblings, then half of the time, detach it.
2853 	 */
2854 	if (oldvd_has_siblings && ztest_random(2) == 0) {
2855 		spa_config_exit(spa, SCL_ALL, FTAG);
2856 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2857 		if (error != 0 && error != ENODEV && error != EBUSY &&
2858 		    error != ENOTSUP)
2859 			fatal(0, "detach (%s) returned %d", oldpath, error);
2860 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2861 		return;
2862 	}
2863 
2864 	/*
2865 	 * For the new vdev, choose with equal probability between the two
2866 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2867 	 */
2868 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
2869 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2870 		newvd_is_spare = B_TRUE;
2871 		(void) strcpy(newpath, newvd->vdev_path);
2872 	} else {
2873 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
2874 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
2875 		    top * leaves + leaf);
2876 		if (ztest_random(2) == 0)
2877 			newpath[strlen(newpath) - 1] = 'b';
2878 		newvd = vdev_lookup_by_path(rvd, newpath);
2879 	}
2880 
2881 	if (newvd) {
2882 		/*
2883 		 * Reopen to ensure the vdev's asize field isn't stale.
2884 		 */
2885 		vdev_reopen(newvd);
2886 		newsize = vdev_get_min_asize(newvd);
2887 	} else {
2888 		/*
2889 		 * Make newsize a little bigger or smaller than oldsize.
2890 		 * If it's smaller, the attach should fail.
2891 		 * If it's larger, and we're doing a replace,
2892 		 * we should get dynamic LUN growth when we're done.
2893 		 */
2894 		newsize = 10 * oldsize / (9 + ztest_random(3));
2895 	}
2896 
2897 	/*
2898 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2899 	 * unless it's a replace; in that case any non-replacing parent is OK.
2900 	 *
2901 	 * If newvd is already part of the pool, it should fail with EBUSY.
2902 	 *
2903 	 * If newvd is too small, it should fail with EOVERFLOW.
2904 	 */
2905 	if (pvd->vdev_ops != &vdev_mirror_ops &&
2906 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2907 	    pvd->vdev_ops == &vdev_replacing_ops ||
2908 	    pvd->vdev_ops == &vdev_spare_ops))
2909 		expected_error = ENOTSUP;
2910 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
2911 		expected_error = ENOTSUP;
2912 	else if (newvd == oldvd)
2913 		expected_error = replacing ? 0 : EBUSY;
2914 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2915 		expected_error = EBUSY;
2916 	else if (newsize < oldsize)
2917 		expected_error = EOVERFLOW;
2918 	else if (ashift > oldvd->vdev_top->vdev_ashift)
2919 		expected_error = EDOM;
2920 	else
2921 		expected_error = 0;
2922 
2923 	spa_config_exit(spa, SCL_ALL, FTAG);
2924 
2925 	/*
2926 	 * Build the nvlist describing newpath.
2927 	 */
2928 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
2929 	    ashift, 0, 0, 0, 1);
2930 
2931 	error = spa_vdev_attach(spa, oldguid, root, replacing);
2932 
2933 	nvlist_free(root);
2934 
2935 	/*
2936 	 * If our parent was the replacing vdev, but the replace completed,
2937 	 * then instead of failing with ENOTSUP we may either succeed,
2938 	 * fail with ENODEV, or fail with EOVERFLOW.
2939 	 */
2940 	if (expected_error == ENOTSUP &&
2941 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
2942 		expected_error = error;
2943 
2944 	/*
2945 	 * If someone grew the LUN, the replacement may be too small.
2946 	 */
2947 	if (error == EOVERFLOW || error == EBUSY)
2948 		expected_error = error;
2949 
2950 	/* XXX workaround 6690467 */
2951 	if (error != expected_error && expected_error != EBUSY) {
2952 		fatal(0, "attach (%s %llu, %s %llu, %d) "
2953 		    "returned %d, expected %d",
2954 		    oldpath, oldsize, newpath,
2955 		    newsize, replacing, error, expected_error);
2956 	}
2957 
2958 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2959 }
2960 
2961 /* ARGSUSED */
2962 void
2963 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
2964 {
2965 	spa_t *spa = ztest_spa;
2966 	vdev_t *vd;
2967 	uint64_t guid;
2968 
2969 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2970 
2971 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2972 	vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
2973 	guid = vd->vdev_guid;
2974 	spa_config_exit(spa, SCL_VDEV, FTAG);
2975 
2976 	(void) spa_vdev_remove(spa, guid, B_FALSE);
2977 
2978 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2979 }
2980 
2981 /*
2982  * Callback function which expands the physical size of the vdev.
2983  */
2984 vdev_t *
2985 grow_vdev(vdev_t *vd, void *arg)
2986 {
2987 	spa_t *spa = vd->vdev_spa;
2988 	size_t *newsize = arg;
2989 	size_t fsize;
2990 	int fd;
2991 
2992 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2993 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2994 
2995 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2996 		return (vd);
2997 
2998 	fsize = lseek(fd, 0, SEEK_END);
2999 	(void) ftruncate(fd, *newsize);
3000 
3001 	if (ztest_opts.zo_verbose >= 6) {
3002 		(void) printf("%s grew from %lu to %lu bytes\n",
3003 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3004 	}
3005 	(void) close(fd);
3006 	return (NULL);
3007 }
3008 
3009 /*
3010  * Callback function which expands a given vdev by calling vdev_online().
3011  */
3012 /* ARGSUSED */
3013 vdev_t *
3014 online_vdev(vdev_t *vd, void *arg)
3015 {
3016 	spa_t *spa = vd->vdev_spa;
3017 	vdev_t *tvd = vd->vdev_top;
3018 	uint64_t guid = vd->vdev_guid;
3019 	uint64_t generation = spa->spa_config_generation + 1;
3020 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3021 	int error;
3022 
3023 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3024 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3025 
3026 	/* Calling vdev_online will initialize the new metaslabs */
3027 	spa_config_exit(spa, SCL_STATE, spa);
3028 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3029 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3030 
3031 	/*
3032 	 * If vdev_online returned an error or the underlying vdev_open
3033 	 * failed then we abort the expand. The only way to know that
3034 	 * vdev_open fails is by checking the returned newstate.
3035 	 */
3036 	if (error || newstate != VDEV_STATE_HEALTHY) {
3037 		if (ztest_opts.zo_verbose >= 5) {
3038 			(void) printf("Unable to expand vdev, state %llu, "
3039 			    "error %d\n", (u_longlong_t)newstate, error);
3040 		}
3041 		return (vd);
3042 	}
3043 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3044 
3045 	/*
3046 	 * Since we dropped the lock we need to ensure that we're
3047 	 * still talking to the original vdev. It's possible this
3048 	 * vdev may have been detached/replaced while we were
3049 	 * trying to online it.
3050 	 */
3051 	if (generation != spa->spa_config_generation) {
3052 		if (ztest_opts.zo_verbose >= 5) {
3053 			(void) printf("vdev configuration has changed, "
3054 			    "guid %llu, state %llu, expected gen %llu, "
3055 			    "got gen %llu\n",
3056 			    (u_longlong_t)guid,
3057 			    (u_longlong_t)tvd->vdev_state,
3058 			    (u_longlong_t)generation,
3059 			    (u_longlong_t)spa->spa_config_generation);
3060 		}
3061 		return (vd);
3062 	}
3063 	return (NULL);
3064 }
3065 
3066 /*
3067  * Traverse the vdev tree calling the supplied function.
3068  * We continue to walk the tree until we either have walked all
3069  * children or we receive a non-NULL return from the callback.
3070  * If a NULL callback is passed, then we just return back the first
3071  * leaf vdev we encounter.
3072  */
3073 vdev_t *
3074 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3075 {
3076 	if (vd->vdev_ops->vdev_op_leaf) {
3077 		if (func == NULL)
3078 			return (vd);
3079 		else
3080 			return (func(vd, arg));
3081 	}
3082 
3083 	for (uint_t c = 0; c < vd->vdev_children; c++) {
3084 		vdev_t *cvd = vd->vdev_child[c];
3085 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3086 			return (cvd);
3087 	}
3088 	return (NULL);
3089 }
3090 
3091 /*
3092  * Verify that dynamic LUN growth works as expected.
3093  */
3094 /* ARGSUSED */
3095 void
3096 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3097 {
3098 	spa_t *spa = ztest_spa;
3099 	vdev_t *vd, *tvd;
3100 	metaslab_class_t *mc;
3101 	metaslab_group_t *mg;
3102 	size_t psize, newsize;
3103 	uint64_t top;
3104 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3105 
3106 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
3107 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3108 
3109 	/*
3110 	 * If there is a vdev removal in progress, it could complete while
3111 	 * we are running, in which case we would not be able to verify
3112 	 * that the metaslab_class space increased (because it decreases
3113 	 * when the device removal completes).
3114 	 */
3115 	if (spa->spa_vdev_removal != NULL) {
3116 		spa_config_exit(spa, SCL_STATE, FTAG);
3117 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3118 		return;
3119 	}
3120 
3121 	top = ztest_random_vdev_top(spa, B_TRUE);
3122 
3123 	tvd = spa->spa_root_vdev->vdev_child[top];
3124 	mg = tvd->vdev_mg;
3125 	mc = mg->mg_class;
3126 	old_ms_count = tvd->vdev_ms_count;
3127 	old_class_space = metaslab_class_get_space(mc);
3128 
3129 	/*
3130 	 * Determine the size of the first leaf vdev associated with
3131 	 * our top-level device.
3132 	 */
3133 	vd = vdev_walk_tree(tvd, NULL, NULL);
3134 	ASSERT3P(vd, !=, NULL);
3135 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3136 
3137 	psize = vd->vdev_psize;
3138 
3139 	/*
3140 	 * We only try to expand the vdev if it's healthy, less than 4x its
3141 	 * original size, and it has a valid psize.
3142 	 */
3143 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3144 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3145 		spa_config_exit(spa, SCL_STATE, spa);
3146 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3147 		return;
3148 	}
3149 	ASSERT(psize > 0);
3150 	newsize = psize + psize / 8;
3151 	ASSERT3U(newsize, >, psize);
3152 
3153 	if (ztest_opts.zo_verbose >= 6) {
3154 		(void) printf("Expanding LUN %s from %lu to %lu\n",
3155 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3156 	}
3157 
3158 	/*
3159 	 * Growing the vdev is a two step process:
3160 	 *	1). expand the physical size (i.e. relabel)
3161 	 *	2). online the vdev to create the new metaslabs
3162 	 */
3163 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3164 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3165 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
3166 		if (ztest_opts.zo_verbose >= 5) {
3167 			(void) printf("Could not expand LUN because "
3168 			    "the vdev configuration changed.\n");
3169 		}
3170 		spa_config_exit(spa, SCL_STATE, spa);
3171 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3172 		return;
3173 	}
3174 
3175 	spa_config_exit(spa, SCL_STATE, spa);
3176 
3177 	/*
3178 	 * Expanding the LUN will update the config asynchronously,
3179 	 * thus we must wait for the async thread to complete any
3180 	 * pending tasks before proceeding.
3181 	 */
3182 	for (;;) {
3183 		boolean_t done;
3184 		mutex_enter(&spa->spa_async_lock);
3185 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3186 		mutex_exit(&spa->spa_async_lock);
3187 		if (done)
3188 			break;
3189 		txg_wait_synced(spa_get_dsl(spa), 0);
3190 		(void) poll(NULL, 0, 100);
3191 	}
3192 
3193 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3194 
3195 	tvd = spa->spa_root_vdev->vdev_child[top];
3196 	new_ms_count = tvd->vdev_ms_count;
3197 	new_class_space = metaslab_class_get_space(mc);
3198 
3199 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3200 		if (ztest_opts.zo_verbose >= 5) {
3201 			(void) printf("Could not verify LUN expansion due to "
3202 			    "intervening vdev offline or remove.\n");
3203 		}
3204 		spa_config_exit(spa, SCL_STATE, spa);
3205 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3206 		return;
3207 	}
3208 
3209 	/*
3210 	 * Make sure we were able to grow the vdev.
3211 	 */
3212 	if (new_ms_count <= old_ms_count) {
3213 		fatal(0, "LUN expansion failed: ms_count %llu < %llu\n",
3214 		    old_ms_count, new_ms_count);
3215 	}
3216 
3217 	/*
3218 	 * Make sure we were able to grow the pool.
3219 	 */
3220 	if (new_class_space <= old_class_space) {
3221 		fatal(0, "LUN expansion failed: class_space %llu < %llu\n",
3222 		    old_class_space, new_class_space);
3223 	}
3224 
3225 	if (ztest_opts.zo_verbose >= 5) {
3226 		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
3227 
3228 		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
3229 		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
3230 		(void) printf("%s grew from %s to %s\n",
3231 		    spa->spa_name, oldnumbuf, newnumbuf);
3232 	}
3233 
3234 	spa_config_exit(spa, SCL_STATE, spa);
3235 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3236 }
3237 
3238 /*
3239  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3240  */
3241 /* ARGSUSED */
3242 static void
3243 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3244 {
3245 	/*
3246 	 * Create the objects common to all ztest datasets.
3247 	 */
3248 	VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3249 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3250 }
3251 
3252 static int
3253 ztest_dataset_create(char *dsname)
3254 {
3255 	uint64_t zilset = ztest_random(100);
3256 	int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3257 	    ztest_objset_create_cb, NULL);
3258 
3259 	if (err || zilset < 80)
3260 		return (err);
3261 
3262 	if (ztest_opts.zo_verbose >= 6)
3263 		(void) printf("Setting dataset %s to sync always\n", dsname);
3264 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3265 	    ZFS_SYNC_ALWAYS, B_FALSE));
3266 }
3267 
3268 /* ARGSUSED */
3269 static int
3270 ztest_objset_destroy_cb(const char *name, void *arg)
3271 {
3272 	objset_t *os;
3273 	dmu_object_info_t doi;
3274 	int error;
3275 
3276 	/*
3277 	 * Verify that the dataset contains a directory object.
3278 	 */
3279 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3280 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3281 	if (error != ENOENT) {
3282 		/* We could have crashed in the middle of destroying it */
3283 		ASSERT0(error);
3284 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3285 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3286 	}
3287 	dmu_objset_disown(os, FTAG);
3288 
3289 	/*
3290 	 * Destroy the dataset.
3291 	 */
3292 	if (strchr(name, '@') != NULL) {
3293 		VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
3294 	} else {
3295 		error = dsl_destroy_head(name);
3296 		/* There could be a hold on this dataset */
3297 		if (error != EBUSY)
3298 			ASSERT0(error);
3299 	}
3300 	return (0);
3301 }
3302 
3303 static boolean_t
3304 ztest_snapshot_create(char *osname, uint64_t id)
3305 {
3306 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3307 	int error;
3308 
3309 	(void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3310 
3311 	error = dmu_objset_snapshot_one(osname, snapname);
3312 	if (error == ENOSPC) {
3313 		ztest_record_enospc(FTAG);
3314 		return (B_FALSE);
3315 	}
3316 	if (error != 0 && error != EEXIST) {
3317 		fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3318 		    snapname, error);
3319 	}
3320 	return (B_TRUE);
3321 }
3322 
3323 static boolean_t
3324 ztest_snapshot_destroy(char *osname, uint64_t id)
3325 {
3326 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3327 	int error;
3328 
3329 	(void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3330 	    (u_longlong_t)id);
3331 
3332 	error = dsl_destroy_snapshot(snapname, B_FALSE);
3333 	if (error != 0 && error != ENOENT)
3334 		fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3335 	return (B_TRUE);
3336 }
3337 
3338 /* ARGSUSED */
3339 void
3340 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3341 {
3342 	ztest_ds_t zdtmp;
3343 	int iters;
3344 	int error;
3345 	objset_t *os, *os2;
3346 	char name[ZFS_MAX_DATASET_NAME_LEN];
3347 	zilog_t *zilog;
3348 
3349 	(void) rw_rdlock(&ztest_name_lock);
3350 
3351 	(void) snprintf(name, sizeof (name), "%s/temp_%llu",
3352 	    ztest_opts.zo_pool, (u_longlong_t)id);
3353 
3354 	/*
3355 	 * If this dataset exists from a previous run, process its replay log
3356 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
3357 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3358 	 */
3359 	if (ztest_random(2) == 0 &&
3360 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3361 		ztest_zd_init(&zdtmp, NULL, os);
3362 		zil_replay(os, &zdtmp, ztest_replay_vector);
3363 		ztest_zd_fini(&zdtmp);
3364 		dmu_objset_disown(os, FTAG);
3365 	}
3366 
3367 	/*
3368 	 * There may be an old instance of the dataset we're about to
3369 	 * create lying around from a previous run.  If so, destroy it
3370 	 * and all of its snapshots.
3371 	 */
3372 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3373 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3374 
3375 	/*
3376 	 * Verify that the destroyed dataset is no longer in the namespace.
3377 	 */
3378 	VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3379 	    FTAG, &os));
3380 
3381 	/*
3382 	 * Verify that we can create a new dataset.
3383 	 */
3384 	error = ztest_dataset_create(name);
3385 	if (error) {
3386 		if (error == ENOSPC) {
3387 			ztest_record_enospc(FTAG);
3388 			(void) rw_unlock(&ztest_name_lock);
3389 			return;
3390 		}
3391 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
3392 	}
3393 
3394 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3395 
3396 	ztest_zd_init(&zdtmp, NULL, os);
3397 
3398 	/*
3399 	 * Open the intent log for it.
3400 	 */
3401 	zilog = zil_open(os, ztest_get_data);
3402 
3403 	/*
3404 	 * Put some objects in there, do a little I/O to them,
3405 	 * and randomly take a couple of snapshots along the way.
3406 	 */
3407 	iters = ztest_random(5);
3408 	for (int i = 0; i < iters; i++) {
3409 		ztest_dmu_object_alloc_free(&zdtmp, id);
3410 		if (ztest_random(iters) == 0)
3411 			(void) ztest_snapshot_create(name, i);
3412 	}
3413 
3414 	/*
3415 	 * Verify that we cannot create an existing dataset.
3416 	 */
3417 	VERIFY3U(EEXIST, ==,
3418 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3419 
3420 	/*
3421 	 * Verify that we can hold an objset that is also owned.
3422 	 */
3423 	VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3424 	dmu_objset_rele(os2, FTAG);
3425 
3426 	/*
3427 	 * Verify that we cannot own an objset that is already owned.
3428 	 */
3429 	VERIFY3U(EBUSY, ==,
3430 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3431 
3432 	zil_close(zilog);
3433 	dmu_objset_disown(os, FTAG);
3434 	ztest_zd_fini(&zdtmp);
3435 
3436 	(void) rw_unlock(&ztest_name_lock);
3437 }
3438 
3439 /*
3440  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3441  */
3442 void
3443 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3444 {
3445 	(void) rw_rdlock(&ztest_name_lock);
3446 	(void) ztest_snapshot_destroy(zd->zd_name, id);
3447 	(void) ztest_snapshot_create(zd->zd_name, id);
3448 	(void) rw_unlock(&ztest_name_lock);
3449 }
3450 
3451 /*
3452  * Cleanup non-standard snapshots and clones.
3453  */
3454 void
3455 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3456 {
3457 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3458 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3459 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3460 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3461 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3462 	int error;
3463 
3464 	(void) snprintf(snap1name, sizeof (snap1name),
3465 	    "%s@s1_%llu", osname, id);
3466 	(void) snprintf(clone1name, sizeof (clone1name),
3467 	    "%s/c1_%llu", osname, id);
3468 	(void) snprintf(snap2name, sizeof (snap2name),
3469 	    "%s@s2_%llu", clone1name, id);
3470 	(void) snprintf(clone2name, sizeof (clone2name),
3471 	    "%s/c2_%llu", osname, id);
3472 	(void) snprintf(snap3name, sizeof (snap3name),
3473 	    "%s@s3_%llu", clone1name, id);
3474 
3475 	error = dsl_destroy_head(clone2name);
3476 	if (error && error != ENOENT)
3477 		fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3478 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
3479 	if (error && error != ENOENT)
3480 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3481 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
3482 	if (error && error != ENOENT)
3483 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3484 	error = dsl_destroy_head(clone1name);
3485 	if (error && error != ENOENT)
3486 		fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3487 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
3488 	if (error && error != ENOENT)
3489 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3490 }
3491 
3492 /*
3493  * Verify dsl_dataset_promote handles EBUSY
3494  */
3495 void
3496 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3497 {
3498 	objset_t *os;
3499 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3500 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3501 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3502 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3503 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3504 	char *osname = zd->zd_name;
3505 	int error;
3506 
3507 	(void) rw_rdlock(&ztest_name_lock);
3508 
3509 	ztest_dsl_dataset_cleanup(osname, id);
3510 
3511 	(void) snprintf(snap1name, sizeof (snap1name),
3512 	    "%s@s1_%llu", osname, id);
3513 	(void) snprintf(clone1name, sizeof (clone1name),
3514 	    "%s/c1_%llu", osname, id);
3515 	(void) snprintf(snap2name, sizeof (snap2name),
3516 	    "%s@s2_%llu", clone1name, id);
3517 	(void) snprintf(clone2name, sizeof (clone2name),
3518 	    "%s/c2_%llu", osname, id);
3519 	(void) snprintf(snap3name, sizeof (snap3name),
3520 	    "%s@s3_%llu", clone1name, id);
3521 
3522 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3523 	if (error && error != EEXIST) {
3524 		if (error == ENOSPC) {
3525 			ztest_record_enospc(FTAG);
3526 			goto out;
3527 		}
3528 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3529 	}
3530 
3531 	error = dmu_objset_clone(clone1name, snap1name);
3532 	if (error) {
3533 		if (error == ENOSPC) {
3534 			ztest_record_enospc(FTAG);
3535 			goto out;
3536 		}
3537 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3538 	}
3539 
3540 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3541 	if (error && error != EEXIST) {
3542 		if (error == ENOSPC) {
3543 			ztest_record_enospc(FTAG);
3544 			goto out;
3545 		}
3546 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3547 	}
3548 
3549 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3550 	if (error && error != EEXIST) {
3551 		if (error == ENOSPC) {
3552 			ztest_record_enospc(FTAG);
3553 			goto out;
3554 		}
3555 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3556 	}
3557 
3558 	error = dmu_objset_clone(clone2name, snap3name);
3559 	if (error) {
3560 		if (error == ENOSPC) {
3561 			ztest_record_enospc(FTAG);
3562 			goto out;
3563 		}
3564 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3565 	}
3566 
3567 	error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3568 	if (error)
3569 		fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3570 	error = dsl_dataset_promote(clone2name, NULL);
3571 	if (error == ENOSPC) {
3572 		dmu_objset_disown(os, FTAG);
3573 		ztest_record_enospc(FTAG);
3574 		goto out;
3575 	}
3576 	if (error != EBUSY)
3577 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3578 		    error);
3579 	dmu_objset_disown(os, FTAG);
3580 
3581 out:
3582 	ztest_dsl_dataset_cleanup(osname, id);
3583 
3584 	(void) rw_unlock(&ztest_name_lock);
3585 }
3586 
3587 /*
3588  * Verify that dmu_object_{alloc,free} work as expected.
3589  */
3590 void
3591 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3592 {
3593 	ztest_od_t od[4];
3594 	int batchsize = sizeof (od) / sizeof (od[0]);
3595 
3596 	for (int b = 0; b < batchsize; b++)
3597 		ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3598 
3599 	/*
3600 	 * Destroy the previous batch of objects, create a new batch,
3601 	 * and do some I/O on the new objects.
3602 	 */
3603 	if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3604 		return;
3605 
3606 	while (ztest_random(4 * batchsize) != 0)
3607 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
3608 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3609 }
3610 
3611 /*
3612  * Verify that dmu_{read,write} work as expected.
3613  */
3614 void
3615 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3616 {
3617 	objset_t *os = zd->zd_os;
3618 	ztest_od_t od[2];
3619 	dmu_tx_t *tx;
3620 	int i, freeit, error;
3621 	uint64_t n, s, txg;
3622 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3623 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3624 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3625 	uint64_t regions = 997;
3626 	uint64_t stride = 123456789ULL;
3627 	uint64_t width = 40;
3628 	int free_percent = 5;
3629 
3630 	/*
3631 	 * This test uses two objects, packobj and bigobj, that are always
3632 	 * updated together (i.e. in the same tx) so that their contents are
3633 	 * in sync and can be compared.  Their contents relate to each other
3634 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3635 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3636 	 * for any index n, there are three bufwads that should be identical:
3637 	 *
3638 	 *	packobj, at offset n * sizeof (bufwad_t)
3639 	 *	bigobj, at the head of the nth chunk
3640 	 *	bigobj, at the tail of the nth chunk
3641 	 *
3642 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
3643 	 * and it doesn't have any relation to the object blocksize.
3644 	 * The only requirement is that it can hold at least two bufwads.
3645 	 *
3646 	 * Normally, we write the bufwad to each of these locations.
3647 	 * However, free_percent of the time we instead write zeroes to
3648 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
3649 	 * bigobj to packobj, we can verify that the DMU is correctly
3650 	 * tracking which parts of an object are allocated and free,
3651 	 * and that the contents of the allocated blocks are correct.
3652 	 */
3653 
3654 	/*
3655 	 * Read the directory info.  If it's the first time, set things up.
3656 	 */
3657 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3658 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3659 
3660 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3661 		return;
3662 
3663 	bigobj = od[0].od_object;
3664 	packobj = od[1].od_object;
3665 	chunksize = od[0].od_gen;
3666 	ASSERT(chunksize == od[1].od_gen);
3667 
3668 	/*
3669 	 * Prefetch a random chunk of the big object.
3670 	 * Our aim here is to get some async reads in flight
3671 	 * for blocks that we may free below; the DMU should
3672 	 * handle this race correctly.
3673 	 */
3674 	n = ztest_random(regions) * stride + ztest_random(width);
3675 	s = 1 + ztest_random(2 * width - 1);
3676 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
3677 	    ZIO_PRIORITY_SYNC_READ);
3678 
3679 	/*
3680 	 * Pick a random index and compute the offsets into packobj and bigobj.
3681 	 */
3682 	n = ztest_random(regions) * stride + ztest_random(width);
3683 	s = 1 + ztest_random(width - 1);
3684 
3685 	packoff = n * sizeof (bufwad_t);
3686 	packsize = s * sizeof (bufwad_t);
3687 
3688 	bigoff = n * chunksize;
3689 	bigsize = s * chunksize;
3690 
3691 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3692 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3693 
3694 	/*
3695 	 * free_percent of the time, free a range of bigobj rather than
3696 	 * overwriting it.
3697 	 */
3698 	freeit = (ztest_random(100) < free_percent);
3699 
3700 	/*
3701 	 * Read the current contents of our objects.
3702 	 */
3703 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
3704 	    DMU_READ_PREFETCH);
3705 	ASSERT0(error);
3706 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3707 	    DMU_READ_PREFETCH);
3708 	ASSERT0(error);
3709 
3710 	/*
3711 	 * Get a tx for the mods to both packobj and bigobj.
3712 	 */
3713 	tx = dmu_tx_create(os);
3714 
3715 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
3716 
3717 	if (freeit)
3718 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3719 	else
3720 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3721 
3722 	/* This accounts for setting the checksum/compression. */
3723 	dmu_tx_hold_bonus(tx, bigobj);
3724 
3725 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3726 	if (txg == 0) {
3727 		umem_free(packbuf, packsize);
3728 		umem_free(bigbuf, bigsize);
3729 		return;
3730 	}
3731 
3732 	enum zio_checksum cksum;
3733 	do {
3734 		cksum = (enum zio_checksum)
3735 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
3736 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
3737 	dmu_object_set_checksum(os, bigobj, cksum, tx);
3738 
3739 	enum zio_compress comp;
3740 	do {
3741 		comp = (enum zio_compress)
3742 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
3743 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
3744 	dmu_object_set_compress(os, bigobj, comp, tx);
3745 
3746 	/*
3747 	 * For each index from n to n + s, verify that the existing bufwad
3748 	 * in packobj matches the bufwads at the head and tail of the
3749 	 * corresponding chunk in bigobj.  Then update all three bufwads
3750 	 * with the new values we want to write out.
3751 	 */
3752 	for (i = 0; i < s; i++) {
3753 		/* LINTED */
3754 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3755 		/* LINTED */
3756 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3757 		/* LINTED */
3758 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3759 
3760 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3761 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3762 
3763 		if (pack->bw_txg > txg)
3764 			fatal(0, "future leak: got %llx, open txg is %llx",
3765 			    pack->bw_txg, txg);
3766 
3767 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3768 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3769 			    pack->bw_index, n, i);
3770 
3771 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3772 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3773 
3774 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3775 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3776 
3777 		if (freeit) {
3778 			bzero(pack, sizeof (bufwad_t));
3779 		} else {
3780 			pack->bw_index = n + i;
3781 			pack->bw_txg = txg;
3782 			pack->bw_data = 1 + ztest_random(-2ULL);
3783 		}
3784 		*bigH = *pack;
3785 		*bigT = *pack;
3786 	}
3787 
3788 	/*
3789 	 * We've verified all the old bufwads, and made new ones.
3790 	 * Now write them out.
3791 	 */
3792 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3793 
3794 	if (freeit) {
3795 		if (ztest_opts.zo_verbose >= 7) {
3796 			(void) printf("freeing offset %llx size %llx"
3797 			    " txg %llx\n",
3798 			    (u_longlong_t)bigoff,
3799 			    (u_longlong_t)bigsize,
3800 			    (u_longlong_t)txg);
3801 		}
3802 		VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3803 	} else {
3804 		if (ztest_opts.zo_verbose >= 7) {
3805 			(void) printf("writing offset %llx size %llx"
3806 			    " txg %llx\n",
3807 			    (u_longlong_t)bigoff,
3808 			    (u_longlong_t)bigsize,
3809 			    (u_longlong_t)txg);
3810 		}
3811 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3812 	}
3813 
3814 	dmu_tx_commit(tx);
3815 
3816 	/*
3817 	 * Sanity check the stuff we just wrote.
3818 	 */
3819 	{
3820 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3821 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3822 
3823 		VERIFY(0 == dmu_read(os, packobj, packoff,
3824 		    packsize, packcheck, DMU_READ_PREFETCH));
3825 		VERIFY(0 == dmu_read(os, bigobj, bigoff,
3826 		    bigsize, bigcheck, DMU_READ_PREFETCH));
3827 
3828 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3829 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3830 
3831 		umem_free(packcheck, packsize);
3832 		umem_free(bigcheck, bigsize);
3833 	}
3834 
3835 	umem_free(packbuf, packsize);
3836 	umem_free(bigbuf, bigsize);
3837 }
3838 
3839 void
3840 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3841     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3842 {
3843 	uint64_t i;
3844 	bufwad_t *pack;
3845 	bufwad_t *bigH;
3846 	bufwad_t *bigT;
3847 
3848 	/*
3849 	 * For each index from n to n + s, verify that the existing bufwad
3850 	 * in packobj matches the bufwads at the head and tail of the
3851 	 * corresponding chunk in bigobj.  Then update all three bufwads
3852 	 * with the new values we want to write out.
3853 	 */
3854 	for (i = 0; i < s; i++) {
3855 		/* LINTED */
3856 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3857 		/* LINTED */
3858 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3859 		/* LINTED */
3860 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3861 
3862 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3863 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3864 
3865 		if (pack->bw_txg > txg)
3866 			fatal(0, "future leak: got %llx, open txg is %llx",
3867 			    pack->bw_txg, txg);
3868 
3869 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3870 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3871 			    pack->bw_index, n, i);
3872 
3873 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3874 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3875 
3876 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3877 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3878 
3879 		pack->bw_index = n + i;
3880 		pack->bw_txg = txg;
3881 		pack->bw_data = 1 + ztest_random(-2ULL);
3882 
3883 		*bigH = *pack;
3884 		*bigT = *pack;
3885 	}
3886 }
3887 
3888 void
3889 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3890 {
3891 	objset_t *os = zd->zd_os;
3892 	ztest_od_t od[2];
3893 	dmu_tx_t *tx;
3894 	uint64_t i;
3895 	int error;
3896 	uint64_t n, s, txg;
3897 	bufwad_t *packbuf, *bigbuf;
3898 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3899 	uint64_t blocksize = ztest_random_blocksize();
3900 	uint64_t chunksize = blocksize;
3901 	uint64_t regions = 997;
3902 	uint64_t stride = 123456789ULL;
3903 	uint64_t width = 9;
3904 	dmu_buf_t *bonus_db;
3905 	arc_buf_t **bigbuf_arcbufs;
3906 	dmu_object_info_t doi;
3907 
3908 	/*
3909 	 * This test uses two objects, packobj and bigobj, that are always
3910 	 * updated together (i.e. in the same tx) so that their contents are
3911 	 * in sync and can be compared.  Their contents relate to each other
3912 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3913 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3914 	 * for any index n, there are three bufwads that should be identical:
3915 	 *
3916 	 *	packobj, at offset n * sizeof (bufwad_t)
3917 	 *	bigobj, at the head of the nth chunk
3918 	 *	bigobj, at the tail of the nth chunk
3919 	 *
3920 	 * The chunk size is set equal to bigobj block size so that
3921 	 * dmu_assign_arcbuf() can be tested for object updates.
3922 	 */
3923 
3924 	/*
3925 	 * Read the directory info.  If it's the first time, set things up.
3926 	 */
3927 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3928 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3929 
3930 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3931 		return;
3932 
3933 	bigobj = od[0].od_object;
3934 	packobj = od[1].od_object;
3935 	blocksize = od[0].od_blocksize;
3936 	chunksize = blocksize;
3937 	ASSERT(chunksize == od[1].od_gen);
3938 
3939 	VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3940 	VERIFY(ISP2(doi.doi_data_block_size));
3941 	VERIFY(chunksize == doi.doi_data_block_size);
3942 	VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3943 
3944 	/*
3945 	 * Pick a random index and compute the offsets into packobj and bigobj.
3946 	 */
3947 	n = ztest_random(regions) * stride + ztest_random(width);
3948 	s = 1 + ztest_random(width - 1);
3949 
3950 	packoff = n * sizeof (bufwad_t);
3951 	packsize = s * sizeof (bufwad_t);
3952 
3953 	bigoff = n * chunksize;
3954 	bigsize = s * chunksize;
3955 
3956 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3957 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3958 
3959 	VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3960 
3961 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3962 
3963 	/*
3964 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3965 	 * Iteration 1 test zcopy to already referenced dbufs.
3966 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3967 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3968 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
3969 	 * Iteration 5 test zcopy when it can't be done.
3970 	 * Iteration 6 one more zcopy write.
3971 	 */
3972 	for (i = 0; i < 7; i++) {
3973 		uint64_t j;
3974 		uint64_t off;
3975 
3976 		/*
3977 		 * In iteration 5 (i == 5) use arcbufs
3978 		 * that don't match bigobj blksz to test
3979 		 * dmu_assign_arcbuf() when it can't directly
3980 		 * assign an arcbuf to a dbuf.
3981 		 */
3982 		for (j = 0; j < s; j++) {
3983 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3984 				bigbuf_arcbufs[j] =
3985 				    dmu_request_arcbuf(bonus_db, chunksize);
3986 			} else {
3987 				bigbuf_arcbufs[2 * j] =
3988 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3989 				bigbuf_arcbufs[2 * j + 1] =
3990 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3991 			}
3992 		}
3993 
3994 		/*
3995 		 * Get a tx for the mods to both packobj and bigobj.
3996 		 */
3997 		tx = dmu_tx_create(os);
3998 
3999 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
4000 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4001 
4002 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4003 		if (txg == 0) {
4004 			umem_free(packbuf, packsize);
4005 			umem_free(bigbuf, bigsize);
4006 			for (j = 0; j < s; j++) {
4007 				if (i != 5 ||
4008 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
4009 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
4010 				} else {
4011 					dmu_return_arcbuf(
4012 					    bigbuf_arcbufs[2 * j]);
4013 					dmu_return_arcbuf(
4014 					    bigbuf_arcbufs[2 * j + 1]);
4015 				}
4016 			}
4017 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4018 			dmu_buf_rele(bonus_db, FTAG);
4019 			return;
4020 		}
4021 
4022 		/*
4023 		 * 50% of the time don't read objects in the 1st iteration to
4024 		 * test dmu_assign_arcbuf() for the case when there're no
4025 		 * existing dbufs for the specified offsets.
4026 		 */
4027 		if (i != 0 || ztest_random(2) != 0) {
4028 			error = dmu_read(os, packobj, packoff,
4029 			    packsize, packbuf, DMU_READ_PREFETCH);
4030 			ASSERT0(error);
4031 			error = dmu_read(os, bigobj, bigoff, bigsize,
4032 			    bigbuf, DMU_READ_PREFETCH);
4033 			ASSERT0(error);
4034 		}
4035 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
4036 		    n, chunksize, txg);
4037 
4038 		/*
4039 		 * We've verified all the old bufwads, and made new ones.
4040 		 * Now write them out.
4041 		 */
4042 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4043 		if (ztest_opts.zo_verbose >= 7) {
4044 			(void) printf("writing offset %llx size %llx"
4045 			    " txg %llx\n",
4046 			    (u_longlong_t)bigoff,
4047 			    (u_longlong_t)bigsize,
4048 			    (u_longlong_t)txg);
4049 		}
4050 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
4051 			dmu_buf_t *dbt;
4052 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4053 				bcopy((caddr_t)bigbuf + (off - bigoff),
4054 				    bigbuf_arcbufs[j]->b_data, chunksize);
4055 			} else {
4056 				bcopy((caddr_t)bigbuf + (off - bigoff),
4057 				    bigbuf_arcbufs[2 * j]->b_data,
4058 				    chunksize / 2);
4059 				bcopy((caddr_t)bigbuf + (off - bigoff) +
4060 				    chunksize / 2,
4061 				    bigbuf_arcbufs[2 * j + 1]->b_data,
4062 				    chunksize / 2);
4063 			}
4064 
4065 			if (i == 1) {
4066 				VERIFY(dmu_buf_hold(os, bigobj, off,
4067 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4068 			}
4069 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4070 				dmu_assign_arcbuf(bonus_db, off,
4071 				    bigbuf_arcbufs[j], tx);
4072 			} else {
4073 				dmu_assign_arcbuf(bonus_db, off,
4074 				    bigbuf_arcbufs[2 * j], tx);
4075 				dmu_assign_arcbuf(bonus_db,
4076 				    off + chunksize / 2,
4077 				    bigbuf_arcbufs[2 * j + 1], tx);
4078 			}
4079 			if (i == 1) {
4080 				dmu_buf_rele(dbt, FTAG);
4081 			}
4082 		}
4083 		dmu_tx_commit(tx);
4084 
4085 		/*
4086 		 * Sanity check the stuff we just wrote.
4087 		 */
4088 		{
4089 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4090 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4091 
4092 			VERIFY(0 == dmu_read(os, packobj, packoff,
4093 			    packsize, packcheck, DMU_READ_PREFETCH));
4094 			VERIFY(0 == dmu_read(os, bigobj, bigoff,
4095 			    bigsize, bigcheck, DMU_READ_PREFETCH));
4096 
4097 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4098 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4099 
4100 			umem_free(packcheck, packsize);
4101 			umem_free(bigcheck, bigsize);
4102 		}
4103 		if (i == 2) {
4104 			txg_wait_open(dmu_objset_pool(os), 0);
4105 		} else if (i == 3) {
4106 			txg_wait_synced(dmu_objset_pool(os), 0);
4107 		}
4108 	}
4109 
4110 	dmu_buf_rele(bonus_db, FTAG);
4111 	umem_free(packbuf, packsize);
4112 	umem_free(bigbuf, bigsize);
4113 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4114 }
4115 
4116 /* ARGSUSED */
4117 void
4118 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4119 {
4120 	ztest_od_t od[1];
4121 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4122 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4123 
4124 	/*
4125 	 * Have multiple threads write to large offsets in an object
4126 	 * to verify that parallel writes to an object -- even to the
4127 	 * same blocks within the object -- doesn't cause any trouble.
4128 	 */
4129 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4130 
4131 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4132 		return;
4133 
4134 	while (ztest_random(10) != 0)
4135 		ztest_io(zd, od[0].od_object, offset);
4136 }
4137 
4138 void
4139 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4140 {
4141 	ztest_od_t od[1];
4142 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4143 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4144 	uint64_t count = ztest_random(20) + 1;
4145 	uint64_t blocksize = ztest_random_blocksize();
4146 	void *data;
4147 
4148 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4149 
4150 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4151 		return;
4152 
4153 	if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4154 		return;
4155 
4156 	ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4157 
4158 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
4159 
4160 	while (ztest_random(count) != 0) {
4161 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
4162 		if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4163 		    data) != 0)
4164 			break;
4165 		while (ztest_random(4) != 0)
4166 			ztest_io(zd, od[0].od_object, randoff);
4167 	}
4168 
4169 	umem_free(data, blocksize);
4170 }
4171 
4172 /*
4173  * Verify that zap_{create,destroy,add,remove,update} work as expected.
4174  */
4175 #define	ZTEST_ZAP_MIN_INTS	1
4176 #define	ZTEST_ZAP_MAX_INTS	4
4177 #define	ZTEST_ZAP_MAX_PROPS	1000
4178 
4179 void
4180 ztest_zap(ztest_ds_t *zd, uint64_t id)
4181 {
4182 	objset_t *os = zd->zd_os;
4183 	ztest_od_t od[1];
4184 	uint64_t object;
4185 	uint64_t txg, last_txg;
4186 	uint64_t value[ZTEST_ZAP_MAX_INTS];
4187 	uint64_t zl_ints, zl_intsize, prop;
4188 	int i, ints;
4189 	dmu_tx_t *tx;
4190 	char propname[100], txgname[100];
4191 	int error;
4192 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4193 
4194 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4195 
4196 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4197 		return;
4198 
4199 	object = od[0].od_object;
4200 
4201 	/*
4202 	 * Generate a known hash collision, and verify that
4203 	 * we can lookup and remove both entries.
4204 	 */
4205 	tx = dmu_tx_create(os);
4206 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4207 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4208 	if (txg == 0)
4209 		return;
4210 	for (i = 0; i < 2; i++) {
4211 		value[i] = i;
4212 		VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4213 		    1, &value[i], tx));
4214 	}
4215 	for (i = 0; i < 2; i++) {
4216 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4217 		    sizeof (uint64_t), 1, &value[i], tx));
4218 		VERIFY3U(0, ==,
4219 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4220 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4221 		ASSERT3U(zl_ints, ==, 1);
4222 	}
4223 	for (i = 0; i < 2; i++) {
4224 		VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4225 	}
4226 	dmu_tx_commit(tx);
4227 
4228 	/*
4229 	 * Generate a buch of random entries.
4230 	 */
4231 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4232 
4233 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4234 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4235 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4236 	bzero(value, sizeof (value));
4237 	last_txg = 0;
4238 
4239 	/*
4240 	 * If these zap entries already exist, validate their contents.
4241 	 */
4242 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4243 	if (error == 0) {
4244 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4245 		ASSERT3U(zl_ints, ==, 1);
4246 
4247 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4248 		    zl_ints, &last_txg) == 0);
4249 
4250 		VERIFY(zap_length(os, object, propname, &zl_intsize,
4251 		    &zl_ints) == 0);
4252 
4253 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4254 		ASSERT3U(zl_ints, ==, ints);
4255 
4256 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
4257 		    zl_ints, value) == 0);
4258 
4259 		for (i = 0; i < ints; i++) {
4260 			ASSERT3U(value[i], ==, last_txg + object + i);
4261 		}
4262 	} else {
4263 		ASSERT3U(error, ==, ENOENT);
4264 	}
4265 
4266 	/*
4267 	 * Atomically update two entries in our zap object.
4268 	 * The first is named txg_%llu, and contains the txg
4269 	 * in which the property was last updated.  The second
4270 	 * is named prop_%llu, and the nth element of its value
4271 	 * should be txg + object + n.
4272 	 */
4273 	tx = dmu_tx_create(os);
4274 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4275 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4276 	if (txg == 0)
4277 		return;
4278 
4279 	if (last_txg > txg)
4280 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4281 
4282 	for (i = 0; i < ints; i++)
4283 		value[i] = txg + object + i;
4284 
4285 	VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4286 	    1, &txg, tx));
4287 	VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4288 	    ints, value, tx));
4289 
4290 	dmu_tx_commit(tx);
4291 
4292 	/*
4293 	 * Remove a random pair of entries.
4294 	 */
4295 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4296 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4297 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4298 
4299 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4300 
4301 	if (error == ENOENT)
4302 		return;
4303 
4304 	ASSERT0(error);
4305 
4306 	tx = dmu_tx_create(os);
4307 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4308 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4309 	if (txg == 0)
4310 		return;
4311 	VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4312 	VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4313 	dmu_tx_commit(tx);
4314 }
4315 
4316 /*
4317  * Testcase to test the upgrading of a microzap to fatzap.
4318  */
4319 void
4320 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4321 {
4322 	objset_t *os = zd->zd_os;
4323 	ztest_od_t od[1];
4324 	uint64_t object, txg;
4325 
4326 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4327 
4328 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4329 		return;
4330 
4331 	object = od[0].od_object;
4332 
4333 	/*
4334 	 * Add entries to this ZAP and make sure it spills over
4335 	 * and gets upgraded to a fatzap. Also, since we are adding
4336 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
4337 	 */
4338 	for (int i = 0; i < 2050; i++) {
4339 		char name[ZFS_MAX_DATASET_NAME_LEN];
4340 		uint64_t value = i;
4341 		dmu_tx_t *tx;
4342 		int error;
4343 
4344 		(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4345 		    id, value);
4346 
4347 		tx = dmu_tx_create(os);
4348 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
4349 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4350 		if (txg == 0)
4351 			return;
4352 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
4353 		    &value, tx);
4354 		ASSERT(error == 0 || error == EEXIST);
4355 		dmu_tx_commit(tx);
4356 	}
4357 }
4358 
4359 /* ARGSUSED */
4360 void
4361 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4362 {
4363 	objset_t *os = zd->zd_os;
4364 	ztest_od_t od[1];
4365 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4366 	dmu_tx_t *tx;
4367 	int i, namelen, error;
4368 	int micro = ztest_random(2);
4369 	char name[20], string_value[20];
4370 	void *data;
4371 
4372 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4373 
4374 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4375 		return;
4376 
4377 	object = od[0].od_object;
4378 
4379 	/*
4380 	 * Generate a random name of the form 'xxx.....' where each
4381 	 * x is a random printable character and the dots are dots.
4382 	 * There are 94 such characters, and the name length goes from
4383 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4384 	 */
4385 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4386 
4387 	for (i = 0; i < 3; i++)
4388 		name[i] = '!' + ztest_random('~' - '!' + 1);
4389 	for (; i < namelen - 1; i++)
4390 		name[i] = '.';
4391 	name[i] = '\0';
4392 
4393 	if ((namelen & 1) || micro) {
4394 		wsize = sizeof (txg);
4395 		wc = 1;
4396 		data = &txg;
4397 	} else {
4398 		wsize = 1;
4399 		wc = namelen;
4400 		data = string_value;
4401 	}
4402 
4403 	count = -1ULL;
4404 	VERIFY0(zap_count(os, object, &count));
4405 	ASSERT(count != -1ULL);
4406 
4407 	/*
4408 	 * Select an operation: length, lookup, add, update, remove.
4409 	 */
4410 	i = ztest_random(5);
4411 
4412 	if (i >= 2) {
4413 		tx = dmu_tx_create(os);
4414 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4415 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4416 		if (txg == 0)
4417 			return;
4418 		bcopy(name, string_value, namelen);
4419 	} else {
4420 		tx = NULL;
4421 		txg = 0;
4422 		bzero(string_value, namelen);
4423 	}
4424 
4425 	switch (i) {
4426 
4427 	case 0:
4428 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4429 		if (error == 0) {
4430 			ASSERT3U(wsize, ==, zl_wsize);
4431 			ASSERT3U(wc, ==, zl_wc);
4432 		} else {
4433 			ASSERT3U(error, ==, ENOENT);
4434 		}
4435 		break;
4436 
4437 	case 1:
4438 		error = zap_lookup(os, object, name, wsize, wc, data);
4439 		if (error == 0) {
4440 			if (data == string_value &&
4441 			    bcmp(name, data, namelen) != 0)
4442 				fatal(0, "name '%s' != val '%s' len %d",
4443 				    name, data, namelen);
4444 		} else {
4445 			ASSERT3U(error, ==, ENOENT);
4446 		}
4447 		break;
4448 
4449 	case 2:
4450 		error = zap_add(os, object, name, wsize, wc, data, tx);
4451 		ASSERT(error == 0 || error == EEXIST);
4452 		break;
4453 
4454 	case 3:
4455 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4456 		break;
4457 
4458 	case 4:
4459 		error = zap_remove(os, object, name, tx);
4460 		ASSERT(error == 0 || error == ENOENT);
4461 		break;
4462 	}
4463 
4464 	if (tx != NULL)
4465 		dmu_tx_commit(tx);
4466 }
4467 
4468 /*
4469  * Commit callback data.
4470  */
4471 typedef struct ztest_cb_data {
4472 	list_node_t		zcd_node;
4473 	uint64_t		zcd_txg;
4474 	int			zcd_expected_err;
4475 	boolean_t		zcd_added;
4476 	boolean_t		zcd_called;
4477 	spa_t			*zcd_spa;
4478 } ztest_cb_data_t;
4479 
4480 /* This is the actual commit callback function */
4481 static void
4482 ztest_commit_callback(void *arg, int error)
4483 {
4484 	ztest_cb_data_t *data = arg;
4485 	uint64_t synced_txg;
4486 
4487 	VERIFY(data != NULL);
4488 	VERIFY3S(data->zcd_expected_err, ==, error);
4489 	VERIFY(!data->zcd_called);
4490 
4491 	synced_txg = spa_last_synced_txg(data->zcd_spa);
4492 	if (data->zcd_txg > synced_txg)
4493 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4494 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4495 		    synced_txg);
4496 
4497 	data->zcd_called = B_TRUE;
4498 
4499 	if (error == ECANCELED) {
4500 		ASSERT0(data->zcd_txg);
4501 		ASSERT(!data->zcd_added);
4502 
4503 		/*
4504 		 * The private callback data should be destroyed here, but
4505 		 * since we are going to check the zcd_called field after
4506 		 * dmu_tx_abort(), we will destroy it there.
4507 		 */
4508 		return;
4509 	}
4510 
4511 	/* Was this callback added to the global callback list? */
4512 	if (!data->zcd_added)
4513 		goto out;
4514 
4515 	ASSERT3U(data->zcd_txg, !=, 0);
4516 
4517 	/* Remove our callback from the list */
4518 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4519 	list_remove(&zcl.zcl_callbacks, data);
4520 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4521 
4522 out:
4523 	umem_free(data, sizeof (ztest_cb_data_t));
4524 }
4525 
4526 /* Allocate and initialize callback data structure */
4527 static ztest_cb_data_t *
4528 ztest_create_cb_data(objset_t *os, uint64_t txg)
4529 {
4530 	ztest_cb_data_t *cb_data;
4531 
4532 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4533 
4534 	cb_data->zcd_txg = txg;
4535 	cb_data->zcd_spa = dmu_objset_spa(os);
4536 
4537 	return (cb_data);
4538 }
4539 
4540 /*
4541  * If a number of txgs equal to this threshold have been created after a commit
4542  * callback has been registered but not called, then we assume there is an
4543  * implementation bug.
4544  */
4545 #define	ZTEST_COMMIT_CALLBACK_THRESH	(TXG_CONCURRENT_STATES + 2)
4546 
4547 /*
4548  * Commit callback test.
4549  */
4550 void
4551 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4552 {
4553 	objset_t *os = zd->zd_os;
4554 	ztest_od_t od[1];
4555 	dmu_tx_t *tx;
4556 	ztest_cb_data_t *cb_data[3], *tmp_cb;
4557 	uint64_t old_txg, txg;
4558 	int i, error;
4559 
4560 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4561 
4562 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4563 		return;
4564 
4565 	tx = dmu_tx_create(os);
4566 
4567 	cb_data[0] = ztest_create_cb_data(os, 0);
4568 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4569 
4570 	dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4571 
4572 	/* Every once in a while, abort the transaction on purpose */
4573 	if (ztest_random(100) == 0)
4574 		error = -1;
4575 
4576 	if (!error)
4577 		error = dmu_tx_assign(tx, TXG_NOWAIT);
4578 
4579 	txg = error ? 0 : dmu_tx_get_txg(tx);
4580 
4581 	cb_data[0]->zcd_txg = txg;
4582 	cb_data[1] = ztest_create_cb_data(os, txg);
4583 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4584 
4585 	if (error) {
4586 		/*
4587 		 * It's not a strict requirement to call the registered
4588 		 * callbacks from inside dmu_tx_abort(), but that's what
4589 		 * it's supposed to happen in the current implementation
4590 		 * so we will check for that.
4591 		 */
4592 		for (i = 0; i < 2; i++) {
4593 			cb_data[i]->zcd_expected_err = ECANCELED;
4594 			VERIFY(!cb_data[i]->zcd_called);
4595 		}
4596 
4597 		dmu_tx_abort(tx);
4598 
4599 		for (i = 0; i < 2; i++) {
4600 			VERIFY(cb_data[i]->zcd_called);
4601 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4602 		}
4603 
4604 		return;
4605 	}
4606 
4607 	cb_data[2] = ztest_create_cb_data(os, txg);
4608 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4609 
4610 	/*
4611 	 * Read existing data to make sure there isn't a future leak.
4612 	 */
4613 	VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4614 	    &old_txg, DMU_READ_PREFETCH));
4615 
4616 	if (old_txg > txg)
4617 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4618 		    old_txg, txg);
4619 
4620 	dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4621 
4622 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4623 
4624 	/*
4625 	 * Since commit callbacks don't have any ordering requirement and since
4626 	 * it is theoretically possible for a commit callback to be called
4627 	 * after an arbitrary amount of time has elapsed since its txg has been
4628 	 * synced, it is difficult to reliably determine whether a commit
4629 	 * callback hasn't been called due to high load or due to a flawed
4630 	 * implementation.
4631 	 *
4632 	 * In practice, we will assume that if after a certain number of txgs a
4633 	 * commit callback hasn't been called, then most likely there's an
4634 	 * implementation bug..
4635 	 */
4636 	tmp_cb = list_head(&zcl.zcl_callbacks);
4637 	if (tmp_cb != NULL &&
4638 	    (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
4639 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4640 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4641 	}
4642 
4643 	/*
4644 	 * Let's find the place to insert our callbacks.
4645 	 *
4646 	 * Even though the list is ordered by txg, it is possible for the
4647 	 * insertion point to not be the end because our txg may already be
4648 	 * quiescing at this point and other callbacks in the open txg
4649 	 * (from other objsets) may have sneaked in.
4650 	 */
4651 	tmp_cb = list_tail(&zcl.zcl_callbacks);
4652 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4653 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4654 
4655 	/* Add the 3 callbacks to the list */
4656 	for (i = 0; i < 3; i++) {
4657 		if (tmp_cb == NULL)
4658 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4659 		else
4660 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4661 			    cb_data[i]);
4662 
4663 		cb_data[i]->zcd_added = B_TRUE;
4664 		VERIFY(!cb_data[i]->zcd_called);
4665 
4666 		tmp_cb = cb_data[i];
4667 	}
4668 
4669 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4670 
4671 	dmu_tx_commit(tx);
4672 }
4673 
4674 /* ARGSUSED */
4675 void
4676 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4677 {
4678 	zfs_prop_t proplist[] = {
4679 		ZFS_PROP_CHECKSUM,
4680 		ZFS_PROP_COMPRESSION,
4681 		ZFS_PROP_COPIES,
4682 		ZFS_PROP_DEDUP
4683 	};
4684 
4685 	(void) rw_rdlock(&ztest_name_lock);
4686 
4687 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4688 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4689 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4690 
4691 	(void) rw_unlock(&ztest_name_lock);
4692 }
4693 
4694 /* ARGSUSED */
4695 void
4696 ztest_remap_blocks(ztest_ds_t *zd, uint64_t id)
4697 {
4698 	(void) rw_rdlock(&ztest_name_lock);
4699 
4700 	int error = dmu_objset_remap_indirects(zd->zd_name);
4701 	if (error == ENOSPC)
4702 		error = 0;
4703 	ASSERT0(error);
4704 
4705 	(void) rw_unlock(&ztest_name_lock);
4706 }
4707 
4708 /* ARGSUSED */
4709 void
4710 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4711 {
4712 	nvlist_t *props = NULL;
4713 
4714 	(void) rw_rdlock(&ztest_name_lock);
4715 
4716 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4717 	    ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4718 
4719 	VERIFY0(spa_prop_get(ztest_spa, &props));
4720 
4721 	if (ztest_opts.zo_verbose >= 6)
4722 		dump_nvlist(props, 4);
4723 
4724 	nvlist_free(props);
4725 
4726 	(void) rw_unlock(&ztest_name_lock);
4727 }
4728 
4729 static int
4730 user_release_one(const char *snapname, const char *holdname)
4731 {
4732 	nvlist_t *snaps, *holds;
4733 	int error;
4734 
4735 	snaps = fnvlist_alloc();
4736 	holds = fnvlist_alloc();
4737 	fnvlist_add_boolean(holds, holdname);
4738 	fnvlist_add_nvlist(snaps, snapname, holds);
4739 	fnvlist_free(holds);
4740 	error = dsl_dataset_user_release(snaps, NULL);
4741 	fnvlist_free(snaps);
4742 	return (error);
4743 }
4744 
4745 /*
4746  * Test snapshot hold/release and deferred destroy.
4747  */
4748 void
4749 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4750 {
4751 	int error;
4752 	objset_t *os = zd->zd_os;
4753 	objset_t *origin;
4754 	char snapname[100];
4755 	char fullname[100];
4756 	char clonename[100];
4757 	char tag[100];
4758 	char osname[ZFS_MAX_DATASET_NAME_LEN];
4759 	nvlist_t *holds;
4760 
4761 	(void) rw_rdlock(&ztest_name_lock);
4762 
4763 	dmu_objset_name(os, osname);
4764 
4765 	(void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
4766 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
4767 	(void) snprintf(clonename, sizeof (clonename),
4768 	    "%s/ch1_%llu", osname, id);
4769 	(void) snprintf(tag, sizeof (tag), "tag_%llu", id);
4770 
4771 	/*
4772 	 * Clean up from any previous run.
4773 	 */
4774 	error = dsl_destroy_head(clonename);
4775 	if (error != ENOENT)
4776 		ASSERT0(error);
4777 	error = user_release_one(fullname, tag);
4778 	if (error != ESRCH && error != ENOENT)
4779 		ASSERT0(error);
4780 	error = dsl_destroy_snapshot(fullname, B_FALSE);
4781 	if (error != ENOENT)
4782 		ASSERT0(error);
4783 
4784 	/*
4785 	 * Create snapshot, clone it, mark snap for deferred destroy,
4786 	 * destroy clone, verify snap was also destroyed.
4787 	 */
4788 	error = dmu_objset_snapshot_one(osname, snapname);
4789 	if (error) {
4790 		if (error == ENOSPC) {
4791 			ztest_record_enospc("dmu_objset_snapshot");
4792 			goto out;
4793 		}
4794 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4795 	}
4796 
4797 	error = dmu_objset_clone(clonename, fullname);
4798 	if (error) {
4799 		if (error == ENOSPC) {
4800 			ztest_record_enospc("dmu_objset_clone");
4801 			goto out;
4802 		}
4803 		fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4804 	}
4805 
4806 	error = dsl_destroy_snapshot(fullname, B_TRUE);
4807 	if (error) {
4808 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4809 		    fullname, error);
4810 	}
4811 
4812 	error = dsl_destroy_head(clonename);
4813 	if (error)
4814 		fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
4815 
4816 	error = dmu_objset_hold(fullname, FTAG, &origin);
4817 	if (error != ENOENT)
4818 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4819 
4820 	/*
4821 	 * Create snapshot, add temporary hold, verify that we can't
4822 	 * destroy a held snapshot, mark for deferred destroy,
4823 	 * release hold, verify snapshot was destroyed.
4824 	 */
4825 	error = dmu_objset_snapshot_one(osname, snapname);
4826 	if (error) {
4827 		if (error == ENOSPC) {
4828 			ztest_record_enospc("dmu_objset_snapshot");
4829 			goto out;
4830 		}
4831 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4832 	}
4833 
4834 	holds = fnvlist_alloc();
4835 	fnvlist_add_string(holds, fullname, tag);
4836 	error = dsl_dataset_user_hold(holds, 0, NULL);
4837 	fnvlist_free(holds);
4838 
4839 	if (error == ENOSPC) {
4840 		ztest_record_enospc("dsl_dataset_user_hold");
4841 		goto out;
4842 	} else if (error) {
4843 		fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
4844 		    fullname, tag, error);
4845 	}
4846 
4847 	error = dsl_destroy_snapshot(fullname, B_FALSE);
4848 	if (error != EBUSY) {
4849 		fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4850 		    fullname, error);
4851 	}
4852 
4853 	error = dsl_destroy_snapshot(fullname, B_TRUE);
4854 	if (error) {
4855 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4856 		    fullname, error);
4857 	}
4858 
4859 	error = user_release_one(fullname, tag);
4860 	if (error)
4861 		fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
4862 
4863 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
4864 
4865 out:
4866 	(void) rw_unlock(&ztest_name_lock);
4867 }
4868 
4869 /*
4870  * Inject random faults into the on-disk data.
4871  */
4872 /* ARGSUSED */
4873 void
4874 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4875 {
4876 	ztest_shared_t *zs = ztest_shared;
4877 	spa_t *spa = ztest_spa;
4878 	int fd;
4879 	uint64_t offset;
4880 	uint64_t leaves;
4881 	uint64_t bad = 0x1990c0ffeedecade;
4882 	uint64_t top, leaf;
4883 	char path0[MAXPATHLEN];
4884 	char pathrand[MAXPATHLEN];
4885 	size_t fsize;
4886 	int bshift = SPA_MAXBLOCKSHIFT + 2;
4887 	int iters = 1000;
4888 	int maxfaults;
4889 	int mirror_save;
4890 	vdev_t *vd0 = NULL;
4891 	uint64_t guid0 = 0;
4892 	boolean_t islog = B_FALSE;
4893 
4894 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4895 	maxfaults = MAXFAULTS();
4896 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4897 	mirror_save = zs->zs_mirrors;
4898 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4899 
4900 	ASSERT(leaves >= 1);
4901 
4902 	/*
4903 	 * Grab the name lock as reader. There are some operations
4904 	 * which don't like to have their vdevs changed while
4905 	 * they are in progress (i.e. spa_change_guid). Those
4906 	 * operations will have grabbed the name lock as writer.
4907 	 */
4908 	(void) rw_rdlock(&ztest_name_lock);
4909 
4910 	/*
4911 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4912 	 */
4913 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4914 
4915 	if (ztest_random(2) == 0) {
4916 		/*
4917 		 * Inject errors on a normal data device or slog device.
4918 		 */
4919 		top = ztest_random_vdev_top(spa, B_TRUE);
4920 		leaf = ztest_random(leaves) + zs->zs_splits;
4921 
4922 		/*
4923 		 * Generate paths to the first leaf in this top-level vdev,
4924 		 * and to the random leaf we selected.  We'll induce transient
4925 		 * write failures and random online/offline activity on leaf 0,
4926 		 * and we'll write random garbage to the randomly chosen leaf.
4927 		 */
4928 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
4929 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
4930 		    top * leaves + zs->zs_splits);
4931 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
4932 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
4933 		    top * leaves + leaf);
4934 
4935 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4936 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4937 			islog = B_TRUE;
4938 
4939 		/*
4940 		 * If the top-level vdev needs to be resilvered
4941 		 * then we only allow faults on the device that is
4942 		 * resilvering.
4943 		 */
4944 		if (vd0 != NULL && maxfaults != 1 &&
4945 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
4946 		    vd0->vdev_resilver_txg != 0)) {
4947 			/*
4948 			 * Make vd0 explicitly claim to be unreadable,
4949 			 * or unwriteable, or reach behind its back
4950 			 * and close the underlying fd.  We can do this if
4951 			 * maxfaults == 0 because we'll fail and reexecute,
4952 			 * and we can do it if maxfaults >= 2 because we'll
4953 			 * have enough redundancy.  If maxfaults == 1, the
4954 			 * combination of this with injection of random data
4955 			 * corruption below exceeds the pool's fault tolerance.
4956 			 */
4957 			vdev_file_t *vf = vd0->vdev_tsd;
4958 
4959 			zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
4960 			    (long long)vd0->vdev_id, (int)maxfaults);
4961 
4962 			if (vf != NULL && ztest_random(3) == 0) {
4963 				(void) close(vf->vf_vnode->v_fd);
4964 				vf->vf_vnode->v_fd = -1;
4965 			} else if (ztest_random(2) == 0) {
4966 				vd0->vdev_cant_read = B_TRUE;
4967 			} else {
4968 				vd0->vdev_cant_write = B_TRUE;
4969 			}
4970 			guid0 = vd0->vdev_guid;
4971 		}
4972 	} else {
4973 		/*
4974 		 * Inject errors on an l2cache device.
4975 		 */
4976 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
4977 
4978 		if (sav->sav_count == 0) {
4979 			spa_config_exit(spa, SCL_STATE, FTAG);
4980 			(void) rw_unlock(&ztest_name_lock);
4981 			return;
4982 		}
4983 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4984 		guid0 = vd0->vdev_guid;
4985 		(void) strcpy(path0, vd0->vdev_path);
4986 		(void) strcpy(pathrand, vd0->vdev_path);
4987 
4988 		leaf = 0;
4989 		leaves = 1;
4990 		maxfaults = INT_MAX;	/* no limit on cache devices */
4991 	}
4992 
4993 	spa_config_exit(spa, SCL_STATE, FTAG);
4994 	(void) rw_unlock(&ztest_name_lock);
4995 
4996 	/*
4997 	 * If we can tolerate two or more faults, or we're dealing
4998 	 * with a slog, randomly online/offline vd0.
4999 	 */
5000 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
5001 		if (ztest_random(10) < 6) {
5002 			int flags = (ztest_random(2) == 0 ?
5003 			    ZFS_OFFLINE_TEMPORARY : 0);
5004 
5005 			/*
5006 			 * We have to grab the zs_name_lock as writer to
5007 			 * prevent a race between offlining a slog and
5008 			 * destroying a dataset. Offlining the slog will
5009 			 * grab a reference on the dataset which may cause
5010 			 * dmu_objset_destroy() to fail with EBUSY thus
5011 			 * leaving the dataset in an inconsistent state.
5012 			 */
5013 			if (islog)
5014 				(void) rw_wrlock(&ztest_name_lock);
5015 
5016 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
5017 
5018 			if (islog)
5019 				(void) rw_unlock(&ztest_name_lock);
5020 		} else {
5021 			/*
5022 			 * Ideally we would like to be able to randomly
5023 			 * call vdev_[on|off]line without holding locks
5024 			 * to force unpredictable failures but the side
5025 			 * effects of vdev_[on|off]line prevent us from
5026 			 * doing so. We grab the ztest_vdev_lock here to
5027 			 * prevent a race between injection testing and
5028 			 * aux_vdev removal.
5029 			 */
5030 			VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
5031 			(void) vdev_online(spa, guid0, 0, NULL);
5032 			VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
5033 		}
5034 	}
5035 
5036 	if (maxfaults == 0)
5037 		return;
5038 
5039 	/*
5040 	 * We have at least single-fault tolerance, so inject data corruption.
5041 	 */
5042 	fd = open(pathrand, O_RDWR);
5043 
5044 	if (fd == -1)	/* we hit a gap in the device namespace */
5045 		return;
5046 
5047 	fsize = lseek(fd, 0, SEEK_END);
5048 
5049 	while (--iters != 0) {
5050 		/*
5051 		 * The offset must be chosen carefully to ensure that
5052 		 * we do not inject a given logical block with errors
5053 		 * on two different leaf devices, because ZFS can not
5054 		 * tolerate that (if maxfaults==1).
5055 		 *
5056 		 * We divide each leaf into chunks of size
5057 		 * (# leaves * SPA_MAXBLOCKSIZE * 4).  Within each chunk
5058 		 * there is a series of ranges to which we can inject errors.
5059 		 * Each range can accept errors on only a single leaf vdev.
5060 		 * The error injection ranges are separated by ranges
5061 		 * which we will not inject errors on any device (DMZs).
5062 		 * Each DMZ must be large enough such that a single block
5063 		 * can not straddle it, so that a single block can not be
5064 		 * a target in two different injection ranges (on different
5065 		 * leaf vdevs).
5066 		 *
5067 		 * For example, with 3 leaves, each chunk looks like:
5068 		 *    0 to  32M: injection range for leaf 0
5069 		 *  32M to  64M: DMZ - no injection allowed
5070 		 *  64M to  96M: injection range for leaf 1
5071 		 *  96M to 128M: DMZ - no injection allowed
5072 		 * 128M to 160M: injection range for leaf 2
5073 		 * 160M to 192M: DMZ - no injection allowed
5074 		 */
5075 		offset = ztest_random(fsize / (leaves << bshift)) *
5076 		    (leaves << bshift) + (leaf << bshift) +
5077 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
5078 
5079 		/*
5080 		 * Only allow damage to the labels at one end of the vdev.
5081 		 *
5082 		 * If all labels are damaged, the device will be totally
5083 		 * inaccessible, which will result in loss of data,
5084 		 * because we also damage (parts of) the other side of
5085 		 * the mirror/raidz.
5086 		 *
5087 		 * Additionally, we will always have both an even and an
5088 		 * odd label, so that we can handle crashes in the
5089 		 * middle of vdev_config_sync().
5090 		 */
5091 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
5092 			continue;
5093 
5094 		/*
5095 		 * The two end labels are stored at the "end" of the disk, but
5096 		 * the end of the disk (vdev_psize) is aligned to
5097 		 * sizeof (vdev_label_t).
5098 		 */
5099 		uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
5100 		if ((leaf & 1) == 1 &&
5101 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
5102 			continue;
5103 
5104 		VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
5105 		if (mirror_save != zs->zs_mirrors) {
5106 			VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
5107 			(void) close(fd);
5108 			return;
5109 		}
5110 
5111 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5112 			fatal(1, "can't inject bad word at 0x%llx in %s",
5113 			    offset, pathrand);
5114 
5115 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
5116 
5117 		if (ztest_opts.zo_verbose >= 7)
5118 			(void) printf("injected bad word into %s,"
5119 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5120 	}
5121 
5122 	(void) close(fd);
5123 }
5124 
5125 /*
5126  * Verify that DDT repair works as expected.
5127  */
5128 void
5129 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5130 {
5131 	ztest_shared_t *zs = ztest_shared;
5132 	spa_t *spa = ztest_spa;
5133 	objset_t *os = zd->zd_os;
5134 	ztest_od_t od[1];
5135 	uint64_t object, blocksize, txg, pattern, psize;
5136 	enum zio_checksum checksum = spa_dedup_checksum(spa);
5137 	dmu_buf_t *db;
5138 	dmu_tx_t *tx;
5139 	abd_t *abd;
5140 	blkptr_t blk;
5141 	int copies = 2 * ZIO_DEDUPDITTO_MIN;
5142 
5143 	blocksize = ztest_random_blocksize();
5144 	blocksize = MIN(blocksize, 2048);	/* because we write so many */
5145 
5146 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
5147 
5148 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
5149 		return;
5150 
5151 	/*
5152 	 * Take the name lock as writer to prevent anyone else from changing
5153 	 * the pool and dataset properies we need to maintain during this test.
5154 	 */
5155 	(void) rw_wrlock(&ztest_name_lock);
5156 
5157 	if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5158 	    B_FALSE) != 0 ||
5159 	    ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5160 	    B_FALSE) != 0) {
5161 		(void) rw_unlock(&ztest_name_lock);
5162 		return;
5163 	}
5164 
5165 	dmu_objset_stats_t dds;
5166 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5167 	dmu_objset_fast_stat(os, &dds);
5168 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5169 
5170 	object = od[0].od_object;
5171 	blocksize = od[0].od_blocksize;
5172 	pattern = zs->zs_guid ^ dds.dds_guid;
5173 
5174 	ASSERT(object != 0);
5175 
5176 	tx = dmu_tx_create(os);
5177 	dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5178 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5179 	if (txg == 0) {
5180 		(void) rw_unlock(&ztest_name_lock);
5181 		return;
5182 	}
5183 
5184 	/*
5185 	 * Write all the copies of our block.
5186 	 */
5187 	for (int i = 0; i < copies; i++) {
5188 		uint64_t offset = i * blocksize;
5189 		int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5190 		    DMU_READ_NO_PREFETCH);
5191 		if (error != 0) {
5192 			fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5193 			    os, (long long)object, (long long) offset, error);
5194 		}
5195 		ASSERT(db->db_offset == offset);
5196 		ASSERT(db->db_size == blocksize);
5197 		ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5198 		    ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5199 		dmu_buf_will_fill(db, tx);
5200 		ztest_pattern_set(db->db_data, db->db_size, pattern);
5201 		dmu_buf_rele(db, FTAG);
5202 	}
5203 
5204 	dmu_tx_commit(tx);
5205 	txg_wait_synced(spa_get_dsl(spa), txg);
5206 
5207 	/*
5208 	 * Find out what block we got.
5209 	 */
5210 	VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5211 	    DMU_READ_NO_PREFETCH));
5212 	blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5213 	dmu_buf_rele(db, FTAG);
5214 
5215 	/*
5216 	 * Damage the block.  Dedup-ditto will save us when we read it later.
5217 	 */
5218 	psize = BP_GET_PSIZE(&blk);
5219 	abd = abd_alloc_linear(psize, B_TRUE);
5220 	ztest_pattern_set(abd_to_buf(abd), psize, ~pattern);
5221 
5222 	(void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5223 	    abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5224 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5225 
5226 	abd_free(abd);
5227 
5228 	(void) rw_unlock(&ztest_name_lock);
5229 }
5230 
5231 /*
5232  * Scrub the pool.
5233  */
5234 /* ARGSUSED */
5235 void
5236 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5237 {
5238 	spa_t *spa = ztest_spa;
5239 
5240 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5241 	(void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5242 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5243 }
5244 
5245 /*
5246  * Change the guid for the pool.
5247  */
5248 /* ARGSUSED */
5249 void
5250 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5251 {
5252 	spa_t *spa = ztest_spa;
5253 	uint64_t orig, load;
5254 	int error;
5255 
5256 	orig = spa_guid(spa);
5257 	load = spa_load_guid(spa);
5258 
5259 	(void) rw_wrlock(&ztest_name_lock);
5260 	error = spa_change_guid(spa);
5261 	(void) rw_unlock(&ztest_name_lock);
5262 
5263 	if (error != 0)
5264 		return;
5265 
5266 	if (ztest_opts.zo_verbose >= 4) {
5267 		(void) printf("Changed guid old %llu -> %llu\n",
5268 		    (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5269 	}
5270 
5271 	VERIFY3U(orig, !=, spa_guid(spa));
5272 	VERIFY3U(load, ==, spa_load_guid(spa));
5273 }
5274 
5275 /*
5276  * Rename the pool to a different name and then rename it back.
5277  */
5278 /* ARGSUSED */
5279 void
5280 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5281 {
5282 	char *oldname, *newname;
5283 	spa_t *spa;
5284 
5285 	(void) rw_wrlock(&ztest_name_lock);
5286 
5287 	oldname = ztest_opts.zo_pool;
5288 	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5289 	(void) strcpy(newname, oldname);
5290 	(void) strcat(newname, "_tmp");
5291 
5292 	/*
5293 	 * Do the rename
5294 	 */
5295 	VERIFY3U(0, ==, spa_rename(oldname, newname));
5296 
5297 	/*
5298 	 * Try to open it under the old name, which shouldn't exist
5299 	 */
5300 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5301 
5302 	/*
5303 	 * Open it under the new name and make sure it's still the same spa_t.
5304 	 */
5305 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5306 
5307 	ASSERT(spa == ztest_spa);
5308 	spa_close(spa, FTAG);
5309 
5310 	/*
5311 	 * Rename it back to the original
5312 	 */
5313 	VERIFY3U(0, ==, spa_rename(newname, oldname));
5314 
5315 	/*
5316 	 * Make sure it can still be opened
5317 	 */
5318 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5319 
5320 	ASSERT(spa == ztest_spa);
5321 	spa_close(spa, FTAG);
5322 
5323 	umem_free(newname, strlen(newname) + 1);
5324 
5325 	(void) rw_unlock(&ztest_name_lock);
5326 }
5327 
5328 /*
5329  * Verify pool integrity by running zdb.
5330  */
5331 static void
5332 ztest_run_zdb(char *pool)
5333 {
5334 	int status;
5335 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
5336 	char zbuf[1024];
5337 	char *bin;
5338 	char *ztest;
5339 	char *isa;
5340 	int isalen;
5341 	FILE *fp;
5342 
5343 	(void) realpath(getexecname(), zdb);
5344 
5345 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5346 	bin = strstr(zdb, "/usr/bin/");
5347 	ztest = strstr(bin, "/ztest");
5348 	isa = bin + 8;
5349 	isalen = ztest - isa;
5350 	isa = strdup(isa);
5351 	/* LINTED */
5352 	(void) sprintf(bin,
5353 	    "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s",
5354 	    isalen,
5355 	    isa,
5356 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
5357 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
5358 	    spa_config_path,
5359 	    pool);
5360 	free(isa);
5361 
5362 	if (ztest_opts.zo_verbose >= 5)
5363 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
5364 
5365 	fp = popen(zdb, "r");
5366 
5367 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
5368 		if (ztest_opts.zo_verbose >= 3)
5369 			(void) printf("%s", zbuf);
5370 
5371 	status = pclose(fp);
5372 
5373 	if (status == 0)
5374 		return;
5375 
5376 	ztest_dump_core = 0;
5377 	if (WIFEXITED(status))
5378 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5379 	else
5380 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5381 }
5382 
5383 static void
5384 ztest_walk_pool_directory(char *header)
5385 {
5386 	spa_t *spa = NULL;
5387 
5388 	if (ztest_opts.zo_verbose >= 6)
5389 		(void) printf("%s\n", header);
5390 
5391 	mutex_enter(&spa_namespace_lock);
5392 	while ((spa = spa_next(spa)) != NULL)
5393 		if (ztest_opts.zo_verbose >= 6)
5394 			(void) printf("\t%s\n", spa_name(spa));
5395 	mutex_exit(&spa_namespace_lock);
5396 }
5397 
5398 static void
5399 ztest_spa_import_export(char *oldname, char *newname)
5400 {
5401 	nvlist_t *config, *newconfig;
5402 	uint64_t pool_guid;
5403 	spa_t *spa;
5404 	int error;
5405 
5406 	if (ztest_opts.zo_verbose >= 4) {
5407 		(void) printf("import/export: old = %s, new = %s\n",
5408 		    oldname, newname);
5409 	}
5410 
5411 	/*
5412 	 * Clean up from previous runs.
5413 	 */
5414 	(void) spa_destroy(newname);
5415 
5416 	/*
5417 	 * Get the pool's configuration and guid.
5418 	 */
5419 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5420 
5421 	/*
5422 	 * Kick off a scrub to tickle scrub/export races.
5423 	 */
5424 	if (ztest_random(2) == 0)
5425 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
5426 
5427 	pool_guid = spa_guid(spa);
5428 	spa_close(spa, FTAG);
5429 
5430 	ztest_walk_pool_directory("pools before export");
5431 
5432 	/*
5433 	 * Export it.
5434 	 */
5435 	VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5436 
5437 	ztest_walk_pool_directory("pools after export");
5438 
5439 	/*
5440 	 * Try to import it.
5441 	 */
5442 	newconfig = spa_tryimport(config);
5443 	ASSERT(newconfig != NULL);
5444 	nvlist_free(newconfig);
5445 
5446 	/*
5447 	 * Import it under the new name.
5448 	 */
5449 	error = spa_import(newname, config, NULL, 0);
5450 	if (error != 0) {
5451 		dump_nvlist(config, 0);
5452 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5453 		    oldname, newname, error);
5454 	}
5455 
5456 	ztest_walk_pool_directory("pools after import");
5457 
5458 	/*
5459 	 * Try to import it again -- should fail with EEXIST.
5460 	 */
5461 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5462 
5463 	/*
5464 	 * Try to import it under a different name -- should fail with EEXIST.
5465 	 */
5466 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5467 
5468 	/*
5469 	 * Verify that the pool is no longer visible under the old name.
5470 	 */
5471 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5472 
5473 	/*
5474 	 * Verify that we can open and close the pool using the new name.
5475 	 */
5476 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5477 	ASSERT(pool_guid == spa_guid(spa));
5478 	spa_close(spa, FTAG);
5479 
5480 	nvlist_free(config);
5481 }
5482 
5483 static void
5484 ztest_resume(spa_t *spa)
5485 {
5486 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5487 		(void) printf("resuming from suspended state\n");
5488 	spa_vdev_state_enter(spa, SCL_NONE);
5489 	vdev_clear(spa, NULL);
5490 	(void) spa_vdev_state_exit(spa, NULL, 0);
5491 	(void) zio_resume(spa);
5492 }
5493 
5494 static void *
5495 ztest_resume_thread(void *arg)
5496 {
5497 	spa_t *spa = arg;
5498 
5499 	while (!ztest_exiting) {
5500 		if (spa_suspended(spa))
5501 			ztest_resume(spa);
5502 		(void) poll(NULL, 0, 100);
5503 
5504 		/*
5505 		 * Periodically change the zfs_compressed_arc_enabled setting.
5506 		 */
5507 		if (ztest_random(10) == 0)
5508 			zfs_compressed_arc_enabled = ztest_random(2);
5509 
5510 		/*
5511 		 * Periodically change the zfs_abd_scatter_enabled setting.
5512 		 */
5513 		if (ztest_random(10) == 0)
5514 			zfs_abd_scatter_enabled = ztest_random(2);
5515 	}
5516 	return (NULL);
5517 }
5518 
5519 static void *
5520 ztest_deadman_thread(void *arg)
5521 {
5522 	ztest_shared_t *zs = arg;
5523 	spa_t *spa = ztest_spa;
5524 	hrtime_t delta, total = 0;
5525 
5526 	for (;;) {
5527 		delta = zs->zs_thread_stop - zs->zs_thread_start +
5528 		    MSEC2NSEC(zfs_deadman_synctime_ms);
5529 
5530 		(void) poll(NULL, 0, (int)NSEC2MSEC(delta));
5531 
5532 		/*
5533 		 * If the pool is suspended then fail immediately. Otherwise,
5534 		 * check to see if the pool is making any progress. If
5535 		 * vdev_deadman() discovers that there hasn't been any recent
5536 		 * I/Os then it will end up aborting the tests.
5537 		 */
5538 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
5539 			fatal(0, "aborting test after %llu seconds because "
5540 			    "pool has transitioned to a suspended state.",
5541 			    zfs_deadman_synctime_ms / 1000);
5542 			return (NULL);
5543 		}
5544 		vdev_deadman(spa->spa_root_vdev);
5545 
5546 		total += zfs_deadman_synctime_ms/1000;
5547 		(void) printf("ztest has been running for %lld seconds\n",
5548 		    total);
5549 	}
5550 }
5551 
5552 static void
5553 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5554 {
5555 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5556 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5557 	hrtime_t functime = gethrtime();
5558 
5559 	for (int i = 0; i < zi->zi_iters; i++)
5560 		zi->zi_func(zd, id);
5561 
5562 	functime = gethrtime() - functime;
5563 
5564 	atomic_add_64(&zc->zc_count, 1);
5565 	atomic_add_64(&zc->zc_time, functime);
5566 
5567 	if (ztest_opts.zo_verbose >= 4) {
5568 		Dl_info dli;
5569 		(void) dladdr((void *)zi->zi_func, &dli);
5570 		(void) printf("%6.2f sec in %s\n",
5571 		    (double)functime / NANOSEC, dli.dli_sname);
5572 	}
5573 }
5574 
5575 static void *
5576 ztest_thread(void *arg)
5577 {
5578 	int rand;
5579 	uint64_t id = (uintptr_t)arg;
5580 	ztest_shared_t *zs = ztest_shared;
5581 	uint64_t call_next;
5582 	hrtime_t now;
5583 	ztest_info_t *zi;
5584 	ztest_shared_callstate_t *zc;
5585 
5586 	while ((now = gethrtime()) < zs->zs_thread_stop) {
5587 		/*
5588 		 * See if it's time to force a crash.
5589 		 */
5590 		if (now > zs->zs_thread_kill)
5591 			ztest_kill(zs);
5592 
5593 		/*
5594 		 * If we're getting ENOSPC with some regularity, stop.
5595 		 */
5596 		if (zs->zs_enospc_count > 10)
5597 			break;
5598 
5599 		/*
5600 		 * Pick a random function to execute.
5601 		 */
5602 		rand = ztest_random(ZTEST_FUNCS);
5603 		zi = &ztest_info[rand];
5604 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5605 		call_next = zc->zc_next;
5606 
5607 		if (now >= call_next &&
5608 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
5609 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5610 			ztest_execute(rand, zi, id);
5611 		}
5612 	}
5613 
5614 	return (NULL);
5615 }
5616 
5617 static void
5618 ztest_dataset_name(char *dsname, char *pool, int d)
5619 {
5620 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
5621 }
5622 
5623 static void
5624 ztest_dataset_destroy(int d)
5625 {
5626 	char name[ZFS_MAX_DATASET_NAME_LEN];
5627 
5628 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5629 
5630 	if (ztest_opts.zo_verbose >= 3)
5631 		(void) printf("Destroying %s to free up space\n", name);
5632 
5633 	/*
5634 	 * Cleanup any non-standard clones and snapshots.  In general,
5635 	 * ztest thread t operates on dataset (t % zopt_datasets),
5636 	 * so there may be more than one thing to clean up.
5637 	 */
5638 	for (int t = d; t < ztest_opts.zo_threads;
5639 	    t += ztest_opts.zo_datasets) {
5640 		ztest_dsl_dataset_cleanup(name, t);
5641 	}
5642 
5643 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5644 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5645 }
5646 
5647 static void
5648 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5649 {
5650 	uint64_t usedobjs, dirobjs, scratch;
5651 
5652 	/*
5653 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
5654 	 * Therefore, the number of objects in use should equal the
5655 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5656 	 * If not, we have an object leak.
5657 	 *
5658 	 * Note that we can only check this in ztest_dataset_open(),
5659 	 * when the open-context and syncing-context values agree.
5660 	 * That's because zap_count() returns the open-context value,
5661 	 * while dmu_objset_space() returns the rootbp fill count.
5662 	 */
5663 	VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5664 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5665 	ASSERT3U(dirobjs + 1, ==, usedobjs);
5666 }
5667 
5668 static int
5669 ztest_dataset_open(int d)
5670 {
5671 	ztest_ds_t *zd = &ztest_ds[d];
5672 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5673 	objset_t *os;
5674 	zilog_t *zilog;
5675 	char name[ZFS_MAX_DATASET_NAME_LEN];
5676 	int error;
5677 
5678 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5679 
5680 	(void) rw_rdlock(&ztest_name_lock);
5681 
5682 	error = ztest_dataset_create(name);
5683 	if (error == ENOSPC) {
5684 		(void) rw_unlock(&ztest_name_lock);
5685 		ztest_record_enospc(FTAG);
5686 		return (error);
5687 	}
5688 	ASSERT(error == 0 || error == EEXIST);
5689 
5690 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
5691 	(void) rw_unlock(&ztest_name_lock);
5692 
5693 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5694 
5695 	zilog = zd->zd_zilog;
5696 
5697 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5698 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
5699 		fatal(0, "missing log records: claimed %llu < committed %llu",
5700 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
5701 
5702 	ztest_dataset_dirobj_verify(zd);
5703 
5704 	zil_replay(os, zd, ztest_replay_vector);
5705 
5706 	ztest_dataset_dirobj_verify(zd);
5707 
5708 	if (ztest_opts.zo_verbose >= 6)
5709 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5710 		    zd->zd_name,
5711 		    (u_longlong_t)zilog->zl_parse_blk_count,
5712 		    (u_longlong_t)zilog->zl_parse_lr_count,
5713 		    (u_longlong_t)zilog->zl_replaying_seq);
5714 
5715 	zilog = zil_open(os, ztest_get_data);
5716 
5717 	if (zilog->zl_replaying_seq != 0 &&
5718 	    zilog->zl_replaying_seq < committed_seq)
5719 		fatal(0, "missing log records: replayed %llu < committed %llu",
5720 		    zilog->zl_replaying_seq, committed_seq);
5721 
5722 	return (0);
5723 }
5724 
5725 static void
5726 ztest_dataset_close(int d)
5727 {
5728 	ztest_ds_t *zd = &ztest_ds[d];
5729 
5730 	zil_close(zd->zd_zilog);
5731 	dmu_objset_disown(zd->zd_os, zd);
5732 
5733 	ztest_zd_fini(zd);
5734 }
5735 
5736 /*
5737  * Kick off threads to run tests on all datasets in parallel.
5738  */
5739 static void
5740 ztest_run(ztest_shared_t *zs)
5741 {
5742 	thread_t *tid;
5743 	spa_t *spa;
5744 	objset_t *os;
5745 	thread_t resume_tid;
5746 	int error;
5747 
5748 	ztest_exiting = B_FALSE;
5749 
5750 	/*
5751 	 * Initialize parent/child shared state.
5752 	 */
5753 	VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5754 	VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5755 
5756 	zs->zs_thread_start = gethrtime();
5757 	zs->zs_thread_stop =
5758 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5759 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5760 	zs->zs_thread_kill = zs->zs_thread_stop;
5761 	if (ztest_random(100) < ztest_opts.zo_killrate) {
5762 		zs->zs_thread_kill -=
5763 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
5764 	}
5765 
5766 	(void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL);
5767 
5768 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5769 	    offsetof(ztest_cb_data_t, zcd_node));
5770 
5771 	/*
5772 	 * Open our pool.
5773 	 */
5774 	kernel_init(FREAD | FWRITE);
5775 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5776 	spa->spa_debug = B_TRUE;
5777 	metaslab_preload_limit = ztest_random(20) + 1;
5778 	ztest_spa = spa;
5779 
5780 	dmu_objset_stats_t dds;
5781 	VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
5782 	    DMU_OST_ANY, B_TRUE, FTAG, &os));
5783 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5784 	dmu_objset_fast_stat(os, &dds);
5785 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5786 	zs->zs_guid = dds.dds_guid;
5787 	dmu_objset_disown(os, FTAG);
5788 
5789 	spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5790 
5791 	/*
5792 	 * We don't expect the pool to suspend unless maxfaults == 0,
5793 	 * in which case ztest_fault_inject() temporarily takes away
5794 	 * the only valid replica.
5795 	 */
5796 	if (MAXFAULTS() == 0)
5797 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5798 	else
5799 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5800 
5801 	/*
5802 	 * Create a thread to periodically resume suspended I/O.
5803 	 */
5804 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5805 	    &resume_tid) == 0);
5806 
5807 	/*
5808 	 * Create a deadman thread to abort() if we hang.
5809 	 */
5810 	VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5811 	    NULL) == 0);
5812 
5813 	/*
5814 	 * Verify that we can safely inquire about about any object,
5815 	 * whether it's allocated or not.  To make it interesting,
5816 	 * we probe a 5-wide window around each power of two.
5817 	 * This hits all edge cases, including zero and the max.
5818 	 */
5819 	for (int t = 0; t < 64; t++) {
5820 		for (int d = -5; d <= 5; d++) {
5821 			error = dmu_object_info(spa->spa_meta_objset,
5822 			    (1ULL << t) + d, NULL);
5823 			ASSERT(error == 0 || error == ENOENT ||
5824 			    error == EINVAL);
5825 		}
5826 	}
5827 
5828 	/*
5829 	 * If we got any ENOSPC errors on the previous run, destroy something.
5830 	 */
5831 	if (zs->zs_enospc_count != 0) {
5832 		int d = ztest_random(ztest_opts.zo_datasets);
5833 		ztest_dataset_destroy(d);
5834 	}
5835 	zs->zs_enospc_count = 0;
5836 
5837 	tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
5838 	    UMEM_NOFAIL);
5839 
5840 	if (ztest_opts.zo_verbose >= 4)
5841 		(void) printf("starting main threads...\n");
5842 
5843 	/*
5844 	 * Kick off all the tests that run in parallel.
5845 	 */
5846 	for (int t = 0; t < ztest_opts.zo_threads; t++) {
5847 		if (t < ztest_opts.zo_datasets &&
5848 		    ztest_dataset_open(t) != 0)
5849 			return;
5850 		VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
5851 		    THR_BOUND, &tid[t]) == 0);
5852 	}
5853 
5854 	/*
5855 	 * Wait for all of the tests to complete.  We go in reverse order
5856 	 * so we don't close datasets while threads are still using them.
5857 	 */
5858 	for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5859 		VERIFY(thr_join(tid[t], NULL, NULL) == 0);
5860 		if (t < ztest_opts.zo_datasets)
5861 			ztest_dataset_close(t);
5862 	}
5863 
5864 	txg_wait_synced(spa_get_dsl(spa), 0);
5865 
5866 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5867 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5868 	zfs_dbgmsg_print(FTAG);
5869 
5870 	umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
5871 
5872 	/* Kill the resume thread */
5873 	ztest_exiting = B_TRUE;
5874 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
5875 	ztest_resume(spa);
5876 
5877 	/*
5878 	 * Right before closing the pool, kick off a bunch of async I/O;
5879 	 * spa_close() should wait for it to complete.
5880 	 */
5881 	for (uint64_t object = 1; object < 50; object++) {
5882 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
5883 		    ZIO_PRIORITY_SYNC_READ);
5884 	}
5885 
5886 	spa_close(spa, FTAG);
5887 
5888 	/*
5889 	 * Verify that we can loop over all pools.
5890 	 */
5891 	mutex_enter(&spa_namespace_lock);
5892 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5893 		if (ztest_opts.zo_verbose > 3)
5894 			(void) printf("spa_next: found %s\n", spa_name(spa));
5895 	mutex_exit(&spa_namespace_lock);
5896 
5897 	/*
5898 	 * Verify that we can export the pool and reimport it under a
5899 	 * different name.
5900 	 */
5901 	if (ztest_random(2) == 0) {
5902 		char name[ZFS_MAX_DATASET_NAME_LEN];
5903 		(void) snprintf(name, sizeof (name), "%s_import",
5904 		    ztest_opts.zo_pool);
5905 		ztest_spa_import_export(ztest_opts.zo_pool, name);
5906 		ztest_spa_import_export(name, ztest_opts.zo_pool);
5907 	}
5908 
5909 	kernel_fini();
5910 
5911 	list_destroy(&zcl.zcl_callbacks);
5912 
5913 	(void) _mutex_destroy(&zcl.zcl_callbacks_lock);
5914 
5915 	(void) rwlock_destroy(&ztest_name_lock);
5916 	(void) _mutex_destroy(&ztest_vdev_lock);
5917 }
5918 
5919 static void
5920 ztest_freeze(void)
5921 {
5922 	ztest_ds_t *zd = &ztest_ds[0];
5923 	spa_t *spa;
5924 	int numloops = 0;
5925 
5926 	if (ztest_opts.zo_verbose >= 3)
5927 		(void) printf("testing spa_freeze()...\n");
5928 
5929 	kernel_init(FREAD | FWRITE);
5930 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5931 	VERIFY3U(0, ==, ztest_dataset_open(0));
5932 	spa->spa_debug = B_TRUE;
5933 	ztest_spa = spa;
5934 
5935 	/*
5936 	 * Force the first log block to be transactionally allocated.
5937 	 * We have to do this before we freeze the pool -- otherwise
5938 	 * the log chain won't be anchored.
5939 	 */
5940 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5941 		ztest_dmu_object_alloc_free(zd, 0);
5942 		zil_commit(zd->zd_zilog, 0);
5943 	}
5944 
5945 	txg_wait_synced(spa_get_dsl(spa), 0);
5946 
5947 	/*
5948 	 * Freeze the pool.  This stops spa_sync() from doing anything,
5949 	 * so that the only way to record changes from now on is the ZIL.
5950 	 */
5951 	spa_freeze(spa);
5952 
5953 	/*
5954 	 * Because it is hard to predict how much space a write will actually
5955 	 * require beforehand, we leave ourselves some fudge space to write over
5956 	 * capacity.
5957 	 */
5958 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
5959 
5960 	/*
5961 	 * Run tests that generate log records but don't alter the pool config
5962 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5963 	 * We do a txg_wait_synced() after each iteration to force the txg
5964 	 * to increase well beyond the last synced value in the uberblock.
5965 	 * The ZIL should be OK with that.
5966 	 *
5967 	 * Run a random number of times less than zo_maxloops and ensure we do
5968 	 * not run out of space on the pool.
5969 	 */
5970 	while (ztest_random(10) != 0 &&
5971 	    numloops++ < ztest_opts.zo_maxloops &&
5972 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
5973 		ztest_od_t od;
5974 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
5975 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
5976 		ztest_io(zd, od.od_object,
5977 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5978 		txg_wait_synced(spa_get_dsl(spa), 0);
5979 	}
5980 
5981 	/*
5982 	 * Commit all of the changes we just generated.
5983 	 */
5984 	zil_commit(zd->zd_zilog, 0);
5985 	txg_wait_synced(spa_get_dsl(spa), 0);
5986 
5987 	/*
5988 	 * Close our dataset and close the pool.
5989 	 */
5990 	ztest_dataset_close(0);
5991 	spa_close(spa, FTAG);
5992 	kernel_fini();
5993 
5994 	/*
5995 	 * Open and close the pool and dataset to induce log replay.
5996 	 */
5997 	kernel_init(FREAD | FWRITE);
5998 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5999 	ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
6000 	VERIFY3U(0, ==, ztest_dataset_open(0));
6001 	ztest_dataset_close(0);
6002 
6003 	spa->spa_debug = B_TRUE;
6004 	ztest_spa = spa;
6005 	txg_wait_synced(spa_get_dsl(spa), 0);
6006 	ztest_reguid(NULL, 0);
6007 
6008 	spa_close(spa, FTAG);
6009 	kernel_fini();
6010 }
6011 
6012 void
6013 print_time(hrtime_t t, char *timebuf)
6014 {
6015 	hrtime_t s = t / NANOSEC;
6016 	hrtime_t m = s / 60;
6017 	hrtime_t h = m / 60;
6018 	hrtime_t d = h / 24;
6019 
6020 	s -= m * 60;
6021 	m -= h * 60;
6022 	h -= d * 24;
6023 
6024 	timebuf[0] = '\0';
6025 
6026 	if (d)
6027 		(void) sprintf(timebuf,
6028 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
6029 	else if (h)
6030 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
6031 	else if (m)
6032 		(void) sprintf(timebuf, "%llum%02llus", m, s);
6033 	else
6034 		(void) sprintf(timebuf, "%llus", s);
6035 }
6036 
6037 static nvlist_t *
6038 make_random_props()
6039 {
6040 	nvlist_t *props;
6041 
6042 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
6043 	if (ztest_random(2) == 0)
6044 		return (props);
6045 	VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
6046 
6047 	return (props);
6048 }
6049 
6050 /*
6051  * Create a storage pool with the given name and initial vdev size.
6052  * Then test spa_freeze() functionality.
6053  */
6054 static void
6055 ztest_init(ztest_shared_t *zs)
6056 {
6057 	spa_t *spa;
6058 	nvlist_t *nvroot, *props;
6059 
6060 	VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
6061 	VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
6062 
6063 	kernel_init(FREAD | FWRITE);
6064 
6065 	/*
6066 	 * Create the storage pool.
6067 	 */
6068 	(void) spa_destroy(ztest_opts.zo_pool);
6069 	ztest_shared->zs_vdev_next_leaf = 0;
6070 	zs->zs_splits = 0;
6071 	zs->zs_mirrors = ztest_opts.zo_mirrors;
6072 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
6073 	    0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
6074 	props = make_random_props();
6075 	for (int i = 0; i < SPA_FEATURES; i++) {
6076 		char buf[1024];
6077 		(void) snprintf(buf, sizeof (buf), "feature@%s",
6078 		    spa_feature_table[i].fi_uname);
6079 		VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
6080 	}
6081 	VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
6082 	nvlist_free(nvroot);
6083 	nvlist_free(props);
6084 
6085 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6086 	zs->zs_metaslab_sz =
6087 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6088 
6089 	spa_close(spa, FTAG);
6090 
6091 	kernel_fini();
6092 
6093 	ztest_run_zdb(ztest_opts.zo_pool);
6094 
6095 	ztest_freeze();
6096 
6097 	ztest_run_zdb(ztest_opts.zo_pool);
6098 
6099 	(void) rwlock_destroy(&ztest_name_lock);
6100 	(void) _mutex_destroy(&ztest_vdev_lock);
6101 }
6102 
6103 static void
6104 setup_data_fd(void)
6105 {
6106 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6107 
6108 	ztest_fd_data = mkstemp(ztest_name_data);
6109 	ASSERT3S(ztest_fd_data, >=, 0);
6110 	(void) unlink(ztest_name_data);
6111 }
6112 
6113 
6114 static int
6115 shared_data_size(ztest_shared_hdr_t *hdr)
6116 {
6117 	int size;
6118 
6119 	size = hdr->zh_hdr_size;
6120 	size += hdr->zh_opts_size;
6121 	size += hdr->zh_size;
6122 	size += hdr->zh_stats_size * hdr->zh_stats_count;
6123 	size += hdr->zh_ds_size * hdr->zh_ds_count;
6124 
6125 	return (size);
6126 }
6127 
6128 static void
6129 setup_hdr(void)
6130 {
6131 	int size;
6132 	ztest_shared_hdr_t *hdr;
6133 
6134 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6135 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6136 	ASSERT(hdr != MAP_FAILED);
6137 
6138 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6139 
6140 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6141 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6142 	hdr->zh_size = sizeof (ztest_shared_t);
6143 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6144 	hdr->zh_stats_count = ZTEST_FUNCS;
6145 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6146 	hdr->zh_ds_count = ztest_opts.zo_datasets;
6147 
6148 	size = shared_data_size(hdr);
6149 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6150 
6151 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6152 }
6153 
6154 static void
6155 setup_data(void)
6156 {
6157 	int size, offset;
6158 	ztest_shared_hdr_t *hdr;
6159 	uint8_t *buf;
6160 
6161 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6162 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6163 	ASSERT(hdr != MAP_FAILED);
6164 
6165 	size = shared_data_size(hdr);
6166 
6167 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6168 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6169 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6170 	ASSERT(hdr != MAP_FAILED);
6171 	buf = (uint8_t *)hdr;
6172 
6173 	offset = hdr->zh_hdr_size;
6174 	ztest_shared_opts = (void *)&buf[offset];
6175 	offset += hdr->zh_opts_size;
6176 	ztest_shared = (void *)&buf[offset];
6177 	offset += hdr->zh_size;
6178 	ztest_shared_callstate = (void *)&buf[offset];
6179 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
6180 	ztest_shared_ds = (void *)&buf[offset];
6181 }
6182 
6183 static boolean_t
6184 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6185 {
6186 	pid_t pid;
6187 	int status;
6188 	char *cmdbuf = NULL;
6189 
6190 	pid = fork();
6191 
6192 	if (cmd == NULL) {
6193 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6194 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6195 		cmd = cmdbuf;
6196 	}
6197 
6198 	if (pid == -1)
6199 		fatal(1, "fork failed");
6200 
6201 	if (pid == 0) {	/* child */
6202 		char *emptyargv[2] = { cmd, NULL };
6203 		char fd_data_str[12];
6204 
6205 		struct rlimit rl = { 1024, 1024 };
6206 		(void) setrlimit(RLIMIT_NOFILE, &rl);
6207 
6208 		(void) close(ztest_fd_rand);
6209 		VERIFY3U(11, >=,
6210 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6211 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
6212 
6213 		(void) enable_extended_FILE_stdio(-1, -1);
6214 		if (libpath != NULL)
6215 			VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6216 		(void) execv(cmd, emptyargv);
6217 		ztest_dump_core = B_FALSE;
6218 		fatal(B_TRUE, "exec failed: %s", cmd);
6219 	}
6220 
6221 	if (cmdbuf != NULL) {
6222 		umem_free(cmdbuf, MAXPATHLEN);
6223 		cmd = NULL;
6224 	}
6225 
6226 	while (waitpid(pid, &status, 0) != pid)
6227 		continue;
6228 	if (statusp != NULL)
6229 		*statusp = status;
6230 
6231 	if (WIFEXITED(status)) {
6232 		if (WEXITSTATUS(status) != 0) {
6233 			(void) fprintf(stderr, "child exited with code %d\n",
6234 			    WEXITSTATUS(status));
6235 			exit(2);
6236 		}
6237 		return (B_FALSE);
6238 	} else if (WIFSIGNALED(status)) {
6239 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6240 			(void) fprintf(stderr, "child died with signal %d\n",
6241 			    WTERMSIG(status));
6242 			exit(3);
6243 		}
6244 		return (B_TRUE);
6245 	} else {
6246 		(void) fprintf(stderr, "something strange happened to child\n");
6247 		exit(4);
6248 		/* NOTREACHED */
6249 	}
6250 }
6251 
6252 static void
6253 ztest_run_init(void)
6254 {
6255 	ztest_shared_t *zs = ztest_shared;
6256 
6257 	ASSERT(ztest_opts.zo_init != 0);
6258 
6259 	/*
6260 	 * Blow away any existing copy of zpool.cache
6261 	 */
6262 	(void) remove(spa_config_path);
6263 
6264 	/*
6265 	 * Create and initialize our storage pool.
6266 	 */
6267 	for (int i = 1; i <= ztest_opts.zo_init; i++) {
6268 		bzero(zs, sizeof (ztest_shared_t));
6269 		if (ztest_opts.zo_verbose >= 3 &&
6270 		    ztest_opts.zo_init != 1) {
6271 			(void) printf("ztest_init(), pass %d\n", i);
6272 		}
6273 		ztest_init(zs);
6274 	}
6275 }
6276 
6277 int
6278 main(int argc, char **argv)
6279 {
6280 	int kills = 0;
6281 	int iters = 0;
6282 	int older = 0;
6283 	int newer = 0;
6284 	ztest_shared_t *zs;
6285 	ztest_info_t *zi;
6286 	ztest_shared_callstate_t *zc;
6287 	char timebuf[100];
6288 	char numbuf[NN_NUMBUF_SZ];
6289 	spa_t *spa;
6290 	char *cmd;
6291 	boolean_t hasalt;
6292 	char *fd_data_str = getenv("ZTEST_FD_DATA");
6293 
6294 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
6295 
6296 	dprintf_setup(&argc, argv);
6297 	zfs_deadman_synctime_ms = 300000;
6298 
6299 	ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6300 	ASSERT3S(ztest_fd_rand, >=, 0);
6301 
6302 	if (!fd_data_str) {
6303 		process_options(argc, argv);
6304 
6305 		setup_data_fd();
6306 		setup_hdr();
6307 		setup_data();
6308 		bcopy(&ztest_opts, ztest_shared_opts,
6309 		    sizeof (*ztest_shared_opts));
6310 	} else {
6311 		ztest_fd_data = atoi(fd_data_str);
6312 		setup_data();
6313 		bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6314 	}
6315 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6316 
6317 	/* Override location of zpool.cache */
6318 	VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6319 	    ztest_opts.zo_dir), !=, -1);
6320 
6321 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6322 	    UMEM_NOFAIL);
6323 	zs = ztest_shared;
6324 
6325 	if (fd_data_str) {
6326 		metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6327 		metaslab_df_alloc_threshold =
6328 		    zs->zs_metaslab_df_alloc_threshold;
6329 
6330 		if (zs->zs_do_init)
6331 			ztest_run_init();
6332 		else
6333 			ztest_run(zs);
6334 		exit(0);
6335 	}
6336 
6337 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6338 
6339 	if (ztest_opts.zo_verbose >= 1) {
6340 		(void) printf("%llu vdevs, %d datasets, %d threads,"
6341 		    " %llu seconds...\n",
6342 		    (u_longlong_t)ztest_opts.zo_vdevs,
6343 		    ztest_opts.zo_datasets,
6344 		    ztest_opts.zo_threads,
6345 		    (u_longlong_t)ztest_opts.zo_time);
6346 	}
6347 
6348 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6349 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6350 
6351 	zs->zs_do_init = B_TRUE;
6352 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6353 		if (ztest_opts.zo_verbose >= 1) {
6354 			(void) printf("Executing older ztest for "
6355 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
6356 		}
6357 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6358 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6359 	} else {
6360 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6361 	}
6362 	zs->zs_do_init = B_FALSE;
6363 
6364 	zs->zs_proc_start = gethrtime();
6365 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6366 
6367 	for (int f = 0; f < ZTEST_FUNCS; f++) {
6368 		zi = &ztest_info[f];
6369 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
6370 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6371 			zc->zc_next = UINT64_MAX;
6372 		else
6373 			zc->zc_next = zs->zs_proc_start +
6374 			    ztest_random(2 * zi->zi_interval[0] + 1);
6375 	}
6376 
6377 	/*
6378 	 * Run the tests in a loop.  These tests include fault injection
6379 	 * to verify that self-healing data works, and forced crashes
6380 	 * to verify that we never lose on-disk consistency.
6381 	 */
6382 	while (gethrtime() < zs->zs_proc_stop) {
6383 		int status;
6384 		boolean_t killed;
6385 
6386 		/*
6387 		 * Initialize the workload counters for each function.
6388 		 */
6389 		for (int f = 0; f < ZTEST_FUNCS; f++) {
6390 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
6391 			zc->zc_count = 0;
6392 			zc->zc_time = 0;
6393 		}
6394 
6395 		/* Set the allocation switch size */
6396 		zs->zs_metaslab_df_alloc_threshold =
6397 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
6398 
6399 		if (!hasalt || ztest_random(2) == 0) {
6400 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6401 				(void) printf("Executing newer ztest: %s\n",
6402 				    cmd);
6403 			}
6404 			newer++;
6405 			killed = exec_child(cmd, NULL, B_TRUE, &status);
6406 		} else {
6407 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6408 				(void) printf("Executing older ztest: %s\n",
6409 				    ztest_opts.zo_alt_ztest);
6410 			}
6411 			older++;
6412 			killed = exec_child(ztest_opts.zo_alt_ztest,
6413 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
6414 		}
6415 
6416 		if (killed)
6417 			kills++;
6418 		iters++;
6419 
6420 		if (ztest_opts.zo_verbose >= 1) {
6421 			hrtime_t now = gethrtime();
6422 
6423 			now = MIN(now, zs->zs_proc_stop);
6424 			print_time(zs->zs_proc_stop - now, timebuf);
6425 			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
6426 
6427 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6428 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6429 			    iters,
6430 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
6431 			    (u_longlong_t)zs->zs_enospc_count,
6432 			    100.0 * zs->zs_alloc / zs->zs_space,
6433 			    numbuf,
6434 			    100.0 * (now - zs->zs_proc_start) /
6435 			    (ztest_opts.zo_time * NANOSEC), timebuf);
6436 		}
6437 
6438 		if (ztest_opts.zo_verbose >= 2) {
6439 			(void) printf("\nWorkload summary:\n\n");
6440 			(void) printf("%7s %9s   %s\n",
6441 			    "Calls", "Time", "Function");
6442 			(void) printf("%7s %9s   %s\n",
6443 			    "-----", "----", "--------");
6444 			for (int f = 0; f < ZTEST_FUNCS; f++) {
6445 				Dl_info dli;
6446 
6447 				zi = &ztest_info[f];
6448 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
6449 				print_time(zc->zc_time, timebuf);
6450 				(void) dladdr((void *)zi->zi_func, &dli);
6451 				(void) printf("%7llu %9s   %s\n",
6452 				    (u_longlong_t)zc->zc_count, timebuf,
6453 				    dli.dli_sname);
6454 			}
6455 			(void) printf("\n");
6456 		}
6457 
6458 		/*
6459 		 * It's possible that we killed a child during a rename test,
6460 		 * in which case we'll have a 'ztest_tmp' pool lying around
6461 		 * instead of 'ztest'.  Do a blind rename in case this happened.
6462 		 */
6463 		kernel_init(FREAD);
6464 		if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6465 			spa_close(spa, FTAG);
6466 		} else {
6467 			char tmpname[ZFS_MAX_DATASET_NAME_LEN];
6468 			kernel_fini();
6469 			kernel_init(FREAD | FWRITE);
6470 			(void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6471 			    ztest_opts.zo_pool);
6472 			(void) spa_rename(tmpname, ztest_opts.zo_pool);
6473 		}
6474 		kernel_fini();
6475 
6476 		ztest_run_zdb(ztest_opts.zo_pool);
6477 	}
6478 
6479 	if (ztest_opts.zo_verbose >= 1) {
6480 		if (hasalt) {
6481 			(void) printf("%d runs of older ztest: %s\n", older,
6482 			    ztest_opts.zo_alt_ztest);
6483 			(void) printf("%d runs of newer ztest: %s\n", newer,
6484 			    cmd);
6485 		}
6486 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6487 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6488 	}
6489 
6490 	umem_free(cmd, MAXNAMELEN);
6491 
6492 	return (0);
6493 }
6494