xref: /illumos-gate/usr/src/cmd/zpool/zpool_vdev.c (revision 8654d0253136055bd4cc2423d87378e8a37f2eb5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Functions to convert between a list of vdevs and an nvlist representing the
31  * configuration.  Each entry in the list can be one of:
32  *
33  * 	Device vdevs
34  * 		disk=(path=..., devid=...)
35  * 		file=(path=...)
36  *
37  * 	Group vdevs
38  * 		raidz[1|2]=(...)
39  * 		mirror=(...)
40  *
41  * 	Hot spares
42  *
43  * While the underlying implementation supports it, group vdevs cannot contain
44  * other group vdevs.  All userland verification of devices is contained within
45  * this file.  If successful, the nvlist returned can be passed directly to the
46  * kernel; we've done as much verification as possible in userland.
47  *
48  * Hot spares are a special case, and passed down as an array of disk vdevs, at
49  * the same level as the root of the vdev tree.
50  *
51  * The only function exported by this file is 'make_root_vdev'.  The
52  * function performs several passes:
53  *
54  * 	1. Construct the vdev specification.  Performs syntax validation and
55  *         makes sure each device is valid.
56  * 	2. Check for devices in use.  Using libdiskmgt, makes sure that no
57  *         devices are also in use.  Some can be overridden using the 'force'
58  *         flag, others cannot.
59  * 	3. Check for replication errors if the 'force' flag is not specified.
60  *         validates that the replication level is consistent across the
61  *         entire pool.
62  * 	4. Call libzfs to label any whole disks with an EFI label.
63  */
64 
65 #include <assert.h>
66 #include <devid.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libdiskmgt.h>
70 #include <libintl.h>
71 #include <libnvpair.h>
72 #include <stdio.h>
73 #include <string.h>
74 #include <unistd.h>
75 #include <sys/efi_partition.h>
76 #include <sys/stat.h>
77 #include <sys/vtoc.h>
78 #include <sys/mntent.h>
79 
80 #include "zpool_util.h"
81 
82 #define	DISK_ROOT	"/dev/dsk"
83 #define	RDISK_ROOT	"/dev/rdsk"
84 #define	BACKUP_SLICE	"s2"
85 
86 /*
87  * For any given vdev specification, we can have multiple errors.  The
88  * vdev_error() function keeps track of whether we have seen an error yet, and
89  * prints out a header if its the first error we've seen.
90  */
91 boolean_t error_seen;
92 boolean_t is_force;
93 
94 /*PRINTFLIKE1*/
95 static void
96 vdev_error(const char *fmt, ...)
97 {
98 	va_list ap;
99 
100 	if (!error_seen) {
101 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
102 		if (!is_force)
103 			(void) fprintf(stderr, gettext("use '-f' to override "
104 			    "the following errors:\n"));
105 		else
106 			(void) fprintf(stderr, gettext("the following errors "
107 			    "must be manually repaired:\n"));
108 		error_seen = B_TRUE;
109 	}
110 
111 	va_start(ap, fmt);
112 	(void) vfprintf(stderr, fmt, ap);
113 	va_end(ap);
114 }
115 
116 static void
117 libdiskmgt_error(int error)
118 {
119 	/*
120 	 * ENXIO/ENODEV is a valid error message if the device doesn't live in
121 	 * /dev/dsk.  Don't bother printing an error message in this case.
122 	 */
123 	if (error == ENXIO || error == ENODEV)
124 		return;
125 
126 	(void) fprintf(stderr, gettext("warning: device in use checking "
127 	    "failed: %s\n"), strerror(error));
128 }
129 
130 /*
131  * Validate a device, passing the bulk of the work off to libdiskmgt.
132  */
133 static int
134 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
135 {
136 	char *msg;
137 	int error = 0;
138 
139 	if (dm_inuse((char *)path, &msg, isspare ? DM_WHO_ZPOOL_SPARE :
140 	    (force ? DM_WHO_ZPOOL_FORCE : DM_WHO_ZPOOL), &error) || error) {
141 		if (error != 0) {
142 			libdiskmgt_error(error);
143 			return (0);
144 		} else {
145 			vdev_error("%s", msg);
146 			free(msg);
147 			return (-1);
148 		}
149 	}
150 
151 	/*
152 	 * If we're given a whole disk, ignore overlapping slices since we're
153 	 * about to label it anyway.
154 	 */
155 	error = 0;
156 	if (!wholedisk && !force &&
157 	    (dm_isoverlapping((char *)path, &msg, &error) || error)) {
158 		if (error == 0) {
159 			/* dm_isoverlapping returned -1 */
160 			vdev_error(gettext("%s overlaps with %s\n"), path, msg);
161 			free(msg);
162 			return (-1);
163 		} else if (error != ENODEV) {
164 			/* libdiskmgt's devcache only handles physical drives */
165 			libdiskmgt_error(error);
166 			return (0);
167 		}
168 	}
169 
170 	return (0);
171 }
172 
173 
174 /*
175  * Validate a whole disk.  Iterate over all slices on the disk and make sure
176  * that none is in use by calling check_slice().
177  */
178 static int
179 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
180 {
181 	dm_descriptor_t *drive, *media, *slice;
182 	int err = 0;
183 	int i;
184 	int ret;
185 
186 	/*
187 	 * Get the drive associated with this disk.  This should never fail,
188 	 * because we already have an alias handle open for the device.
189 	 */
190 	if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
191 	    &err)) == NULL || *drive == NULL) {
192 		if (err)
193 			libdiskmgt_error(err);
194 		return (0);
195 	}
196 
197 	if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
198 	    &err)) == NULL) {
199 		dm_free_descriptors(drive);
200 		if (err)
201 			libdiskmgt_error(err);
202 		return (0);
203 	}
204 
205 	dm_free_descriptors(drive);
206 
207 	/*
208 	 * It is possible that the user has specified a removable media drive,
209 	 * and the media is not present.
210 	 */
211 	if (*media == NULL) {
212 		dm_free_descriptors(media);
213 		vdev_error(gettext("'%s' has no media in drive\n"), name);
214 		return (-1);
215 	}
216 
217 	if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
218 	    &err)) == NULL) {
219 		dm_free_descriptors(media);
220 		if (err)
221 			libdiskmgt_error(err);
222 		return (0);
223 	}
224 
225 	dm_free_descriptors(media);
226 
227 	ret = 0;
228 
229 	/*
230 	 * Iterate over all slices and report any errors.  We don't care about
231 	 * overlapping slices because we are using the whole disk.
232 	 */
233 	for (i = 0; slice[i] != NULL; i++) {
234 		char *name = dm_get_name(slice[i], &err);
235 
236 		if (check_slice(name, force, B_TRUE, isspare) != 0)
237 			ret = -1;
238 
239 		dm_free_name(name);
240 	}
241 
242 	dm_free_descriptors(slice);
243 	return (ret);
244 }
245 
246 /*
247  * Validate a device.
248  */
249 static int
250 check_device(const char *path, boolean_t force, boolean_t isspare)
251 {
252 	dm_descriptor_t desc;
253 	int err;
254 	char *dev;
255 
256 	/*
257 	 * For whole disks, libdiskmgt does not include the leading dev path.
258 	 */
259 	dev = strrchr(path, '/');
260 	assert(dev != NULL);
261 	dev++;
262 	if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
263 		err = check_disk(path, desc, force, isspare);
264 		dm_free_descriptor(desc);
265 		return (err);
266 	}
267 
268 	return (check_slice(path, force, B_FALSE, isspare));
269 }
270 
271 /*
272  * Check that a file is valid.  All we can do in this case is check that it's
273  * not in use by another pool, and not in use by swap.
274  */
275 static int
276 check_file(const char *file, boolean_t force, boolean_t isspare)
277 {
278 	char  *name;
279 	int fd;
280 	int ret = 0;
281 	int err;
282 	pool_state_t state;
283 	boolean_t inuse;
284 
285 	if (dm_inuse_swap(file, &err)) {
286 		if (err)
287 			libdiskmgt_error(err);
288 		else
289 			vdev_error(gettext("%s is currently used by swap. "
290 			    "Please see swap(1M).\n"), file);
291 		return (-1);
292 	}
293 
294 	if ((fd = open(file, O_RDONLY)) < 0)
295 		return (0);
296 
297 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
298 		const char *desc;
299 
300 		switch (state) {
301 		case POOL_STATE_ACTIVE:
302 			desc = gettext("active");
303 			break;
304 
305 		case POOL_STATE_EXPORTED:
306 			desc = gettext("exported");
307 			break;
308 
309 		case POOL_STATE_POTENTIALLY_ACTIVE:
310 			desc = gettext("potentially active");
311 			break;
312 
313 		default:
314 			desc = gettext("unknown");
315 			break;
316 		}
317 
318 		/*
319 		 * Allow hot spares to be shared between pools.
320 		 */
321 		if (state == POOL_STATE_SPARE && isspare)
322 			return (0);
323 
324 		if (state == POOL_STATE_ACTIVE ||
325 		    state == POOL_STATE_SPARE || !force) {
326 			switch (state) {
327 			case POOL_STATE_SPARE:
328 				vdev_error(gettext("%s is reserved as a hot "
329 				    "spare for pool %s\n"), file, name);
330 				break;
331 			default:
332 				vdev_error(gettext("%s is part of %s pool "
333 				    "'%s'\n"), file, desc, name);
334 				break;
335 			}
336 			ret = -1;
337 		}
338 
339 		free(name);
340 	}
341 
342 	(void) close(fd);
343 	return (ret);
344 }
345 
346 
347 /*
348  * By "whole disk" we mean an entire physical disk (something we can
349  * label, toggle the write cache on, etc.) as opposed to the full
350  * capacity of a pseudo-device such as lofi or did.  We act as if we
351  * are labeling the disk, which should be a pretty good test of whether
352  * it's a viable device or not.  Returns B_TRUE if it is and B_FALSE if
353  * it isn't.
354  */
355 static boolean_t
356 is_whole_disk(const char *arg)
357 {
358 	struct dk_gpt *label;
359 	int	fd;
360 	char	path[MAXPATHLEN];
361 
362 	(void) snprintf(path, sizeof (path), "%s%s%s",
363 	    RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE);
364 	if ((fd = open(path, O_RDWR | O_NDELAY)) < 0)
365 		return (B_FALSE);
366 	if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
367 		(void) close(fd);
368 		return (B_FALSE);
369 	}
370 	efi_free(label);
371 	(void) close(fd);
372 	return (B_TRUE);
373 }
374 
375 /*
376  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
377  * device, fill in the device id to make a complete nvlist.  Valid forms for a
378  * leaf vdev are:
379  *
380  * 	/dev/dsk/xxx	Complete disk path
381  * 	/xxx		Full path to file
382  * 	xxx		Shorthand for /dev/dsk/xxx
383  */
384 static nvlist_t *
385 make_leaf_vdev(const char *arg, uint64_t is_log)
386 {
387 	char path[MAXPATHLEN];
388 	struct stat64 statbuf;
389 	nvlist_t *vdev = NULL;
390 	char *type = NULL;
391 	boolean_t wholedisk = B_FALSE;
392 
393 	/*
394 	 * Determine what type of vdev this is, and put the full path into
395 	 * 'path'.  We detect whether this is a device of file afterwards by
396 	 * checking the st_mode of the file.
397 	 */
398 	if (arg[0] == '/') {
399 		/*
400 		 * Complete device or file path.  Exact type is determined by
401 		 * examining the file descriptor afterwards.
402 		 */
403 		wholedisk = is_whole_disk(arg);
404 		if (!wholedisk && (stat64(arg, &statbuf) != 0)) {
405 			(void) fprintf(stderr,
406 			    gettext("cannot open '%s': %s\n"),
407 			    arg, strerror(errno));
408 			return (NULL);
409 		}
410 
411 		(void) strlcpy(path, arg, sizeof (path));
412 	} else {
413 		/*
414 		 * This may be a short path for a device, or it could be total
415 		 * gibberish.  Check to see if it's a known device in
416 		 * /dev/dsk/.  As part of this check, see if we've been given a
417 		 * an entire disk (minus the slice number).
418 		 */
419 		(void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT,
420 		    arg);
421 		wholedisk = is_whole_disk(path);
422 		if (!wholedisk && (stat64(path, &statbuf) != 0)) {
423 			/*
424 			 * If we got ENOENT, then the user gave us
425 			 * gibberish, so try to direct them with a
426 			 * reasonable error message.  Otherwise,
427 			 * regurgitate strerror() since it's the best we
428 			 * can do.
429 			 */
430 			if (errno == ENOENT) {
431 				(void) fprintf(stderr,
432 				    gettext("cannot open '%s': no such "
433 				    "device in %s\n"), arg, DISK_ROOT);
434 				(void) fprintf(stderr,
435 				    gettext("must be a full path or "
436 				    "shorthand device name\n"));
437 				return (NULL);
438 			} else {
439 				(void) fprintf(stderr,
440 				    gettext("cannot open '%s': %s\n"),
441 				    path, strerror(errno));
442 				return (NULL);
443 			}
444 		}
445 	}
446 
447 	/*
448 	 * Determine whether this is a device or a file.
449 	 */
450 	if (wholedisk || S_ISBLK(statbuf.st_mode)) {
451 		type = VDEV_TYPE_DISK;
452 	} else if (S_ISREG(statbuf.st_mode)) {
453 		type = VDEV_TYPE_FILE;
454 	} else {
455 		(void) fprintf(stderr, gettext("cannot use '%s': must be a "
456 		    "block device or regular file\n"), path);
457 		return (NULL);
458 	}
459 
460 	/*
461 	 * Finally, we have the complete device or file, and we know that it is
462 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
463 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
464 	 */
465 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
466 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
467 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
468 	verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
469 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
470 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
471 		    (uint64_t)wholedisk) == 0);
472 
473 	/*
474 	 * For a whole disk, defer getting its devid until after labeling it.
475 	 */
476 	if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
477 		/*
478 		 * Get the devid for the device.
479 		 */
480 		int fd;
481 		ddi_devid_t devid;
482 		char *minor = NULL, *devid_str = NULL;
483 
484 		if ((fd = open(path, O_RDONLY)) < 0) {
485 			(void) fprintf(stderr, gettext("cannot open '%s': "
486 			    "%s\n"), path, strerror(errno));
487 			nvlist_free(vdev);
488 			return (NULL);
489 		}
490 
491 		if (devid_get(fd, &devid) == 0) {
492 			if (devid_get_minor_name(fd, &minor) == 0 &&
493 			    (devid_str = devid_str_encode(devid, minor)) !=
494 			    NULL) {
495 				verify(nvlist_add_string(vdev,
496 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
497 			}
498 			if (devid_str != NULL)
499 				devid_str_free(devid_str);
500 			if (minor != NULL)
501 				devid_str_free(minor);
502 			devid_free(devid);
503 		}
504 
505 		(void) close(fd);
506 	}
507 
508 	return (vdev);
509 }
510 
511 /*
512  * Go through and verify the replication level of the pool is consistent.
513  * Performs the following checks:
514  *
515  * 	For the new spec, verifies that devices in mirrors and raidz are the
516  * 	same size.
517  *
518  * 	If the current configuration already has inconsistent replication
519  * 	levels, ignore any other potential problems in the new spec.
520  *
521  * 	Otherwise, make sure that the current spec (if there is one) and the new
522  * 	spec have consistent replication levels.
523  */
524 typedef struct replication_level {
525 	char *zprl_type;
526 	uint64_t zprl_children;
527 	uint64_t zprl_parity;
528 } replication_level_t;
529 
530 #define	ZPOOL_FUZZ	(16 * 1024 * 1024)
531 
532 /*
533  * Given a list of toplevel vdevs, return the current replication level.  If
534  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
535  * an error message will be displayed for each self-inconsistent vdev.
536  */
537 static replication_level_t *
538 get_replication(nvlist_t *nvroot, boolean_t fatal)
539 {
540 	nvlist_t **top;
541 	uint_t t, toplevels;
542 	nvlist_t **child;
543 	uint_t c, children;
544 	nvlist_t *nv;
545 	char *type;
546 	replication_level_t lastrep, rep, *ret;
547 	boolean_t dontreport;
548 	uint64_t is_log;
549 
550 	ret = safe_malloc(sizeof (replication_level_t));
551 
552 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
553 	    &top, &toplevels) == 0);
554 
555 	lastrep.zprl_type = NULL;
556 	for (t = 0; t < toplevels; t++) {
557 		uint64_t is_log = B_FALSE;
558 
559 		nv = top[t];
560 
561 		/*
562 		 * For separate logs we ignore the top level vdev replication
563 		 * constraints.
564 		 */
565 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
566 		if (is_log)
567 			continue;
568 
569 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
570 		    &type) == 0);
571 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
572 		    &child, &children) != 0) {
573 			/*
574 			 * This is a 'file' or 'disk' vdev.
575 			 */
576 			rep.zprl_type = type;
577 			rep.zprl_children = 1;
578 			rep.zprl_parity = 0;
579 		} else {
580 			uint64_t vdev_size;
581 
582 			/*
583 			 * This is a mirror or RAID-Z vdev.  Go through and make
584 			 * sure the contents are all the same (files vs. disks),
585 			 * keeping track of the number of elements in the
586 			 * process.
587 			 *
588 			 * We also check that the size of each vdev (if it can
589 			 * be determined) is the same.
590 			 */
591 			rep.zprl_type = type;
592 			rep.zprl_children = 0;
593 
594 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
595 				verify(nvlist_lookup_uint64(nv,
596 				    ZPOOL_CONFIG_NPARITY,
597 				    &rep.zprl_parity) == 0);
598 				assert(rep.zprl_parity != 0);
599 			} else {
600 				rep.zprl_parity = 0;
601 			}
602 
603 			/*
604 			 * The 'dontreport' variable indicates that we've
605 			 * already reported an error for this spec, so don't
606 			 * bother doing it again.
607 			 */
608 			type = NULL;
609 			dontreport = 0;
610 			vdev_size = -1ULL;
611 			for (c = 0; c < children; c++) {
612 				nvlist_t *cnv = child[c];
613 				char *path;
614 				struct stat64 statbuf;
615 				uint64_t size = -1ULL;
616 				char *childtype;
617 				int fd, err;
618 
619 				rep.zprl_children++;
620 
621 				verify(nvlist_lookup_string(cnv,
622 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
623 
624 				/*
625 				 * If this is a replacing or spare vdev, then
626 				 * get the real first child of the vdev.
627 				 */
628 				if (strcmp(childtype,
629 				    VDEV_TYPE_REPLACING) == 0 ||
630 				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
631 					nvlist_t **rchild;
632 					uint_t rchildren;
633 
634 					verify(nvlist_lookup_nvlist_array(cnv,
635 					    ZPOOL_CONFIG_CHILDREN, &rchild,
636 					    &rchildren) == 0);
637 					assert(rchildren == 2);
638 					cnv = rchild[0];
639 
640 					verify(nvlist_lookup_string(cnv,
641 					    ZPOOL_CONFIG_TYPE,
642 					    &childtype) == 0);
643 				}
644 
645 				verify(nvlist_lookup_string(cnv,
646 				    ZPOOL_CONFIG_PATH, &path) == 0);
647 
648 				/*
649 				 * If we have a raidz/mirror that combines disks
650 				 * with files, report it as an error.
651 				 */
652 				if (!dontreport && type != NULL &&
653 				    strcmp(type, childtype) != 0) {
654 					if (ret != NULL)
655 						free(ret);
656 					ret = NULL;
657 					if (fatal)
658 						vdev_error(gettext(
659 						    "mismatched replication "
660 						    "level: %s contains both "
661 						    "files and devices\n"),
662 						    rep.zprl_type);
663 					else
664 						return (NULL);
665 					dontreport = B_TRUE;
666 				}
667 
668 				/*
669 				 * According to stat(2), the value of 'st_size'
670 				 * is undefined for block devices and character
671 				 * devices.  But there is no effective way to
672 				 * determine the real size in userland.
673 				 *
674 				 * Instead, we'll take advantage of an
675 				 * implementation detail of spec_size().  If the
676 				 * device is currently open, then we (should)
677 				 * return a valid size.
678 				 *
679 				 * If we still don't get a valid size (indicated
680 				 * by a size of 0 or MAXOFFSET_T), then ignore
681 				 * this device altogether.
682 				 */
683 				if ((fd = open(path, O_RDONLY)) >= 0) {
684 					err = fstat64(fd, &statbuf);
685 					(void) close(fd);
686 				} else {
687 					err = stat64(path, &statbuf);
688 				}
689 
690 				if (err != 0 ||
691 				    statbuf.st_size == 0 ||
692 				    statbuf.st_size == MAXOFFSET_T)
693 					continue;
694 
695 				size = statbuf.st_size;
696 
697 				/*
698 				 * Also make sure that devices and
699 				 * slices have a consistent size.  If
700 				 * they differ by a significant amount
701 				 * (~16MB) then report an error.
702 				 */
703 				if (!dontreport &&
704 				    (vdev_size != -1ULL &&
705 				    (labs(size - vdev_size) >
706 				    ZPOOL_FUZZ))) {
707 					if (ret != NULL)
708 						free(ret);
709 					ret = NULL;
710 					if (fatal)
711 						vdev_error(gettext(
712 						    "%s contains devices of "
713 						    "different sizes\n"),
714 						    rep.zprl_type);
715 					else
716 						return (NULL);
717 					dontreport = B_TRUE;
718 				}
719 
720 				type = childtype;
721 				vdev_size = size;
722 			}
723 		}
724 
725 		/*
726 		 * At this point, we have the replication of the last toplevel
727 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if its
728 		 * different.
729 		 */
730 		if (lastrep.zprl_type != NULL) {
731 			if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
732 				if (ret != NULL)
733 					free(ret);
734 				ret = NULL;
735 				if (fatal)
736 					vdev_error(gettext(
737 					    "mismatched replication level: "
738 					    "both %s and %s vdevs are "
739 					    "present\n"),
740 					    lastrep.zprl_type, rep.zprl_type);
741 				else
742 					return (NULL);
743 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
744 				if (ret)
745 					free(ret);
746 				ret = NULL;
747 				if (fatal)
748 					vdev_error(gettext(
749 					    "mismatched replication level: "
750 					    "both %llu and %llu device parity "
751 					    "%s vdevs are present\n"),
752 					    lastrep.zprl_parity,
753 					    rep.zprl_parity,
754 					    rep.zprl_type);
755 				else
756 					return (NULL);
757 			} else if (lastrep.zprl_children != rep.zprl_children) {
758 				if (ret)
759 					free(ret);
760 				ret = NULL;
761 				if (fatal)
762 					vdev_error(gettext(
763 					    "mismatched replication level: "
764 					    "both %llu-way and %llu-way %s "
765 					    "vdevs are present\n"),
766 					    lastrep.zprl_children,
767 					    rep.zprl_children,
768 					    rep.zprl_type);
769 				else
770 					return (NULL);
771 			}
772 		}
773 		lastrep = rep;
774 	}
775 
776 	if (ret != NULL)
777 		*ret = rep;
778 
779 	return (ret);
780 }
781 
782 /*
783  * Check the replication level of the vdev spec against the current pool.  Calls
784  * get_replication() to make sure the new spec is self-consistent.  If the pool
785  * has a consistent replication level, then we ignore any errors.  Otherwise,
786  * report any difference between the two.
787  */
788 static int
789 check_replication(nvlist_t *config, nvlist_t *newroot)
790 {
791 	nvlist_t **child;
792 	uint_t	children;
793 	replication_level_t *current = NULL, *new;
794 	int ret;
795 
796 	/*
797 	 * If we have a current pool configuration, check to see if it's
798 	 * self-consistent.  If not, simply return success.
799 	 */
800 	if (config != NULL) {
801 		nvlist_t *nvroot;
802 
803 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
804 		    &nvroot) == 0);
805 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
806 			return (0);
807 	}
808 	/*
809 	 * for spares there may be no children, and therefore no
810 	 * replication level to check
811 	 */
812 	if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
813 	    &child, &children) != 0) || (children == 0)) {
814 		free(current);
815 		return (0);
816 	}
817 
818 	/*
819 	 * If all we have is logs then there's no replication level to check.
820 	 */
821 	if (num_logs(newroot) == children) {
822 		free(current);
823 		return (0);
824 	}
825 
826 	/*
827 	 * Get the replication level of the new vdev spec, reporting any
828 	 * inconsistencies found.
829 	 */
830 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
831 		free(current);
832 		return (-1);
833 	}
834 
835 	/*
836 	 * Check to see if the new vdev spec matches the replication level of
837 	 * the current pool.
838 	 */
839 	ret = 0;
840 	if (current != NULL) {
841 		if (strcmp(current->zprl_type, new->zprl_type) != 0) {
842 			vdev_error(gettext(
843 			    "mismatched replication level: pool uses %s "
844 			    "and new vdev is %s\n"),
845 			    current->zprl_type, new->zprl_type);
846 			ret = -1;
847 		} else if (current->zprl_parity != new->zprl_parity) {
848 			vdev_error(gettext(
849 			    "mismatched replication level: pool uses %llu "
850 			    "device parity and new vdev uses %llu\n"),
851 			    current->zprl_parity, new->zprl_parity);
852 			ret = -1;
853 		} else if (current->zprl_children != new->zprl_children) {
854 			vdev_error(gettext(
855 			    "mismatched replication level: pool uses %llu-way "
856 			    "%s and new vdev uses %llu-way %s\n"),
857 			    current->zprl_children, current->zprl_type,
858 			    new->zprl_children, new->zprl_type);
859 			ret = -1;
860 		}
861 	}
862 
863 	free(new);
864 	if (current != NULL)
865 		free(current);
866 
867 	return (ret);
868 }
869 
870 /*
871  * Go through and find any whole disks in the vdev specification, labelling them
872  * as appropriate.  When constructing the vdev spec, we were unable to open this
873  * device in order to provide a devid.  Now that we have labelled the disk and
874  * know that slice 0 is valid, we can construct the devid now.
875  *
876  * If the disk was already labeled with an EFI label, we will have gotten the
877  * devid already (because we were able to open the whole disk).  Otherwise, we
878  * need to get the devid after we label the disk.
879  */
880 static int
881 make_disks(zpool_handle_t *zhp, nvlist_t *nv)
882 {
883 	nvlist_t **child;
884 	uint_t c, children;
885 	char *type, *path, *diskname;
886 	char buf[MAXPATHLEN];
887 	uint64_t wholedisk;
888 	int fd;
889 	int ret;
890 	ddi_devid_t devid;
891 	char *minor = NULL, *devid_str = NULL;
892 
893 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
894 
895 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
896 	    &child, &children) != 0) {
897 
898 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
899 			return (0);
900 
901 		/*
902 		 * We have a disk device.  Get the path to the device
903 		 * and see if it's a whole disk by appending the backup
904 		 * slice and stat()ing the device.
905 		 */
906 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
907 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
908 		    &wholedisk) != 0 || !wholedisk)
909 			return (0);
910 
911 		diskname = strrchr(path, '/');
912 		assert(diskname != NULL);
913 		diskname++;
914 		if (zpool_label_disk(g_zfs, zhp, diskname) == -1)
915 			return (-1);
916 
917 		/*
918 		 * Fill in the devid, now that we've labeled the disk.
919 		 */
920 		(void) snprintf(buf, sizeof (buf), "%ss0", path);
921 		if ((fd = open(buf, O_RDONLY)) < 0) {
922 			(void) fprintf(stderr,
923 			    gettext("cannot open '%s': %s\n"),
924 			    buf, strerror(errno));
925 			return (-1);
926 		}
927 
928 		if (devid_get(fd, &devid) == 0) {
929 			if (devid_get_minor_name(fd, &minor) == 0 &&
930 			    (devid_str = devid_str_encode(devid, minor)) !=
931 			    NULL) {
932 				verify(nvlist_add_string(nv,
933 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
934 			}
935 			if (devid_str != NULL)
936 				devid_str_free(devid_str);
937 			if (minor != NULL)
938 				devid_str_free(minor);
939 			devid_free(devid);
940 		}
941 
942 		/*
943 		 * Update the path to refer to the 's0' slice.  The presence of
944 		 * the 'whole_disk' field indicates to the CLI that we should
945 		 * chop off the slice number when displaying the device in
946 		 * future output.
947 		 */
948 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
949 
950 		(void) close(fd);
951 
952 		return (0);
953 	}
954 
955 	for (c = 0; c < children; c++)
956 		if ((ret = make_disks(zhp, child[c])) != 0)
957 			return (ret);
958 
959 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
960 	    &child, &children) == 0)
961 		for (c = 0; c < children; c++)
962 			if ((ret = make_disks(zhp, child[c])) != 0)
963 				return (ret);
964 
965 	return (0);
966 }
967 
968 /*
969  * Determine if the given path is a hot spare within the given configuration.
970  */
971 static boolean_t
972 is_spare(nvlist_t *config, const char *path)
973 {
974 	int fd;
975 	pool_state_t state;
976 	char *name = NULL;
977 	nvlist_t *label;
978 	uint64_t guid, spareguid;
979 	nvlist_t *nvroot;
980 	nvlist_t **spares;
981 	uint_t i, nspares;
982 	boolean_t inuse;
983 
984 	if ((fd = open(path, O_RDONLY)) < 0)
985 		return (B_FALSE);
986 
987 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
988 	    !inuse ||
989 	    state != POOL_STATE_SPARE ||
990 	    zpool_read_label(fd, &label) != 0) {
991 		free(name);
992 		(void) close(fd);
993 		return (B_FALSE);
994 	}
995 	free(name);
996 
997 	(void) close(fd);
998 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
999 	nvlist_free(label);
1000 
1001 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1002 	    &nvroot) == 0);
1003 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1004 	    &spares, &nspares) == 0) {
1005 		for (i = 0; i < nspares; i++) {
1006 			verify(nvlist_lookup_uint64(spares[i],
1007 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
1008 			if (spareguid == guid)
1009 				return (B_TRUE);
1010 		}
1011 	}
1012 
1013 	return (B_FALSE);
1014 }
1015 
1016 /*
1017  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1018  * the majority of this task.
1019  */
1020 static int
1021 check_in_use(nvlist_t *config, nvlist_t *nv, int force, int isreplacing,
1022     int isspare)
1023 {
1024 	nvlist_t **child;
1025 	uint_t c, children;
1026 	char *type, *path;
1027 	int ret;
1028 	char buf[MAXPATHLEN];
1029 	uint64_t wholedisk;
1030 
1031 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1032 
1033 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1034 	    &child, &children) != 0) {
1035 
1036 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1037 
1038 		/*
1039 		 * As a generic check, we look to see if this is a replace of a
1040 		 * hot spare within the same pool.  If so, we allow it
1041 		 * regardless of what libdiskmgt or zpool_in_use() says.
1042 		 */
1043 		if (isreplacing) {
1044 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1045 			    &wholedisk) == 0 && wholedisk)
1046 				(void) snprintf(buf, sizeof (buf), "%ss0",
1047 				    path);
1048 			else
1049 				(void) strlcpy(buf, path, sizeof (buf));
1050 			if (is_spare(config, buf))
1051 				return (0);
1052 		}
1053 
1054 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1055 			ret = check_device(path, force, isspare);
1056 
1057 		if (strcmp(type, VDEV_TYPE_FILE) == 0)
1058 			ret = check_file(path, force, isspare);
1059 
1060 		return (ret);
1061 	}
1062 
1063 	for (c = 0; c < children; c++)
1064 		if ((ret = check_in_use(config, child[c], force,
1065 		    isreplacing, B_FALSE)) != 0)
1066 			return (ret);
1067 
1068 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1069 	    &child, &children) == 0)
1070 		for (c = 0; c < children; c++)
1071 			if ((ret = check_in_use(config, child[c], force,
1072 			    isreplacing, B_TRUE)) != 0)
1073 				return (ret);
1074 	return (0);
1075 }
1076 
1077 static const char *
1078 is_grouping(const char *type, int *mindev)
1079 {
1080 	if (strcmp(type, "raidz") == 0 || strcmp(type, "raidz1") == 0) {
1081 		if (mindev != NULL)
1082 			*mindev = 2;
1083 		return (VDEV_TYPE_RAIDZ);
1084 	}
1085 
1086 	if (strcmp(type, "raidz2") == 0) {
1087 		if (mindev != NULL)
1088 			*mindev = 3;
1089 		return (VDEV_TYPE_RAIDZ);
1090 	}
1091 
1092 	if (strcmp(type, "mirror") == 0) {
1093 		if (mindev != NULL)
1094 			*mindev = 2;
1095 		return (VDEV_TYPE_MIRROR);
1096 	}
1097 
1098 	if (strcmp(type, "spare") == 0) {
1099 		if (mindev != NULL)
1100 			*mindev = 1;
1101 		return (VDEV_TYPE_SPARE);
1102 	}
1103 
1104 	if (strcmp(type, "log") == 0) {
1105 		if (mindev != NULL)
1106 			*mindev = 1;
1107 		return (VDEV_TYPE_LOG);
1108 	}
1109 
1110 	return (NULL);
1111 }
1112 
1113 /*
1114  * Construct a syntactically valid vdev specification,
1115  * and ensure that all devices and files exist and can be opened.
1116  * Note: we don't bother freeing anything in the error paths
1117  * because the program is just going to exit anyway.
1118  */
1119 nvlist_t *
1120 construct_spec(int argc, char **argv)
1121 {
1122 	nvlist_t *nvroot, *nv, **top, **spares;
1123 	int t, toplevels, mindev, nspares, nlogs;
1124 	const char *type;
1125 	uint64_t is_log;
1126 	boolean_t seen_logs;
1127 
1128 	top = NULL;
1129 	toplevels = 0;
1130 	spares = NULL;
1131 	nspares = 0;
1132 	nlogs = 0;
1133 	is_log = B_FALSE;
1134 	seen_logs = B_FALSE;
1135 
1136 	while (argc > 0) {
1137 		nv = NULL;
1138 
1139 		/*
1140 		 * If it's a mirror or raidz, the subsequent arguments are
1141 		 * its leaves -- until we encounter the next mirror or raidz.
1142 		 */
1143 		if ((type = is_grouping(argv[0], &mindev)) != NULL) {
1144 			nvlist_t **child = NULL;
1145 			int c, children = 0;
1146 
1147 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1148 				if (spares != NULL) {
1149 					(void) fprintf(stderr,
1150 					    gettext("invalid vdev "
1151 					    "specification: 'spare' can be "
1152 					    "specified only once\n"));
1153 					return (NULL);
1154 				}
1155 				is_log = B_FALSE;
1156 			}
1157 
1158 			if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1159 				if (seen_logs) {
1160 					(void) fprintf(stderr,
1161 					    gettext("invalid vdev "
1162 					    "specification: 'log' can be "
1163 					    "specified only once\n"));
1164 					return (NULL);
1165 				}
1166 				seen_logs = B_TRUE;
1167 				is_log = B_TRUE;
1168 				argc--;
1169 				argv++;
1170 				/*
1171 				 * A log is not a real grouping device.
1172 				 * We just set is_log and continue.
1173 				 */
1174 				continue;
1175 			}
1176 
1177 			if (is_log) {
1178 				if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1179 					(void) fprintf(stderr,
1180 					    gettext("invalid vdev "
1181 					    "specification: unsupported 'log' "
1182 					    "device: %s\n"), type);
1183 					return (NULL);
1184 				}
1185 				nlogs++;
1186 			}
1187 
1188 			for (c = 1; c < argc; c++) {
1189 				if (is_grouping(argv[c], NULL) != NULL)
1190 					break;
1191 				children++;
1192 				child = realloc(child,
1193 				    children * sizeof (nvlist_t *));
1194 				if (child == NULL)
1195 					zpool_no_memory();
1196 				if ((nv = make_leaf_vdev(argv[c], B_FALSE))
1197 				    == NULL)
1198 					return (NULL);
1199 				child[children - 1] = nv;
1200 			}
1201 
1202 			if (children < mindev) {
1203 				(void) fprintf(stderr, gettext("invalid vdev "
1204 				    "specification: %s requires at least %d "
1205 				    "devices\n"), argv[0], mindev);
1206 				return (NULL);
1207 			}
1208 
1209 			argc -= c;
1210 			argv += c;
1211 
1212 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1213 				spares = child;
1214 				nspares = children;
1215 				continue;
1216 			} else {
1217 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1218 				    0) == 0);
1219 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1220 				    type) == 0);
1221 				verify(nvlist_add_uint64(nv,
1222 				    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1223 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1224 					verify(nvlist_add_uint64(nv,
1225 					    ZPOOL_CONFIG_NPARITY,
1226 					    mindev - 1) == 0);
1227 				}
1228 				verify(nvlist_add_nvlist_array(nv,
1229 				    ZPOOL_CONFIG_CHILDREN, child,
1230 				    children) == 0);
1231 
1232 				for (c = 0; c < children; c++)
1233 					nvlist_free(child[c]);
1234 				free(child);
1235 			}
1236 		} else {
1237 			/*
1238 			 * We have a device.  Pass off to make_leaf_vdev() to
1239 			 * construct the appropriate nvlist describing the vdev.
1240 			 */
1241 			if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL)
1242 				return (NULL);
1243 			if (is_log)
1244 				nlogs++;
1245 			argc--;
1246 			argv++;
1247 		}
1248 
1249 		toplevels++;
1250 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1251 		if (top == NULL)
1252 			zpool_no_memory();
1253 		top[toplevels - 1] = nv;
1254 	}
1255 
1256 	if (toplevels == 0 && nspares == 0) {
1257 		(void) fprintf(stderr, gettext("invalid vdev "
1258 		    "specification: at least one toplevel vdev must be "
1259 		    "specified\n"));
1260 		return (NULL);
1261 	}
1262 
1263 	if (seen_logs && nlogs == 0) {
1264 		(void) fprintf(stderr, gettext("invalid vdev specification: "
1265 		    "log requires at least 1 device\n"));
1266 		return (NULL);
1267 	}
1268 
1269 	/*
1270 	 * Finally, create nvroot and add all top-level vdevs to it.
1271 	 */
1272 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1273 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1274 	    VDEV_TYPE_ROOT) == 0);
1275 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1276 	    top, toplevels) == 0);
1277 	if (nspares != 0)
1278 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1279 		    spares, nspares) == 0);
1280 
1281 	for (t = 0; t < toplevels; t++)
1282 		nvlist_free(top[t]);
1283 	for (t = 0; t < nspares; t++)
1284 		nvlist_free(spares[t]);
1285 	if (spares)
1286 		free(spares);
1287 	free(top);
1288 
1289 	return (nvroot);
1290 }
1291 
1292 
1293 /*
1294  * Get and validate the contents of the given vdev specification.  This ensures
1295  * that the nvlist returned is well-formed, that all the devices exist, and that
1296  * they are not currently in use by any other known consumer.  The 'poolconfig'
1297  * parameter is the current configuration of the pool when adding devices
1298  * existing pool, and is used to perform additional checks, such as changing the
1299  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1300  * new pool.  The 'force' flag controls whether devices should be forcefully
1301  * added, even if they appear in use.
1302  */
1303 nvlist_t *
1304 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
1305     boolean_t isreplacing, int argc, char **argv)
1306 {
1307 	nvlist_t *newroot;
1308 	nvlist_t *poolconfig = NULL;
1309 	is_force = force;
1310 
1311 	/*
1312 	 * Construct the vdev specification.  If this is successful, we know
1313 	 * that we have a valid specification, and that all devices can be
1314 	 * opened.
1315 	 */
1316 	if ((newroot = construct_spec(argc, argv)) == NULL)
1317 		return (NULL);
1318 
1319 	if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1320 		return (NULL);
1321 
1322 	/*
1323 	 * Validate each device to make sure that its not shared with another
1324 	 * subsystem.  We do this even if 'force' is set, because there are some
1325 	 * uses (such as a dedicated dump device) that even '-f' cannot
1326 	 * override.
1327 	 */
1328 	if (check_in_use(poolconfig, newroot, force, isreplacing,
1329 	    B_FALSE) != 0) {
1330 		nvlist_free(newroot);
1331 		return (NULL);
1332 	}
1333 
1334 	/*
1335 	 * Check the replication level of the given vdevs and report any errors
1336 	 * found.  We include the existing pool spec, if any, as we need to
1337 	 * catch changes against the existing replication level.
1338 	 */
1339 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1340 		nvlist_free(newroot);
1341 		return (NULL);
1342 	}
1343 
1344 	/*
1345 	 * Run through the vdev specification and label any whole disks found.
1346 	 */
1347 	if (make_disks(zhp, newroot) != 0) {
1348 		nvlist_free(newroot);
1349 		return (NULL);
1350 	}
1351 
1352 	return (newroot);
1353 }
1354