xref: /illumos-gate/usr/src/cmd/zpool/zpool_vdev.c (revision 46657f8d750bdb71753495ce2919170f126b8e34)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Functions to convert between a list of vdevs and an nvlist representing the
31  * configuration.  Each entry in the list can be one of:
32  *
33  * 	Device vdevs
34  * 		disk=(path=..., devid=...)
35  * 		file=(path=...)
36  *
37  * 	Group vdevs
38  * 		raidz[1|2]=(...)
39  * 		mirror=(...)
40  *
41  * 	Hot spares
42  *
43  * While the underlying implementation supports it, group vdevs cannot contain
44  * other group vdevs.  All userland verification of devices is contained within
45  * this file.  If successful, the nvlist returned can be passed directly to the
46  * kernel; we've done as much verification as possible in userland.
47  *
48  * Hot spares are a special case, and passed down as an array of disk vdevs, at
49  * the same level as the root of the vdev tree.
50  *
51  * The only function exported by this file is 'get_vdev_spec'.  The function
52  * performs several passes:
53  *
54  * 	1. Construct the vdev specification.  Performs syntax validation and
55  *         makes sure each device is valid.
56  * 	2. Check for devices in use.  Using libdiskmgt, makes sure that no
57  *         devices are also in use.  Some can be overridden using the 'force'
58  *         flag, others cannot.
59  * 	3. Check for replication errors if the 'force' flag is not specified.
60  *         validates that the replication level is consistent across the
61  *         entire pool.
62  * 	4. Label any whole disks with an EFI label.
63  */
64 
65 #include <assert.h>
66 #include <devid.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libdiskmgt.h>
70 #include <libintl.h>
71 #include <libnvpair.h>
72 #include <stdio.h>
73 #include <string.h>
74 #include <unistd.h>
75 #include <sys/efi_partition.h>
76 #include <sys/stat.h>
77 #include <sys/vtoc.h>
78 #include <sys/mntent.h>
79 
80 #include <libzfs.h>
81 
82 #include "zpool_util.h"
83 
84 #define	DISK_ROOT	"/dev/dsk"
85 #define	RDISK_ROOT	"/dev/rdsk"
86 #define	BACKUP_SLICE	"s2"
87 
88 /*
89  * For any given vdev specification, we can have multiple errors.  The
90  * vdev_error() function keeps track of whether we have seen an error yet, and
91  * prints out a header if its the first error we've seen.
92  */
93 boolean_t error_seen;
94 boolean_t is_force;
95 
96 /*PRINTFLIKE1*/
97 static void
98 vdev_error(const char *fmt, ...)
99 {
100 	va_list ap;
101 
102 	if (!error_seen) {
103 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
104 		if (!is_force)
105 			(void) fprintf(stderr, gettext("use '-f' to override "
106 			    "the following errors:\n"));
107 		else
108 			(void) fprintf(stderr, gettext("the following errors "
109 			    "must be manually repaired:\n"));
110 		error_seen = B_TRUE;
111 	}
112 
113 	va_start(ap, fmt);
114 	(void) vfprintf(stderr, fmt, ap);
115 	va_end(ap);
116 }
117 
118 static void
119 libdiskmgt_error(int error)
120 {
121 	/*
122 	 * ENXIO/ENODEV is a valid error message if the device doesn't live in
123 	 * /dev/dsk.  Don't bother printing an error message in this case.
124 	 */
125 	if (error == ENXIO || error == ENODEV)
126 		return;
127 
128 	(void) fprintf(stderr, gettext("warning: device in use checking "
129 	    "failed: %s\n"), strerror(error));
130 }
131 
132 /*
133  * Validate a device, passing the bulk of the work off to libdiskmgt.
134  */
135 int
136 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
137 {
138 	char *msg;
139 	int error = 0;
140 	int ret = 0;
141 
142 	if (dm_inuse((char *)path, &msg, isspare ? DM_WHO_ZPOOL_SPARE :
143 	    (force ? DM_WHO_ZPOOL_FORCE : DM_WHO_ZPOOL), &error) || error) {
144 		if (error != 0) {
145 			libdiskmgt_error(error);
146 			return (0);
147 		} else {
148 			vdev_error("%s", msg);
149 			free(msg);
150 			ret = -1;
151 		}
152 
153 	}
154 
155 	/*
156 	 * If we're given a whole disk, ignore overlapping slices since we're
157 	 * about to label it anyway.
158 	 */
159 	error = 0;
160 	if (!wholedisk && !force &&
161 	    (dm_isoverlapping((char *)path, &msg, &error) || error)) {
162 		if (error != 0) {
163 			libdiskmgt_error(error);
164 			return (0);
165 		} else {
166 			vdev_error("%s overlaps with %s\n", path, msg);
167 			free(msg);
168 		}
169 
170 		ret = -1;
171 	}
172 
173 	return (ret);
174 }
175 
176 /*
177  * Validate a whole disk.  Iterate over all slices on the disk and make sure
178  * that none is in use by calling check_slice().
179  */
180 /* ARGSUSED */
181 int
182 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
183 {
184 	dm_descriptor_t *drive, *media, *slice;
185 	int err = 0;
186 	int i;
187 	int ret;
188 
189 	/*
190 	 * Get the drive associated with this disk.  This should never fail,
191 	 * because we already have an alias handle open for the device.
192 	 */
193 	if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
194 	    &err)) == NULL || *drive == NULL) {
195 		if (err)
196 			libdiskmgt_error(err);
197 		return (0);
198 	}
199 
200 	if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
201 	    &err)) == NULL) {
202 		dm_free_descriptors(drive);
203 		if (err)
204 			libdiskmgt_error(err);
205 		return (0);
206 	}
207 
208 	dm_free_descriptors(drive);
209 
210 	/*
211 	 * It is possible that the user has specified a removable media drive,
212 	 * and the media is not present.
213 	 */
214 	if (*media == NULL) {
215 		dm_free_descriptors(media);
216 		vdev_error(gettext("'%s' has no media in drive\n"), name);
217 		return (-1);
218 	}
219 
220 	if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
221 	    &err)) == NULL) {
222 		dm_free_descriptors(media);
223 		if (err)
224 			libdiskmgt_error(err);
225 		return (0);
226 	}
227 
228 	dm_free_descriptors(media);
229 
230 	ret = 0;
231 
232 	/*
233 	 * Iterate over all slices and report any errors.  We don't care about
234 	 * overlapping slices because we are using the whole disk.
235 	 */
236 	for (i = 0; slice[i] != NULL; i++) {
237 		char *name = dm_get_name(slice[i], &err);
238 
239 		if (check_slice(name, force, B_TRUE, isspare) != 0)
240 			ret = -1;
241 
242 		dm_free_name(name);
243 	}
244 
245 	dm_free_descriptors(slice);
246 	return (ret);
247 }
248 
249 /*
250  * Validate a device.
251  */
252 int
253 check_device(const char *path, boolean_t force, boolean_t isspare)
254 {
255 	dm_descriptor_t desc;
256 	int err;
257 	char *dev;
258 
259 	/*
260 	 * For whole disks, libdiskmgt does not include the leading dev path.
261 	 */
262 	dev = strrchr(path, '/');
263 	assert(dev != NULL);
264 	dev++;
265 	if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
266 		err = check_disk(path, desc, force, isspare);
267 		dm_free_descriptor(desc);
268 		return (err);
269 	}
270 
271 	return (check_slice(path, force, B_FALSE, isspare));
272 }
273 
274 /*
275  * Check that a file is valid.  All we can do in this case is check that it's
276  * not in use by another pool.
277  */
278 int
279 check_file(const char *file, boolean_t force, boolean_t isspare)
280 {
281 	char  *name;
282 	int fd;
283 	int ret = 0;
284 	pool_state_t state;
285 	boolean_t inuse;
286 
287 	if ((fd = open(file, O_RDONLY)) < 0)
288 		return (0);
289 
290 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
291 		const char *desc;
292 
293 		switch (state) {
294 		case POOL_STATE_ACTIVE:
295 			desc = gettext("active");
296 			break;
297 
298 		case POOL_STATE_EXPORTED:
299 			desc = gettext("exported");
300 			break;
301 
302 		case POOL_STATE_POTENTIALLY_ACTIVE:
303 			desc = gettext("potentially active");
304 			break;
305 
306 		default:
307 			desc = gettext("unknown");
308 			break;
309 		}
310 
311 		/*
312 		 * Allow hot spares to be shared between pools.
313 		 */
314 		if (state == POOL_STATE_SPARE && isspare)
315 			return (0);
316 
317 		if (state == POOL_STATE_ACTIVE ||
318 		    state == POOL_STATE_SPARE || !force) {
319 			switch (state) {
320 			case POOL_STATE_SPARE:
321 				vdev_error(gettext("%s is reserved as a hot "
322 				    "spare for pool %s\n"), file, name);
323 				break;
324 			default:
325 				vdev_error(gettext("%s is part of %s pool "
326 				    "'%s'\n"), file, desc, name);
327 				break;
328 			}
329 			ret = -1;
330 		}
331 
332 		free(name);
333 	}
334 
335 	(void) close(fd);
336 	return (ret);
337 }
338 
339 static boolean_t
340 is_whole_disk(const char *arg, struct stat64 *statbuf)
341 {
342 	char path[MAXPATHLEN];
343 
344 	(void) snprintf(path, sizeof (path), "%s%s", arg, BACKUP_SLICE);
345 	if (stat64(path, statbuf) == 0)
346 		return (B_TRUE);
347 
348 	return (B_FALSE);
349 }
350 
351 /*
352  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
353  * device, fill in the device id to make a complete nvlist.  Valid forms for a
354  * leaf vdev are:
355  *
356  * 	/dev/dsk/xxx	Complete disk path
357  * 	/xxx		Full path to file
358  * 	xxx		Shorthand for /dev/dsk/xxx
359  */
360 nvlist_t *
361 make_leaf_vdev(const char *arg)
362 {
363 	char path[MAXPATHLEN];
364 	struct stat64 statbuf;
365 	nvlist_t *vdev = NULL;
366 	char *type = NULL;
367 	boolean_t wholedisk = B_FALSE;
368 
369 	/*
370 	 * Determine what type of vdev this is, and put the full path into
371 	 * 'path'.  We detect whether this is a device of file afterwards by
372 	 * checking the st_mode of the file.
373 	 */
374 	if (arg[0] == '/') {
375 		/*
376 		 * Complete device or file path.  Exact type is determined by
377 		 * examining the file descriptor afterwards.
378 		 */
379 		if (is_whole_disk(arg, &statbuf)) {
380 			wholedisk = B_TRUE;
381 		} else if (stat64(arg, &statbuf) != 0) {
382 			(void) fprintf(stderr,
383 			    gettext("cannot open '%s': %s\n"),
384 			    arg, strerror(errno));
385 			return (NULL);
386 		}
387 
388 		(void) strlcpy(path, arg, sizeof (path));
389 	} else {
390 		/*
391 		 * This may be a short path for a device, or it could be total
392 		 * gibberish.  Check to see if it's a known device in
393 		 * /dev/dsk/.  As part of this check, see if we've been given a
394 		 * an entire disk (minus the slice number).
395 		 */
396 		(void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT,
397 		    arg);
398 		if (is_whole_disk(path, &statbuf)) {
399 			wholedisk = B_TRUE;
400 		} else if (stat64(path, &statbuf) != 0) {
401 			/*
402 			 * If we got ENOENT, then the user gave us
403 			 * gibberish, so try to direct them with a
404 			 * reasonable error message.  Otherwise,
405 			 * regurgitate strerror() since it's the best we
406 			 * can do.
407 			 */
408 			if (errno == ENOENT) {
409 				(void) fprintf(stderr,
410 				    gettext("cannot open '%s': no such "
411 				    "device in %s\n"), arg, DISK_ROOT);
412 				(void) fprintf(stderr,
413 				    gettext("must be a full path or "
414 				    "shorthand device name\n"));
415 				return (NULL);
416 			} else {
417 				(void) fprintf(stderr,
418 				    gettext("cannot open '%s': %s\n"),
419 				    path, strerror(errno));
420 				return (NULL);
421 			}
422 		}
423 	}
424 
425 	/*
426 	 * Determine whether this is a device or a file.
427 	 */
428 	if (S_ISBLK(statbuf.st_mode)) {
429 		type = VDEV_TYPE_DISK;
430 	} else if (S_ISREG(statbuf.st_mode)) {
431 		type = VDEV_TYPE_FILE;
432 	} else {
433 		(void) fprintf(stderr, gettext("cannot use '%s': must be a "
434 		    "block device or regular file\n"), path);
435 		return (NULL);
436 	}
437 
438 	/*
439 	 * Finally, we have the complete device or file, and we know that it is
440 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
441 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
442 	 */
443 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
444 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
445 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
446 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
447 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
448 		    (uint64_t)wholedisk) == 0);
449 
450 	/*
451 	 * For a whole disk, defer getting its devid until after labeling it.
452 	 */
453 	if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
454 		/*
455 		 * Get the devid for the device.
456 		 */
457 		int fd;
458 		ddi_devid_t devid;
459 		char *minor = NULL, *devid_str = NULL;
460 
461 		if ((fd = open(path, O_RDONLY)) < 0) {
462 			(void) fprintf(stderr, gettext("cannot open '%s': "
463 			    "%s\n"), path, strerror(errno));
464 			nvlist_free(vdev);
465 			return (NULL);
466 		}
467 
468 		if (devid_get(fd, &devid) == 0) {
469 			if (devid_get_minor_name(fd, &minor) == 0 &&
470 			    (devid_str = devid_str_encode(devid, minor)) !=
471 			    NULL) {
472 				verify(nvlist_add_string(vdev,
473 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
474 			}
475 			if (devid_str != NULL)
476 				devid_str_free(devid_str);
477 			if (minor != NULL)
478 				devid_str_free(minor);
479 			devid_free(devid);
480 		}
481 
482 		(void) close(fd);
483 	}
484 
485 	return (vdev);
486 }
487 
488 /*
489  * Go through and verify the replication level of the pool is consistent.
490  * Performs the following checks:
491  *
492  * 	For the new spec, verifies that devices in mirrors and raidz are the
493  * 	same size.
494  *
495  * 	If the current configuration already has inconsistent replication
496  * 	levels, ignore any other potential problems in the new spec.
497  *
498  * 	Otherwise, make sure that the current spec (if there is one) and the new
499  * 	spec have consistent replication levels.
500  */
501 typedef struct replication_level {
502 	char *zprl_type;
503 	uint64_t zprl_children;
504 	uint64_t zprl_parity;
505 } replication_level_t;
506 
507 /*
508  * Given a list of toplevel vdevs, return the current replication level.  If
509  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
510  * an error message will be displayed for each self-inconsistent vdev.
511  */
512 replication_level_t *
513 get_replication(nvlist_t *nvroot, boolean_t fatal)
514 {
515 	nvlist_t **top;
516 	uint_t t, toplevels;
517 	nvlist_t **child;
518 	uint_t c, children;
519 	nvlist_t *nv;
520 	char *type;
521 	replication_level_t lastrep, rep, *ret;
522 	boolean_t dontreport;
523 
524 	ret = safe_malloc(sizeof (replication_level_t));
525 
526 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
527 	    &top, &toplevels) == 0);
528 
529 	lastrep.zprl_type = NULL;
530 	for (t = 0; t < toplevels; t++) {
531 		nv = top[t];
532 
533 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
534 
535 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
536 		    &child, &children) != 0) {
537 			/*
538 			 * This is a 'file' or 'disk' vdev.
539 			 */
540 			rep.zprl_type = type;
541 			rep.zprl_children = 1;
542 			rep.zprl_parity = 0;
543 		} else {
544 			uint64_t vdev_size;
545 
546 			/*
547 			 * This is a mirror or RAID-Z vdev.  Go through and make
548 			 * sure the contents are all the same (files vs. disks),
549 			 * keeping track of the number of elements in the
550 			 * process.
551 			 *
552 			 * We also check that the size of each vdev (if it can
553 			 * be determined) is the same.
554 			 */
555 			rep.zprl_type = type;
556 			rep.zprl_children = 0;
557 
558 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
559 				verify(nvlist_lookup_uint64(nv,
560 				    ZPOOL_CONFIG_NPARITY,
561 				    &rep.zprl_parity) == 0);
562 				assert(rep.zprl_parity != 0);
563 			} else {
564 				rep.zprl_parity = 0;
565 			}
566 
567 			/*
568 			 * The 'dontreport' variable indicatest that we've
569 			 * already reported an error for this spec, so don't
570 			 * bother doing it again.
571 			 */
572 			type = NULL;
573 			dontreport = 0;
574 			vdev_size = -1ULL;
575 			for (c = 0; c < children; c++) {
576 				nvlist_t *cnv = child[c];
577 				char *path;
578 				struct stat64 statbuf;
579 				uint64_t size = -1ULL;
580 				char *childtype;
581 				int fd, err;
582 
583 				rep.zprl_children++;
584 
585 				verify(nvlist_lookup_string(cnv,
586 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
587 
588 				/*
589 				 * If this is a a replacing or spare vdev, then
590 				 * get the real first child of the vdev.
591 				 */
592 				if (strcmp(childtype,
593 				    VDEV_TYPE_REPLACING) == 0 ||
594 				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
595 					nvlist_t **rchild;
596 					uint_t rchildren;
597 
598 					verify(nvlist_lookup_nvlist_array(cnv,
599 					    ZPOOL_CONFIG_CHILDREN, &rchild,
600 					    &rchildren) == 0);
601 					assert(rchildren == 2);
602 					cnv = rchild[0];
603 
604 					verify(nvlist_lookup_string(cnv,
605 					    ZPOOL_CONFIG_TYPE,
606 					    &childtype) == 0);
607 				}
608 
609 				verify(nvlist_lookup_string(cnv,
610 				    ZPOOL_CONFIG_PATH, &path) == 0);
611 
612 				/*
613 				 * If we have a raidz/mirror that combines disks
614 				 * with files, report it as an error.
615 				 */
616 				if (!dontreport && type != NULL &&
617 				    strcmp(type, childtype) != 0) {
618 					if (ret != NULL)
619 						free(ret);
620 					ret = NULL;
621 					if (fatal)
622 						vdev_error(gettext(
623 						    "mismatched replication "
624 						    "level: %s contains both "
625 						    "files and devices\n"),
626 						    rep.zprl_type);
627 					else
628 						return (NULL);
629 					dontreport = B_TRUE;
630 				}
631 
632 				/*
633 				 * According to stat(2), the value of 'st_size'
634 				 * is undefined for block devices and character
635 				 * devices.  But there is no effective way to
636 				 * determine the real size in userland.
637 				 *
638 				 * Instead, we'll take advantage of an
639 				 * implementation detail of spec_size().  If the
640 				 * device is currently open, then we (should)
641 				 * return a valid size.
642 				 *
643 				 * If we still don't get a valid size (indicated
644 				 * by a size of 0 or MAXOFFSET_T), then ignore
645 				 * this device altogether.
646 				 */
647 				if ((fd = open(path, O_RDONLY)) >= 0) {
648 					err = fstat64(fd, &statbuf);
649 					(void) close(fd);
650 				} else {
651 					err = stat64(path, &statbuf);
652 				}
653 
654 				if (err != 0 ||
655 				    statbuf.st_size == 0 ||
656 				    statbuf.st_size == MAXOFFSET_T)
657 					continue;
658 
659 				size = statbuf.st_size;
660 
661 				/*
662 				 * Also check the size of each device.  If they
663 				 * differ, then report an error.
664 				 */
665 				if (!dontreport && vdev_size != -1ULL &&
666 				    size != vdev_size) {
667 					if (ret != NULL)
668 						free(ret);
669 					ret = NULL;
670 					if (fatal)
671 						vdev_error(gettext(
672 						    "%s contains devices of "
673 						    "different sizes\n"),
674 						    rep.zprl_type);
675 					else
676 						return (NULL);
677 					dontreport = B_TRUE;
678 				}
679 
680 				type = childtype;
681 				vdev_size = size;
682 			}
683 		}
684 
685 		/*
686 		 * At this point, we have the replication of the last toplevel
687 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if its
688 		 * different.
689 		 */
690 		if (lastrep.zprl_type != NULL) {
691 			if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
692 				if (ret != NULL)
693 					free(ret);
694 				ret = NULL;
695 				if (fatal)
696 					vdev_error(gettext(
697 					    "mismatched replication level: "
698 					    "both %s and %s vdevs are "
699 					    "present\n"),
700 					    lastrep.zprl_type, rep.zprl_type);
701 				else
702 					return (NULL);
703 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
704 				if (ret)
705 					free(ret);
706 				ret = NULL;
707 				if (fatal)
708 					vdev_error(gettext(
709 					    "mismatched replication level: "
710 					    "both %llu and %llu device parity "
711 					    "%s vdevs are present\n"),
712 					    lastrep.zprl_parity,
713 					    rep.zprl_parity,
714 					    rep.zprl_type);
715 				else
716 					return (NULL);
717 			} else if (lastrep.zprl_children != rep.zprl_children) {
718 				if (ret)
719 					free(ret);
720 				ret = NULL;
721 				if (fatal)
722 					vdev_error(gettext(
723 					    "mismatched replication level: "
724 					    "both %llu-way and %llu-way %s "
725 					    "vdevs are present\n"),
726 					    lastrep.zprl_children,
727 					    rep.zprl_children,
728 					    rep.zprl_type);
729 				else
730 					return (NULL);
731 			}
732 		}
733 		lastrep = rep;
734 	}
735 
736 	if (ret != NULL)
737 		*ret = rep;
738 
739 	return (ret);
740 }
741 
742 /*
743  * Check the replication level of the vdev spec against the current pool.  Calls
744  * get_replication() to make sure the new spec is self-consistent.  If the pool
745  * has a consistent replication level, then we ignore any errors.  Otherwise,
746  * report any difference between the two.
747  */
748 int
749 check_replication(nvlist_t *config, nvlist_t *newroot)
750 {
751 	replication_level_t *current = NULL, *new;
752 	int ret;
753 
754 	/*
755 	 * If we have a current pool configuration, check to see if it's
756 	 * self-consistent.  If not, simply return success.
757 	 */
758 	if (config != NULL) {
759 		nvlist_t *nvroot;
760 
761 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
762 		    &nvroot) == 0);
763 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
764 			return (0);
765 	}
766 
767 	/*
768 	 * Get the replication level of the new vdev spec, reporting any
769 	 * inconsistencies found.
770 	 */
771 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
772 		free(current);
773 		return (-1);
774 	}
775 
776 	/*
777 	 * Check to see if the new vdev spec matches the replication level of
778 	 * the current pool.
779 	 */
780 	ret = 0;
781 	if (current != NULL) {
782 		if (strcmp(current->zprl_type, new->zprl_type) != 0) {
783 			vdev_error(gettext(
784 			    "mismatched replication level: pool uses %s "
785 			    "and new vdev is %s\n"),
786 			    current->zprl_type, new->zprl_type);
787 			ret = -1;
788 		} else if (current->zprl_parity != new->zprl_parity) {
789 			vdev_error(gettext(
790 			    "mismatched replication level: pool uses %llu "
791 			    "device parity and new vdev uses %llu\n"),
792 			    current->zprl_parity, new->zprl_parity);
793 			ret = -1;
794 		} else if (current->zprl_children != new->zprl_children) {
795 			vdev_error(gettext(
796 			    "mismatched replication level: pool uses %llu-way "
797 			    "%s and new vdev uses %llu-way %s\n"),
798 			    current->zprl_children, current->zprl_type,
799 			    new->zprl_children, new->zprl_type);
800 			ret = -1;
801 		}
802 	}
803 
804 	free(new);
805 	if (current != NULL)
806 		free(current);
807 
808 	return (ret);
809 }
810 
811 /*
812  * Label an individual disk.  The name provided is the short name, stripped of
813  * any leading /dev path.
814  */
815 int
816 label_disk(char *name)
817 {
818 	char path[MAXPATHLEN];
819 	struct dk_gpt *vtoc;
820 	int fd;
821 	size_t resv = 16384;
822 
823 	(void) snprintf(path, sizeof (path), "%s/%s%s", RDISK_ROOT, name,
824 	    BACKUP_SLICE);
825 
826 	if ((fd = open(path, O_RDWR | O_NDELAY)) < 0) {
827 		/*
828 		 * This shouldn't happen.  We've long since verified that this
829 		 * is a valid device.
830 		 */
831 		(void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
832 		    path, strerror(errno));
833 		return (-1);
834 	}
835 
836 
837 	if (efi_alloc_and_init(fd, 9, &vtoc) != 0) {
838 		/*
839 		 * The only way this can fail is if we run out of memory, or we
840 		 * were unable to read the disk geometry.
841 		 */
842 		if (errno == ENOMEM)
843 			zpool_no_memory();
844 
845 		(void) fprintf(stderr, gettext("cannot label '%s': unable to "
846 		    "read disk geometry\n"), name);
847 		(void) close(fd);
848 		return (-1);
849 	}
850 
851 	vtoc->efi_parts[0].p_start = vtoc->efi_first_u_lba;
852 	vtoc->efi_parts[0].p_size = vtoc->efi_last_u_lba + 1 -
853 	    vtoc->efi_first_u_lba - resv;
854 
855 	/*
856 	 * Why we use V_USR: V_BACKUP confuses users, and is considered
857 	 * disposable by some EFI utilities (since EFI doesn't have a backup
858 	 * slice).  V_UNASSIGNED is supposed to be used only for zero size
859 	 * partitions, and efi_write() will fail if we use it.  V_ROOT, V_BOOT,
860 	 * etc. were all pretty specific.  V_USR is as close to reality as we
861 	 * can get, in the absence of V_OTHER.
862 	 */
863 	vtoc->efi_parts[0].p_tag = V_USR;
864 	(void) strcpy(vtoc->efi_parts[0].p_name, "zfs");
865 
866 	vtoc->efi_parts[8].p_start = vtoc->efi_last_u_lba + 1 - resv;
867 	vtoc->efi_parts[8].p_size = resv;
868 	vtoc->efi_parts[8].p_tag = V_RESERVED;
869 
870 	if (efi_write(fd, vtoc) != 0) {
871 		/*
872 		 * Currently, EFI labels are not supported for IDE disks, and it
873 		 * is likely that they will not be supported on other drives for
874 		 * some time.  Print out a helpful error message directing the
875 		 * user to manually label the disk and give a specific slice.
876 		 */
877 		(void) fprintf(stderr, gettext("cannot label '%s': failed to "
878 		    "write EFI label\n"), name);
879 		(void) fprintf(stderr, gettext("use fdisk(1M) to partition "
880 		    "the disk, and provide a specific slice\n"));
881 		(void) close(fd);
882 		efi_free(vtoc);
883 		return (-1);
884 	}
885 
886 	(void) close(fd);
887 	efi_free(vtoc);
888 	return (0);
889 }
890 
891 /*
892  * Go through and find any whole disks in the vdev specification, labelling them
893  * as appropriate.  When constructing the vdev spec, we were unable to open this
894  * device in order to provide a devid.  Now that we have labelled the disk and
895  * know that slice 0 is valid, we can construct the devid now.
896  *
897  * If the disk was already labelled with an EFI label, we will have gotten the
898  * devid already (because we were able to open the whole disk).  Otherwise, we
899  * need to get the devid after we label the disk.
900  */
901 int
902 make_disks(nvlist_t *nv)
903 {
904 	nvlist_t **child;
905 	uint_t c, children;
906 	char *type, *path, *diskname;
907 	char buf[MAXPATHLEN];
908 	uint64_t wholedisk;
909 	int fd;
910 	int ret;
911 	ddi_devid_t devid;
912 	char *minor = NULL, *devid_str = NULL;
913 
914 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
915 
916 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
917 	    &child, &children) != 0) {
918 
919 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
920 			return (0);
921 
922 		/*
923 		 * We have a disk device.  Get the path to the device
924 		 * and see if its a whole disk by appending the backup
925 		 * slice and stat()ing the device.
926 		 */
927 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
928 
929 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
930 		    &wholedisk) != 0 || !wholedisk)
931 			return (0);
932 
933 		diskname = strrchr(path, '/');
934 		assert(diskname != NULL);
935 		diskname++;
936 		if (label_disk(diskname) != 0)
937 			return (-1);
938 
939 		/*
940 		 * Fill in the devid, now that we've labeled the disk.
941 		 */
942 		(void) snprintf(buf, sizeof (buf), "%ss0", path);
943 		if ((fd = open(buf, O_RDONLY)) < 0) {
944 			(void) fprintf(stderr,
945 			    gettext("cannot open '%s': %s\n"),
946 			    buf, strerror(errno));
947 			return (-1);
948 		}
949 
950 		if (devid_get(fd, &devid) == 0) {
951 			if (devid_get_minor_name(fd, &minor) == 0 &&
952 			    (devid_str = devid_str_encode(devid, minor)) !=
953 			    NULL) {
954 				verify(nvlist_add_string(nv,
955 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
956 			}
957 			if (devid_str != NULL)
958 				devid_str_free(devid_str);
959 			if (minor != NULL)
960 				devid_str_free(minor);
961 			devid_free(devid);
962 		}
963 
964 		/*
965 		 * Update the path to refer to the 's0' slice.  The presence of
966 		 * the 'whole_disk' field indicates to the CLI that we should
967 		 * chop off the slice number when displaying the device in
968 		 * future output.
969 		 */
970 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
971 
972 		(void) close(fd);
973 
974 		return (0);
975 	}
976 
977 	for (c = 0; c < children; c++)
978 		if ((ret = make_disks(child[c])) != 0)
979 			return (ret);
980 
981 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
982 	    &child, &children) == 0)
983 		for (c = 0; c < children; c++)
984 			if ((ret = make_disks(child[c])) != 0)
985 				return (ret);
986 
987 	return (0);
988 }
989 
990 /*
991  * Determine if the given path is a hot spare within the given configuration.
992  */
993 static boolean_t
994 is_spare(nvlist_t *config, const char *path)
995 {
996 	int fd;
997 	pool_state_t state;
998 	char *name = NULL;
999 	nvlist_t *label;
1000 	uint64_t guid, spareguid;
1001 	nvlist_t *nvroot;
1002 	nvlist_t **spares;
1003 	uint_t i, nspares;
1004 	boolean_t inuse;
1005 
1006 	if ((fd = open(path, O_RDONLY)) < 0)
1007 		return (B_FALSE);
1008 
1009 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
1010 	    !inuse ||
1011 	    state != POOL_STATE_SPARE ||
1012 	    zpool_read_label(fd, &label) != 0) {
1013 		free(name);
1014 		(void) close(fd);
1015 		return (B_FALSE);
1016 	}
1017 	free(name);
1018 
1019 	(void) close(fd);
1020 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1021 	nvlist_free(label);
1022 
1023 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1024 	    &nvroot) == 0);
1025 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1026 	    &spares, &nspares) == 0) {
1027 		for (i = 0; i < nspares; i++) {
1028 			verify(nvlist_lookup_uint64(spares[i],
1029 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
1030 			if (spareguid == guid)
1031 				return (B_TRUE);
1032 		}
1033 	}
1034 
1035 	return (B_FALSE);
1036 }
1037 
1038 /*
1039  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1040  * the majority of this task.
1041  */
1042 int
1043 check_in_use(nvlist_t *config, nvlist_t *nv, int force, int isreplacing,
1044     int isspare)
1045 {
1046 	nvlist_t **child;
1047 	uint_t c, children;
1048 	char *type, *path;
1049 	int ret;
1050 	char buf[MAXPATHLEN];
1051 	uint64_t wholedisk;
1052 
1053 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1054 
1055 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1056 	    &child, &children) != 0) {
1057 
1058 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1059 
1060 		/*
1061 		 * As a generic check, we look to see if this is a replace of a
1062 		 * hot spare within the same pool.  If so, we allow it
1063 		 * regardless of what libdiskmgt or zpool_in_use() says.
1064 		 */
1065 		if (isreplacing) {
1066 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1067 			    &wholedisk) == 0 && wholedisk)
1068 				(void) snprintf(buf, sizeof (buf), "%ss0",
1069 				    path);
1070 			else
1071 				(void) strlcpy(buf, path, sizeof (buf));
1072 			if (is_spare(config, buf))
1073 				return (0);
1074 		}
1075 
1076 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1077 			ret = check_device(path, force, isspare);
1078 
1079 		if (strcmp(type, VDEV_TYPE_FILE) == 0)
1080 			ret = check_file(path, force, isspare);
1081 
1082 		return (ret);
1083 	}
1084 
1085 	for (c = 0; c < children; c++)
1086 		if ((ret = check_in_use(config, child[c], force,
1087 		    isreplacing, B_FALSE)) != 0)
1088 			return (ret);
1089 
1090 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1091 	    &child, &children) == 0)
1092 		for (c = 0; c < children; c++)
1093 			if ((ret = check_in_use(config, child[c], force,
1094 			    isreplacing, B_TRUE)) != 0)
1095 				return (ret);
1096 
1097 	return (0);
1098 }
1099 
1100 const char *
1101 is_grouping(const char *type, int *mindev)
1102 {
1103 	if (strcmp(type, "raidz") == 0 || strcmp(type, "raidz1") == 0) {
1104 		if (mindev != NULL)
1105 			*mindev = 2;
1106 		return (VDEV_TYPE_RAIDZ);
1107 	}
1108 
1109 	if (strcmp(type, "raidz2") == 0) {
1110 		if (mindev != NULL)
1111 			*mindev = 3;
1112 		return (VDEV_TYPE_RAIDZ);
1113 	}
1114 
1115 	if (strcmp(type, "mirror") == 0) {
1116 		if (mindev != NULL)
1117 			*mindev = 2;
1118 		return (VDEV_TYPE_MIRROR);
1119 	}
1120 
1121 	if (strcmp(type, "spare") == 0) {
1122 		if (mindev != NULL)
1123 			*mindev = 1;
1124 		return (VDEV_TYPE_SPARE);
1125 	}
1126 
1127 	return (NULL);
1128 }
1129 
1130 /*
1131  * Construct a syntactically valid vdev specification,
1132  * and ensure that all devices and files exist and can be opened.
1133  * Note: we don't bother freeing anything in the error paths
1134  * because the program is just going to exit anyway.
1135  */
1136 nvlist_t *
1137 construct_spec(int argc, char **argv)
1138 {
1139 	nvlist_t *nvroot, *nv, **top, **spares;
1140 	int t, toplevels, mindev, nspares;
1141 	const char *type;
1142 
1143 	top = NULL;
1144 	toplevels = 0;
1145 	spares = NULL;
1146 	nspares = 0;
1147 
1148 	while (argc > 0) {
1149 		nv = NULL;
1150 
1151 		/*
1152 		 * If it's a mirror or raidz, the subsequent arguments are
1153 		 * its leaves -- until we encounter the next mirror or raidz.
1154 		 */
1155 		if ((type = is_grouping(argv[0], &mindev)) != NULL) {
1156 			nvlist_t **child = NULL;
1157 			int c, children = 0;
1158 
1159 			if (strcmp(type, VDEV_TYPE_SPARE) == 0 &&
1160 			    spares != NULL) {
1161 				(void) fprintf(stderr, gettext("invalid vdev "
1162 				    "specification: 'spare' can be "
1163 				    "specified only once\n"));
1164 				return (NULL);
1165 			}
1166 
1167 			for (c = 1; c < argc; c++) {
1168 				if (is_grouping(argv[c], NULL) != NULL)
1169 					break;
1170 				children++;
1171 				child = realloc(child,
1172 				    children * sizeof (nvlist_t *));
1173 				if (child == NULL)
1174 					zpool_no_memory();
1175 				if ((nv = make_leaf_vdev(argv[c])) == NULL)
1176 					return (NULL);
1177 				child[children - 1] = nv;
1178 			}
1179 
1180 			if (children < mindev) {
1181 				(void) fprintf(stderr, gettext("invalid vdev "
1182 				    "specification: %s requires at least %d "
1183 				    "devices\n"), argv[0], mindev);
1184 				return (NULL);
1185 			}
1186 
1187 			argc -= c;
1188 			argv += c;
1189 
1190 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1191 				spares = child;
1192 				nspares = children;
1193 				continue;
1194 			} else {
1195 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1196 				    0) == 0);
1197 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1198 				    type) == 0);
1199 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1200 					verify(nvlist_add_uint64(nv,
1201 					    ZPOOL_CONFIG_NPARITY,
1202 					    mindev - 1) == 0);
1203 				}
1204 				verify(nvlist_add_nvlist_array(nv,
1205 				    ZPOOL_CONFIG_CHILDREN, child,
1206 				    children) == 0);
1207 
1208 				for (c = 0; c < children; c++)
1209 					nvlist_free(child[c]);
1210 				free(child);
1211 			}
1212 		} else {
1213 			/*
1214 			 * We have a device.  Pass off to make_leaf_vdev() to
1215 			 * construct the appropriate nvlist describing the vdev.
1216 			 */
1217 			if ((nv = make_leaf_vdev(argv[0])) == NULL)
1218 				return (NULL);
1219 			argc--;
1220 			argv++;
1221 		}
1222 
1223 		toplevels++;
1224 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1225 		if (top == NULL)
1226 			zpool_no_memory();
1227 		top[toplevels - 1] = nv;
1228 	}
1229 
1230 	if (toplevels == 0 && nspares == 0) {
1231 		(void) fprintf(stderr, gettext("invalid vdev "
1232 		    "specification: at least one toplevel vdev must be "
1233 		    "specified\n"));
1234 		return (NULL);
1235 	}
1236 
1237 	/*
1238 	 * Finally, create nvroot and add all top-level vdevs to it.
1239 	 */
1240 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1241 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1242 	    VDEV_TYPE_ROOT) == 0);
1243 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1244 	    top, toplevels) == 0);
1245 	if (nspares != 0)
1246 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1247 		    spares, nspares) == 0);
1248 
1249 	for (t = 0; t < toplevels; t++)
1250 		nvlist_free(top[t]);
1251 	for (t = 0; t < nspares; t++)
1252 		nvlist_free(spares[t]);
1253 	if (spares)
1254 		free(spares);
1255 	free(top);
1256 
1257 	return (nvroot);
1258 }
1259 
1260 /*
1261  * Get and validate the contents of the given vdev specification.  This ensures
1262  * that the nvlist returned is well-formed, that all the devices exist, and that
1263  * they are not currently in use by any other known consumer.  The 'poolconfig'
1264  * parameter is the current configuration of the pool when adding devices
1265  * existing pool, and is used to perform additional checks, such as changing the
1266  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1267  * new pool.  The 'force' flag controls whether devices should be forcefully
1268  * added, even if they appear in use.
1269  */
1270 nvlist_t *
1271 make_root_vdev(nvlist_t *poolconfig, int force, int check_rep,
1272     boolean_t isreplacing, int argc, char **argv)
1273 {
1274 	nvlist_t *newroot;
1275 
1276 	is_force = force;
1277 
1278 	/*
1279 	 * Construct the vdev specification.  If this is successful, we know
1280 	 * that we have a valid specification, and that all devices can be
1281 	 * opened.
1282 	 */
1283 	if ((newroot = construct_spec(argc, argv)) == NULL)
1284 		return (NULL);
1285 
1286 	/*
1287 	 * Validate each device to make sure that its not shared with another
1288 	 * subsystem.  We do this even if 'force' is set, because there are some
1289 	 * uses (such as a dedicated dump device) that even '-f' cannot
1290 	 * override.
1291 	 */
1292 	if (check_in_use(poolconfig, newroot, force, isreplacing,
1293 	    B_FALSE) != 0) {
1294 		nvlist_free(newroot);
1295 		return (NULL);
1296 	}
1297 
1298 	/*
1299 	 * Check the replication level of the given vdevs and report any errors
1300 	 * found.  We include the existing pool spec, if any, as we need to
1301 	 * catch changes against the existing replication level.
1302 	 */
1303 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1304 		nvlist_free(newroot);
1305 		return (NULL);
1306 	}
1307 
1308 	/*
1309 	 * Run through the vdev specification and label any whole disks found.
1310 	 */
1311 	if (make_disks(newroot) != 0) {
1312 		nvlist_free(newroot);
1313 		return (NULL);
1314 	}
1315 
1316 	return (newroot);
1317 }
1318